Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 15570, column 5
Undefined or garbage value returned to caller

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-10-235847-15982-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220410100727+3c1483609369/clang/lib/CodeGen/CGBuiltin.cpp
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGOpenCLRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "PatternInit.h"
22#include "TargetInfo.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/OSLog.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/CodeGen/CGFunctionInfo.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/IntrinsicsAArch64.h"
39#include "llvm/IR/IntrinsicsAMDGPU.h"
40#include "llvm/IR/IntrinsicsARM.h"
41#include "llvm/IR/IntrinsicsBPF.h"
42#include "llvm/IR/IntrinsicsHexagon.h"
43#include "llvm/IR/IntrinsicsNVPTX.h"
44#include "llvm/IR/IntrinsicsPowerPC.h"
45#include "llvm/IR/IntrinsicsR600.h"
46#include "llvm/IR/IntrinsicsRISCV.h"
47#include "llvm/IR/IntrinsicsS390.h"
48#include "llvm/IR/IntrinsicsVE.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
51#include "llvm/IR/MDBuilder.h"
52#include "llvm/IR/MatrixBuilder.h"
53#include "llvm/Support/ConvertUTF.h"
54#include "llvm/Support/ScopedPrinter.h"
55#include "llvm/Support/X86TargetParser.h"
56#include <sstream>
57
58using namespace clang;
59using namespace CodeGen;
60using namespace llvm;
61
62static
63int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
64 return std::min(High, std::max(Low, Value));
65}
66
67static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
68 Align AlignmentInBytes) {
69 ConstantInt *Byte;
70 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
71 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
72 // Nothing to initialize.
73 return;
74 case LangOptions::TrivialAutoVarInitKind::Zero:
75 Byte = CGF.Builder.getInt8(0x00);
76 break;
77 case LangOptions::TrivialAutoVarInitKind::Pattern: {
78 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
79 Byte = llvm::dyn_cast<llvm::ConstantInt>(
80 initializationPatternFor(CGF.CGM, Int8));
81 break;
82 }
83 }
84 if (CGF.CGM.stopAutoInit())
85 return;
86 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
87 I->addAnnotationMetadata("auto-init");
88}
89
90/// getBuiltinLibFunction - Given a builtin id for a function like
91/// "__builtin_fabsf", return a Function* for "fabsf".
92llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
93 unsigned BuiltinID) {
94 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 94, __extension__ __PRETTY_FUNCTION__
))
;
95
96 // Get the name, skip over the __builtin_ prefix (if necessary).
97 StringRef Name;
98 GlobalDecl D(FD);
99
100 // TODO: This list should be expanded or refactored after all GCC-compatible
101 // std libcall builtins are implemented.
102 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
103 {Builtin::BI__builtin_printf, "__printfieee128"},
104 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
105 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
106 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
107 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
108 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
109 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
110 };
111
112 // If the builtin has been declared explicitly with an assembler label,
113 // use the mangled name. This differs from the plain label on platforms
114 // that prefix labels.
115 if (FD->hasAttr<AsmLabelAttr>())
116 Name = getMangledName(D);
117 else {
118 // TODO: This mutation should also be applied to other targets other than
119 // PPC, after backend supports IEEE 128-bit style libcalls.
120 if (getTriple().isPPC64() &&
121 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
122 F128Builtins.find(BuiltinID) != F128Builtins.end())
123 Name = F128Builtins[BuiltinID];
124 else
125 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
126 }
127
128 llvm::FunctionType *Ty =
129 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
130
131 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
132}
133
134/// Emit the conversions required to turn the given value into an
135/// integer of the given size.
136static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
137 QualType T, llvm::IntegerType *IntType) {
138 V = CGF.EmitToMemory(V, T);
139
140 if (V->getType()->isPointerTy())
141 return CGF.Builder.CreatePtrToInt(V, IntType);
142
143 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 143, __extension__ __PRETTY_FUNCTION__))
;
144 return V;
145}
146
147static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
148 QualType T, llvm::Type *ResultType) {
149 V = CGF.EmitFromMemory(V, T);
150
151 if (ResultType->isPointerTy())
152 return CGF.Builder.CreateIntToPtr(V, ResultType);
153
154 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 154, __extension__ __PRETTY_FUNCTION__))
;
155 return V;
156}
157
158/// Utility to insert an atomic instruction based on Intrinsic::ID
159/// and the expression node.
160static Value *MakeBinaryAtomicValue(
161 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
162 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
163
164 QualType T = E->getType();
165 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 165, __extension__ __PRETTY_FUNCTION__
))
;
166 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 167, __extension__ __PRETTY_FUNCTION__
))
167 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 167, __extension__ __PRETTY_FUNCTION__
))
;
168 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 168, __extension__ __PRETTY_FUNCTION__
))
;
169
170 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
171 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
172
173 llvm::IntegerType *IntType =
174 llvm::IntegerType::get(CGF.getLLVMContext(),
175 CGF.getContext().getTypeSize(T));
176 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
177
178 llvm::Value *Args[2];
179 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
180 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
181 llvm::Type *ValueType = Args[1]->getType();
182 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
183
184 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
185 Kind, Args[0], Args[1], Ordering);
186 return EmitFromInt(CGF, Result, T, ValueType);
187}
188
189static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
190 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
191 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
192
193 // Convert the type of the pointer to a pointer to the stored type.
194 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
195 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
196 Value *BC = CGF.Builder.CreateBitCast(
197 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
198 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
199 LV.setNontemporal(true);
200 CGF.EmitStoreOfScalar(Val, LV, false);
201 return nullptr;
202}
203
204static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
205 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
206
207 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
208 LV.setNontemporal(true);
209 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
210}
211
212static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
213 llvm::AtomicRMWInst::BinOp Kind,
214 const CallExpr *E) {
215 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
216}
217
218/// Utility to insert an atomic instruction based Intrinsic::ID and
219/// the expression node, where the return value is the result of the
220/// operation.
221static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
222 llvm::AtomicRMWInst::BinOp Kind,
223 const CallExpr *E,
224 Instruction::BinaryOps Op,
225 bool Invert = false) {
226 QualType T = E->getType();
227 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 227, __extension__ __PRETTY_FUNCTION__
))
;
228 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 229, __extension__ __PRETTY_FUNCTION__
))
229 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 229, __extension__ __PRETTY_FUNCTION__
))
;
230 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 230, __extension__ __PRETTY_FUNCTION__
))
;
231
232 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
233 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
234
235 llvm::IntegerType *IntType =
236 llvm::IntegerType::get(CGF.getLLVMContext(),
237 CGF.getContext().getTypeSize(T));
238 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
239
240 llvm::Value *Args[2];
241 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
242 llvm::Type *ValueType = Args[1]->getType();
243 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
244 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
245
246 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
247 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
248 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
249 if (Invert)
250 Result =
251 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
252 llvm::ConstantInt::getAllOnesValue(IntType));
253 Result = EmitFromInt(CGF, Result, T, ValueType);
254 return RValue::get(Result);
255}
256
257/// Utility to insert an atomic cmpxchg instruction.
258///
259/// @param CGF The current codegen function.
260/// @param E Builtin call expression to convert to cmpxchg.
261/// arg0 - address to operate on
262/// arg1 - value to compare with
263/// arg2 - new value
264/// @param ReturnBool Specifies whether to return success flag of
265/// cmpxchg result or the old value.
266///
267/// @returns result of cmpxchg, according to ReturnBool
268///
269/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
270/// invoke the function EmitAtomicCmpXchgForMSIntrin.
271static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
272 bool ReturnBool) {
273 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
274 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
275 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
276
277 llvm::IntegerType *IntType = llvm::IntegerType::get(
278 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
279 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
280
281 Value *Args[3];
282 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
283 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
284 llvm::Type *ValueType = Args[1]->getType();
285 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
286 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
287
288 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
289 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
290 llvm::AtomicOrdering::SequentiallyConsistent);
291 if (ReturnBool)
292 // Extract boolean success flag and zext it to int.
293 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
294 CGF.ConvertType(E->getType()));
295 else
296 // Extract old value and emit it using the same type as compare value.
297 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
298 ValueType);
299}
300
301/// This function should be invoked to emit atomic cmpxchg for Microsoft's
302/// _InterlockedCompareExchange* intrinsics which have the following signature:
303/// T _InterlockedCompareExchange(T volatile *Destination,
304/// T Exchange,
305/// T Comparand);
306///
307/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
308/// cmpxchg *Destination, Comparand, Exchange.
309/// So we need to swap Comparand and Exchange when invoking
310/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
311/// function MakeAtomicCmpXchgValue since it expects the arguments to be
312/// already swapped.
313
314static
315Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
316 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
317 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 317, __extension__ __PRETTY_FUNCTION__
))
;
318 assert(CGF.getContext().hasSameUnqualifiedType((static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 319, __extension__ __PRETTY_FUNCTION__
))
319 E->getType(), E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 319, __extension__ __PRETTY_FUNCTION__
))
;
320 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 321, __extension__ __PRETTY_FUNCTION__
))
321 E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 321, __extension__ __PRETTY_FUNCTION__
))
;
322 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 323, __extension__ __PRETTY_FUNCTION__
))
323 E->getArg(2)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 323, __extension__ __PRETTY_FUNCTION__
))
;
324
325 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
326 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
327 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
328
329 // For Release ordering, the failure ordering should be Monotonic.
330 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
331 AtomicOrdering::Monotonic :
332 SuccessOrdering;
333
334 // The atomic instruction is marked volatile for consistency with MSVC. This
335 // blocks the few atomics optimizations that LLVM has. If we want to optimize
336 // _Interlocked* operations in the future, we will have to remove the volatile
337 // marker.
338 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
339 Destination, Comparand, Exchange,
340 SuccessOrdering, FailureOrdering);
341 Result->setVolatile(true);
342 return CGF.Builder.CreateExtractValue(Result, 0);
343}
344
345// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
346// prototyped like this:
347//
348// unsigned char _InterlockedCompareExchange128...(
349// __int64 volatile * _Destination,
350// __int64 _ExchangeHigh,
351// __int64 _ExchangeLow,
352// __int64 * _ComparandResult);
353static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
354 const CallExpr *E,
355 AtomicOrdering SuccessOrdering) {
356 assert(E->getNumArgs() == 4)(static_cast <bool> (E->getNumArgs() == 4) ? void (0
) : __assert_fail ("E->getNumArgs() == 4", "clang/lib/CodeGen/CGBuiltin.cpp"
, 356, __extension__ __PRETTY_FUNCTION__))
;
357 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
358 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
359 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
360 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
361
362 assert(Destination->getType()->isPointerTy())(static_cast <bool> (Destination->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Destination->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 362, __extension__ __PRETTY_FUNCTION__
))
;
363 assert(!ExchangeHigh->getType()->isPointerTy())(static_cast <bool> (!ExchangeHigh->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeHigh->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 363, __extension__ __PRETTY_FUNCTION__
))
;
364 assert(!ExchangeLow->getType()->isPointerTy())(static_cast <bool> (!ExchangeLow->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeLow->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 364, __extension__ __PRETTY_FUNCTION__
))
;
365 assert(ComparandPtr->getType()->isPointerTy())(static_cast <bool> (ComparandPtr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("ComparandPtr->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 365, __extension__ __PRETTY_FUNCTION__
))
;
366
367 // For Release ordering, the failure ordering should be Monotonic.
368 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
369 ? AtomicOrdering::Monotonic
370 : SuccessOrdering;
371
372 // Convert to i128 pointers and values.
373 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
374 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
375 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
376 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
377 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
378
379 // (((i128)hi) << 64) | ((i128)lo)
380 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
381 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
382 ExchangeHigh =
383 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
384 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
385
386 // Load the comparand for the instruction.
387 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
388
389 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
390 SuccessOrdering, FailureOrdering);
391
392 // The atomic instruction is marked volatile for consistency with MSVC. This
393 // blocks the few atomics optimizations that LLVM has. If we want to optimize
394 // _Interlocked* operations in the future, we will have to remove the volatile
395 // marker.
396 CXI->setVolatile(true);
397
398 // Store the result as an outparameter.
399 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
400 ComparandResult);
401
402 // Get the success boolean and zero extend it to i8.
403 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
404 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
405}
406
407static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
408 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
409 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 409, __extension__ __PRETTY_FUNCTION__
))
;
410
411 auto *IntTy = CGF.ConvertType(E->getType());
412 auto *Result = CGF.Builder.CreateAtomicRMW(
413 AtomicRMWInst::Add,
414 CGF.EmitScalarExpr(E->getArg(0)),
415 ConstantInt::get(IntTy, 1),
416 Ordering);
417 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
418}
419
420static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
421 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
422 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 422, __extension__ __PRETTY_FUNCTION__
))
;
423
424 auto *IntTy = CGF.ConvertType(E->getType());
425 auto *Result = CGF.Builder.CreateAtomicRMW(
426 AtomicRMWInst::Sub,
427 CGF.EmitScalarExpr(E->getArg(0)),
428 ConstantInt::get(IntTy, 1),
429 Ordering);
430 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
431}
432
433// Build a plain volatile load.
434static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
435 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
436 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
437 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
438 llvm::Type *ITy =
439 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
440 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
441 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
442 Load->setVolatile(true);
443 return Load;
444}
445
446// Build a plain volatile store.
447static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
448 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
449 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
450 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
451 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
452 llvm::Type *ITy =
453 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
454 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
455 llvm::StoreInst *Store =
456 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
457 Store->setVolatile(true);
458 return Store;
459}
460
461// Emit a simple mangled intrinsic that has 1 argument and a return type
462// matching the argument type. Depending on mode, this may be a constrained
463// floating-point intrinsic.
464static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
465 const CallExpr *E, unsigned IntrinsicID,
466 unsigned ConstrainedIntrinsicID) {
467 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
468
469 if (CGF.Builder.getIsFPConstrained()) {
470 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
471 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
472 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
473 } else {
474 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
475 return CGF.Builder.CreateCall(F, Src0);
476 }
477}
478
479// Emit an intrinsic that has 2 operands of the same type as its result.
480// Depending on mode, this may be a constrained floating-point intrinsic.
481static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
482 const CallExpr *E, unsigned IntrinsicID,
483 unsigned ConstrainedIntrinsicID) {
484 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
485 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
486
487 if (CGF.Builder.getIsFPConstrained()) {
488 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
489 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
490 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
491 } else {
492 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
493 return CGF.Builder.CreateCall(F, { Src0, Src1 });
494 }
495}
496
497// Emit an intrinsic that has 3 operands of the same type as its result.
498// Depending on mode, this may be a constrained floating-point intrinsic.
499static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
500 const CallExpr *E, unsigned IntrinsicID,
501 unsigned ConstrainedIntrinsicID) {
502 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
503 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
504 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
505
506 if (CGF.Builder.getIsFPConstrained()) {
507 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
508 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
509 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
510 } else {
511 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
512 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
513 }
514}
515
516// Emit an intrinsic where all operands are of the same type as the result.
517// Depending on mode, this may be a constrained floating-point intrinsic.
518static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
519 unsigned IntrinsicID,
520 unsigned ConstrainedIntrinsicID,
521 llvm::Type *Ty,
522 ArrayRef<Value *> Args) {
523 Function *F;
524 if (CGF.Builder.getIsFPConstrained())
525 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
526 else
527 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
528
529 if (CGF.Builder.getIsFPConstrained())
530 return CGF.Builder.CreateConstrainedFPCall(F, Args);
531 else
532 return CGF.Builder.CreateCall(F, Args);
533}
534
535// Emit a simple mangled intrinsic that has 1 argument and a return type
536// matching the argument type.
537static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
538 unsigned IntrinsicID,
539 llvm::StringRef Name = "") {
540 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
541
542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543 return CGF.Builder.CreateCall(F, Src0, Name);
544}
545
546// Emit an intrinsic that has 2 operands of the same type as its result.
547static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
548 const CallExpr *E,
549 unsigned IntrinsicID) {
550 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552
553 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554 return CGF.Builder.CreateCall(F, { Src0, Src1 });
555}
556
557// Emit an intrinsic that has 3 operands of the same type as its result.
558static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
559 const CallExpr *E,
560 unsigned IntrinsicID) {
561 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
562 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
563 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
564
565 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
566 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
567}
568
569// Emit an intrinsic that has 1 float or double operand, and 1 integer.
570static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
571 const CallExpr *E,
572 unsigned IntrinsicID) {
573 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
574 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
575
576 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
577 return CGF.Builder.CreateCall(F, {Src0, Src1});
578}
579
580// Emit an intrinsic that has overloaded integer result and fp operand.
581static Value *
582emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
583 unsigned IntrinsicID,
584 unsigned ConstrainedIntrinsicID) {
585 llvm::Type *ResultType = CGF.ConvertType(E->getType());
586 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
587
588 if (CGF.Builder.getIsFPConstrained()) {
589 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
590 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
591 {ResultType, Src0->getType()});
592 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
593 } else {
594 Function *F =
595 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
596 return CGF.Builder.CreateCall(F, Src0);
597 }
598}
599
600/// EmitFAbs - Emit a call to @llvm.fabs().
601static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
602 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
603 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
604 Call->setDoesNotAccessMemory();
605 return Call;
606}
607
608/// Emit the computation of the sign bit for a floating point value. Returns
609/// the i1 sign bit value.
610static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
611 LLVMContext &C = CGF.CGM.getLLVMContext();
612
613 llvm::Type *Ty = V->getType();
614 int Width = Ty->getPrimitiveSizeInBits();
615 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
616 V = CGF.Builder.CreateBitCast(V, IntTy);
617 if (Ty->isPPC_FP128Ty()) {
618 // We want the sign bit of the higher-order double. The bitcast we just
619 // did works as if the double-double was stored to memory and then
620 // read as an i128. The "store" will put the higher-order double in the
621 // lower address in both little- and big-Endian modes, but the "load"
622 // will treat those bits as a different part of the i128: the low bits in
623 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
624 // we need to shift the high bits down to the low before truncating.
625 Width >>= 1;
626 if (CGF.getTarget().isBigEndian()) {
627 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
628 V = CGF.Builder.CreateLShr(V, ShiftCst);
629 }
630 // We are truncating value in order to extract the higher-order
631 // double, which we will be using to extract the sign from.
632 IntTy = llvm::IntegerType::get(C, Width);
633 V = CGF.Builder.CreateTrunc(V, IntTy);
634 }
635 Value *Zero = llvm::Constant::getNullValue(IntTy);
636 return CGF.Builder.CreateICmpSLT(V, Zero);
637}
638
639static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
640 const CallExpr *E, llvm::Constant *calleeValue) {
641 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
642 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
643}
644
645/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
646/// depending on IntrinsicID.
647///
648/// \arg CGF The current codegen function.
649/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
650/// \arg X The first argument to the llvm.*.with.overflow.*.
651/// \arg Y The second argument to the llvm.*.with.overflow.*.
652/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
653/// \returns The result (i.e. sum/product) returned by the intrinsic.
654static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
655 const llvm::Intrinsic::ID IntrinsicID,
656 llvm::Value *X, llvm::Value *Y,
657 llvm::Value *&Carry) {
658 // Make sure we have integers of the same width.
659 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 661, __extension__ __PRETTY_FUNCTION__
))
660 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 661, __extension__ __PRETTY_FUNCTION__
))
661 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 661, __extension__ __PRETTY_FUNCTION__
))
;
662
663 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
664 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
665 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
666 return CGF.Builder.CreateExtractValue(Tmp, 0);
667}
668
669static Value *emitRangedBuiltin(CodeGenFunction &CGF,
670 unsigned IntrinsicID,
671 int low, int high) {
672 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
673 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
674 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
675 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
676 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
677 return Call;
678}
679
680namespace {
681 struct WidthAndSignedness {
682 unsigned Width;
683 bool Signed;
684 };
685}
686
687static WidthAndSignedness
688getIntegerWidthAndSignedness(const clang::ASTContext &context,
689 const clang::QualType Type) {
690 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 690, __extension__ __PRETTY_FUNCTION__
))
;
691 unsigned Width = Type->isBooleanType() ? 1
692 : Type->isBitIntType() ? context.getIntWidth(Type)
693 : context.getTypeInfo(Type).Width;
694 bool Signed = Type->isSignedIntegerType();
695 return {Width, Signed};
696}
697
698// Given one or more integer types, this function produces an integer type that
699// encompasses them: any value in one of the given types could be expressed in
700// the encompassing type.
701static struct WidthAndSignedness
702EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
703 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 703, __extension__ __PRETTY_FUNCTION__
))
;
704
705 // If any of the given types is signed, we must return a signed type.
706 bool Signed = false;
707 for (const auto &Type : Types) {
708 Signed |= Type.Signed;
709 }
710
711 // The encompassing type must have a width greater than or equal to the width
712 // of the specified types. Additionally, if the encompassing type is signed,
713 // its width must be strictly greater than the width of any unsigned types
714 // given.
715 unsigned Width = 0;
716 for (const auto &Type : Types) {
717 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
718 if (Width < MinWidth) {
719 Width = MinWidth;
720 }
721 }
722
723 return {Width, Signed};
724}
725
726Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
727 llvm::Type *DestType = Int8PtrTy;
728 if (ArgValue->getType() != DestType)
729 ArgValue =
730 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
731
732 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
733 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
734}
735
736/// Checks if using the result of __builtin_object_size(p, @p From) in place of
737/// __builtin_object_size(p, @p To) is correct
738static bool areBOSTypesCompatible(int From, int To) {
739 // Note: Our __builtin_object_size implementation currently treats Type=0 and
740 // Type=2 identically. Encoding this implementation detail here may make
741 // improving __builtin_object_size difficult in the future, so it's omitted.
742 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
743}
744
745static llvm::Value *
746getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
747 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
748}
749
750llvm::Value *
751CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
752 llvm::IntegerType *ResType,
753 llvm::Value *EmittedE,
754 bool IsDynamic) {
755 uint64_t ObjectSize;
756 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
757 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
758 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
759}
760
761/// Returns a Value corresponding to the size of the given expression.
762/// This Value may be either of the following:
763/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
764/// it)
765/// - A call to the @llvm.objectsize intrinsic
766///
767/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
768/// and we wouldn't otherwise try to reference a pass_object_size parameter,
769/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
770llvm::Value *
771CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
772 llvm::IntegerType *ResType,
773 llvm::Value *EmittedE, bool IsDynamic) {
774 // We need to reference an argument if the pointer is a parameter with the
775 // pass_object_size attribute.
776 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
777 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
778 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
779 if (Param != nullptr && PS != nullptr &&
780 areBOSTypesCompatible(PS->getType(), Type)) {
781 auto Iter = SizeArguments.find(Param);
782 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
;
783
784 const ImplicitParamDecl *D = Iter->second;
785 auto DIter = LocalDeclMap.find(D);
786 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 786, __extension__ __PRETTY_FUNCTION__))
;
787
788 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
789 getContext().getSizeType(), E->getBeginLoc());
790 }
791 }
792
793 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
794 // evaluate E for side-effects. In either case, we shouldn't lower to
795 // @llvm.objectsize.
796 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
797 return getDefaultBuiltinObjectSizeResult(Type, ResType);
798
799 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
800 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 801, __extension__ __PRETTY_FUNCTION__
))
801 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 801, __extension__ __PRETTY_FUNCTION__
))
;
802
803 Function *F =
804 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
805
806 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
807 Value *Min = Builder.getInt1((Type & 2) != 0);
808 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
809 Value *NullIsUnknown = Builder.getTrue();
810 Value *Dynamic = Builder.getInt1(IsDynamic);
811 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
812}
813
814namespace {
815/// A struct to generically describe a bit test intrinsic.
816struct BitTest {
817 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
818 enum InterlockingKind : uint8_t {
819 Unlocked,
820 Sequential,
821 Acquire,
822 Release,
823 NoFence
824 };
825
826 ActionKind Action;
827 InterlockingKind Interlocking;
828 bool Is64Bit;
829
830 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
831};
832} // namespace
833
834BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
835 switch (BuiltinID) {
836 // Main portable variants.
837 case Builtin::BI_bittest:
838 return {TestOnly, Unlocked, false};
839 case Builtin::BI_bittestandcomplement:
840 return {Complement, Unlocked, false};
841 case Builtin::BI_bittestandreset:
842 return {Reset, Unlocked, false};
843 case Builtin::BI_bittestandset:
844 return {Set, Unlocked, false};
845 case Builtin::BI_interlockedbittestandreset:
846 return {Reset, Sequential, false};
847 case Builtin::BI_interlockedbittestandset:
848 return {Set, Sequential, false};
849
850 // X86-specific 64-bit variants.
851 case Builtin::BI_bittest64:
852 return {TestOnly, Unlocked, true};
853 case Builtin::BI_bittestandcomplement64:
854 return {Complement, Unlocked, true};
855 case Builtin::BI_bittestandreset64:
856 return {Reset, Unlocked, true};
857 case Builtin::BI_bittestandset64:
858 return {Set, Unlocked, true};
859 case Builtin::BI_interlockedbittestandreset64:
860 return {Reset, Sequential, true};
861 case Builtin::BI_interlockedbittestandset64:
862 return {Set, Sequential, true};
863
864 // ARM/AArch64-specific ordering variants.
865 case Builtin::BI_interlockedbittestandset_acq:
866 return {Set, Acquire, false};
867 case Builtin::BI_interlockedbittestandset_rel:
868 return {Set, Release, false};
869 case Builtin::BI_interlockedbittestandset_nf:
870 return {Set, NoFence, false};
871 case Builtin::BI_interlockedbittestandreset_acq:
872 return {Reset, Acquire, false};
873 case Builtin::BI_interlockedbittestandreset_rel:
874 return {Reset, Release, false};
875 case Builtin::BI_interlockedbittestandreset_nf:
876 return {Reset, NoFence, false};
877 }
878 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 878)
;
879}
880
881static char bitActionToX86BTCode(BitTest::ActionKind A) {
882 switch (A) {
883 case BitTest::TestOnly: return '\0';
884 case BitTest::Complement: return 'c';
885 case BitTest::Reset: return 'r';
886 case BitTest::Set: return 's';
887 }
888 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "clang/lib/CodeGen/CGBuiltin.cpp"
, 888)
;
889}
890
891static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
892 BitTest BT,
893 const CallExpr *E, Value *BitBase,
894 Value *BitPos) {
895 char Action = bitActionToX86BTCode(BT.Action);
896 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
897
898 // Build the assembly.
899 SmallString<64> Asm;
900 raw_svector_ostream AsmOS(Asm);
901 if (BT.Interlocking != BitTest::Unlocked)
902 AsmOS << "lock ";
903 AsmOS << "bt";
904 if (Action)
905 AsmOS << Action;
906 AsmOS << SizeSuffix << " $2, ($1)";
907
908 // Build the constraints. FIXME: We should support immediates when possible.
909 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
910 std::string MachineClobbers = CGF.getTarget().getClobbers();
911 if (!MachineClobbers.empty()) {
912 Constraints += ',';
913 Constraints += MachineClobbers;
914 }
915 llvm::IntegerType *IntType = llvm::IntegerType::get(
916 CGF.getLLVMContext(),
917 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
918 llvm::Type *IntPtrType = IntType->getPointerTo();
919 llvm::FunctionType *FTy =
920 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
921
922 llvm::InlineAsm *IA =
923 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
924 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
925}
926
927static llvm::AtomicOrdering
928getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
929 switch (I) {
930 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
931 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
932 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
933 case BitTest::Release: return llvm::AtomicOrdering::Release;
934 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
935 }
936 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "clang/lib/CodeGen/CGBuiltin.cpp"
, 936)
;
937}
938
939/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
940/// bits and a bit position and read and optionally modify the bit at that
941/// position. The position index can be arbitrarily large, i.e. it can be larger
942/// than 31 or 63, so we need an indexed load in the general case.
943static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
944 unsigned BuiltinID,
945 const CallExpr *E) {
946 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
947 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
948
949 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
950
951 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
952 // indexing operation internally. Use them if possible.
953 if (CGF.getTarget().getTriple().isX86())
954 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
955
956 // Otherwise, use generic code to load one byte and test the bit. Use all but
957 // the bottom three bits as the array index, and the bottom three bits to form
958 // a mask.
959 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
960 Value *ByteIndex = CGF.Builder.CreateAShr(
961 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
962 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
963 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
964 ByteIndex, "bittest.byteaddr"),
965 CGF.Int8Ty, CharUnits::One());
966 Value *PosLow =
967 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
968 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
969
970 // The updating instructions will need a mask.
971 Value *Mask = nullptr;
972 if (BT.Action != BitTest::TestOnly) {
973 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
974 "bittest.mask");
975 }
976
977 // Check the action and ordering of the interlocked intrinsics.
978 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
979
980 Value *OldByte = nullptr;
981 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
982 // Emit a combined atomicrmw load/store operation for the interlocked
983 // intrinsics.
984 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
985 if (BT.Action == BitTest::Reset) {
986 Mask = CGF.Builder.CreateNot(Mask);
987 RMWOp = llvm::AtomicRMWInst::And;
988 }
989 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
990 Ordering);
991 } else {
992 // Emit a plain load for the non-interlocked intrinsics.
993 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
994 Value *NewByte = nullptr;
995 switch (BT.Action) {
996 case BitTest::TestOnly:
997 // Don't store anything.
998 break;
999 case BitTest::Complement:
1000 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1001 break;
1002 case BitTest::Reset:
1003 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1004 break;
1005 case BitTest::Set:
1006 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1007 break;
1008 }
1009 if (NewByte)
1010 CGF.Builder.CreateStore(NewByte, ByteAddr);
1011 }
1012
1013 // However we loaded the old byte, either by plain load or atomicrmw, shift
1014 // the bit into the low position and mask it to 0 or 1.
1015 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1016 return CGF.Builder.CreateAnd(
1017 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1018}
1019
1020static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1021 unsigned BuiltinID,
1022 const CallExpr *E) {
1023 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1024
1025 SmallString<64> Asm;
1026 raw_svector_ostream AsmOS(Asm);
1027 llvm::IntegerType *RetType = CGF.Int32Ty;
1028
1029 switch (BuiltinID) {
1030 case clang::PPC::BI__builtin_ppc_ldarx:
1031 AsmOS << "ldarx ";
1032 RetType = CGF.Int64Ty;
1033 break;
1034 case clang::PPC::BI__builtin_ppc_lwarx:
1035 AsmOS << "lwarx ";
1036 RetType = CGF.Int32Ty;
1037 break;
1038 case clang::PPC::BI__builtin_ppc_lharx:
1039 AsmOS << "lharx ";
1040 RetType = CGF.Int16Ty;
1041 break;
1042 case clang::PPC::BI__builtin_ppc_lbarx:
1043 AsmOS << "lbarx ";
1044 RetType = CGF.Int8Ty;
1045 break;
1046 default:
1047 llvm_unreachable("Expected only PowerPC load reserve intrinsics")::llvm::llvm_unreachable_internal("Expected only PowerPC load reserve intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1047)
;
1048 }
1049
1050 AsmOS << "$0, ${1:y}";
1051
1052 std::string Constraints = "=r,*Z,~{memory}";
1053 std::string MachineClobbers = CGF.getTarget().getClobbers();
1054 if (!MachineClobbers.empty()) {
1055 Constraints += ',';
1056 Constraints += MachineClobbers;
1057 }
1058
1059 llvm::Type *IntPtrType = RetType->getPointerTo();
1060 llvm::FunctionType *FTy =
1061 llvm::FunctionType::get(RetType, {IntPtrType}, false);
1062
1063 llvm::InlineAsm *IA =
1064 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1065 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1066 CI->addParamAttr(
1067 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1068 return CI;
1069}
1070
1071namespace {
1072enum class MSVCSetJmpKind {
1073 _setjmpex,
1074 _setjmp3,
1075 _setjmp
1076};
1077}
1078
1079/// MSVC handles setjmp a bit differently on different platforms. On every
1080/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1081/// parameters can be passed as variadic arguments, but we always pass none.
1082static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1083 const CallExpr *E) {
1084 llvm::Value *Arg1 = nullptr;
1085 llvm::Type *Arg1Ty = nullptr;
1086 StringRef Name;
1087 bool IsVarArg = false;
1088 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1089 Name = "_setjmp3";
1090 Arg1Ty = CGF.Int32Ty;
1091 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1092 IsVarArg = true;
1093 } else {
1094 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1095 Arg1Ty = CGF.Int8PtrTy;
1096 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1097 Arg1 = CGF.Builder.CreateCall(
1098 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1099 } else
1100 Arg1 = CGF.Builder.CreateCall(
1101 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1102 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1103 }
1104
1105 // Mark the call site and declaration with ReturnsTwice.
1106 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1107 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1108 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1109 llvm::Attribute::ReturnsTwice);
1110 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1111 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1112 ReturnsTwiceAttr, /*Local=*/true);
1113
1114 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1115 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1116 llvm::Value *Args[] = {Buf, Arg1};
1117 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1118 CB->setAttributes(ReturnsTwiceAttr);
1119 return RValue::get(CB);
1120}
1121
1122// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1123// we handle them here.
1124enum class CodeGenFunction::MSVCIntrin {
1125 _BitScanForward,
1126 _BitScanReverse,
1127 _InterlockedAnd,
1128 _InterlockedDecrement,
1129 _InterlockedExchange,
1130 _InterlockedExchangeAdd,
1131 _InterlockedExchangeSub,
1132 _InterlockedIncrement,
1133 _InterlockedOr,
1134 _InterlockedXor,
1135 _InterlockedExchangeAdd_acq,
1136 _InterlockedExchangeAdd_rel,
1137 _InterlockedExchangeAdd_nf,
1138 _InterlockedExchange_acq,
1139 _InterlockedExchange_rel,
1140 _InterlockedExchange_nf,
1141 _InterlockedCompareExchange_acq,
1142 _InterlockedCompareExchange_rel,
1143 _InterlockedCompareExchange_nf,
1144 _InterlockedCompareExchange128,
1145 _InterlockedCompareExchange128_acq,
1146 _InterlockedCompareExchange128_rel,
1147 _InterlockedCompareExchange128_nf,
1148 _InterlockedOr_acq,
1149 _InterlockedOr_rel,
1150 _InterlockedOr_nf,
1151 _InterlockedXor_acq,
1152 _InterlockedXor_rel,
1153 _InterlockedXor_nf,
1154 _InterlockedAnd_acq,
1155 _InterlockedAnd_rel,
1156 _InterlockedAnd_nf,
1157 _InterlockedIncrement_acq,
1158 _InterlockedIncrement_rel,
1159 _InterlockedIncrement_nf,
1160 _InterlockedDecrement_acq,
1161 _InterlockedDecrement_rel,
1162 _InterlockedDecrement_nf,
1163 __fastfail,
1164};
1165
1166static Optional<CodeGenFunction::MSVCIntrin>
1167translateArmToMsvcIntrin(unsigned BuiltinID) {
1168 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1169 switch (BuiltinID) {
1170 default:
1171 return None;
1172 case ARM::BI_BitScanForward:
1173 case ARM::BI_BitScanForward64:
1174 return MSVCIntrin::_BitScanForward;
1175 case ARM::BI_BitScanReverse:
1176 case ARM::BI_BitScanReverse64:
1177 return MSVCIntrin::_BitScanReverse;
1178 case ARM::BI_InterlockedAnd64:
1179 return MSVCIntrin::_InterlockedAnd;
1180 case ARM::BI_InterlockedExchange64:
1181 return MSVCIntrin::_InterlockedExchange;
1182 case ARM::BI_InterlockedExchangeAdd64:
1183 return MSVCIntrin::_InterlockedExchangeAdd;
1184 case ARM::BI_InterlockedExchangeSub64:
1185 return MSVCIntrin::_InterlockedExchangeSub;
1186 case ARM::BI_InterlockedOr64:
1187 return MSVCIntrin::_InterlockedOr;
1188 case ARM::BI_InterlockedXor64:
1189 return MSVCIntrin::_InterlockedXor;
1190 case ARM::BI_InterlockedDecrement64:
1191 return MSVCIntrin::_InterlockedDecrement;
1192 case ARM::BI_InterlockedIncrement64:
1193 return MSVCIntrin::_InterlockedIncrement;
1194 case ARM::BI_InterlockedExchangeAdd8_acq:
1195 case ARM::BI_InterlockedExchangeAdd16_acq:
1196 case ARM::BI_InterlockedExchangeAdd_acq:
1197 case ARM::BI_InterlockedExchangeAdd64_acq:
1198 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1199 case ARM::BI_InterlockedExchangeAdd8_rel:
1200 case ARM::BI_InterlockedExchangeAdd16_rel:
1201 case ARM::BI_InterlockedExchangeAdd_rel:
1202 case ARM::BI_InterlockedExchangeAdd64_rel:
1203 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1204 case ARM::BI_InterlockedExchangeAdd8_nf:
1205 case ARM::BI_InterlockedExchangeAdd16_nf:
1206 case ARM::BI_InterlockedExchangeAdd_nf:
1207 case ARM::BI_InterlockedExchangeAdd64_nf:
1208 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1209 case ARM::BI_InterlockedExchange8_acq:
1210 case ARM::BI_InterlockedExchange16_acq:
1211 case ARM::BI_InterlockedExchange_acq:
1212 case ARM::BI_InterlockedExchange64_acq:
1213 return MSVCIntrin::_InterlockedExchange_acq;
1214 case ARM::BI_InterlockedExchange8_rel:
1215 case ARM::BI_InterlockedExchange16_rel:
1216 case ARM::BI_InterlockedExchange_rel:
1217 case ARM::BI_InterlockedExchange64_rel:
1218 return MSVCIntrin::_InterlockedExchange_rel;
1219 case ARM::BI_InterlockedExchange8_nf:
1220 case ARM::BI_InterlockedExchange16_nf:
1221 case ARM::BI_InterlockedExchange_nf:
1222 case ARM::BI_InterlockedExchange64_nf:
1223 return MSVCIntrin::_InterlockedExchange_nf;
1224 case ARM::BI_InterlockedCompareExchange8_acq:
1225 case ARM::BI_InterlockedCompareExchange16_acq:
1226 case ARM::BI_InterlockedCompareExchange_acq:
1227 case ARM::BI_InterlockedCompareExchange64_acq:
1228 return MSVCIntrin::_InterlockedCompareExchange_acq;
1229 case ARM::BI_InterlockedCompareExchange8_rel:
1230 case ARM::BI_InterlockedCompareExchange16_rel:
1231 case ARM::BI_InterlockedCompareExchange_rel:
1232 case ARM::BI_InterlockedCompareExchange64_rel:
1233 return MSVCIntrin::_InterlockedCompareExchange_rel;
1234 case ARM::BI_InterlockedCompareExchange8_nf:
1235 case ARM::BI_InterlockedCompareExchange16_nf:
1236 case ARM::BI_InterlockedCompareExchange_nf:
1237 case ARM::BI_InterlockedCompareExchange64_nf:
1238 return MSVCIntrin::_InterlockedCompareExchange_nf;
1239 case ARM::BI_InterlockedOr8_acq:
1240 case ARM::BI_InterlockedOr16_acq:
1241 case ARM::BI_InterlockedOr_acq:
1242 case ARM::BI_InterlockedOr64_acq:
1243 return MSVCIntrin::_InterlockedOr_acq;
1244 case ARM::BI_InterlockedOr8_rel:
1245 case ARM::BI_InterlockedOr16_rel:
1246 case ARM::BI_InterlockedOr_rel:
1247 case ARM::BI_InterlockedOr64_rel:
1248 return MSVCIntrin::_InterlockedOr_rel;
1249 case ARM::BI_InterlockedOr8_nf:
1250 case ARM::BI_InterlockedOr16_nf:
1251 case ARM::BI_InterlockedOr_nf:
1252 case ARM::BI_InterlockedOr64_nf:
1253 return MSVCIntrin::_InterlockedOr_nf;
1254 case ARM::BI_InterlockedXor8_acq:
1255 case ARM::BI_InterlockedXor16_acq:
1256 case ARM::BI_InterlockedXor_acq:
1257 case ARM::BI_InterlockedXor64_acq:
1258 return MSVCIntrin::_InterlockedXor_acq;
1259 case ARM::BI_InterlockedXor8_rel:
1260 case ARM::BI_InterlockedXor16_rel:
1261 case ARM::BI_InterlockedXor_rel:
1262 case ARM::BI_InterlockedXor64_rel:
1263 return MSVCIntrin::_InterlockedXor_rel;
1264 case ARM::BI_InterlockedXor8_nf:
1265 case ARM::BI_InterlockedXor16_nf:
1266 case ARM::BI_InterlockedXor_nf:
1267 case ARM::BI_InterlockedXor64_nf:
1268 return MSVCIntrin::_InterlockedXor_nf;
1269 case ARM::BI_InterlockedAnd8_acq:
1270 case ARM::BI_InterlockedAnd16_acq:
1271 case ARM::BI_InterlockedAnd_acq:
1272 case ARM::BI_InterlockedAnd64_acq:
1273 return MSVCIntrin::_InterlockedAnd_acq;
1274 case ARM::BI_InterlockedAnd8_rel:
1275 case ARM::BI_InterlockedAnd16_rel:
1276 case ARM::BI_InterlockedAnd_rel:
1277 case ARM::BI_InterlockedAnd64_rel:
1278 return MSVCIntrin::_InterlockedAnd_rel;
1279 case ARM::BI_InterlockedAnd8_nf:
1280 case ARM::BI_InterlockedAnd16_nf:
1281 case ARM::BI_InterlockedAnd_nf:
1282 case ARM::BI_InterlockedAnd64_nf:
1283 return MSVCIntrin::_InterlockedAnd_nf;
1284 case ARM::BI_InterlockedIncrement16_acq:
1285 case ARM::BI_InterlockedIncrement_acq:
1286 case ARM::BI_InterlockedIncrement64_acq:
1287 return MSVCIntrin::_InterlockedIncrement_acq;
1288 case ARM::BI_InterlockedIncrement16_rel:
1289 case ARM::BI_InterlockedIncrement_rel:
1290 case ARM::BI_InterlockedIncrement64_rel:
1291 return MSVCIntrin::_InterlockedIncrement_rel;
1292 case ARM::BI_InterlockedIncrement16_nf:
1293 case ARM::BI_InterlockedIncrement_nf:
1294 case ARM::BI_InterlockedIncrement64_nf:
1295 return MSVCIntrin::_InterlockedIncrement_nf;
1296 case ARM::BI_InterlockedDecrement16_acq:
1297 case ARM::BI_InterlockedDecrement_acq:
1298 case ARM::BI_InterlockedDecrement64_acq:
1299 return MSVCIntrin::_InterlockedDecrement_acq;
1300 case ARM::BI_InterlockedDecrement16_rel:
1301 case ARM::BI_InterlockedDecrement_rel:
1302 case ARM::BI_InterlockedDecrement64_rel:
1303 return MSVCIntrin::_InterlockedDecrement_rel;
1304 case ARM::BI_InterlockedDecrement16_nf:
1305 case ARM::BI_InterlockedDecrement_nf:
1306 case ARM::BI_InterlockedDecrement64_nf:
1307 return MSVCIntrin::_InterlockedDecrement_nf;
1308 }
1309 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1309)
;
1310}
1311
1312static Optional<CodeGenFunction::MSVCIntrin>
1313translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1314 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1315 switch (BuiltinID) {
1316 default:
1317 return None;
1318 case AArch64::BI_BitScanForward:
1319 case AArch64::BI_BitScanForward64:
1320 return MSVCIntrin::_BitScanForward;
1321 case AArch64::BI_BitScanReverse:
1322 case AArch64::BI_BitScanReverse64:
1323 return MSVCIntrin::_BitScanReverse;
1324 case AArch64::BI_InterlockedAnd64:
1325 return MSVCIntrin::_InterlockedAnd;
1326 case AArch64::BI_InterlockedExchange64:
1327 return MSVCIntrin::_InterlockedExchange;
1328 case AArch64::BI_InterlockedExchangeAdd64:
1329 return MSVCIntrin::_InterlockedExchangeAdd;
1330 case AArch64::BI_InterlockedExchangeSub64:
1331 return MSVCIntrin::_InterlockedExchangeSub;
1332 case AArch64::BI_InterlockedOr64:
1333 return MSVCIntrin::_InterlockedOr;
1334 case AArch64::BI_InterlockedXor64:
1335 return MSVCIntrin::_InterlockedXor;
1336 case AArch64::BI_InterlockedDecrement64:
1337 return MSVCIntrin::_InterlockedDecrement;
1338 case AArch64::BI_InterlockedIncrement64:
1339 return MSVCIntrin::_InterlockedIncrement;
1340 case AArch64::BI_InterlockedExchangeAdd8_acq:
1341 case AArch64::BI_InterlockedExchangeAdd16_acq:
1342 case AArch64::BI_InterlockedExchangeAdd_acq:
1343 case AArch64::BI_InterlockedExchangeAdd64_acq:
1344 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1345 case AArch64::BI_InterlockedExchangeAdd8_rel:
1346 case AArch64::BI_InterlockedExchangeAdd16_rel:
1347 case AArch64::BI_InterlockedExchangeAdd_rel:
1348 case AArch64::BI_InterlockedExchangeAdd64_rel:
1349 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1350 case AArch64::BI_InterlockedExchangeAdd8_nf:
1351 case AArch64::BI_InterlockedExchangeAdd16_nf:
1352 case AArch64::BI_InterlockedExchangeAdd_nf:
1353 case AArch64::BI_InterlockedExchangeAdd64_nf:
1354 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1355 case AArch64::BI_InterlockedExchange8_acq:
1356 case AArch64::BI_InterlockedExchange16_acq:
1357 case AArch64::BI_InterlockedExchange_acq:
1358 case AArch64::BI_InterlockedExchange64_acq:
1359 return MSVCIntrin::_InterlockedExchange_acq;
1360 case AArch64::BI_InterlockedExchange8_rel:
1361 case AArch64::BI_InterlockedExchange16_rel:
1362 case AArch64::BI_InterlockedExchange_rel:
1363 case AArch64::BI_InterlockedExchange64_rel:
1364 return MSVCIntrin::_InterlockedExchange_rel;
1365 case AArch64::BI_InterlockedExchange8_nf:
1366 case AArch64::BI_InterlockedExchange16_nf:
1367 case AArch64::BI_InterlockedExchange_nf:
1368 case AArch64::BI_InterlockedExchange64_nf:
1369 return MSVCIntrin::_InterlockedExchange_nf;
1370 case AArch64::BI_InterlockedCompareExchange8_acq:
1371 case AArch64::BI_InterlockedCompareExchange16_acq:
1372 case AArch64::BI_InterlockedCompareExchange_acq:
1373 case AArch64::BI_InterlockedCompareExchange64_acq:
1374 return MSVCIntrin::_InterlockedCompareExchange_acq;
1375 case AArch64::BI_InterlockedCompareExchange8_rel:
1376 case AArch64::BI_InterlockedCompareExchange16_rel:
1377 case AArch64::BI_InterlockedCompareExchange_rel:
1378 case AArch64::BI_InterlockedCompareExchange64_rel:
1379 return MSVCIntrin::_InterlockedCompareExchange_rel;
1380 case AArch64::BI_InterlockedCompareExchange8_nf:
1381 case AArch64::BI_InterlockedCompareExchange16_nf:
1382 case AArch64::BI_InterlockedCompareExchange_nf:
1383 case AArch64::BI_InterlockedCompareExchange64_nf:
1384 return MSVCIntrin::_InterlockedCompareExchange_nf;
1385 case AArch64::BI_InterlockedCompareExchange128:
1386 return MSVCIntrin::_InterlockedCompareExchange128;
1387 case AArch64::BI_InterlockedCompareExchange128_acq:
1388 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1389 case AArch64::BI_InterlockedCompareExchange128_nf:
1390 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1391 case AArch64::BI_InterlockedCompareExchange128_rel:
1392 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1393 case AArch64::BI_InterlockedOr8_acq:
1394 case AArch64::BI_InterlockedOr16_acq:
1395 case AArch64::BI_InterlockedOr_acq:
1396 case AArch64::BI_InterlockedOr64_acq:
1397 return MSVCIntrin::_InterlockedOr_acq;
1398 case AArch64::BI_InterlockedOr8_rel:
1399 case AArch64::BI_InterlockedOr16_rel:
1400 case AArch64::BI_InterlockedOr_rel:
1401 case AArch64::BI_InterlockedOr64_rel:
1402 return MSVCIntrin::_InterlockedOr_rel;
1403 case AArch64::BI_InterlockedOr8_nf:
1404 case AArch64::BI_InterlockedOr16_nf:
1405 case AArch64::BI_InterlockedOr_nf:
1406 case AArch64::BI_InterlockedOr64_nf:
1407 return MSVCIntrin::_InterlockedOr_nf;
1408 case AArch64::BI_InterlockedXor8_acq:
1409 case AArch64::BI_InterlockedXor16_acq:
1410 case AArch64::BI_InterlockedXor_acq:
1411 case AArch64::BI_InterlockedXor64_acq:
1412 return MSVCIntrin::_InterlockedXor_acq;
1413 case AArch64::BI_InterlockedXor8_rel:
1414 case AArch64::BI_InterlockedXor16_rel:
1415 case AArch64::BI_InterlockedXor_rel:
1416 case AArch64::BI_InterlockedXor64_rel:
1417 return MSVCIntrin::_InterlockedXor_rel;
1418 case AArch64::BI_InterlockedXor8_nf:
1419 case AArch64::BI_InterlockedXor16_nf:
1420 case AArch64::BI_InterlockedXor_nf:
1421 case AArch64::BI_InterlockedXor64_nf:
1422 return MSVCIntrin::_InterlockedXor_nf;
1423 case AArch64::BI_InterlockedAnd8_acq:
1424 case AArch64::BI_InterlockedAnd16_acq:
1425 case AArch64::BI_InterlockedAnd_acq:
1426 case AArch64::BI_InterlockedAnd64_acq:
1427 return MSVCIntrin::_InterlockedAnd_acq;
1428 case AArch64::BI_InterlockedAnd8_rel:
1429 case AArch64::BI_InterlockedAnd16_rel:
1430 case AArch64::BI_InterlockedAnd_rel:
1431 case AArch64::BI_InterlockedAnd64_rel:
1432 return MSVCIntrin::_InterlockedAnd_rel;
1433 case AArch64::BI_InterlockedAnd8_nf:
1434 case AArch64::BI_InterlockedAnd16_nf:
1435 case AArch64::BI_InterlockedAnd_nf:
1436 case AArch64::BI_InterlockedAnd64_nf:
1437 return MSVCIntrin::_InterlockedAnd_nf;
1438 case AArch64::BI_InterlockedIncrement16_acq:
1439 case AArch64::BI_InterlockedIncrement_acq:
1440 case AArch64::BI_InterlockedIncrement64_acq:
1441 return MSVCIntrin::_InterlockedIncrement_acq;
1442 case AArch64::BI_InterlockedIncrement16_rel:
1443 case AArch64::BI_InterlockedIncrement_rel:
1444 case AArch64::BI_InterlockedIncrement64_rel:
1445 return MSVCIntrin::_InterlockedIncrement_rel;
1446 case AArch64::BI_InterlockedIncrement16_nf:
1447 case AArch64::BI_InterlockedIncrement_nf:
1448 case AArch64::BI_InterlockedIncrement64_nf:
1449 return MSVCIntrin::_InterlockedIncrement_nf;
1450 case AArch64::BI_InterlockedDecrement16_acq:
1451 case AArch64::BI_InterlockedDecrement_acq:
1452 case AArch64::BI_InterlockedDecrement64_acq:
1453 return MSVCIntrin::_InterlockedDecrement_acq;
1454 case AArch64::BI_InterlockedDecrement16_rel:
1455 case AArch64::BI_InterlockedDecrement_rel:
1456 case AArch64::BI_InterlockedDecrement64_rel:
1457 return MSVCIntrin::_InterlockedDecrement_rel;
1458 case AArch64::BI_InterlockedDecrement16_nf:
1459 case AArch64::BI_InterlockedDecrement_nf:
1460 case AArch64::BI_InterlockedDecrement64_nf:
1461 return MSVCIntrin::_InterlockedDecrement_nf;
1462 }
1463 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1463)
;
1464}
1465
1466static Optional<CodeGenFunction::MSVCIntrin>
1467translateX86ToMsvcIntrin(unsigned BuiltinID) {
1468 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1469 switch (BuiltinID) {
1470 default:
1471 return None;
1472 case clang::X86::BI_BitScanForward:
1473 case clang::X86::BI_BitScanForward64:
1474 return MSVCIntrin::_BitScanForward;
1475 case clang::X86::BI_BitScanReverse:
1476 case clang::X86::BI_BitScanReverse64:
1477 return MSVCIntrin::_BitScanReverse;
1478 case clang::X86::BI_InterlockedAnd64:
1479 return MSVCIntrin::_InterlockedAnd;
1480 case clang::X86::BI_InterlockedCompareExchange128:
1481 return MSVCIntrin::_InterlockedCompareExchange128;
1482 case clang::X86::BI_InterlockedExchange64:
1483 return MSVCIntrin::_InterlockedExchange;
1484 case clang::X86::BI_InterlockedExchangeAdd64:
1485 return MSVCIntrin::_InterlockedExchangeAdd;
1486 case clang::X86::BI_InterlockedExchangeSub64:
1487 return MSVCIntrin::_InterlockedExchangeSub;
1488 case clang::X86::BI_InterlockedOr64:
1489 return MSVCIntrin::_InterlockedOr;
1490 case clang::X86::BI_InterlockedXor64:
1491 return MSVCIntrin::_InterlockedXor;
1492 case clang::X86::BI_InterlockedDecrement64:
1493 return MSVCIntrin::_InterlockedDecrement;
1494 case clang::X86::BI_InterlockedIncrement64:
1495 return MSVCIntrin::_InterlockedIncrement;
1496 }
1497 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1497)
;
1498}
1499
1500// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1501Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1502 const CallExpr *E) {
1503 switch (BuiltinID) {
1504 case MSVCIntrin::_BitScanForward:
1505 case MSVCIntrin::_BitScanReverse: {
1506 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1507 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1508
1509 llvm::Type *ArgType = ArgValue->getType();
1510 llvm::Type *IndexType = IndexAddress.getElementType();
1511 llvm::Type *ResultType = ConvertType(E->getType());
1512
1513 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1514 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1515 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1516
1517 BasicBlock *Begin = Builder.GetInsertBlock();
1518 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1519 Builder.SetInsertPoint(End);
1520 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1521
1522 Builder.SetInsertPoint(Begin);
1523 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1524 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1525 Builder.CreateCondBr(IsZero, End, NotZero);
1526 Result->addIncoming(ResZero, Begin);
1527
1528 Builder.SetInsertPoint(NotZero);
1529
1530 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1531 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1532 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1533 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1534 Builder.CreateStore(ZeroCount, IndexAddress, false);
1535 } else {
1536 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1537 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1538
1539 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1540 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1541 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1542 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1543 Builder.CreateStore(Index, IndexAddress, false);
1544 }
1545 Builder.CreateBr(End);
1546 Result->addIncoming(ResOne, NotZero);
1547
1548 Builder.SetInsertPoint(End);
1549 return Result;
1550 }
1551 case MSVCIntrin::_InterlockedAnd:
1552 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1553 case MSVCIntrin::_InterlockedExchange:
1554 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1555 case MSVCIntrin::_InterlockedExchangeAdd:
1556 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1557 case MSVCIntrin::_InterlockedExchangeSub:
1558 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1559 case MSVCIntrin::_InterlockedOr:
1560 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1561 case MSVCIntrin::_InterlockedXor:
1562 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1563 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1564 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1565 AtomicOrdering::Acquire);
1566 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1567 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1568 AtomicOrdering::Release);
1569 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1570 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1571 AtomicOrdering::Monotonic);
1572 case MSVCIntrin::_InterlockedExchange_acq:
1573 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1574 AtomicOrdering::Acquire);
1575 case MSVCIntrin::_InterlockedExchange_rel:
1576 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1577 AtomicOrdering::Release);
1578 case MSVCIntrin::_InterlockedExchange_nf:
1579 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1580 AtomicOrdering::Monotonic);
1581 case MSVCIntrin::_InterlockedCompareExchange_acq:
1582 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1583 case MSVCIntrin::_InterlockedCompareExchange_rel:
1584 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1585 case MSVCIntrin::_InterlockedCompareExchange_nf:
1586 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1587 case MSVCIntrin::_InterlockedCompareExchange128:
1588 return EmitAtomicCmpXchg128ForMSIntrin(
1589 *this, E, AtomicOrdering::SequentiallyConsistent);
1590 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1591 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1592 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1593 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1594 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1595 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1596 case MSVCIntrin::_InterlockedOr_acq:
1597 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1598 AtomicOrdering::Acquire);
1599 case MSVCIntrin::_InterlockedOr_rel:
1600 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1601 AtomicOrdering::Release);
1602 case MSVCIntrin::_InterlockedOr_nf:
1603 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1604 AtomicOrdering::Monotonic);
1605 case MSVCIntrin::_InterlockedXor_acq:
1606 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1607 AtomicOrdering::Acquire);
1608 case MSVCIntrin::_InterlockedXor_rel:
1609 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1610 AtomicOrdering::Release);
1611 case MSVCIntrin::_InterlockedXor_nf:
1612 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1613 AtomicOrdering::Monotonic);
1614 case MSVCIntrin::_InterlockedAnd_acq:
1615 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1616 AtomicOrdering::Acquire);
1617 case MSVCIntrin::_InterlockedAnd_rel:
1618 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1619 AtomicOrdering::Release);
1620 case MSVCIntrin::_InterlockedAnd_nf:
1621 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1622 AtomicOrdering::Monotonic);
1623 case MSVCIntrin::_InterlockedIncrement_acq:
1624 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1625 case MSVCIntrin::_InterlockedIncrement_rel:
1626 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1627 case MSVCIntrin::_InterlockedIncrement_nf:
1628 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1629 case MSVCIntrin::_InterlockedDecrement_acq:
1630 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1631 case MSVCIntrin::_InterlockedDecrement_rel:
1632 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1633 case MSVCIntrin::_InterlockedDecrement_nf:
1634 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1635
1636 case MSVCIntrin::_InterlockedDecrement:
1637 return EmitAtomicDecrementValue(*this, E);
1638 case MSVCIntrin::_InterlockedIncrement:
1639 return EmitAtomicIncrementValue(*this, E);
1640
1641 case MSVCIntrin::__fastfail: {
1642 // Request immediate process termination from the kernel. The instruction
1643 // sequences to do this are documented on MSDN:
1644 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1645 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1646 StringRef Asm, Constraints;
1647 switch (ISA) {
1648 default:
1649 ErrorUnsupported(E, "__fastfail call for this architecture");
1650 break;
1651 case llvm::Triple::x86:
1652 case llvm::Triple::x86_64:
1653 Asm = "int $$0x29";
1654 Constraints = "{cx}";
1655 break;
1656 case llvm::Triple::thumb:
1657 Asm = "udf #251";
1658 Constraints = "{r0}";
1659 break;
1660 case llvm::Triple::aarch64:
1661 Asm = "brk #0xF003";
1662 Constraints = "{w0}";
1663 }
1664 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1665 llvm::InlineAsm *IA =
1666 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1667 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1668 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1669 llvm::Attribute::NoReturn);
1670 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1671 CI->setAttributes(NoReturnAttr);
1672 return CI;
1673 }
1674 }
1675 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1675)
;
1676}
1677
1678namespace {
1679// ARC cleanup for __builtin_os_log_format
1680struct CallObjCArcUse final : EHScopeStack::Cleanup {
1681 CallObjCArcUse(llvm::Value *object) : object(object) {}
1682 llvm::Value *object;
1683
1684 void Emit(CodeGenFunction &CGF, Flags flags) override {
1685 CGF.EmitARCIntrinsicUse(object);
1686 }
1687};
1688}
1689
1690Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1691 BuiltinCheckKind Kind) {
1692 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1693, __extension__ __PRETTY_FUNCTION__
))
1693 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1693, __extension__ __PRETTY_FUNCTION__
))
;
1694
1695 Value *ArgValue = EmitScalarExpr(E);
1696 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1697 return ArgValue;
1698
1699 SanitizerScope SanScope(this);
1700 Value *Cond = Builder.CreateICmpNE(
1701 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1702 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1703 SanitizerHandler::InvalidBuiltin,
1704 {EmitCheckSourceLocation(E->getExprLoc()),
1705 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1706 None);
1707 return ArgValue;
1708}
1709
1710/// Get the argument type for arguments to os_log_helper.
1711static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1712 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1713 return C.getCanonicalType(UnsignedTy);
1714}
1715
1716llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1717 const analyze_os_log::OSLogBufferLayout &Layout,
1718 CharUnits BufferAlignment) {
1719 ASTContext &Ctx = getContext();
1720
1721 llvm::SmallString<64> Name;
1722 {
1723 raw_svector_ostream OS(Name);
1724 OS << "__os_log_helper";
1725 OS << "_" << BufferAlignment.getQuantity();
1726 OS << "_" << int(Layout.getSummaryByte());
1727 OS << "_" << int(Layout.getNumArgsByte());
1728 for (const auto &Item : Layout.Items)
1729 OS << "_" << int(Item.getSizeByte()) << "_"
1730 << int(Item.getDescriptorByte());
1731 }
1732
1733 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1734 return F;
1735
1736 llvm::SmallVector<QualType, 4> ArgTys;
1737 FunctionArgList Args;
1738 Args.push_back(ImplicitParamDecl::Create(
1739 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1740 ImplicitParamDecl::Other));
1741 ArgTys.emplace_back(Ctx.VoidPtrTy);
1742
1743 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1744 char Size = Layout.Items[I].getSizeByte();
1745 if (!Size)
1746 continue;
1747
1748 QualType ArgTy = getOSLogArgType(Ctx, Size);
1749 Args.push_back(ImplicitParamDecl::Create(
1750 Ctx, nullptr, SourceLocation(),
1751 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1752 ImplicitParamDecl::Other));
1753 ArgTys.emplace_back(ArgTy);
1754 }
1755
1756 QualType ReturnTy = Ctx.VoidTy;
1757
1758 // The helper function has linkonce_odr linkage to enable the linker to merge
1759 // identical functions. To ensure the merging always happens, 'noinline' is
1760 // attached to the function when compiling with -Oz.
1761 const CGFunctionInfo &FI =
1762 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1763 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1764 llvm::Function *Fn = llvm::Function::Create(
1765 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1766 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1767 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1768 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1769 Fn->setDoesNotThrow();
1770
1771 // Attach 'noinline' at -Oz.
1772 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1773 Fn->addFnAttr(llvm::Attribute::NoInline);
1774
1775 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1776 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1777
1778 // Create a scope with an artificial location for the body of this function.
1779 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1780
1781 CharUnits Offset;
1782 Address BufAddr =
1783 Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1784 BufferAlignment);
1785 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1786 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1787 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1788 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1789
1790 unsigned I = 1;
1791 for (const auto &Item : Layout.Items) {
1792 Builder.CreateStore(
1793 Builder.getInt8(Item.getDescriptorByte()),
1794 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1795 Builder.CreateStore(
1796 Builder.getInt8(Item.getSizeByte()),
1797 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1798
1799 CharUnits Size = Item.size();
1800 if (!Size.getQuantity())
1801 continue;
1802
1803 Address Arg = GetAddrOfLocalVar(Args[I]);
1804 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1805 Addr =
1806 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1807 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1808 Offset += Size;
1809 ++I;
1810 }
1811
1812 FinishFunction();
1813
1814 return Fn;
1815}
1816
1817RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1818 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1819, __extension__ __PRETTY_FUNCTION__
))
1819 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1819, __extension__ __PRETTY_FUNCTION__
))
;
1820 ASTContext &Ctx = getContext();
1821 analyze_os_log::OSLogBufferLayout Layout;
1822 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1823 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1824 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1825
1826 // Ignore argument 1, the format string. It is not currently used.
1827 CallArgList Args;
1828 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1829
1830 for (const auto &Item : Layout.Items) {
1831 int Size = Item.getSizeByte();
1832 if (!Size)
1833 continue;
1834
1835 llvm::Value *ArgVal;
1836
1837 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1838 uint64_t Val = 0;
1839 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1840 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1841 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1842 } else if (const Expr *TheExpr = Item.getExpr()) {
1843 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1844
1845 // If a temporary object that requires destruction after the full
1846 // expression is passed, push a lifetime-extended cleanup to extend its
1847 // lifetime to the end of the enclosing block scope.
1848 auto LifetimeExtendObject = [&](const Expr *E) {
1849 E = E->IgnoreParenCasts();
1850 // Extend lifetimes of objects returned by function calls and message
1851 // sends.
1852
1853 // FIXME: We should do this in other cases in which temporaries are
1854 // created including arguments of non-ARC types (e.g., C++
1855 // temporaries).
1856 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1857 return true;
1858 return false;
1859 };
1860
1861 if (TheExpr->getType()->isObjCRetainableType() &&
1862 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1863 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1864, __extension__ __PRETTY_FUNCTION__
))
1864 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1864, __extension__ __PRETTY_FUNCTION__
))
;
1865 if (!isa<Constant>(ArgVal)) {
1866 CleanupKind Cleanup = getARCCleanupKind();
1867 QualType Ty = TheExpr->getType();
1868 Address Alloca = Address::invalid();
1869 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1870 ArgVal = EmitARCRetain(Ty, ArgVal);
1871 Builder.CreateStore(ArgVal, Addr);
1872 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1873 CodeGenFunction::destroyARCStrongPrecise,
1874 Cleanup & EHCleanup);
1875
1876 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1877 // argument has to be alive.
1878 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1879 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1880 }
1881 }
1882 } else {
1883 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1884 }
1885
1886 unsigned ArgValSize =
1887 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1888 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1889 ArgValSize);
1890 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1891 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1892 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1893 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1894 Args.add(RValue::get(ArgVal), ArgTy);
1895 }
1896
1897 const CGFunctionInfo &FI =
1898 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1899 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1900 Layout, BufAddr.getAlignment());
1901 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1902 return RValue::get(BufAddr.getPointer());
1903}
1904
1905static bool isSpecialUnsignedMultiplySignedResult(
1906 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1907 WidthAndSignedness ResultInfo) {
1908 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1909 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1910 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1911}
1912
1913static RValue EmitCheckedUnsignedMultiplySignedResult(
1914 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1915 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1916 const clang::Expr *ResultArg, QualType ResultQTy,
1917 WidthAndSignedness ResultInfo) {
1918 assert(isSpecialUnsignedMultiplySignedResult((static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
1919 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
1920 "Cannot specialize this multiply")(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
;
1921
1922 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1923 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1924
1925 llvm::Value *HasOverflow;
1926 llvm::Value *Result = EmitOverflowIntrinsic(
1927 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1928
1929 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1930 // however, since the original builtin had a signed result, we need to report
1931 // an overflow when the result is greater than INT_MAX.
1932 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1933 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1934
1935 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1936 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1937
1938 bool isVolatile =
1939 ResultArg->getType()->getPointeeType().isVolatileQualified();
1940 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1941 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1942 isVolatile);
1943 return RValue::get(HasOverflow);
1944}
1945
1946/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1947static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1948 WidthAndSignedness Op1Info,
1949 WidthAndSignedness Op2Info,
1950 WidthAndSignedness ResultInfo) {
1951 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1952 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1953 Op1Info.Signed != Op2Info.Signed;
1954}
1955
1956/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1957/// the generic checked-binop irgen.
1958static RValue
1959EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1960 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1961 WidthAndSignedness Op2Info,
1962 const clang::Expr *ResultArg, QualType ResultQTy,
1963 WidthAndSignedness ResultInfo) {
1964 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
1965 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
1966 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
;
1967
1968 // Emit the signed and unsigned operands.
1969 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1970 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1971 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1972 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1973 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1974 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1975
1976 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1977 if (SignedOpWidth < UnsignedOpWidth)
1978 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1979 if (UnsignedOpWidth < SignedOpWidth)
1980 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1981
1982 llvm::Type *OpTy = Signed->getType();
1983 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1984 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1985 llvm::Type *ResTy = ResultPtr.getElementType();
1986 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1987
1988 // Take the absolute value of the signed operand.
1989 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1990 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1991 llvm::Value *AbsSigned =
1992 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1993
1994 // Perform a checked unsigned multiplication.
1995 llvm::Value *UnsignedOverflow;
1996 llvm::Value *UnsignedResult =
1997 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1998 Unsigned, UnsignedOverflow);
1999
2000 llvm::Value *Overflow, *Result;
2001 if (ResultInfo.Signed) {
2002 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2003 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2004 auto IntMax =
2005 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
2006 llvm::Value *MaxResult =
2007 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2008 CGF.Builder.CreateZExt(IsNegative, OpTy));
2009 llvm::Value *SignedOverflow =
2010 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2011 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2012
2013 // Prepare the signed result (possibly by negating it).
2014 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2015 llvm::Value *SignedResult =
2016 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2017 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2018 } else {
2019 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2020 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2021 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2022 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2023 if (ResultInfo.Width < OpWidth) {
2024 auto IntMax =
2025 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2026 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2027 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2028 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2029 }
2030
2031 // Negate the product if it would be negative in infinite precision.
2032 Result = CGF.Builder.CreateSelect(
2033 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2034
2035 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2036 }
2037 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2037, __extension__ __PRETTY_FUNCTION__
))
;
2038
2039 bool isVolatile =
2040 ResultArg->getType()->getPointeeType().isVolatileQualified();
2041 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2042 isVolatile);
2043 return RValue::get(Overflow);
2044}
2045
2046static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
2047 LValue RecordLV, CharUnits Align,
2048 llvm::FunctionCallee Func, int Lvl) {
2049 ASTContext &Context = CGF.getContext();
2050 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
2051 std::string Pad = std::string(Lvl * 4, ' ');
2052 std::string ElementPad = std::string((Lvl + 1) * 4, ' ');
2053
2054 PrintingPolicy Policy(Context.getLangOpts());
2055 Policy.AnonymousTagLocations = false;
2056 Value *GString = CGF.Builder.CreateGlobalStringPtr(
2057 llvm::Twine(Pad).concat(RType.getAsString(Policy)).concat(" {\n").str());
2058 Value *Res = CGF.Builder.CreateCall(Func, {GString});
2059
2060 static llvm::DenseMap<QualType, const char *> Types;
2061 if (Types.empty()) {
2062 Types[Context.CharTy] = "%c";
2063 Types[Context.BoolTy] = "%d";
2064 Types[Context.SignedCharTy] = "%hhd";
2065 Types[Context.UnsignedCharTy] = "%hhu";
2066 Types[Context.IntTy] = "%d";
2067 Types[Context.UnsignedIntTy] = "%u";
2068 Types[Context.LongTy] = "%ld";
2069 Types[Context.UnsignedLongTy] = "%lu";
2070 Types[Context.LongLongTy] = "%lld";
2071 Types[Context.UnsignedLongLongTy] = "%llu";
2072 Types[Context.ShortTy] = "%hd";
2073 Types[Context.UnsignedShortTy] = "%hu";
2074 Types[Context.VoidPtrTy] = "%p";
2075 Types[Context.FloatTy] = "%f";
2076 Types[Context.DoubleTy] = "%f";
2077 Types[Context.LongDoubleTy] = "%Lf";
2078 Types[Context.getPointerType(Context.CharTy)] = "%s";
2079 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2080 }
2081
2082 for (const auto *FD : RD->fields()) {
2083 Value *TmpRes = nullptr;
2084
2085 std::string Format = llvm::Twine(ElementPad)
2086 .concat(FD->getType().getAsString())
2087 .concat(llvm::Twine(' '))
2088 .concat(FD->getNameAsString())
2089 .str();
2090
2091 if (FD->isBitField()) {
2092 unsigned BitfieldWidth = FD->getBitWidthValue(CGF.getContext());
2093
2094 // If current field is a unnamed bitfield, we should dump only one ' '
2095 // between type-name and ':'
2096 if (!FD->getDeclName().isEmpty())
2097 Format += ' ';
2098 Format += llvm::Twine(": ").concat(llvm::Twine(BitfieldWidth)).str();
2099
2100 // If current field is a zero-width bitfield, we just dump a string like
2101 // 'type-name : 0'
2102 if (FD->isZeroSize(CGF.getContext())) {
2103 Format += "\n";
2104 GString = CGF.Builder.CreateGlobalStringPtr(Format);
2105 TmpRes = CGF.Builder.CreateCall(Func, {GString});
2106 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2107 continue;
2108 }
2109 }
2110
2111 LValue FieldLV = CGF.EmitLValueForField(RecordLV, FD);
2112 QualType CanonicalType =
2113 FD->getType().getUnqualifiedType().getCanonicalType();
2114
2115 // We check whether we are in a recursive type
2116 if (CanonicalType->isRecordType()) {
2117 TmpRes = dumpRecord(CGF, CanonicalType, FieldLV, Align, Func, Lvl + 1);
2118 Res = CGF.Builder.CreateAdd(TmpRes, Res);
2119 continue;
2120 }
2121
2122 // We try to determine the best format to print the current field
2123 const char *TypeFormat = Types.find(CanonicalType) == Types.end()
2124 ? Types[Context.VoidPtrTy]
2125 : Types[CanonicalType];
2126
2127 GString = CGF.Builder.CreateGlobalStringPtr(llvm::Twine(Format)
2128 .concat(" = ")
2129 .concat(TypeFormat)
2130 .concat(llvm::Twine('\n'))
2131 .str());
2132
2133 RValue RV = FD->isBitField()
2134 ? CGF.EmitLoadOfBitfieldLValue(FieldLV, FD->getLocation())
2135 : CGF.EmitLoadOfLValue(FieldLV, FD->getLocation());
2136 TmpRes = CGF.Builder.CreateCall(Func, {GString, RV.getScalarVal()});
2137 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2138 }
2139
2140 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2141 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2142 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2143 return Res;
2144}
2145
2146static bool
2147TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2148 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2149 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2150 Ty = Ctx.getBaseElementType(Arr);
2151
2152 const auto *Record = Ty->getAsCXXRecordDecl();
2153 if (!Record)
2154 return false;
2155
2156 // We've already checked this type, or are in the process of checking it.
2157 if (!Seen.insert(Record).second)
2158 return false;
2159
2160 assert(Record->hasDefinition() &&(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2161, __extension__ __PRETTY_FUNCTION__
))
2161 "Incomplete types should already be diagnosed")(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2161, __extension__ __PRETTY_FUNCTION__
))
;
2162
2163 if (Record->isDynamicClass())
2164 return true;
2165
2166 for (FieldDecl *F : Record->fields()) {
2167 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2168 return true;
2169 }
2170 return false;
2171}
2172
2173/// Determine if the specified type requires laundering by checking if it is a
2174/// dynamic class type or contains a subobject which is a dynamic class type.
2175static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2176 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2177 return false;
2178 llvm::SmallPtrSet<const Decl *, 16> Seen;
2179 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2180}
2181
2182RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2183 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2184 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2185
2186 // The builtin's shift arg may have a different type than the source arg and
2187 // result, but the LLVM intrinsic uses the same type for all values.
2188 llvm::Type *Ty = Src->getType();
2189 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2190
2191 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2192 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2193 Function *F = CGM.getIntrinsic(IID, Ty);
2194 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2195}
2196
2197// Map math builtins for long-double to f128 version.
2198static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2199 switch (BuiltinID) {
2200#define MUTATE_LDBL(func) \
2201 case Builtin::BI__builtin_##func##l: \
2202 return Builtin::BI__builtin_##func##f128;
2203 MUTATE_LDBL(sqrt)
2204 MUTATE_LDBL(cbrt)
2205 MUTATE_LDBL(fabs)
2206 MUTATE_LDBL(log)
2207 MUTATE_LDBL(log2)
2208 MUTATE_LDBL(log10)
2209 MUTATE_LDBL(log1p)
2210 MUTATE_LDBL(logb)
2211 MUTATE_LDBL(exp)
2212 MUTATE_LDBL(exp2)
2213 MUTATE_LDBL(expm1)
2214 MUTATE_LDBL(fdim)
2215 MUTATE_LDBL(hypot)
2216 MUTATE_LDBL(ilogb)
2217 MUTATE_LDBL(pow)
2218 MUTATE_LDBL(fmin)
2219 MUTATE_LDBL(fmax)
2220 MUTATE_LDBL(ceil)
2221 MUTATE_LDBL(trunc)
2222 MUTATE_LDBL(rint)
2223 MUTATE_LDBL(nearbyint)
2224 MUTATE_LDBL(round)
2225 MUTATE_LDBL(floor)
2226 MUTATE_LDBL(lround)
2227 MUTATE_LDBL(llround)
2228 MUTATE_LDBL(lrint)
2229 MUTATE_LDBL(llrint)
2230 MUTATE_LDBL(fmod)
2231 MUTATE_LDBL(modf)
2232 MUTATE_LDBL(nan)
2233 MUTATE_LDBL(nans)
2234 MUTATE_LDBL(inf)
2235 MUTATE_LDBL(fma)
2236 MUTATE_LDBL(sin)
2237 MUTATE_LDBL(cos)
2238 MUTATE_LDBL(tan)
2239 MUTATE_LDBL(sinh)
2240 MUTATE_LDBL(cosh)
2241 MUTATE_LDBL(tanh)
2242 MUTATE_LDBL(asin)
2243 MUTATE_LDBL(acos)
2244 MUTATE_LDBL(atan)
2245 MUTATE_LDBL(asinh)
2246 MUTATE_LDBL(acosh)
2247 MUTATE_LDBL(atanh)
2248 MUTATE_LDBL(atan2)
2249 MUTATE_LDBL(erf)
2250 MUTATE_LDBL(erfc)
2251 MUTATE_LDBL(ldexp)
2252 MUTATE_LDBL(frexp)
2253 MUTATE_LDBL(huge_val)
2254 MUTATE_LDBL(copysign)
2255 MUTATE_LDBL(nextafter)
2256 MUTATE_LDBL(nexttoward)
2257 MUTATE_LDBL(remainder)
2258 MUTATE_LDBL(remquo)
2259 MUTATE_LDBL(scalbln)
2260 MUTATE_LDBL(scalbn)
2261 MUTATE_LDBL(tgamma)
2262 MUTATE_LDBL(lgamma)
2263#undef MUTATE_LDBL
2264 default:
2265 return BuiltinID;
2266 }
2267}
2268
2269RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2270 const CallExpr *E,
2271 ReturnValueSlot ReturnValue) {
2272 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2273 // See if we can constant fold this builtin. If so, don't emit it at all.
2274 Expr::EvalResult Result;
2275 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2276 !Result.hasSideEffects()) {
2277 if (Result.Val.isInt())
2278 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2279 Result.Val.getInt()));
2280 if (Result.Val.isFloat())
2281 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2282 Result.Val.getFloat()));
2283 }
2284
2285 // If current long-double semantics is IEEE 128-bit, replace math builtins
2286 // of long-double with f128 equivalent.
2287 // TODO: This mutation should also be applied to other targets other than PPC,
2288 // after backend supports IEEE 128-bit style libcalls.
2289 if (getTarget().getTriple().isPPC64() &&
2290 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2291 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2292
2293 // If the builtin has been declared explicitly with an assembler label,
2294 // disable the specialized emitting below. Ideally we should communicate the
2295 // rename in IR, or at least avoid generating the intrinsic calls that are
2296 // likely to get lowered to the renamed library functions.
2297 const unsigned BuiltinIDIfNoAsmLabel =
2298 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2299
2300 // There are LLVM math intrinsics/instructions corresponding to math library
2301 // functions except the LLVM op will never set errno while the math library
2302 // might. Also, math builtins have the same semantics as their math library
2303 // twins. Thus, we can transform math library and builtin calls to their
2304 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2305 if (FD->hasAttr<ConstAttr>()) {
2306 switch (BuiltinIDIfNoAsmLabel) {
2307 case Builtin::BIceil:
2308 case Builtin::BIceilf:
2309 case Builtin::BIceill:
2310 case Builtin::BI__builtin_ceil:
2311 case Builtin::BI__builtin_ceilf:
2312 case Builtin::BI__builtin_ceilf16:
2313 case Builtin::BI__builtin_ceill:
2314 case Builtin::BI__builtin_ceilf128:
2315 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2316 Intrinsic::ceil,
2317 Intrinsic::experimental_constrained_ceil));
2318
2319 case Builtin::BIcopysign:
2320 case Builtin::BIcopysignf:
2321 case Builtin::BIcopysignl:
2322 case Builtin::BI__builtin_copysign:
2323 case Builtin::BI__builtin_copysignf:
2324 case Builtin::BI__builtin_copysignf16:
2325 case Builtin::BI__builtin_copysignl:
2326 case Builtin::BI__builtin_copysignf128:
2327 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2328
2329 case Builtin::BIcos:
2330 case Builtin::BIcosf:
2331 case Builtin::BIcosl:
2332 case Builtin::BI__builtin_cos:
2333 case Builtin::BI__builtin_cosf:
2334 case Builtin::BI__builtin_cosf16:
2335 case Builtin::BI__builtin_cosl:
2336 case Builtin::BI__builtin_cosf128:
2337 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2338 Intrinsic::cos,
2339 Intrinsic::experimental_constrained_cos));
2340
2341 case Builtin::BIexp:
2342 case Builtin::BIexpf:
2343 case Builtin::BIexpl:
2344 case Builtin::BI__builtin_exp:
2345 case Builtin::BI__builtin_expf:
2346 case Builtin::BI__builtin_expf16:
2347 case Builtin::BI__builtin_expl:
2348 case Builtin::BI__builtin_expf128:
2349 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2350 Intrinsic::exp,
2351 Intrinsic::experimental_constrained_exp));
2352
2353 case Builtin::BIexp2:
2354 case Builtin::BIexp2f:
2355 case Builtin::BIexp2l:
2356 case Builtin::BI__builtin_exp2:
2357 case Builtin::BI__builtin_exp2f:
2358 case Builtin::BI__builtin_exp2f16:
2359 case Builtin::BI__builtin_exp2l:
2360 case Builtin::BI__builtin_exp2f128:
2361 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2362 Intrinsic::exp2,
2363 Intrinsic::experimental_constrained_exp2));
2364
2365 case Builtin::BIfabs:
2366 case Builtin::BIfabsf:
2367 case Builtin::BIfabsl:
2368 case Builtin::BI__builtin_fabs:
2369 case Builtin::BI__builtin_fabsf:
2370 case Builtin::BI__builtin_fabsf16:
2371 case Builtin::BI__builtin_fabsl:
2372 case Builtin::BI__builtin_fabsf128:
2373 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2374
2375 case Builtin::BIfloor:
2376 case Builtin::BIfloorf:
2377 case Builtin::BIfloorl:
2378 case Builtin::BI__builtin_floor:
2379 case Builtin::BI__builtin_floorf:
2380 case Builtin::BI__builtin_floorf16:
2381 case Builtin::BI__builtin_floorl:
2382 case Builtin::BI__builtin_floorf128:
2383 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2384 Intrinsic::floor,
2385 Intrinsic::experimental_constrained_floor));
2386
2387 case Builtin::BIfma:
2388 case Builtin::BIfmaf:
2389 case Builtin::BIfmal:
2390 case Builtin::BI__builtin_fma:
2391 case Builtin::BI__builtin_fmaf:
2392 case Builtin::BI__builtin_fmaf16:
2393 case Builtin::BI__builtin_fmal:
2394 case Builtin::BI__builtin_fmaf128:
2395 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2396 Intrinsic::fma,
2397 Intrinsic::experimental_constrained_fma));
2398
2399 case Builtin::BIfmax:
2400 case Builtin::BIfmaxf:
2401 case Builtin::BIfmaxl:
2402 case Builtin::BI__builtin_fmax:
2403 case Builtin::BI__builtin_fmaxf:
2404 case Builtin::BI__builtin_fmaxf16:
2405 case Builtin::BI__builtin_fmaxl:
2406 case Builtin::BI__builtin_fmaxf128:
2407 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2408 Intrinsic::maxnum,
2409 Intrinsic::experimental_constrained_maxnum));
2410
2411 case Builtin::BIfmin:
2412 case Builtin::BIfminf:
2413 case Builtin::BIfminl:
2414 case Builtin::BI__builtin_fmin:
2415 case Builtin::BI__builtin_fminf:
2416 case Builtin::BI__builtin_fminf16:
2417 case Builtin::BI__builtin_fminl:
2418 case Builtin::BI__builtin_fminf128:
2419 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2420 Intrinsic::minnum,
2421 Intrinsic::experimental_constrained_minnum));
2422
2423 // fmod() is a special-case. It maps to the frem instruction rather than an
2424 // LLVM intrinsic.
2425 case Builtin::BIfmod:
2426 case Builtin::BIfmodf:
2427 case Builtin::BIfmodl:
2428 case Builtin::BI__builtin_fmod:
2429 case Builtin::BI__builtin_fmodf:
2430 case Builtin::BI__builtin_fmodf16:
2431 case Builtin::BI__builtin_fmodl:
2432 case Builtin::BI__builtin_fmodf128: {
2433 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2434 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2435 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2436 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2437 }
2438
2439 case Builtin::BIlog:
2440 case Builtin::BIlogf:
2441 case Builtin::BIlogl:
2442 case Builtin::BI__builtin_log:
2443 case Builtin::BI__builtin_logf:
2444 case Builtin::BI__builtin_logf16:
2445 case Builtin::BI__builtin_logl:
2446 case Builtin::BI__builtin_logf128:
2447 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2448 Intrinsic::log,
2449 Intrinsic::experimental_constrained_log));
2450
2451 case Builtin::BIlog10:
2452 case Builtin::BIlog10f:
2453 case Builtin::BIlog10l:
2454 case Builtin::BI__builtin_log10:
2455 case Builtin::BI__builtin_log10f:
2456 case Builtin::BI__builtin_log10f16:
2457 case Builtin::BI__builtin_log10l:
2458 case Builtin::BI__builtin_log10f128:
2459 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2460 Intrinsic::log10,
2461 Intrinsic::experimental_constrained_log10));
2462
2463 case Builtin::BIlog2:
2464 case Builtin::BIlog2f:
2465 case Builtin::BIlog2l:
2466 case Builtin::BI__builtin_log2:
2467 case Builtin::BI__builtin_log2f:
2468 case Builtin::BI__builtin_log2f16:
2469 case Builtin::BI__builtin_log2l:
2470 case Builtin::BI__builtin_log2f128:
2471 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2472 Intrinsic::log2,
2473 Intrinsic::experimental_constrained_log2));
2474
2475 case Builtin::BInearbyint:
2476 case Builtin::BInearbyintf:
2477 case Builtin::BInearbyintl:
2478 case Builtin::BI__builtin_nearbyint:
2479 case Builtin::BI__builtin_nearbyintf:
2480 case Builtin::BI__builtin_nearbyintl:
2481 case Builtin::BI__builtin_nearbyintf128:
2482 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2483 Intrinsic::nearbyint,
2484 Intrinsic::experimental_constrained_nearbyint));
2485
2486 case Builtin::BIpow:
2487 case Builtin::BIpowf:
2488 case Builtin::BIpowl:
2489 case Builtin::BI__builtin_pow:
2490 case Builtin::BI__builtin_powf:
2491 case Builtin::BI__builtin_powf16:
2492 case Builtin::BI__builtin_powl:
2493 case Builtin::BI__builtin_powf128:
2494 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2495 Intrinsic::pow,
2496 Intrinsic::experimental_constrained_pow));
2497
2498 case Builtin::BIrint:
2499 case Builtin::BIrintf:
2500 case Builtin::BIrintl:
2501 case Builtin::BI__builtin_rint:
2502 case Builtin::BI__builtin_rintf:
2503 case Builtin::BI__builtin_rintf16:
2504 case Builtin::BI__builtin_rintl:
2505 case Builtin::BI__builtin_rintf128:
2506 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2507 Intrinsic::rint,
2508 Intrinsic::experimental_constrained_rint));
2509
2510 case Builtin::BIround:
2511 case Builtin::BIroundf:
2512 case Builtin::BIroundl:
2513 case Builtin::BI__builtin_round:
2514 case Builtin::BI__builtin_roundf:
2515 case Builtin::BI__builtin_roundf16:
2516 case Builtin::BI__builtin_roundl:
2517 case Builtin::BI__builtin_roundf128:
2518 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2519 Intrinsic::round,
2520 Intrinsic::experimental_constrained_round));
2521
2522 case Builtin::BIsin:
2523 case Builtin::BIsinf:
2524 case Builtin::BIsinl:
2525 case Builtin::BI__builtin_sin:
2526 case Builtin::BI__builtin_sinf:
2527 case Builtin::BI__builtin_sinf16:
2528 case Builtin::BI__builtin_sinl:
2529 case Builtin::BI__builtin_sinf128:
2530 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2531 Intrinsic::sin,
2532 Intrinsic::experimental_constrained_sin));
2533
2534 case Builtin::BIsqrt:
2535 case Builtin::BIsqrtf:
2536 case Builtin::BIsqrtl:
2537 case Builtin::BI__builtin_sqrt:
2538 case Builtin::BI__builtin_sqrtf:
2539 case Builtin::BI__builtin_sqrtf16:
2540 case Builtin::BI__builtin_sqrtl:
2541 case Builtin::BI__builtin_sqrtf128:
2542 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2543 Intrinsic::sqrt,
2544 Intrinsic::experimental_constrained_sqrt));
2545
2546 case Builtin::BItrunc:
2547 case Builtin::BItruncf:
2548 case Builtin::BItruncl:
2549 case Builtin::BI__builtin_trunc:
2550 case Builtin::BI__builtin_truncf:
2551 case Builtin::BI__builtin_truncf16:
2552 case Builtin::BI__builtin_truncl:
2553 case Builtin::BI__builtin_truncf128:
2554 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2555 Intrinsic::trunc,
2556 Intrinsic::experimental_constrained_trunc));
2557
2558 case Builtin::BIlround:
2559 case Builtin::BIlroundf:
2560 case Builtin::BIlroundl:
2561 case Builtin::BI__builtin_lround:
2562 case Builtin::BI__builtin_lroundf:
2563 case Builtin::BI__builtin_lroundl:
2564 case Builtin::BI__builtin_lroundf128:
2565 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2566 *this, E, Intrinsic::lround,
2567 Intrinsic::experimental_constrained_lround));
2568
2569 case Builtin::BIllround:
2570 case Builtin::BIllroundf:
2571 case Builtin::BIllroundl:
2572 case Builtin::BI__builtin_llround:
2573 case Builtin::BI__builtin_llroundf:
2574 case Builtin::BI__builtin_llroundl:
2575 case Builtin::BI__builtin_llroundf128:
2576 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2577 *this, E, Intrinsic::llround,
2578 Intrinsic::experimental_constrained_llround));
2579
2580 case Builtin::BIlrint:
2581 case Builtin::BIlrintf:
2582 case Builtin::BIlrintl:
2583 case Builtin::BI__builtin_lrint:
2584 case Builtin::BI__builtin_lrintf:
2585 case Builtin::BI__builtin_lrintl:
2586 case Builtin::BI__builtin_lrintf128:
2587 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2588 *this, E, Intrinsic::lrint,
2589 Intrinsic::experimental_constrained_lrint));
2590
2591 case Builtin::BIllrint:
2592 case Builtin::BIllrintf:
2593 case Builtin::BIllrintl:
2594 case Builtin::BI__builtin_llrint:
2595 case Builtin::BI__builtin_llrintf:
2596 case Builtin::BI__builtin_llrintl:
2597 case Builtin::BI__builtin_llrintf128:
2598 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2599 *this, E, Intrinsic::llrint,
2600 Intrinsic::experimental_constrained_llrint));
2601
2602 default:
2603 break;
2604 }
2605 }
2606
2607 switch (BuiltinIDIfNoAsmLabel) {
2608 default: break;
2609 case Builtin::BI__builtin___CFStringMakeConstantString:
2610 case Builtin::BI__builtin___NSStringMakeConstantString:
2611 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2612 case Builtin::BI__builtin_stdarg_start:
2613 case Builtin::BI__builtin_va_start:
2614 case Builtin::BI__va_start:
2615 case Builtin::BI__builtin_va_end:
2616 return RValue::get(
2617 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2618 ? EmitScalarExpr(E->getArg(0))
2619 : EmitVAListRef(E->getArg(0)).getPointer(),
2620 BuiltinID != Builtin::BI__builtin_va_end));
2621 case Builtin::BI__builtin_va_copy: {
2622 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2623 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2624
2625 llvm::Type *Type = Int8PtrTy;
2626
2627 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2628 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2629 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2630 {DstPtr, SrcPtr}));
2631 }
2632 case Builtin::BI__builtin_abs:
2633 case Builtin::BI__builtin_labs:
2634 case Builtin::BI__builtin_llabs: {
2635 // X < 0 ? -X : X
2636 // The negation has 'nsw' because abs of INT_MIN is undefined.
2637 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2638 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2639 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2640 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2641 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2642 return RValue::get(Result);
2643 }
2644 case Builtin::BI__builtin_complex: {
2645 Value *Real = EmitScalarExpr(E->getArg(0));
2646 Value *Imag = EmitScalarExpr(E->getArg(1));
2647 return RValue::getComplex({Real, Imag});
2648 }
2649 case Builtin::BI__builtin_conj:
2650 case Builtin::BI__builtin_conjf:
2651 case Builtin::BI__builtin_conjl:
2652 case Builtin::BIconj:
2653 case Builtin::BIconjf:
2654 case Builtin::BIconjl: {
2655 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2656 Value *Real = ComplexVal.first;
2657 Value *Imag = ComplexVal.second;
2658 Imag = Builder.CreateFNeg(Imag, "neg");
2659 return RValue::getComplex(std::make_pair(Real, Imag));
2660 }
2661 case Builtin::BI__builtin_creal:
2662 case Builtin::BI__builtin_crealf:
2663 case Builtin::BI__builtin_creall:
2664 case Builtin::BIcreal:
2665 case Builtin::BIcrealf:
2666 case Builtin::BIcreall: {
2667 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2668 return RValue::get(ComplexVal.first);
2669 }
2670
2671 case Builtin::BI__builtin_dump_struct: {
2672 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2673 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2674 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2675
2676 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2677 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2678
2679 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2680 QualType Arg0Type = Arg0->getType()->getPointeeType();
2681
2682 Value *RecordPtr = EmitScalarExpr(Arg0);
2683 LValue RecordLV = MakeAddrLValue(RecordPtr, Arg0Type, Arg0Align);
2684 Value *Res = dumpRecord(*this, Arg0Type, RecordLV, Arg0Align,
2685 {LLVMFuncType, Func}, 0);
2686 return RValue::get(Res);
2687 }
2688
2689 case Builtin::BI__builtin_preserve_access_index: {
2690 // Only enabled preserved access index region when debuginfo
2691 // is available as debuginfo is needed to preserve user-level
2692 // access pattern.
2693 if (!getDebugInfo()) {
2694 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2695 return RValue::get(EmitScalarExpr(E->getArg(0)));
2696 }
2697
2698 // Nested builtin_preserve_access_index() not supported
2699 if (IsInPreservedAIRegion) {
2700 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2701 return RValue::get(EmitScalarExpr(E->getArg(0)));
2702 }
2703
2704 IsInPreservedAIRegion = true;
2705 Value *Res = EmitScalarExpr(E->getArg(0));
2706 IsInPreservedAIRegion = false;
2707 return RValue::get(Res);
2708 }
2709
2710 case Builtin::BI__builtin_cimag:
2711 case Builtin::BI__builtin_cimagf:
2712 case Builtin::BI__builtin_cimagl:
2713 case Builtin::BIcimag:
2714 case Builtin::BIcimagf:
2715 case Builtin::BIcimagl: {
2716 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2717 return RValue::get(ComplexVal.second);
2718 }
2719
2720 case Builtin::BI__builtin_clrsb:
2721 case Builtin::BI__builtin_clrsbl:
2722 case Builtin::BI__builtin_clrsbll: {
2723 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2724 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2725
2726 llvm::Type *ArgType = ArgValue->getType();
2727 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2728
2729 llvm::Type *ResultType = ConvertType(E->getType());
2730 Value *Zero = llvm::Constant::getNullValue(ArgType);
2731 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2732 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2733 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2734 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2735 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2736 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2737 "cast");
2738 return RValue::get(Result);
2739 }
2740 case Builtin::BI__builtin_ctzs:
2741 case Builtin::BI__builtin_ctz:
2742 case Builtin::BI__builtin_ctzl:
2743 case Builtin::BI__builtin_ctzll: {
2744 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2745
2746 llvm::Type *ArgType = ArgValue->getType();
2747 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2748
2749 llvm::Type *ResultType = ConvertType(E->getType());
2750 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2751 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2752 if (Result->getType() != ResultType)
2753 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2754 "cast");
2755 return RValue::get(Result);
2756 }
2757 case Builtin::BI__builtin_clzs:
2758 case Builtin::BI__builtin_clz:
2759 case Builtin::BI__builtin_clzl:
2760 case Builtin::BI__builtin_clzll: {
2761 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2762
2763 llvm::Type *ArgType = ArgValue->getType();
2764 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2765
2766 llvm::Type *ResultType = ConvertType(E->getType());
2767 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2768 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2769 if (Result->getType() != ResultType)
2770 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2771 "cast");
2772 return RValue::get(Result);
2773 }
2774 case Builtin::BI__builtin_ffs:
2775 case Builtin::BI__builtin_ffsl:
2776 case Builtin::BI__builtin_ffsll: {
2777 // ffs(x) -> x ? cttz(x) + 1 : 0
2778 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2779
2780 llvm::Type *ArgType = ArgValue->getType();
2781 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2782
2783 llvm::Type *ResultType = ConvertType(E->getType());
2784 Value *Tmp =
2785 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2786 llvm::ConstantInt::get(ArgType, 1));
2787 Value *Zero = llvm::Constant::getNullValue(ArgType);
2788 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2789 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2790 if (Result->getType() != ResultType)
2791 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2792 "cast");
2793 return RValue::get(Result);
2794 }
2795 case Builtin::BI__builtin_parity:
2796 case Builtin::BI__builtin_parityl:
2797 case Builtin::BI__builtin_parityll: {
2798 // parity(x) -> ctpop(x) & 1
2799 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2800
2801 llvm::Type *ArgType = ArgValue->getType();
2802 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2803
2804 llvm::Type *ResultType = ConvertType(E->getType());
2805 Value *Tmp = Builder.CreateCall(F, ArgValue);
2806 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2807 if (Result->getType() != ResultType)
2808 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2809 "cast");
2810 return RValue::get(Result);
2811 }
2812 case Builtin::BI__lzcnt16:
2813 case Builtin::BI__lzcnt:
2814 case Builtin::BI__lzcnt64: {
2815 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2816
2817 llvm::Type *ArgType = ArgValue->getType();
2818 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2819
2820 llvm::Type *ResultType = ConvertType(E->getType());
2821 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2822 if (Result->getType() != ResultType)
2823 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2824 "cast");
2825 return RValue::get(Result);
2826 }
2827 case Builtin::BI__popcnt16:
2828 case Builtin::BI__popcnt:
2829 case Builtin::BI__popcnt64:
2830 case Builtin::BI__builtin_popcount:
2831 case Builtin::BI__builtin_popcountl:
2832 case Builtin::BI__builtin_popcountll: {
2833 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2834
2835 llvm::Type *ArgType = ArgValue->getType();
2836 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2837
2838 llvm::Type *ResultType = ConvertType(E->getType());
2839 Value *Result = Builder.CreateCall(F, ArgValue);
2840 if (Result->getType() != ResultType)
2841 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2842 "cast");
2843 return RValue::get(Result);
2844 }
2845 case Builtin::BI__builtin_unpredictable: {
2846 // Always return the argument of __builtin_unpredictable. LLVM does not
2847 // handle this builtin. Metadata for this builtin should be added directly
2848 // to instructions such as branches or switches that use it.
2849 return RValue::get(EmitScalarExpr(E->getArg(0)));
2850 }
2851 case Builtin::BI__builtin_expect: {
2852 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2853 llvm::Type *ArgType = ArgValue->getType();
2854
2855 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2856 // Don't generate llvm.expect on -O0 as the backend won't use it for
2857 // anything.
2858 // Note, we still IRGen ExpectedValue because it could have side-effects.
2859 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2860 return RValue::get(ArgValue);
2861
2862 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2863 Value *Result =
2864 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2865 return RValue::get(Result);
2866 }
2867 case Builtin::BI__builtin_expect_with_probability: {
2868 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2869 llvm::Type *ArgType = ArgValue->getType();
2870
2871 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2872 llvm::APFloat Probability(0.0);
2873 const Expr *ProbArg = E->getArg(2);
2874 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2875 assert(EvalSucceed && "probability should be able to evaluate as float")(static_cast <bool> (EvalSucceed && "probability should be able to evaluate as float"
) ? void (0) : __assert_fail ("EvalSucceed && \"probability should be able to evaluate as float\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2875, __extension__ __PRETTY_FUNCTION__
))
;
2876 (void)EvalSucceed;
2877 bool LoseInfo = false;
2878 Probability.convert(llvm::APFloat::IEEEdouble(),
2879 llvm::RoundingMode::Dynamic, &LoseInfo);
2880 llvm::Type *Ty = ConvertType(ProbArg->getType());
2881 Constant *Confidence = ConstantFP::get(Ty, Probability);
2882 // Don't generate llvm.expect.with.probability on -O0 as the backend
2883 // won't use it for anything.
2884 // Note, we still IRGen ExpectedValue because it could have side-effects.
2885 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2886 return RValue::get(ArgValue);
2887
2888 Function *FnExpect =
2889 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2890 Value *Result = Builder.CreateCall(
2891 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2892 return RValue::get(Result);
2893 }
2894 case Builtin::BI__builtin_assume_aligned: {
2895 const Expr *Ptr = E->getArg(0);
2896 Value *PtrValue = EmitScalarExpr(Ptr);
2897 Value *OffsetValue =
2898 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2899
2900 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2901 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2902 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2903 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2904 llvm::Value::MaximumAlignment);
2905
2906 emitAlignmentAssumption(PtrValue, Ptr,
2907 /*The expr loc is sufficient.*/ SourceLocation(),
2908 AlignmentCI, OffsetValue);
2909 return RValue::get(PtrValue);
2910 }
2911 case Builtin::BI__assume:
2912 case Builtin::BI__builtin_assume: {
2913 if (E->getArg(0)->HasSideEffects(getContext()))
2914 return RValue::get(nullptr);
2915
2916 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2917 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2918 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2919 }
2920 case Builtin::BI__arithmetic_fence: {
2921 // Create the builtin call if FastMath is selected, and the target
2922 // supports the builtin, otherwise just return the argument.
2923 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2924 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2925 bool isArithmeticFenceEnabled =
2926 FMF.allowReassoc() &&
2927 getContext().getTargetInfo().checkArithmeticFenceSupported();
2928 QualType ArgType = E->getArg(0)->getType();
2929 if (ArgType->isComplexType()) {
2930 if (isArithmeticFenceEnabled) {
2931 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2932 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2933 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2934 ConvertType(ElementType));
2935 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2936 ConvertType(ElementType));
2937 return RValue::getComplex(std::make_pair(Real, Imag));
2938 }
2939 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2940 Value *Real = ComplexVal.first;
2941 Value *Imag = ComplexVal.second;
2942 return RValue::getComplex(std::make_pair(Real, Imag));
2943 }
2944 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2945 if (isArithmeticFenceEnabled)
2946 return RValue::get(
2947 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2948 return RValue::get(ArgValue);
2949 }
2950 case Builtin::BI__builtin_bswap16:
2951 case Builtin::BI__builtin_bswap32:
2952 case Builtin::BI__builtin_bswap64:
2953 case Builtin::BI_byteswap_ushort:
2954 case Builtin::BI_byteswap_ulong:
2955 case Builtin::BI_byteswap_uint64: {
2956 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2957 }
2958 case Builtin::BI__builtin_bitreverse8:
2959 case Builtin::BI__builtin_bitreverse16:
2960 case Builtin::BI__builtin_bitreverse32:
2961 case Builtin::BI__builtin_bitreverse64: {
2962 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2963 }
2964 case Builtin::BI__builtin_rotateleft8:
2965 case Builtin::BI__builtin_rotateleft16:
2966 case Builtin::BI__builtin_rotateleft32:
2967 case Builtin::BI__builtin_rotateleft64:
2968 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2969 case Builtin::BI_rotl16:
2970 case Builtin::BI_rotl:
2971 case Builtin::BI_lrotl:
2972 case Builtin::BI_rotl64:
2973 return emitRotate(E, false);
2974
2975 case Builtin::BI__builtin_rotateright8:
2976 case Builtin::BI__builtin_rotateright16:
2977 case Builtin::BI__builtin_rotateright32:
2978 case Builtin::BI__builtin_rotateright64:
2979 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2980 case Builtin::BI_rotr16:
2981 case Builtin::BI_rotr:
2982 case Builtin::BI_lrotr:
2983 case Builtin::BI_rotr64:
2984 return emitRotate(E, true);
2985
2986 case Builtin::BI__builtin_constant_p: {
2987 llvm::Type *ResultType = ConvertType(E->getType());
2988
2989 const Expr *Arg = E->getArg(0);
2990 QualType ArgType = Arg->getType();
2991 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2992 // and likely a mistake.
2993 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2994 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2995 // Per the GCC documentation, only numeric constants are recognized after
2996 // inlining.
2997 return RValue::get(ConstantInt::get(ResultType, 0));
2998
2999 if (Arg->HasSideEffects(getContext()))
3000 // The argument is unevaluated, so be conservative if it might have
3001 // side-effects.
3002 return RValue::get(ConstantInt::get(ResultType, 0));
3003
3004 Value *ArgValue = EmitScalarExpr(Arg);
3005 if (ArgType->isObjCObjectPointerType()) {
3006 // Convert Objective-C objects to id because we cannot distinguish between
3007 // LLVM types for Obj-C classes as they are opaque.
3008 ArgType = CGM.getContext().getObjCIdType();
3009 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
3010 }
3011 Function *F =
3012 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
3013 Value *Result = Builder.CreateCall(F, ArgValue);
3014 if (Result->getType() != ResultType)
3015 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
3016 return RValue::get(Result);
3017 }
3018 case Builtin::BI__builtin_dynamic_object_size:
3019 case Builtin::BI__builtin_object_size: {
3020 unsigned Type =
3021 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3022 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3023
3024 // We pass this builtin onto the optimizer so that it can figure out the
3025 // object size in more complex cases.
3026 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3027 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3028 /*EmittedE=*/nullptr, IsDynamic));
3029 }
3030 case Builtin::BI__builtin_prefetch: {
3031 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3032 // FIXME: Technically these constants should of type 'int', yes?
3033 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3034 llvm::ConstantInt::get(Int32Ty, 0);
3035 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3036 llvm::ConstantInt::get(Int32Ty, 3);
3037 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3038 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3039 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
3040 }
3041 case Builtin::BI__builtin_readcyclecounter: {
3042 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3043 return RValue::get(Builder.CreateCall(F));
3044 }
3045 case Builtin::BI__builtin___clear_cache: {
3046 Value *Begin = EmitScalarExpr(E->getArg(0));
3047 Value *End = EmitScalarExpr(E->getArg(1));
3048 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3049 return RValue::get(Builder.CreateCall(F, {Begin, End}));
3050 }
3051 case Builtin::BI__builtin_trap:
3052 return RValue::get(EmitTrapCall(Intrinsic::trap));
3053 case Builtin::BI__debugbreak:
3054 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
3055 case Builtin::BI__builtin_unreachable: {
3056 EmitUnreachable(E->getExprLoc());
3057
3058 // We do need to preserve an insertion point.
3059 EmitBlock(createBasicBlock("unreachable.cont"));
3060
3061 return RValue::get(nullptr);
3062 }
3063
3064 case Builtin::BI__builtin_powi:
3065 case Builtin::BI__builtin_powif:
3066 case Builtin::BI__builtin_powil: {
3067 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3068 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3069
3070 if (Builder.getIsFPConstrained()) {
3071 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3072 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3073 Src0->getType());
3074 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3075 }
3076
3077 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3078 { Src0->getType(), Src1->getType() });
3079 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3080 }
3081 case Builtin::BI__builtin_isgreater:
3082 case Builtin::BI__builtin_isgreaterequal:
3083 case Builtin::BI__builtin_isless:
3084 case Builtin::BI__builtin_islessequal:
3085 case Builtin::BI__builtin_islessgreater:
3086 case Builtin::BI__builtin_isunordered: {
3087 // Ordered comparisons: we know the arguments to these are matching scalar
3088 // floating point values.
3089 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3090 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3091 Value *LHS = EmitScalarExpr(E->getArg(0));
3092 Value *RHS = EmitScalarExpr(E->getArg(1));
3093
3094 switch (BuiltinID) {
3095 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3095)
;
3096 case Builtin::BI__builtin_isgreater:
3097 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3098 break;
3099 case Builtin::BI__builtin_isgreaterequal:
3100 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3101 break;
3102 case Builtin::BI__builtin_isless:
3103 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3104 break;
3105 case Builtin::BI__builtin_islessequal:
3106 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3107 break;
3108 case Builtin::BI__builtin_islessgreater:
3109 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3110 break;
3111 case Builtin::BI__builtin_isunordered:
3112 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3113 break;
3114 }
3115 // ZExt bool to int type.
3116 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3117 }
3118 case Builtin::BI__builtin_isnan: {
3119 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3120 Value *V = EmitScalarExpr(E->getArg(0));
3121 llvm::Type *Ty = V->getType();
3122 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3123 if (!Builder.getIsFPConstrained() ||
3124 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3125 !Ty->isIEEE()) {
3126 V = Builder.CreateFCmpUNO(V, V, "cmp");
3127 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3128 }
3129
3130 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3131 return RValue::get(Result);
3132
3133 // NaN has all exp bits set and a non zero significand. Therefore:
3134 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3135 unsigned bitsize = Ty->getScalarSizeInBits();
3136 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3137 Value *IntV = Builder.CreateBitCast(V, IntTy);
3138 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3139 Value *AbsV =
3140 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3141 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3142 Value *Sub =
3143 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3144 // V = sign bit (Sub) <=> V = (Sub < 0)
3145 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3146 if (bitsize > 32)
3147 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3148 return RValue::get(V);
3149 }
3150
3151 case Builtin::BI__builtin_elementwise_abs: {
3152 Value *Result;
3153 QualType QT = E->getArg(0)->getType();
3154
3155 if (auto *VecTy = QT->getAs<VectorType>())
3156 QT = VecTy->getElementType();
3157 if (QT->isIntegerType())
3158 Result = Builder.CreateBinaryIntrinsic(
3159 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3160 Builder.getFalse(), nullptr, "elt.abs");
3161 else
3162 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3163
3164 return RValue::get(Result);
3165 }
3166
3167 case Builtin::BI__builtin_elementwise_ceil:
3168 return RValue::get(
3169 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3170 case Builtin::BI__builtin_elementwise_floor:
3171 return RValue::get(
3172 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3173 case Builtin::BI__builtin_elementwise_roundeven:
3174 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3175 "elt.roundeven"));
3176 case Builtin::BI__builtin_elementwise_trunc:
3177 return RValue::get(
3178 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3179
3180 case Builtin::BI__builtin_elementwise_add_sat:
3181 case Builtin::BI__builtin_elementwise_sub_sat: {
3182 Value *Op0 = EmitScalarExpr(E->getArg(0));
3183 Value *Op1 = EmitScalarExpr(E->getArg(1));
3184 Value *Result;
3185 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected")(static_cast <bool> (Op0->getType()->isIntOrIntVectorTy
() && "integer type expected") ? void (0) : __assert_fail
("Op0->getType()->isIntOrIntVectorTy() && \"integer type expected\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3185, __extension__ __PRETTY_FUNCTION__
))
;
3186 QualType Ty = E->getArg(0)->getType();
3187 if (auto *VecTy = Ty->getAs<VectorType>())
3188 Ty = VecTy->getElementType();
3189 bool IsSigned = Ty->isSignedIntegerType();
3190 unsigned Opc;
3191 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3192 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3193 else
3194 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3195 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3196 return RValue::get(Result);
3197 }
3198
3199 case Builtin::BI__builtin_elementwise_max: {
3200 Value *Op0 = EmitScalarExpr(E->getArg(0));
3201 Value *Op1 = EmitScalarExpr(E->getArg(1));
3202 Value *Result;
3203 if (Op0->getType()->isIntOrIntVectorTy()) {
3204 QualType Ty = E->getArg(0)->getType();
3205 if (auto *VecTy = Ty->getAs<VectorType>())
3206 Ty = VecTy->getElementType();
3207 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3208 ? llvm::Intrinsic::smax
3209 : llvm::Intrinsic::umax,
3210 Op0, Op1, nullptr, "elt.max");
3211 } else
3212 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3213 return RValue::get(Result);
3214 }
3215 case Builtin::BI__builtin_elementwise_min: {
3216 Value *Op0 = EmitScalarExpr(E->getArg(0));
3217 Value *Op1 = EmitScalarExpr(E->getArg(1));
3218 Value *Result;
3219 if (Op0->getType()->isIntOrIntVectorTy()) {
3220 QualType Ty = E->getArg(0)->getType();
3221 if (auto *VecTy = Ty->getAs<VectorType>())
3222 Ty = VecTy->getElementType();
3223 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3224 ? llvm::Intrinsic::smin
3225 : llvm::Intrinsic::umin,
3226 Op0, Op1, nullptr, "elt.min");
3227 } else
3228 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3229 return RValue::get(Result);
3230 }
3231
3232 case Builtin::BI__builtin_reduce_max: {
3233 auto GetIntrinsicID = [](QualType QT) {
3234 if (auto *VecTy = QT->getAs<VectorType>())
3235 QT = VecTy->getElementType();
3236 if (QT->isSignedIntegerType())
3237 return llvm::Intrinsic::vector_reduce_smax;
3238 if (QT->isUnsignedIntegerType())
3239 return llvm::Intrinsic::vector_reduce_umax;
3240 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3240, __extension__ __PRETTY_FUNCTION__
))
;
3241 return llvm::Intrinsic::vector_reduce_fmax;
3242 };
3243 return RValue::get(emitUnaryBuiltin(
3244 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3245 }
3246
3247 case Builtin::BI__builtin_reduce_min: {
3248 auto GetIntrinsicID = [](QualType QT) {
3249 if (auto *VecTy = QT->getAs<VectorType>())
3250 QT = VecTy->getElementType();
3251 if (QT->isSignedIntegerType())
3252 return llvm::Intrinsic::vector_reduce_smin;
3253 if (QT->isUnsignedIntegerType())
3254 return llvm::Intrinsic::vector_reduce_umin;
3255 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3255, __extension__ __PRETTY_FUNCTION__
))
;
3256 return llvm::Intrinsic::vector_reduce_fmin;
3257 };
3258
3259 return RValue::get(emitUnaryBuiltin(
3260 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3261 }
3262
3263 case Builtin::BI__builtin_reduce_xor:
3264 return RValue::get(emitUnaryBuiltin(
3265 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3266 case Builtin::BI__builtin_reduce_or:
3267 return RValue::get(emitUnaryBuiltin(
3268 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3269 case Builtin::BI__builtin_reduce_and:
3270 return RValue::get(emitUnaryBuiltin(
3271 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3272
3273 case Builtin::BI__builtin_matrix_transpose: {
3274 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3275 Value *MatValue = EmitScalarExpr(E->getArg(0));
3276 MatrixBuilder MB(Builder);
3277 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3278 MatrixTy->getNumColumns());
3279 return RValue::get(Result);
3280 }
3281
3282 case Builtin::BI__builtin_matrix_column_major_load: {
3283 MatrixBuilder MB(Builder);
3284 // Emit everything that isn't dependent on the first parameter type
3285 Value *Stride = EmitScalarExpr(E->getArg(3));
3286 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3287 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3288 assert(PtrTy && "arg0 must be of pointer type")(static_cast <bool> (PtrTy && "arg0 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg0 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3288, __extension__ __PRETTY_FUNCTION__
))
;
3289 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3290
3291 Address Src = EmitPointerWithAlignment(E->getArg(0));
3292 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3293 E->getArg(0)->getExprLoc(), FD, 0);
3294 Value *Result = MB.CreateColumnMajorLoad(
3295 Src.getElementType(), Src.getPointer(),
3296 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3297 ResultTy->getNumRows(), ResultTy->getNumColumns(),
3298 "matrix");
3299 return RValue::get(Result);
3300 }
3301
3302 case Builtin::BI__builtin_matrix_column_major_store: {
3303 MatrixBuilder MB(Builder);
3304 Value *Matrix = EmitScalarExpr(E->getArg(0));
3305 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3306 Value *Stride = EmitScalarExpr(E->getArg(2));
3307
3308 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3309 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3310 assert(PtrTy && "arg1 must be of pointer type")(static_cast <bool> (PtrTy && "arg1 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg1 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3310, __extension__ __PRETTY_FUNCTION__
))
;
3311 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3312
3313 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3314 E->getArg(1)->getExprLoc(), FD, 0);
3315 Value *Result = MB.CreateColumnMajorStore(
3316 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3317 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3318 return RValue::get(Result);
3319 }
3320
3321 case Builtin::BIfinite:
3322 case Builtin::BI__finite:
3323 case Builtin::BIfinitef:
3324 case Builtin::BI__finitef:
3325 case Builtin::BIfinitel:
3326 case Builtin::BI__finitel:
3327 case Builtin::BI__builtin_isinf:
3328 case Builtin::BI__builtin_isfinite: {
3329 // isinf(x) --> fabs(x) == infinity
3330 // isfinite(x) --> fabs(x) != infinity
3331 // x != NaN via the ordered compare in either case.
3332 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3333 Value *V = EmitScalarExpr(E->getArg(0));
3334 llvm::Type *Ty = V->getType();
3335 if (!Builder.getIsFPConstrained() ||
3336 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3337 !Ty->isIEEE()) {
3338 Value *Fabs = EmitFAbs(*this, V);
3339 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3340 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3341 ? CmpInst::FCMP_OEQ
3342 : CmpInst::FCMP_ONE;
3343 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3344 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3345 }
3346
3347 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3348 return RValue::get(Result);
3349
3350 // Inf values have all exp bits set and a zero significand. Therefore:
3351 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3352 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3353 unsigned bitsize = Ty->getScalarSizeInBits();
3354 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3355 Value *IntV = Builder.CreateBitCast(V, IntTy);
3356 Value *Shl1 = Builder.CreateShl(IntV, 1);
3357 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3358 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3359 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3360 if (BuiltinID == Builtin::BI__builtin_isinf)
3361 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3362 else
3363 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3364 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3365 }
3366
3367 case Builtin::BI__builtin_isinf_sign: {
3368 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3369 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3370 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3371 Value *Arg = EmitScalarExpr(E->getArg(0));
3372 Value *AbsArg = EmitFAbs(*this, Arg);
3373 Value *IsInf = Builder.CreateFCmpOEQ(
3374 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3375 Value *IsNeg = EmitSignBit(*this, Arg);
3376
3377 llvm::Type *IntTy = ConvertType(E->getType());
3378 Value *Zero = Constant::getNullValue(IntTy);
3379 Value *One = ConstantInt::get(IntTy, 1);
3380 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3381 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3382 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3383 return RValue::get(Result);
3384 }
3385
3386 case Builtin::BI__builtin_isnormal: {
3387 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3388 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3389 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3390 Value *V = EmitScalarExpr(E->getArg(0));
3391 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3392
3393 Value *Abs = EmitFAbs(*this, V);
3394 Value *IsLessThanInf =
3395 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3396 APFloat Smallest = APFloat::getSmallestNormalized(
3397 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3398 Value *IsNormal =
3399 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3400 "isnormal");
3401 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3402 V = Builder.CreateAnd(V, IsNormal, "and");
3403 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3404 }
3405
3406 case Builtin::BI__builtin_flt_rounds: {
3407 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3408
3409 llvm::Type *ResultType = ConvertType(E->getType());
3410 Value *Result = Builder.CreateCall(F);
3411 if (Result->getType() != ResultType)
3412 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3413 "cast");
3414 return RValue::get(Result);
3415 }
3416
3417 case Builtin::BI__builtin_fpclassify: {
3418 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3419 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3420 Value *V = EmitScalarExpr(E->getArg(5));
3421 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3422
3423 // Create Result
3424 BasicBlock *Begin = Builder.GetInsertBlock();
3425 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3426 Builder.SetInsertPoint(End);
3427 PHINode *Result =
3428 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3429 "fpclassify_result");
3430
3431 // if (V==0) return FP_ZERO
3432 Builder.SetInsertPoint(Begin);
3433 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3434 "iszero");
3435 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3436 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3437 Builder.CreateCondBr(IsZero, End, NotZero);
3438 Result->addIncoming(ZeroLiteral, Begin);
3439
3440 // if (V != V) return FP_NAN
3441 Builder.SetInsertPoint(NotZero);
3442 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3443 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3444 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3445 Builder.CreateCondBr(IsNan, End, NotNan);
3446 Result->addIncoming(NanLiteral, NotZero);
3447
3448 // if (fabs(V) == infinity) return FP_INFINITY
3449 Builder.SetInsertPoint(NotNan);
3450 Value *VAbs = EmitFAbs(*this, V);
3451 Value *IsInf =
3452 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3453 "isinf");
3454 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3455 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3456 Builder.CreateCondBr(IsInf, End, NotInf);
3457 Result->addIncoming(InfLiteral, NotNan);
3458
3459 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3460 Builder.SetInsertPoint(NotInf);
3461 APFloat Smallest = APFloat::getSmallestNormalized(
3462 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3463 Value *IsNormal =
3464 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3465 "isnormal");
3466 Value *NormalResult =
3467 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3468 EmitScalarExpr(E->getArg(3)));
3469 Builder.CreateBr(End);
3470 Result->addIncoming(NormalResult, NotInf);
3471
3472 // return Result
3473 Builder.SetInsertPoint(End);
3474 return RValue::get(Result);
3475 }
3476
3477 case Builtin::BIalloca:
3478 case Builtin::BI_alloca:
3479 case Builtin::BI__builtin_alloca_uninitialized:
3480 case Builtin::BI__builtin_alloca: {
3481 Value *Size = EmitScalarExpr(E->getArg(0));
3482 const TargetInfo &TI = getContext().getTargetInfo();
3483 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3484 const Align SuitableAlignmentInBytes =
3485 CGM.getContext()
3486 .toCharUnitsFromBits(TI.getSuitableAlign())
3487 .getAsAlign();
3488 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3489 AI->setAlignment(SuitableAlignmentInBytes);
3490 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3491 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3492 return RValue::get(AI);
3493 }
3494
3495 case Builtin::BI__builtin_alloca_with_align_uninitialized:
3496 case Builtin::BI__builtin_alloca_with_align: {
3497 Value *Size = EmitScalarExpr(E->getArg(0));
3498 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3499 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3500 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3501 const Align AlignmentInBytes =
3502 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3503 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3504 AI->setAlignment(AlignmentInBytes);
3505 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3506 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3507 return RValue::get(AI);
3508 }
3509
3510 case Builtin::BIbzero:
3511 case Builtin::BI__builtin_bzero: {
3512 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3513 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3514 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3515 E->getArg(0)->getExprLoc(), FD, 0);
3516 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3517 return RValue::get(nullptr);
3518 }
3519 case Builtin::BImemcpy:
3520 case Builtin::BI__builtin_memcpy:
3521 case Builtin::BImempcpy:
3522 case Builtin::BI__builtin_mempcpy: {
3523 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3524 Address Src = EmitPointerWithAlignment(E->getArg(1));
3525 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3526 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3527 E->getArg(0)->getExprLoc(), FD, 0);
3528 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3529 E->getArg(1)->getExprLoc(), FD, 1);
3530 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3531 if (BuiltinID == Builtin::BImempcpy ||
3532 BuiltinID == Builtin::BI__builtin_mempcpy)
3533 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3534 Dest.getPointer(), SizeVal));
3535 else
3536 return RValue::get(Dest.getPointer());
3537 }
3538
3539 case Builtin::BI__builtin_memcpy_inline: {
3540 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3541 Address Src = EmitPointerWithAlignment(E->getArg(1));
3542 uint64_t Size =
3543 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3544 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3545 E->getArg(0)->getExprLoc(), FD, 0);
3546 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3547 E->getArg(1)->getExprLoc(), FD, 1);
3548 Builder.CreateMemCpyInline(Dest, Src, Size);
3549 return RValue::get(nullptr);
3550 }
3551
3552 case Builtin::BI__builtin_char_memchr:
3553 BuiltinID = Builtin::BI__builtin_memchr;
3554 break;
3555
3556 case Builtin::BI__builtin___memcpy_chk: {
3557 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3558 Expr::EvalResult SizeResult, DstSizeResult;
3559 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3560 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3561 break;
3562 llvm::APSInt Size = SizeResult.Val.getInt();
3563 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3564 if (Size.ugt(DstSize))
3565 break;
3566 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3567 Address Src = EmitPointerWithAlignment(E->getArg(1));
3568 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3569 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3570 return RValue::get(Dest.getPointer());
3571 }
3572
3573 case Builtin::BI__builtin_objc_memmove_collectable: {
3574 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3575 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3576 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3577 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3578 DestAddr, SrcAddr, SizeVal);
3579 return RValue::get(DestAddr.getPointer());
3580 }
3581
3582 case Builtin::BI__builtin___memmove_chk: {
3583 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3584 Expr::EvalResult SizeResult, DstSizeResult;
3585 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3586 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3587 break;
3588 llvm::APSInt Size = SizeResult.Val.getInt();
3589 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3590 if (Size.ugt(DstSize))
3591 break;
3592 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3593 Address Src = EmitPointerWithAlignment(E->getArg(1));
3594 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3595 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3596 return RValue::get(Dest.getPointer());
3597 }
3598
3599 case Builtin::BImemmove:
3600 case Builtin::BI__builtin_memmove: {
3601 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3602 Address Src = EmitPointerWithAlignment(E->getArg(1));
3603 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3604 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3605 E->getArg(0)->getExprLoc(), FD, 0);
3606 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3607 E->getArg(1)->getExprLoc(), FD, 1);
3608 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3609 return RValue::get(Dest.getPointer());
3610 }
3611 case Builtin::BImemset:
3612 case Builtin::BI__builtin_memset: {
3613 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3614 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3615 Builder.getInt8Ty());
3616 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3617 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3618 E->getArg(0)->getExprLoc(), FD, 0);
3619 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3620 return RValue::get(Dest.getPointer());
3621 }
3622 case Builtin::BI__builtin___memset_chk: {
3623 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3624 Expr::EvalResult SizeResult, DstSizeResult;
3625 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3626 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3627 break;
3628 llvm::APSInt Size = SizeResult.Val.getInt();
3629 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3630 if (Size.ugt(DstSize))
3631 break;
3632 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3633 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3634 Builder.getInt8Ty());
3635 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3636 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3637 return RValue::get(Dest.getPointer());
3638 }
3639 case Builtin::BI__builtin_wmemchr: {
3640 // The MSVC runtime library does not provide a definition of wmemchr, so we
3641 // need an inline implementation.
3642 if (!getTarget().getTriple().isOSMSVCRT())
3643 break;
3644
3645 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3646 Value *Str = EmitScalarExpr(E->getArg(0));
3647 Value *Chr = EmitScalarExpr(E->getArg(1));
3648 Value *Size = EmitScalarExpr(E->getArg(2));
3649
3650 BasicBlock *Entry = Builder.GetInsertBlock();
3651 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3652 BasicBlock *Next = createBasicBlock("wmemchr.next");
3653 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3654 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3655 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3656
3657 EmitBlock(CmpEq);
3658 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3659 StrPhi->addIncoming(Str, Entry);
3660 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3661 SizePhi->addIncoming(Size, Entry);
3662 CharUnits WCharAlign =
3663 getContext().getTypeAlignInChars(getContext().WCharTy);
3664 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3665 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3666 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3667 Builder.CreateCondBr(StrEqChr, Exit, Next);
3668
3669 EmitBlock(Next);
3670 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3671 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3672 Value *NextSizeEq0 =
3673 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3674 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3675 StrPhi->addIncoming(NextStr, Next);
3676 SizePhi->addIncoming(NextSize, Next);
3677
3678 EmitBlock(Exit);
3679 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3680 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3681 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3682 Ret->addIncoming(FoundChr, CmpEq);
3683 return RValue::get(Ret);
3684 }
3685 case Builtin::BI__builtin_wmemcmp: {
3686 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3687 // need an inline implementation.
3688 if (!getTarget().getTriple().isOSMSVCRT())
3689 break;
3690
3691 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3692
3693 Value *Dst = EmitScalarExpr(E->getArg(0));
3694 Value *Src = EmitScalarExpr(E->getArg(1));
3695 Value *Size = EmitScalarExpr(E->getArg(2));
3696
3697 BasicBlock *Entry = Builder.GetInsertBlock();
3698 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3699 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3700 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3701 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3702 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3703 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3704
3705 EmitBlock(CmpGT);
3706 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3707 DstPhi->addIncoming(Dst, Entry);
3708 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3709 SrcPhi->addIncoming(Src, Entry);
3710 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3711 SizePhi->addIncoming(Size, Entry);
3712 CharUnits WCharAlign =
3713 getContext().getTypeAlignInChars(getContext().WCharTy);
3714 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3715 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3716 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3717 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3718
3719 EmitBlock(CmpLT);
3720 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3721 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3722
3723 EmitBlock(Next);
3724 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3725 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3726 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3727 Value *NextSizeEq0 =
3728 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3729 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3730 DstPhi->addIncoming(NextDst, Next);
3731 SrcPhi->addIncoming(NextSrc, Next);
3732 SizePhi->addIncoming(NextSize, Next);
3733
3734 EmitBlock(Exit);
3735 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3736 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3737 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3738 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3739 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3740 return RValue::get(Ret);
3741 }
3742 case Builtin::BI__builtin_dwarf_cfa: {
3743 // The offset in bytes from the first argument to the CFA.
3744 //
3745 // Why on earth is this in the frontend? Is there any reason at
3746 // all that the backend can't reasonably determine this while
3747 // lowering llvm.eh.dwarf.cfa()?
3748 //
3749 // TODO: If there's a satisfactory reason, add a target hook for
3750 // this instead of hard-coding 0, which is correct for most targets.
3751 int32_t Offset = 0;
3752
3753 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3754 return RValue::get(Builder.CreateCall(F,
3755 llvm::ConstantInt::get(Int32Ty, Offset)));
3756 }
3757 case Builtin::BI__builtin_return_address: {
3758 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3759 getContext().UnsignedIntTy);
3760 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3761 return RValue::get(Builder.CreateCall(F, Depth));
3762 }
3763 case Builtin::BI_ReturnAddress: {
3764 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3765 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3766 }
3767 case Builtin::BI__builtin_frame_address: {
3768 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3769 getContext().UnsignedIntTy);
3770 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3771 return RValue::get(Builder.CreateCall(F, Depth));
3772 }
3773 case Builtin::BI__builtin_extract_return_addr: {
3774 Value *Address = EmitScalarExpr(E->getArg(0));
3775 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3776 return RValue::get(Result);
3777 }
3778 case Builtin::BI__builtin_frob_return_addr: {
3779 Value *Address = EmitScalarExpr(E->getArg(0));
3780 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3781 return RValue::get(Result);
3782 }
3783 case Builtin::BI__builtin_dwarf_sp_column: {
3784 llvm::IntegerType *Ty
3785 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3786 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3787 if (Column == -1) {
3788 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3789 return RValue::get(llvm::UndefValue::get(Ty));
3790 }
3791 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3792 }
3793 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3794 Value *Address = EmitScalarExpr(E->getArg(0));
3795 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3796 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3797 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3798 }
3799 case Builtin::BI__builtin_eh_return: {
3800 Value *Int = EmitScalarExpr(E->getArg(0));
3801 Value *Ptr = EmitScalarExpr(E->getArg(1));
3802
3803 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3804 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3805, __extension__ __PRETTY_FUNCTION__
))
3805 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3805, __extension__ __PRETTY_FUNCTION__
))
;
3806 Function *F =
3807 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3808 : Intrinsic::eh_return_i64);
3809 Builder.CreateCall(F, {Int, Ptr});
3810 Builder.CreateUnreachable();
3811
3812 // We do need to preserve an insertion point.
3813 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3814
3815 return RValue::get(nullptr);
3816 }
3817 case Builtin::BI__builtin_unwind_init: {
3818 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3819 return RValue::get(Builder.CreateCall(F));
3820 }
3821 case Builtin::BI__builtin_extend_pointer: {
3822 // Extends a pointer to the size of an _Unwind_Word, which is
3823 // uint64_t on all platforms. Generally this gets poked into a
3824 // register and eventually used as an address, so if the
3825 // addressing registers are wider than pointers and the platform
3826 // doesn't implicitly ignore high-order bits when doing
3827 // addressing, we need to make sure we zext / sext based on
3828 // the platform's expectations.
3829 //
3830 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3831
3832 // Cast the pointer to intptr_t.
3833 Value *Ptr = EmitScalarExpr(E->getArg(0));
3834 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3835
3836 // If that's 64 bits, we're done.
3837 if (IntPtrTy->getBitWidth() == 64)
3838 return RValue::get(Result);
3839
3840 // Otherwise, ask the codegen data what to do.
3841 if (getTargetHooks().extendPointerWithSExt())
3842 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3843 else
3844 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3845 }
3846 case Builtin::BI__builtin_setjmp: {
3847 // Buffer is a void**.
3848 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3849
3850 // Store the frame pointer to the setjmp buffer.
3851 Value *FrameAddr = Builder.CreateCall(
3852 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3853 ConstantInt::get(Int32Ty, 0));
3854 Builder.CreateStore(FrameAddr, Buf);
3855
3856 // Store the stack pointer to the setjmp buffer.
3857 Value *StackAddr =
3858 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3859 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3860 Builder.CreateStore(StackAddr, StackSaveSlot);
3861
3862 // Call LLVM's EH setjmp, which is lightweight.
3863 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3864 Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3865 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3866 }
3867 case Builtin::BI__builtin_longjmp: {
3868 Value *Buf = EmitScalarExpr(E->getArg(0));
3869 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3870
3871 // Call LLVM's EH longjmp, which is lightweight.
3872 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3873
3874 // longjmp doesn't return; mark this as unreachable.
3875 Builder.CreateUnreachable();
3876
3877 // We do need to preserve an insertion point.
3878 EmitBlock(createBasicBlock("longjmp.cont"));
3879
3880 return RValue::get(nullptr);
3881 }
3882 case Builtin::BI__builtin_launder: {
3883 const Expr *Arg = E->getArg(0);
3884 QualType ArgTy = Arg->getType()->getPointeeType();
3885 Value *Ptr = EmitScalarExpr(Arg);
3886 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3887 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3888
3889 return RValue::get(Ptr);
3890 }
3891 case Builtin::BI__sync_fetch_and_add:
3892 case Builtin::BI__sync_fetch_and_sub:
3893 case Builtin::BI__sync_fetch_and_or:
3894 case Builtin::BI__sync_fetch_and_and:
3895 case Builtin::BI__sync_fetch_and_xor:
3896 case Builtin::BI__sync_fetch_and_nand:
3897 case Builtin::BI__sync_add_and_fetch:
3898 case Builtin::BI__sync_sub_and_fetch:
3899 case Builtin::BI__sync_and_and_fetch:
3900 case Builtin::BI__sync_or_and_fetch:
3901 case Builtin::BI__sync_xor_and_fetch:
3902 case Builtin::BI__sync_nand_and_fetch:
3903 case Builtin::BI__sync_val_compare_and_swap:
3904 case Builtin::BI__sync_bool_compare_and_swap:
3905 case Builtin::BI__sync_lock_test_and_set:
3906 case Builtin::BI__sync_lock_release:
3907 case Builtin::BI__sync_swap:
3908 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3908)
;
3909 case Builtin::BI__sync_fetch_and_add_1:
3910 case Builtin::BI__sync_fetch_and_add_2:
3911 case Builtin::BI__sync_fetch_and_add_4:
3912 case Builtin::BI__sync_fetch_and_add_8:
3913 case Builtin::BI__sync_fetch_and_add_16:
3914 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3915 case Builtin::BI__sync_fetch_and_sub_1:
3916 case Builtin::BI__sync_fetch_and_sub_2:
3917 case Builtin::BI__sync_fetch_and_sub_4:
3918 case Builtin::BI__sync_fetch_and_sub_8:
3919 case Builtin::BI__sync_fetch_and_sub_16:
3920 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3921 case Builtin::BI__sync_fetch_and_or_1:
3922 case Builtin::BI__sync_fetch_and_or_2:
3923 case Builtin::BI__sync_fetch_and_or_4:
3924 case Builtin::BI__sync_fetch_and_or_8:
3925 case Builtin::BI__sync_fetch_and_or_16:
3926 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3927 case Builtin::BI__sync_fetch_and_and_1:
3928 case Builtin::BI__sync_fetch_and_and_2:
3929 case Builtin::BI__sync_fetch_and_and_4:
3930 case Builtin::BI__sync_fetch_and_and_8:
3931 case Builtin::BI__sync_fetch_and_and_16:
3932 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3933 case Builtin::BI__sync_fetch_and_xor_1:
3934 case Builtin::BI__sync_fetch_and_xor_2:
3935 case Builtin::BI__sync_fetch_and_xor_4:
3936 case Builtin::BI__sync_fetch_and_xor_8:
3937 case Builtin::BI__sync_fetch_and_xor_16:
3938 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3939 case Builtin::BI__sync_fetch_and_nand_1:
3940 case Builtin::BI__sync_fetch_and_nand_2:
3941 case Builtin::BI__sync_fetch_and_nand_4:
3942 case Builtin::BI__sync_fetch_and_nand_8:
3943 case Builtin::BI__sync_fetch_and_nand_16:
3944 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3945
3946 // Clang extensions: not overloaded yet.
3947 case Builtin::BI__sync_fetch_and_min:
3948 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3949 case Builtin::BI__sync_fetch_and_max:
3950 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3951 case Builtin::BI__sync_fetch_and_umin:
3952 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3953 case Builtin::BI__sync_fetch_and_umax:
3954 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3955
3956 case Builtin::BI__sync_add_and_fetch_1:
3957 case Builtin::BI__sync_add_and_fetch_2:
3958 case Builtin::BI__sync_add_and_fetch_4:
3959 case Builtin::BI__sync_add_and_fetch_8:
3960 case Builtin::BI__sync_add_and_fetch_16:
3961 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3962 llvm::Instruction::Add);
3963 case Builtin::BI__sync_sub_and_fetch_1:
3964 case Builtin::BI__sync_sub_and_fetch_2:
3965 case Builtin::BI__sync_sub_and_fetch_4:
3966 case Builtin::BI__sync_sub_and_fetch_8:
3967 case Builtin::BI__sync_sub_and_fetch_16:
3968 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3969 llvm::Instruction::Sub);
3970 case Builtin::BI__sync_and_and_fetch_1:
3971 case Builtin::BI__sync_and_and_fetch_2:
3972 case Builtin::BI__sync_and_and_fetch_4:
3973 case Builtin::BI__sync_and_and_fetch_8:
3974 case Builtin::BI__sync_and_and_fetch_16:
3975 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3976 llvm::Instruction::And);
3977 case Builtin::BI__sync_or_and_fetch_1:
3978 case Builtin::BI__sync_or_and_fetch_2:
3979 case Builtin::BI__sync_or_and_fetch_4:
3980 case Builtin::BI__sync_or_and_fetch_8:
3981 case Builtin::BI__sync_or_and_fetch_16:
3982 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3983 llvm::Instruction::Or);
3984 case Builtin::BI__sync_xor_and_fetch_1:
3985 case Builtin::BI__sync_xor_and_fetch_2:
3986 case Builtin::BI__sync_xor_and_fetch_4:
3987 case Builtin::BI__sync_xor_and_fetch_8:
3988 case Builtin::BI__sync_xor_and_fetch_16:
3989 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3990 llvm::Instruction::Xor);
3991 case Builtin::BI__sync_nand_and_fetch_1:
3992 case Builtin::BI__sync_nand_and_fetch_2:
3993 case Builtin::BI__sync_nand_and_fetch_4:
3994 case Builtin::BI__sync_nand_and_fetch_8:
3995 case Builtin::BI__sync_nand_and_fetch_16:
3996 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3997 llvm::Instruction::And, true);
3998
3999 case Builtin::BI__sync_val_compare_and_swap_1:
4000 case Builtin::BI__sync_val_compare_and_swap_2:
4001 case Builtin::BI__sync_val_compare_and_swap_4:
4002 case Builtin::BI__sync_val_compare_and_swap_8:
4003 case Builtin::BI__sync_val_compare_and_swap_16:
4004 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4005
4006 case Builtin::BI__sync_bool_compare_and_swap_1:
4007 case Builtin::BI__sync_bool_compare_and_swap_2:
4008 case Builtin::BI__sync_bool_compare_and_swap_4:
4009 case Builtin::BI__sync_bool_compare_and_swap_8:
4010 case Builtin::BI__sync_bool_compare_and_swap_16:
4011 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4012
4013 case Builtin::BI__sync_swap_1:
4014 case Builtin::BI__sync_swap_2:
4015 case Builtin::BI__sync_swap_4:
4016 case Builtin::BI__sync_swap_8:
4017 case Builtin::BI__sync_swap_16:
4018 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4019
4020 case Builtin::BI__sync_lock_test_and_set_1:
4021 case Builtin::BI__sync_lock_test_and_set_2:
4022 case Builtin::BI__sync_lock_test_and_set_4:
4023 case Builtin::BI__sync_lock_test_and_set_8:
4024 case Builtin::BI__sync_lock_test_and_set_16:
4025 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4026
4027 case Builtin::BI__sync_lock_release_1:
4028 case Builtin::BI__sync_lock_release_2:
4029 case Builtin::BI__sync_lock_release_4:
4030 case Builtin::BI__sync_lock_release_8:
4031 case Builtin::BI__sync_lock_release_16: {
4032 Value *Ptr = EmitScalarExpr(E->getArg(0));
4033 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4034 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
4035 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4036 StoreSize.getQuantity() * 8);
4037 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
4038 llvm::StoreInst *Store =
4039 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
4040 StoreSize);
4041 Store->setAtomic(llvm::AtomicOrdering::Release);
4042 return RValue::get(nullptr);
4043 }
4044
4045 case Builtin::BI__sync_synchronize: {
4046 // We assume this is supposed to correspond to a C++0x-style
4047 // sequentially-consistent fence (i.e. this is only usable for
4048 // synchronization, not device I/O or anything like that). This intrinsic
4049 // is really badly designed in the sense that in theory, there isn't
4050 // any way to safely use it... but in practice, it mostly works
4051 // to use it with non-atomic loads and stores to get acquire/release
4052 // semantics.
4053 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4054 return RValue::get(nullptr);
4055 }
4056
4057 case Builtin::BI__builtin_nontemporal_load:
4058 return RValue::get(EmitNontemporalLoad(*this, E));
4059 case Builtin::BI__builtin_nontemporal_store:
4060 return RValue::get(EmitNontemporalStore(*this, E));
4061 case Builtin::BI__c11_atomic_is_lock_free:
4062 case Builtin::BI__atomic_is_lock_free: {
4063 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4064 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4065 // _Atomic(T) is always properly-aligned.
4066 const char *LibCallName = "__atomic_is_lock_free";
4067 CallArgList Args;
4068 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4069 getContext().getSizeType());
4070 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4071 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4072 getContext().VoidPtrTy);
4073 else
4074 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4075 getContext().VoidPtrTy);
4076 const CGFunctionInfo &FuncInfo =
4077 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4078 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4079 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4080 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4081 ReturnValueSlot(), Args);
4082 }
4083
4084 case Builtin::BI__atomic_test_and_set: {
4085 // Look at the argument type to determine whether this is a volatile
4086 // operation. The parameter type is always volatile.
4087 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4088 bool Volatile =
4089 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4090
4091 Value *Ptr = EmitScalarExpr(E->getArg(0));
4092 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4093 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4094 Value *NewVal = Builder.getInt8(1);
4095 Value *Order = EmitScalarExpr(E->getArg(1));
4096 if (isa<llvm::ConstantInt>(Order)) {
4097 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4098 AtomicRMWInst *Result = nullptr;
4099 switch (ord) {
4100 case 0: // memory_order_relaxed
4101 default: // invalid order
4102 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4103 llvm::AtomicOrdering::Monotonic);
4104 break;
4105 case 1: // memory_order_consume
4106 case 2: // memory_order_acquire
4107 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4108 llvm::AtomicOrdering::Acquire);
4109 break;
4110 case 3: // memory_order_release
4111 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4112 llvm::AtomicOrdering::Release);
4113 break;
4114 case 4: // memory_order_acq_rel
4115
4116 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4117 llvm::AtomicOrdering::AcquireRelease);
4118 break;
4119 case 5: // memory_order_seq_cst
4120 Result = Builder.CreateAtomicRMW(
4121 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4122 llvm::AtomicOrdering::SequentiallyConsistent);
4123 break;
4124 }
4125 Result->setVolatile(Volatile);
4126 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4127 }
4128
4129 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4130
4131 llvm::BasicBlock *BBs[5] = {
4132 createBasicBlock("monotonic", CurFn),
4133 createBasicBlock("acquire", CurFn),
4134 createBasicBlock("release", CurFn),
4135 createBasicBlock("acqrel", CurFn),
4136 createBasicBlock("seqcst", CurFn)
4137 };
4138 llvm::AtomicOrdering Orders[5] = {
4139 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4140 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4141 llvm::AtomicOrdering::SequentiallyConsistent};
4142
4143 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4144 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4145
4146 Builder.SetInsertPoint(ContBB);
4147 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4148
4149 for (unsigned i = 0; i < 5; ++i) {
4150 Builder.SetInsertPoint(BBs[i]);
4151 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4152 Ptr, NewVal, Orders[i]);
4153 RMW->setVolatile(Volatile);
4154 Result->addIncoming(RMW, BBs[i]);
4155 Builder.CreateBr(ContBB);
4156 }
4157
4158 SI->addCase(Builder.getInt32(0), BBs[0]);
4159 SI->addCase(Builder.getInt32(1), BBs[1]);
4160 SI->addCase(Builder.getInt32(2), BBs[1]);
4161 SI->addCase(Builder.getInt32(3), BBs[2]);
4162 SI->addCase(Builder.getInt32(4), BBs[3]);
4163 SI->addCase(Builder.getInt32(5), BBs[4]);
4164
4165 Builder.SetInsertPoint(ContBB);
4166 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4167 }
4168
4169 case Builtin::BI__atomic_clear: {
4170 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4171 bool Volatile =
4172 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4173
4174 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4175 Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4176 Value *NewVal = Builder.getInt8(0);
4177 Value *Order = EmitScalarExpr(E->getArg(1));
4178 if (isa<llvm::ConstantInt>(Order)) {
4179 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4180 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4181 switch (ord) {
4182 case 0: // memory_order_relaxed
4183 default: // invalid order
4184 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4185 break;
4186 case 3: // memory_order_release
4187 Store->setOrdering(llvm::AtomicOrdering::Release);
4188 break;
4189 case 5: // memory_order_seq_cst
4190 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4191 break;
4192 }
4193 return RValue::get(nullptr);
4194 }
4195
4196 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4197
4198 llvm::BasicBlock *BBs[3] = {
4199 createBasicBlock("monotonic", CurFn),
4200 createBasicBlock("release", CurFn),
4201 createBasicBlock("seqcst", CurFn)
4202 };
4203 llvm::AtomicOrdering Orders[3] = {
4204 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4205 llvm::AtomicOrdering::SequentiallyConsistent};
4206
4207 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4208 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4209
4210 for (unsigned i = 0; i < 3; ++i) {
4211 Builder.SetInsertPoint(BBs[i]);
4212 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4213 Store->setOrdering(Orders[i]);
4214 Builder.CreateBr(ContBB);
4215 }
4216
4217 SI->addCase(Builder.getInt32(0), BBs[0]);
4218 SI->addCase(Builder.getInt32(3), BBs[1]);
4219 SI->addCase(Builder.getInt32(5), BBs[2]);
4220
4221 Builder.SetInsertPoint(ContBB);
4222 return RValue::get(nullptr);
4223 }
4224
4225 case Builtin::BI__atomic_thread_fence:
4226 case Builtin::BI__atomic_signal_fence:
4227 case Builtin::BI__c11_atomic_thread_fence:
4228 case Builtin::BI__c11_atomic_signal_fence: {
4229 llvm::SyncScope::ID SSID;
4230 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4231 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4232 SSID = llvm::SyncScope::SingleThread;
4233 else
4234 SSID = llvm::SyncScope::System;
4235 Value *Order = EmitScalarExpr(E->getArg(0));
4236 if (isa<llvm::ConstantInt>(Order)) {
4237 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4238 switch (ord) {
4239 case 0: // memory_order_relaxed
4240 default: // invalid order
4241 break;
4242 case 1: // memory_order_consume
4243 case 2: // memory_order_acquire
4244 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4245 break;
4246 case 3: // memory_order_release
4247 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4248 break;
4249 case 4: // memory_order_acq_rel
4250 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4251 break;
4252 case 5: // memory_order_seq_cst
4253 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4254 break;
4255 }
4256 return RValue::get(nullptr);
4257 }
4258
4259 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4260 AcquireBB = createBasicBlock("acquire", CurFn);
4261 ReleaseBB = createBasicBlock("release", CurFn);
4262 AcqRelBB = createBasicBlock("acqrel", CurFn);
4263 SeqCstBB = createBasicBlock("seqcst", CurFn);
4264 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4265
4266 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4267 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4268
4269 Builder.SetInsertPoint(AcquireBB);
4270 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4271 Builder.CreateBr(ContBB);
4272 SI->addCase(Builder.getInt32(1), AcquireBB);
4273 SI->addCase(Builder.getInt32(2), AcquireBB);
4274
4275 Builder.SetInsertPoint(ReleaseBB);
4276 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4277 Builder.CreateBr(ContBB);
4278 SI->addCase(Builder.getInt32(3), ReleaseBB);
4279
4280 Builder.SetInsertPoint(AcqRelBB);
4281 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4282 Builder.CreateBr(ContBB);
4283 SI->addCase(Builder.getInt32(4), AcqRelBB);
4284
4285 Builder.SetInsertPoint(SeqCstBB);
4286 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4287 Builder.CreateBr(ContBB);
4288 SI->addCase(Builder.getInt32(5), SeqCstBB);
4289
4290 Builder.SetInsertPoint(ContBB);
4291 return RValue::get(nullptr);
4292 }
4293
4294 case Builtin::BI__builtin_signbit:
4295 case Builtin::BI__builtin_signbitf:
4296 case Builtin::BI__builtin_signbitl: {
4297 return RValue::get(
4298 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4299 ConvertType(E->getType())));
4300 }
4301 case Builtin::BI__warn_memset_zero_len:
4302 return RValue::getIgnored();
4303 case Builtin::BI__annotation: {
4304 // Re-encode each wide string to UTF8 and make an MDString.
4305 SmallVector<Metadata *, 1> Strings;
4306 for (const Expr *Arg : E->arguments()) {
4307 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4308 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"clang/lib/CodeGen/CGBuiltin.cpp", 4308, __extension__ __PRETTY_FUNCTION__
))
;
4309 StringRef WideBytes = Str->getBytes();
4310 std::string StrUtf8;
4311 if (!convertUTF16ToUTF8String(
4312 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4313 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4314 continue;
4315 }
4316 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4317 }
4318
4319 // Build and MDTuple of MDStrings and emit the intrinsic call.
4320 llvm::Function *F =
4321 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4322 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4323 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4324 return RValue::getIgnored();
4325 }
4326 case Builtin::BI__builtin_annotation: {
4327 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4328 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4329 AnnVal->getType());
4330
4331 // Get the annotation string, go through casts. Sema requires this to be a
4332 // non-wide string literal, potentially casted, so the cast<> is safe.
4333 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4334 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4335 return RValue::get(
4336 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4337 }
4338 case Builtin::BI__builtin_addcb:
4339 case Builtin::BI__builtin_addcs:
4340 case Builtin::BI__builtin_addc:
4341 case Builtin::BI__builtin_addcl:
4342 case Builtin::BI__builtin_addcll:
4343 case Builtin::BI__builtin_subcb:
4344 case Builtin::BI__builtin_subcs:
4345 case Builtin::BI__builtin_subc:
4346 case Builtin::BI__builtin_subcl:
4347 case Builtin::BI__builtin_subcll: {
4348
4349 // We translate all of these builtins from expressions of the form:
4350 // int x = ..., y = ..., carryin = ..., carryout, result;
4351 // result = __builtin_addc(x, y, carryin, &carryout);
4352 //
4353 // to LLVM IR of the form:
4354 //
4355 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4356 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4357 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4358 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4359 // i32 %carryin)
4360 // %result = extractvalue {i32, i1} %tmp2, 0
4361 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4362 // %tmp3 = or i1 %carry1, %carry2
4363 // %tmp4 = zext i1 %tmp3 to i32
4364 // store i32 %tmp4, i32* %carryout
4365
4366 // Scalarize our inputs.
4367 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4368 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4369 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4370 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4371
4372 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4373 llvm::Intrinsic::ID IntrinsicId;
4374 switch (BuiltinID) {
4375 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4375)
;
4376 case Builtin::BI__builtin_addcb:
4377 case Builtin::BI__builtin_addcs:
4378 case Builtin::BI__builtin_addc:
4379 case Builtin::BI__builtin_addcl:
4380 case Builtin::BI__builtin_addcll:
4381 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4382 break;
4383 case Builtin::BI__builtin_subcb:
4384 case Builtin::BI__builtin_subcs:
4385 case Builtin::BI__builtin_subc:
4386 case Builtin::BI__builtin_subcl:
4387 case Builtin::BI__builtin_subcll:
4388 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4389 break;
4390 }
4391
4392 // Construct our resulting LLVM IR expression.
4393 llvm::Value *Carry1;
4394 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4395 X, Y, Carry1);
4396 llvm::Value *Carry2;
4397 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4398 Sum1, Carryin, Carry2);
4399 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4400 X->getType());
4401 Builder.CreateStore(CarryOut, CarryOutPtr);
4402 return RValue::get(Sum2);
4403 }
4404
4405 case Builtin::BI__builtin_add_overflow:
4406 case Builtin::BI__builtin_sub_overflow:
4407 case Builtin::BI__builtin_mul_overflow: {
4408 const clang::Expr *LeftArg = E->getArg(0);
4409 const clang::Expr *RightArg = E->getArg(1);
4410 const clang::Expr *ResultArg = E->getArg(2);
4411
4412 clang::QualType ResultQTy =
4413 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4414
4415 WidthAndSignedness LeftInfo =
4416 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4417 WidthAndSignedness RightInfo =
4418 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4419 WidthAndSignedness ResultInfo =
4420 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4421
4422 // Handle mixed-sign multiplication as a special case, because adding
4423 // runtime or backend support for our generic irgen would be too expensive.
4424 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4425 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4426 RightInfo, ResultArg, ResultQTy,
4427 ResultInfo);
4428
4429 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4430 ResultInfo))
4431 return EmitCheckedUnsignedMultiplySignedResult(
4432 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4433 ResultInfo);
4434
4435 WidthAndSignedness EncompassingInfo =
4436 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4437
4438 llvm::Type *EncompassingLLVMTy =
4439 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4440
4441 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4442
4443 llvm::Intrinsic::ID IntrinsicId;
4444 switch (BuiltinID) {
4445 default:
4446 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4446)
;
4447 case Builtin::BI__builtin_add_overflow:
4448 IntrinsicId = EncompassingInfo.Signed
4449 ? llvm::Intrinsic::sadd_with_overflow
4450 : llvm::Intrinsic::uadd_with_overflow;
4451 break;
4452 case Builtin::BI__builtin_sub_overflow:
4453 IntrinsicId = EncompassingInfo.Signed
4454 ? llvm::Intrinsic::ssub_with_overflow
4455 : llvm::Intrinsic::usub_with_overflow;
4456 break;
4457 case Builtin::BI__builtin_mul_overflow:
4458 IntrinsicId = EncompassingInfo.Signed
4459 ? llvm::Intrinsic::smul_with_overflow
4460 : llvm::Intrinsic::umul_with_overflow;
4461 break;
4462 }
4463
4464 llvm::Value *Left = EmitScalarExpr(LeftArg);
4465 llvm::Value *Right = EmitScalarExpr(RightArg);
4466 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4467
4468 // Extend each operand to the encompassing type.
4469 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4470 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4471
4472 // Perform the operation on the extended values.
4473 llvm::Value *Overflow, *Result;
4474 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4475
4476 if (EncompassingInfo.Width > ResultInfo.Width) {
4477 // The encompassing type is wider than the result type, so we need to
4478 // truncate it.
4479 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4480
4481 // To see if the truncation caused an overflow, we will extend
4482 // the result and then compare it to the original result.
4483 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4484 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4485 llvm::Value *TruncationOverflow =
4486 Builder.CreateICmpNE(Result, ResultTruncExt);
4487
4488 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4489 Result = ResultTrunc;
4490 }
4491
4492 // Finally, store the result using the pointer.
4493 bool isVolatile =
4494 ResultArg->getType()->getPointeeType().isVolatileQualified();
4495 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4496
4497 return RValue::get(Overflow);
4498 }
4499
4500 case Builtin::BI__builtin_uadd_overflow:
4501 case Builtin::BI__builtin_uaddl_overflow:
4502 case Builtin::BI__builtin_uaddll_overflow:
4503 case Builtin::BI__builtin_usub_overflow:
4504 case Builtin::BI__builtin_usubl_overflow:
4505 case Builtin::BI__builtin_usubll_overflow:
4506 case Builtin::BI__builtin_umul_overflow:
4507 case Builtin::BI__builtin_umull_overflow:
4508 case Builtin::BI__builtin_umulll_overflow:
4509 case Builtin::BI__builtin_sadd_overflow:
4510 case Builtin::BI__builtin_saddl_overflow:
4511 case Builtin::BI__builtin_saddll_overflow:
4512 case Builtin::BI__builtin_ssub_overflow:
4513 case Builtin::BI__builtin_ssubl_overflow:
4514 case Builtin::BI__builtin_ssubll_overflow:
4515 case Builtin::BI__builtin_smul_overflow:
4516 case Builtin::BI__builtin_smull_overflow:
4517 case Builtin::BI__builtin_smulll_overflow: {
4518
4519 // We translate all of these builtins directly to the relevant llvm IR node.
4520
4521 // Scalarize our inputs.
4522 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4523 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4524 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4525
4526 // Decide which of the overflow intrinsics we are lowering to:
4527 llvm::Intrinsic::ID IntrinsicId;
4528 switch (BuiltinID) {
4529 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4529)
;
4530 case Builtin::BI__builtin_uadd_overflow:
4531 case Builtin::BI__builtin_uaddl_overflow:
4532 case Builtin::BI__builtin_uaddll_overflow:
4533 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4534 break;
4535 case Builtin::BI__builtin_usub_overflow:
4536 case Builtin::BI__builtin_usubl_overflow:
4537 case Builtin::BI__builtin_usubll_overflow:
4538 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4539 break;
4540 case Builtin::BI__builtin_umul_overflow:
4541 case Builtin::BI__builtin_umull_overflow:
4542 case Builtin::BI__builtin_umulll_overflow:
4543 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4544 break;
4545 case Builtin::BI__builtin_sadd_overflow:
4546 case Builtin::BI__builtin_saddl_overflow:
4547 case Builtin::BI__builtin_saddll_overflow:
4548 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4549 break;
4550 case Builtin::BI__builtin_ssub_overflow:
4551 case Builtin::BI__builtin_ssubl_overflow:
4552 case Builtin::BI__builtin_ssubll_overflow:
4553 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4554 break;
4555 case Builtin::BI__builtin_smul_overflow:
4556 case Builtin::BI__builtin_smull_overflow:
4557 case Builtin::BI__builtin_smulll_overflow:
4558 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4559 break;
4560 }
4561
4562
4563 llvm::Value *Carry;
4564 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4565 Builder.CreateStore(Sum, SumOutPtr);
4566
4567 return RValue::get(Carry);
4568 }
4569 case Builtin::BI__builtin_addressof:
4570 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4571 case Builtin::BI__builtin_function_start:
4572 return RValue::get(CGM.GetFunctionStart(
4573 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4574 case Builtin::BI__builtin_operator_new:
4575 return EmitBuiltinNewDeleteCall(
4576 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4577 case Builtin::BI__builtin_operator_delete:
4578 return EmitBuiltinNewDeleteCall(
4579 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4580
4581 case Builtin::BI__builtin_is_aligned:
4582 return EmitBuiltinIsAligned(E);
4583 case Builtin::BI__builtin_align_up:
4584 return EmitBuiltinAlignTo(E, true);
4585 case Builtin::BI__builtin_align_down:
4586 return EmitBuiltinAlignTo(E, false);
4587
4588 case Builtin::BI__noop:
4589 // __noop always evaluates to an integer literal zero.
4590 return RValue::get(ConstantInt::get(IntTy, 0));
4591 case Builtin::BI__builtin_call_with_static_chain: {
4592 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4593 const Expr *Chain = E->getArg(1);
4594 return EmitCall(Call->getCallee()->getType(),
4595 EmitCallee(Call->getCallee()), Call, ReturnValue,
4596 EmitScalarExpr(Chain));
4597 }
4598 case Builtin::BI_InterlockedExchange8:
4599 case Builtin::BI_InterlockedExchange16:
4600 case Builtin::BI_InterlockedExchange:
4601 case Builtin::BI_InterlockedExchangePointer:
4602 return RValue::get(
4603 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4604 case Builtin::BI_InterlockedCompareExchangePointer:
4605 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4606 llvm::Type *RTy;
4607 llvm::IntegerType *IntType =
4608 IntegerType::get(getLLVMContext(),
4609 getContext().getTypeSize(E->getType()));
4610 llvm::Type *IntPtrType = IntType->getPointerTo();
4611
4612 llvm::Value *Destination =
4613 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4614
4615 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4616 RTy = Exchange->getType();
4617 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4618
4619 llvm::Value *Comparand =
4620 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4621
4622 auto Ordering =
4623 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4624 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4625
4626 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4627 Ordering, Ordering);
4628 Result->setVolatile(true);
4629
4630 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4631 0),
4632 RTy));
4633 }
4634 case Builtin::BI_InterlockedCompareExchange8:
4635 case Builtin::BI_InterlockedCompareExchange16:
4636 case Builtin::BI_InterlockedCompareExchange:
4637 case Builtin::BI_InterlockedCompareExchange64:
4638 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4639 case Builtin::BI_InterlockedIncrement16:
4640 case Builtin::BI_InterlockedIncrement:
4641 return RValue::get(
4642 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4643 case Builtin::BI_InterlockedDecrement16:
4644 case Builtin::BI_InterlockedDecrement:
4645 return RValue::get(
4646 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4647 case Builtin::BI_InterlockedAnd8:
4648 case Builtin::BI_InterlockedAnd16:
4649 case Builtin::BI_InterlockedAnd:
4650 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4651 case Builtin::BI_InterlockedExchangeAdd8:
4652 case Builtin::BI_InterlockedExchangeAdd16:
4653 case Builtin::BI_InterlockedExchangeAdd:
4654 return RValue::get(
4655 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4656 case Builtin::BI_InterlockedExchangeSub8:
4657 case Builtin::BI_InterlockedExchangeSub16:
4658 case Builtin::BI_InterlockedExchangeSub:
4659 return RValue::get(
4660 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4661 case Builtin::BI_InterlockedOr8:
4662 case Builtin::BI_InterlockedOr16:
4663 case Builtin::BI_InterlockedOr:
4664 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4665 case Builtin::BI_InterlockedXor8:
4666 case Builtin::BI_InterlockedXor16:
4667 case Builtin::BI_InterlockedXor:
4668 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4669
4670 case Builtin::BI_bittest64:
4671 case Builtin::BI_bittest:
4672 case Builtin::BI_bittestandcomplement64:
4673 case Builtin::BI_bittestandcomplement:
4674 case Builtin::BI_bittestandreset64:
4675 case Builtin::BI_bittestandreset:
4676 case Builtin::BI_bittestandset64:
4677 case Builtin::BI_bittestandset:
4678 case Builtin::BI_interlockedbittestandreset:
4679 case Builtin::BI_interlockedbittestandreset64:
4680 case Builtin::BI_interlockedbittestandset64:
4681 case Builtin::BI_interlockedbittestandset:
4682 case Builtin::BI_interlockedbittestandset_acq:
4683 case Builtin::BI_interlockedbittestandset_rel:
4684 case Builtin::BI_interlockedbittestandset_nf:
4685 case Builtin::BI_interlockedbittestandreset_acq:
4686 case Builtin::BI_interlockedbittestandreset_rel:
4687 case Builtin::BI_interlockedbittestandreset_nf:
4688 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4689
4690 // These builtins exist to emit regular volatile loads and stores not
4691 // affected by the -fms-volatile setting.
4692 case Builtin::BI__iso_volatile_load8:
4693 case Builtin::BI__iso_volatile_load16:
4694 case Builtin::BI__iso_volatile_load32:
4695 case Builtin::BI__iso_volatile_load64:
4696 return RValue::get(EmitISOVolatileLoad(*this, E));
4697 case Builtin::BI__iso_volatile_store8:
4698 case Builtin::BI__iso_volatile_store16:
4699 case Builtin::BI__iso_volatile_store32:
4700 case Builtin::BI__iso_volatile_store64:
4701 return RValue::get(EmitISOVolatileStore(*this, E));
4702
4703 case Builtin::BI__exception_code:
4704 case Builtin::BI_exception_code:
4705 return RValue::get(EmitSEHExceptionCode());
4706 case Builtin::BI__exception_info:
4707 case Builtin::BI_exception_info:
4708 return RValue::get(EmitSEHExceptionInfo());
4709 case Builtin::BI__abnormal_termination:
4710 case Builtin::BI_abnormal_termination:
4711 return RValue::get(EmitSEHAbnormalTermination());
4712 case Builtin::BI_setjmpex:
4713 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4714 E->getArg(0)->getType()->isPointerType())
4715 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4716 break;
4717 case Builtin::BI_setjmp:
4718 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4719 E->getArg(0)->getType()->isPointerType()) {
4720 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4721 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4722 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4723 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4724 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4725 }
4726 break;
4727
4728 case Builtin::BI__GetExceptionInfo: {
4729 if (llvm::GlobalVariable *GV =
4730 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4731 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4732 break;
4733 }
4734
4735 case Builtin::BI__fastfail:
4736 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4737
4738 case Builtin::BI__builtin_coro_size: {
4739 auto & Context = getContext();
4740 auto SizeTy = Context.getSizeType();
4741 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4742 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4743 return RValue::get(Builder.CreateCall(F));
4744 }
4745
4746 case Builtin::BI__builtin_coro_id:
4747 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4748 case Builtin::BI__builtin_coro_promise:
4749 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4750 case Builtin::BI__builtin_coro_resume:
4751 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4752 case Builtin::BI__builtin_coro_frame:
4753 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4754 case Builtin::BI__builtin_coro_noop:
4755 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4756 case Builtin::BI__builtin_coro_free:
4757 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4758 case Builtin::BI__builtin_coro_destroy:
4759 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4760 case Builtin::BI__builtin_coro_done:
4761 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4762 case Builtin::BI__builtin_coro_alloc:
4763 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4764 case Builtin::BI__builtin_coro_begin:
4765 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4766 case Builtin::BI__builtin_coro_end:
4767 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4768 case Builtin::BI__builtin_coro_suspend:
4769 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4770
4771 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4772 case Builtin::BIread_pipe:
4773 case Builtin::BIwrite_pipe: {
4774 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4775 *Arg1 = EmitScalarExpr(E->getArg(1));
4776 CGOpenCLRuntime OpenCLRT(CGM);
4777 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4778 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4779
4780 // Type of the generic packet parameter.
4781 unsigned GenericAS =
4782 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4783 llvm::Type *I8PTy = llvm::PointerType::get(
4784 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4785
4786 // Testing which overloaded version we should generate the call for.
4787 if (2U == E->getNumArgs()) {
4788 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4789 : "__write_pipe_2";
4790 // Creating a generic function type to be able to call with any builtin or
4791 // user defined type.
4792 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4793 llvm::FunctionType *FTy = llvm::FunctionType::get(
4794 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4795 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4796 return RValue::get(
4797 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4798 {Arg0, BCast, PacketSize, PacketAlign}));
4799 } else {
4800 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4801, __extension__ __PRETTY_FUNCTION__
))
4801 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4801, __extension__ __PRETTY_FUNCTION__
))
;
4802 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4803 : "__write_pipe_4";
4804
4805 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4806 Int32Ty, Int32Ty};
4807 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4808 *Arg3 = EmitScalarExpr(E->getArg(3));
4809 llvm::FunctionType *FTy = llvm::FunctionType::get(
4810 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4811 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4812 // We know the third argument is an integer type, but we may need to cast
4813 // it to i32.
4814 if (Arg2->getType() != Int32Ty)
4815 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4816 return RValue::get(
4817 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4818 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4819 }
4820 }
4821 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4822 // functions
4823 case Builtin::BIreserve_read_pipe:
4824 case Builtin::BIreserve_write_pipe:
4825 case Builtin::BIwork_group_reserve_read_pipe:
4826 case Builtin::BIwork_group_reserve_write_pipe:
4827 case Builtin::BIsub_group_reserve_read_pipe:
4828 case Builtin::BIsub_group_reserve_write_pipe: {
4829 // Composing the mangled name for the function.
4830 const char *Name;
4831 if (BuiltinID == Builtin::BIreserve_read_pipe)
4832 Name = "__reserve_read_pipe";
4833 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4834 Name = "__reserve_write_pipe";
4835 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4836 Name = "__work_group_reserve_read_pipe";
4837 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4838 Name = "__work_group_reserve_write_pipe";
4839 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4840 Name = "__sub_group_reserve_read_pipe";
4841 else
4842 Name = "__sub_group_reserve_write_pipe";
4843
4844 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4845 *Arg1 = EmitScalarExpr(E->getArg(1));
4846 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4847 CGOpenCLRuntime OpenCLRT(CGM);
4848 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4849 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4850
4851 // Building the generic function prototype.
4852 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4853 llvm::FunctionType *FTy = llvm::FunctionType::get(
4854 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4855 // We know the second argument is an integer type, but we may need to cast
4856 // it to i32.
4857 if (Arg1->getType() != Int32Ty)
4858 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4859 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4860 {Arg0, Arg1, PacketSize, PacketAlign}));
4861 }
4862 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4863 // functions
4864 case Builtin::BIcommit_read_pipe:
4865 case Builtin::BIcommit_write_pipe:
4866 case Builtin::BIwork_group_commit_read_pipe:
4867 case Builtin::BIwork_group_commit_write_pipe:
4868 case Builtin::BIsub_group_commit_read_pipe:
4869 case Builtin::BIsub_group_commit_write_pipe: {
4870 const char *Name;
4871 if (BuiltinID == Builtin::BIcommit_read_pipe)
4872 Name = "__commit_read_pipe";
4873 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4874 Name = "__commit_write_pipe";
4875 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4876 Name = "__work_group_commit_read_pipe";
4877 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4878 Name = "__work_group_commit_write_pipe";
4879 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4880 Name = "__sub_group_commit_read_pipe";
4881 else
4882 Name = "__sub_group_commit_write_pipe";
4883
4884 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4885 *Arg1 = EmitScalarExpr(E->getArg(1));
4886 CGOpenCLRuntime OpenCLRT(CGM);
4887 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4888 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4889
4890 // Building the generic function prototype.
4891 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4892 llvm::FunctionType *FTy =
4893 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4894 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4895
4896 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4897 {Arg0, Arg1, PacketSize, PacketAlign}));
4898 }
4899 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4900 case Builtin::BIget_pipe_num_packets:
4901 case Builtin::BIget_pipe_max_packets: {
4902 const char *BaseName;
4903 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4904 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4905 BaseName = "__get_pipe_num_packets";
4906 else
4907 BaseName = "__get_pipe_max_packets";
4908 std::string Name = std::string(BaseName) +
4909 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4910
4911 // Building the generic function prototype.
4912 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4913 CGOpenCLRuntime OpenCLRT(CGM);
4914 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4915 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4916 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4917 llvm::FunctionType *FTy = llvm::FunctionType::get(
4918 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4919
4920 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4921 {Arg0, PacketSize, PacketAlign}));
4922 }
4923
4924 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4925 case Builtin::BIto_global:
4926 case Builtin::BIto_local:
4927 case Builtin::BIto_private: {
4928 auto Arg0 = EmitScalarExpr(E->getArg(0));
4929 auto NewArgT = llvm::PointerType::get(Int8Ty,
4930 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4931 auto NewRetT = llvm::PointerType::get(Int8Ty,
4932 CGM.getContext().getTargetAddressSpace(
4933 E->getType()->getPointeeType().getAddressSpace()));
4934 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4935 llvm::Value *NewArg;
4936 if (Arg0->getType()->getPointerAddressSpace() !=
4937 NewArgT->getPointerAddressSpace())
4938 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4939 else
4940 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4941 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4942 auto NewCall =
4943 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4944 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4945 ConvertType(E->getType())));
4946 }
4947
4948 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4949 // It contains four different overload formats specified in Table 6.13.17.1.
4950 case Builtin::BIenqueue_kernel: {
4951 StringRef Name; // Generated function call name
4952 unsigned NumArgs = E->getNumArgs();
4953
4954 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4955 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4956 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4957
4958 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4959 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4960 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4961 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4962 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4963
4964 if (NumArgs == 4) {
4965 // The most basic form of the call with parameters:
4966 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4967 Name = "__enqueue_kernel_basic";
4968 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4969 GenericVoidPtrTy};
4970 llvm::FunctionType *FTy = llvm::FunctionType::get(
4971 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4972
4973 auto Info =
4974 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4975 llvm::Value *Kernel =
4976 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4977 llvm::Value *Block =
4978 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4979
4980 AttrBuilder B(Builder.getContext());
4981 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4982 llvm::AttributeList ByValAttrSet =
4983 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4984
4985 auto RTCall =
4986 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4987 {Queue, Flags, Range, Kernel, Block});
4988 RTCall->setAttributes(ByValAttrSet);
4989 return RValue::get(RTCall);
4990 }
4991 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4991, __extension__ __PRETTY_FUNCTION__
))
;
4992
4993 // Create a temporary array to hold the sizes of local pointer arguments
4994 // for the block. \p First is the position of the first size argument.
4995 auto CreateArrayForSizeVar = [=](unsigned First)
4996 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4997 llvm::APInt ArraySize(32, NumArgs - First);
4998 QualType SizeArrayTy = getContext().getConstantArrayType(
4999 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
5000 /*IndexTypeQuals=*/0);
5001 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5002 llvm::Value *TmpPtr = Tmp.getPointer();
5003 llvm::Value *TmpSize = EmitLifetimeStart(
5004 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5005 llvm::Value *ElemPtr;
5006 // Each of the following arguments specifies the size of the corresponding
5007 // argument passed to the enqueued block.
5008 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5009 for (unsigned I = First; I < NumArgs; ++I) {
5010 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5011 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5012 {Zero, Index});
5013 if (I == First)
5014 ElemPtr = GEP;
5015 auto *V =
5016 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5017 Builder.CreateAlignedStore(
5018 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5019 }
5020 return std::tie(ElemPtr, TmpSize, TmpPtr);
5021 };
5022
5023 // Could have events and/or varargs.
5024 if (E->getArg(3)->getType()->isBlockPointerType()) {
5025 // No events passed, but has variadic arguments.
5026 Name = "__enqueue_kernel_varargs";
5027 auto Info =
5028 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5029 llvm::Value *Kernel =
5030 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5031 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5032 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5033 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5034
5035 // Create a vector of the arguments, as well as a constant value to
5036 // express to the runtime the number of variadic arguments.
5037 llvm::Value *const Args[] = {Queue, Flags,
5038 Range, Kernel,
5039 Block, ConstantInt::get(IntTy, NumArgs - 4),
5040 ElemPtr};
5041 llvm::Type *const ArgTys[] = {
5042 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5043 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5044
5045 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5046 auto Call = RValue::get(
5047 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5048 if (TmpSize)
5049 EmitLifetimeEnd(TmpSize, TmpPtr);
5050 return Call;
5051 }
5052 // Any calls now have event arguments passed.
5053 if (NumArgs >= 7) {
5054 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
5055 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
5056 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5057
5058 llvm::Value *NumEvents =
5059 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5060
5061 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5062 // to be a null pointer constant (including `0` literal), we can take it
5063 // into account and emit null pointer directly.
5064 llvm::Value *EventWaitList = nullptr;
5065 if (E->getArg(4)->isNullPointerConstant(
5066 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5067 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
5068 } else {
5069 EventWaitList = E->getArg(4)->getType()->isArrayType()
5070 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5071 : EmitScalarExpr(E->getArg(4));
5072 // Convert to generic address space.
5073 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
5074 }
5075 llvm::Value *EventRet = nullptr;
5076 if (E->getArg(5)->isNullPointerConstant(
5077 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5078 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
5079 } else {
5080 EventRet =
5081 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
5082 }
5083
5084 auto Info =
5085 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5086 llvm::Value *Kernel =
5087 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5088 llvm::Value *Block =
5089 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5090
5091 std::vector<llvm::Type *> ArgTys = {
5092 QueueTy, Int32Ty, RangeTy, Int32Ty,
5093 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5094
5095 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5096 NumEvents, EventWaitList, EventRet,
5097 Kernel, Block};
5098
5099 if (NumArgs == 7) {
5100 // Has events but no variadics.
5101 Name = "__enqueue_kernel_basic_events";
5102 llvm::FunctionType *FTy = llvm::FunctionType::get(
5103 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5104 return RValue::get(
5105 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5106 llvm::ArrayRef<llvm::Value *>(Args)));
5107 }
5108 // Has event info and variadics
5109 // Pass the number of variadics to the runtime function too.
5110 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5111 ArgTys.push_back(Int32Ty);
5112 Name = "__enqueue_kernel_events_varargs";
5113
5114 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5115 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5116 Args.push_back(ElemPtr);
5117 ArgTys.push_back(ElemPtr->getType());
5118
5119 llvm::FunctionType *FTy = llvm::FunctionType::get(
5120 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5121 auto Call =
5122 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5123 llvm::ArrayRef<llvm::Value *>(Args)));
5124 if (TmpSize)
5125 EmitLifetimeEnd(TmpSize, TmpPtr);
5126 return Call;
5127 }
5128 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5129 }
5130 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5131 // parameter.
5132 case Builtin::BIget_kernel_work_group_size: {
5133 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5134 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5135 auto Info =
5136 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5137 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5138 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5139 return RValue::get(EmitRuntimeCall(
5140 CGM.CreateRuntimeFunction(
5141 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5142 false),
5143 "__get_kernel_work_group_size_impl"),
5144 {Kernel, Arg}));
5145 }
5146 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5147 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5148 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5149 auto Info =
5150 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5151 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5152 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5153 return RValue::get(EmitRuntimeCall(
5154 CGM.CreateRuntimeFunction(
5155 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5156 false),
5157 "__get_kernel_preferred_work_group_size_multiple_impl"),
5158 {Kernel, Arg}));
5159 }
5160 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5161 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5162 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5163 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5164 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5165 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5166 auto Info =
5167 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5168 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5169 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5170 const char *Name =
5171 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5172 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5173 : "__get_kernel_sub_group_count_for_ndrange_impl";
5174 return RValue::get(EmitRuntimeCall(
5175 CGM.CreateRuntimeFunction(
5176 llvm::FunctionType::get(
5177 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5178 false),
5179 Name),
5180 {NDRange, Kernel, Block}));
5181 }
5182
5183 case Builtin::BI__builtin_store_half:
5184 case Builtin::BI__builtin_store_halff: {
5185 Value *Val = EmitScalarExpr(E->getArg(0));
5186 Address Address = EmitPointerWithAlignment(E->getArg(1));
5187 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5188 return RValue::get(Builder.CreateStore(HalfVal, Address));
5189 }
5190 case Builtin::BI__builtin_load_half: {
5191 Address Address = EmitPointerWithAlignment(E->getArg(0));
5192 Value *HalfVal = Builder.CreateLoad(Address);
5193 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5194 }
5195 case Builtin::BI__builtin_load_halff: {
5196 Address Address = EmitPointerWithAlignment(E->getArg(0));
5197 Value *HalfVal = Builder.CreateLoad(Address);
5198 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5199 }
5200 case Builtin::BIprintf:
5201 if (getTarget().getTriple().isNVPTX() ||
5202 getTarget().getTriple().isAMDGCN()) {
5203 if (getLangOpts().OpenMPIsDevice)
5204 return EmitOpenMPDevicePrintfCallExpr(E);
5205 if (getTarget().getTriple().isNVPTX())
5206 return EmitNVPTXDevicePrintfCallExpr(E);
5207 if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5208 return EmitAMDGPUDevicePrintfCallExpr(E);
5209 }
5210
5211 break;
5212 case Builtin::BI__builtin_canonicalize:
5213 case Builtin::BI__builtin_canonicalizef:
5214 case Builtin::BI__builtin_canonicalizef16:
5215 case Builtin::BI__builtin_canonicalizel:
5216 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5217
5218 case Builtin::BI__builtin_thread_pointer: {
5219 if (!getContext().getTargetInfo().isTLSSupported())
5220 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5221 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
5222 break;
5223 }
5224 case Builtin::BI__builtin_os_log_format:
5225 return emitBuiltinOSLogFormat(*E);
5226
5227 case Builtin::BI__xray_customevent: {
5228 if (!ShouldXRayInstrumentFunction())
5229 return RValue::getIgnored();
5230
5231 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5232 XRayInstrKind::Custom))
5233 return RValue::getIgnored();
5234
5235 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5236 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5237 return RValue::getIgnored();
5238
5239 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5240 auto FTy = F->getFunctionType();
5241 auto Arg0 = E->getArg(0);
5242 auto Arg0Val = EmitScalarExpr(Arg0);
5243 auto Arg0Ty = Arg0->getType();
5244 auto PTy0 = FTy->getParamType(0);
5245 if (PTy0 != Arg0Val->getType()) {
5246 if (Arg0Ty->isArrayType())
5247 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5248 else
5249 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5250 }
5251 auto Arg1 = EmitScalarExpr(E->getArg(1));
5252 auto PTy1 = FTy->getParamType(1);
5253 if (PTy1 != Arg1->getType())
5254 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5255 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5256 }
5257
5258 case Builtin::BI__xray_typedevent: {
5259 // TODO: There should be a way to always emit events even if the current
5260 // function is not instrumented. Losing events in a stream can cripple
5261 // a trace.
5262 if (!ShouldXRayInstrumentFunction())
5263 return RValue::getIgnored();
5264
5265 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5266 XRayInstrKind::Typed))
5267 return RValue::getIgnored();
5268
5269 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5270 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5271 return RValue::getIgnored();
5272
5273 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5274 auto FTy = F->getFunctionType();
5275 auto Arg0 = EmitScalarExpr(E->getArg(0));
5276 auto PTy0 = FTy->getParamType(0);
5277 if (PTy0 != Arg0->getType())
5278 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5279 auto Arg1 = E->getArg(1);
5280 auto Arg1Val = EmitScalarExpr(Arg1);
5281 auto Arg1Ty = Arg1->getType();
5282 auto PTy1 = FTy->getParamType(1);
5283 if (PTy1 != Arg1Val->getType()) {
5284 if (Arg1Ty->isArrayType())
5285 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5286 else
5287 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5288 }
5289 auto Arg2 = EmitScalarExpr(E->getArg(2));
5290 auto PTy2 = FTy->getParamType(2);
5291 if (PTy2 != Arg2->getType())
5292 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5293 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5294 }
5295
5296 case Builtin::BI__builtin_ms_va_start:
5297 case Builtin::BI__builtin_ms_va_end:
5298 return RValue::get(
5299 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5300 BuiltinID == Builtin::BI__builtin_ms_va_start));
5301
5302 case Builtin::BI__builtin_ms_va_copy: {
5303 // Lower this manually. We can't reliably determine whether or not any
5304 // given va_copy() is for a Win64 va_list from the calling convention
5305 // alone, because it's legal to do this from a System V ABI function.
5306 // With opaque pointer types, we won't have enough information in LLVM
5307 // IR to determine this from the argument types, either. Best to do it
5308 // now, while we have enough information.
5309 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5310 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5311
5312 llvm::Type *BPP = Int8PtrPtrTy;
5313
5314 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5315 Int8PtrTy, DestAddr.getAlignment());
5316 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5317 Int8PtrTy, SrcAddr.getAlignment());
5318
5319 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5320 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5321 }
5322
5323 case Builtin::BI__builtin_get_device_side_mangled_name: {
5324 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5325 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5326 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5327 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5328 llvm::ConstantInt::get(SizeTy, 0)};
5329 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5330 Str.getPointer(), Zeros);
5331 return RValue::get(Ptr);
5332 }
5333 }
5334
5335 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5336 // the call using the normal call path, but using the unmangled
5337 // version of the function name.
5338 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5339 return emitLibraryCall(*this, FD, E,
5340 CGM.getBuiltinLibFunction(FD, BuiltinID));
5341
5342 // If this is a predefined lib function (e.g. malloc), emit the call
5343 // using exactly the normal call path.
5344 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5345 return emitLibraryCall(*this, FD, E,
5346 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5347
5348 // Check that a call to a target specific builtin has the correct target
5349 // features.
5350 // This is down here to avoid non-target specific builtins, however, if
5351 // generic builtins start to require generic target features then we
5352 // can move this up to the beginning of the function.
5353 checkTargetFeatures(E, FD);
5354
5355 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5356 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5357
5358 // See if we have a target specific intrinsic.
5359 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5360 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5361 StringRef Prefix =
5362 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5363 if (!Prefix.empty()) {
5364 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5365 // NOTE we don't need to perform a compatibility flag check here since the
5366 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5367 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5368 if (IntrinsicID == Intrinsic::not_intrinsic)
5369 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5370 }
5371
5372 if (IntrinsicID != Intrinsic::not_intrinsic) {
5373 SmallVector<Value*, 16> Args;
5374
5375 // Find out if any arguments are required to be integer constant
5376 // expressions.
5377 unsigned ICEArguments = 0;
5378 ASTContext::GetBuiltinTypeError Error;
5379 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5380 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5380, __extension__ __PRETTY_FUNCTION__
))
;
5381
5382 Function *F = CGM.getIntrinsic(IntrinsicID);
5383 llvm::FunctionType *FTy = F->getFunctionType();
5384
5385 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5386 Value *ArgValue;
5387 // If this is a normal argument, just emit it as a scalar.
5388 if ((ICEArguments & (1 << i)) == 0) {
5389 ArgValue = EmitScalarExpr(E->getArg(i));
5390 } else {
5391 // If this is required to be a constant, constant fold it so that we
5392 // know that the generated intrinsic gets a ConstantInt.
5393 ArgValue = llvm::ConstantInt::get(
5394 getLLVMContext(),
5395 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5396 }
5397
5398 // If the intrinsic arg type is different from the builtin arg type
5399 // we need to do a bit cast.
5400 llvm::Type *PTy = FTy->getParamType(i);
5401 if (PTy != ArgValue->getType()) {
5402 // XXX - vector of pointers?
5403 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5404 if (PtrTy->getAddressSpace() !=
5405 ArgValue->getType()->getPointerAddressSpace()) {
5406 ArgValue = Builder.CreateAddrSpaceCast(
5407 ArgValue,
5408 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5409 }
5410 }
5411
5412 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5413, __extension__ __PRETTY_FUNCTION__
))
5413 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5413, __extension__ __PRETTY_FUNCTION__
))
;
5414 // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5415 // in amx intrinsics.
5416 if (PTy->isX86_AMXTy())
5417 ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5418 {ArgValue->getType()}, {ArgValue});
5419 else
5420 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5421 }
5422
5423 Args.push_back(ArgValue);
5424 }
5425
5426 Value *V = Builder.CreateCall(F, Args);
5427 QualType BuiltinRetType = E->getType();
5428
5429 llvm::Type *RetTy = VoidTy;
5430 if (!BuiltinRetType->isVoidType())
5431 RetTy = ConvertType(BuiltinRetType);
5432
5433 if (RetTy != V->getType()) {
5434 // XXX - vector of pointers?
5435 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5436 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5437 V = Builder.CreateAddrSpaceCast(
5438 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5439 }
5440 }
5441
5442 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5443, __extension__ __PRETTY_FUNCTION__
))
5443 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5443, __extension__ __PRETTY_FUNCTION__
))
;
5444 // Cast x86_amx to vector type (e.g., v256i32), this only happen
5445 // in amx intrinsics.
5446 if (V->getType()->isX86_AMXTy())
5447 V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5448 {V});
5449 else
5450 V = Builder.CreateBitCast(V, RetTy);
5451 }
5452
5453 return RValue::get(V);
5454 }
5455
5456 // Some target-specific builtins can have aggregate return values, e.g.
5457 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5458 // ReturnValue to be non-null, so that the target-specific emission code can
5459 // always just emit into it.
5460 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5461 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5462 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5463 ReturnValue = ReturnValueSlot(DestPtr, false);
5464 }
5465
5466 // Now see if we can emit a target-specific builtin.
5467 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5468 switch (EvalKind) {
5469 case TEK_Scalar:
5470 return RValue::get(V);
5471 case TEK_Aggregate:
5472 return RValue::getAggregate(ReturnValue.getValue(),
5473 ReturnValue.isVolatile());
5474 case TEK_Complex:
5475 llvm_unreachable("No current target builtin returns complex")::llvm::llvm_unreachable_internal("No current target builtin returns complex"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5475)
;
5476 }
5477 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")::llvm::llvm_unreachable_internal("Bad evaluation kind in EmitBuiltinExpr"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5477)
;
5478 }
5479
5480 ErrorUnsupported(E, "builtin function");
5481
5482 // Unknown builtin, for now just dump it out and return undef.
5483 return GetUndefRValue(E->getType());
5484}
5485
5486static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5487 unsigned BuiltinID, const CallExpr *E,
5488 ReturnValueSlot ReturnValue,
5489 llvm::Triple::ArchType Arch) {
5490 switch (Arch) {
5491 case llvm::Triple::arm:
5492 case llvm::Triple::armeb:
5493 case llvm::Triple::thumb:
5494 case llvm::Triple::thumbeb:
5495 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5496 case llvm::Triple::aarch64:
5497 case llvm::Triple::aarch64_32:
5498 case llvm::Triple::aarch64_be:
5499 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5500 case llvm::Triple::bpfeb:
5501 case llvm::Triple::bpfel:
5502 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5503 case llvm::Triple::x86:
5504 case llvm::Triple::x86_64:
5505 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5506 case llvm::Triple::ppc:
5507 case llvm::Triple::ppcle:
5508 case llvm::Triple::ppc64:
5509 case llvm::Triple::ppc64le:
5510 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5511 case llvm::Triple::r600:
5512 case llvm::Triple::amdgcn:
5513 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5514 case llvm::Triple::systemz:
5515 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5516 case llvm::Triple::nvptx:
5517 case llvm::Triple::nvptx64:
5518 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5519 case llvm::Triple::wasm32:
5520 case llvm::Triple::wasm64:
5521 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5522 case llvm::Triple::hexagon:
5523 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5524 case llvm::Triple::riscv32:
5525 case llvm::Triple::riscv64:
5526 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5527 default:
5528 return nullptr;
5529 }
5530}
5531
5532Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5533 const CallExpr *E,
5534 ReturnValueSlot ReturnValue) {
5535 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5536 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5536, __extension__ __PRETTY_FUNCTION__
))
;
5537 return EmitTargetArchBuiltinExpr(
5538 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5539 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5540 }
5541
5542 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5543 getTarget().getTriple().getArch());
5544}
5545
5546static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5547 NeonTypeFlags TypeFlags,
5548 bool HasLegalHalfType = true,
5549 bool V1Ty = false,
5550 bool AllowBFloatArgsAndRet = true) {
5551 int IsQuad = TypeFlags.isQuad();
5552 switch (TypeFlags.getEltType()) {
5553 case NeonTypeFlags::Int8:
5554 case NeonTypeFlags::Poly8:
5555 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5556 case NeonTypeFlags::Int16:
5557 case NeonTypeFlags::Poly16:
5558 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5559 case NeonTypeFlags::BFloat16:
5560 if (AllowBFloatArgsAndRet)
5561 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5562 else
5563 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5564 case NeonTypeFlags::Float16:
5565 if (HasLegalHalfType)
5566 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5567 else
5568 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5569 case NeonTypeFlags::Int32:
5570 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5571 case NeonTypeFlags::Int64:
5572 case NeonTypeFlags::Poly64:
5573 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5574 case NeonTypeFlags::Poly128:
5575 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5576 // There is a lot of i128 and f128 API missing.
5577 // so we use v16i8 to represent poly128 and get pattern matched.
5578 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5579 case NeonTypeFlags::Float32:
5580 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5581 case NeonTypeFlags::Float64:
5582 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5583 }
5584 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5584)
;
5585}
5586
5587static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5588 NeonTypeFlags IntTypeFlags) {
5589 int IsQuad = IntTypeFlags.isQuad();
5590 switch (IntTypeFlags.getEltType()) {
5591 case NeonTypeFlags::Int16:
5592 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5593 case NeonTypeFlags::Int32:
5594 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5595 case NeonTypeFlags::Int64:
5596 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5597 default:
5598 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5598)
;
5599 }
5600}
5601
5602Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5603 const ElementCount &Count) {
5604 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5605 return Builder.CreateShuffleVector(V, V, SV, "lane");
5606}
5607
5608Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5609 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5610 return EmitNeonSplat(V, C, EC);
5611}
5612
5613Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5614 const char *name,
5615 unsigned shift, bool rightshift) {
5616 unsigned j = 0;
5617 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5618 ai != ae; ++ai, ++j) {
5619 if (F->isConstrainedFPIntrinsic())
5620 if (ai->getType()->isMetadataTy())
5621 continue;
5622 if (shift > 0 && shift == j)
5623 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5624 else
5625 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5626 }
5627
5628 if (F->isConstrainedFPIntrinsic())
5629 return Builder.CreateConstrainedFPCall(F, Ops, name);
5630 else
5631 return Builder.CreateCall(F, Ops, name);
5632}
5633
5634Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5635 bool neg) {
5636 int SV = cast<ConstantInt>(V)->getSExtValue();
5637 return ConstantInt::get(Ty, neg ? -SV : SV);
5638}
5639
5640// Right-shift a vector by a constant.
5641Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5642 llvm::Type *Ty, bool usgn,
5643 const char *name) {
5644 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5645
5646 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5647 int EltSize = VTy->getScalarSizeInBits();
5648
5649 Vec = Builder.CreateBitCast(Vec, Ty);
5650
5651 // lshr/ashr are undefined when the shift amount is equal to the vector
5652 // element size.
5653 if (ShiftAmt == EltSize) {
5654 if (usgn) {
5655 // Right-shifting an unsigned value by its size yields 0.
5656 return llvm::ConstantAggregateZero::get(VTy);
5657 } else {
5658 // Right-shifting a signed value by its size is equivalent
5659 // to a shift of size-1.
5660 --ShiftAmt;
5661 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5662 }
5663 }
5664
5665 Shift = EmitNeonShiftVector(Shift, Ty, false);
5666 if (usgn)
5667 return Builder.CreateLShr(Vec, Shift, name);
5668 else
5669 return Builder.CreateAShr(Vec, Shift, name);
5670}
5671
5672enum {
5673 AddRetType = (1 << 0),
5674 Add1ArgType = (1 << 1),
5675 Add2ArgTypes = (1 << 2),
5676
5677 VectorizeRetType = (1 << 3),
5678 VectorizeArgTypes = (1 << 4),
5679
5680 InventFloatType = (1 << 5),
5681 UnsignedAlts = (1 << 6),
5682
5683 Use64BitVectors = (1 << 7),
5684 Use128BitVectors = (1 << 8),
5685
5686 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5687 VectorRet = AddRetType | VectorizeRetType,
5688 VectorRetGetArgs01 =
5689 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5690 FpCmpzModifiers =
5691 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5692};
5693
5694namespace {
5695struct ARMVectorIntrinsicInfo {
5696 const char *NameHint;
5697 unsigned BuiltinID;
5698 unsigned LLVMIntrinsic;
5699 unsigned AltLLVMIntrinsic;
5700 uint64_t TypeModifier;
5701
5702 bool operator<(unsigned RHSBuiltinID) const {
5703 return BuiltinID < RHSBuiltinID;
5704 }
5705 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5706 return BuiltinID < TE.BuiltinID;
5707 }
5708};
5709} // end anonymous namespace
5710
5711#define NEONMAP0(NameBase) \
5712 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5713
5714#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5715 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5716 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5717
5718#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5719 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5720 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5721 TypeModifier }
5722
5723static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5724 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5725 NEONMAP0(splat_lane_v),
5726 NEONMAP0(splat_laneq_v),
5727 NEONMAP0(splatq_lane_v),
5728 NEONMAP0(splatq_laneq_v),
5729 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5730 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5731 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5732 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5733 NEONMAP0(vadd_v),
5734 NEONMAP0(vaddhn_v),
5735 NEONMAP0(vaddq_v),
5736 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5737 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5738 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5739 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5740 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5741 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5742 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5743 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5744 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5745 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5746 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5747 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5748 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5749 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5750 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5751 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5752 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5753 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5754 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5755 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5756 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5757 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5758 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5759 NEONMAP0(vceqz_v),
5760 NEONMAP0(vceqzq_v),
5761 NEONMAP0(vcgez_v),
5762 NEONMAP0(vcgezq_v),
5763 NEONMAP0(vcgtz_v),
5764 NEONMAP0(vcgtzq_v),
5765 NEONMAP0(vclez_v),
5766 NEONMAP0(vclezq_v),
5767 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5768 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5769 NEONMAP0(vcltz_v),
5770 NEONMAP0(vcltzq_v),
5771 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5772 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5773 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5774 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5775 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5776 NEONMAP0(vcvt_f16_v),
5777 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5778 NEONMAP0(vcvt_f32_v),
5779 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5780 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5781 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5782 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5783 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5784 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5785 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5786 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5787 NEONMAP0(vcvt_s16_v),
5788 NEONMAP0(vcvt_s32_v),
5789 NEONMAP0(vcvt_s64_v),
5790 NEONMAP0(vcvt_u16_v),
5791 NEONMAP0(vcvt_u32_v),
5792 NEONMAP0(vcvt_u64_v),
5793 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5794 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5795 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5796 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5797 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5798 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5799 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5800 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5801 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5802 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5803 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5804 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5805 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5806 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5807 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5808 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5809 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5810 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5811 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5812 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5813 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5814 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5815 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5816 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5817 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5818 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5819 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5820 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5821 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5822 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5823 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5824 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5825 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5826 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5827 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5828 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5829 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5830 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5831 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5832 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5833 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5834 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5835 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5836 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5837 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5838 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5839 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5840 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5841 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5842 NEONMAP0(vcvtq_f16_v),
5843 NEONMAP0(vcvtq_f32_v),
5844 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5845 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5846 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5847 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5848 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5849 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5850 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5851 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5852 NEONMAP0(vcvtq_s16_v),
5853 NEONMAP0(vcvtq_s32_v),
5854 NEONMAP0(vcvtq_s64_v),
5855 NEONMAP0(vcvtq_u16_v),
5856 NEONMAP0(vcvtq_u32_v),
5857 NEONMAP0(vcvtq_u64_v),
5858 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5859 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5860 NEONMAP0(vext_v),
5861 NEONMAP0(vextq_v),
5862 NEONMAP0(vfma_v),
5863 NEONMAP0(vfmaq_v),
5864 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5865 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5866 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5867 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5868 NEONMAP0(vld1_dup_v),
5869 NEONMAP1(vld1_v, arm_neon_vld1, 0),
5870 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5871 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5872 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5873 NEONMAP0(vld1q_dup_v),
5874 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5875 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5876 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5877 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5878 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5879 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5880 NEONMAP1(vld2_v, arm_neon_vld2, 0),
5881 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5882 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5883 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5884 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5885 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5886 NEONMAP1(vld3_v, arm_neon_vld3, 0),
5887 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5888 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5889 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5890 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5891 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5892 NEONMAP1(vld4_v, arm_neon_vld4, 0),
5893 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5894 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5895 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5896 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5897 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5898 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5899 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5900 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5901 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5902 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5903 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5904 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5905 NEONMAP0(vmovl_v),
5906 NEONMAP0(vmovn_v),
5907 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5908 NEONMAP0(vmull_v),
5909 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5910 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5911 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5912 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5913 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5914 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5915 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5916 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5917 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5918 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5919 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5920 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5921 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5922 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5923 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5924 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5925 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5926 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5927 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5928 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5929 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5930 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5931 NEONMAP1(vqrdmlah_v, arm_neon_vqrdmlah, Add1ArgType),
5932 NEONMAP1(vqrdmlahq_v, arm_neon_vqrdmlah, Add1ArgType),
5933 NEONMAP1(vqrdmlsh_v, arm_neon_vqrdmlsh, Add1ArgType),
5934 NEONMAP1(vqrdmlshq_v, arm_neon_vqrdmlsh, Add1ArgType),
5935 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5936 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5937 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5938 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5939 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5940 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5941 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5942 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5943 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5944 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5945 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5946 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5947 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5948 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5949 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5950 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5951 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5952 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5953 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5954 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5955 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5956 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5957 NEONMAP0(vrndi_v),
5958 NEONMAP0(vrndiq_v),
5959 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5960 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5961 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5962 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5963 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5964 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5965 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5966 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5967 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5968 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5969 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5970 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5971 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5972 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5973 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5974 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5975 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5976 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5977 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5978 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5979 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5980 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5981 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5982 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5983 NEONMAP0(vshl_n_v),
5984 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5985 NEONMAP0(vshll_n_v),
5986 NEONMAP0(vshlq_n_v),
5987 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5988 NEONMAP0(vshr_n_v),
5989 NEONMAP0(vshrn_n_v),
5990 NEONMAP0(vshrq_n_v),
5991 NEONMAP1(vst1_v, arm_neon_vst1, 0),
5992 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5993 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5994 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5995 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5996 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5997 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5998 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5999 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6000 NEONMAP1(vst2_v, arm_neon_vst2, 0),
6001 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6002 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6003 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6004 NEONMAP1(vst3_v, arm_neon_vst3, 0),
6005 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6006 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6007 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6008 NEONMAP1(vst4_v, arm_neon_vst4, 0),
6009 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6010 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6011 NEONMAP0(vsubhn_v),
6012 NEONMAP0(vtrn_v),
6013 NEONMAP0(vtrnq_v),
6014 NEONMAP0(vtst_v),
6015 NEONMAP0(vtstq_v),
6016 NEONMAP1(vusdot_v, arm_neon_usdot, 0),
6017 NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
6018 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
6019 NEONMAP0(vuzp_v),
6020 NEONMAP0(vuzpq_v),
6021 NEONMAP0(vzip_v),
6022 NEONMAP0(vzipq_v)
6023};
6024
6025static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6026 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
6027 NEONMAP0(splat_lane_v),
6028 NEONMAP0(splat_laneq_v),
6029 NEONMAP0(splatq_lane_v),
6030 NEONMAP0(splatq_laneq_v),
6031 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6032 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6033 NEONMAP0(vadd_v),
6034 NEONMAP0(vaddhn_v),
6035 NEONMAP0(vaddq_p128),
6036 NEONMAP0(vaddq_v),
6037 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
6038 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
6039 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
6040 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
6041 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6042 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
6043 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
6044 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
6045 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
6046 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
6047 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
6048 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
6049 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
6050 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
6051 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6052 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6053 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6054 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6055 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6056 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6057 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6058 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6059 NEONMAP0(vceqz_v),
6060 NEONMAP0(vceqzq_v),
6061 NEONMAP0(vcgez_v),
6062 NEONMAP0(vcgezq_v),
6063 NEONMAP0(vcgtz_v),
6064 NEONMAP0(vcgtzq_v),
6065 NEONMAP0(vclez_v),
6066 NEONMAP0(vclezq_v),
6067 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6068 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6069 NEONMAP0(vcltz_v),
6070 NEONMAP0(vcltzq_v),
6071 NEONMAP1(vclz_v, ctlz, Add1ArgType),
6072 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6073 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
6074 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
6075 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
6076 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
6077 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
6078 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
6079 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
6080 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
6081 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6082 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6083 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6084 NEONMAP0(vcvt_f16_v),
6085 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6086 NEONMAP0(vcvt_f32_v),
6087 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6088 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6089 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6090 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6091 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6092 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6093 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6094 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6095 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6096 NEONMAP0(vcvtq_f16_v),
6097 NEONMAP0(vcvtq_f32_v),
6098 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
6099 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6100 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6101 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6102 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6103 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6104 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6105 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6106 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6107 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6108 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6109 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6110 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6111 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6112 NEONMAP0(vext_v),
6113 NEONMAP0(vextq_v),
6114 NEONMAP0(vfma_v),
6115 NEONMAP0(vfmaq_v),
6116 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
6117 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
6118 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
6119 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
6120 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
6121 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
6122 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
6123 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
6124 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6125 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6126 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6127 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6128 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6129 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6130 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6131 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6132 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6133 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6134 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
6135 NEONMAP0(vmovl_v),
6136 NEONMAP0(vmovn_v),
6137 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6138 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6139 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6140 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6141 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6142 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6143 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6144 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6145 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6146 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6147 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6148 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6149 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6150 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6151 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6152 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6153 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6154 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6155 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6156 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6157 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6158 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6159 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6160 NEONMAP1(vqrdmlah_v, aarch64_neon_sqrdmlah, Add1ArgType),
6161 NEONMAP1(vqrdmlahq_v, aarch64_neon_sqrdmlah, Add1ArgType),
6162 NEONMAP1(vqrdmlsh_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6163 NEONMAP1(vqrdmlshq_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6164 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6165 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6166 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6167 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6168 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6169 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6170 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6171 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6172 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6173 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6174 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6175 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6176 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6177 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6178 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6179 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6180 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6181 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
6182 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6183 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6184 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6185 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6186 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6187 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6188 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
6189 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
6190 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
6191 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
6192 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
6193 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
6194 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
6195 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
6196 NEONMAP0(vrndi_v),
6197 NEONMAP0(vrndiq_v),
6198 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6199 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6200 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6201 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6202 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6203 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6204 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6205 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6206 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6207 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
6208 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
6209 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
6210 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
6211 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
6212 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
6213 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
6214 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
6215 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
6216 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
6217 NEONMAP0(vshl_n_v),
6218 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6219 NEONMAP0(vshll_n_v),
6220 NEONMAP0(vshlq_n_v),
6221 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6222 NEONMAP0(vshr_n_v),
6223 NEONMAP0(vshrn_n_v),
6224 NEONMAP0(vshrq_n_v),
6225 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
6226 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
6227 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
6228 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
6229 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
6230 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
6231 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
6232 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
6233 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
6234 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6235 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6236 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6237 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6238 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6239 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6240 NEONMAP0(vsubhn_v),
6241 NEONMAP0(vtst_v),
6242 NEONMAP0(vtstq_v),
6243 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
6244 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
6245 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
6246 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
6247};
6248
6249static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6250 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6251 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6252 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6253 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6254 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6255 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6256 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6257 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6258 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6259 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6260 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6261 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6262 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6263 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6264 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6265 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6266 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6267 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6268 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6269 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6270 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6271 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6272 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6273 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6274 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6275 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6276 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6277 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6278 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6279 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6280 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6281 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6282 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6283 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6284 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6285 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6286 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6287 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6288 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6289 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6290 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6291 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6292 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6293 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6294 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6295 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6296 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6297 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6298 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6299 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6300 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6301 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6302 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6303 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6304 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6305 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6306 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6307 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6308 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6309 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6310 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6311 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6312 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6313 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6314 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6315 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6316 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6317 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6318 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6319 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6320 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6321 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6322 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6323 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6324 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6325 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6326 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6327 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6328 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6329 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6330 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6331 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6332 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6333 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6334 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6335 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6336 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6337 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6338 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6339 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6340 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6341 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6342 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6343 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6344 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6345 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6346 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6347 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6348 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6349 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6350 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6351 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6352 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6353 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6354 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6355 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6356 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6357 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6358 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6359 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6360 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6361 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6362 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6363 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6364 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6365 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6366 NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6367 NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6368 NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6369 NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6370 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6371 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6372 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6373 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6374 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6375 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6376 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6377 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6378 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6379 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6380 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6381 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6382 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6383 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6384 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6385 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6386 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6387 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6388 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6389 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6390 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6391 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6392 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6393 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6394 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6395 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6396 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6397 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6398 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6399 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6400 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6401 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6402 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6403 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6404 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6405 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6406 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6407 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6408 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6409 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6410 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6411 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6412 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6413 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6414 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6415 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6416 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6417 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6418 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6419 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6420 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6421 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6422 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6423 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6424 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6425 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6426 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6427 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6428 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6429 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6430 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6431 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6432 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6433 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6434 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6435 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6436 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6437 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6438 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6439 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6440 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6441 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6442 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6443 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6444 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6445 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6446 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6447 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6448 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6449 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6450 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6451 // FP16 scalar intrinisics go here.
6452 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6453 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6454 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6455 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6456 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6457 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6458 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6459 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6460 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6461 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6462 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6463 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6464 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6465 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6466 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6467 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6468 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6469 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6470 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6471 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6472 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6473 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6474 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6475 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6476 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6477 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6478 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6479 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6480 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6481 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6482 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6483 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6484 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6485 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6486};
6487
6488#undef NEONMAP0
6489#undef NEONMAP1
6490#undef NEONMAP2
6491
6492#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6493 { \
6494 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
6495 TypeModifier \
6496 }
6497
6498#define SVEMAP2(NameBase, TypeModifier) \
6499 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6500static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6501#define GET_SVE_LLVM_INTRINSIC_MAP
6502#include "clang/Basic/arm_sve_builtin_cg.inc"
6503#include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
6504#undef GET_SVE_LLVM_INTRINSIC_MAP
6505};
6506
6507#undef SVEMAP1
6508#undef SVEMAP2
6509
6510static bool NEONSIMDIntrinsicsProvenSorted = false;
6511
6512static bool AArch64SIMDIntrinsicsProvenSorted = false;
6513static bool AArch64SISDIntrinsicsProvenSorted = false;
6514static bool AArch64SVEIntrinsicsProvenSorted = false;
6515
6516static const ARMVectorIntrinsicInfo *
6517findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6518 unsigned BuiltinID, bool &MapProvenSorted) {
6519
6520#ifndef NDEBUG
6521 if (!MapProvenSorted) {
6522 assert(llvm::is_sorted(IntrinsicMap))(static_cast <bool> (llvm::is_sorted(IntrinsicMap)) ? void
(0) : __assert_fail ("llvm::is_sorted(IntrinsicMap)", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6522, __extension__ __PRETTY_FUNCTION__))
;
6523 MapProvenSorted = true;
6524 }
6525#endif
6526
6527 const ARMVectorIntrinsicInfo *Builtin =
6528 llvm::lower_bound(IntrinsicMap, BuiltinID);
6529
6530 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6531 return Builtin;
6532
6533 return nullptr;
6534}
6535
6536Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6537 unsigned Modifier,
6538 llvm::Type *ArgType,
6539 const CallExpr *E) {
6540 int VectorSize = 0;
6541 if (Modifier & Use64BitVectors)
6542 VectorSize = 64;
6543 else if (Modifier & Use128BitVectors)
6544 VectorSize = 128;
6545
6546 // Return type.
6547 SmallVector<llvm::Type *, 3> Tys;
6548 if (Modifier & AddRetType) {
6549 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6550 if (Modifier & VectorizeRetType)
6551 Ty = llvm::FixedVectorType::get(
6552 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6553
6554 Tys.push_back(Ty);
6555 }
6556
6557 // Arguments.
6558 if (Modifier & VectorizeArgTypes) {
6559 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6560 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6561 }
6562
6563 if (Modifier & (Add1ArgType | Add2ArgTypes))
6564 Tys.push_back(ArgType);
6565
6566 if (Modifier & Add2ArgTypes)
6567 Tys.push_back(ArgType);
6568
6569 if (Modifier & InventFloatType)
6570 Tys.push_back(FloatTy);
6571
6572 return CGM.getIntrinsic(IntrinsicID, Tys);
6573}
6574
6575static Value *EmitCommonNeonSISDBuiltinExpr(
6576 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6577 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6578 unsigned BuiltinID = SISDInfo.BuiltinID;
6579 unsigned int Int = SISDInfo.LLVMIntrinsic;
6580 unsigned Modifier = SISDInfo.TypeModifier;
6581 const char *s = SISDInfo.NameHint;
6582
6583 switch (BuiltinID) {
6584 case NEON::BI__builtin_neon_vcled_s64:
6585 case NEON::BI__builtin_neon_vcled_u64:
6586 case NEON::BI__builtin_neon_vcles_f32:
6587 case NEON::BI__builtin_neon_vcled_f64:
6588 case NEON::BI__builtin_neon_vcltd_s64:
6589 case NEON::BI__builtin_neon_vcltd_u64:
6590 case NEON::BI__builtin_neon_vclts_f32:
6591 case NEON::BI__builtin_neon_vcltd_f64:
6592 case NEON::BI__builtin_neon_vcales_f32:
6593 case NEON::BI__builtin_neon_vcaled_f64:
6594 case NEON::BI__builtin_neon_vcalts_f32:
6595 case NEON::BI__builtin_neon_vcaltd_f64:
6596 // Only one direction of comparisons actually exist, cmle is actually a cmge
6597 // with swapped operands. The table gives us the right intrinsic but we
6598 // still need to do the swap.
6599 std::swap(Ops[0], Ops[1]);
6600 break;
6601 }
6602
6603 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 6603, __extension__ __PRETTY_FUNCTION__
))
;
6604
6605 // Determine the type(s) of this overloaded AArch64 intrinsic.
6606 const Expr *Arg = E->getArg(0);
6607 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6608 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6609
6610 int j = 0;
6611 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6612 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6613 ai != ae; ++ai, ++j) {
6614 llvm::Type *ArgTy = ai->getType();
6615 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6616 ArgTy->getPrimitiveSizeInBits())
6617 continue;
6618
6619 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 6619, __extension__ __PRETTY_FUNCTION__
))
;
6620 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6621 // it before inserting.
6622 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6623 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6624 Ops[j] =
6625 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6626 }
6627
6628 Value *Result = CGF.EmitNeonCall(F, Ops, s);
6629 llvm::Type *ResultType = CGF.ConvertType(E->getType());
6630 if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6631 Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6632 return CGF.Builder.CreateExtractElement(Result, C0);
6633
6634 return CGF.Builder.CreateBitCast(Result, ResultType, s);
6635}
6636
6637Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6638 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6639 const char *NameHint, unsigned Modifier, const CallExpr *E,
6640 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6641 llvm::Triple::ArchType Arch) {
6642 // Get the last argument, which specifies the vector type.
6643 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6644 Optional<llvm::APSInt> NeonTypeConst =
6645 Arg->getIntegerConstantExpr(getContext());
6646 if (!NeonTypeConst)
6647 return nullptr;
6648
6649 // Determine the type of this overloaded NEON intrinsic.
6650 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6651 bool Usgn = Type.isUnsigned();
6652 bool Quad = Type.isQuad();
6653 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6654 const bool AllowBFloatArgsAndRet =
6655 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6656
6657 llvm::FixedVectorType *VTy =
6658 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6659 llvm::Type *Ty = VTy;
6660 if (!Ty)
6661 return nullptr;
6662
6663 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6664 return Builder.getInt32(addr.getAlignment().getQuantity());
6665 };
6666
6667 unsigned Int = LLVMIntrinsic;
6668 if ((Modifier & UnsignedAlts) && !Usgn)
6669 Int = AltLLVMIntrinsic;
6670
6671 switch (BuiltinID) {
6672 default: break;
6673 case NEON::BI__builtin_neon_splat_lane_v:
6674 case NEON::BI__builtin_neon_splat_laneq_v:
6675 case NEON::BI__builtin_neon_splatq_lane_v:
6676 case NEON::BI__builtin_neon_splatq_laneq_v: {
6677 auto NumElements = VTy->getElementCount();
6678 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6679 NumElements = NumElements * 2;
6680 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6681 NumElements = NumElements.divideCoefficientBy(2);
6682
6683 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6684 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6685 }
6686 case NEON::BI__builtin_neon_vpadd_v:
6687 case NEON::BI__builtin_neon_vpaddq_v:
6688 // We don't allow fp/int overloading of intrinsics.
6689 if (VTy->getElementType()->isFloatingPointTy() &&
6690 Int == Intrinsic::aarch64_neon_addp)
6691 Int = Intrinsic::aarch64_neon_faddp;
6692 break;
6693 case NEON::BI__builtin_neon_vabs_v:
6694 case NEON::BI__builtin_neon_vabsq_v:
6695 if (VTy->getElementType()->isFloatingPointTy())
6696 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6697 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6698 case NEON::BI__builtin_neon_vadd_v:
6699 case NEON::BI__builtin_neon_vaddq_v: {
6700 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6701 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6702 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6703 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
6704 return Builder.CreateBitCast(Ops[0], Ty);
6705 }
6706 case NEON::BI__builtin_neon_vaddhn_v: {
6707 llvm::FixedVectorType *SrcTy =
6708 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6709
6710 // %sum = add <4 x i32> %lhs, %rhs
6711 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6712 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6713 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6714
6715 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6716 Constant *ShiftAmt =
6717 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6718 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6719
6720 // %res = trunc <4 x i32> %high to <4 x i16>
6721 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6722 }
6723 case NEON::BI__builtin_neon_vcale_v:
6724 case NEON::BI__builtin_neon_vcaleq_v:
6725 case NEON::BI__builtin_neon_vcalt_v:
6726 case NEON::BI__builtin_neon_vcaltq_v:
6727 std::swap(Ops[0], Ops[1]);
6728 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6729 case NEON::BI__builtin_neon_vcage_v:
6730 case NEON::BI__builtin_neon_vcageq_v:
6731 case NEON::BI__builtin_neon_vcagt_v:
6732 case NEON::BI__builtin_neon_vcagtq_v: {
6733 llvm::Type *Ty;
6734 switch (VTy->getScalarSizeInBits()) {
6735 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6735)
;
6736 case 32:
6737 Ty = FloatTy;
6738 break;
6739 case 64:
6740 Ty = DoubleTy;
6741 break;
6742 case 16:
6743 Ty = HalfTy;
6744 break;
6745 }
6746 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6747 llvm::Type *Tys[] = { VTy, VecFlt };
6748 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6749 return EmitNeonCall(F, Ops, NameHint);
6750 }
6751 case NEON::BI__builtin_neon_vceqz_v:
6752 case NEON::BI__builtin_neon_vceqzq_v:
6753 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6754 ICmpInst::ICMP_EQ, "vceqz");
6755 case NEON::BI__builtin_neon_vcgez_v:
6756 case NEON::BI__builtin_neon_vcgezq_v:
6757 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6758 ICmpInst::ICMP_SGE, "vcgez");
6759 case NEON::BI__builtin_neon_vclez_v:
6760 case NEON::BI__builtin_neon_vclezq_v:
6761 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6762 ICmpInst::ICMP_SLE, "vclez");
6763 case NEON::BI__builtin_neon_vcgtz_v:
6764 case NEON::BI__builtin_neon_vcgtzq_v:
6765 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6766 ICmpInst::ICMP_SGT, "vcgtz");
6767 case NEON::BI__builtin_neon_vcltz_v:
6768 case NEON::BI__builtin_neon_vcltzq_v:
6769 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6770 ICmpInst::ICMP_SLT, "vcltz");
6771 case NEON::BI__builtin_neon_vclz_v:
6772 case NEON::BI__builtin_neon_vclzq_v:
6773 // We generate target-independent intrinsic, which needs a second argument
6774 // for whether or not clz of zero is undefined; on ARM it isn't.
6775 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6776 break;
6777 case NEON::BI__builtin_neon_vcvt_f32_v:
6778 case NEON::BI__builtin_neon_vcvtq_f32_v:
6779 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6780 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6781 HasLegalHalfType);
6782 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6783 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6784 case NEON::BI__builtin_neon_vcvt_f16_v:
6785 case NEON::BI__builtin_neon_vcvtq_f16_v:
6786 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6787 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6788 HasLegalHalfType);
6789 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6790 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6791 case NEON::BI__builtin_neon_vcvt_n_f16_v:
6792 case NEON::BI__builtin_neon_vcvt_n_f32_v:
6793 case NEON::BI__builtin_neon_vcvt_n_f64_v:
6794 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6795 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6796 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6797 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6798 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6799 Function *F = CGM.getIntrinsic(Int, Tys);
6800 return EmitNeonCall(F, Ops, "vcvt_n");
6801 }
6802 case NEON::BI__builtin_neon_vcvt_n_s16_v:
6803 case NEON::BI__builtin_neon_vcvt_n_s32_v:
6804 case NEON::BI__builtin_neon_vcvt_n_u16_v:
6805 case NEON::BI__builtin_neon_vcvt_n_u32_v:
6806 case NEON::BI__builtin_neon_vcvt_n_s64_v:
6807 case NEON::BI__builtin_neon_vcvt_n_u64_v:
6808 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6809 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6810 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6811 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6812 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6813 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6814 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6815 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6816 return EmitNeonCall(F, Ops, "vcvt_n");
6817 }
6818 case NEON::BI__builtin_neon_vcvt_s32_v:
6819 case NEON::BI__builtin_neon_vcvt_u32_v:
6820 case NEON::BI__builtin_neon_vcvt_s64_v:
6821 case NEON::BI__builtin_neon_vcvt_u64_v:
6822 case NEON::BI__builtin_neon_vcvt_s16_v:
6823 case NEON::BI__builtin_neon_vcvt_u16_v:
6824 case NEON::BI__builtin_neon_vcvtq_s32_v:
6825 case NEON::BI__builtin_neon_vcvtq_u32_v:
6826 case NEON::BI__builtin_neon_vcvtq_s64_v:
6827 case NEON::BI__builtin_neon_vcvtq_u64_v:
6828 case NEON::BI__builtin_neon_vcvtq_s16_v:
6829 case NEON::BI__builtin_neon_vcvtq_u16_v: {
6830 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6831 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6832 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6833 }
6834 case NEON::BI__builtin_neon_vcvta_s16_v:
6835 case NEON::BI__builtin_neon_vcvta_s32_v:
6836 case NEON::BI__builtin_neon_vcvta_s64_v:
6837 case NEON::BI__builtin_neon_vcvta_u16_v:
6838 case NEON::BI__builtin_neon_vcvta_u32_v:
6839 case NEON::BI__builtin_neon_vcvta_u64_v:
6840 case NEON::BI__builtin_neon_vcvtaq_s16_v:
6841 case NEON::BI__builtin_neon_vcvtaq_s32_v:
6842 case NEON::BI__builtin_neon_vcvtaq_s64_v:
6843 case NEON::BI__builtin_neon_vcvtaq_u16_v:
6844 case NEON::BI__builtin_neon_vcvtaq_u32_v:
6845 case NEON::BI__builtin_neon_vcvtaq_u64_v:
6846 case NEON::BI__builtin_neon_vcvtn_s16_v:
6847 case NEON::BI__builtin_neon_vcvtn_s32_v:
6848 case NEON::BI__builtin_neon_vcvtn_s64_v:
6849 case NEON::BI__builtin_neon_vcvtn_u16_v:
6850 case NEON::BI__builtin_neon_vcvtn_u32_v:
6851 case NEON::BI__builtin_neon_vcvtn_u64_v:
6852 case NEON::BI__builtin_neon_vcvtnq_s16_v:
6853 case NEON::BI__builtin_neon_vcvtnq_s32_v:
6854 case NEON::BI__builtin_neon_vcvtnq_s64_v:
6855 case NEON::BI__builtin_neon_vcvtnq_u16_v:
6856 case NEON::BI__builtin_neon_vcvtnq_u32_v:
6857 case NEON::BI__builtin_neon_vcvtnq_u64_v:
6858 case NEON::BI__builtin_neon_vcvtp_s16_v:
6859 case NEON::BI__builtin_neon_vcvtp_s32_v:
6860 case NEON::BI__builtin_neon_vcvtp_s64_v:
6861 case NEON::BI__builtin_neon_vcvtp_u16_v:
6862 case NEON::BI__builtin_neon_vcvtp_u32_v:
6863 case NEON::BI__builtin_neon_vcvtp_u64_v:
6864 case NEON::BI__builtin_neon_vcvtpq_s16_v:
6865 case NEON::BI__builtin_neon_vcvtpq_s32_v:
6866 case NEON::BI__builtin_neon_vcvtpq_s64_v:
6867 case NEON::BI__builtin_neon_vcvtpq_u16_v:
6868 case NEON::BI__builtin_neon_vcvtpq_u32_v:
6869 case NEON::BI__builtin_neon_vcvtpq_u64_v:
6870 case NEON::BI__builtin_neon_vcvtm_s16_v:
6871 case NEON::BI__builtin_neon_vcvtm_s32_v:
6872 case NEON::BI__builtin_neon_vcvtm_s64_v:
6873 case NEON::BI__builtin_neon_vcvtm_u16_v:
6874 case NEON::BI__builtin_neon_vcvtm_u32_v:
6875 case NEON::BI__builtin_neon_vcvtm_u64_v:
6876 case NEON::BI__builtin_neon_vcvtmq_s16_v:
6877 case NEON::BI__builtin_neon_vcvtmq_s32_v:
6878 case NEON::BI__builtin_neon_vcvtmq_s64_v:
6879 case NEON::BI__builtin_neon_vcvtmq_u16_v:
6880 case NEON::BI__builtin_neon_vcvtmq_u32_v:
6881 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6882 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6883 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6884 }
6885 case NEON::BI__builtin_neon_vcvtx_f32_v: {
6886 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6887 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6888
6889 }
6890 case NEON::BI__builtin_neon_vext_v:
6891 case NEON::BI__builtin_neon_vextq_v: {
6892 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6893 SmallVector<int, 16> Indices;
6894 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6895 Indices.push_back(i+CV);
6896
6897 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6898 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6899 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6900 }
6901 case NEON::BI__builtin_neon_vfma_v:
6902 case NEON::BI__builtin_neon_vfmaq_v: {
6903 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6904 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6905 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6906
6907 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6908 return emitCallMaybeConstrainedFPBuiltin(
6909 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6910 {Ops[1], Ops[2], Ops[0]});
6911 }
6912 case NEON::BI__builtin_neon_vld1_v:
6913 case NEON::BI__builtin_neon_vld1q_v: {
6914 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6915 Ops.push_back(getAlignmentValue32(PtrOp0));
6916 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6917 }
6918 case NEON::BI__builtin_neon_vld1_x2_v:
6919 case NEON::BI__builtin_neon_vld1q_x2_v:
6920 case NEON::BI__builtin_neon_vld1_x3_v:
6921 case NEON::BI__builtin_neon_vld1q_x3_v:
6922 case NEON::BI__builtin_neon_vld1_x4_v:
6923 case NEON::BI__builtin_neon_vld1q_x4_v: {
6924 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6925 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6926 llvm::Type *Tys[2] = { VTy, PTy };
6927 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6928 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6929 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6930 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6931 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6932 }
6933 case NEON::BI__builtin_neon_vld2_v:
6934 case NEON::BI__builtin_neon_vld2q_v:
6935 case NEON::BI__builtin_neon_vld3_v:
6936 case NEON::BI__builtin_neon_vld3q_v:
6937 case NEON::BI__builtin_neon_vld4_v:
6938 case NEON::BI__builtin_neon_vld4q_v:
6939 case NEON::BI__builtin_neon_vld2_dup_v:
6940 case NEON::BI__builtin_neon_vld2q_dup_v:
6941 case NEON::BI__builtin_neon_vld3_dup_v:
6942 case NEON::BI__builtin_neon_vld3q_dup_v:
6943 case NEON::BI__builtin_neon_vld4_dup_v:
6944 case NEON::BI__builtin_neon_vld4q_dup_v: {
6945 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6946 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6947 Value *Align = getAlignmentValue32(PtrOp1);
6948 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6949 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6950 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6951 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6952 }
6953 case NEON::BI__builtin_neon_vld1_dup_v:
6954 case NEON::BI__builtin_neon_vld1q_dup_v: {
6955 Value *V = UndefValue::get(Ty);
6956 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6957 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6958 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6959 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6960 return EmitNeonSplat(Ops[0], CI);
6961 }
6962 case NEON::BI__builtin_neon_vld2_lane_v:
6963 case NEON::BI__builtin_neon_vld2q_lane_v:
6964 case NEON::BI__builtin_neon_vld3_lane_v:
6965 case NEON::BI__builtin_neon_vld3q_lane_v:
6966 case NEON::BI__builtin_neon_vld4_lane_v:
6967 case NEON::BI__builtin_neon_vld4q_lane_v: {
6968 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6969 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6970 for (unsigned I = 2; I < Ops.size() - 1; ++I)
6971 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6972 Ops.push_back(getAlignmentValue32(PtrOp1));
6973 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6974 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6975 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6976 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6977 }
6978 case NEON::BI__builtin_neon_vmovl_v: {
6979 llvm::FixedVectorType *DTy =
6980 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6981 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6982 if (Usgn)
6983 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6984 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6985 }
6986 case NEON::BI__builtin_neon_vmovn_v: {
6987 llvm::FixedVectorType *QTy =
6988 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6989 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6990 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6991 }
6992 case NEON::BI__builtin_neon_vmull_v:
6993 // FIXME: the integer vmull operations could be emitted in terms of pure
6994 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6995 // hoisting the exts outside loops. Until global ISel comes along that can
6996 // see through such movement this leads to bad CodeGen. So we need an
6997 // intrinsic for now.
6998 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6999 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
7000 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
7001 case NEON::BI__builtin_neon_vpadal_v:
7002 case NEON::BI__builtin_neon_vpadalq_v: {
7003 // The source operand type has twice as many elements of half the size.
7004 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7005 llvm::Type *EltTy =
7006 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7007 auto *NarrowTy =
7008 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7009 llvm::Type *Tys[2] = { Ty, NarrowTy };
7010 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7011 }
7012 case NEON::BI__builtin_neon_vpaddl_v:
7013 case NEON::BI__builtin_neon_vpaddlq_v: {
7014 // The source operand type has twice as many elements of half the size.
7015 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7016 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7017 auto *NarrowTy =
7018 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7019 llvm::Type *Tys[2] = { Ty, NarrowTy };
7020 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
7021 }
7022 case NEON::BI__builtin_neon_vqdmlal_v:
7023 case NEON::BI__builtin_neon_vqdmlsl_v: {
7024 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
7025 Ops[1] =
7026 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
7027 Ops.resize(2);
7028 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
7029 }
7030 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
7031 case NEON::BI__builtin_neon_vqdmulh_lane_v:
7032 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
7033 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
7034 auto *RTy = cast<llvm::FixedVectorType>(Ty);
7035 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
7036 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
7037 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
7038 RTy->getNumElements() * 2);
7039 llvm::Type *Tys[2] = {
7040 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7041 /*isQuad*/ false))};
7042 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7043 }
7044 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
7045 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
7046 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
7047 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
7048 llvm::Type *Tys[2] = {
7049 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7050 /*isQuad*/ true))};
7051 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7052 }
7053 case NEON::BI__builtin_neon_vqshl_n_v:
7054 case NEON::BI__builtin_neon_vqshlq_n_v:
7055 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
7056 1, false);
7057 case NEON::BI__builtin_neon_vqshlu_n_v:
7058 case NEON::BI__builtin_neon_vqshluq_n_v:
7059 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
7060 1, false);
7061 case NEON::BI__builtin_neon_vrecpe_v:
7062 case NEON::BI__builtin_neon_vrecpeq_v:
7063 case NEON::BI__builtin_neon_vrsqrte_v:
7064 case NEON::BI__builtin_neon_vrsqrteq_v:
7065 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
7066 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7067 case NEON::BI__builtin_neon_vrndi_v:
7068 case NEON::BI__builtin_neon_vrndiq_v:
7069 Int = Builder.getIsFPConstrained()
7070 ? Intrinsic::experimental_constrained_nearbyint
7071 : Intrinsic::nearbyint;
7072 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7073 case NEON::BI__builtin_neon_vrshr_n_v:
7074 case NEON::BI__builtin_neon_vrshrq_n_v:
7075 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
7076 1, true);
7077 case NEON::BI__builtin_neon_vsha512hq_v:
7078 case NEON::BI__builtin_neon_vsha512h2q_v:
7079 case NEON::BI__builtin_neon_vsha512su0q_v:
7080 case NEON::BI__builtin_neon_vsha512su1q_v: {
7081 Function *F = CGM.getIntrinsic(Int);
7082 return EmitNeonCall(F, Ops, "");
7083 }
7084 case NEON::BI__builtin_neon_vshl_n_v:
7085 case NEON::BI__builtin_neon_vshlq_n_v:
7086 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
7087 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
7088 "vshl_n");
7089 case NEON::BI__builtin_neon_vshll_n_v: {
7090 llvm::FixedVectorType *SrcTy =
7091 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7092 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7093 if (Usgn)
7094 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7095 else
7096 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7097 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7098 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7099 }
7100 case NEON::BI__builtin_neon_vshrn_n_v: {
7101 llvm::FixedVectorType *SrcTy =
7102 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7103 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7104 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7105 if (Usgn)
7106 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7107 else
7108 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7109 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7110 }
7111 case NEON::BI__builtin_neon_vshr_n_v:
7112 case NEON::BI__builtin_neon_vshrq_n_v:
7113 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7114 case NEON::BI__builtin_neon_vst1_v:
7115 case NEON::BI__builtin_neon_vst1q_v:
7116 case NEON::BI__builtin_neon_vst2_v:
7117 case NEON::BI__builtin_neon_vst2q_v:
7118 case NEON::BI__builtin_neon_vst3_v:
7119 case NEON::BI__builtin_neon_vst3q_v:
7120 case NEON::BI__builtin_neon_vst4_v:
7121 case NEON::BI__builtin_neon_vst4q_v:
7122 case NEON::BI__builtin_neon_vst2_lane_v:
7123 case NEON::BI__builtin_neon_vst2q_lane_v:
7124 case NEON::BI__builtin_neon_vst3_lane_v:
7125 case NEON::BI__builtin_neon_vst3q_lane_v:
7126 case NEON::BI__builtin_neon_vst4_lane_v:
7127 case NEON::BI__builtin_neon_vst4q_lane_v: {
7128 llvm::Type *Tys[] = {Int8PtrTy, Ty};
7129 Ops.push_back(getAlignmentValue32(PtrOp0));
7130 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7131 }
7132 case NEON::BI__builtin_neon_vsm3partw1q_v:
7133 case NEON::BI__builtin_neon_vsm3partw2q_v:
7134 case NEON::BI__builtin_neon_vsm3ss1q_v:
7135 case NEON::BI__builtin_neon_vsm4ekeyq_v:
7136 case NEON::BI__builtin_neon_vsm4eq_v: {
7137 Function *F = CGM.getIntrinsic(Int);
7138 return EmitNeonCall(F, Ops, "");
7139 }
7140 case NEON::BI__builtin_neon_vsm3tt1aq_v:
7141 case NEON::BI__builtin_neon_vsm3tt1bq_v:
7142 case NEON::BI__builtin_neon_vsm3tt2aq_v:
7143 case NEON::BI__builtin_neon_vsm3tt2bq_v: {
7144 Function *F = CGM.getIntrinsic(Int);
7145 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7146 return EmitNeonCall(F, Ops, "");
7147 }
7148 case NEON::BI__builtin_neon_vst1_x2_v:
7149 case NEON::BI__builtin_neon_vst1q_x2_v:
7150 case NEON::BI__builtin_neon_vst1_x3_v:
7151 case NEON::BI__builtin_neon_vst1q_x3_v:
7152 case NEON::BI__builtin_neon_vst1_x4_v:
7153 case NEON::BI__builtin_neon_vst1q_x4_v: {
7154 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7155 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7156 // in AArch64 it comes last. We may want to stick to one or another.
7157 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7158 Arch == llvm::Triple::aarch64_32) {
7159 llvm::Type *Tys[2] = { VTy, PTy };
7160 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7161 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7162 }
7163 llvm::Type *Tys[2] = { PTy, VTy };
7164 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7165 }
7166 case NEON::BI__builtin_neon_vsubhn_v: {
7167 llvm::FixedVectorType *SrcTy =
7168 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7169
7170 // %sum = add <4 x i32> %lhs, %rhs
7171 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7172 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7173 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7174
7175 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7176 Constant *ShiftAmt =
7177 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7178 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7179
7180 // %res = trunc <4 x i32> %high to <4 x i16>
7181 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7182 }
7183 case NEON::BI__builtin_neon_vtrn_v:
7184 case NEON::BI__builtin_neon_vtrnq_v: {
7185 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7186 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7187 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7188 Value *SV = nullptr;
7189
7190 for (unsigned vi = 0; vi != 2; ++vi) {
7191 SmallVector<int, 16> Indices;
7192 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7193 Indices.push_back(i+vi);
7194 Indices.push_back(i+e+vi);
7195 }
7196 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7197 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7198 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7199 }
7200 return SV;
7201 }
7202 case NEON::BI__builtin_neon_vtst_v:
7203 case NEON::BI__builtin_neon_vtstq_v: {
7204 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7205 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7206 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7207 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7208 ConstantAggregateZero::get(Ty));
7209 return Builder.CreateSExt(Ops[0], Ty, "vtst");
7210 }
7211 case NEON::BI__builtin_neon_vuzp_v:
7212 case NEON::BI__builtin_neon_vuzpq_v: {
7213 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7214 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7215 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7216 Value *SV = nullptr;
7217
7218 for (unsigned vi = 0; vi != 2; ++vi) {
7219 SmallVector<int, 16> Indices;
7220 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7221 Indices.push_back(2*i+vi);
7222
7223 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7224 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7225 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7226 }
7227 return SV;
7228 }
7229 case NEON::BI__builtin_neon_vxarq_v: {
7230 Function *F = CGM.getIntrinsic(Int);
7231 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7232 return EmitNeonCall(F, Ops, "");
7233 }
7234 case NEON::BI__builtin_neon_vzip_v:
7235 case NEON::BI__builtin_neon_vzipq_v: {
7236 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7237 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7238 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7239 Value *SV = nullptr;
7240
7241 for (unsigned vi = 0; vi != 2; ++vi) {
7242 SmallVector<int, 16> Indices;
7243 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7244 Indices.push_back((i + vi*e) >> 1);
7245 Indices.push_back(((i + vi*e) >> 1)+e);
7246 }
7247 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7248 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7249 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7250 }
7251 return SV;
7252 }
7253 case NEON::BI__builtin_neon_vdot_v:
7254 case NEON::BI__builtin_neon_vdotq_v: {
7255 auto *InputTy =
7256 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7257 llvm::Type *Tys[2] = { Ty, InputTy };
7258 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7259 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7260 }
7261 case NEON::BI__builtin_neon_vfmlal_low_v:
7262 case NEON::BI__builtin_neon_vfmlalq_low_v: {
7263 auto *InputTy =
7264 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7265 llvm::Type *Tys[2] = { Ty, InputTy };
7266 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7267 }
7268 case NEON::BI__builtin_neon_vfmlsl_low_v:
7269 case NEON::BI__builtin_neon_vfmlslq_low_v: {
7270 auto *InputTy =
7271 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7272 llvm::Type *Tys[2] = { Ty, InputTy };
7273 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7274 }
7275 case NEON::BI__builtin_neon_vfmlal_high_v:
7276 case NEON::BI__builtin_neon_vfmlalq_high_v: {
7277 auto *InputTy =
7278 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7279 llvm::Type *Tys[2] = { Ty, InputTy };
7280 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7281 }
7282 case NEON::BI__builtin_neon_vfmlsl_high_v:
7283 case NEON::BI__builtin_neon_vfmlslq_high_v: {
7284 auto *InputTy =
7285 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7286 llvm::Type *Tys[2] = { Ty, InputTy };
7287 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7288 }
7289 case NEON::BI__builtin_neon_vmmlaq_v: {
7290 auto *InputTy =
7291 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7292 llvm::Type *Tys[2] = { Ty, InputTy };
7293 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7294 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7295 }
7296 case NEON::BI__builtin_neon_vusmmlaq_v: {
7297 auto *InputTy =
7298 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7299 llvm::Type *Tys[2] = { Ty, InputTy };
7300 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7301 }
7302 case NEON::BI__builtin_neon_vusdot_v:
7303 case NEON::BI__builtin_neon_vusdotq_v: {
7304 auto *InputTy =
7305 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7306 llvm::Type *Tys[2] = { Ty, InputTy };
7307 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7308 }
7309 case NEON::BI__builtin_neon_vbfdot_v:
7310 case NEON::BI__builtin_neon_vbfdotq_v: {
7311 llvm::Type *InputTy =
7312 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7313 llvm::Type *Tys[2] = { Ty, InputTy };
7314 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7315 }
7316 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7317 llvm::Type *Tys[1] = { Ty };
7318 Function *F = CGM.getIntrinsic(Int, Tys);
7319 return EmitNeonCall(F, Ops, "vcvtfp2bf");
7320 }
7321
7322 }
7323
7324 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7324, __extension__ __PRETTY_FUNCTION__
))
;
7325
7326 // Determine the type(s) of this overloaded AArch64 intrinsic.
7327 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7328
7329 Value *Result = EmitNeonCall(F, Ops, NameHint);
7330 llvm::Type *ResultType = ConvertType(E->getType());
7331 // AArch64 intrinsic one-element vector type cast to
7332 // scalar type expected by the builtin
7333 return Builder.CreateBitCast(Result, ResultType, NameHint);
7334}
7335
7336Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7337 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7338 const CmpInst::Predicate Ip, const Twine &Name) {
7339 llvm::Type *OTy = Op->getType();
7340
7341 // FIXME: this is utterly horrific. We should not be looking at previous
7342 // codegen context to find out what needs doing. Unfortunately TableGen
7343 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7344 // (etc).
7345 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7346 OTy = BI->getOperand(0)->getType();
7347
7348 Op = Builder.CreateBitCast(Op, OTy);
7349 if (OTy->getScalarType()->isFloatingPointTy()) {
7350 if (Fp == CmpInst::FCMP_OEQ)
7351 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7352 else
7353 Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
7354 } else {
7355 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7356 }
7357 return Builder.CreateSExt(Op, Ty, Name);
7358}
7359
7360static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7361 Value *ExtOp, Value *IndexOp,
7362 llvm::Type *ResTy, unsigned IntID,
7363 const char *Name) {
7364 SmallVector<Value *, 2> TblOps;
7365 if (ExtOp)
7366 TblOps.push_back(ExtOp);
7367
7368 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7369 SmallVector<int, 16> Indices;
7370 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7371 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7372 Indices.push_back(2*i);
7373 Indices.push_back(2*i+1);
7374 }
7375
7376 int PairPos = 0, End = Ops.size() - 1;
7377 while (PairPos < End) {
7378 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7379 Ops[PairPos+1], Indices,
7380 Name));
7381 PairPos += 2;
7382 }
7383
7384 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7385 // of the 128-bit lookup table with zero.
7386 if (PairPos == End) {
7387 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7388 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7389 ZeroTbl, Indices, Name));
7390 }
7391
7392 Function *TblF;
7393 TblOps.push_back(IndexOp);
7394 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7395
7396 return CGF.EmitNeonCall(TblF, TblOps, Name);
7397}
7398
7399Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7400 unsigned Value;
7401 switch (BuiltinID) {
7402 default:
7403 return nullptr;
7404 case ARM::BI__builtin_arm_nop:
7405 Value = 0;
7406 break;
7407 case ARM::BI__builtin_arm_yield:
7408 case ARM::BI__yield:
7409 Value = 1;
7410 break;
7411 case ARM::BI__builtin_arm_wfe:
7412 case ARM::BI__wfe:
7413 Value = 2;
7414 break;
7415 case ARM::BI__builtin_arm_wfi:
7416 case ARM::BI__wfi:
7417 Value = 3;
7418 break;
7419 case ARM::BI__builtin_arm_sev:
7420 case ARM::BI__sev:
7421 Value = 4;
7422 break;
7423 case ARM::BI__builtin_arm_sevl:
7424 case ARM::BI__sevl:
7425 Value = 5;
7426 break;
7427 }
7428
7429 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7430 llvm::ConstantInt::get(Int32Ty, Value));
7431}
7432
7433enum SpecialRegisterAccessKind {
7434 NormalRead,
7435 VolatileRead,
7436 Write,
7437};
7438
7439// Generates the IR for the read/write special register builtin,
7440// ValueType is the type of the value that is to be written or read,
7441// RegisterType is the type of the register being written to or read from.
7442static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7443 const CallExpr *E,
7444 llvm::Type *RegisterType,
7445 llvm::Type *ValueType,
7446 SpecialRegisterAccessKind AccessKind,
7447 StringRef SysReg = "") {
7448 // write and register intrinsics only support 32 and 64 bit operations.
7449 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7450, __extension__ __PRETTY_FUNCTION__
))
7450 && "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7450, __extension__ __PRETTY_FUNCTION__
))
;
7451
7452 CodeGen::CGBuilderTy &Builder = CGF.Builder;
7453 CodeGen::CodeGenModule &CGM = CGF.CGM;
7454 LLVMContext &Context = CGM.getLLVMContext();
7455
7456 if (SysReg.empty()) {
7457 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7458 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7459 }
7460
7461 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7462 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7463 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7464
7465 llvm::Type *Types[] = { RegisterType };
7466
7467 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7468 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7469, __extension__ __PRETTY_FUNCTION__
))
7469 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7469, __extension__ __PRETTY_FUNCTION__
))
;
7470
7471 if (AccessKind != Write) {
7472 assert(AccessKind == NormalRead || AccessKind == VolatileRead)(static_cast <bool> (AccessKind == NormalRead || AccessKind
== VolatileRead) ? void (0) : __assert_fail ("AccessKind == NormalRead || AccessKind == VolatileRead"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7472, __extension__ __PRETTY_FUNCTION__
))
;
7473 llvm::Function *F = CGM.getIntrinsic(
7474 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7475 : llvm::Intrinsic::read_register,
7476 Types);
7477 llvm::Value *Call = Builder.CreateCall(F, Metadata);
7478
7479 if (MixedTypes)
7480 // Read into 64 bit register and then truncate result to 32 bit.
7481 return Builder.CreateTrunc(Call, ValueType);
7482
7483 if (ValueType->isPointerTy())
7484 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7485 return Builder.CreateIntToPtr(Call, ValueType);
7486
7487 return Call;
7488 }
7489
7490 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7491 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7492 if (MixedTypes) {
7493 // Extend 32 bit write value to 64 bit to pass to write.
7494 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7495 return Builder.CreateCall(F, { Metadata, ArgValue });
7496 }
7497
7498 if (ValueType->isPointerTy()) {
7499 // Have VoidPtrTy ArgValue but want to return an i32/i64.
7500 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7501 return Builder.CreateCall(F, { Metadata, ArgValue });
7502 }
7503
7504 return Builder.CreateCall(F, { Metadata, ArgValue });
7505}
7506
7507/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7508/// argument that specifies the vector type.
7509static bool HasExtraNeonArgument(unsigned BuiltinID) {
7510 switch (BuiltinID) {
7511 default: break;
7512 case NEON::BI__builtin_neon_vget_lane_i8:
7513 case NEON::BI__builtin_neon_vget_lane_i16:
7514 case NEON::BI__builtin_neon_vget_lane_bf16:
7515 case NEON::BI__builtin_neon_vget_lane_i32:
7516 case NEON::BI__builtin_neon_vget_lane_i64:
7517 case NEON::BI__builtin_neon_vget_lane_f32:
7518 case NEON::BI__builtin_neon_vgetq_lane_i8:
7519 case NEON::BI__builtin_neon_vgetq_lane_i16:
7520 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7521 case NEON::BI__builtin_neon_vgetq_lane_i32:
7522 case NEON::BI__builtin_neon_vgetq_lane_i64:
7523 case NEON::BI__builtin_neon_vgetq_lane_f32:
7524 case NEON::BI__builtin_neon_vduph_lane_bf16:
7525 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7526 case NEON::BI__builtin_neon_vset_lane_i8:
7527 case NEON::BI__builtin_neon_vset_lane_i16:
7528 case NEON::BI__builtin_neon_vset_lane_bf16:
7529 case NEON::BI__builtin_neon_vset_lane_i32:
7530 case NEON::BI__builtin_neon_vset_lane_i64:
7531 case NEON::BI__builtin_neon_vset_lane_f32:
7532 case NEON::BI__builtin_neon_vsetq_lane_i8:
7533 case NEON::BI__builtin_neon_vsetq_lane_i16:
7534 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7535 case NEON::BI__builtin_neon_vsetq_lane_i32:
7536 case NEON::BI__builtin_neon_vsetq_lane_i64:
7537 case NEON::BI__builtin_neon_vsetq_lane_f32:
7538 case NEON::BI__builtin_neon_vsha1h_u32:
7539 case NEON::BI__builtin_neon_vsha1cq_u32:
7540 case NEON::BI__builtin_neon_vsha1pq_u32:
7541 case NEON::BI__builtin_neon_vsha1mq_u32:
7542 case NEON::BI__builtin_neon_vcvth_bf16_f32:
7543 case clang::ARM::BI_MoveToCoprocessor:
7544 case clang::ARM::BI_MoveToCoprocessor2:
7545 return false;
7546 }
7547 return true;
7548}
7549
7550Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7551 const CallExpr *E,
7552 ReturnValueSlot ReturnValue,
7553 llvm::Triple::ArchType Arch) {
7554 if (auto Hint = GetValueForARMHint(BuiltinID))
7555 return Hint;
7556
7557 if (BuiltinID == ARM::BI__emit) {
7558 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7559 llvm::FunctionType *FTy =
7560 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7561
7562 Expr::EvalResult Result;
7563 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7564 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7564)
;
7565
7566 llvm::APSInt Value = Result.Val.getInt();
7567 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7568
7569 llvm::InlineAsm *Emit =
7570 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7571 /*hasSideEffects=*/true)
7572 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7573 /*hasSideEffects=*/true);
7574
7575 return Builder.CreateCall(Emit);
7576 }
7577
7578 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7579 Value *Option = EmitScalarExpr(E->getArg(0));
7580 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7581 }
7582
7583 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7584 Value *Address = EmitScalarExpr(E->getArg(0));
7585 Value *RW = EmitScalarExpr(E->getArg(1));
7586 Value *IsData = EmitScalarExpr(E->getArg(2));
7587
7588 // Locality is not supported on ARM target
7589 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7590
7591 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7592 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7593 }
7594
7595 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7596 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7597 return Builder.CreateCall(
7598 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7599 }
7600
7601 if (BuiltinID == ARM::BI__builtin_arm_cls) {
7602 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7603 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7604 }
7605 if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7606 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7607 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7608 "cls");
7609 }
7610
7611 if (BuiltinID == ARM::BI__clear_cache) {
7612 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7612, __extension__ __PRETTY_FUNCTION__
))
;
7613 const FunctionDecl *FD = E->getDirectCallee();
7614 Value *Ops[2];
7615 for (unsigned i = 0; i < 2; i++)
7616 Ops[i] = EmitScalarExpr(E->getArg(i));
7617 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7618 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7619 StringRef Name = FD->getName();
7620 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7621 }
7622
7623 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7624 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7625 Function *F;
7626
7627 switch (BuiltinID) {
7628 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7628)
;
7629 case ARM::BI__builtin_arm_mcrr:
7630 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7631 break;
7632 case ARM::BI__builtin_arm_mcrr2:
7633 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7634 break;
7635 }
7636
7637 // MCRR{2} instruction has 5 operands but
7638 // the intrinsic has 4 because Rt and Rt2
7639 // are represented as a single unsigned 64
7640 // bit integer in the intrinsic definition
7641 // but internally it's represented as 2 32
7642 // bit integers.
7643
7644 Value *Coproc = EmitScalarExpr(E->getArg(0));
7645 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7646 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7647 Value *CRm = EmitScalarExpr(E->getArg(3));
7648
7649 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7650 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7651 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7652 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7653
7654 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7655 }
7656
7657 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7658 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7659 Function *F;
7660
7661 switch (BuiltinID) {
7662 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7662)
;
7663 case ARM::BI__builtin_arm_mrrc:
7664 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7665 break;
7666 case ARM::BI__builtin_arm_mrrc2:
7667 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7668 break;
7669 }
7670
7671 Value *Coproc = EmitScalarExpr(E->getArg(0));
7672 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7673 Value *CRm = EmitScalarExpr(E->getArg(2));
7674 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7675
7676 // Returns an unsigned 64 bit integer, represented
7677 // as two 32 bit integers.
7678
7679 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7680 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7681 Rt = Builder.CreateZExt(Rt, Int64Ty);
7682 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7683
7684 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7685 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7686 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7687
7688 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7689 }
7690
7691 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7692 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7693 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7694 getContext().getTypeSize(E->getType()) == 64) ||
7695 BuiltinID == ARM::BI__ldrexd) {
7696 Function *F;
7697
7698 switch (BuiltinID) {
7699 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7699)
;
7700 case ARM::BI__builtin_arm_ldaex:
7701 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7702 break;
7703 case ARM::BI__builtin_arm_ldrexd:
7704 case ARM::BI__builtin_arm_ldrex:
7705 case ARM::BI__ldrexd:
7706 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7707 break;
7708 }
7709
7710 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7711 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7712 "ldrexd");
7713
7714 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7715 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7716 Val0 = Builder.CreateZExt(Val0, Int64Ty);
7717 Val1 = Builder.CreateZExt(Val1, Int64Ty);
7718
7719 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7720 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7721 Val = Builder.CreateOr(Val, Val1);
7722 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7723 }
7724
7725 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7726 BuiltinID == ARM::BI__builtin_arm_ldaex) {
7727 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7728
7729 QualType Ty = E->getType();
7730 llvm::Type *RealResTy = ConvertType(Ty);
7731 llvm::Type *IntTy =
7732 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
7733 llvm::Type *PtrTy = IntTy->getPointerTo();
7734 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7735
7736 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7737 ? Intrinsic::arm_ldaex
7738 : Intrinsic::arm_ldrex,
7739 PtrTy);
7740 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7741 Val->addParamAttr(
7742 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
7743
7744 if (RealResTy->isPointerTy())
7745 return Builder.CreateIntToPtr(Val, RealResTy);
7746 else {
7747 llvm::Type *IntResTy = llvm::IntegerType::get(
7748 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7749 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
7750 RealResTy);
7751 }
7752 }
7753
7754 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7755 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7756 BuiltinID == ARM::BI__builtin_arm_strex) &&
7757 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7758 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7759 ? Intrinsic::arm_stlexd
7760 : Intrinsic::arm_strexd);
7761 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7762
7763 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7764 Value *Val = EmitScalarExpr(E->getArg(0));
7765 Builder.CreateStore(Val, Tmp);
7766
7767 Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
7768 Val = Builder.CreateLoad(LdPtr);
7769
7770 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7771 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7772 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7773 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7774 }
7775
7776 if (BuiltinID == ARM::BI__builtin_arm_strex ||
7777 BuiltinID == ARM::BI__builtin_arm_stlex) {
7778 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7779 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7780
7781 QualType Ty = E->getArg(0)->getType();
7782 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7783 getContext().getTypeSize(Ty));
7784 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7785
7786 if (StoreVal->getType()->isPointerTy())
7787 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7788 else {
7789 llvm::Type *IntTy = llvm::IntegerType::get(
7790 getLLVMContext(),
7791 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7792 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7793 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7794 }
7795
7796 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7797 ? Intrinsic::arm_stlex
7798 : Intrinsic::arm_strex,
7799 StoreAddr->getType());
7800
7801 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7802 CI->addParamAttr(
7803 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
7804 return CI;
7805 }
7806
7807 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7808 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7809 return Builder.CreateCall(F);
7810 }
7811
7812 // CRC32
7813 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7814 switch (BuiltinID) {
7815 case ARM::BI__builtin_arm_crc32b:
7816 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7817 case ARM::BI__builtin_arm_crc32cb:
7818 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7819 case ARM::BI__builtin_arm_crc32h:
7820 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7821 case ARM::BI__builtin_arm_crc32ch:
7822 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7823 case ARM::BI__builtin_arm_crc32w:
7824 case ARM::BI__builtin_arm_crc32d:
7825 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7826 case ARM::BI__builtin_arm_crc32cw:
7827 case ARM::BI__builtin_arm_crc32cd:
7828 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7829 }
7830
7831 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7832 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7833 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7834
7835 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7836 // intrinsics, hence we need different codegen for these cases.
7837 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7838 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7839 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7840 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7841 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7842 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7843
7844 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7845 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7846 return Builder.CreateCall(F, {Res, Arg1b});
7847 } else {
7848 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7849
7850 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7851 return Builder.CreateCall(F, {Arg0, Arg1});
7852 }
7853 }
7854
7855 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7856 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7857 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7858 BuiltinID == ARM::BI__builtin_arm_wsr ||
7859 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7860 BuiltinID == ARM::BI__builtin_arm_wsrp) {
7861
7862 SpecialRegisterAccessKind AccessKind = Write;
7863 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7864 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7865 BuiltinID == ARM::BI__builtin_arm_rsrp)
7866 AccessKind = VolatileRead;
7867
7868 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7869 BuiltinID == ARM::BI__builtin_arm_wsrp;
7870
7871 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7872 BuiltinID == ARM::BI__builtin_arm_wsr64;
7873
7874 llvm::Type *ValueType;
7875 llvm::Type *RegisterType;
7876 if (IsPointerBuiltin) {
7877 ValueType = VoidPtrTy;
7878 RegisterType = Int32Ty;
7879 } else if (Is64Bit) {
7880 ValueType = RegisterType = Int64Ty;
7881 } else {
7882 ValueType = RegisterType = Int32Ty;
7883 }
7884
7885 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7886 AccessKind);
7887 }
7888
7889 // Handle MSVC intrinsics before argument evaluation to prevent double
7890 // evaluation.
7891 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7892 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7893
7894 // Deal with MVE builtins
7895 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7896 return Result;
7897 // Handle CDE builtins
7898 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7899 return Result;
7900
7901 // Find out if any arguments are required to be integer constant
7902 // expressions.
7903 unsigned ICEArguments = 0;
7904 ASTContext::GetBuiltinTypeError Error;
7905 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7906 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7906, __extension__ __PRETTY_FUNCTION__
))
;
7907
7908 auto getAlignmentValue32 = [&](Address addr) -> Value* {
7909 return Builder.getInt32(addr.getAlignment().getQuantity());
7910 };
7911
7912 Address PtrOp0 = Address::invalid();
7913 Address PtrOp1 = Address::invalid();
7914 SmallVector<Value*, 4> Ops;
7915 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7916 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7917 for (unsigned i = 0, e = NumArgs; i != e; i++) {
7918 if (i == 0) {
7919 switch (BuiltinID) {
7920 case NEON::BI__builtin_neon_vld1_v:
7921 case NEON::BI__builtin_neon_vld1q_v:
7922 case NEON::BI__builtin_neon_vld1q_lane_v:
7923 case NEON::BI__builtin_neon_vld1_lane_v:
7924 case NEON::BI__builtin_neon_vld1_dup_v:
7925 case NEON::BI__builtin_neon_vld1q_dup_v:
7926 case NEON::BI__builtin_neon_vst1_v:
7927 case NEON::BI__builtin_neon_vst1q_v:
7928 case NEON::BI__builtin_neon_vst1q_lane_v:
7929 case NEON::BI__builtin_neon_vst1_lane_v:
7930 case NEON::BI__builtin_neon_vst2_v:
7931 case NEON::BI__builtin_neon_vst2q_v:
7932 case NEON::BI__builtin_neon_vst2_lane_v:
7933 case NEON::BI__builtin_neon_vst2q_lane_v:
7934 case NEON::BI__builtin_neon_vst3_v:
7935 case NEON::BI__builtin_neon_vst3q_v:
7936 case NEON::BI__builtin_neon_vst3_lane_v:
7937 case NEON::BI__builtin_neon_vst3q_lane_v:
7938 case NEON::BI__builtin_neon_vst4_v:
7939 case NEON::BI__builtin_neon_vst4q_v:
7940 case NEON::BI__builtin_neon_vst4_lane_v:
7941 case NEON::BI__builtin_neon_vst4q_lane_v:
7942 // Get the alignment for the argument in addition to the value;
7943 // we'll use it later.
7944 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7945 Ops.push_back(PtrOp0.getPointer());
7946 continue;
7947 }
7948 }
7949 if (i == 1) {
7950 switch (BuiltinID) {
7951 case NEON::BI__builtin_neon_vld2_v:
7952 case NEON::BI__builtin_neon_vld2q_v:
7953 case NEON::BI__builtin_neon_vld3_v:
7954 case NEON::BI__builtin_neon_vld3q_v:
7955 case NEON::BI__builtin_neon_vld4_v:
7956 case NEON::BI__builtin_neon_vld4q_v:
7957 case NEON::BI__builtin_neon_vld2_lane_v:
7958 case NEON::BI__builtin_neon_vld2q_lane_v:
7959 case NEON::BI__builtin_neon_vld3_lane_v:
7960 case NEON::BI__builtin_neon_vld3q_lane_v:
7961 case NEON::BI__builtin_neon_vld4_lane_v:
7962 case NEON::BI__builtin_neon_vld4q_lane_v:
7963 case NEON::BI__builtin_neon_vld2_dup_v:
7964 case NEON::BI__builtin_neon_vld2q_dup_v:
7965 case NEON::BI__builtin_neon_vld3_dup_v:
7966 case NEON::BI__builtin_neon_vld3q_dup_v:
7967 case NEON::BI__builtin_neon_vld4_dup_v:
7968 case NEON::BI__builtin_neon_vld4q_dup_v:
7969 // Get the alignment for the argument in addition to the value;
7970 // we'll use it later.
7971 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7972 Ops.push_back(PtrOp1.getPointer());
7973 continue;
7974 }
7975 }
7976
7977 if ((ICEArguments & (1 << i)) == 0) {
7978 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7979 } else {
7980 // If this is required to be a constant, constant fold it so that we know
7981 // that the generated intrinsic gets a ConstantInt.
7982 Ops.push_back(llvm::ConstantInt::get(
7983 getLLVMContext(),
7984 *E->getArg(i)->getIntegerConstantExpr(getContext())));
7985 }
7986 }
7987
7988 switch (BuiltinID) {
7989 default: break;
7990
7991 case NEON::BI__builtin_neon_vget_lane_i8:
7992 case NEON::BI__builtin_neon_vget_lane_i16:
7993 case NEON::BI__builtin_neon_vget_lane_i32:
7994 case NEON::BI__builtin_neon_vget_lane_i64:
7995 case NEON::BI__builtin_neon_vget_lane_bf16:
7996 case NEON::BI__builtin_neon_vget_lane_f32:
7997 case NEON::BI__builtin_neon_vgetq_lane_i8:
7998 case NEON::BI__builtin_neon_vgetq_lane_i16:
7999 case NEON::BI__builtin_neon_vgetq_lane_i32:
8000 case NEON::BI__builtin_neon_vgetq_lane_i64:
8001 case NEON::BI__builtin_neon_vgetq_lane_bf16:
8002 case NEON::BI__builtin_neon_vgetq_lane_f32:
8003 case NEON::BI__builtin_neon_vduph_lane_bf16:
8004 case NEON::BI__builtin_neon_vduph_laneq_bf16:
8005 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
8006
8007 case NEON::BI__builtin_neon_vrndns_f32: {
8008 Value *Arg = EmitScalarExpr(E->getArg(0));
8009 llvm::Type *Tys[] = {Arg->getType()};
8010 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
8011 return Builder.CreateCall(F, {Arg}, "vrndn"); }
8012
8013 case NEON::BI__builtin_neon_vset_lane_i8:
8014 case NEON::BI__builtin_neon_vset_lane_i16:
8015 case NEON::BI__builtin_neon_vset_lane_i32:
8016 case NEON::BI__builtin_neon_vset_lane_i64:
8017 case NEON::BI__builtin_neon_vset_lane_bf16:
8018 case NEON::BI__builtin_neon_vset_lane_f32:
8019 case NEON::BI__builtin_neon_vsetq_lane_i8:
8020 case NEON::BI__builtin_neon_vsetq_lane_i16:
8021 case NEON::BI__builtin_neon_vsetq_lane_i32:
8022 case NEON::BI__builtin_neon_vsetq_lane_i64:
8023 case NEON::BI__builtin_neon_vsetq_lane_bf16:
8024 case NEON::BI__builtin_neon_vsetq_lane_f32:
8025 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8026
8027 case NEON::BI__builtin_neon_vsha1h_u32:
8028 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
8029 "vsha1h");
8030 case NEON::BI__builtin_neon_vsha1cq_u32:
8031 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
8032 "vsha1h");
8033 case NEON::BI__builtin_neon_vsha1pq_u32:
8034 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
8035 "vsha1h");
8036 case NEON::BI__builtin_neon_vsha1mq_u32:
8037 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
8038 "vsha1h");
8039
8040 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
8041 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
8042 "vcvtbfp2bf");
8043 }
8044
8045 // The ARM _MoveToCoprocessor builtins put the input register value as
8046 // the first argument, but the LLVM intrinsic expects it as the third one.
8047 case ARM::BI_MoveToCoprocessor:
8048 case ARM::BI_MoveToCoprocessor2: {
8049 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
8050 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
8051 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
8052 Ops[3], Ops[4], Ops[5]});
8053 }
8054 }
8055
8056 // Get the last argument, which specifies the vector type.
8057 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "clang/lib/CodeGen/CGBuiltin.cpp", 8057, __extension__
__PRETTY_FUNCTION__))
;
8058 const Expr *Arg = E->getArg(E->getNumArgs()-1);
8059 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
8060 if (!Result)
8061 return nullptr;
8062
8063 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
8064 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
8065 // Determine the overloaded type of this builtin.
8066 llvm::Type *Ty;
8067 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
8068 Ty = FloatTy;
8069 else
8070 Ty = DoubleTy;
8071
8072 // Determine whether this is an unsigned conversion or not.
8073 bool usgn = Result->getZExtValue() == 1;
8074 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
8075
8076 // Call the appropriate intrinsic.
8077 Function *F = CGM.getIntrinsic(Int, Ty);
8078 return Builder.CreateCall(F, Ops, "vcvtr");
8079 }
8080
8081 // Determine the type of this overloaded NEON intrinsic.
8082 NeonTypeFlags Type = Result->getZExtValue();
8083 bool usgn = Type.isUnsigned();
8084 bool rightShift = false;
8085
8086 llvm::FixedVectorType *VTy =
8087 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8088 getTarget().hasBFloat16Type());
8089 llvm::Type *Ty = VTy;
8090 if (!Ty)
8091 return nullptr;
8092
8093 // Many NEON builtins have identical semantics and uses in ARM and
8094 // AArch64. Emit these in a single function.
8095 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
8096 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8097 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8098 if (Builtin)
8099 return EmitCommonNeonBuiltinExpr(
8100 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8101 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8102
8103 unsigned Int;
8104 switch (BuiltinID) {
8105 default: return nullptr;
8106 case NEON::BI__builtin_neon_vld1q_lane_v:
8107 // Handle 64-bit integer elements as a special case. Use shuffles of
8108 // one-element vectors to avoid poor code for i64 in the backend.
8109 if (VTy->getElementType()->isIntegerTy(64)) {
8110 // Extract the other lane.
8111 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8112 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8113 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8114 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8115 // Load the value as a one-element vector.
8116 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8117 llvm::Type *Tys[] = {Ty, Int8PtrTy};
8118 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8119 Value *Align = getAlignmentValue32(PtrOp0);
8120 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8121 // Combine them.
8122 int Indices[] = {1 - Lane, Lane};
8123 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8124 }
8125 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8126 case NEON::BI__builtin_neon_vld1_lane_v: {
8127 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8128 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
8129 Value *Ld = Builder.CreateLoad(PtrOp0);
8130 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8131 }
8132 case NEON::BI__builtin_neon_vqrshrn_n_v:
8133 Int =
8134 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8135 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8136 1, true);
8137 case NEON::BI__builtin_neon_vqrshrun_n_v:
8138 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8139 Ops, "vqrshrun_n", 1, true);
8140 case NEON::BI__builtin_neon_vqshrn_n_v:
8141 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8142 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8143 1, true);
8144 case NEON::BI__builtin_neon_vqshrun_n_v:
8145 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8146 Ops, "vqshrun_n", 1, true);
8147 case NEON::BI__builtin_neon_vrecpe_v:
8148 case NEON::BI__builtin_neon_vrecpeq_v:
8149 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8150 Ops, "vrecpe");
8151 case NEON::BI__builtin_neon_vrshrn_n_v:
8152 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8153 Ops, "vrshrn_n", 1, true);
8154 case NEON::BI__builtin_neon_vrsra_n_v:
8155 case NEON::BI__builtin_neon_vrsraq_n_v:
8156 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8157 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8158 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8159 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8160 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8161 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8162 case NEON::BI__builtin_neon_vsri_n_v:
8163 case NEON::BI__builtin_neon_vsriq_n_v:
8164 rightShift = true;
8165 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8166 case NEON::BI__builtin_neon_vsli_n_v:
8167 case NEON::BI__builtin_neon_vsliq_n_v:
8168 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8169 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8170 Ops, "vsli_n");
8171 case NEON::BI__builtin_neon_vsra_n_v:
8172 case NEON::BI__builtin_neon_vsraq_n_v:
8173 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8174 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8175 return Builder.CreateAdd(Ops[0], Ops[1]);
8176 case NEON::BI__builtin_neon_vst1q_lane_v:
8177 // Handle 64-bit integer elements as a special case. Use a shuffle to get
8178 // a one-element vector and avoid poor code for i64 in the backend.
8179 if (VTy->getElementType()->isIntegerTy(64)) {
8180 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8181 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8182 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8183 Ops[2] = getAlignmentValue32(PtrOp0);
8184 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8185 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8186 Tys), Ops);
8187 }
8188 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8189 case NEON::BI__builtin_neon_vst1_lane_v: {
8190 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8191 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8192 auto St = Builder.CreateStore(
8193 Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
8194 return St;
8195 }
8196 case NEON::BI__builtin_neon_vtbl1_v:
8197 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8198 Ops, "vtbl1");
8199 case NEON::BI__builtin_neon_vtbl2_v:
8200 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8201 Ops, "vtbl2");
8202 case NEON::BI__builtin_neon_vtbl3_v:
8203 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8204 Ops, "vtbl3");
8205 case NEON::BI__builtin_neon_vtbl4_v:
8206 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8207 Ops, "vtbl4");
8208 case NEON::BI__builtin_neon_vtbx1_v:
8209 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
8210 Ops, "vtbx1");
8211 case NEON::BI__builtin_neon_vtbx2_v:
8212 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8213 Ops, "vtbx2");
8214 case NEON::BI__builtin_neon_vtbx3_v:
8215 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8216 Ops, "vtbx3");
8217 case NEON::BI__builtin_neon_vtbx4_v:
8218 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8219 Ops, "vtbx4");
8220 }
8221}
8222
8223template<typename Integer>
8224static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8225 return E->getIntegerConstantExpr(Context)->getExtValue();
8226}
8227
8228static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8229 llvm::Type *T, bool Unsigned) {
8230 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8231 // which finds it convenient to specify signed/unsigned as a boolean flag.
8232 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8233}
8234
8235static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8236 uint32_t Shift, bool Unsigned) {
8237 // MVE helper function for integer shift right. This must handle signed vs
8238 // unsigned, and also deal specially with the case where the shift count is
8239 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8240 // undefined behavior, but in MVE it's legal, so we must convert it to code
8241 // that is not undefined in IR.
8242 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8243 ->getElementType()
8244 ->getPrimitiveSizeInBits();
8245 if (Shift == LaneBits) {
8246 // An unsigned shift of the full lane size always generates zero, so we can
8247 // simply emit a zero vector. A signed shift of the full lane size does the
8248 // same thing as shifting by one bit fewer.
8249 if (Unsigned)
8250 return llvm::Constant::getNullValue(V->getType());
8251 else
8252 --Shift;
8253 }
8254 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8255}
8256
8257static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8258 // MVE-specific helper function for a vector splat, which infers the element
8259 // count of the output vector by knowing that MVE vectors are all 128 bits
8260 // wide.
8261 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8262 return Builder.CreateVectorSplat(Elements, V);
8263}
8264
8265static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8266 CodeGenFunction *CGF,
8267 llvm::Value *V,
8268 llvm::Type *DestType) {
8269 // Convert one MVE vector type into another by reinterpreting its in-register
8270 // format.
8271 //
8272 // Little-endian, this is identical to a bitcast (which reinterprets the
8273 // memory format). But big-endian, they're not necessarily the same, because
8274 // the register and memory formats map to each other differently depending on
8275 // the lane size.
8276 //
8277 // We generate a bitcast whenever we can (if we're little-endian, or if the
8278 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8279 // that performs the different kind of reinterpretation.
8280 if (CGF->getTarget().isBigEndian() &&
8281 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8282 return Builder.CreateCall(
8283 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8284 {DestType, V->getType()}),
8285 V);
8286 } else {
8287 return Builder.CreateBitCast(V, DestType);
8288 }
8289}
8290
8291static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8292 // Make a shufflevector that extracts every other element of a vector (evens
8293 // or odds, as desired).
8294 SmallVector<int, 16> Indices;
8295 unsigned InputElements =
8296 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8297 for (unsigned i = 0; i < InputElements; i += 2)
8298 Indices.push_back(i + Odd);
8299 return Builder.CreateShuffleVector(V, Indices);
8300}
8301
8302static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8303 llvm::Value *V1) {
8304 // Make a shufflevector that interleaves two vectors element by element.
8305 assert(V0->getType() == V1->getType() && "Can't zip different vector types")(static_cast <bool> (V0->getType() == V1->getType
() && "Can't zip different vector types") ? void (0) :
__assert_fail ("V0->getType() == V1->getType() && \"Can't zip different vector types\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8305, __extension__ __PRETTY_FUNCTION__
))
;
8306 SmallVector<int, 16> Indices;
8307 unsigned InputElements =
8308 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8309 for (unsigned i = 0; i < InputElements; i++) {
8310 Indices.push_back(i);
8311 Indices.push_back(i + InputElements);
8312 }
8313 return Builder.CreateShuffleVector(V0, V1, Indices);
8314}
8315
8316template<unsigned HighBit, unsigned OtherBits>
8317static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8318 // MVE-specific helper function to make a vector splat of a constant such as
8319 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8320 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8321 unsigned LaneBits = T->getPrimitiveSizeInBits();
8322 uint32_t Value = HighBit << (LaneBits - 1);
8323 if (OtherBits)
8324 Value |= (1UL << (LaneBits - 1)) - 1;
8325 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8326 return ARMMVEVectorSplat(Builder, Lane);
8327}
8328
8329static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8330 llvm::Value *V,
8331 unsigned ReverseWidth) {
8332 // MVE-specific helper function which reverses the elements of a
8333 // vector within every (ReverseWidth)-bit collection of lanes.
8334 SmallVector<int, 16> Indices;
8335 unsigned LaneSize = V->getType()->getScalarSizeInBits();
8336 unsigned Elements = 128 / LaneSize;
8337 unsigned Mask = ReverseWidth / LaneSize - 1;
8338 for (unsigned i = 0; i < Elements; i++)
8339 Indices.push_back(i ^ Mask);
8340 return Builder.CreateShuffleVector(V, Indices);
8341}
8342
8343Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8344 const CallExpr *E,
8345 ReturnValueSlot ReturnValue,
8346 llvm::Triple::ArchType Arch) {
8347 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8348 Intrinsic::ID IRIntr;
8349 unsigned NumVectors;
8350
8351 // Code autogenerated by Tablegen will handle all the simple builtins.
8352 switch (BuiltinID) {
8353 #include "clang/Basic/arm_mve_builtin_cg.inc"
8354
8355 // If we didn't match an MVE builtin id at all, go back to the
8356 // main EmitARMBuiltinExpr.
8357 default:
8358 return nullptr;
8359 }
8360
8361 // Anything that breaks from that switch is an MVE builtin that
8362 // needs handwritten code to generate.
8363
8364 switch (CustomCodeGenType) {
8365
8366 case CustomCodeGen::VLD24: {
8367 llvm::SmallVector<Value *, 4> Ops;
8368 llvm::SmallVector<llvm::Type *, 4> Tys;
8369
8370 auto MvecCType = E->getType();
8371 auto MvecLType = ConvertType(MvecCType);
8372 assert(MvecLType->isStructTy() &&(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8373, __extension__ __PRETTY_FUNCTION__
))
8373 "Return type for vld[24]q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8373, __extension__ __PRETTY_FUNCTION__
))
;
8374 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8375, __extension__ __PRETTY_FUNCTION__
))
8375 "Return-type struct for vld[24]q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8375, __extension__ __PRETTY_FUNCTION__
))
;
8376 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8377 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8378, __extension__ __PRETTY_FUNCTION__
))
8378 "Return-type struct for vld[24]q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8378, __extension__ __PRETTY_FUNCTION__
))
;
8379 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8380, __extension__ __PRETTY_FUNCTION__
))
8380 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8380, __extension__ __PRETTY_FUNCTION__
))
;
8381 auto VecLType = MvecLTypeInner->getArrayElementType();
8382
8383 Tys.push_back(VecLType);
8384
8385 auto Addr = E->getArg(0);
8386 Ops.push_back(EmitScalarExpr(Addr));
8387 Tys.push_back(ConvertType(Addr->getType()));
8388
8389 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8390 Value *LoadResult = Builder.CreateCall(F, Ops);
8391 Value *MvecOut = UndefValue::get(MvecLType);
8392 for (unsigned i = 0; i < NumVectors; ++i) {
8393 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8394 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8395 }
8396
8397 if (ReturnValue.isNull())
8398 return MvecOut;
8399 else
8400 return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8401 }
8402
8403 case CustomCodeGen::VST24: {
8404 llvm::SmallVector<Value *, 4> Ops;
8405 llvm::SmallVector<llvm::Type *, 4> Tys;
8406
8407 auto Addr = E->getArg(0);
8408 Ops.push_back(EmitScalarExpr(Addr));
8409 Tys.push_back(ConvertType(Addr->getType()));
8410
8411 auto MvecCType = E->getArg(1)->getType();
8412 auto MvecLType = ConvertType(MvecCType);
8413 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Data type for vst2q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Data type for vst2q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8413, __extension__ __PRETTY_FUNCTION__
))
;
8414 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8415, __extension__ __PRETTY_FUNCTION__
))
8415 "Data-type struct for vst2q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8415, __extension__ __PRETTY_FUNCTION__
))
;
8416 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8417 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8418, __extension__ __PRETTY_FUNCTION__
))
8418 "Data-type struct for vst2q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8418, __extension__ __PRETTY_FUNCTION__
))
;
8419 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8420, __extension__ __PRETTY_FUNCTION__
))
8420 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8420, __extension__ __PRETTY_FUNCTION__
))
;
8421 auto VecLType = MvecLTypeInner->getArrayElementType();
8422
8423 Tys.push_back(VecLType);
8424
8425 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8426 EmitAggExpr(E->getArg(1), MvecSlot);
8427 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8428 for (unsigned i = 0; i < NumVectors; i++)
8429 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8430
8431 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8432 Value *ToReturn = nullptr;
8433 for (unsigned i = 0; i < NumVectors; i++) {
8434 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8435 ToReturn = Builder.CreateCall(F, Ops);
8436 Ops.pop_back();
8437 }
8438 return ToReturn;
8439 }
8440 }
8441 llvm_unreachable("unknown custom codegen type.")::llvm::llvm_unreachable_internal("unknown custom codegen type."
, "clang/lib/CodeGen/CGBuiltin.cpp", 8441)
;
8442}
8443
8444Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8445 const CallExpr *E,
8446 ReturnValueSlot ReturnValue,
8447 llvm::Triple::ArchType Arch) {
8448 switch (BuiltinID) {
8449 default:
8450 return nullptr;
8451#include "clang/Basic/arm_cde_builtin_cg.inc"
8452 }
8453}
8454
8455static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8456 const CallExpr *E,
8457 SmallVectorImpl<Value *> &Ops,
8458 llvm::Triple::ArchType Arch) {
8459 unsigned int Int = 0;
8460 const char *s = nullptr;
8461
8462 switch (BuiltinID) {
8463 default:
8464 return nullptr;
8465 case NEON::BI__builtin_neon_vtbl1_v:
8466 case NEON::BI__builtin_neon_vqtbl1_v:
8467 case NEON::BI__builtin_neon_vqtbl1q_v:
8468 case NEON::BI__builtin_neon_vtbl2_v:
8469 case NEON::BI__builtin_neon_vqtbl2_v:
8470 case NEON::BI__builtin_neon_vqtbl2q_v:
8471 case NEON::BI__builtin_neon_vtbl3_v:
8472 case NEON::BI__builtin_neon_vqtbl3_v:
8473 case NEON::BI__builtin_neon_vqtbl3q_v:
8474 case NEON::BI__builtin_neon_vtbl4_v:
8475 case NEON::BI__builtin_neon_vqtbl4_v:
8476 case NEON::BI__builtin_neon_vqtbl4q_v:
8477 break;
8478 case NEON::BI__builtin_neon_vtbx1_v:
8479 case NEON::BI__builtin_neon_vqtbx1_v:
8480 case NEON::BI__builtin_neon_vqtbx1q_v:
8481 case NEON::BI__builtin_neon_vtbx2_v:
8482 case NEON::BI__builtin_neon_vqtbx2_v:
8483 case NEON::BI__builtin_neon_vqtbx2q_v:
8484 case NEON::BI__builtin_neon_vtbx3_v:
8485 case NEON::BI__builtin_neon_vqtbx3_v:
8486 case NEON::BI__builtin_neon_vqtbx3q_v:
8487 case NEON::BI__builtin_neon_vtbx4_v:
8488 case NEON::BI__builtin_neon_vqtbx4_v:
8489 case NEON::BI__builtin_neon_vqtbx4q_v:
8490 break;
8491 }
8492
8493 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8493, __extension__ __PRETTY_FUNCTION__))
;
8494
8495 // Get the last argument, which specifies the vector type.
8496 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8497 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8498 if (!Result)
8499 return nullptr;
8500
8501 // Determine the type of this overloaded NEON intrinsic.
8502 NeonTypeFlags Type = Result->getZExtValue();
8503 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8504 if (!Ty)
8505 return nullptr;
8506
8507 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8508
8509 // AArch64 scalar builtins are not overloaded, they do not have an extra
8510 // argument that specifies the vector type, need to handle each case.
8511 switch (BuiltinID) {
8512 case NEON::BI__builtin_neon_vtbl1_v: {
8513 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8514 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8515 "vtbl1");
8516 }
8517 case NEON::BI__builtin_neon_vtbl2_v: {
8518 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8519 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8520 "vtbl1");
8521 }
8522 case NEON::BI__builtin_neon_vtbl3_v: {
8523 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8524 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8525 "vtbl2");
8526 }
8527 case NEON::BI__builtin_neon_vtbl4_v: {
8528 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8529 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8530 "vtbl2");
8531 }
8532 case NEON::BI__builtin_neon_vtbx1_v: {
8533 Value *TblRes =
8534 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8535 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8536
8537 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8538 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8539 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8540
8541 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8542 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8543 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8544 }
8545 case NEON::BI__builtin_neon_vtbx2_v: {
8546 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8547 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8548 "vtbx1");
8549 }
8550 case NEON::BI__builtin_neon_vtbx3_v: {
8551 Value *TblRes =
8552 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8553 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8554
8555 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8556 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8557 TwentyFourV);
8558 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8559
8560 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8561 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8562 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8563 }
8564 case NEON::BI__builtin_neon_vtbx4_v: {
8565 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8566 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8567 "vtbx2");
8568 }
8569 case NEON::BI__builtin_neon_vqtbl1_v:
8570 case NEON::BI__builtin_neon_vqtbl1q_v:
8571 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8572 case NEON::BI__builtin_neon_vqtbl2_v:
8573 case NEON::BI__builtin_neon_vqtbl2q_v: {
8574 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8575 case NEON::BI__builtin_neon_vqtbl3_v:
8576 case NEON::BI__builtin_neon_vqtbl3q_v:
8577 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8578 case NEON::BI__builtin_neon_vqtbl4_v:
8579 case NEON::BI__builtin_neon_vqtbl4q_v:
8580 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8581 case NEON::BI__builtin_neon_vqtbx1_v:
8582 case NEON::BI__builtin_neon_vqtbx1q_v:
8583 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8584 case NEON::BI__builtin_neon_vqtbx2_v:
8585 case NEON::BI__builtin_neon_vqtbx2q_v:
8586 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8587 case NEON::BI__builtin_neon_vqtbx3_v:
8588 case NEON::BI__builtin_neon_vqtbx3q_v:
8589 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8590 case NEON::BI__builtin_neon_vqtbx4_v:
8591 case NEON::BI__builtin_neon_vqtbx4q_v:
8592 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8593 }
8594 }
8595
8596 if (!Int)
8597 return nullptr;
8598
8599 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8600 return CGF.EmitNeonCall(F, Ops, s);
8601}
8602
8603Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8604 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8605 Op = Builder.CreateBitCast(Op, Int16Ty);
8606 Value *V = UndefValue::get(VTy);
8607 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8608 Op = Builder.CreateInsertElement(V, Op, CI);
8609 return Op;
8610}
8611
8612/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8613/// access builtin. Only required if it can't be inferred from the base pointer
8614/// operand.
8615llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8616 switch (TypeFlags.getMemEltType()) {
8617 case SVETypeFlags::MemEltTyDefault:
8618 return getEltType(TypeFlags);
8619 case SVETypeFlags::MemEltTyInt8:
8620 return Builder.getInt8Ty();
8621 case SVETypeFlags::MemEltTyInt16:
8622 return Builder.getInt16Ty();
8623 case SVETypeFlags::MemEltTyInt32:
8624 return Builder.getInt32Ty();
8625 case SVETypeFlags::MemEltTyInt64:
8626 return Builder.getInt64Ty();
8627 }
8628 llvm_unreachable("Unknown MemEltType")::llvm::llvm_unreachable_internal("Unknown MemEltType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8628)
;
8629}
8630
8631llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8632 switch (TypeFlags.getEltType()) {
8633 default:
8634 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8634)
;
8635
8636 case SVETypeFlags::EltTyInt8:
8637 return Builder.getInt8Ty();
8638 case SVETypeFlags::EltTyInt16:
8639 return Builder.getInt16Ty();
8640 case SVETypeFlags::EltTyInt32:
8641 return Builder.getInt32Ty();
8642 case SVETypeFlags::EltTyInt64:
8643 return Builder.getInt64Ty();
8644
8645 case SVETypeFlags::EltTyFloat16:
8646 return Builder.getHalfTy();
8647 case SVETypeFlags::EltTyFloat32:
8648 return Builder.getFloatTy();
8649 case SVETypeFlags::EltTyFloat64:
8650 return Builder.getDoubleTy();
8651
8652 case SVETypeFlags::EltTyBFloat16:
8653 return Builder.getBFloatTy();
8654
8655 case SVETypeFlags::EltTyBool8:
8656 case SVETypeFlags::EltTyBool16:
8657 case SVETypeFlags::EltTyBool32:
8658 case SVETypeFlags::EltTyBool64:
8659 return Builder.getInt1Ty();
8660 }
8661}
8662
8663// Return the llvm predicate vector type corresponding to the specified element
8664// TypeFlags.
8665llvm::ScalableVectorType *
8666CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8667 switch (TypeFlags.getEltType()) {
8668 default: llvm_unreachable("Unhandled SVETypeFlag!")::llvm::llvm_unreachable_internal("Unhandled SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8668)
;
8669
8670 case SVETypeFlags::EltTyInt8:
8671 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8672 case SVETypeFlags::EltTyInt16:
8673 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8674 case SVETypeFlags::EltTyInt32:
8675 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8676 case SVETypeFlags::EltTyInt64:
8677 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8678
8679 case SVETypeFlags::EltTyBFloat16:
8680 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8681 case SVETypeFlags::EltTyFloat16:
8682 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8683 case SVETypeFlags::EltTyFloat32:
8684 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8685 case SVETypeFlags::EltTyFloat64:
8686 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8687
8688 case SVETypeFlags::EltTyBool8:
8689 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8690 case SVETypeFlags::EltTyBool16:
8691 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8692 case SVETypeFlags::EltTyBool32:
8693 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8694 case SVETypeFlags::EltTyBool64:
8695 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8696 }
8697}
8698
8699// Return the llvm vector type corresponding to the specified element TypeFlags.
8700llvm::ScalableVectorType *
8701CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8702 switch (TypeFlags.getEltType()) {
8703 default:
8704 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8704)
;
8705
8706 case SVETypeFlags::EltTyInt8:
8707 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8708 case SVETypeFlags::EltTyInt16:
8709 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8710 case SVETypeFlags::EltTyInt32:
8711 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8712 case SVETypeFlags::EltTyInt64:
8713 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8714
8715 case SVETypeFlags::EltTyFloat16:
8716 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8717 case SVETypeFlags::EltTyBFloat16:
8718 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8719 case SVETypeFlags::EltTyFloat32:
8720 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8721 case SVETypeFlags::EltTyFloat64:
8722 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8723
8724 case SVETypeFlags::EltTyBool8:
8725 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8726 case SVETypeFlags::EltTyBool16:
8727 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8728 case SVETypeFlags::EltTyBool32:
8729 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8730 case SVETypeFlags::EltTyBool64:
8731 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8732 }
8733}
8734
8735llvm::Value *
8736CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8737 Function *Ptrue =
8738 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8739 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8740}
8741
8742constexpr unsigned SVEBitsPerBlock = 128;
8743
8744static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8745 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8746 return llvm::ScalableVectorType::get(EltTy, NumElts);
8747}
8748
8749// Reinterpret the input predicate so that it can be used to correctly isolate
8750// the elements of the specified datatype.
8751Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8752 llvm::ScalableVectorType *VTy) {
8753 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8754 if (Pred->getType() == RTy)
8755 return Pred;
8756
8757 unsigned IntID;
8758 llvm::Type *IntrinsicTy;
8759 switch (VTy->getMinNumElements()) {
8760 default:
8761 llvm_unreachable("unsupported element count!")::llvm::llvm_unreachable_internal("unsupported element count!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 8761)
;
8762 case 2:
8763 case 4:
8764 case 8:
8765 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8766 IntrinsicTy = RTy;
8767 break;
8768 case 16:
8769 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8770 IntrinsicTy = Pred->getType();
8771 break;
8772 }
8773
8774 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8775 Value *C = Builder.CreateCall(F, Pred);
8776 assert(C->getType() == RTy && "Unexpected return type!")(static_cast <bool> (C->getType() == RTy && "Unexpected return type!"
) ? void (0) : __assert_fail ("C->getType() == RTy && \"Unexpected return type!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8776, __extension__ __PRETTY_FUNCTION__
))
;
8777 return C;
8778}
8779
8780Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
8781 SmallVectorImpl<Value *> &Ops,
8782 unsigned IntID) {
8783 auto *ResultTy = getSVEType(TypeFlags);
8784 auto *OverloadedTy =
8785 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8786
8787 // At the ACLE level there's only one predicate type, svbool_t, which is
8788 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8789 // actual type being loaded. For example, when loading doubles (i64) the
8790 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8791 // the predicate and the data being loaded must match. Cast accordingly.
8792 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8793
8794 Function *F = nullptr;
8795 if (Ops[1]->getType()->isVectorTy())
8796 // This is the "vector base, scalar offset" case. In order to uniquely
8797 // map this built-in to an LLVM IR intrinsic, we need both the return type
8798 // and the type of the vector base.
8799 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8800 else
8801 // This is the "scalar base, vector offset case". The type of the offset
8802 // is encoded in the name of the intrinsic. We only need to specify the
8803 // return type in order to uniquely map this built-in to an LLVM IR
8804 // intrinsic.
8805 F = CGM.getIntrinsic(IntID, OverloadedTy);
8806
8807 // Pass 0 when the offset is missing. This can only be applied when using
8808 // the "vector base" addressing mode for which ACLE allows no offset. The
8809 // corresponding LLVM IR always requires an offset.
8810 if (Ops.size() == 2) {
8811 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8811, __extension__ __PRETTY_FUNCTION__
))
;
8812 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8813 }
8814
8815 // For "vector base, scalar index" scale the index so that it becomes a
8816 // scalar offset.
8817 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8818 unsigned BytesPerElt =
8819 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8820 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8821 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8822 }
8823
8824 Value *Call = Builder.CreateCall(F, Ops);
8825
8826 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8827 // other cases it's folded into a nop.
8828 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8829 : Builder.CreateSExt(Call, ResultTy);
8830}
8831
8832Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
8833 SmallVectorImpl<Value *> &Ops,
8834 unsigned IntID) {
8835 auto *SrcDataTy = getSVEType(TypeFlags);
8836 auto *OverloadedTy =
8837 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8838
8839 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8840 // it's the first argument. Move it accordingly.
8841 Ops.insert(Ops.begin(), Ops.pop_back_val());
8842
8843 Function *F = nullptr;
8844 if (Ops[2]->getType()->isVectorTy())
8845 // This is the "vector base, scalar offset" case. In order to uniquely
8846 // map this built-in to an LLVM IR intrinsic, we need both the return type
8847 // and the type of the vector base.
8848 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8849 else
8850 // This is the "scalar base, vector offset case". The type of the offset
8851 // is encoded in the name of the intrinsic. We only need to specify the
8852 // return type in order to uniquely map this built-in to an LLVM IR
8853 // intrinsic.
8854 F = CGM.getIntrinsic(IntID, OverloadedTy);
8855
8856 // Pass 0 when the offset is missing. This can only be applied when using
8857 // the "vector base" addressing mode for which ACLE allows no offset. The
8858 // corresponding LLVM IR always requires an offset.
8859 if (Ops.size() == 3) {
8860 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8860, __extension__ __PRETTY_FUNCTION__
))
;
8861 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8862 }
8863
8864 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8865 // folded into a nop.
8866 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8867
8868 // At the ACLE level there's only one predicate type, svbool_t, which is
8869 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8870 // actual type being stored. For example, when storing doubles (i64) the
8871 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8872 // the predicate and the data being stored must match. Cast accordingly.
8873 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8874
8875 // For "vector base, scalar index" scale the index so that it becomes a
8876 // scalar offset.
8877 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8878 unsigned BytesPerElt =
8879 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8880 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8881 Ops[3] = Builder.CreateMul(Ops[3], Scale);
8882 }
8883
8884 return Builder.CreateCall(F, Ops);
8885}
8886
8887Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
8888 SmallVectorImpl<Value *> &Ops,
8889 unsigned IntID) {
8890 // The gather prefetches are overloaded on the vector input - this can either
8891 // be the vector of base addresses or vector of offsets.
8892 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8893 if (!OverloadedTy)
8894 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8895
8896 // Cast the predicate from svbool_t to the right number of elements.
8897 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8898
8899 // vector + imm addressing modes
8900 if (Ops[1]->getType()->isVectorTy()) {
8901 if (Ops.size() == 3) {
8902 // Pass 0 for 'vector+imm' when the index is omitted.
8903 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8904
8905 // The sv_prfop is the last operand in the builtin and IR intrinsic.
8906 std::swap(Ops[2], Ops[3]);
8907 } else {
8908 // Index needs to be passed as scaled offset.
8909 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8910 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8911 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8912 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8913 }
8914 }
8915
8916 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8917 return Builder.CreateCall(F, Ops);
8918}
8919
8920Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
8921 SmallVectorImpl<Value*> &Ops,
8922 unsigned IntID) {
8923 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8924 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8925 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8926
8927 unsigned N;
8928 switch (IntID) {
8929 case Intrinsic::aarch64_sve_ld2:
8930 N = 2;
8931 break;
8932 case Intrinsic::aarch64_sve_ld3:
8933 N = 3;
8934 break;
8935 case Intrinsic::aarch64_sve_ld4:
8936 N = 4;
8937 break;
8938 default:
8939 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8939)
;
8940 }
8941 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8942 VTy->getElementCount() * N);
8943
8944 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8945 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8946 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8947 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8948 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8949
8950 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8951 return Builder.CreateCall(F, { Predicate, BasePtr });
8952}
8953
8954Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
8955 SmallVectorImpl<Value*> &Ops,
8956 unsigned IntID) {
8957 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8958 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8959 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8960
8961 unsigned N;
8962 switch (IntID) {
8963 case Intrinsic::aarch64_sve_st2:
8964 N = 2;
8965 break;
8966 case Intrinsic::aarch64_sve_st3:
8967 N = 3;
8968 break;
8969 case Intrinsic::aarch64_sve_st4:
8970 N = 4;
8971 break;
8972 default:
8973 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8973)
;
8974 }
8975 auto TupleTy =
8976 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8977
8978 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8979 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8980 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8981 Value *Val = Ops.back();
8982 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8983 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8984
8985 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8986 // need to break up the tuple vector.
8987 SmallVector<llvm::Value*, 5> Operands;
8988 Function *FExtr =
8989 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8990 for (unsigned I = 0; I < N; ++I)
8991 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8992 Operands.append({Predicate, BasePtr});
8993
8994 Function *F = CGM.getIntrinsic(IntID, { VTy });
8995 return Builder.CreateCall(F, Operands);
8996}
8997
8998// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8999// svpmullt_pair intrinsics, with the exception that their results are bitcast
9000// to a wider type.
9001Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
9002 SmallVectorImpl<Value *> &Ops,
9003 unsigned BuiltinID) {
9004 // Splat scalar operand to vector (intrinsics with _n infix)
9005 if (TypeFlags.hasSplatOperand()) {
9006 unsigned OpNo = TypeFlags.getSplatOperand();
9007 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9008 }
9009
9010 // The pair-wise function has a narrower overloaded type.
9011 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
9012 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
9013
9014 // Now bitcast to the wider result type.
9015 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
9016 return EmitSVEReinterpret(Call, Ty);
9017}
9018
9019Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
9020 ArrayRef<Value *> Ops, unsigned BuiltinID) {
9021 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
9022 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
9023 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
9024}
9025
9026Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
9027 SmallVectorImpl<Value *> &Ops,
9028 unsigned BuiltinID) {
9029 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9030 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
9031 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9032
9033 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9034 Value *BasePtr = Ops[1];
9035
9036 // Implement the index operand if not omitted.
9037 if (Ops.size() > 3) {
9038 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
9039 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9040 }
9041
9042 // Prefetch intriniscs always expect an i8*
9043 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
9044 Value *PrfOp = Ops.back();
9045
9046 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
9047 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
9048}
9049
9050Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
9051 llvm::Type *ReturnTy,
9052 SmallVectorImpl<Value *> &Ops,
9053 unsigned BuiltinID,
9054 bool IsZExtReturn) {
9055 QualType LangPTy = E->getArg(1)->getType();
9056 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9057 LangPTy->castAs<PointerType>()->getPointeeType());
9058
9059 // The vector type that is returned may be different from the
9060 // eventual type loaded from memory.
9061 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
9062 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9063
9064 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9065 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9066 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
9067 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9068
9069 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9070 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9071 auto *Load =
9072 cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
9073 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9074 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
9075
9076 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
9077 : Builder.CreateSExt(Load, VectorTy);
9078}
9079
9080Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
9081 SmallVectorImpl<Value *> &Ops,
9082 unsigned BuiltinID) {
9083 QualType LangPTy = E->getArg(1)->getType();
9084 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9085 LangPTy->castAs<PointerType>()->getPointeeType());
9086
9087 // The vector type that is stored may be different from the
9088 // eventual type stored to memory.
9089 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9090 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9091
9092 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9093 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9094 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
9095 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9096
9097 // Last value is always the data
9098 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
9099
9100 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9101 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9102 auto *Store =
9103 cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9104 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9105 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9106 return Store;
9107}
9108
9109// Limit the usage of scalable llvm IR generated by the ACLE by using the
9110// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
9111Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
9112 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
9113 return Builder.CreateCall(F, Scalar);
9114}
9115
9116Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
9117 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
9118}
9119
9120Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
9121 // FIXME: For big endian this needs an additional REV, or needs a separate
9122 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
9123 // instruction is defined as 'bitwise' equivalent from memory point of
9124 // view (when storing/reloading), whereas the svreinterpret builtin
9125 // implements bitwise equivalent cast from register point of view.
9126 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
9127 return Builder.CreateBitCast(Val, Ty);
9128}
9129
9130static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9131 SmallVectorImpl<Value *> &Ops) {
9132 auto *SplatZero = Constant::getNullValue(Ty);
9133 Ops.insert(Ops.begin(), SplatZero);
9134}
9135
9136static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9137 SmallVectorImpl<Value *> &Ops) {
9138 auto *SplatUndef = UndefValue::get(Ty);
9139 Ops.insert(Ops.begin(), SplatUndef);
9140}
9141
9142SmallVector<llvm::Type *, 2>
9143CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
9144 llvm::Type *ResultType,
9145 ArrayRef<Value *> Ops) {
9146 if (TypeFlags.isOverloadNone())
9147 return {};
9148
9149 llvm::Type *DefaultType = getSVEType(TypeFlags);
9150
9151 if (TypeFlags.isOverloadWhile())
9152 return {DefaultType, Ops[1]->getType()};
9153
9154 if (TypeFlags.isOverloadWhileRW())
9155 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
9156
9157 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
9158 return {Ops[0]->getType(), Ops.back()->getType()};
9159
9160 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
9161 return {ResultType, Ops[0]->getType()};
9162
9163 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads")(static_cast <bool> (TypeFlags.isOverloadDefault() &&
"Unexpected value for overloads") ? void (0) : __assert_fail
("TypeFlags.isOverloadDefault() && \"Unexpected value for overloads\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9163, __extension__ __PRETTY_FUNCTION__
))
;
9164 return {DefaultType};
9165}
9166
9167Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
9168 const CallExpr *E) {
9169 // Find out if any arguments are required to be integer constant expressions.
9170 unsigned ICEArguments = 0;
9171 ASTContext::GetBuiltinTypeError Error;
9172 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9173 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9173, __extension__ __PRETTY_FUNCTION__
))
;
9174
9175 llvm::Type *Ty = ConvertType(E->getType());
9176 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
9177 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
9178 Value *Val = EmitScalarExpr(E->getArg(0));
9179 return EmitSVEReinterpret(Val, Ty);
9180 }
9181
9182 llvm::SmallVector<Value *, 4> Ops;
9183 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9184 if ((ICEArguments & (1 << i)) == 0)
9185 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9186 else {
9187 // If this is required to be a constant, constant fold it so that we know
9188 // that the generated intrinsic gets a ConstantInt.
9189 Optional<llvm::APSInt> Result =
9190 E->getArg(i)->getIntegerConstantExpr(getContext());
9191 assert(Result && "Expected argument to be a constant")(static_cast <bool> (Result && "Expected argument to be a constant"
) ? void (0) : __assert_fail ("Result && \"Expected argument to be a constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9191, __extension__ __PRETTY_FUNCTION__
))
;
9192
9193 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
9194 // truncate because the immediate has been range checked and no valid
9195 // immediate requires more than a handful of bits.
9196 *Result = Result->extOrTrunc(32);
9197 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
9198 }
9199 }
9200
9201 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
9202 AArch64SVEIntrinsicsProvenSorted);
9203 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9204 if (TypeFlags.isLoad())
9205 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
9206 TypeFlags.isZExtReturn());
9207 else if (TypeFlags.isStore())
9208 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
9209 else if (TypeFlags.isGatherLoad())
9210 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9211 else if (TypeFlags.isScatterStore())
9212 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9213 else if (TypeFlags.isPrefetch())
9214 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9215 else if (TypeFlags.isGatherPrefetch())
9216 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9217 else if (TypeFlags.isStructLoad())
9218 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9219 else if (TypeFlags.isStructStore())
9220 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9221 else if (TypeFlags.isUndef())
9222 return UndefValue::get(Ty);
9223 else if (Builtin->LLVMIntrinsic != 0) {
9224 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9225 InsertExplicitZeroOperand(Builder, Ty, Ops);
9226
9227 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9228 InsertExplicitUndefOperand(Builder, Ty, Ops);
9229
9230 // Some ACLE builtins leave out the argument to specify the predicate
9231 // pattern, which is expected to be expanded to an SV_ALL pattern.
9232 if (TypeFlags.isAppendSVALL())
9233 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9234 if (TypeFlags.isInsertOp1SVALL())
9235 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9236
9237 // Predicates must match the main datatype.
9238 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9239 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9240 if (PredTy->getElementType()->isIntegerTy(1))
9241 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9242
9243 // Splat scalar operand to vector (intrinsics with _n infix)
9244 if (TypeFlags.hasSplatOperand()) {
9245 unsigned OpNo = TypeFlags.getSplatOperand();
9246 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9247 }
9248
9249 if (TypeFlags.isReverseCompare())
9250 std::swap(Ops[1], Ops[2]);
9251
9252 if (TypeFlags.isReverseUSDOT())
9253 std::swap(Ops[1], Ops[2]);
9254
9255 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9256 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9257 llvm::Type *OpndTy = Ops[1]->getType();
9258 auto *SplatZero = Constant::getNullValue(OpndTy);
9259 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
9260 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
9261 }
9262
9263 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9264 getSVEOverloadTypes(TypeFlags, Ty, Ops));
9265 Value *Call = Builder.CreateCall(F, Ops);
9266
9267 // Predicate results must be converted to svbool_t.
9268 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9269 if (PredTy->getScalarType()->isIntegerTy(1))
9270 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9271
9272 return Call;
9273 }
9274
9275 switch (BuiltinID) {
9276 default:
9277 return nullptr;
9278
9279 case SVE::BI__builtin_sve_svmov_b_z: {
9280 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9281 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9282 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9283 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9284 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9285 }
9286
9287 case SVE::BI__builtin_sve_svnot_b_z: {
9288 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9289 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9290 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9291 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9292 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9293 }
9294
9295 case SVE::BI__builtin_sve_svmovlb_u16:
9296 case SVE::BI__builtin_sve_svmovlb_u32:
9297 case SVE::BI__builtin_sve_svmovlb_u64:
9298 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9299
9300 case SVE::BI__builtin_sve_svmovlb_s16:
9301 case SVE::BI__builtin_sve_svmovlb_s32:
9302 case SVE::BI__builtin_sve_svmovlb_s64:
9303 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9304
9305 case SVE::BI__builtin_sve_svmovlt_u16:
9306 case SVE::BI__builtin_sve_svmovlt_u32:
9307 case SVE::BI__builtin_sve_svmovlt_u64:
9308 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9309
9310 case SVE::BI__builtin_sve_svmovlt_s16:
9311 case SVE::BI__builtin_sve_svmovlt_s32:
9312 case SVE::BI__builtin_sve_svmovlt_s64:
9313 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9314
9315 case SVE::BI__builtin_sve_svpmullt_u16:
9316 case SVE::BI__builtin_sve_svpmullt_u64:
9317 case SVE::BI__builtin_sve_svpmullt_n_u16:
9318 case SVE::BI__builtin_sve_svpmullt_n_u64:
9319 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9320
9321 case SVE::BI__builtin_sve_svpmullb_u16:
9322 case SVE::BI__builtin_sve_svpmullb_u64:
9323 case SVE::BI__builtin_sve_svpmullb_n_u16:
9324 case SVE::BI__builtin_sve_svpmullb_n_u64:
9325 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9326
9327 case SVE::BI__builtin_sve_svdup_n_b8:
9328 case SVE::BI__builtin_sve_svdup_n_b16:
9329 case SVE::BI__builtin_sve_svdup_n_b32:
9330 case SVE::BI__builtin_sve_svdup_n_b64: {
9331 Value *CmpNE =
9332 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9333 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9334 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9335 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9336 }
9337
9338 case SVE::BI__builtin_sve_svdupq_n_b8:
9339 case SVE::BI__builtin_sve_svdupq_n_b16:
9340 case SVE::BI__builtin_sve_svdupq_n_b32:
9341 case SVE::BI__builtin_sve_svdupq_n_b64:
9342 case SVE::BI__builtin_sve_svdupq_n_u8:
9343 case SVE::BI__builtin_sve_svdupq_n_s8:
9344 case SVE::BI__builtin_sve_svdupq_n_u64:
9345 case SVE::BI__builtin_sve_svdupq_n_f64:
9346 case SVE::BI__builtin_sve_svdupq_n_s64:
9347 case SVE::BI__builtin_sve_svdupq_n_u16:
9348 case SVE::BI__builtin_sve_svdupq_n_f16:
9349 case SVE::BI__builtin_sve_svdupq_n_bf16:
9350 case SVE::BI__builtin_sve_svdupq_n_s16:
9351 case SVE::BI__builtin_sve_svdupq_n_u32:
9352 case SVE::BI__builtin_sve_svdupq_n_f32:
9353 case SVE::BI__builtin_sve_svdupq_n_s32: {
9354 // These builtins are implemented by storing each element to an array and using
9355 // ld1rq to materialize a vector.
9356 unsigned NumOpnds = Ops.size();
9357
9358 bool IsBoolTy =
9359 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9360
9361 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9362 // so that the compare can use the width that is natural for the expected
9363 // number of predicate lanes.
9364 llvm::Type *EltTy = Ops[0]->getType();
9365 if (IsBoolTy)
9366 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9367
9368 SmallVector<llvm::Value *, 16> VecOps;
9369 for (unsigned I = 0; I < NumOpnds; ++I)
9370 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9371 Value *Vec = BuildVector(VecOps);
9372
9373 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9374 Value *Pred = EmitSVEAllTruePred(TypeFlags);
9375
9376 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9377 Value *InsertSubVec = Builder.CreateInsertVector(
9378 OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9379
9380 Function *F =
9381 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9382 Value *DupQLane =
9383 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9384
9385 if (!IsBoolTy)
9386 return DupQLane;
9387
9388 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9389 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9390 : Intrinsic::aarch64_sve_cmpne_wide,
9391 OverloadedTy);
9392 Value *Call = Builder.CreateCall(
9393 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9394 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9395 }
9396
9397 case SVE::BI__builtin_sve_svpfalse_b:
9398 return ConstantInt::getFalse(Ty);
9399
9400 case SVE::BI__builtin_sve_svlen_bf16:
9401 case SVE::BI__builtin_sve_svlen_f16:
9402 case SVE::BI__builtin_sve_svlen_f32:
9403 case SVE::BI__builtin_sve_svlen_f64:
9404 case SVE::BI__builtin_sve_svlen_s8:
9405 case SVE::BI__builtin_sve_svlen_s16:
9406 case SVE::BI__builtin_sve_svlen_s32:
9407 case SVE::BI__builtin_sve_svlen_s64:
9408 case SVE::BI__builtin_sve_svlen_u8:
9409 case SVE::BI__builtin_sve_svlen_u16:
9410 case SVE::BI__builtin_sve_svlen_u32:
9411 case SVE::BI__builtin_sve_svlen_u64: {
9412 SVETypeFlags TF(Builtin->TypeModifier);
9413 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9414 auto *NumEls =
9415 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9416
9417 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9418 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9419 }
9420
9421 case SVE::BI__builtin_sve_svtbl2_u8:
9422 case SVE::BI__builtin_sve_svtbl2_s8:
9423 case SVE::BI__builtin_sve_svtbl2_u16:
9424 case SVE::BI__builtin_sve_svtbl2_s16:
9425 case SVE::BI__builtin_sve_svtbl2_u32:
9426 case SVE::BI__builtin_sve_svtbl2_s32:
9427 case SVE::BI__builtin_sve_svtbl2_u64:
9428 case SVE::BI__builtin_sve_svtbl2_s64:
9429 case SVE::BI__builtin_sve_svtbl2_f16:
9430 case SVE::BI__builtin_sve_svtbl2_bf16:
9431 case SVE::BI__builtin_sve_svtbl2_f32:
9432 case SVE::BI__builtin_sve_svtbl2_f64: {
9433 SVETypeFlags TF(Builtin->TypeModifier);
9434 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9435 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9436 Function *FExtr =
9437 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9438 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9439 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9440 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9441 return Builder.CreateCall(F, {V0, V1, Ops[1]});
9442 }
9443
9444 case SVE::BI__builtin_sve_svset_neonq_s8:
9445 case SVE::BI__builtin_sve_svset_neonq_s16:
9446 case SVE::BI__builtin_sve_svset_neonq_s32:
9447 case SVE::BI__builtin_sve_svset_neonq_s64:
9448 case SVE::BI__builtin_sve_svset_neonq_u8:
9449 case SVE::BI__builtin_sve_svset_neonq_u16:
9450 case SVE::BI__builtin_sve_svset_neonq_u32:
9451 case SVE::BI__builtin_sve_svset_neonq_u64:
9452 case SVE::BI__builtin_sve_svset_neonq_f16:
9453 case SVE::BI__builtin_sve_svset_neonq_f32:
9454 case SVE::BI__builtin_sve_svset_neonq_f64:
9455 case SVE::BI__builtin_sve_svset_neonq_bf16: {
9456 return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
9457 }
9458
9459 case SVE::BI__builtin_sve_svget_neonq_s8:
9460 case SVE::BI__builtin_sve_svget_neonq_s16:
9461 case SVE::BI__builtin_sve_svget_neonq_s32:
9462 case SVE::BI__builtin_sve_svget_neonq_s64:
9463 case SVE::BI__builtin_sve_svget_neonq_u8:
9464 case SVE::BI__builtin_sve_svget_neonq_u16:
9465 case SVE::BI__builtin_sve_svget_neonq_u32:
9466 case SVE::BI__builtin_sve_svget_neonq_u64:
9467 case SVE::BI__builtin_sve_svget_neonq_f16:
9468 case SVE::BI__builtin_sve_svget_neonq_f32:
9469 case SVE::BI__builtin_sve_svget_neonq_f64:
9470 case SVE::BI__builtin_sve_svget_neonq_bf16: {
9471 return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
9472 }
9473
9474 case SVE::BI__builtin_sve_svdup_neonq_s8:
9475 case SVE::BI__builtin_sve_svdup_neonq_s16:
9476 case SVE::BI__builtin_sve_svdup_neonq_s32:
9477 case SVE::BI__builtin_sve_svdup_neonq_s64:
9478 case SVE::BI__builtin_sve_svdup_neonq_u8:
9479 case SVE::BI__builtin_sve_svdup_neonq_u16:
9480 case SVE::BI__builtin_sve_svdup_neonq_u32:
9481 case SVE::BI__builtin_sve_svdup_neonq_u64:
9482 case SVE::BI__builtin_sve_svdup_neonq_f16:
9483 case SVE::BI__builtin_sve_svdup_neonq_f32:
9484 case SVE::BI__builtin_sve_svdup_neonq_f64:
9485 case SVE::BI__builtin_sve_svdup_neonq_bf16: {
9486 Value *Insert = Builder.CreateInsertVector(Ty, UndefValue::get(Ty), Ops[0],
9487 Builder.getInt64(0));
9488 return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
9489 {Insert, Builder.getInt64(0)});
9490 }
9491 }
9492
9493 /// Should not happen
9494 return nullptr;
9495}
9496
9497Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9498 const CallExpr *E,
9499 llvm::Triple::ArchType Arch) {
9500 if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9501 BuiltinID <= AArch64::LastSVEBuiltin)
9502 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9503
9504 unsigned HintID = static_cast<unsigned>(-1);
9505 switch (BuiltinID) {
9506 default: break;
9507 case AArch64::BI__builtin_arm_nop:
9508 HintID = 0;
9509 break;
9510 case AArch64::BI__builtin_arm_yield:
9511 case AArch64::BI__yield:
9512 HintID = 1;
9513 break;
9514 case AArch64::BI__builtin_arm_wfe:
9515 case AArch64::BI__wfe:
9516 HintID = 2;
9517 break;
9518 case AArch64::BI__builtin_arm_wfi:
9519 case AArch64::BI__wfi:
9520 HintID = 3;
9521 break;
9522 case AArch64::BI__builtin_arm_sev:
9523 case AArch64::BI__sev:
9524 HintID = 4;
9525 break;
9526 case AArch64::BI__builtin_arm_sevl:
9527 case AArch64::BI__sevl:
9528 HintID = 5;
9529 break;
9530 }
9531
9532 if (HintID != static_cast<unsigned>(-1)) {
9533 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9534 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9535 }
9536
9537 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9538 Value *Address = EmitScalarExpr(E->getArg(0));
9539 Value *RW = EmitScalarExpr(E->getArg(1));
9540 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
9541 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9542 Value *IsData = EmitScalarExpr(E->getArg(4));
9543
9544 Value *Locality = nullptr;
9545 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9546 // Temporal fetch, needs to convert cache level to locality.
9547 Locality = llvm::ConstantInt::get(Int32Ty,
9548 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9549 } else {
9550 // Streaming fetch.
9551 Locality = llvm::ConstantInt::get(Int32Ty, 0);
9552 }
9553
9554 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9555 // PLDL3STRM or PLDL2STRM.
9556 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9557 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9558 }
9559
9560 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9561 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9562, __extension__ __PRETTY_FUNCTION__
))
9562 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9562, __extension__ __PRETTY_FUNCTION__
))
;
9563 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9564 return Builder.CreateCall(
9565 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9566 }
9567 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9568 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9569, __extension__ __PRETTY_FUNCTION__
))
9569 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9569, __extension__ __PRETTY_FUNCTION__
))
;
9570 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9571 return Builder.CreateCall(
9572 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9573 }
9574
9575 if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9576 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9577 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9578 "cls");
9579 }
9580 if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9581 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9582 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9583 "cls");
9584 }
9585
9586 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9587 BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9588 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9589 llvm::Type *Ty = Arg->getType();
9590 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9591 Arg, "frint32z");
9592 }
9593
9594 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9595 BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9596 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9597 llvm::Type *Ty = Arg->getType();
9598 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9599 Arg, "frint64z");
9600 }
9601
9602 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9603 BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9604 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9605 llvm::Type *Ty = Arg->getType();
9606 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9607 Arg, "frint32x");
9608 }
9609
9610 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9611 BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9612 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9613 llvm::Type *Ty = Arg->getType();
9614 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9615 Arg, "frint64x");
9616 }
9617
9618 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9619 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9620, __extension__ __PRETTY_FUNCTION__
))
9620 "__jcvt of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9620, __extension__ __PRETTY_FUNCTION__
))
;
9621 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9622 return Builder.CreateCall(
9623 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9624 }
9625
9626 if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9627 BuiltinID == AArch64::BI__builtin_arm_st64b ||
9628 BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9629 BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9630 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9631 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9632
9633 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9634 // Load from the address via an LLVM intrinsic, receiving a
9635 // tuple of 8 i64 words, and store each one to ValPtr.
9636 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9637 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9638 llvm::Value *ToRet;
9639 for (size_t i = 0; i < 8; i++) {
9640 llvm::Value *ValOffsetPtr =
9641 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9642 Address Addr =
9643 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9644 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9645 }
9646 return ToRet;
9647 } else {
9648 // Load 8 i64 words from ValPtr, and store them to the address
9649 // via an LLVM intrinsic.
9650 SmallVector<llvm::Value *, 9> Args;
9651 Args.push_back(MemAddr);
9652 for (size_t i = 0; i < 8; i++) {
9653 llvm::Value *ValOffsetPtr =
9654 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9655 Address Addr =
9656 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9657 Args.push_back(Builder.CreateLoad(Addr));
9658 }
9659
9660 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9661 ? Intrinsic::aarch64_st64b
9662 : BuiltinID == AArch64::BI__builtin_arm_st64bv
9663 ? Intrinsic::aarch64_st64bv
9664 : Intrinsic::aarch64_st64bv0);
9665 Function *F = CGM.getIntrinsic(Intr);
9666 return Builder.CreateCall(F, Args);
9667 }
9668 }
9669
9670 if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9671 BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9672
9673 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9674 ? Intrinsic::aarch64_rndr
9675 : Intrinsic::aarch64_rndrrs);
9676 Function *F = CGM.getIntrinsic(Intr);
9677 llvm::Value *Val = Builder.CreateCall(F);
9678 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9679 Value *Status = Builder.CreateExtractValue(Val, 1);
9680
9681 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9682 Builder.CreateStore(RandomValue, MemAddress);
9683 Status = Builder.CreateZExt(Status, Int32Ty);
9684 return Status;
9685 }
9686
9687 if (BuiltinID == AArch64::BI__clear_cache) {
9688 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9688, __extension__ __PRETTY_FUNCTION__
))
;
9689 const FunctionDecl *FD = E->getDirectCallee();
9690 Value *Ops[2];
9691 for (unsigned i = 0; i < 2; i++)
9692 Ops[i] = EmitScalarExpr(E->getArg(i));
9693 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9694 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9695 StringRef Name = FD->getName();
9696 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9697 }
9698
9699 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9700 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9701 getContext().getTypeSize(E->getType()) == 128) {
9702 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9703 ? Intrinsic::aarch64_ldaxp
9704 : Intrinsic::aarch64_ldxp);
9705
9706 Value *LdPtr = EmitScalarExpr(E->getArg(0));
9707 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9708 "ldxp");
9709
9710 Value *Val0 = Builder.CreateExtractValue(Val, 1);
9711 Value *Val1 = Builder.CreateExtractValue(Val, 0);
9712 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9713 Val0 = Builder.CreateZExt(Val0, Int128Ty);
9714 Val1 = Builder.CreateZExt(Val1, Int128Ty);
9715
9716 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9717 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9718 Val = Builder.CreateOr(Val, Val1);
9719 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9720 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9721 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9722 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9723
9724 QualType Ty = E->getType();
9725 llvm::Type *RealResTy = ConvertType(Ty);
9726 llvm::Type *IntTy =
9727 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
9728 llvm::Type *PtrTy = IntTy->getPointerTo();
9729 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9730
9731 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9732 ? Intrinsic::aarch64_ldaxr
9733 : Intrinsic::aarch64_ldxr,
9734 PtrTy);
9735 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9736 Val->addParamAttr(
9737 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
9738
9739 if (RealResTy->isPointerTy())
9740 return Builder.CreateIntToPtr(Val, RealResTy);
9741
9742 llvm::Type *IntResTy = llvm::IntegerType::get(
9743 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9744 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
9745 RealResTy);
9746 }
9747
9748 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9749 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9750 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9751 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9752 ? Intrinsic::aarch64_stlxp
9753 : Intrinsic::aarch64_stxp);
9754 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9755
9756 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9757 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9758
9759 Tmp = Builder.CreateElementBitCast(Tmp, STy);
9760 llvm::Value *Val = Builder.CreateLoad(Tmp);
9761
9762 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9763 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9764 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9765 Int8PtrTy);
9766 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9767 }
9768
9769 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9770 BuiltinID == AArch64::BI__builtin_arm_stlex) {
9771 Value *StoreVal = EmitScalarExpr(E->getArg(0));
9772 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9773
9774 QualType Ty = E->getArg(0)->getType();
9775 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9776 getContext().getTypeSize(Ty));
9777 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9778
9779 if (StoreVal->getType()->isPointerTy())
9780 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9781 else {
9782 llvm::Type *IntTy = llvm::IntegerType::get(
9783 getLLVMContext(),
9784 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9785 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9786 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9787 }
9788
9789 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9790 ? Intrinsic::aarch64_stlxr
9791 : Intrinsic::aarch64_stxr,
9792 StoreAddr->getType());
9793 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9794 CI->addParamAttr(
9795 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
9796 return CI;
9797 }
9798
9799 if (BuiltinID == AArch64::BI__getReg) {
9800 Expr::EvalResult Result;
9801 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9802 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 9802)
;
9803
9804 llvm::APSInt Value = Result.Val.getInt();
9805 LLVMContext &Context = CGM.getLLVMContext();
9806 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9807
9808 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9809 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9810 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9811
9812 llvm::Function *F =
9813 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9814 return Builder.CreateCall(F, Metadata);
9815 }
9816
9817 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9818 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9819 return Builder.CreateCall(F);
9820 }
9821
9822 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9823 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9824 llvm::SyncScope::SingleThread);
9825
9826 // CRC32
9827 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9828 switch (BuiltinID) {
9829 case AArch64::BI__builtin_arm_crc32b:
9830 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9831 case AArch64::BI__builtin_arm_crc32cb:
9832 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9833 case AArch64::BI__builtin_arm_crc32h:
9834 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9835 case AArch64::BI__builtin_arm_crc32ch:
9836 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9837 case AArch64::BI__builtin_arm_crc32w:
9838 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9839 case AArch64::BI__builtin_arm_crc32cw:
9840 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9841 case AArch64::BI__builtin_arm_crc32d:
9842 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9843 case AArch64::BI__builtin_arm_crc32cd:
9844 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9845 }
9846
9847 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9848 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9849 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9850 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9851
9852 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9853 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9854
9855 return Builder.CreateCall(F, {Arg0, Arg1});
9856 }
9857
9858 // Memory Operations (MOPS)
9859 if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
9860 Value *Dst = EmitScalarExpr(E->getArg(0));
9861 Value *Val = EmitScalarExpr(E->getArg(1));
9862 Value *Size = EmitScalarExpr(E->getArg(2));
9863 Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
9864 Val = Builder.CreateTrunc(Val, Int8Ty);
9865 Size = Builder.CreateIntCast(Size, Int64Ty, false);
9866 return Builder.CreateCall(
9867 CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
9868 }
9869
9870 // Memory Tagging Extensions (MTE) Intrinsics
9871 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9872 switch (BuiltinID) {
9873 case AArch64::BI__builtin_arm_irg:
9874 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9875 case AArch64::BI__builtin_arm_addg:
9876 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9877 case AArch64::BI__builtin_arm_gmi:
9878 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9879 case AArch64::BI__builtin_arm_ldg:
9880 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9881 case AArch64::BI__builtin_arm_stg:
9882 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9883 case AArch64::BI__builtin_arm_subp:
9884 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9885 }
9886
9887 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9888 llvm::Type *T = ConvertType(E->getType());
9889
9890 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9891 Value *Pointer = EmitScalarExpr(E->getArg(0));
9892 Value *Mask = EmitScalarExpr(E->getArg(1));
9893
9894 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9895 Mask = Builder.CreateZExt(Mask, Int64Ty);
9896 Value *RV = Builder.CreateCall(
9897 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9898 return Builder.CreatePointerCast(RV, T);
9899 }
9900 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9901 Value *Pointer = EmitScalarExpr(E->getArg(0));
9902 Value *TagOffset = EmitScalarExpr(E->getArg(1));
9903
9904 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9905 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9906 Value *RV = Builder.CreateCall(
9907 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9908 return Builder.CreatePointerCast(RV, T);
9909 }
9910 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9911 Value *Pointer = EmitScalarExpr(E->getArg(0));
9912 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9913
9914 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9915 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9916 return Builder.CreateCall(
9917 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9918 }
9919 // Although it is possible to supply a different return
9920 // address (first arg) to this intrinsic, for now we set
9921 // return address same as input address.
9922 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9923 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9924 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9925 Value *RV = Builder.CreateCall(
9926 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9927 return Builder.CreatePointerCast(RV, T);
9928 }
9929 // Although it is possible to supply a different tag (to set)
9930 // to this intrinsic (as first arg), for now we supply
9931 // the tag that is in input address arg (common use case).
9932 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9933 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9934 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9935 return Builder.CreateCall(
9936 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9937 }
9938 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9939 Value *PointerA = EmitScalarExpr(E->getArg(0));
9940 Value *PointerB = EmitScalarExpr(E->getArg(1));
9941 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9942 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9943 return Builder.CreateCall(
9944 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9945 }
9946 }
9947
9948 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9949 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9950 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9951 BuiltinID == AArch64::BI__builtin_arm_wsr ||
9952 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9953 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9954
9955 SpecialRegisterAccessKind AccessKind = Write;
9956 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9957 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9958 BuiltinID == AArch64::BI__builtin_arm_rsrp)
9959 AccessKind = VolatileRead;
9960
9961 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9962 BuiltinID == AArch64::BI__builtin_arm_wsrp;
9963
9964 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9965 BuiltinID != AArch64::BI__builtin_arm_wsr;
9966
9967 llvm::Type *ValueType;
9968 llvm::Type *RegisterType = Int64Ty;
9969 if (IsPointerBuiltin) {
9970 ValueType = VoidPtrTy;
9971 } else if (Is64Bit) {
9972 ValueType = Int64Ty;
9973 } else {
9974 ValueType = Int32Ty;
9975 }
9976
9977 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9978 AccessKind);
9979 }
9980
9981 if (BuiltinID == AArch64::BI_ReadStatusReg ||
9982 BuiltinID == AArch64::BI_WriteStatusReg) {
9983 LLVMContext &Context = CGM.getLLVMContext();
9984
9985 unsigned SysReg =
9986 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9987
9988 std::string SysRegStr;
9989 llvm::raw_string_ostream(SysRegStr) <<
9990 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
9991 ((SysReg >> 11) & 7) << ":" <<
9992 ((SysReg >> 7) & 15) << ":" <<
9993 ((SysReg >> 3) & 15) << ":" <<
9994 ( SysReg & 7);
9995
9996 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9997 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9998 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9999
10000 llvm::Type *RegisterType = Int64Ty;
10001 llvm::Type *Types[] = { RegisterType };
10002
10003 if (BuiltinID == AArch64::BI_ReadStatusReg) {
10004 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
10005
10006 return Builder.CreateCall(F, Metadata);
10007 }
10008
10009 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
10010 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
10011
10012 return Builder.CreateCall(F, { Metadata, ArgValue });
10013 }
10014
10015 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
10016 llvm::Function *F =
10017 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
10018 return Builder.CreateCall(F);
10019 }
10020
10021 if (BuiltinID == AArch64::BI__builtin_sponentry) {
10022 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
10023 return Builder.CreateCall(F);
10024 }
10025
10026 if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) {
10027 llvm::Type *ResType = ConvertType(E->getType());
10028 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
10029
10030 bool IsSigned = BuiltinID == AArch64::BI__mulh;
10031 Value *LHS =
10032 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
10033 Value *RHS =
10034 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
10035
10036 Value *MulResult, *HigherBits;
10037 if (IsSigned) {
10038 MulResult = Builder.CreateNSWMul(LHS, RHS);
10039 HigherBits = Builder.CreateAShr(MulResult, 64);
10040 } else {
10041 MulResult = Builder.CreateNUWMul(LHS, RHS);
10042 HigherBits = Builder.CreateLShr(MulResult, 64);
10043 }
10044 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
10045
10046 return HigherBits;
10047 }
10048
10049 // Handle MSVC intrinsics before argument evaluation to prevent double
10050 // evaluation.
10051 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
10052 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
10053
10054 // Find out if any arguments are required to be integer constant
10055 // expressions.
10056 unsigned ICEArguments = 0;
10057 ASTContext::GetBuiltinTypeError Error;
10058 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10059 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10059, __extension__ __PRETTY_FUNCTION__
))
;
10060
10061 llvm::SmallVector<Value*, 4> Ops;
10062 Address PtrOp0 = Address::invalid();
10063 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
10064 if (i == 0) {
10065 switch (BuiltinID) {
10066 case NEON::BI__builtin_neon_vld1_v:
10067 case NEON::BI__builtin_neon_vld1q_v:
10068 case NEON::BI__builtin_neon_vld1_dup_v:
10069 case NEON::BI__builtin_neon_vld1q_dup_v:
10070 case NEON::BI__builtin_neon_vld1_lane_v:
10071 case NEON::BI__builtin_neon_vld1q_lane_v:
10072 case NEON::BI__builtin_neon_vst1_v:
10073 case NEON::BI__builtin_neon_vst1q_v:
10074 case NEON::BI__builtin_neon_vst1_lane_v:
10075 case NEON::BI__builtin_neon_vst1q_lane_v:
10076 // Get the alignment for the argument in addition to the value;
10077 // we'll use it later.
10078 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
10079 Ops.push_back(PtrOp0.getPointer());
10080 continue;
10081 }
10082 }
10083 if ((ICEArguments & (1 << i)) == 0) {
10084 Ops.push_back(EmitScalarExpr(E->getArg(i)));
10085 } else {
10086 // If this is required to be a constant, constant fold it so that we know
10087 // that the generated intrinsic gets a ConstantInt.
10088 Ops.push_back(llvm::ConstantInt::get(
10089 getLLVMContext(),
10090 *E->getArg(i)->getIntegerConstantExpr(getContext())));
10091 }
10092 }
10093
10094 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
10095 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
10096 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
10097
10098 if (Builtin) {
10099 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
10100 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
10101 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10101, __extension__ __PRETTY_FUNCTION__
))
;
10102 return Result;
10103 }
10104
10105 const Expr *Arg = E->getArg(E->getNumArgs()-1);
10106 NeonTypeFlags Type(0);
10107 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
10108 // Determine the type of this overloaded NEON intrinsic.
10109 Type = NeonTypeFlags(Result->getZExtValue());
10110
10111 bool usgn = Type.isUnsigned();
10112 bool quad = Type.isQuad();
10113
10114 // Handle non-overloaded intrinsics first.
10115 switch (BuiltinID) {
10116 default: break;
10117 case NEON::BI__builtin_neon_vabsh_f16:
10118 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10119 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
10120 case NEON::BI__builtin_neon_vaddq_p128: {
10121 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
10122 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10123 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10124 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10125 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
10126 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10127 return Builder.CreateBitCast(Ops[0], Int128Ty);
10128 }
10129 case NEON::BI__builtin_neon_vldrq_p128: {
10130 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10131 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
10132 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
10133 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
10134 CharUnits::fromQuantity(16));
10135 }
10136 case NEON::BI__builtin_neon_vstrq_p128: {
10137 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
10138 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
10139 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
10140 }
10141 case NEON::BI__builtin_neon_vcvts_f32_u32:
10142 case NEON::BI__builtin_neon_vcvtd_f64_u64:
10143 usgn = true;
10144 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10145 case NEON::BI__builtin_neon_vcvts_f32_s32:
10146 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
10147 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10148 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
10149 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
10150 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
10151 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10152 if (usgn)
10153 return Builder.CreateUIToFP(Ops[0], FTy);
10154 return Builder.CreateSIToFP(Ops[0], FTy);
10155 }
10156 case NEON::BI__builtin_neon_vcvth_f16_u16:
10157 case NEON::BI__builtin_neon_vcvth_f16_u32:
10158 case NEON::BI__builtin_neon_vcvth_f16_u64:
10159 usgn = true;
10160 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10161 case NEON::BI__builtin_neon_vcvth_f16_s16:
10162 case NEON::BI__builtin_neon_vcvth_f16_s32:
10163 case NEON::BI__builtin_neon_vcvth_f16_s64: {
10164 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10165 llvm::Type *FTy = HalfTy;
10166 llvm::Type *InTy;
10167 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
10168 InTy = Int64Ty;
10169 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
10170 InTy = Int32Ty;
10171 else
10172 InTy = Int16Ty;
10173 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10174 if (usgn)
10175 return Builder.CreateUIToFP(Ops[0], FTy);
10176 return Builder.CreateSIToFP(Ops[0], FTy);
10177 }
10178 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10179 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10180 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10181 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10182 case NEON::BI__builtin_neon_vcvth_u16_f16:
10183 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10184 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10185 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10186 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10187 case NEON::BI__builtin_neon_vcvth_s16_f16: {
10188 unsigned Int;
10189 llvm::Type* InTy = Int32Ty;
10190 llvm::Type* FTy = HalfTy;
10191 llvm::Type *Tys[2] = {InTy, FTy};
10192 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10193 switch (BuiltinID) {
10194 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10194)
;
10195 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10196 Int = Intrinsic::aarch64_neon_fcvtau; break;
10197 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10198 Int = Intrinsic::aarch64_neon_fcvtmu; break;
10199 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10200 Int = Intrinsic::aarch64_neon_fcvtnu; break;
10201 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10202 Int = Intrinsic::aarch64_neon_fcvtpu; break;
10203 case NEON::BI__builtin_neon_vcvth_u16_f16:
10204 Int = Intrinsic::aarch64_neon_fcvtzu; break;
10205 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10206 Int = Intrinsic::aarch64_neon_fcvtas; break;
10207 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10208 Int = Intrinsic::aarch64_neon_fcvtms; break;
10209 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10210 Int = Intrinsic::aarch64_neon_fcvtns; break;
10211 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10212 Int = Intrinsic::aarch64_neon_fcvtps; break;
10213 case NEON::BI__builtin_neon_vcvth_s16_f16:
10214 Int = Intrinsic::aarch64_neon_fcvtzs; break;
10215 }
10216 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
10217 return Builder.CreateTrunc(Ops[0], Int16Ty);
10218 }
10219 case NEON::BI__builtin_neon_vcaleh_f16:
10220 case NEON::BI__builtin_neon_vcalth_f16:
10221 case NEON::BI__builtin_neon_vcageh_f16:
10222 case NEON::BI__builtin_neon_vcagth_f16: {
10223 unsigned Int;
10224 llvm::Type* InTy = Int32Ty;
10225 llvm::Type* FTy = HalfTy;
10226 llvm::Type *Tys[2] = {InTy, FTy};
10227 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10228 switch (BuiltinID) {
10229 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10229)
;
10230 case NEON::BI__builtin_neon_vcageh_f16:
10231 Int = Intrinsic::aarch64_neon_facge; break;
10232 case NEON::BI__builtin_neon_vcagth_f16:
10233 Int = Intrinsic::aarch64_neon_facgt; break;
10234 case NEON::BI__builtin_neon_vcaleh_f16:
10235 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
10236 case NEON::BI__builtin_neon_vcalth_f16:
10237 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
10238 }
10239 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
10240 return Builder.CreateTrunc(Ops[0], Int16Ty);
10241 }
10242 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10243 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
10244 unsigned Int;
10245 llvm::Type* InTy = Int32Ty;
10246 llvm::Type* FTy = HalfTy;
10247 llvm::Type *Tys[2] = {InTy, FTy};
10248 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10249 switch (BuiltinID) {
10250 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10250)
;
10251 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10252 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
10253 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
10254 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
10255 }
10256 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10257 return Builder.CreateTrunc(Ops[0], Int16Ty);
10258 }
10259 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10260 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
10261 unsigned Int;
10262 llvm::Type* FTy = HalfTy;
10263 llvm::Type* InTy = Int32Ty;
10264 llvm::Type *Tys[2] = {FTy, InTy};
10265 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10266 switch (BuiltinID) {
10267 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10267)
;
10268 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10269 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
10270 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
10271 break;
10272 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
10273 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
10274 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
10275 break;
10276 }
10277 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10278 }
10279 case NEON::BI__builtin_neon_vpaddd_s64: {
10280 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
10281 Value *Vec = EmitScalarExpr(E->getArg(0));
10282 // The vector is v2f64, so make sure it's bitcast to that.
10283 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
10284 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10285 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10286 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10287 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10288 // Pairwise addition of a v2f64 into a scalar f64.
10289 return Builder.CreateAdd(Op0, Op1, "vpaddd");
10290 }
10291 case NEON::BI__builtin_neon_vpaddd_f64: {
10292 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10293 Value *Vec = EmitScalarExpr(E->getArg(0));
10294 // The vector is v2f64, so make sure it's bitcast to that.
10295 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10296 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10297 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10298 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10299 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10300 // Pairwise addition of a v2f64 into a scalar f64.
10301 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10302 }
10303 case NEON::BI__builtin_neon_vpadds_f32: {
10304 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10305 Value *Vec = EmitScalarExpr(E->getArg(0));
10306 // The vector is v2f32, so make sure it's bitcast to that.
10307 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10308 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10309 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10310 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10311 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10312 // Pairwise addition of a v2f32 into a scalar f32.
10313 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10314 }
10315 case NEON::BI__builtin_neon_vceqzd_s64:
10316 case NEON::BI__builtin_neon_vceqzd_f64:
10317 case NEON::BI__builtin_neon_vceqzs_f32:
10318 case NEON::BI__builtin_neon_vceqzh_f16:
10319 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10320 return EmitAArch64CompareBuiltinExpr(
10321 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10322 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10323 case NEON::BI__builtin_neon_vcgezd_s64:
10324 case NEON::BI__builtin_neon_vcgezd_f64:
10325 case NEON::BI__builtin_neon_vcgezs_f32:
10326 case NEON::BI__builtin_neon_vcgezh_f16:
10327 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10328 return EmitAArch64CompareBuiltinExpr(
10329 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10330 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10331 case NEON::BI__builtin_neon_vclezd_s64:
10332 case NEON::BI__builtin_neon_vclezd_f64:
10333 case NEON::BI__builtin_neon_vclezs_f32:
10334 case NEON::BI__builtin_neon_vclezh_f16:
10335 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10336 return EmitAArch64CompareBuiltinExpr(
10337 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10338 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10339 case NEON::BI__builtin_neon_vcgtzd_s64:
10340 case NEON::BI__builtin_neon_vcgtzd_f64:
10341 case NEON::BI__builtin_neon_vcgtzs_f32:
10342 case NEON::BI__builtin_neon_vcgtzh_f16:
10343 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10344 return EmitAArch64CompareBuiltinExpr(
10345 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10346 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10347 case NEON::BI__builtin_neon_vcltzd_s64:
10348 case NEON::BI__builtin_neon_vcltzd_f64:
10349 case NEON::BI__builtin_neon_vcltzs_f32:
10350 case NEON::BI__builtin_neon_vcltzh_f16:
10351 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10352 return EmitAArch64CompareBuiltinExpr(
10353 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10354 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10355
10356 case NEON::BI__builtin_neon_vceqzd_u64: {
10357 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10358 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10359 Ops[0] =
10360 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10361 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10362 }
10363 case NEON::BI__builtin_neon_vceqd_f64:
10364 case NEON::BI__builtin_neon_vcled_f64:
10365 case NEON::BI__builtin_neon_vcltd_f64:
10366 case NEON::BI__builtin_neon_vcged_f64:
10367 case NEON::BI__builtin_neon_vcgtd_f64: {
10368 llvm::CmpInst::Predicate P;
10369 switch (BuiltinID) {
10370 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10370)
;
10371 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10372 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10373 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10374 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10375 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10376 }
10377 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10378 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10379 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10380 if (P == llvm::FCmpInst::FCMP_OEQ)
10381 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10382 else
10383 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10384 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10385 }
10386 case NEON::BI__builtin_neon_vceqs_f32:
10387 case NEON::BI__builtin_neon_vcles_f32:
10388 case NEON::BI__builtin_neon_vclts_f32:
10389 case NEON::BI__builtin_neon_vcges_f32:
10390 case NEON::BI__builtin_neon_vcgts_f32: {
10391 llvm::CmpInst::Predicate P;
10392 switch (BuiltinID) {
10393 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10393)
;
10394 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10395 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10396 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10397 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10398 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10399 }
10400 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10401 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10402 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10403 if (P == llvm::FCmpInst::FCMP_OEQ)
10404 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10405 else
10406 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10407 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10408 }
10409 case NEON::BI__builtin_neon_vceqh_f16:
10410 case NEON::BI__builtin_neon_vcleh_f16:
10411 case NEON::BI__builtin_neon_vclth_f16:
10412 case NEON::BI__builtin_neon_vcgeh_f16:
10413 case NEON::BI__builtin_neon_vcgth_f16: {
10414 llvm::CmpInst::Predicate P;
10415 switch (BuiltinID) {
10416 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10416)
;
10417 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10418 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10419 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10420 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10421 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10422 }
10423 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10424 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10425 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10426 if (P == llvm::FCmpInst::FCMP_OEQ)
10427 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10428 else
10429 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10430 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10431 }
10432 case NEON::BI__builtin_neon_vceqd_s64:
10433 case NEON::BI__builtin_neon_vceqd_u64:
10434 case NEON::BI__builtin_neon_vcgtd_s64:
10435 case NEON::BI__builtin_neon_vcgtd_u64:
10436 case NEON::BI__builtin_neon_vcltd_s64:
10437 case NEON::BI__builtin_neon_vcltd_u64:
10438 case NEON::BI__builtin_neon_vcged_u64:
10439 case NEON::BI__builtin_neon_vcged_s64:
10440 case NEON::BI__builtin_neon_vcled_u64:
10441 case NEON::BI__builtin_neon_vcled_s64: {
10442 llvm::CmpInst::Predicate P;
10443 switch (BuiltinID) {
10444 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10444)
;
10445 case NEON::BI__builtin_neon_vceqd_s64:
10446 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10447 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10448 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10449 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10450 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10451 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10452 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10453 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10454 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10455 }
10456 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10457 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10458 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10459 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10460 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10461 }
10462 case NEON::BI__builtin_neon_vtstd_s64:
10463 case NEON::BI__builtin_neon_vtstd_u64: {
10464 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10465 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10466 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10467 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10468 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10469 llvm::Constant::getNullValue(Int64Ty));
10470 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10471 }
10472 case NEON::BI__builtin_neon_vset_lane_i8:
10473 case NEON::BI__builtin_neon_vset_lane_i16:
10474 case NEON::BI__builtin_neon_vset_lane_i32:
10475 case NEON::BI__builtin_neon_vset_lane_i64:
10476 case NEON::BI__builtin_neon_vset_lane_bf16:
10477 case NEON::BI__builtin_neon_vset_lane_f32:
10478 case NEON::BI__builtin_neon_vsetq_lane_i8:
10479 case NEON::BI__builtin_neon_vsetq_lane_i16:
10480 case NEON::BI__builtin_neon_vsetq_lane_i32:
10481 case NEON::BI__builtin_neon_vsetq_lane_i64:
10482 case NEON::BI__builtin_neon_vsetq_lane_bf16:
10483 case NEON::BI__builtin_neon_vsetq_lane_f32:
10484 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10485 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10486 case NEON::BI__builtin_neon_vset_lane_f64:
10487 // The vector type needs a cast for the v1f64 variant.
10488 Ops[1] =
10489 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10490 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10491 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10492 case NEON::BI__builtin_neon_vsetq_lane_f64:
10493 // The vector type needs a cast for the v2f64 variant.
10494 Ops[1] =
10495 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10496 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10497 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10498
10499 case NEON::BI__builtin_neon_vget_lane_i8:
10500 case NEON::BI__builtin_neon_vdupb_lane_i8:
10501 Ops[0] =
10502 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10503 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10504 "vget_lane");
10505 case NEON::BI__builtin_neon_vgetq_lane_i8:
10506 case NEON::BI__builtin_neon_vdupb_laneq_i8:
10507 Ops[0] =
10508 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10509 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10510 "vgetq_lane");
10511 case NEON::BI__builtin_neon_vget_lane_i16:
10512 case NEON::BI__builtin_neon_vduph_lane_i16:
10513 Ops[0] =
10514 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10515 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10516 "vget_lane");
10517 case NEON::BI__builtin_neon_vgetq_lane_i16:
10518 case NEON::BI__builtin_neon_vduph_laneq_i16:
10519 Ops[0] =
10520 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10521 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10522 "vgetq_lane");
10523 case NEON::BI__builtin_neon_vget_lane_i32:
10524 case NEON::BI__builtin_neon_vdups_lane_i32:
10525 Ops[0] =
10526 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10527 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10528 "vget_lane");
10529 case NEON::BI__builtin_neon_vdups_lane_f32:
10530 Ops[0] =
10531 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10532 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10533 "vdups_lane");
10534 case NEON::BI__builtin_neon_vgetq_lane_i32:
10535 case NEON::BI__builtin_neon_vdups_laneq_i32:
10536 Ops[0] =
10537 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10538 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10539 "vgetq_lane");
10540 case NEON::BI__builtin_neon_vget_lane_i64:
10541 case NEON::BI__builtin_neon_vdupd_lane_i64:
10542 Ops[0] =
10543 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10544 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10545 "vget_lane");
10546 case NEON::BI__builtin_neon_vdupd_lane_f64:
10547 Ops[0] =
10548 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10549 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10550 "vdupd_lane");
10551 case NEON::BI__builtin_neon_vgetq_lane_i64:
10552 case NEON::BI__builtin_neon_vdupd_laneq_i64:
10553 Ops[0] =
10554 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10555 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10556 "vgetq_lane");
10557 case NEON::BI__builtin_neon_vget_lane_f32:
10558 Ops[0] =
10559 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10560 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10561 "vget_lane");
10562 case NEON::BI__builtin_neon_vget_lane_f64:
10563 Ops[0] =
10564 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10565 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10566 "vget_lane");
10567 case NEON::BI__builtin_neon_vgetq_lane_f32:
10568 case NEON::BI__builtin_neon_vdups_laneq_f32:
10569 Ops[0] =
10570 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10571 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10572 "vgetq_lane");
10573 case NEON::BI__builtin_neon_vgetq_lane_f64:
10574 case NEON::BI__builtin_neon_vdupd_laneq_f64:
10575 Ops[0] =
10576 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10577 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10578 "vgetq_lane");
10579 case NEON::BI__builtin_neon_vaddh_f16:
10580 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10581 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10582 case NEON::BI__builtin_neon_vsubh_f16:
10583 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10584 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10585 case NEON::BI__builtin_neon_vmulh_f16:
10586 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10587 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10588 case NEON::BI__builtin_neon_vdivh_f16:
10589 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10590 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10591 case NEON::BI__builtin_neon_vfmah_f16:
10592 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10593 return emitCallMaybeConstrainedFPBuiltin(
10594 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10595 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10596 case NEON::BI__builtin_neon_vfmsh_f16: {
10597 // FIXME: This should be an fneg instruction:
10598 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10599 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10600
10601 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10602 return emitCallMaybeConstrainedFPBuiltin(
10603 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10604 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10605 }
10606 case NEON::BI__builtin_neon_vaddd_s64:
10607 case NEON::BI__builtin_neon_vaddd_u64:
10608 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10609 case NEON::BI__builtin_neon_vsubd_s64:
10610 case NEON::BI__builtin_neon_vsubd_u64:
10611 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10612 case NEON::BI__builtin_neon_vqdmlalh_s16:
10613 case NEON::BI__builtin_neon_vqdmlslh_s16: {
10614 SmallVector<Value *, 2> ProductOps;
10615 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10616 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10617 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10618 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10619 ProductOps, "vqdmlXl");
10620 Constant *CI = ConstantInt::get(SizeTy, 0);
10621 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10622
10623 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10624 ? Intrinsic::aarch64_neon_sqadd
10625 : Intrinsic::aarch64_neon_sqsub;
10626 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10627 }
10628 case NEON::BI__builtin_neon_vqshlud_n_s64: {
10629 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10630 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10631 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10632 Ops, "vqshlu_n");
10633 }
10634 case NEON::BI__builtin_neon_vqshld_n_u64:
10635 case NEON::BI__builtin_neon_vqshld_n_s64: {
10636 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10637 ? Intrinsic::aarch64_neon_uqshl
10638 : Intrinsic::aarch64_neon_sqshl;
10639 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10640 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10641 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10642 }
10643 case NEON::BI__builtin_neon_vrshrd_n_u64:
10644 case NEON::BI__builtin_neon_vrshrd_n_s64: {
10645 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10646 ? Intrinsic::aarch64_neon_urshl
10647 : Intrinsic::aarch64_neon_srshl;
10648 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10649 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10650 Ops[1] = ConstantInt::get(Int64Ty, -SV);
10651 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10652 }
10653 case NEON::BI__builtin_neon_vrsrad_n_u64:
10654 case NEON::BI__builtin_neon_vrsrad_n_s64: {
10655 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10656 ? Intrinsic::aarch64_neon_urshl
10657 : Intrinsic::aarch64_neon_srshl;
10658 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10659 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10660 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10661 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10662 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10663 }
10664 case NEON::BI__builtin_neon_vshld_n_s64:
10665 case NEON::BI__builtin_neon_vshld_n_u64: {
10666 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10667 return Builder.CreateShl(
10668 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10669 }
10670 case NEON::BI__builtin_neon_vshrd_n_s64: {
10671 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10672 return Builder.CreateAShr(
10673 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10674 Amt->getZExtValue())),
10675 "shrd_n");
10676 }
10677 case NEON::BI__builtin_neon_vshrd_n_u64: {
10678 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10679 uint64_t ShiftAmt = Amt->getZExtValue();
10680 // Right-shifting an unsigned value by its size yields 0.
10681 if (ShiftAmt == 64)
10682 return ConstantInt::get(Int64Ty, 0);
10683 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10684 "shrd_n");
10685 }
10686 case NEON::BI__builtin_neon_vsrad_n_s64: {
10687 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10688 Ops[1] = Builder.CreateAShr(
10689 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10690 Amt->getZExtValue())),
10691 "shrd_n");
10692 return Builder.CreateAdd(Ops[0], Ops[1]);
10693 }
10694 case NEON::BI__builtin_neon_vsrad_n_u64: {
10695 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10696 uint64_t ShiftAmt = Amt->getZExtValue();
10697 // Right-shifting an unsigned value by its size yields 0.
10698 // As Op + 0 = Op, return Ops[0] directly.
10699 if (ShiftAmt == 64)
10700 return Ops[0];
10701 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10702 "shrd_n");
10703 return Builder.CreateAdd(Ops[0], Ops[1]);
10704 }
10705 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10706 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10707 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10708 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10709 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10710 "lane");
10711 SmallVector<Value *, 2> ProductOps;
10712 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10713 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10714 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10715 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10716 ProductOps, "vqdmlXl");
10717 Constant *CI = ConstantInt::get(SizeTy, 0);
10718 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10719 Ops.pop_back();
10720
10721 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10722 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10723 ? Intrinsic::aarch64_neon_sqadd
10724 : Intrinsic::aarch64_neon_sqsub;
10725 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10726 }
10727 case NEON::BI__builtin_neon_vqdmlals_s32:
10728 case NEON::BI__builtin_neon_vqdmlsls_s32: {
10729 SmallVector<Value *, 2> ProductOps;
10730 ProductOps.push_back(Ops[1]);
10731 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10732 Ops[1] =
10733 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10734 ProductOps, "vqdmlXl");
10735
10736 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10737 ? Intrinsic::aarch64_neon_sqadd
10738 : Intrinsic::aarch64_neon_sqsub;
10739 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10740 }
10741 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10742 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10743 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10744 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10745 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10746 "lane");
10747 SmallVector<Value *, 2> ProductOps;
10748 ProductOps.push_back(Ops[1]);
10749 ProductOps.push_back(Ops[2]);
10750 Ops[1] =
10751 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10752 ProductOps, "vqdmlXl");
10753 Ops.pop_back();
10754
10755 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10756 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10757 ? Intrinsic::aarch64_neon_sqadd
10758 : Intrinsic::aarch64_neon_sqsub;
10759 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10760 }
10761 case NEON::BI__builtin_neon_vget_lane_bf16:
10762 case NEON::BI__builtin_neon_vduph_lane_bf16:
10763 case NEON::BI__builtin_neon_vduph_lane_f16: {
10764 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10765 "vget_lane");
10766 }
10767 case NEON::BI__builtin_neon_vgetq_lane_bf16:
10768 case NEON::BI__builtin_neon_vduph_laneq_bf16:
10769 case NEON::BI__builtin_neon_vduph_laneq_f16: {
10770 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10771 "vgetq_lane");
10772 }
10773
10774 case AArch64::BI_InterlockedAdd: {
10775 Value *Arg0 = EmitScalarExpr(E->getArg(0));
10776 Value *Arg1 = EmitScalarExpr(E->getArg(1));
10777 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10778 AtomicRMWInst::Add, Arg0, Arg1,
10779 llvm::AtomicOrdering::SequentiallyConsistent);
10780 return Builder.CreateAdd(RMWI, Arg1);
10781 }
10782 }
10783
10784 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10785 llvm::Type *Ty = VTy;
10786 if (!Ty)
10787 return nullptr;
10788
10789 // Not all intrinsics handled by the common case work for AArch64 yet, so only
10790 // defer to common code if it's been added to our special map.
10791 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10792 AArch64SIMDIntrinsicsProvenSorted);
10793
10794 if (Builtin)
10795 return EmitCommonNeonBuiltinExpr(
10796 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10797 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10798 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10799
10800 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10801 return V;
10802
10803 unsigned Int;
10804 switch (BuiltinID) {
10805 default: return nullptr;
10806 case NEON::BI__builtin_neon_vbsl_v:
10807 case NEON::BI__builtin_neon_vbslq_v: {
10808 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10809 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10810 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10811 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10812
10813 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10814 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10815 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10816 return Builder.CreateBitCast(Ops[0], Ty);
10817 }
10818 case NEON::BI__builtin_neon_vfma_lane_v:
10819 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10820 // The ARM builtins (and instructions) have the addend as the first
10821 // operand, but the 'fma' intrinsics have it last. Swap it around here.
10822 Value *Addend = Ops[0];
10823 Value *Multiplicand = Ops[1];
10824 Value *LaneSource = Ops[2];
10825 Ops[0] = Multiplicand;
10826 Ops[1] = LaneSource;
10827 Ops[2] = Addend;
10828
10829 // Now adjust things to handle the lane access.
10830 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10831 ? llvm::FixedVectorType::get(VTy->getElementType(),
10832 VTy->getNumElements() / 2)
10833 : VTy;
10834 llvm::Constant *cst = cast<Constant>(Ops[3]);
10835 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10836 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10837 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10838
10839 Ops.pop_back();
10840 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10841 : Intrinsic::fma;
10842 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10843 }
10844 case NEON::BI__builtin_neon_vfma_laneq_v: {
10845 auto *VTy = cast<llvm::FixedVectorType>(Ty);
10846 // v1f64 fma should be mapped to Neon scalar f64 fma
10847 if (VTy && VTy->getElementType() == DoubleTy) {
10848 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10849 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10850 llvm::FixedVectorType *VTy =
10851 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10852 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10853 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10854 Value *Result;
10855 Result = emitCallMaybeConstrainedFPBuiltin(
10856 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10857 DoubleTy, {Ops[1], Ops[2], Ops[0]});
10858 return Builder.CreateBitCast(Result, Ty);
10859 }
10860 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10861 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10862
10863 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10864 VTy->getNumElements() * 2);
10865 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10866 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10867 cast<ConstantInt>(Ops[3]));
10868 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10869
10870 return emitCallMaybeConstrainedFPBuiltin(
10871 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10872 {Ops[2], Ops[1], Ops[0]});
10873 }
10874 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10875 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10876 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10877
10878 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10879 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10880 return emitCallMaybeConstrainedFPBuiltin(
10881 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10882 {Ops[2], Ops[1], Ops[0]});
10883 }
10884 case NEON::BI__builtin_neon_vfmah_lane_f16:
10885 case NEON::BI__builtin_neon_vfmas_lane_f32:
10886 case NEON::BI__builtin_neon_vfmah_laneq_f16:
10887 case NEON::BI__builtin_neon_vfmas_laneq_f32:
10888 case NEON::BI__builtin_neon_vfmad_lane_f64:
10889 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10890 Ops.push_back(EmitScalarExpr(E->getArg(3)));
10891 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10892 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10893 return emitCallMaybeConstrainedFPBuiltin(
10894 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10895 {Ops[1], Ops[2], Ops[0]});
10896 }
10897 case NEON::BI__builtin_neon_vmull_v:
10898 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10899 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10900 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10901 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10902 case NEON::BI__builtin_neon_vmax_v:
10903 case NEON::BI__builtin_neon_vmaxq_v:
10904 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10905 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10906 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10907 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10908 case NEON::BI__builtin_neon_vmaxh_f16: {
10909 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10910 Int = Intrinsic::aarch64_neon_fmax;
10911 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10912 }
10913 case NEON::BI__builtin_neon_vmin_v:
10914 case NEON::BI__builtin_neon_vminq_v:
10915 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10916 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10917 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10918 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10919 case NEON::BI__builtin_neon_vminh_f16: {
10920 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10921 Int = Intrinsic::aarch64_neon_fmin;
10922 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10923 }
10924 case NEON::BI__builtin_neon_vabd_v:
10925 case NEON::BI__builtin_neon_vabdq_v:
10926 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10927 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10928 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10929 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10930 case NEON::BI__builtin_neon_vpadal_v:
10931 case NEON::BI__builtin_neon_vpadalq_v: {
10932 unsigned ArgElts = VTy->getNumElements();
10933 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10934 unsigned BitWidth = EltTy->getBitWidth();
10935 auto *ArgTy = llvm::FixedVectorType::get(
10936 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10937 llvm::Type* Tys[2] = { VTy, ArgTy };
10938 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10939 SmallVector<llvm::Value*, 1> TmpOps;
10940 TmpOps.push_back(Ops[1]);
10941 Function *F = CGM.getIntrinsic(Int, Tys);
10942 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10943 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10944 return Builder.CreateAdd(tmp, addend);
10945 }
10946 case NEON::BI__builtin_neon_vpmin_v:
10947 case NEON::BI__builtin_neon_vpminq_v:
10948 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10949 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10950 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10951 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10952 case NEON::BI__builtin_neon_vpmax_v:
10953 case NEON::BI__builtin_neon_vpmaxq_v:
10954 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10955 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10956 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10957 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10958 case NEON::BI__builtin_neon_vminnm_v:
10959 case NEON::BI__builtin_neon_vminnmq_v:
10960 Int = Intrinsic::aarch64_neon_fminnm;
10961 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10962 case NEON::BI__builtin_neon_vminnmh_f16:
10963 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10964 Int = Intrinsic::aarch64_neon_fminnm;
10965 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10966 case NEON::BI__builtin_neon_vmaxnm_v:
10967 case NEON::BI__builtin_neon_vmaxnmq_v:
10968 Int = Intrinsic::aarch64_neon_fmaxnm;
10969 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10970 case NEON::BI__builtin_neon_vmaxnmh_f16:
10971 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10972 Int = Intrinsic::aarch64_neon_fmaxnm;
10973 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10974 case NEON::BI__builtin_neon_vrecpss_f32: {
10975 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10976 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10977 Ops, "vrecps");
10978 }
10979 case NEON::BI__builtin_neon_vrecpsd_f64:
10980 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10981 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10982 Ops, "vrecps");
10983 case NEON::BI__builtin_neon_vrecpsh_f16:
10984 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10985 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10986 Ops, "vrecps");
10987 case NEON::BI__builtin_neon_vqshrun_n_v:
10988 Int = Intrinsic::aarch64_neon_sqshrun;
10989 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10990 case NEON::BI__builtin_neon_vqrshrun_n_v:
10991 Int = Intrinsic::aarch64_neon_sqrshrun;
10992 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10993 case NEON::BI__builtin_neon_vqshrn_n_v:
10994 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10995 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10996 case NEON::BI__builtin_neon_vrshrn_n_v:
10997 Int = Intrinsic::aarch64_neon_rshrn;
10998 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10999 case NEON::BI__builtin_neon_vqrshrn_n_v:
11000 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
11001 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
11002 case NEON::BI__builtin_neon_vrndah_f16: {
11003 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11004 Int = Builder.getIsFPConstrained()
11005 ? Intrinsic::experimental_constrained_round
11006 : Intrinsic::round;
11007 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
11008 }
11009 case NEON::BI__builtin_neon_vrnda_v:
11010 case NEON::BI__builtin_neon_vrndaq_v: {
11011 Int = Builder.getIsFPConstrained()
11012 ? Intrinsic::experimental_constrained_round
11013 : Intrinsic::round;
11014 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
11015 }
11016 case NEON::BI__builtin_neon_vrndih_f16: {
11017 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11018 Int = Builder.getIsFPConstrained()
11019 ? Intrinsic::experimental_constrained_nearbyint
11020 : Intrinsic::nearbyint;
11021 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
11022 }
11023 case NEON::BI__builtin_neon_vrndmh_f16: {
11024 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11025 Int = Builder.getIsFPConstrained()
11026 ? Intrinsic::experimental_constrained_floor
11027 : Intrinsic::floor;
11028 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
11029 }
11030 case NEON::BI__builtin_neon_vrndm_v:
11031 case NEON::BI__builtin_neon_vrndmq_v: {
11032 Int = Builder.getIsFPConstrained()
11033 ? Intrinsic::experimental_constrained_floor
11034 : Intrinsic::floor;
11035 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
11036 }
11037 case NEON::BI__builtin_neon_vrndnh_f16: {
11038 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11039 Int = Builder.getIsFPConstrained()
11040 ? Intrinsic::experimental_constrained_roundeven
11041 : Intrinsic::roundeven;
11042 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
11043 }
11044 case NEON::BI__builtin_neon_vrndn_v:
11045 case NEON::BI__builtin_neon_vrndnq_v: {
11046 Int = Builder.getIsFPConstrained()
11047 ? Intrinsic::experimental_constrained_roundeven
11048 : Intrinsic::roundeven;
11049 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
11050 }
11051 case NEON::BI__builtin_neon_vrndns_f32: {
11052 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11053 Int = Builder.getIsFPConstrained()
11054 ? Intrinsic::experimental_constrained_roundeven
11055 : Intrinsic::roundeven;
11056 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
11057 }
11058 case NEON::BI__builtin_neon_vrndph_f16: {
11059 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11060 Int = Builder.getIsFPConstrained()
11061 ? Intrinsic::experimental_constrained_ceil
11062 : Intrinsic::ceil;
11063 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
11064 }
11065 case NEON::BI__builtin_neon_vrndp_v:
11066 case NEON::BI__builtin_neon_vrndpq_v: {
11067 Int = Builder.getIsFPConstrained()
11068 ? Intrinsic::experimental_constrained_ceil
11069 : Intrinsic::ceil;
11070 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
11071 }
11072 case NEON::BI__builtin_neon_vrndxh_f16: {
11073 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11074 Int = Builder.getIsFPConstrained()
11075 ? Intrinsic::experimental_constrained_rint
11076 : Intrinsic::rint;
11077 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
11078 }
11079 case NEON::BI__builtin_neon_vrndx_v:
11080 case NEON::BI__builtin_neon_vrndxq_v: {
11081 Int = Builder.getIsFPConstrained()
11082 ? Intrinsic::experimental_constrained_rint
11083 : Intrinsic::rint;
11084 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
11085 }
11086 case NEON::BI__builtin_neon_vrndh_f16: {
11087 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11088 Int = Builder.getIsFPConstrained()
11089 ? Intrinsic::experimental_constrained_trunc
11090 : Intrinsic::trunc;
11091 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
11092 }
11093 case NEON::BI__builtin_neon_vrnd32x_v:
11094 case NEON::BI__builtin_neon_vrnd32xq_v: {
11095 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11096 Int = Intrinsic::aarch64_neon_frint32x;
11097 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
11098 }
11099 case NEON::BI__builtin_neon_vrnd32z_v:
11100 case NEON::BI__builtin_neon_vrnd32zq_v: {
11101 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11102 Int = Intrinsic::aarch64_neon_frint32z;
11103 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
11104 }
11105 case NEON::BI__builtin_neon_vrnd64x_v:
11106 case NEON::BI__builtin_neon_vrnd64xq_v: {
11107 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11108 Int = Intrinsic::aarch64_neon_frint64x;
11109 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
11110 }
11111 case NEON::BI__builtin_neon_vrnd64z_v:
11112 case NEON::BI__builtin_neon_vrnd64zq_v: {
11113 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11114 Int = Intrinsic::aarch64_neon_frint64z;
11115 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
11116 }
11117 case NEON::BI__builtin_neon_vrnd_v:
11118 case NEON::BI__builtin_neon_vrndq_v: {
11119 Int = Builder.getIsFPConstrained()
11120 ? Intrinsic::experimental_constrained_trunc
11121 : Intrinsic::trunc;
11122 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
11123 }
11124 case NEON::BI__builtin_neon_vcvt_f64_v:
11125 case NEON::BI__builtin_neon_vcvtq_f64_v:
11126 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11127 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
11128 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
11129 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
11130 case NEON::BI__builtin_neon_vcvt_f64_f32: {
11131 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11132, __extension__ __PRETTY_FUNCTION__
))
11132 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11132, __extension__ __PRETTY_FUNCTION__
))
;
11133 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
11134 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11135
11136 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
11137 }
11138 case NEON::BI__builtin_neon_vcvt_f32_f64: {
11139 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11140, __extension__ __PRETTY_FUNCTION__
))
11140 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11140, __extension__ __PRETTY_FUNCTION__
))
;
11141 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
11142 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11143
11144 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
11145 }
11146 case NEON::BI__builtin_neon_vcvt_s32_v:
11147 case NEON::BI__builtin_neon_vcvt_u32_v:
11148 case NEON::BI__builtin_neon_vcvt_s64_v:
11149 case NEON::BI__builtin_neon_vcvt_u64_v:
11150 case NEON::BI__builtin_neon_vcvt_s16_v:
11151 case NEON::BI__builtin_neon_vcvt_u16_v:
11152 case NEON::BI__builtin_neon_vcvtq_s32_v:
11153 case NEON::BI__builtin_neon_vcvtq_u32_v:
11154 case NEON::BI__builtin_neon_vcvtq_s64_v:
11155 case NEON::BI__builtin_neon_vcvtq_u64_v:
11156 case NEON::BI__builtin_neon_vcvtq_s16_v:
11157 case NEON::BI__builtin_neon_vcvtq_u16_v: {
11158 Int =
11159 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
11160 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
11161 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
11162 }
11163 case NEON::BI__builtin_neon_vcvta_s16_v:
11164 case NEON::BI__builtin_neon_vcvta_u16_v:
11165 case NEON::BI__builtin_neon_vcvta_s32_v:
11166 case NEON::BI__builtin_neon_vcvtaq_s16_v:
11167 case NEON::BI__builtin_neon_vcvtaq_s32_v:
11168 case NEON::BI__builtin_neon_vcvta_u32_v:
11169 case NEON::BI__builtin_neon_vcvtaq_u16_v:
11170 case NEON::BI__builtin_neon_vcvtaq_u32_v:
11171 case NEON::BI__builtin_neon_vcvta_s64_v:
11172 case NEON::BI__builtin_neon_vcvtaq_s64_v:
11173 case NEON::BI__builtin_neon_vcvta_u64_v:
11174 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
11175 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
11176 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11177 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
11178 }
11179 case NEON::BI__builtin_neon_vcvtm_s16_v:
11180 case NEON::BI__builtin_neon_vcvtm_s32_v:
11181 case NEON::BI__builtin_neon_vcvtmq_s16_v:
11182 case NEON::BI__builtin_neon_vcvtmq_s32_v:
11183 case NEON::BI__builtin_neon_vcvtm_u16_v:
11184 case NEON::BI__builtin_neon_vcvtm_u32_v:
11185 case NEON::BI__builtin_neon_vcvtmq_u16_v:
11186 case NEON::BI__builtin_neon_vcvtmq_u32_v:
11187 case NEON::BI__builtin_neon_vcvtm_s64_v:
11188 case NEON::BI__builtin_neon_vcvtmq_s64_v:
11189 case NEON::BI__builtin_neon_vcvtm_u64_v:
11190 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
11191 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
11192 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11193 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
11194 }
11195 case NEON::BI__builtin_neon_vcvtn_s16_v:
11196 case NEON::BI__builtin_neon_vcvtn_s32_v:
11197 case NEON::BI__builtin_neon_vcvtnq_s16_v:
11198 case NEON::BI__builtin_neon_vcvtnq_s32_v:
11199 case NEON::BI__builtin_neon_vcvtn_u16_v:
11200 case NEON::BI__builtin_neon_vcvtn_u32_v:
11201 case NEON::BI__builtin_neon_vcvtnq_u16_v:
11202 case NEON::BI__builtin_neon_vcvtnq_u32_v:
11203 case NEON::BI__builtin_neon_vcvtn_s64_v:
11204 case NEON::BI__builtin_neon_vcvtnq_s64_v:
11205 case NEON::BI__builtin_neon_vcvtn_u64_v:
11206 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
11207 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
11208 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11209 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
11210 }
11211 case NEON::BI__builtin_neon_vcvtp_s16_v:
11212 case NEON::BI__builtin_neon_vcvtp_s32_v:
11213 case NEON::BI__builtin_neon_vcvtpq_s16_v:
11214 case NEON::BI__builtin_neon_vcvtpq_s32_v:
11215 case NEON::BI__builtin_neon_vcvtp_u16_v:
11216 case NEON::BI__builtin_neon_vcvtp_u32_v:
11217 case NEON::BI__builtin_neon_vcvtpq_u16_v:
11218 case NEON::BI__builtin_neon_vcvtpq_u32_v:
11219 case NEON::BI__builtin_neon_vcvtp_s64_v:
11220 case NEON::BI__builtin_neon_vcvtpq_s64_v:
11221 case NEON::BI__builtin_neon_vcvtp_u64_v:
11222 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
11223 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
11224 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11225 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
11226 }
11227 case NEON::BI__builtin_neon_vmulx_v:
11228 case NEON::BI__builtin_neon_vmulxq_v: {
11229 Int = Intrinsic::aarch64_neon_fmulx;
11230 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
11231 }
11232 case NEON::BI__builtin_neon_vmulxh_lane_f16:
11233 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
11234 // vmulx_lane should be mapped to Neon scalar mulx after
11235 // extracting the scalar element
11236 Ops.push_back(EmitScalarExpr(E->getArg(2)));
11237 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11238 Ops.pop_back();
11239 Int = Intrinsic::aarch64_neon_fmulx;
11240 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
11241 }
11242 case NEON::BI__builtin_neon_vmul_lane_v:
11243 case NEON::BI__builtin_neon_vmul_laneq_v: {
11244 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
11245 bool Quad = false;
11246 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
11247 Quad = true;
11248 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11249 llvm::FixedVectorType *VTy =
11250 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
11251 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11252 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11253 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
11254 return Builder.CreateBitCast(Result, Ty);
11255 }
11256 case NEON::BI__builtin_neon_vnegd_s64:
11257 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
11258 case NEON::BI__builtin_neon_vnegh_f16:
11259 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
11260 case NEON::BI__builtin_neon_vpmaxnm_v:
11261 case NEON::BI__builtin_neon_vpmaxnmq_v: {
11262 Int = Intrinsic::aarch64_neon_fmaxnmp;
11263 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
11264 }
11265 case NEON::BI__builtin_neon_vpminnm_v:
11266 case NEON::BI__builtin_neon_vpminnmq_v: {
11267 Int = Intrinsic::aarch64_neon_fminnmp;
11268 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
11269 }
11270 case NEON::BI__builtin_neon_vsqrth_f16: {
11271 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11272 Int = Builder.getIsFPConstrained()
11273 ? Intrinsic::experimental_constrained_sqrt
11274 : Intrinsic::sqrt;
11275 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
11276 }
11277 case NEON::BI__builtin_neon_vsqrt_v:
11278 case NEON::BI__builtin_neon_vsqrtq_v: {
11279 Int = Builder.getIsFPConstrained()
11280 ? Intrinsic::experimental_constrained_sqrt
11281 : Intrinsic::sqrt;
11282 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11283 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
11284 }
11285 case NEON::BI__builtin_neon_vrbit_v:
11286 case NEON::BI__builtin_neon_vrbitq_v: {
11287 Int = Intrinsic::bitreverse;
11288 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
11289 }
11290 case NEON::BI__builtin_neon_vaddv_u8:
11291 // FIXME: These are handled by the AArch64 scalar code.
11292 usgn = true;
11293 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11294 case NEON::BI__builtin_neon_vaddv_s8: {
11295 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11296 Ty = Int32Ty;
11297 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11298 llvm::Type *Tys[2] = { Ty, VTy };
11299 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11300 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11301 return Builder.CreateTrunc(Ops[0], Int8Ty);
11302 }
11303 case NEON::BI__builtin_neon_vaddv_u16:
11304 usgn = true;
11305 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11306 case NEON::BI__builtin_neon_vaddv_s16: {
11307 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11308 Ty = Int32Ty;
11309 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11310 llvm::Type *Tys[2] = { Ty, VTy };
11311 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11312 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11313 return Builder.CreateTrunc(Ops[0], Int16Ty);
11314 }
11315 case NEON::BI__builtin_neon_vaddvq_u8:
11316 usgn = true;
11317 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11318 case NEON::BI__builtin_neon_vaddvq_s8: {
11319 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11320 Ty = Int32Ty;
11321 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11322 llvm::Type *Tys[2] = { Ty, VTy };
11323 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11324 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11325 return Builder.CreateTrunc(Ops[0], Int8Ty);
11326 }
11327 case NEON::BI__builtin_neon_vaddvq_u16:
11328 usgn = true;
11329 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11330 case NEON::BI__builtin_neon_vaddvq_s16: {
11331 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11332 Ty = Int32Ty;
11333 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11334 llvm::Type *Tys[2] = { Ty, VTy };
11335 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11336 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11337 return Builder.CreateTrunc(Ops[0], Int16Ty);
11338 }
11339 case NEON::BI__builtin_neon_vmaxv_u8: {
11340 Int = Intrinsic::aarch64_neon_umaxv;
11341 Ty = Int32Ty;
11342 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11343 llvm::Type *Tys[2] = { Ty, VTy };
11344 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11345 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11346 return Builder.CreateTrunc(Ops[0], Int8Ty);
11347 }
11348 case NEON::BI__builtin_neon_vmaxv_u16: {
11349 Int = Intrinsic::aarch64_neon_umaxv;
11350 Ty = Int32Ty;
11351 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11352 llvm::Type *Tys[2] = { Ty, VTy };
11353 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11354 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11355 return Builder.CreateTrunc(Ops[0], Int16Ty);
11356 }
11357 case NEON::BI__builtin_neon_vmaxvq_u8: {
11358 Int = Intrinsic::aarch64_neon_umaxv;
11359 Ty = Int32Ty;
11360 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11361 llvm::Type *Tys[2] = { Ty, VTy };
11362 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11363 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11364 return Builder.CreateTrunc(Ops[0], Int8Ty);
11365 }
11366 case NEON::BI__builtin_neon_vmaxvq_u16: {
11367 Int = Intrinsic::aarch64_neon_umaxv;
11368 Ty = Int32Ty;
11369 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11370 llvm::Type *Tys[2] = { Ty, VTy };
11371 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11372 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11373 return Builder.CreateTrunc(Ops[0], Int16Ty);
11374 }
11375 case NEON::BI__builtin_neon_vmaxv_s8: {
11376 Int = Intrinsic::aarch64_neon_smaxv;
11377 Ty = Int32Ty;
11378 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11379 llvm::Type *Tys[2] = { Ty, VTy };
11380 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11381 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11382 return Builder.CreateTrunc(Ops[0], Int8Ty);
11383 }
11384 case NEON::BI__builtin_neon_vmaxv_s16: {
11385 Int = Intrinsic::aarch64_neon_smaxv;
11386 Ty = Int32Ty;
11387 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11388 llvm::Type *Tys[2] = { Ty, VTy };
11389 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11390 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11391 return Builder.CreateTrunc(Ops[0], Int16Ty);
11392 }
11393 case NEON::BI__builtin_neon_vmaxvq_s8: {
11394 Int = Intrinsic::aarch64_neon_smaxv;
11395 Ty = Int32Ty;
11396 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11397 llvm::Type *Tys[2] = { Ty, VTy };
11398 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11399 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11400 return Builder.CreateTrunc(Ops[0], Int8Ty);
11401 }
11402 case NEON::BI__builtin_neon_vmaxvq_s16: {
11403 Int = Intrinsic::aarch64_neon_smaxv;
11404 Ty = Int32Ty;
11405 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11406 llvm::Type *Tys[2] = { Ty, VTy };
11407 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11408 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11409 return Builder.CreateTrunc(Ops[0], Int16Ty);
11410 }
11411 case NEON::BI__builtin_neon_vmaxv_f16: {
11412 Int = Intrinsic::aarch64_neon_fmaxv;
11413 Ty = HalfTy;
11414 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11415 llvm::Type *Tys[2] = { Ty, VTy };
11416 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11417 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11418 return Builder.CreateTrunc(Ops[0], HalfTy);
11419 }
11420 case NEON::BI__builtin_neon_vmaxvq_f16: {
11421 Int = Intrinsic::aarch64_neon_fmaxv;
11422 Ty = HalfTy;
11423 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11424 llvm::Type *Tys[2] = { Ty, VTy };
11425 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11426 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11427 return Builder.CreateTrunc(Ops[0], HalfTy);
11428 }
11429 case NEON::BI__builtin_neon_vminv_u8: {
11430 Int = Intrinsic::aarch64_neon_uminv;
11431 Ty = Int32Ty;
11432 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11433 llvm::Type *Tys[2] = { Ty, VTy };
11434 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11435 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11436 return Builder.CreateTrunc(Ops[0], Int8Ty);
11437 }
11438 case NEON::BI__builtin_neon_vminv_u16: {
11439 Int = Intrinsic::aarch64_neon_uminv;
11440 Ty = Int32Ty;
11441 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11442 llvm::Type *Tys[2] = { Ty, VTy };
11443 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11444 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11445 return Builder.CreateTrunc(Ops[0], Int16Ty);
11446 }
11447 case NEON::BI__builtin_neon_vminvq_u8: {
11448 Int = Intrinsic::aarch64_neon_uminv;
11449 Ty = Int32Ty;
11450 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11451 llvm::Type *Tys[2] = { Ty, VTy };
11452 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11453 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11454 return Builder.CreateTrunc(Ops[0], Int8Ty);
11455 }
11456 case NEON::BI__builtin_neon_vminvq_u16: {
11457 Int = Intrinsic::aarch64_neon_uminv;
11458 Ty = Int32Ty;
11459 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11460 llvm::Type *Tys[2] = { Ty, VTy };
11461 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11462 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11463 return Builder.CreateTrunc(Ops[0], Int16Ty);
11464 }
11465 case NEON::BI__builtin_neon_vminv_s8: {
11466 Int = Intrinsic::aarch64_neon_sminv;
11467 Ty = Int32Ty;
11468 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11469 llvm::Type *Tys[2] = { Ty, VTy };
11470 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11471 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11472 return Builder.CreateTrunc(Ops[0], Int8Ty);
11473 }
11474 case NEON::BI__builtin_neon_vminv_s16: {
11475 Int = Intrinsic::aarch64_neon_sminv;
11476 Ty = Int32Ty;
11477 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11478 llvm::Type *Tys[2] = { Ty, VTy };
11479 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11480 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11481 return Builder.CreateTrunc(Ops[0], Int16Ty);
11482 }
11483 case NEON::BI__builtin_neon_vminvq_s8: {
11484 Int = Intrinsic::aarch64_neon_sminv;
11485 Ty = Int32Ty;
11486 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11487 llvm::Type *Tys[2] = { Ty, VTy };
11488 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11489 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11490 return Builder.CreateTrunc(Ops[0], Int8Ty);
11491 }
11492 case NEON::BI__builtin_neon_vminvq_s16: {
11493 Int = Intrinsic::aarch64_neon_sminv;
11494 Ty = Int32Ty;
11495 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11496 llvm::Type *Tys[2] = { Ty, VTy };
11497 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11498 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11499 return Builder.CreateTrunc(Ops[0], Int16Ty);
11500 }
11501 case NEON::BI__builtin_neon_vminv_f16: {
11502 Int = Intrinsic::aarch64_neon_fminv;
11503 Ty = HalfTy;
11504 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11505 llvm::Type *Tys[2] = { Ty, VTy };
11506 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11507 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11508 return Builder.CreateTrunc(Ops[0], HalfTy);
11509 }
11510 case NEON::BI__builtin_neon_vminvq_f16: {
11511 Int = Intrinsic::aarch64_neon_fminv;
11512 Ty = HalfTy;
11513 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11514 llvm::Type *Tys[2] = { Ty, VTy };
11515 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11516 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11517 return Builder.CreateTrunc(Ops[0], HalfTy);
11518 }
11519 case NEON::BI__builtin_neon_vmaxnmv_f16: {
11520 Int = Intrinsic::aarch64_neon_fmaxnmv;
11521 Ty = HalfTy;
11522 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11523 llvm::Type *Tys[2] = { Ty, VTy };
11524 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11525 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11526 return Builder.CreateTrunc(Ops[0], HalfTy);
11527 }
11528 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11529 Int = Intrinsic::aarch64_neon_fmaxnmv;
11530 Ty = HalfTy;
11531 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11532 llvm::Type *Tys[2] = { Ty, VTy };
11533 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11534 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11535 return Builder.CreateTrunc(Ops[0], HalfTy);
11536 }
11537 case NEON::BI__builtin_neon_vminnmv_f16: {
11538 Int = Intrinsic::aarch64_neon_fminnmv;
11539 Ty = HalfTy;
11540 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11541 llvm::Type *Tys[2] = { Ty, VTy };
11542 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11543 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11544 return Builder.CreateTrunc(Ops[0], HalfTy);
11545 }
11546 case NEON::BI__builtin_neon_vminnmvq_f16: {
11547 Int = Intrinsic::aarch64_neon_fminnmv;
11548 Ty = HalfTy;
11549 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11550 llvm::Type *Tys[2] = { Ty, VTy };
11551 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11552 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11553 return Builder.CreateTrunc(Ops[0], HalfTy);
11554 }
11555 case NEON::BI__builtin_neon_vmul_n_f64: {
11556 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11557 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11558 return Builder.CreateFMul(Ops[0], RHS);
11559 }
11560 case NEON::BI__builtin_neon_vaddlv_u8: {
11561 Int = Intrinsic::aarch64_neon_uaddlv;
11562 Ty = Int32Ty;
11563 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11564 llvm::Type *Tys[2] = { Ty, VTy };
11565 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11566 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11567 return Builder.CreateTrunc(Ops[0], Int16Ty);
11568 }
11569 case NEON::BI__builtin_neon_vaddlv_u16: {
11570 Int = Intrinsic::aarch64_neon_uaddlv;
11571 Ty = Int32Ty;
11572 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11573 llvm::Type *Tys[2] = { Ty, VTy };
11574 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11575 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11576 }
11577 case NEON::BI__builtin_neon_vaddlvq_u8: {
11578 Int = Intrinsic::aarch64_neon_uaddlv;
11579 Ty = Int32Ty;
11580 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11581 llvm::Type *Tys[2] = { Ty, VTy };
11582 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11583 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11584 return Builder.CreateTrunc(Ops[0], Int16Ty);
11585 }
11586 case NEON::BI__builtin_neon_vaddlvq_u16: {
11587 Int = Intrinsic::aarch64_neon_uaddlv;
11588 Ty = Int32Ty;
11589 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11590 llvm::Type *Tys[2] = { Ty, VTy };
11591 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11592 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11593 }
11594 case NEON::BI__builtin_neon_vaddlv_s8: {
11595 Int = Intrinsic::aarch64_neon_saddlv;
11596 Ty = Int32Ty;
11597 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11598 llvm::Type *Tys[2] = { Ty, VTy };
11599 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11600 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11601 return Builder.CreateTrunc(Ops[0], Int16Ty);
11602 }
11603 case NEON::BI__builtin_neon_vaddlv_s16: {
11604 Int = Intrinsic::aarch64_neon_saddlv;
11605 Ty = Int32Ty;
11606 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11607 llvm::Type *Tys[2] = { Ty, VTy };
11608 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11609 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11610 }
11611 case NEON::BI__builtin_neon_vaddlvq_s8: {
11612 Int = Intrinsic::aarch64_neon_saddlv;
11613 Ty = Int32Ty;
11614 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11615 llvm::Type *Tys[2] = { Ty, VTy };
11616 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11617 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11618 return Builder.CreateTrunc(Ops[0], Int16Ty);
11619 }
11620 case NEON::BI__builtin_neon_vaddlvq_s16: {
11621 Int = Intrinsic::aarch64_neon_saddlv;
11622 Ty = Int32Ty;
11623 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11624 llvm::Type *Tys[2] = { Ty, VTy };
11625 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11626 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11627 }
11628 case NEON::BI__builtin_neon_vsri_n_v:
11629 case NEON::BI__builtin_neon_vsriq_n_v: {
11630 Int = Intrinsic::aarch64_neon_vsri;
11631 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11632 return EmitNeonCall(Intrin, Ops, "vsri_n");
11633 }
11634 case NEON::BI__builtin_neon_vsli_n_v:
11635 case NEON::BI__builtin_neon_vsliq_n_v: {
11636 Int = Intrinsic::aarch64_neon_vsli;
11637 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11638 return EmitNeonCall(Intrin, Ops, "vsli_n");
11639 }
11640 case NEON::BI__builtin_neon_vsra_n_v:
11641 case NEON::BI__builtin_neon_vsraq_n_v:
11642 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11643 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11644 return Builder.CreateAdd(Ops[0], Ops[1]);
11645 case NEON::BI__builtin_neon_vrsra_n_v:
11646 case NEON::BI__builtin_neon_vrsraq_n_v: {
11647 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11648 SmallVector<llvm::Value*,2> TmpOps;
11649 TmpOps.push_back(Ops[1]);
11650 TmpOps.push_back(Ops[2]);
11651 Function* F = CGM.getIntrinsic(Int, Ty);
11652 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11653 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11654 return Builder.CreateAdd(Ops[0], tmp);
11655 }
11656 case NEON::BI__builtin_neon_vld1_v:
11657 case NEON::BI__builtin_neon_vld1q_v: {
11658 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11659 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11660 }
11661 case NEON::BI__builtin_neon_vst1_v:
11662 case NEON::BI__builtin_neon_vst1q_v:
11663 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11664 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11665 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11666 case NEON::BI__builtin_neon_vld1_lane_v:
11667 case NEON::BI__builtin_neon_vld1q_lane_v: {
11668 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11669 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11670 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11671 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11672 PtrOp0.getAlignment());
11673 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11674 }
11675 case NEON::BI__builtin_neon_vld1_dup_v:
11676 case NEON::BI__builtin_neon_vld1q_dup_v: {
11677 Value *V = UndefValue::get(Ty);
11678 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11679 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11680 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11681 PtrOp0.getAlignment());
11682 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11683 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11684 return EmitNeonSplat(Ops[0], CI);
11685 }
11686 case NEON::BI__builtin_neon_vst1_lane_v:
11687 case NEON::BI__builtin_neon_vst1q_lane_v:
11688 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11689 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11690 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11691 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11692 PtrOp0.getAlignment());
11693 case NEON::BI__builtin_neon_vld2_v:
11694 case NEON::BI__builtin_neon_vld2q_v: {
11695 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11696 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11697 llvm::Type *Tys[2] = { VTy, PTy };
11698 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11699 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11700 Ops[0] = Builder.CreateBitCast(Ops[0],
11701 llvm::PointerType::getUnqual(Ops[1]->getType()));
11702 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11703 }
11704 case NEON::BI__builtin_neon_vld3_v:
11705 case NEON::BI__builtin_neon_vld3q_v: {
11706 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11707 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11708 llvm::Type *Tys[2] = { VTy, PTy };
11709 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11710 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11711 Ops[0] = Builder.CreateBitCast(Ops[0],
11712 llvm::PointerType::getUnqual(Ops[1]->getType()));
11713 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11714 }
11715 case NEON::BI__builtin_neon_vld4_v:
11716 case NEON::BI__builtin_neon_vld4q_v: {
11717 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11718 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11719 llvm::Type *Tys[2] = { VTy, PTy };
11720 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11721 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11722 Ops[0] = Builder.CreateBitCast(Ops[0],
11723 llvm::PointerType::getUnqual(Ops[1]->getType()));
11724 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11725 }
11726 case NEON::BI__builtin_neon_vld2_dup_v:
11727 case NEON::BI__builtin_neon_vld2q_dup_v: {
11728 llvm::Type *PTy =
11729 llvm::PointerType::getUnqual(VTy->getElementType());
11730 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11731 llvm::Type *Tys[2] = { VTy, PTy };
11732 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11733 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11734 Ops[0] = Builder.CreateBitCast(Ops[0],
11735 llvm::PointerType::getUnqual(Ops[1]->getType()));
11736 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11737 }
11738 case NEON::BI__builtin_neon_vld3_dup_v:
11739 case NEON::BI__builtin_neon_vld3q_dup_v: {
11740 llvm::Type *PTy =
11741 llvm::PointerType::getUnqual(VTy->getElementType());
11742 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11743 llvm::Type *Tys[2] = { VTy, PTy };
11744 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11745 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11746 Ops[0] = Builder.CreateBitCast(Ops[0],
11747 llvm::PointerType::getUnqual(Ops[1]->getType()));
11748 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11749 }
11750 case NEON::BI__builtin_neon_vld4_dup_v:
11751 case NEON::BI__builtin_neon_vld4q_dup_v: {
11752 llvm::Type *PTy =
11753 llvm::PointerType::getUnqual(VTy->getElementType());
11754 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11755 llvm::Type *Tys[2] = { VTy, PTy };
11756 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11757 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11758 Ops[0] = Builder.CreateBitCast(Ops[0],
11759 llvm::PointerType::getUnqual(Ops[1]->getType()));
11760 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11761 }
11762 case NEON::BI__builtin_neon_vld2_lane_v:
11763 case NEON::BI__builtin_neon_vld2q_lane_v: {
11764 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11765 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11766 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11767 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11768 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11769 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11770 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11771 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11772 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11773 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11774 }
11775 case NEON::BI__builtin_neon_vld3_lane_v:
11776 case NEON::BI__builtin_neon_vld3q_lane_v: {
11777 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11778 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11779 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11780 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11781 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11782 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11783 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11784 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11785 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11786 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11787 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11788 }
11789 case NEON::BI__builtin_neon_vld4_lane_v:
11790 case NEON::BI__builtin_neon_vld4q_lane_v: {
11791 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11792 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11793 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11794 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11795 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11796 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11797 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11798 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11799 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11800 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11801 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11802 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11803 }
11804 case NEON::BI__builtin_neon_vst2_v:
11805 case NEON::BI__builtin_neon_vst2q_v: {
11806 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11807 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11808 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11809 Ops, "");
11810 }
11811 case NEON::BI__builtin_neon_vst2_lane_v:
11812 case NEON::BI__builtin_neon_vst2q_lane_v: {
11813 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11814 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11815 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11816 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11817 Ops, "");
11818 }
11819 case NEON::BI__builtin_neon_vst3_v:
11820 case NEON::BI__builtin_neon_vst3q_v: {
11821 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11822 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11823 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11824 Ops, "");
11825 }
11826 case NEON::BI__builtin_neon_vst3_lane_v:
11827 case NEON::BI__builtin_neon_vst3q_lane_v: {
11828 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11829 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11830 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11831 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11832 Ops, "");
11833 }
11834 case NEON::BI__builtin_neon_vst4_v:
11835 case NEON::BI__builtin_neon_vst4q_v: {
11836 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11837 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11838 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11839 Ops, "");
11840 }
11841 case NEON::BI__builtin_neon_vst4_lane_v:
11842 case NEON::BI__builtin_neon_vst4q_lane_v: {
11843 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11844 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11845 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11846 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11847 Ops, "");
11848 }
11849 case NEON::BI__builtin_neon_vtrn_v:
11850 case NEON::BI__builtin_neon_vtrnq_v: {
11851 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11852 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11853 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11854 Value *SV = nullptr;
11855
11856 for (unsigned vi = 0; vi != 2; ++vi) {
11857 SmallVector<int, 16> Indices;
11858 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11859 Indices.push_back(i+vi);
11860 Indices.push_back(i+e+vi);
11861 }
11862 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11863 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11864 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11865 }
11866 return SV;
11867 }
11868 case NEON::BI__builtin_neon_vuzp_v:
11869 case NEON::BI__builtin_neon_vuzpq_v: {
11870 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11871 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11872 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11873 Value *SV = nullptr;
11874
11875 for (unsigned vi = 0; vi != 2; ++vi) {
11876 SmallVector<int, 16> Indices;
11877 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11878 Indices.push_back(2*i+vi);
11879
11880 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11881 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11882 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11883 }
11884 return SV;
11885 }
11886 case NEON::BI__builtin_neon_vzip_v:
11887 case NEON::BI__builtin_neon_vzipq_v: {
11888 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11889 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11890 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11891 Value *SV = nullptr;
11892
11893 for (unsigned vi = 0; vi != 2; ++vi) {
11894 SmallVector<int, 16> Indices;
11895 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11896 Indices.push_back((i + vi*e) >> 1);
11897 Indices.push_back(((i + vi*e) >> 1)+e);
11898 }
11899 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11900 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11901 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11902 }
11903 return SV;
11904 }
11905 case NEON::BI__builtin_neon_vqtbl1q_v: {
11906 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11907 Ops, "vtbl1");
11908 }
11909 case NEON::BI__builtin_neon_vqtbl2q_v: {
11910 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11911 Ops, "vtbl2");
11912 }
11913 case NEON::BI__builtin_neon_vqtbl3q_v: {
11914 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11915 Ops, "vtbl3");
11916 }
11917 case NEON::BI__builtin_neon_vqtbl4q_v: {
11918 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11919 Ops, "vtbl4");
11920 }
11921 case NEON::BI__builtin_neon_vqtbx1q_v: {
11922 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11923 Ops, "vtbx1");
11924 }
11925 case NEON::BI__builtin_neon_vqtbx2q_v: {
11926 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11927 Ops, "vtbx2");
11928 }
11929 case NEON::BI__builtin_neon_vqtbx3q_v: {
11930 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11931 Ops, "vtbx3");
11932 }
11933 case NEON::BI__builtin_neon_vqtbx4q_v: {
11934 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11935 Ops, "vtbx4");
11936 }
11937 case NEON::BI__builtin_neon_vsqadd_v:
11938 case NEON::BI__builtin_neon_vsqaddq_v: {
11939 Int = Intrinsic::aarch64_neon_usqadd;
11940 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11941 }
11942 case NEON::BI__builtin_neon_vuqadd_v:
11943 case NEON::BI__builtin_neon_vuqaddq_v: {
11944 Int = Intrinsic::aarch64_neon_suqadd;
11945 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11946 }
11947 }
11948}
11949
11950Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11951 const CallExpr *E) {
11952 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11956, __extension__ __PRETTY_FUNCTION__
))
11953 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11956, __extension__ __PRETTY_FUNCTION__
))
11954 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11956, __extension__ __PRETTY_FUNCTION__
))
11955 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11956, __extension__ __PRETTY_FUNCTION__
))
11956 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11956, __extension__ __PRETTY_FUNCTION__
))
;
11957
11958 // A sequence number, injected into IR builtin functions, to
11959 // prevent CSE given the only difference of the funciton
11960 // may just be the debuginfo metadata.
11961 static uint32_t BuiltinSeqNum;
11962
11963 switch (BuiltinID) {
11964 default:
11965 llvm_unreachable("Unexpected BPF builtin")::llvm::llvm_unreachable_internal("Unexpected BPF builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 11965)
;
11966 case BPF::BI__builtin_preserve_field_info: {
11967 const Expr *Arg = E->getArg(0);
11968 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11969
11970 if (!getDebugInfo()) {
11971 CGM.Error(E->getExprLoc(),
11972 "using __builtin_preserve_field_info() without -g");
11973 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11974 : EmitLValue(Arg).getPointer(*this);
11975 }
11976
11977 // Enable underlying preserve_*_access_index() generation.
11978 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11979 IsInPreservedAIRegion = true;
11980 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11981 : EmitLValue(Arg).getPointer(*this);
11982 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11983
11984 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11985 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11986
11987 // Built the IR for the preserve_field_info intrinsic.
11988 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11989 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11990 {FieldAddr->getType()});
11991 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11992 }
11993 case BPF::BI__builtin_btf_type_id:
11994 case BPF::BI__builtin_preserve_type_info: {
11995 if (!getDebugInfo()) {
11996 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11997 return nullptr;
11998 }
11999
12000 const Expr *Arg0 = E->getArg(0);
12001 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12002 Arg0->getType(), Arg0->getExprLoc());
12003
12004 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12005 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12006 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12007
12008 llvm::Function *FnDecl;
12009 if (BuiltinID == BPF::BI__builtin_btf_type_id)
12010 FnDecl = llvm::Intrinsic::getDeclaration(
12011 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
12012 else
12013 FnDecl = llvm::Intrinsic::getDeclaration(
12014 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
12015 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
12016 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12017 return Fn;
12018 }
12019 case BPF::BI__builtin_preserve_enum_value: {
12020 if (!getDebugInfo()) {
12021 CGM.Error(E->getExprLoc(), "using builtin function without -g");
12022 return nullptr;
12023 }
12024
12025 const Expr *Arg0 = E->getArg(0);
12026 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12027 Arg0->getType(), Arg0->getExprLoc());
12028
12029 // Find enumerator
12030 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
12031 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
12032 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
12033 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
12034
12035 auto &InitVal = Enumerator->getInitVal();
12036 std::string InitValStr;
12037 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX(9223372036854775807L)))
12038 InitValStr = std::to_string(InitVal.getSExtValue());
12039 else
12040 InitValStr = std::to_string(InitVal.getZExtValue());
12041 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
12042 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
12043
12044 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12045 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12046 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12047
12048 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
12049 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
12050 CallInst *Fn =
12051 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
12052 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12053 return Fn;
12054 }
12055 }
12056}
12057
12058llvm::Value *CodeGenFunction::
12059BuildVector(ArrayRef<llvm::Value*> Ops) {
12060 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12061, __extension__ __PRETTY_FUNCTION__
))
12061 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12061, __extension__ __PRETTY_FUNCTION__
))
;
12062 bool AllConstants = true;
12063 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
12064 AllConstants &= isa<Constant>(Ops[i]);
12065
12066 // If this is a constant vector, create a ConstantVector.
12067 if (AllConstants) {
12068 SmallVector<llvm::Constant*, 16> CstOps;
12069 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12070 CstOps.push_back(cast<Constant>(Ops[i]));
12071 return llvm::ConstantVector::get(CstOps);
12072 }
12073
12074 // Otherwise, insertelement the values to build the vector.
12075 Value *Result = llvm::UndefValue::get(
12076 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
12077
12078 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12079 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
12080
12081 return Result;
12082}
12083
12084// Convert the mask from an integer type to a vector of i1.
12085static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
12086 unsigned NumElts) {
12087
12088 auto *MaskTy = llvm::FixedVectorType::get(
12089 CGF.Builder.getInt1Ty(),
12090 cast<IntegerType>(Mask->getType())->getBitWidth());
12091 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
12092
12093 // If we have less than 8 elements, then the starting mask was an i8 and
12094 // we need to extract down to the right number of elements.
12095 if (NumElts < 8) {
12096 int Indices[4];
12097 for (unsigned i = 0; i != NumElts; ++i)
12098 Indices[i] = i;
12099 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
12100 makeArrayRef(Indices, NumElts),
12101 "extract");
12102 }
12103 return MaskVec;
12104}
12105
12106static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12107 Align Alignment) {
12108 // Cast the pointer to right type.
12109 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12110 llvm::PointerType::getUnqual(Ops[1]->getType()));
12111
12112 Value *MaskVec = getMaskVecValue(
12113 CGF, Ops[2],
12114 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
12115
12116 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
12117}
12118
12119static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12120 Align Alignment) {
12121 // Cast the pointer to right type.
12122 llvm::Type *Ty = Ops[1]->getType();
12123 Value *Ptr =
12124 CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12125
12126 Value *MaskVec = getMaskVecValue(
12127 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
12128
12129 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
12130}
12131
12132static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
12133 ArrayRef<Value *> Ops) {
12134 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
12135 llvm::Type *PtrTy = ResultTy->getElementType();
12136
12137 // Cast the pointer to element type.
12138 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12139 llvm::PointerType::getUnqual(PtrTy));
12140
12141 Value *MaskVec = getMaskVecValue(
12142 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
12143
12144 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
12145 ResultTy);
12146 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
12147}
12148
12149static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
12150 ArrayRef<Value *> Ops,
12151 bool IsCompress) {
12152 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12153
12154 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12155
12156 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
12157 : Intrinsic::x86_avx512_mask_expand;
12158 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
12159 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
12160}
12161
12162static Value *EmitX86CompressStore(CodeGenFunction &CGF,
12163 ArrayRef<Value *> Ops) {
12164 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12165 llvm::Type *PtrTy = ResultTy->getElementType();
12166
12167 // Cast the pointer to element type.
12168 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12169 llvm::PointerType::getUnqual(PtrTy));
12170
12171 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12172
12173 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
12174 ResultTy);
12175 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
12176}
12177
12178static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
12179 ArrayRef<Value *> Ops,
12180 bool InvertLHS = false) {
12181 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12182 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
12183 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
12184
12185 if (InvertLHS)
12186 LHS = CGF.Builder.CreateNot(LHS);
12187
12188 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
12189 Ops[0]->getType());
12190}
12191
12192static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
12193 Value *Amt, bool IsRight) {
12194 llvm::Type *Ty = Op0->getType();
12195
12196 // Amount may be scalar immediate, in which case create a splat vector.
12197 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
12198 // we only care about the lowest log2 bits anyway.
12199 if (Amt->getType() != Ty) {
12200 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
12201 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
12202 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
12203 }
12204
12205 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
12206 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
12207 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
12208}
12209
12210static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12211 bool IsSigned) {
12212 Value *Op0 = Ops[0];
12213 Value *Op1 = Ops[1];
12214 llvm::Type *Ty = Op0->getType();
12215 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
12216
12217 CmpInst::Predicate Pred;
12218 switch (Imm) {
12219 case 0x0:
12220 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12221 break;
12222 case 0x1:
12223 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
12224 break;
12225 case 0x2:
12226 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12227 break;
12228 case 0x3:
12229 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12230 break;
12231 case 0x4:
12232 Pred = ICmpInst::ICMP_EQ;
12233 break;
12234 case 0x5:
12235 Pred = ICmpInst::ICMP_NE;
12236 break;
12237 case 0x6:
12238 return llvm::Constant::getNullValue(Ty); // FALSE
12239 case 0x7:
12240 return llvm::Constant::getAllOnesValue(Ty); // TRUE
12241 default:
12242 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "clang/lib/CodeGen/CGBuiltin.cpp", 12242)
;
12243 }
12244
12245 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
12246 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
12247 return Res;
12248}
12249
12250static Value *EmitX86Select(CodeGenFunction &CGF,
12251 Value *Mask, Value *Op0, Value *Op1) {
12252
12253 // If the mask is all ones just return first argument.
12254 if (const auto *C = dyn_cast<Constant>(Mask))
12255 if (C->isAllOnesValue())
12256 return Op0;
12257
12258 Mask = getMaskVecValue(
12259 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
12260
12261 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12262}
12263
12264static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
12265 Value *Mask, Value *Op0, Value *Op1) {
12266 // If the mask is all ones just return first argument.
12267 if (const auto *C = dyn_cast<Constant>(Mask))
12268 if (C->isAllOnesValue())
12269 return Op0;
12270
12271 auto *MaskTy = llvm::FixedVectorType::get(
12272 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
12273 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
12274 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
12275 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12276}
12277
12278static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
12279 unsigned NumElts, Value *MaskIn) {
12280 if (MaskIn) {
12281 const auto *C = dyn_cast<Constant>(MaskIn);
12282 if (!C || !C->isAllOnesValue())
12283 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
12284 }
12285
12286 if (NumElts < 8) {
12287 int Indices[8];
12288 for (unsigned i = 0; i != NumElts; ++i)
12289 Indices[i] = i;
12290 for (unsigned i = NumElts; i != 8; ++i)
12291 Indices[i] = i % NumElts + NumElts;
12292 Cmp = CGF.Builder.CreateShuffleVector(
12293 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
12294 }
12295
12296 return CGF.Builder.CreateBitCast(Cmp,
12297 IntegerType::get(CGF.getLLVMContext(),
12298 std::max(NumElts, 8U)));
12299}
12300
12301static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12302 bool Signed, ArrayRef<Value *> Ops) {
12303 assert((Ops.size() == 2 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12304, __extension__ __PRETTY_FUNCTION__
))
12304 "Unexpected number of arguments")(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12304, __extension__ __PRETTY_FUNCTION__
))
;
12305 unsigned NumElts =
12306 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12307 Value *Cmp;
12308
12309 if (CC == 3) {
12310 Cmp = Constant::getNullValue(
12311 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12312 } else if (CC == 7) {
12313 Cmp = Constant::getAllOnesValue(
12314 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12315 } else {
12316 ICmpInst::Predicate Pred;
12317 switch (CC) {
12318 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12318)
;
12319 case 0: Pred = ICmpInst::ICMP_EQ; break;
12320 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12321 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12322 case 4: Pred = ICmpInst::ICMP_NE; break;
12323 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12324 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12325 }
12326 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12327 }
12328
12329 Value *MaskIn = nullptr;
12330 if (Ops.size() == 4)
12331 MaskIn = Ops[3];
12332
12333 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12334}
12335
12336static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12337 Value *Zero = Constant::getNullValue(In->getType());
12338 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12339}
12340
12341static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12342 ArrayRef<Value *> Ops, bool IsSigned) {
12343 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12344 llvm::Type *Ty = Ops[1]->getType();
12345
12346 Value *Res;
12347 if (Rnd != 4) {
12348 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12349 : Intrinsic::x86_avx512_uitofp_round;
12350 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12351 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12352 } else {
12353 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12354 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12355 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12356 }
12357
12358 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12359}
12360
12361// Lowers X86 FMA intrinsics to IR.
12362static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12363 ArrayRef<Value *> Ops, unsigned BuiltinID,
12364 bool IsAddSub) {
12365
12366 bool Subtract = false;
12367 Intrinsic::ID IID = Intrinsic::not_intrinsic;
12368 switch (BuiltinID) {
12369 default: break;
12370 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12371 Subtract = true;
12372 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12373 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12374 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12375 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12376 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12377 break;
12378 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12379 Subtract = true;
12380 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12381 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12382 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12383 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12384 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12385 break;
12386 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12387 Subtract = true;
12388 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12389 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12390 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12391 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12392 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12393 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12394 Subtract = true;
12395 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12396 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12397 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12398 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12399 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12400 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12401 Subtract = true;
12402 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12403 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12404 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12405 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12406 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12407 break;
12408 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12409 Subtract = true;
12410 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12411 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12412 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12413 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12414 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12415 break;
12416 }
12417
12418 Value *A = Ops[0];
12419 Value *B = Ops[1];
12420 Value *C = Ops[2];
12421
12422 if (Subtract)
12423 C = CGF.Builder.CreateFNeg(C);
12424
12425 Value *Res;
12426
12427 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12428 if (IID != Intrinsic::not_intrinsic &&
12429 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12430 IsAddSub)) {
12431 Function *Intr = CGF.CGM.getIntrinsic(IID);
12432 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12433 } else {
12434 llvm::Type *Ty = A->getType();
12435 Function *FMA;
12436 if (CGF.Builder.getIsFPConstrained()) {
12437 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12438 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12439 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12440 } else {
12441 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12442 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12443 }
12444 }
12445
12446 // Handle any required masking.
12447 Value *MaskFalseVal = nullptr;
12448 switch (BuiltinID) {
12449 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12450 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12451 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12452 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12453 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12454 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12455 MaskFalseVal = Ops[0];
12456 break;
12457 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12458 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12459 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12460 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12461 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12462 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12463 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12464 break;
12465 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12466 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12467 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12468 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12469 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12470 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12471 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12472 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12473 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12474 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12475 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12476 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12477 MaskFalseVal = Ops[2];
12478 break;
12479 }
12480
12481 if (MaskFalseVal)
12482 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12483
12484 return Res;
12485}
12486
12487static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12488 MutableArrayRef<Value *> Ops, Value *Upper,
12489 bool ZeroMask = false, unsigned PTIdx = 0,
12490 bool NegAcc = false) {
12491 unsigned Rnd = 4;
12492 if (Ops.size() > 4)
12493 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12494
12495 if (NegAcc)
12496 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12497
12498 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12499 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12500 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12501 Value *Res;
12502 if (Rnd != 4) {
12503 Intrinsic::ID IID;
12504
12505 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12506 case 16:
12507 IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12508 break;
12509 case 32:
12510 IID = Intrinsic::x86_avx512_vfmadd_f32;
12511 break;
12512 case 64:
12513 IID = Intrinsic::x86_avx512_vfmadd_f64;
12514 break;
12515 default:
12516 llvm_unreachable("Unexpected size")::llvm::llvm_unreachable_internal("Unexpected size", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12516)
;
12517 }
12518 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12519 {Ops[0], Ops[1], Ops[2], Ops[4]});
12520 } else if (CGF.Builder.getIsFPConstrained()) {
12521 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12522 Function *FMA = CGF.CGM.getIntrinsic(
12523 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12524 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12525 } else {
12526 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12527 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12528 }
12529 // If we have more than 3 arguments, we need to do masking.
12530 if (Ops.size() > 3) {
12531 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12532 : Ops[PTIdx];
12533
12534 // If we negated the accumulator and the its the PassThru value we need to
12535 // bypass the negate. Conveniently Upper should be the same thing in this
12536 // case.
12537 if (NegAcc && PTIdx == 2)
12538 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12539
12540 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12541 }
12542 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12543}
12544
12545static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12546 ArrayRef<Value *> Ops) {
12547 llvm::Type *Ty = Ops[0]->getType();
12548 // Arguments have a vXi32 type so cast to vXi64.
12549 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12550 Ty->getPrimitiveSizeInBits() / 64);
12551 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12552 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12553
12554 if (IsSigned) {
12555 // Shift left then arithmetic shift right.
12556 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12557 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12558 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12559 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12560 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12561 } else {
12562 // Clear the upper bits.
12563 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12564 LHS = CGF.Builder.CreateAnd(LHS, Mask);
12565 RHS = CGF.Builder.CreateAnd(RHS, Mask);
12566 }
12567
12568 return CGF.Builder.CreateMul(LHS, RHS);
12569}
12570
12571// Emit a masked pternlog intrinsic. This only exists because the header has to
12572// use a macro and we aren't able to pass the input argument to a pternlog
12573// builtin and a select builtin without evaluating it twice.
12574static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12575 ArrayRef<Value *> Ops) {
12576 llvm::Type *Ty = Ops[0]->getType();
12577
12578 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12579 unsigned EltWidth = Ty->getScalarSizeInBits();
12580 Intrinsic::ID IID;
12581 if (VecWidth == 128 && EltWidth == 32)
12582 IID = Intrinsic::x86_avx512_pternlog_d_128;
12583 else if (VecWidth == 256 && EltWidth == 32)
12584 IID = Intrinsic::x86_avx512_pternlog_d_256;
12585 else if (VecWidth == 512 && EltWidth == 32)
12586 IID = Intrinsic::x86_avx512_pternlog_d_512;
12587 else if (VecWidth == 128 && EltWidth == 64)
12588 IID = Intrinsic::x86_avx512_pternlog_q_128;
12589 else if (VecWidth == 256 && EltWidth == 64)
12590 IID = Intrinsic::x86_avx512_pternlog_q_256;
12591 else if (VecWidth == 512 && EltWidth == 64)
12592 IID = Intrinsic::x86_avx512_pternlog_q_512;
12593 else
12594 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12594)
;
12595
12596 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12597 Ops.drop_back());
12598 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12599 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12600}
12601
12602static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12603 llvm::Type *DstTy) {
12604 unsigned NumberOfElements =
12605 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12606 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12607 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12608}
12609
12610Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12611 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12612 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12613 return EmitX86CpuIs(CPUStr);
12614}
12615
12616// Convert F16 halfs to floats.
12617static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12618 ArrayRef<Value *> Ops,
12619 llvm::Type *DstTy) {
12620 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12621, __extension__ __PRETTY_FUNCTION__
))
12621 "Unknown cvtph2ps intrinsic")(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12621, __extension__ __PRETTY_FUNCTION__
))
;
12622
12623 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12624 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12625 Function *F =
12626 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12627 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12628 }
12629
12630 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12631 Value *Src = Ops[0];
12632
12633 // Extract the subvector.
12634 if (NumDstElts !=
12635 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12636 assert(NumDstElts == 4 && "Unexpected vector size")(static_cast <bool> (NumDstElts == 4 && "Unexpected vector size"
) ? void (0) : __assert_fail ("NumDstElts == 4 && \"Unexpected vector size\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12636, __extension__ __PRETTY_FUNCTION__
))
;
12637 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12638 }
12639
12640 // Bitcast from vXi16 to vXf16.
12641 auto *HalfTy = llvm::FixedVectorType::get(
12642 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12643 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12644
12645 // Perform the fp-extension.
12646 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12647
12648 if (Ops.size() >= 3)
12649 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12650 return Res;
12651}
12652
12653// Convert a BF16 to a float.
12654static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12655 const CallExpr *E,
12656 ArrayRef<Value *> Ops) {
12657 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12658 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12659 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12660 llvm::Type *ResultType = CGF.ConvertType(E->getType());
12661 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12662 return BitCast;
12663}
12664
12665Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12666
12667 llvm::Type *Int32Ty = Builder.getInt32Ty();
12668
12669 // Matching the struct layout from the compiler-rt/libgcc structure that is
12670 // filled in:
12671 // unsigned int __cpu_vendor;
12672 // unsigned int __cpu_type;
12673 // unsigned int __cpu_subtype;
12674 // unsigned int __cpu_features[1];
12675 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12676 llvm::ArrayType::get(Int32Ty, 1));
12677
12678 // Grab the global __cpu_model.
12679 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12680 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12681
12682 // Calculate the index needed to access the correct field based on the
12683 // range. Also adjust the expected value.
12684 unsigned Index;
12685 unsigned Value;
12686 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12687#define X86_VENDOR(ENUM, STRING) \
12688 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12689#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
12690 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12691#define X86_CPU_TYPE(ENUM, STR) \
12692 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12693#define X86_CPU_SUBTYPE(ENUM, STR) \
12694 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12695#include "llvm/Support/X86TargetParser.def"
12696 .Default({0, 0});
12697 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12697, __extension__ __PRETTY_FUNCTION__
))
;
12698
12699 // Grab the appropriate field from __cpu_model.
12700 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12701 ConstantInt::get(Int32Ty, Index)};
12702 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12703 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12704 CharUnits::fromQuantity(4));
12705
12706 // Check the value of the field against the requested value.
12707 return Builder.CreateICmpEQ(CpuValue,
12708 llvm::ConstantInt::get(Int32Ty, Value));
12709}
12710
12711Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12712 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12713 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12714 return EmitX86CpuSupports(FeatureStr);
12715}
12716
12717Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12718 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
12719}
12720
12721llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12722 uint32_t Features1 = Lo_32(FeaturesMask);
12723 uint32_t Features2 = Hi_32(FeaturesMask);
12724
12725 Value *Result = Builder.getTrue();
12726
12727 if (Features1 != 0) {
12728 // Matching the struct layout from the compiler-rt/libgcc structure that is
12729 // filled in:
12730 // unsigned int __cpu_vendor;
12731 // unsigned int __cpu_type;
12732 // unsigned int __cpu_subtype;
12733 // unsigned int __cpu_features[1];
12734 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12735 llvm::ArrayType::get(Int32Ty, 1));
12736
12737 // Grab the global __cpu_model.
12738 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12739 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12740
12741 // Grab the first (0th) element from the field __cpu_features off of the
12742 // global in the struct STy.
12743 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12744 Builder.getInt32(0)};
12745 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12746 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12747 CharUnits::fromQuantity(4));
12748
12749 // Check the value of the bit corresponding to the feature requested.
12750 Value *Mask = Builder.getInt32(Features1);
12751 Value *Bitset = Builder.CreateAnd(Features, Mask);
12752 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12753 Result = Builder.CreateAnd(Result, Cmp);
12754 }
12755
12756 if (Features2 != 0) {
12757 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12758 "__cpu_features2");
12759 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12760
12761 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12762 CharUnits::fromQuantity(4));
12763
12764 // Check the value of the bit corresponding to the feature requested.
12765 Value *Mask = Builder.getInt32(Features2);
12766 Value *Bitset = Builder.CreateAnd(Features, Mask);
12767 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12768 Result = Builder.CreateAnd(Result, Cmp);
12769 }
12770
12771 return Result;
12772}
12773
12774Value *CodeGenFunction::EmitX86CpuInit() {
12775 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12776 /*Variadic*/ false);
12777 llvm::FunctionCallee Func =
12778 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12779 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12780 cast<llvm::GlobalValue>(Func.getCallee())
12781 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12782 return Builder.CreateCall(Func);
12783}
12784
12785Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12786 const CallExpr *E) {
12787 if (BuiltinID == X86::BI__builtin_cpu_is)
12788 return EmitX86CpuIs(E);
12789 if (BuiltinID == X86::BI__builtin_cpu_supports)
12790 return EmitX86CpuSupports(E);
12791 if (BuiltinID == X86::BI__builtin_cpu_init)
12792 return EmitX86CpuInit();
12793
12794 // Handle MSVC intrinsics before argument evaluation to prevent double
12795 // evaluation.
12796 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12797 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12798
12799 SmallVector<Value*, 4> Ops;
12800 bool IsMaskFCmp = false;
12801 bool IsConjFMA = false;
12802
12803 // Find out if any arguments are required to be integer constant expressions.
12804 unsigned ICEArguments = 0;
12805 ASTContext::GetBuiltinTypeError Error;
12806 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12807 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12807, __extension__ __PRETTY_FUNCTION__
))
;
12808
12809 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12810 // If this is a normal argument, just emit it as a scalar.
12811 if ((ICEArguments & (1 << i)) == 0) {
12812 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12813 continue;
12814 }
12815
12816 // If this is required to be a constant, constant fold it so that we know
12817 // that the generated intrinsic gets a ConstantInt.
12818 Ops.push_back(llvm::ConstantInt::get(
12819 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12820 }
12821
12822 // These exist so that the builtin that takes an immediate can be bounds
12823 // checked by clang to avoid passing bad immediates to the backend. Since
12824 // AVX has a larger immediate than SSE we would need separate builtins to
12825 // do the different bounds checking. Rather than create a clang specific
12826 // SSE only builtin, this implements eight separate builtins to match gcc
12827 // implementation.
12828 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12829 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12830 llvm::Function *F = CGM.getIntrinsic(ID);
12831 return Builder.CreateCall(F, Ops);
12832 };
12833
12834 // For the vector forms of FP comparisons, translate the builtins directly to
12835 // IR.
12836 // TODO: The builtins could be removed if the SSE header files used vector
12837 // extension comparisons directly (vector ordered/unordered may need
12838 // additional support via __builtin_isnan()).
12839 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12840 bool IsSignaling) {
12841 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12842 Value *Cmp;
12843 if (IsSignaling)
12844 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12845 else
12846 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12847 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12848 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12849 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12850 return Builder.CreateBitCast(Sext, FPVecTy);
12851 };
12852
12853 switch (BuiltinID) {
12854 default: return nullptr;
12855 case X86::BI_mm_prefetch: {
12856 Value *Address = Ops[0];
12857 ConstantInt *C = cast<ConstantInt>(Ops[1]);
12858 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12859 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12860 Value *Data = ConstantInt::get(Int32Ty, 1);
12861 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12862 return Builder.CreateCall(F, {Address, RW, Locality, Data});
12863 }
12864 case X86::BI_mm_clflush: {
12865 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12866 Ops[0]);
12867 }
12868 case X86::BI_mm_lfence: {
12869 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12870 }
12871 case X86::BI_mm_mfence: {
12872 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12873 }
12874 case X86::BI_mm_sfence: {
12875 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12876 }
12877 case X86::BI_mm_pause: {
12878 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12879 }
12880 case X86::BI__rdtsc: {
12881 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12882 }
12883 case X86::BI__builtin_ia32_rdtscp: {
12884 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12885 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12886 Ops[0]);
12887 return Builder.CreateExtractValue(Call, 0);
12888 }
12889 case X86::BI__builtin_ia32_lzcnt_u16:
12890 case X86::BI__builtin_ia32_lzcnt_u32:
12891 case X86::BI__builtin_ia32_lzcnt_u64: {
12892 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12893 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12894 }
12895 case X86::BI__builtin_ia32_tzcnt_u16:
12896 case X86::BI__builtin_ia32_tzcnt_u32:
12897 case X86::BI__builtin_ia32_tzcnt_u64: {
12898 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12899 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12900 }
12901 case X86::BI__builtin_ia32_undef128:
12902 case X86::BI__builtin_ia32_undef256:
12903 case X86::BI__builtin_ia32_undef512:
12904 // The x86 definition of "undef" is not the same as the LLVM definition
12905 // (PR32176). We leave optimizing away an unnecessary zero constant to the
12906 // IR optimizer and backend.
12907 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12908 // value, we should use that here instead of a zero.
12909 return llvm::Constant::getNullValue(ConvertType(E->getType()));
12910 case X86::BI__builtin_ia32_vec_init_v8qi:
12911 case X86::BI__builtin_ia32_vec_init_v4hi:
12912 case X86::BI__builtin_ia32_vec_init_v2si:
12913 return Builder.CreateBitCast(BuildVector(Ops),
12914 llvm::Type::getX86_MMXTy(getLLVMContext()));
12915 case X86::BI__builtin_ia32_vec_ext_v2si:
12916 case X86::BI__builtin_ia32_vec_ext_v16qi:
12917 case X86::BI__builtin_ia32_vec_ext_v8hi:
12918 case X86::BI__builtin_ia32_vec_ext_v4si:
12919 case X86::BI__builtin_ia32_vec_ext_v4sf:
12920 case X86::BI__builtin_ia32_vec_ext_v2di:
12921 case X86::BI__builtin_ia32_vec_ext_v32qi:
12922 case X86::BI__builtin_ia32_vec_ext_v16hi:
12923 case X86::BI__builtin_ia32_vec_ext_v8si:
12924 case X86::BI__builtin_ia32_vec_ext_v4di: {
12925 unsigned NumElts =
12926 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12927 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12928 Index &= NumElts - 1;
12929 // These builtins exist so we can ensure the index is an ICE and in range.
12930 // Otherwise we could just do this in the header file.
12931 return Builder.CreateExtractElement(Ops[0], Index);
12932 }
12933 case X86::BI__builtin_ia32_vec_set_v16qi:
12934 case X86::BI__builtin_ia32_vec_set_v8hi:
12935 case X86::BI__builtin_ia32_vec_set_v4si:
12936 case X86::BI__builtin_ia32_vec_set_v2di:
12937 case X86::BI__builtin_ia32_vec_set_v32qi:
12938 case X86::BI__builtin_ia32_vec_set_v16hi:
12939 case X86::BI__builtin_ia32_vec_set_v8si:
12940 case X86::BI__builtin_ia32_vec_set_v4di: {
12941 unsigned NumElts =
12942 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12943 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12944 Index &= NumElts - 1;
12945 // These builtins exist so we can ensure the index is an ICE and in range.
12946 // Otherwise we could just do this in the header file.
12947 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12948 }
12949 case X86::BI_mm_setcsr:
12950 case X86::BI__builtin_ia32_ldmxcsr: {
12951 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12952 Builder.CreateStore(Ops[0], Tmp);
12953 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12954 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12955 }
12956 case X86::BI_mm_getcsr:
12957 case X86::BI__builtin_ia32_stmxcsr: {
12958 Address Tmp = CreateMemTemp(E->getType());
12959 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12960 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12961 return Builder.CreateLoad(Tmp, "stmxcsr");
12962 }
12963 case X86::BI__builtin_ia32_xsave:
12964 case X86::BI__builtin_ia32_xsave64:
12965 case X86::BI__builtin_ia32_xrstor:
12966 case X86::BI__builtin_ia32_xrstor64:
12967 case X86::BI__builtin_ia32_xsaveopt:
12968 case X86::BI__builtin_ia32_xsaveopt64:
12969 case X86::BI__builtin_ia32_xrstors:
12970 case X86::BI__builtin_ia32_xrstors64:
12971 case X86::BI__builtin_ia32_xsavec:
12972 case X86::BI__builtin_ia32_xsavec64:
12973 case X86::BI__builtin_ia32_xsaves:
12974 case X86::BI__builtin_ia32_xsaves64:
12975 case X86::BI__builtin_ia32_xsetbv:
12976 case X86::BI_xsetbv: {
12977 Intrinsic::ID ID;
12978#define INTRINSIC_X86_XSAVE_ID(NAME) \
12979 case X86::BI__builtin_ia32_##NAME: \
12980 ID = Intrinsic::x86_##NAME; \
12981 break
12982 switch (BuiltinID) {
12983 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12983)
;
12984 INTRINSIC_X86_XSAVE_ID(xsave);
12985 INTRINSIC_X86_XSAVE_ID(xsave64);
12986 INTRINSIC_X86_XSAVE_ID(xrstor);
12987 INTRINSIC_X86_XSAVE_ID(xrstor64);
12988 INTRINSIC_X86_XSAVE_ID(xsaveopt);
12989 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12990 INTRINSIC_X86_XSAVE_ID(xrstors);
12991 INTRINSIC_X86_XSAVE_ID(xrstors64);
12992 INTRINSIC_X86_XSAVE_ID(xsavec);
12993 INTRINSIC_X86_XSAVE_ID(xsavec64);
12994 INTRINSIC_X86_XSAVE_ID(xsaves);
12995 INTRINSIC_X86_XSAVE_ID(xsaves64);
12996 INTRINSIC_X86_XSAVE_ID(xsetbv);
12997 case X86::BI_xsetbv:
12998 ID = Intrinsic::x86_xsetbv;
12999 break;
13000 }
13001#undef INTRINSIC_X86_XSAVE_ID
13002 Value *Mhi = Builder.CreateTrunc(
13003 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
13004 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
13005 Ops[1] = Mhi;
13006 Ops.push_back(Mlo);
13007 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13008 }
13009 case X86::BI__builtin_ia32_xgetbv:
13010 case X86::BI_xgetbv:
13011 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
13012 case X86::BI__builtin_ia32_storedqudi128_mask:
13013 case X86::BI__builtin_ia32_storedqusi128_mask:
13014 case X86::BI__builtin_ia32_storedquhi128_mask:
13015 case X86::BI__builtin_ia32_storedquqi128_mask:
13016 case X86::BI__builtin_ia32_storeupd128_mask:
13017 case X86::BI__builtin_ia32_storeups128_mask:
13018 case X86::BI__builtin_ia32_storedqudi256_mask:
13019 case X86::BI__builtin_ia32_storedqusi256_mask:
13020 case X86::BI__builtin_ia32_storedquhi256_mask:
13021 case X86::BI__builtin_ia32_storedquqi256_mask:
13022 case X86::BI__builtin_ia32_storeupd256_mask:
13023 case X86::BI__builtin_ia32_storeups256_mask:
13024 case X86::BI__builtin_ia32_storedqudi512_mask:
13025 case X86::BI__builtin_ia32_storedqusi512_mask:
13026 case X86::BI__builtin_ia32_storedquhi512_mask:
13027 case X86::BI__builtin_ia32_storedquqi512_mask:
13028 case X86::BI__builtin_ia32_storeupd512_mask:
13029 case X86::BI__builtin_ia32_storeups512_mask:
13030 return EmitX86MaskedStore(*this, Ops, Align(1));
13031
13032 case X86::BI__builtin_ia32_storesh128_mask:
13033 case X86::BI__builtin_ia32_storess128_mask:
13034 case X86::BI__builtin_ia32_storesd128_mask:
13035 return EmitX86MaskedStore(*this, Ops, Align(1));
13036
13037 case X86::BI__builtin_ia32_vpopcntb_128:
13038 case X86::BI__builtin_ia32_vpopcntd_128:
13039 case X86::BI__builtin_ia32_vpopcntq_128:
13040 case X86::BI__builtin_ia32_vpopcntw_128:
13041 case X86::BI__builtin_ia32_vpopcntb_256:
13042 case X86::BI__builtin_ia32_vpopcntd_256:
13043 case X86::BI__builtin_ia32_vpopcntq_256:
13044 case X86::BI__builtin_ia32_vpopcntw_256:
13045 case X86::BI__builtin_ia32_vpopcntb_512:
13046 case X86::BI__builtin_ia32_vpopcntd_512:
13047 case X86::BI__builtin_ia32_vpopcntq_512:
13048 case X86::BI__builtin_ia32_vpopcntw_512: {
13049 llvm::Type *ResultType = ConvertType(E->getType());
13050 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13051 return Builder.CreateCall(F, Ops);
13052 }
13053 case X86::BI__builtin_ia32_cvtmask2b128:
13054 case X86::BI__builtin_ia32_cvtmask2b256:
13055 case X86::BI__builtin_ia32_cvtmask2b512:
13056 case X86::BI__builtin_ia32_cvtmask2w128:
13057 case X86::BI__builtin_ia32_cvtmask2w256:
13058 case X86::BI__builtin_ia32_cvtmask2w512:
13059 case X86::BI__builtin_ia32_cvtmask2d128:
13060 case X86::BI__builtin_ia32_cvtmask2d256:
13061 case X86::BI__builtin_ia32_cvtmask2d512:
13062 case X86::BI__builtin_ia32_cvtmask2q128:
13063 case X86::BI__builtin_ia32_cvtmask2q256:
13064 case X86::BI__builtin_ia32_cvtmask2q512:
13065 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
13066
13067 case X86::BI__builtin_ia32_cvtb2mask128:
13068 case X86::BI__builtin_ia32_cvtb2mask256:
13069 case X86::BI__builtin_ia32_cvtb2mask512:
13070 case X86::BI__builtin_ia32_cvtw2mask128:
13071 case X86::BI__builtin_ia32_cvtw2mask256:
13072 case X86::BI__builtin_ia32_cvtw2mask512:
13073 case X86::BI__builtin_ia32_cvtd2mask128:
13074 case X86::BI__builtin_ia32_cvtd2mask256:
13075 case X86::BI__builtin_ia32_cvtd2mask512:
13076 case X86::BI__builtin_ia32_cvtq2mask128:
13077 case X86::BI__builtin_ia32_cvtq2mask256:
13078 case X86::BI__builtin_ia32_cvtq2mask512:
13079 return EmitX86ConvertToMask(*this, Ops[0]);
13080
13081 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
13082 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
13083 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
13084 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
13085 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
13086 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
13087 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
13088 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
13089 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
13090 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
13091 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
13092 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
13093 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
13094 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
13095
13096 case X86::BI__builtin_ia32_vfmaddss3:
13097 case X86::BI__builtin_ia32_vfmaddsd3:
13098 case X86::BI__builtin_ia32_vfmaddsh3_mask:
13099 case X86::BI__builtin_ia32_vfmaddss3_mask:
13100 case X86::BI__builtin_ia32_vfmaddsd3_mask:
13101 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
13102 case X86::BI__builtin_ia32_vfmaddss:
13103 case X86::BI__builtin_ia32_vfmaddsd:
13104 return EmitScalarFMAExpr(*this, E, Ops,
13105 Constant::getNullValue(Ops[0]->getType()));
13106 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
13107 case X86::BI__builtin_ia32_vfmaddss3_maskz:
13108 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
13109 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
13110 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
13111 case X86::BI__builtin_ia32_vfmaddss3_mask3:
13112 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
13113 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
13114 case X86::BI__builtin_ia32_vfmsubsh3_mask3:
13115 case X86::BI__builtin_ia32_vfmsubss3_mask3:
13116 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
13117 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
13118 /*NegAcc*/ true);
13119 case X86::BI__builtin_ia32_vfmaddph:
13120 case X86::BI__builtin_ia32_vfmaddps:
13121 case X86::BI__builtin_ia32_vfmaddpd:
13122 case X86::BI__builtin_ia32_vfmaddph256:
13123 case X86::BI__builtin_ia32_vfmaddps256:
13124 case X86::BI__builtin_ia32_vfmaddpd256:
13125 case X86::BI__builtin_ia32_vfmaddph512_mask:
13126 case X86::BI__builtin_ia32_vfmaddph512_maskz:
13127 case X86::BI__builtin_ia32_vfmaddph512_mask3:
13128 case X86::BI__builtin_ia32_vfmaddps512_mask:
13129 case X86::BI__builtin_ia32_vfmaddps512_maskz:
13130 case X86::BI__builtin_ia32_vfmaddps512_mask3:
13131 case X86::BI__builtin_ia32_vfmsubps512_mask3:
13132 case X86::BI__builtin_ia32_vfmaddpd512_mask:
13133 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
13134 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
13135 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
13136 case X86::BI__builtin_ia32_vfmsubph512_mask3:
13137 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
13138 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
13139 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13140 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13141 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13142 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
13143 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13144 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13145 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13146 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13147 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13148 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13149 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13150 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
13151
13152 case X86::BI__builtin_ia32_movdqa32store128_mask:
13153 case X86::BI__builtin_ia32_movdqa64store128_mask:
13154 case X86::BI__builtin_ia32_storeaps128_mask:
13155 case X86::BI__builtin_ia32_storeapd128_mask:
13156 case X86::BI__builtin_ia32_movdqa32store256_mask:
13157 case X86::BI__builtin_ia32_movdqa64store256_mask:
13158 case X86::BI__builtin_ia32_storeaps256_mask:
13159 case X86::BI__builtin_ia32_storeapd256_mask:
13160 case X86::BI__builtin_ia32_movdqa32store512_mask:
13161 case X86::BI__builtin_ia32_movdqa64store512_mask:
13162 case X86::BI__builtin_ia32_storeaps512_mask:
13163 case X86::BI__builtin_ia32_storeapd512_mask:
13164 return EmitX86MaskedStore(
13165 *this, Ops,
13166 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13167
13168 case X86::BI__builtin_ia32_loadups128_mask:
13169 case X86::BI__builtin_ia32_loadups256_mask:
13170 case X86::BI__builtin_ia32_loadups512_mask:
13171 case X86::BI__builtin_ia32_loadupd128_mask:
13172 case X86::BI__builtin_ia32_loadupd256_mask:
13173 case X86::BI__builtin_ia32_loadupd512_mask:
13174 case X86::BI__builtin_ia32_loaddquqi128_mask:
13175 case X86::BI__builtin_ia32_loaddquqi256_mask:
13176 case X86::BI__builtin_ia32_loaddquqi512_mask:
13177 case X86::BI__builtin_ia32_loaddquhi128_mask:
13178 case X86::BI__builtin_ia32_loaddquhi256_mask:
13179 case X86::BI__builtin_ia32_loaddquhi512_mask:
13180 case X86::BI__builtin_ia32_loaddqusi128_mask:
13181 case X86::BI__builtin_ia32_loaddqusi256_mask:
13182 case X86::BI__builtin_ia32_loaddqusi512_mask:
13183 case X86::BI__builtin_ia32_loaddqudi128_mask:
13184 case X86::BI__builtin_ia32_loaddqudi256_mask:
13185 case X86::BI__builtin_ia32_loaddqudi512_mask:
13186 return EmitX86MaskedLoad(*this, Ops, Align(1));
13187
13188 case X86::BI__builtin_ia32_loadsh128_mask:
13189 case X86::BI__builtin_ia32_loadss128_mask:
13190 case X86::BI__builtin_ia32_loadsd128_mask:
13191 return EmitX86MaskedLoad(*this, Ops, Align(1));
13192
13193 case X86::BI__builtin_ia32_loadaps128_mask:
13194 case X86::BI__builtin_ia32_loadaps256_mask:
13195 case X86::BI__builtin_ia32_loadaps512_mask:
13196 case X86::BI__builtin_ia32_loadapd128_mask:
13197 case X86::BI__builtin_ia32_loadapd256_mask:
13198 case X86::BI__builtin_ia32_loadapd512_mask:
13199 case X86::BI__builtin_ia32_movdqa32load128_mask:
13200 case X86::BI__builtin_ia32_movdqa32load256_mask:
13201 case X86::BI__builtin_ia32_movdqa32load512_mask:
13202 case X86::BI__builtin_ia32_movdqa64load128_mask:
13203 case X86::BI__builtin_ia32_movdqa64load256_mask:
13204 case X86::BI__builtin_ia32_movdqa64load512_mask:
13205 return EmitX86MaskedLoad(
13206 *this, Ops,
13207 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13208
13209 case X86::BI__builtin_ia32_expandloaddf128_mask:
13210 case X86::BI__builtin_ia32_expandloaddf256_mask:
13211 case X86::BI__builtin_ia32_expandloaddf512_mask:
13212 case X86::BI__builtin_ia32_expandloadsf128_mask:
13213 case X86::BI__builtin_ia32_expandloadsf256_mask:
13214 case X86::BI__builtin_ia32_expandloadsf512_mask:
13215 case X86::BI__builtin_ia32_expandloaddi128_mask:
13216 case X86::BI__builtin_ia32_expandloaddi256_mask:
13217 case X86::BI__builtin_ia32_expandloaddi512_mask:
13218 case X86::BI__builtin_ia32_expandloadsi128_mask:
13219 case X86::BI__builtin_ia32_expandloadsi256_mask:
13220 case X86::BI__builtin_ia32_expandloadsi512_mask:
13221 case X86::BI__builtin_ia32_expandloadhi128_mask:
13222 case X86::BI__builtin_ia32_expandloadhi256_mask:
13223 case X86::BI__builtin_ia32_expandloadhi512_mask:
13224 case X86::BI__builtin_ia32_expandloadqi128_mask:
13225 case X86::BI__builtin_ia32_expandloadqi256_mask:
13226 case X86::BI__builtin_ia32_expandloadqi512_mask:
13227 return EmitX86ExpandLoad(*this, Ops);
13228
13229 case X86::BI__builtin_ia32_compressstoredf128_mask:
13230 case X86::BI__builtin_ia32_compressstoredf256_mask:
13231 case X86::BI__builtin_ia32_compressstoredf512_mask:
13232 case X86::BI__builtin_ia32_compressstoresf128_mask:
13233 case X86::BI__builtin_ia32_compressstoresf256_mask:
13234 case X86::BI__builtin_ia32_compressstoresf512_mask:
13235 case X86::BI__builtin_ia32_compressstoredi128_mask:
13236 case X86::BI__builtin_ia32_compressstoredi256_mask:
13237 case X86::BI__builtin_ia32_compressstoredi512_mask:
13238 case X86::BI__builtin_ia32_compressstoresi128_mask:
13239 case X86::BI__builtin_ia32_compressstoresi256_mask:
13240 case X86::BI__builtin_ia32_compressstoresi512_mask:
13241 case X86::BI__builtin_ia32_compressstorehi128_mask:
13242 case X86::BI__builtin_ia32_compressstorehi256_mask:
13243 case X86::BI__builtin_ia32_compressstorehi512_mask:
13244 case X86::BI__builtin_ia32_compressstoreqi128_mask:
13245 case X86::BI__builtin_ia32_compressstoreqi256_mask:
13246 case X86::BI__builtin_ia32_compressstoreqi512_mask:
13247 return EmitX86CompressStore(*this, Ops);
13248
13249 case X86::BI__builtin_ia32_expanddf128_mask:
13250 case X86::BI__builtin_ia32_expanddf256_mask:
13251 case X86::BI__builtin_ia32_expanddf512_mask:
13252 case X86::BI__builtin_ia32_expandsf128_mask:
13253 case X86::BI__builtin_ia32_expandsf256_mask:
13254 case X86::BI__builtin_ia32_expandsf512_mask:
13255 case X86::BI__builtin_ia32_expanddi128_mask:
13256 case X86::BI__builtin_ia32_expanddi256_mask:
13257 case X86::BI__builtin_ia32_expanddi512_mask:
13258 case X86::BI__builtin_ia32_expandsi128_mask:
13259 case X86::BI__builtin_ia32_expandsi256_mask:
13260 case X86::BI__builtin_ia32_expandsi512_mask:
13261 case X86::BI__builtin_ia32_expandhi128_mask:
13262 case X86::BI__builtin_ia32_expandhi256_mask:
13263 case X86::BI__builtin_ia32_expandhi512_mask:
13264 case X86::BI__builtin_ia32_expandqi128_mask:
13265 case X86::BI__builtin_ia32_expandqi256_mask:
13266 case X86::BI__builtin_ia32_expandqi512_mask:
13267 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
13268
13269 case X86::BI__builtin_ia32_compressdf128_mask:
13270 case X86::BI__builtin_ia32_compressdf256_mask:
13271 case X86::BI__builtin_ia32_compressdf512_mask:
13272 case X86::BI__builtin_ia32_compresssf128_mask:
13273 case X86::BI__builtin_ia32_compresssf256_mask:
13274 case X86::BI__builtin_ia32_compresssf512_mask:
13275 case X86::BI__builtin_ia32_compressdi128_mask:
13276 case X86::BI__builtin_ia32_compressdi256_mask:
13277 case X86::BI__builtin_ia32_compressdi512_mask:
13278 case X86::BI__builtin_ia32_compresssi128_mask:
13279 case X86::BI__builtin_ia32_compresssi256_mask:
13280 case X86::BI__builtin_ia32_compresssi512_mask:
13281 case X86::BI__builtin_ia32_compresshi128_mask:
13282 case X86::BI__builtin_ia32_compresshi256_mask:
13283 case X86::BI__builtin_ia32_compresshi512_mask:
13284 case X86::BI__builtin_ia32_compressqi128_mask:
13285 case X86::BI__builtin_ia32_compressqi256_mask:
13286 case X86::BI__builtin_ia32_compressqi512_mask:
13287 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
13288
13289 case X86::BI__builtin_ia32_gather3div2df:
13290 case X86::BI__builtin_ia32_gather3div2di:
13291 case X86::BI__builtin_ia32_gather3div4df:
13292 case X86::BI__builtin_ia32_gather3div4di:
13293 case X86::BI__builtin_ia32_gather3div4sf:
13294 case X86::BI__builtin_ia32_gather3div4si:
13295 case X86::BI__builtin_ia32_gather3div8sf:
13296 case X86::BI__builtin_ia32_gather3div8si:
13297 case X86::BI__builtin_ia32_gather3siv2df:
13298 case X86::BI__builtin_ia32_gather3siv2di:
13299 case X86::BI__builtin_ia32_gather3siv4df:
13300 case X86::BI__builtin_ia32_gather3siv4di:
13301 case X86::BI__builtin_ia32_gather3siv4sf:
13302 case X86::BI__builtin_ia32_gather3siv4si:
13303 case X86::BI__builtin_ia32_gather3siv8sf:
13304 case X86::BI__builtin_ia32_gather3siv8si:
13305 case X86::BI__builtin_ia32_gathersiv8df:
13306 case X86::BI__builtin_ia32_gathersiv16sf:
13307 case X86::BI__builtin_ia32_gatherdiv8df:
13308 case X86::BI__builtin_ia32_gatherdiv16sf:
13309 case X86::BI__builtin_ia32_gathersiv8di:
13310 case X86::BI__builtin_ia32_gathersiv16si:
13311 case X86::BI__builtin_ia32_gatherdiv8di:
13312 case X86::BI__builtin_ia32_gatherdiv16si: {
13313 Intrinsic::ID IID;
13314 switch (BuiltinID) {
13315 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13315)
;
13316 case X86::BI__builtin_ia32_gather3div2df:
13317 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13318 break;
13319 case X86::BI__builtin_ia32_gather3div2di:
13320 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13321 break;
13322 case X86::BI__builtin_ia32_gather3div4df:
13323 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13324 break;
13325 case X86::BI__builtin_ia32_gather3div4di:
13326 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13327 break;
13328 case X86::BI__builtin_ia32_gather3div4sf:
13329 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13330 break;
13331 case X86::BI__builtin_ia32_gather3div4si:
13332 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13333 break;
13334 case X86::BI__builtin_ia32_gather3div8sf:
13335 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13336 break;
13337 case X86::BI__builtin_ia32_gather3div8si:
13338 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13339 break;
13340 case X86::BI__builtin_ia32_gather3siv2df:
13341 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13342 break;
13343 case X86::BI__builtin_ia32_gather3siv2di:
13344 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13345 break;
13346 case X86::BI__builtin_ia32_gather3siv4df:
13347 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13348 break;
13349 case X86::BI__builtin_ia32_gather3siv4di:
13350 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13351 break;
13352 case X86::BI__builtin_ia32_gather3siv4sf:
13353 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13354 break;
13355 case X86::BI__builtin_ia32_gather3siv4si:
13356 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13357 break;
13358 case X86::BI__builtin_ia32_gather3siv8sf:
13359 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13360 break;
13361 case X86::BI__builtin_ia32_gather3siv8si:
13362 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13363 break;
13364 case X86::BI__builtin_ia32_gathersiv8df:
13365 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13366 break;
13367 case X86::BI__builtin_ia32_gathersiv16sf:
13368 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13369 break;
13370 case X86::BI__builtin_ia32_gatherdiv8df:
13371 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13372 break;
13373 case X86::BI__builtin_ia32_gatherdiv16sf:
13374 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13375 break;
13376 case X86::BI__builtin_ia32_gathersiv8di:
13377 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13378 break;
13379 case X86::BI__builtin_ia32_gathersiv16si:
13380 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13381 break;
13382 case X86::BI__builtin_ia32_gatherdiv8di:
13383 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13384 break;
13385 case X86::BI__builtin_ia32_gatherdiv16si:
13386 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13387 break;
13388 }
13389
13390 unsigned MinElts = std::min(
13391 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13392 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13393 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13394 Function *Intr = CGM.getIntrinsic(IID);
13395 return Builder.CreateCall(Intr, Ops);
13396 }
13397
13398 case X86::BI__builtin_ia32_scattersiv8df:
13399 case X86::BI__builtin_ia32_scattersiv16sf:
13400 case X86::BI__builtin_ia32_scatterdiv8df:
13401 case X86::BI__builtin_ia32_scatterdiv16sf:
13402 case X86::BI__builtin_ia32_scattersiv8di:
13403 case X86::BI__builtin_ia32_scattersiv16si:
13404 case X86::BI__builtin_ia32_scatterdiv8di:
13405 case X86::BI__builtin_ia32_scatterdiv16si:
13406 case X86::BI__builtin_ia32_scatterdiv2df:
13407 case X86::BI__builtin_ia32_scatterdiv2di:
13408 case X86::BI__builtin_ia32_scatterdiv4df:
13409 case X86::BI__builtin_ia32_scatterdiv4di:
13410 case X86::BI__builtin_ia32_scatterdiv4sf:
13411 case X86::BI__builtin_ia32_scatterdiv4si:
13412 case X86::BI__builtin_ia32_scatterdiv8sf:
13413 case X86::BI__builtin_ia32_scatterdiv8si:
13414 case X86::BI__builtin_ia32_scattersiv2df:
13415 case X86::BI__builtin_ia32_scattersiv2di:
13416 case X86::BI__builtin_ia32_scattersiv4df:
13417 case X86::BI__builtin_ia32_scattersiv4di:
13418 case X86::BI__builtin_ia32_scattersiv4sf:
13419 case X86::BI__builtin_ia32_scattersiv4si:
13420 case X86::BI__builtin_ia32_scattersiv8sf:
13421 case X86::BI__builtin_ia32_scattersiv8si: {
13422 Intrinsic::ID IID;
13423 switch (BuiltinID) {
13424 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13424)
;
13425 case X86::BI__builtin_ia32_scattersiv8df:
13426 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13427 break;
13428 case X86::BI__builtin_ia32_scattersiv16sf:
13429 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13430 break;
13431 case X86::BI__builtin_ia32_scatterdiv8df:
13432 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13433 break;
13434 case X86::BI__builtin_ia32_scatterdiv16sf:
13435 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13436 break;
13437 case X86::BI__builtin_ia32_scattersiv8di:
13438 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13439 break;
13440 case X86::BI__builtin_ia32_scattersiv16si:
13441 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13442 break;
13443 case X86::BI__builtin_ia32_scatterdiv8di:
13444 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13445 break;
13446 case X86::BI__builtin_ia32_scatterdiv16si:
13447 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13448 break;
13449 case X86::BI__builtin_ia32_scatterdiv2df:
13450 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13451 break;
13452 case X86::BI__builtin_ia32_scatterdiv2di:
13453 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13454 break;
13455 case X86::BI__builtin_ia32_scatterdiv4df:
13456 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13457 break;
13458 case X86::BI__builtin_ia32_scatterdiv4di:
13459 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13460 break;
13461 case X86::BI__builtin_ia32_scatterdiv4sf:
13462 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13463 break;
13464 case X86::BI__builtin_ia32_scatterdiv4si:
13465 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13466 break;
13467 case X86::BI__builtin_ia32_scatterdiv8sf:
13468 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13469 break;
13470 case X86::BI__builtin_ia32_scatterdiv8si:
13471 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13472 break;
13473 case X86::BI__builtin_ia32_scattersiv2df:
13474 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13475 break;
13476 case X86::BI__builtin_ia32_scattersiv2di:
13477 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13478 break;
13479 case X86::BI__builtin_ia32_scattersiv4df:
13480 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13481 break;
13482 case X86::BI__builtin_ia32_scattersiv4di:
13483 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13484 break;
13485 case X86::BI__builtin_ia32_scattersiv4sf:
13486 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13487 break;
13488 case X86::BI__builtin_ia32_scattersiv4si:
13489 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13490 break;
13491 case X86::BI__builtin_ia32_scattersiv8sf:
13492 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13493 break;
13494 case X86::BI__builtin_ia32_scattersiv8si:
13495 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13496 break;
13497 }
13498
13499 unsigned MinElts = std::min(
13500 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13501 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13502 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13503 Function *Intr = CGM.getIntrinsic(IID);
13504 return Builder.CreateCall(Intr, Ops);
13505 }
13506
13507 case X86::BI__builtin_ia32_vextractf128_pd256:
13508 case X86::BI__builtin_ia32_vextractf128_ps256:
13509 case X86::BI__builtin_ia32_vextractf128_si256:
13510 case X86::BI__builtin_ia32_extract128i256:
13511 case X86::BI__builtin_ia32_extractf64x4_mask:
13512 case X86::BI__builtin_ia32_extractf32x4_mask:
13513 case X86::BI__builtin_ia32_extracti64x4_mask:
13514 case X86::BI__builtin_ia32_extracti32x4_mask:
13515 case X86::BI__builtin_ia32_extractf32x8_mask:
13516 case X86::BI__builtin_ia32_extracti32x8_mask:
13517 case X86::BI__builtin_ia32_extractf32x4_256_mask:
13518 case X86::BI__builtin_ia32_extracti32x4_256_mask:
13519 case X86::BI__builtin_ia32_extractf64x2_256_mask:
13520 case X86::BI__builtin_ia32_extracti64x2_256_mask:
13521 case X86::BI__builtin_ia32_extractf64x2_512_mask:
13522 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13523 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13524 unsigned NumElts = DstTy->getNumElements();
13525 unsigned SrcNumElts =
13526 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13527 unsigned SubVectors = SrcNumElts / NumElts;
13528 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13529 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13529, __extension__ __PRETTY_FUNCTION__
))
;
13530 Index &= SubVectors - 1; // Remove any extra bits.
13531 Index *= NumElts;
13532
13533 int Indices[16];
13534 for (unsigned i = 0; i != NumElts; ++i)
13535 Indices[i] = i + Index;
13536
13537 Value *Res = Builder.CreateShuffleVector(Ops[0],
13538 makeArrayRef(Indices, NumElts),
13539 "extract");
13540
13541 if (Ops.size() == 4)
13542 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13543
13544 return Res;
13545 }
13546 case X86::BI__builtin_ia32_vinsertf128_pd256:
13547 case X86::BI__builtin_ia32_vinsertf128_ps256:
13548 case X86::BI__builtin_ia32_vinsertf128_si256:
13549 case X86::BI__builtin_ia32_insert128i256:
13550 case X86::BI__builtin_ia32_insertf64x4:
13551 case X86::BI__builtin_ia32_insertf32x4:
13552 case X86::BI__builtin_ia32_inserti64x4:
13553 case X86::BI__builtin_ia32_inserti32x4:
13554 case X86::BI__builtin_ia32_insertf32x8:
13555 case X86::BI__builtin_ia32_inserti32x8:
13556 case X86::BI__builtin_ia32_insertf32x4_256:
13557 case X86::BI__builtin_ia32_inserti32x4_256:
13558 case X86::BI__builtin_ia32_insertf64x2_256:
13559 case X86::BI__builtin_ia32_inserti64x2_256:
13560 case X86::BI__builtin_ia32_insertf64x2_512:
13561 case X86::BI__builtin_ia32_inserti64x2_512: {
13562 unsigned DstNumElts =
13563 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13564 unsigned SrcNumElts =
13565 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13566 unsigned SubVectors = DstNumElts / SrcNumElts;
13567 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13568 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13568, __extension__ __PRETTY_FUNCTION__
))
;
13569 Index &= SubVectors - 1; // Remove any extra bits.
13570 Index *= SrcNumElts;
13571
13572 int Indices[16];
13573 for (unsigned i = 0; i != DstNumElts; ++i)
13574 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13575
13576 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13577 makeArrayRef(Indices, DstNumElts),
13578 "widen");
13579
13580 for (unsigned i = 0; i != DstNumElts; ++i) {
13581 if (i >= Index && i < (Index + SrcNumElts))
13582 Indices[i] = (i - Index) + DstNumElts;
13583 else
13584 Indices[i] = i;
13585 }
13586
13587 return Builder.CreateShuffleVector(Ops[0], Op1,
13588 makeArrayRef(Indices, DstNumElts),
13589 "insert");
13590 }
13591 case X86::BI__builtin_ia32_pmovqd512_mask:
13592 case X86::BI__builtin_ia32_pmovwb512_mask: {
13593 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13594 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13595 }
13596 case X86::BI__builtin_ia32_pmovdb512_mask:
13597 case X86::BI__builtin_ia32_pmovdw512_mask:
13598 case X86::BI__builtin_ia32_pmovqw512_mask: {
13599 if (const auto *C = dyn_cast<Constant>(Ops[2]))
13600 if (C->isAllOnesValue())
13601 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13602
13603 Intrinsic::ID IID;
13604 switch (BuiltinID) {
13605 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13605)
;
13606 case X86::BI__builtin_ia32_pmovdb512_mask:
13607 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13608 break;
13609 case X86::BI__builtin_ia32_pmovdw512_mask:
13610 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13611 break;
13612 case X86::BI__builtin_ia32_pmovqw512_mask:
13613 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13614 break;
13615 }
13616
13617 Function *Intr = CGM.getIntrinsic(IID);
13618 return Builder.CreateCall(Intr, Ops);
13619 }
13620 case X86::BI__builtin_ia32_pblendw128:
13621 case X86::BI__builtin_ia32_blendpd:
13622 case X86::BI__builtin_ia32_blendps:
13623 case X86::BI__builtin_ia32_blendpd256:
13624 case X86::BI__builtin_ia32_blendps256:
13625 case X86::BI__builtin_ia32_pblendw256:
13626 case X86::BI__builtin_ia32_pblendd128:
13627 case X86::BI__builtin_ia32_pblendd256: {
13628 unsigned NumElts =
13629 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13630 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13631
13632 int Indices[16];
13633 // If there are more than 8 elements, the immediate is used twice so make
13634 // sure we handle that.
13635 for (unsigned i = 0; i != NumElts; ++i)
13636 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13637
13638 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13639 makeArrayRef(Indices, NumElts),
13640 "blend");
13641 }
13642 case X86::BI__builtin_ia32_pshuflw:
13643 case X86::BI__builtin_ia32_pshuflw256:
13644 case X86::BI__builtin_ia32_pshuflw512: {
13645 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13646 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13647 unsigned NumElts = Ty->getNumElements();
13648
13649 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13650 Imm = (Imm & 0xff) * 0x01010101;
13651
13652 int Indices[32];
13653 for (unsigned l = 0; l != NumElts; l += 8) {
13654 for (unsigned i = 0; i != 4; ++i) {
13655 Indices[l + i] = l + (Imm & 3);
13656 Imm >>= 2;
13657 }
13658 for (unsigned i = 4; i != 8; ++i)
13659 Indices[l + i] = l + i;
13660 }
13661
13662 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13663 "pshuflw");
13664 }
13665 case X86::BI__builtin_ia32_pshufhw:
13666 case X86::BI__builtin_ia32_pshufhw256:
13667 case X86::BI__builtin_ia32_pshufhw512: {
13668 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13669 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13670 unsigned NumElts = Ty->getNumElements();
13671
13672 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13673 Imm = (Imm & 0xff) * 0x01010101;
13674
13675 int Indices[32];
13676 for (unsigned l = 0; l != NumElts; l += 8) {
13677 for (unsigned i = 0; i != 4; ++i)
13678 Indices[l + i] = l + i;
13679 for (unsigned i = 4; i != 8; ++i) {
13680 Indices[l + i] = l + 4 + (Imm & 3);
13681 Imm >>= 2;
13682 }
13683 }
13684
13685 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13686 "pshufhw");
13687 }
13688 case X86::BI__builtin_ia32_pshufd:
13689 case X86::BI__builtin_ia32_pshufd256:
13690 case X86::BI__builtin_ia32_pshufd512:
13691 case X86::BI__builtin_ia32_vpermilpd:
13692 case X86::BI__builtin_ia32_vpermilps:
13693 case X86::BI__builtin_ia32_vpermilpd256:
13694 case X86::BI__builtin_ia32_vpermilps256:
13695 case X86::BI__builtin_ia32_vpermilpd512:
13696 case X86::BI__builtin_ia32_vpermilps512: {
13697 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13698 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13699 unsigned NumElts = Ty->getNumElements();
13700 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13701 unsigned NumLaneElts = NumElts / NumLanes;
13702
13703 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13704 Imm = (Imm & 0xff) * 0x01010101;
13705
13706 int Indices[16];
13707 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13708 for (unsigned i = 0; i != NumLaneElts; ++i) {
13709 Indices[i + l] = (Imm % NumLaneElts) + l;
13710 Imm /= NumLaneElts;
13711 }
13712 }
13713
13714 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13715 "permil");
13716 }
13717 case X86::BI__builtin_ia32_shufpd:
13718 case X86::BI__builtin_ia32_shufpd256:
13719 case X86::BI__builtin_ia32_shufpd512:
13720 case X86::BI__builtin_ia32_shufps:
13721 case X86::BI__builtin_ia32_shufps256:
13722 case X86::BI__builtin_ia32_shufps512: {
13723 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13724 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13725 unsigned NumElts = Ty->getNumElements();
13726 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13727 unsigned NumLaneElts = NumElts / NumLanes;
13728
13729 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13730 Imm = (Imm & 0xff) * 0x01010101;
13731
13732 int Indices[16];
13733 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13734 for (unsigned i = 0; i != NumLaneElts; ++i) {
13735 unsigned Index = Imm % NumLaneElts;
13736 Imm /= NumLaneElts;
13737 if (i >= (NumLaneElts / 2))
13738 Index += NumElts;
13739 Indices[l + i] = l + Index;
13740 }
13741 }
13742
13743 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13744 makeArrayRef(Indices, NumElts),
13745 "shufp");
13746 }
13747 case X86::BI__builtin_ia32_permdi256:
13748 case X86::BI__builtin_ia32_permdf256:
13749 case X86::BI__builtin_ia32_permdi512:
13750 case X86::BI__builtin_ia32_permdf512: {
13751 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13752 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13753 unsigned NumElts = Ty->getNumElements();
13754
13755 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13756 int Indices[8];
13757 for (unsigned l = 0; l != NumElts; l += 4)
13758 for (unsigned i = 0; i != 4; ++i)
13759 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13760
13761 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13762 "perm");
13763 }
13764 case X86::BI__builtin_ia32_palignr128:
13765 case X86::BI__builtin_ia32_palignr256:
13766 case X86::BI__builtin_ia32_palignr512: {
13767 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13768
13769 unsigned NumElts =
13770 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13771 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "clang/lib/CodeGen/CGBuiltin.cpp", 13771
, __extension__ __PRETTY_FUNCTION__))
;
13772
13773 // If palignr is shifting the pair of vectors more than the size of two
13774 // lanes, emit zero.
13775 if (ShiftVal >= 32)
13776 return llvm::Constant::getNullValue(ConvertType(E->getType()));
13777
13778 // If palignr is shifting the pair of input vectors more than one lane,
13779 // but less than two lanes, convert to shifting in zeroes.
13780 if (ShiftVal > 16) {
13781 ShiftVal -= 16;
13782 Ops[1] = Ops[0];
13783 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13784 }
13785
13786 int Indices[64];
13787 // 256-bit palignr operates on 128-bit lanes so we need to handle that
13788 for (unsigned l = 0; l != NumElts; l += 16) {
13789 for (unsigned i = 0; i != 16; ++i) {
13790 unsigned Idx = ShiftVal + i;
13791 if (Idx >= 16)
13792 Idx += NumElts - 16; // End of lane, switch operand.
13793 Indices[l + i] = Idx + l;
13794 }
13795 }
13796
13797 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13798 makeArrayRef(Indices, NumElts),
13799 "palignr");
13800 }
13801 case X86::BI__builtin_ia32_alignd128:
13802 case X86::BI__builtin_ia32_alignd256:
13803 case X86::BI__builtin_ia32_alignd512:
13804 case X86::BI__builtin_ia32_alignq128:
13805 case X86::BI__builtin_ia32_alignq256:
13806 case X86::BI__builtin_ia32_alignq512: {
13807 unsigned NumElts =
13808 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13809 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13810
13811 // Mask the shift amount to width of a vector.
13812 ShiftVal &= NumElts - 1;
13813
13814 int Indices[16];
13815 for (unsigned i = 0; i != NumElts; ++i)
13816 Indices[i] = i + ShiftVal;
13817
13818 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13819 makeArrayRef(Indices, NumElts),
13820 "valign");
13821 }
13822 case X86::BI__builtin_ia32_shuf_f32x4_256:
13823 case X86::BI__builtin_ia32_shuf_f64x2_256:
13824 case X86::BI__builtin_ia32_shuf_i32x4_256:
13825 case X86::BI__builtin_ia32_shuf_i64x2_256:
13826 case X86::BI__builtin_ia32_shuf_f32x4:
13827 case X86::BI__builtin_ia32_shuf_f64x2:
13828 case X86::BI__builtin_ia32_shuf_i32x4:
13829 case X86::BI__builtin_ia32_shuf_i64x2: {
13830 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13831 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13832 unsigned NumElts = Ty->getNumElements();
13833 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13834 unsigned NumLaneElts = NumElts / NumLanes;
13835
13836 int Indices[16];
13837 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13838 unsigned Index = (Imm % NumLanes) * NumLaneElts;
13839 Imm /= NumLanes; // Discard the bits we just used.
13840 if (l >= (NumElts / 2))
13841 Index += NumElts; // Switch to other source.
13842 for (unsigned i = 0; i != NumLaneElts; ++i) {
13843 Indices[l + i] = Index + i;
13844 }
13845 }
13846
13847 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13848 makeArrayRef(Indices, NumElts),
13849 "shuf");
13850 }
13851
13852 case X86::BI__builtin_ia32_vperm2f128_pd256:
13853 case X86::BI__builtin_ia32_vperm2f128_ps256:
13854 case X86::BI__builtin_ia32_vperm2f128_si256:
13855 case X86::BI__builtin_ia32_permti256: {
13856 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13857 unsigned NumElts =
13858 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13859
13860 // This takes a very simple approach since there are two lanes and a
13861 // shuffle can have 2 inputs. So we reserve the first input for the first
13862 // lane and the second input for the second lane. This may result in
13863 // duplicate sources, but this can be dealt with in the backend.
13864
13865 Value *OutOps[2];
13866 int Indices[8];
13867 for (unsigned l = 0; l != 2; ++l) {
13868 // Determine the source for this lane.
13869 if (Imm & (1 << ((l * 4) + 3)))
13870 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13871 else if (Imm & (1 << ((l * 4) + 1)))
13872 OutOps[l] = Ops[1];
13873 else
13874 OutOps[l] = Ops[0];
13875
13876 for (unsigned i = 0; i != NumElts/2; ++i) {
13877 // Start with ith element of the source for this lane.
13878 unsigned Idx = (l * NumElts) + i;
13879 // If bit 0 of the immediate half is set, switch to the high half of
13880 // the source.
13881 if (Imm & (1 << (l * 4)))
13882 Idx += NumElts/2;
13883 Indices[(l * (NumElts/2)) + i] = Idx;
13884 }
13885 }
13886
13887 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13888 makeArrayRef(Indices, NumElts),
13889 "vperm");
13890 }
13891
13892 case X86::BI__builtin_ia32_pslldqi128_byteshift:
13893 case X86::BI__builtin_ia32_pslldqi256_byteshift:
13894 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13895 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13896 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13897 // Builtin type is vXi64 so multiply by 8 to get bytes.
13898 unsigned NumElts = ResultType->getNumElements() * 8;
13899
13900 // If pslldq is shifting the vector more than 15 bytes, emit zero.
13901 if (ShiftVal >= 16)
13902 return llvm::Constant::getNullValue(ResultType);
13903
13904 int Indices[64];
13905 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13906 for (unsigned l = 0; l != NumElts; l += 16) {
13907 for (unsigned i = 0; i != 16; ++i) {
13908 unsigned Idx = NumElts + i - ShiftVal;
13909 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13910 Indices[l + i] = Idx + l;
13911 }
13912 }
13913
13914 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13915 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13916 Value *Zero = llvm::Constant::getNullValue(VecTy);
13917 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13918 makeArrayRef(Indices, NumElts),
13919 "pslldq");
13920 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13921 }
13922 case X86::BI__builtin_ia32_psrldqi128_byteshift:
13923 case X86::BI__builtin_ia32_psrldqi256_byteshift:
13924 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13925 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13926 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13927 // Builtin type is vXi64 so multiply by 8 to get bytes.
13928 unsigned NumElts = ResultType->getNumElements() * 8;
13929
13930 // If psrldq is shifting the vector more than 15 bytes, emit zero.
13931 if (ShiftVal >= 16)
13932 return llvm::Constant::getNullValue(ResultType);
13933
13934 int Indices[64];
13935 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13936 for (unsigned l = 0; l != NumElts; l += 16) {
13937 for (unsigned i = 0; i != 16; ++i) {
13938 unsigned Idx = i + ShiftVal;
13939 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13940 Indices[l + i] = Idx + l;
13941 }
13942 }
13943
13944 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13945 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13946 Value *Zero = llvm::Constant::getNullValue(VecTy);
13947 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13948 makeArrayRef(Indices, NumElts),
13949 "psrldq");
13950 return Builder.CreateBitCast(SV, ResultType, "cast");
13951 }
13952 case X86::BI__builtin_ia32_kshiftliqi:
13953 case X86::BI__builtin_ia32_kshiftlihi:
13954 case X86::BI__builtin_ia32_kshiftlisi:
13955 case X86::BI__builtin_ia32_kshiftlidi: {
13956 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13957 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13958
13959 if (ShiftVal >= NumElts)
13960 return llvm::Constant::getNullValue(Ops[0]->getType());
13961
13962 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13963
13964 int Indices[64];
13965 for (unsigned i = 0; i != NumElts; ++i)
13966 Indices[i] = NumElts + i - ShiftVal;
13967
13968 Value *Zero = llvm::Constant::getNullValue(In->getType());
13969 Value *SV = Builder.CreateShuffleVector(Zero, In,
13970 makeArrayRef(Indices, NumElts),
13971 "kshiftl");
13972 return Builder.CreateBitCast(SV, Ops[0]->getType());
13973 }
13974 case X86::BI__builtin_ia32_kshiftriqi:
13975 case X86::BI__builtin_ia32_kshiftrihi:
13976 case X86::BI__builtin_ia32_kshiftrisi:
13977 case X86::BI__builtin_ia32_kshiftridi: {
13978 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13979 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13980
13981 if (ShiftVal >= NumElts)
13982 return llvm::Constant::getNullValue(Ops[0]->getType());
13983
13984 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13985
13986 int Indices[64];
13987 for (unsigned i = 0; i != NumElts; ++i)
13988 Indices[i] = i + ShiftVal;
13989
13990 Value *Zero = llvm::Constant::getNullValue(In->getType());
13991 Value *SV = Builder.CreateShuffleVector(In, Zero,
13992 makeArrayRef(Indices, NumElts),
13993 "kshiftr");
13994 return Builder.CreateBitCast(SV, Ops[0]->getType());
13995 }
13996 case X86::BI__builtin_ia32_movnti:
13997 case X86::BI__builtin_ia32_movnti64:
13998 case X86::BI__builtin_ia32_movntsd:
13999 case X86::BI__builtin_ia32_movntss: {
14000 llvm::MDNode *Node = llvm::MDNode::get(
14001 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
14002
14003 Value *Ptr = Ops[0];
14004 Value *Src = Ops[1];
14005
14006 // Extract the 0'th element of the source vector.
14007 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
14008 BuiltinID == X86::BI__builtin_ia32_movntss)
14009 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
14010
14011 // Convert the type of the pointer to a pointer to the stored type.
14012 Value *BC = Builder.CreateBitCast(
14013 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
14014
14015 // Unaligned nontemporal store of the scalar value.
14016 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
14017 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
14018 SI->setAlignment(llvm::Align(1));
14019 return SI;
14020 }
14021 // Rotate is a special case of funnel shift - 1st 2 args are the same.
14022 case X86::BI__builtin_ia32_vprotb:
14023 case X86::BI__builtin_ia32_vprotw:
14024 case X86::BI__builtin_ia32_vprotd:
14025 case X86::BI__builtin_ia32_vprotq:
14026 case X86::BI__builtin_ia32_vprotbi:
14027 case X86::BI__builtin_ia32_vprotwi:
14028 case X86::BI__builtin_ia32_vprotdi:
14029 case X86::BI__builtin_ia32_vprotqi:
14030 case X86::BI__builtin_ia32_prold128:
14031 case X86::BI__builtin_ia32_prold256:
14032 case X86::BI__builtin_ia32_prold512:
14033 case X86::BI__builtin_ia32_prolq128:
14034 case X86::BI__builtin_ia32_prolq256:
14035 case X86::BI__builtin_ia32_prolq512:
14036 case X86::BI__builtin_ia32_prolvd128:
14037 case X86::BI__builtin_ia32_prolvd256:
14038 case X86::BI__builtin_ia32_prolvd512:
14039 case X86::BI__builtin_ia32_prolvq128:
14040 case X86::BI__builtin_ia32_prolvq256:
14041 case X86::BI__builtin_ia32_prolvq512:
14042 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
14043 case X86::BI__builtin_ia32_prord128:
14044 case X86::BI__builtin_ia32_prord256:
14045 case X86::BI__builtin_ia32_prord512:
14046 case X86::BI__builtin_ia32_prorq128:
14047 case X86::BI__builtin_ia32_prorq256:
14048 case X86::BI__builtin_ia32_prorq512:
14049 case X86::BI__builtin_ia32_prorvd128:
14050 case X86::BI__builtin_ia32_prorvd256:
14051 case X86::BI__builtin_ia32_prorvd512:
14052 case X86::BI__builtin_ia32_prorvq128:
14053 case X86::BI__builtin_ia32_prorvq256:
14054 case X86::BI__builtin_ia32_prorvq512:
14055 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
14056 case X86::BI__builtin_ia32_selectb_128:
14057 case X86::BI__builtin_ia32_selectb_256:
14058 case X86::BI__builtin_ia32_selectb_512:
14059 case X86::BI__builtin_ia32_selectw_128:
14060 case X86::BI__builtin_ia32_selectw_256:
14061 case X86::BI__builtin_ia32_selectw_512:
14062 case X86::BI__builtin_ia32_selectd_128:
14063 case X86::BI__builtin_ia32_selectd_256:
14064 case X86::BI__builtin_ia32_selectd_512:
14065 case X86::BI__builtin_ia32_selectq_128:
14066 case X86::BI__builtin_ia32_selectq_256:
14067 case X86::BI__builtin_ia32_selectq_512:
14068 case X86::BI__builtin_ia32_selectph_128:
14069 case X86::BI__builtin_ia32_selectph_256:
14070 case X86::BI__builtin_ia32_selectph_512:
14071 case X86::BI__builtin_ia32_selectps_128:
14072 case X86::BI__builtin_ia32_selectps_256:
14073 case X86::BI__builtin_ia32_selectps_512:
14074 case X86::BI__builtin_ia32_selectpd_128:
14075 case X86::BI__builtin_ia32_selectpd_256:
14076 case X86::BI__builtin_ia32_selectpd_512:
14077 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
14078 case X86::BI__builtin_ia32_selectsh_128:
14079 case X86::BI__builtin_ia32_selectss_128:
14080 case X86::BI__builtin_ia32_selectsd_128: {
14081 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14082 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14083 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
14084 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
14085 }
14086 case X86::BI__builtin_ia32_cmpb128_mask:
14087 case X86::BI__builtin_ia32_cmpb256_mask:
14088 case X86::BI__builtin_ia32_cmpb512_mask:
14089 case X86::BI__builtin_ia32_cmpw128_mask:
14090 case X86::BI__builtin_ia32_cmpw256_mask:
14091 case X86::BI__builtin_ia32_cmpw512_mask:
14092 case X86::BI__builtin_ia32_cmpd128_mask:
14093 case X86::BI__builtin_ia32_cmpd256_mask:
14094 case X86::BI__builtin_ia32_cmpd512_mask:
14095 case X86::BI__builtin_ia32_cmpq128_mask:
14096 case X86::BI__builtin_ia32_cmpq256_mask:
14097 case X86::BI__builtin_ia32_cmpq512_mask: {
14098 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14099 return EmitX86MaskedCompare(*this, CC, true, Ops);
14100 }
14101 case X86::BI__builtin_ia32_ucmpb128_mask:
14102 case X86::BI__builtin_ia32_ucmpb256_mask:
14103 case X86::BI__builtin_ia32_ucmpb512_mask:
14104 case X86::BI__builtin_ia32_ucmpw128_mask:
14105 case X86::BI__builtin_ia32_ucmpw256_mask:
14106 case X86::BI__builtin_ia32_ucmpw512_mask:
14107 case X86::BI__builtin_ia32_ucmpd128_mask:
14108 case X86::BI__builtin_ia32_ucmpd256_mask:
14109 case X86::BI__builtin_ia32_ucmpd512_mask:
14110 case X86::BI__builtin_ia32_ucmpq128_mask:
14111 case X86::BI__builtin_ia32_ucmpq256_mask:
14112 case X86::BI__builtin_ia32_ucmpq512_mask: {
14113 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14114 return EmitX86MaskedCompare(*this, CC, false, Ops);
14115 }
14116 case X86::BI__builtin_ia32_vpcomb:
14117 case X86::BI__builtin_ia32_vpcomw:
14118 case X86::BI__builtin_ia32_vpcomd:
14119 case X86::BI__builtin_ia32_vpcomq:
14120 return EmitX86vpcom(*this, Ops, true);
14121 case X86::BI__builtin_ia32_vpcomub:
14122 case X86::BI__builtin_ia32_vpcomuw:
14123 case X86::BI__builtin_ia32_vpcomud:
14124 case X86::BI__builtin_ia32_vpcomuq:
14125 return EmitX86vpcom(*this, Ops, false);
14126
14127 case X86::BI__builtin_ia32_kortestcqi:
14128 case X86::BI__builtin_ia32_kortestchi:
14129 case X86::BI__builtin_ia32_kortestcsi:
14130 case X86::BI__builtin_ia32_kortestcdi: {
14131 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14132 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
14133 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14134 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14135 }
14136 case X86::BI__builtin_ia32_kortestzqi:
14137 case X86::BI__builtin_ia32_kortestzhi:
14138 case X86::BI__builtin_ia32_kortestzsi:
14139 case X86::BI__builtin_ia32_kortestzdi: {
14140 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14141 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
14142 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14143 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14144 }
14145
14146 case X86::BI__builtin_ia32_ktestcqi:
14147 case X86::BI__builtin_ia32_ktestzqi:
14148 case X86::BI__builtin_ia32_ktestchi:
14149 case X86::BI__builtin_ia32_ktestzhi:
14150 case X86::BI__builtin_ia32_ktestcsi:
14151 case X86::BI__builtin_ia32_ktestzsi:
14152 case X86::BI__builtin_ia32_ktestcdi:
14153 case X86::BI__builtin_ia32_ktestzdi: {
14154 Intrinsic::ID IID;
14155 switch (BuiltinID) {
14156 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14156)
;
14157 case X86::BI__builtin_ia32_ktestcqi:
14158 IID = Intrinsic::x86_avx512_ktestc_b;
14159 break;
14160 case X86::BI__builtin_ia32_ktestzqi:
14161 IID = Intrinsic::x86_avx512_ktestz_b;
14162 break;
14163 case X86::BI__builtin_ia32_ktestchi:
14164 IID = Intrinsic::x86_avx512_ktestc_w;
14165 break;
14166 case X86::BI__builtin_ia32_ktestzhi:
14167 IID = Intrinsic::x86_avx512_ktestz_w;
14168 break;
14169 case X86::BI__builtin_ia32_ktestcsi:
14170 IID = Intrinsic::x86_avx512_ktestc_d;
14171 break;
14172 case X86::BI__builtin_ia32_ktestzsi:
14173 IID = Intrinsic::x86_avx512_ktestz_d;
14174 break;
14175 case X86::BI__builtin_ia32_ktestcdi:
14176 IID = Intrinsic::x86_avx512_ktestc_q;
14177 break;
14178 case X86::BI__builtin_ia32_ktestzdi:
14179 IID = Intrinsic::x86_avx512_ktestz_q;
14180 break;
14181 }
14182
14183 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14184 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14185 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14186 Function *Intr = CGM.getIntrinsic(IID);
14187 return Builder.CreateCall(Intr, {LHS, RHS});
14188 }
14189
14190 case X86::BI__builtin_ia32_kaddqi:
14191 case X86::BI__builtin_ia32_kaddhi:
14192 case X86::BI__builtin_ia32_kaddsi:
14193 case X86::BI__builtin_ia32_kadddi: {
14194 Intrinsic::ID IID;
14195 switch (BuiltinID) {
14196 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14196)
;
14197 case X86::BI__builtin_ia32_kaddqi:
14198 IID = Intrinsic::x86_avx512_kadd_b;
14199 break;
14200 case X86::BI__builtin_ia32_kaddhi:
14201 IID = Intrinsic::x86_avx512_kadd_w;
14202 break;
14203 case X86::BI__builtin_ia32_kaddsi:
14204 IID = Intrinsic::x86_avx512_kadd_d;
14205 break;
14206 case X86::BI__builtin_ia32_kadddi:
14207 IID = Intrinsic::x86_avx512_kadd_q;
14208 break;
14209 }
14210
14211 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14212 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14213 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14214 Function *Intr = CGM.getIntrinsic(IID);
14215 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
14216 return Builder.CreateBitCast(Res, Ops[0]->getType());
14217 }
14218 case X86::BI__builtin_ia32_kandqi:
14219 case X86::BI__builtin_ia32_kandhi:
14220 case X86::BI__builtin_ia32_kandsi:
14221 case X86::BI__builtin_ia32_kanddi:
14222 return EmitX86MaskLogic(*this, Instruction::And, Ops);
14223 case X86::BI__builtin_ia32_kandnqi:
14224 case X86::BI__builtin_ia32_kandnhi:
14225 case X86::BI__builtin_ia32_kandnsi:
14226 case X86::BI__builtin_ia32_kandndi:
14227 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
14228 case X86::BI__builtin_ia32_korqi:
14229 case X86::BI__builtin_ia32_korhi:
14230 case X86::BI__builtin_ia32_korsi:
14231 case X86::BI__builtin_ia32_kordi:
14232 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
14233 case X86::BI__builtin_ia32_kxnorqi:
14234 case X86::BI__builtin_ia32_kxnorhi:
14235 case X86::BI__builtin_ia32_kxnorsi:
14236 case X86::BI__builtin_ia32_kxnordi:
14237 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
14238 case X86::BI__builtin_ia32_kxorqi:
14239 case X86::BI__builtin_ia32_kxorhi:
14240 case X86::BI__builtin_ia32_kxorsi:
14241 case X86::BI__builtin_ia32_kxordi:
14242 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
14243 case X86::BI__builtin_ia32_knotqi:
14244 case X86::BI__builtin_ia32_knothi:
14245 case X86::BI__builtin_ia32_knotsi:
14246 case X86::BI__builtin_ia32_knotdi: {
14247 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14248 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14249 return Builder.CreateBitCast(Builder.CreateNot(Res),
14250 Ops[0]->getType());
14251 }
14252 case X86::BI__builtin_ia32_kmovb:
14253 case X86::BI__builtin_ia32_kmovw:
14254 case X86::BI__builtin_ia32_kmovd:
14255 case X86::BI__builtin_ia32_kmovq: {
14256 // Bitcast to vXi1 type and then back to integer. This gets the mask
14257 // register type into the IR, but might be optimized out depending on
14258 // what's around it.
14259 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14260 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14261 return Builder.CreateBitCast(Res, Ops[0]->getType());
14262 }
14263
14264 case X86::BI__builtin_ia32_kunpckdi:
14265 case X86::BI__builtin_ia32_kunpcksi:
14266 case X86::BI__builtin_ia32_kunpckhi: {
14267 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14268 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14269 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14270 int Indices[64];
14271 for (unsigned i = 0; i != NumElts; ++i)
14272 Indices[i] = i;
14273
14274 // First extract half of each vector. This gives better codegen than
14275 // doing it in a single shuffle.
14276 LHS = Builder.CreateShuffleVector(LHS, LHS,
14277 makeArrayRef(Indices, NumElts / 2));
14278 RHS = Builder.CreateShuffleVector(RHS, RHS,
14279 makeArrayRef(Indices, NumElts / 2));
14280 // Concat the vectors.
14281 // NOTE: Operands are swapped to match the intrinsic definition.
14282 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
14283 makeArrayRef(Indices, NumElts));
14284 return Builder.CreateBitCast(Res, Ops[0]->getType());
14285 }
14286
14287 case X86::BI__builtin_ia32_vplzcntd_128:
14288 case X86::BI__builtin_ia32_vplzcntd_256:
14289 case X86::BI__builtin_ia32_vplzcntd_512:
14290 case X86::BI__builtin_ia32_vplzcntq_128:
14291 case X86::BI__builtin_ia32_vplzcntq_256:
14292 case X86::BI__builtin_ia32_vplzcntq_512: {
14293 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14294 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14295 }
14296 case X86::BI__builtin_ia32_sqrtss:
14297 case X86::BI__builtin_ia32_sqrtsd: {
14298 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14299 Function *F;
14300 if (Builder.getIsFPConstrained()) {
14301 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14302 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14303 A->getType());
14304 A = Builder.CreateConstrainedFPCall(F, {A});
14305 } else {
14306 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14307 A = Builder.CreateCall(F, {A});
14308 }
14309 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14310 }
14311 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14312 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14313 case X86::BI__builtin_ia32_sqrtss_round_mask: {
14314 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14315 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14316 // otherwise keep the intrinsic.
14317 if (CC != 4) {
14318 Intrinsic::ID IID;
14319
14320 switch (BuiltinID) {
14321 default:
14322 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14322)
;
14323 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14324 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14325 break;
14326 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14327 IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14328 break;
14329 case X86::BI__builtin_ia32_sqrtss_round_mask:
14330 IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14331 break;
14332 }
14333 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14334 }
14335 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14336 Function *F;
14337 if (Builder.getIsFPConstrained()) {
14338 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14339 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14340 A->getType());
14341 A = Builder.CreateConstrainedFPCall(F, A);
14342 } else {
14343 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14344 A = Builder.CreateCall(F, A);
14345 }
14346 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14347 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14348 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14349 }
14350 case X86::BI__builtin_ia32_sqrtpd256:
14351 case X86::BI__builtin_ia32_sqrtpd:
14352 case X86::BI__builtin_ia32_sqrtps256:
14353 case X86::BI__builtin_ia32_sqrtps:
14354 case X86::BI__builtin_ia32_sqrtph256:
14355 case X86::BI__builtin_ia32_sqrtph:
14356 case X86::BI__builtin_ia32_sqrtph512:
14357 case X86::BI__builtin_ia32_sqrtps512:
14358 case X86::BI__builtin_ia32_sqrtpd512: {
14359 if (Ops.size() == 2) {
14360 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14361 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14362 // otherwise keep the intrinsic.
14363 if (CC != 4) {
14364 Intrinsic::ID IID;
14365
14366 switch (BuiltinID) {
14367 default:
14368 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14368)
;
14369 case X86::BI__builtin_ia32_sqrtph512:
14370 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14371 break;
14372 case X86::BI__builtin_ia32_sqrtps512:
14373 IID = Intrinsic::x86_avx512_sqrt_ps_512;
14374 break;
14375 case X86::BI__builtin_ia32_sqrtpd512:
14376 IID = Intrinsic::x86_avx512_sqrt_pd_512;
14377 break;
14378 }
14379 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14380 }
14381 }
14382 if (Builder.getIsFPConstrained()) {
14383 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14384 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14385 Ops[0]->getType());
14386 return Builder.CreateConstrainedFPCall(F, Ops[0]);
14387 } else {
14388 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14389 return Builder.CreateCall(F, Ops[0]);
14390 }
14391 }
14392
14393 case X86::BI__builtin_ia32_pmuludq128:
14394 case X86::BI__builtin_ia32_pmuludq256:
14395 case X86::BI__builtin_ia32_pmuludq512:
14396 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14397
14398 case X86::BI__builtin_ia32_pmuldq128:
14399 case X86::BI__builtin_ia32_pmuldq256:
14400 case X86::BI__builtin_ia32_pmuldq512:
14401 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14402
14403 case X86::BI__builtin_ia32_pternlogd512_mask:
14404 case X86::BI__builtin_ia32_pternlogq512_mask:
14405 case X86::BI__builtin_ia32_pternlogd128_mask:
14406 case X86::BI__builtin_ia32_pternlogd256_mask:
14407 case X86::BI__builtin_ia32_pternlogq128_mask:
14408 case X86::BI__builtin_ia32_pternlogq256_mask:
14409 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14410
14411 case X86::BI__builtin_ia32_pternlogd512_maskz:
14412 case X86::BI__builtin_ia32_pternlogq512_maskz:
14413 case X86::BI__builtin_ia32_pternlogd128_maskz:
14414 case X86::BI__builtin_ia32_pternlogd256_maskz:
14415 case X86::BI__builtin_ia32_pternlogq128_maskz:
14416 case X86::BI__builtin_ia32_pternlogq256_maskz:
14417 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14418
14419 case X86::BI__builtin_ia32_vpshldd128:
14420 case X86::BI__builtin_ia32_vpshldd256:
14421 case X86::BI__builtin_ia32_vpshldd512:
14422 case X86::BI__builtin_ia32_vpshldq128:
14423 case X86::BI__builtin_ia32_vpshldq256:
14424 case X86::BI__builtin_ia32_vpshldq512:
14425 case X86::BI__builtin_ia32_vpshldw128:
14426 case X86::BI__builtin_ia32_vpshldw256:
14427 case X86::BI__builtin_ia32_vpshldw512:
14428 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14429
14430 case X86::BI__builtin_ia32_vpshrdd128:
14431 case X86::BI__builtin_ia32_vpshrdd256:
14432 case X86::BI__builtin_ia32_vpshrdd512:
14433 case X86::BI__builtin_ia32_vpshrdq128:
14434 case X86::BI__builtin_ia32_vpshrdq256:
14435 case X86::BI__builtin_ia32_vpshrdq512:
14436 case X86::BI__builtin_ia32_vpshrdw128:
14437 case X86::BI__builtin_ia32_vpshrdw256:
14438 case X86::BI__builtin_ia32_vpshrdw512:
14439 // Ops 0 and 1 are swapped.
14440 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14441
14442 case X86::BI__builtin_ia32_vpshldvd128:
14443 case X86::BI__builtin_ia32_vpshldvd256:
14444 case X86::BI__builtin_ia32_vpshldvd512:
14445 case X86::BI__builtin_ia32_vpshldvq128:
14446 case X86::BI__builtin_ia32_vpshldvq256:
14447 case X86::BI__builtin_ia32_vpshldvq512:
14448 case X86::BI__builtin_ia32_vpshldvw128:
14449 case X86::BI__builtin_ia32_vpshldvw256:
14450 case X86::BI__builtin_ia32_vpshldvw512:
14451 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14452
14453 case X86::BI__builtin_ia32_vpshrdvd128:
14454 case X86::BI__builtin_ia32_vpshrdvd256:
14455 case X86::BI__builtin_ia32_vpshrdvd512:
14456 case X86::BI__builtin_ia32_vpshrdvq128:
14457 case X86::BI__builtin_ia32_vpshrdvq256:
14458 case X86::BI__builtin_ia32_vpshrdvq512:
14459 case X86::BI__builtin_ia32_vpshrdvw128:
14460 case X86::BI__builtin_ia32_vpshrdvw256:
14461 case X86::BI__builtin_ia32_vpshrdvw512:
14462 // Ops 0 and 1 are swapped.
14463 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14464
14465 // Reductions
14466 case X86::BI__builtin_ia32_reduce_add_d512:
14467 case X86::BI__builtin_ia32_reduce_add_q512: {
14468 Function *F =
14469 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14470 return Builder.CreateCall(F, {Ops[0]});
14471 }
14472 case X86::BI__builtin_ia32_reduce_fadd_pd512:
14473 case X86::BI__builtin_ia32_reduce_fadd_ps512:
14474 case X86::BI__builtin_ia32_reduce_fadd_ph512:
14475 case X86::BI__builtin_ia32_reduce_fadd_ph256:
14476 case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14477 Function *F =
14478 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14479 Builder.getFastMathFlags().setAllowReassoc();
14480 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14481 }
14482 case X86::BI__builtin_ia32_reduce_fmul_pd512:
14483 case X86::BI__builtin_ia32_reduce_fmul_ps512:
14484 case X86::BI__builtin_ia32_reduce_fmul_ph512:
14485 case X86::BI__builtin_ia32_reduce_fmul_ph256:
14486 case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14487 Function *F =
14488 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14489 Builder.getFastMathFlags().setAllowReassoc();
14490 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14491 }
14492 case X86::BI__builtin_ia32_reduce_fmax_pd512:
14493 case X86::BI__builtin_ia32_reduce_fmax_ps512:
14494 case X86::BI__builtin_ia32_reduce_fmax_ph512:
14495 case X86::BI__builtin_ia32_reduce_fmax_ph256:
14496 case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14497 Function *F =
14498 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14499 Builder.getFastMathFlags().setNoNaNs();
14500 return Builder.CreateCall(F, {Ops[0]});
14501 }
14502 case X86::BI__builtin_ia32_reduce_fmin_pd512:
14503 case X86::BI__builtin_ia32_reduce_fmin_ps512:
14504 case X86::BI__builtin_ia32_reduce_fmin_ph512:
14505 case X86::BI__builtin_ia32_reduce_fmin_ph256:
14506 case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14507 Function *F =
14508 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14509 Builder.getFastMathFlags().setNoNaNs();
14510 return Builder.CreateCall(F, {Ops[0]});
14511 }
14512 case X86::BI__builtin_ia32_reduce_mul_d512:
14513 case X86::BI__builtin_ia32_reduce_mul_q512: {
14514 Function *F =
14515 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14516 return Builder.CreateCall(F, {Ops[0]});
14517 }
14518
14519 // 3DNow!
14520 case X86::BI__builtin_ia32_pswapdsf:
14521 case X86::BI__builtin_ia32_pswapdsi: {
14522 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14523 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14524 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14525 return Builder.CreateCall(F, Ops, "pswapd");
14526 }
14527 case X86::BI__builtin_ia32_rdrand16_step:
14528 case X86::BI__builtin_ia32_rdrand32_step:
14529 case X86::BI__builtin_ia32_rdrand64_step:
14530 case X86::BI__builtin_ia32_rdseed16_step:
14531 case X86::BI__builtin_ia32_rdseed32_step:
14532 case X86::BI__builtin_ia32_rdseed64_step: {
14533 Intrinsic::ID ID;
14534 switch (BuiltinID) {
14535 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14535)
;
14536 case X86::BI__builtin_ia32_rdrand16_step:
14537 ID = Intrinsic::x86_rdrand_16;
14538 break;
14539 case X86::BI__builtin_ia32_rdrand32_step:
14540 ID = Intrinsic::x86_rdrand_32;
14541 break;
14542 case X86::BI__builtin_ia32_rdrand64_step:
14543 ID = Intrinsic::x86_rdrand_64;
14544 break;
14545 case X86::BI__builtin_ia32_rdseed16_step:
14546 ID = Intrinsic::x86_rdseed_16;
14547 break;
14548 case X86::BI__builtin_ia32_rdseed32_step:
14549 ID = Intrinsic::x86_rdseed_32;
14550 break;
14551 case X86::BI__builtin_ia32_rdseed64_step:
14552 ID = Intrinsic::x86_rdseed_64;
14553 break;
14554 }
14555
14556 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14557 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14558 Ops[0]);
14559 return Builder.CreateExtractValue(Call, 1);
14560 }
14561 case X86::BI__builtin_ia32_addcarryx_u32:
14562 case X86::BI__builtin_ia32_addcarryx_u64:
14563 case X86::BI__builtin_ia32_subborrow_u32:
14564 case X86::BI__builtin_ia32_subborrow_u64: {
14565 Intrinsic::ID IID;
14566 switch (BuiltinID) {
14567 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14567)
;
14568 case X86::BI__builtin_ia32_addcarryx_u32:
14569 IID = Intrinsic::x86_addcarry_32;
14570 break;
14571 case X86::BI__builtin_ia32_addcarryx_u64:
14572 IID = Intrinsic::x86_addcarry_64;
14573 break;
14574 case X86::BI__builtin_ia32_subborrow_u32:
14575 IID = Intrinsic::x86_subborrow_32;
14576 break;
14577 case X86::BI__builtin_ia32_subborrow_u64:
14578 IID = Intrinsic::x86_subborrow_64;
14579 break;
14580 }
14581
14582 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14583 { Ops[0], Ops[1], Ops[2] });
14584 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14585 Ops[3]);
14586 return Builder.CreateExtractValue(Call, 0);
14587 }
14588
14589 case X86::BI__builtin_ia32_fpclassps128_mask:
14590 case X86::BI__builtin_ia32_fpclassps256_mask:
14591 case X86::BI__builtin_ia32_fpclassps512_mask:
14592 case X86::BI__builtin_ia32_fpclassph128_mask:
14593 case X86::BI__builtin_ia32_fpclassph256_mask:
14594 case X86::BI__builtin_ia32_fpclassph512_mask:
14595 case X86::BI__builtin_ia32_fpclasspd128_mask:
14596 case X86::BI__builtin_ia32_fpclasspd256_mask:
14597 case X86::BI__builtin_ia32_fpclasspd512_mask: {
14598 unsigned NumElts =
14599 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14600 Value *MaskIn = Ops[2];
14601 Ops.erase(&Ops[2]);
14602
14603 Intrinsic::ID ID;
14604 switch (BuiltinID) {
14605 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14605)
;
14606 case X86::BI__builtin_ia32_fpclassph128_mask:
14607 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14608 break;
14609 case X86::BI__builtin_ia32_fpclassph256_mask:
14610 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14611 break;
14612 case X86::BI__builtin_ia32_fpclassph512_mask:
14613 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14614 break;
14615 case X86::BI__builtin_ia32_fpclassps128_mask:
14616 ID = Intrinsic::x86_avx512_fpclass_ps_128;
14617 break;
14618 case X86::BI__builtin_ia32_fpclassps256_mask:
14619 ID = Intrinsic::x86_avx512_fpclass_ps_256;
14620 break;
14621 case X86::BI__builtin_ia32_fpclassps512_mask:
14622 ID = Intrinsic::x86_avx512_fpclass_ps_512;
14623 break;
14624 case X86::BI__builtin_ia32_fpclasspd128_mask:
14625 ID = Intrinsic::x86_avx512_fpclass_pd_128;
14626 break;
14627 case X86::BI__builtin_ia32_fpclasspd256_mask:
14628 ID = Intrinsic::x86_avx512_fpclass_pd_256;
14629 break;
14630 case X86::BI__builtin_ia32_fpclasspd512_mask:
14631 ID = Intrinsic::x86_avx512_fpclass_pd_512;
14632 break;
14633 }
14634
14635 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14636 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14637 }
14638
14639 case X86::BI__builtin_ia32_vp2intersect_q_512:
14640 case X86::BI__builtin_ia32_vp2intersect_q_256:
14641 case X86::BI__builtin_ia32_vp2intersect_q_128:
14642 case X86::BI__builtin_ia32_vp2intersect_d_512:
14643 case X86::BI__builtin_ia32_vp2intersect_d_256:
14644 case X86::BI__builtin_ia32_vp2intersect_d_128: {
14645 unsigned NumElts =
14646 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14647 Intrinsic::ID ID;
14648
14649 switch (BuiltinID) {
14650 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14650)
;
14651 case X86::BI__builtin_ia32_vp2intersect_q_512:
14652 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14653 break;
14654 case X86::BI__builtin_ia32_vp2intersect_q_256:
14655 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14656 break;
14657 case X86::BI__builtin_ia32_vp2intersect_q_128:
14658 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14659 break;
14660 case X86::BI__builtin_ia32_vp2intersect_d_512:
14661 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14662 break;
14663 case X86::BI__builtin_ia32_vp2intersect_d_256:
14664 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14665 break;
14666 case X86::BI__builtin_ia32_vp2intersect_d_128:
14667 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14668 break;
14669 }
14670
14671 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14672 Value *Result = Builder.CreateExtractValue(Call, 0);
14673 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14674 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14675
14676 Result = Builder.CreateExtractValue(Call, 1);
14677 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14678 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14679 }
14680
14681 case X86::BI__builtin_ia32_vpmultishiftqb128:
14682 case X86::BI__builtin_ia32_vpmultishiftqb256:
14683 case X86::BI__builtin_ia32_vpmultishiftqb512: {
14684 Intrinsic::ID ID;
14685 switch (BuiltinID) {
14686 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14686)
;
14687 case X86::BI__builtin_ia32_vpmultishiftqb128:
14688 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14689 break;
14690 case X86::BI__builtin_ia32_vpmultishiftqb256:
14691 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14692 break;
14693 case X86::BI__builtin_ia32_vpmultishiftqb512:
14694 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14695 break;
14696 }
14697
14698 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14699 }
14700
14701 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14702 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14703 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14704 unsigned NumElts =
14705 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14706 Value *MaskIn = Ops[2];
14707 Ops.erase(&Ops[2]);
14708
14709 Intrinsic::ID ID;
14710 switch (BuiltinID) {
14711 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14711)
;
14712 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14713 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14714 break;
14715 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14716 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14717 break;
14718 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14719 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14720 break;
14721 }
14722
14723 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14724 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14725 }
14726
14727 // packed comparison intrinsics
14728 case X86::BI__builtin_ia32_cmpeqps:
14729 case X86::BI__builtin_ia32_cmpeqpd:
14730 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14731 case X86::BI__builtin_ia32_cmpltps:
14732 case X86::BI__builtin_ia32_cmpltpd:
14733 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14734 case X86::BI__builtin_ia32_cmpleps:
14735 case X86::BI__builtin_ia32_cmplepd:
14736 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14737 case X86::BI__builtin_ia32_cmpunordps:
14738 case X86::BI__builtin_ia32_cmpunordpd:
14739 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14740 case X86::BI__builtin_ia32_cmpneqps:
14741 case X86::BI__builtin_ia32_cmpneqpd:
14742 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14743 case X86::BI__builtin_ia32_cmpnltps:
14744 case X86::BI__builtin_ia32_cmpnltpd:
14745 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14746 case X86::BI__builtin_ia32_cmpnleps:
14747 case X86::BI__builtin_ia32_cmpnlepd:
14748 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14749 case X86::BI__builtin_ia32_cmpordps:
14750 case X86::BI__builtin_ia32_cmpordpd:
14751 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14752 case X86::BI__builtin_ia32_cmpph128_mask:
14753 case X86::BI__builtin_ia32_cmpph256_mask:
14754 case X86::BI__builtin_ia32_cmpph512_mask:
14755 case X86::BI__builtin_ia32_cmpps128_mask:
14756 case X86::BI__builtin_ia32_cmpps256_mask:
14757 case X86::BI__builtin_ia32_cmpps512_mask:
14758 case X86::BI__builtin_ia32_cmppd128_mask:
14759 case X86::BI__builtin_ia32_cmppd256_mask:
14760 case X86::BI__builtin_ia32_cmppd512_mask:
14761 IsMaskFCmp = true;
14762 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14763 case X86::BI__builtin_ia32_cmpps:
14764 case X86::BI__builtin_ia32_cmpps256:
14765 case X86::BI__builtin_ia32_cmppd:
14766 case X86::BI__builtin_ia32_cmppd256: {
14767 // Lowering vector comparisons to fcmp instructions, while
14768 // ignoring signalling behaviour requested
14769 // ignoring rounding mode requested
14770 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14771
14772 // The third argument is the comparison condition, and integer in the
14773 // range [0, 31]
14774 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14775
14776 // Lowering to IR fcmp instruction.
14777 // Ignoring requested signaling behaviour,
14778 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14779 FCmpInst::Predicate Pred;
14780 bool IsSignaling;
14781 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14782 // behavior is inverted. We'll handle that after the switch.
14783 switch (CC & 0xf) {
14784 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
14785 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
14786 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
14787 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
14788 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
14789 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
14790 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
14791 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
14792 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
14793 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
14794 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
14795 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14796 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
14797 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
14798 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
14799 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
14800 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14800)
;
14801 }
14802
14803 // Invert the signalling behavior for 16-31.
14804 if (CC & 0x10)
14805 IsSignaling = !IsSignaling;
14806
14807 // If the predicate is true or false and we're using constrained intrinsics,
14808 // we don't have a compare intrinsic we can use. Just use the legacy X86
14809 // specific intrinsic.
14810 // If the intrinsic is mask enabled and we're using constrained intrinsics,
14811 // use the legacy X86 specific intrinsic.
14812 if (Builder.getIsFPConstrained() &&
14813 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14814 IsMaskFCmp)) {
14815
14816 Intrinsic::ID IID;
14817 switch (BuiltinID) {
14818 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14818)
;
14819 case X86::BI__builtin_ia32_cmpps:
14820 IID = Intrinsic::x86_sse_cmp_ps;
14821 break;
14822 case X86::BI__builtin_ia32_cmpps256:
14823 IID = Intrinsic::x86_avx_cmp_ps_256;
14824 break;
14825 case X86::BI__builtin_ia32_cmppd:
14826 IID = Intrinsic::x86_sse2_cmp_pd;
14827 break;
14828 case X86::BI__builtin_ia32_cmppd256:
14829 IID = Intrinsic::x86_avx_cmp_pd_256;
14830 break;
14831 case X86::BI__builtin_ia32_cmpps512_mask:
14832 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14833 break;
14834 case X86::BI__builtin_ia32_cmppd512_mask:
14835 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14836 break;
14837 case X86::BI__builtin_ia32_cmpps128_mask:
14838 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14839 break;
14840 case X86::BI__builtin_ia32_cmpps256_mask:
14841 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14842 break;
14843 case X86::BI__builtin_ia32_cmppd128_mask:
14844 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14845 break;
14846 case X86::BI__builtin_ia32_cmppd256_mask:
14847 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14848 break;
14849 }
14850
14851 Function *Intr = CGM.getIntrinsic(IID);
14852 if (IsMaskFCmp) {
14853 unsigned NumElts =
14854 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14855 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14856 Value *Cmp = Builder.CreateCall(Intr, Ops);
14857 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14858 }
14859
14860 return Builder.CreateCall(Intr, Ops);
14861 }
14862
14863 // Builtins without the _mask suffix return a vector of integers
14864 // of the same width as the input vectors
14865 if (IsMaskFCmp) {
14866 // We ignore SAE if strict FP is disabled. We only keep precise
14867 // exception behavior under strict FP.
14868 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14869 // object will be required.
14870 unsigned NumElts =
14871 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14872 Value *Cmp;
14873 if (IsSignaling)
14874 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14875 else
14876 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14877 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14878 }
14879
14880 return getVectorFCmpIR(Pred, IsSignaling);
14881 }
14882
14883 // SSE scalar comparison intrinsics
14884 case X86::BI__builtin_ia32_cmpeqss:
14885 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14886 case X86::BI__builtin_ia32_cmpltss:
14887 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14888 case X86::BI__builtin_ia32_cmpless:
14889 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14890 case X86::BI__builtin_ia32_cmpunordss:
14891 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14892 case X86::BI__builtin_ia32_cmpneqss:
14893 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14894 case X86::BI__builtin_ia32_cmpnltss:
14895 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14896 case X86::BI__builtin_ia32_cmpnless:
14897 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14898 case X86::BI__builtin_ia32_cmpordss:
14899 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14900 case X86::BI__builtin_ia32_cmpeqsd:
14901 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14902 case X86::BI__builtin_ia32_cmpltsd:
14903 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14904 case X86::BI__builtin_ia32_cmplesd:
14905 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14906 case X86::BI__builtin_ia32_cmpunordsd:
14907 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14908 case X86::BI__builtin_ia32_cmpneqsd:
14909 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14910 case X86::BI__builtin_ia32_cmpnltsd:
14911 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14912 case X86::BI__builtin_ia32_cmpnlesd:
14913 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14914 case X86::BI__builtin_ia32_cmpordsd:
14915 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14916
14917 // f16c half2float intrinsics
14918 case X86::BI__builtin_ia32_vcvtph2ps:
14919 case X86::BI__builtin_ia32_vcvtph2ps256:
14920 case X86::BI__builtin_ia32_vcvtph2ps_mask:
14921 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14922 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14923 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14924 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14925 }
14926
14927// AVX512 bf16 intrinsics
14928 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14929 Ops[2] = getMaskVecValue(
14930 *this, Ops[2],
14931 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14932 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14933 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14934 }
14935 case X86::BI__builtin_ia32_cvtsbf162ss_32:
14936 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14937
14938 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14939 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14940 Intrinsic::ID IID;
14941 switch (BuiltinID) {
14942 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14942)
;
14943 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14944 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14945 break;
14946 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14947 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14948 break;
14949 }
14950 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14951 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14952 }
14953
14954 case X86::BI__cpuid:
14955 case X86::BI__cpuidex: {
14956 Value *FuncId = EmitScalarExpr(E->getArg(1));
14957 Value *SubFuncId = BuiltinID == X86::BI__cpuidex
14958 ? EmitScalarExpr(E->getArg(2))
14959 : llvm::ConstantInt::get(Int32Ty, 0);
14960
14961 llvm::StructType *CpuidRetTy =
14962 llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
14963 llvm::FunctionType *FTy =
14964 llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
14965
14966 StringRef Asm, Constraints;
14967 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
14968 Asm = "cpuid";
14969 Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
14970 } else {
14971 // x86-64 uses %rbx as the base register, so preserve it.
14972 Asm = "xchgq %rbx, ${1:q}\n"
14973 "cpuid\n"
14974 "xchgq %rbx, ${1:q}";
14975 Constraints = "={ax},=r,={cx},={dx},0,2";
14976 }
14977
14978 llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
14979 /*hasSideEffects=*/false);
14980 Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
14981 Value *BasePtr = EmitScalarExpr(E->getArg(0));
14982 Value *Store = nullptr;
14983 for (unsigned i = 0; i < 4; i++) {
14984 Value *Extracted = Builder.CreateExtractValue(IACall, i);
14985 Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
14986 Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
14987 }
14988
14989 // Return the last store instruction to signal that we have emitted the
14990 // the intrinsic.
14991 return Store;
14992 }
14993
14994 case X86::BI__emul:
14995 case X86::BI__emulu: {
14996 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14997 bool isSigned = (BuiltinID == X86::BI__emul);
14998 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14999 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
15000 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
15001 }
15002 case X86::BI__mulh:
15003 case X86::BI__umulh:
15004 case X86::BI_mul128:
15005 case X86::BI_umul128: {
15006 llvm::Type *ResType = ConvertType(E->getType());
15007 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15008
15009 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
15010 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
15011 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
15012
15013 Value *MulResult, *HigherBits;
15014 if (IsSigned) {
15015 MulResult = Builder.CreateNSWMul(LHS, RHS);
15016 HigherBits = Builder.CreateAShr(MulResult, 64);
15017 } else {
15018 MulResult = Builder.CreateNUWMul(LHS, RHS);
15019 HigherBits = Builder.CreateLShr(MulResult, 64);
15020 }
15021 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
15022
15023 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
15024 return HigherBits;
15025
15026 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
15027 Builder.CreateStore(HigherBits, HighBitsAddress);
15028 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
15029 }
15030
15031 case X86::BI__faststorefence: {
15032 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15033 llvm::SyncScope::System);
15034 }
15035 case X86::BI__shiftleft128:
15036 case X86::BI__shiftright128: {
15037 llvm::Function *F = CGM.getIntrinsic(
15038 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
15039 Int64Ty);
15040 // Flip low/high ops and zero-extend amount to matching type.
15041 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
15042 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
15043 std::swap(Ops[0], Ops[1]);
15044 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15045 return Builder.CreateCall(F, Ops);
15046 }
15047 case X86::BI_ReadWriteBarrier:
15048 case X86::BI_ReadBarrier:
15049 case X86::BI_WriteBarrier: {
15050 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15051 llvm::SyncScope::SingleThread);
15052 }
15053
15054 case X86::BI_AddressOfReturnAddress: {
15055 Function *F =
15056 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
15057 return Builder.CreateCall(F);
15058 }
15059 case X86::BI__stosb: {
15060 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
15061 // instruction, but it will create a memset that won't be optimized away.
15062 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
15063 }
15064 case X86::BI__ud2:
15065 // llvm.trap makes a ud2a instruction on x86.
15066 return EmitTrapCall(Intrinsic::trap);
15067 case X86::BI__int2c: {
15068 // This syscall signals a driver assertion failure in x86 NT kernels.
15069 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
15070 llvm::InlineAsm *IA =
15071 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
15072 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
15073 getLLVMContext(), llvm::AttributeList::FunctionIndex,
15074 llvm::Attribute::NoReturn);
15075 llvm::CallInst *CI = Builder.CreateCall(IA);
15076 CI->setAttributes(NoReturnAttr);
15077 return CI;
15078 }
15079 case X86::BI__readfsbyte:
15080 case X86::BI__readfsword:
15081 case X86::BI__readfsdword:
15082 case X86::BI__readfsqword: {
15083 llvm::Type *IntTy = ConvertType(E->getType());
15084 Value *Ptr =
15085 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
15086 LoadInst *Load = Builder.CreateAlignedLoad(
15087 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15088 Load->setVolatile(true);
15089 return Load;
15090 }
15091 case X86::BI__readgsbyte:
15092 case X86::BI__readgsword:
15093 case X86::BI__readgsdword:
15094 case X86::BI__readgsqword: {
15095 llvm::Type *IntTy = ConvertType(E->getType());
15096 Value *Ptr =
15097 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
15098 LoadInst *Load = Builder.CreateAlignedLoad(
15099 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15100 Load->setVolatile(true);
15101 return Load;
15102 }
15103 case X86::BI__builtin_ia32_encodekey128_u32: {
15104 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
15105
15106 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
15107
15108 for (int i = 0; i < 3; ++i) {
15109 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15110 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
15111 Ptr = Builder.CreateBitCast(
15112 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15113 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15114 }
15115
15116 return Builder.CreateExtractValue(Call, 0);
15117 }
15118 case X86::BI__builtin_ia32_encodekey256_u32: {
15119 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
15120
15121 Value *Call =
15122 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
15123
15124 for (int i = 0; i < 4; ++i) {
15125 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15126 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
15127 Ptr = Builder.CreateBitCast(
15128 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15129 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15130 }
15131
15132 return Builder.CreateExtractValue(Call, 0);
15133 }
15134 case X86::BI__builtin_ia32_aesenc128kl_u8:
15135 case X86::BI__builtin_ia32_aesdec128kl_u8:
15136 case X86::BI__builtin_ia32_aesenc256kl_u8:
15137 case X86::BI__builtin_ia32_aesdec256kl_u8: {
15138 Intrinsic::ID IID;
15139 StringRef BlockName;
15140 switch (BuiltinID) {
15141 default:
15142 llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15142)
;
15143 case X86::BI__builtin_ia32_aesenc128kl_u8:
15144 IID = Intrinsic::x86_aesenc128kl;
15145 BlockName = "aesenc128kl";
15146 break;
15147 case X86::BI__builtin_ia32_aesdec128kl_u8:
15148 IID = Intrinsic::x86_aesdec128kl;
15149 BlockName = "aesdec128kl";
15150 break;
15151 case X86::BI__builtin_ia32_aesenc256kl_u8:
15152 IID = Intrinsic::x86_aesenc256kl;
15153 BlockName = "aesenc256kl";
15154 break;
15155 case X86::BI__builtin_ia32_aesdec256kl_u8:
15156 IID = Intrinsic::x86_aesdec256kl;
15157 BlockName = "aesdec256kl";
15158 break;
15159 }
15160
15161 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
15162
15163 BasicBlock *NoError =
15164 createBasicBlock(BlockName + "_no_error", this->CurFn);
15165 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15166 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15167
15168 Value *Ret = Builder.CreateExtractValue(Call, 0);
15169 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15170 Value *Out = Builder.CreateExtractValue(Call, 1);
15171 Builder.CreateCondBr(Succ, NoError, Error);
15172
15173 Builder.SetInsertPoint(NoError);
15174 Builder.CreateDefaultAlignedStore(Out, Ops[0]);
15175 Builder.CreateBr(End);
15176
15177 Builder.SetInsertPoint(Error);
15178 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15179 Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
15180 Builder.CreateBr(End);
15181
15182 Builder.SetInsertPoint(End);
15183 return Builder.CreateExtractValue(Call, 0);
15184 }
15185 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15186 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15187 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15188 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
15189 Intrinsic::ID IID;
15190 StringRef BlockName;
15191 switch (BuiltinID) {
15192 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15193 IID = Intrinsic::x86_aesencwide128kl;
15194 BlockName = "aesencwide128kl";
15195 break;
15196 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15197 IID = Intrinsic::x86_aesdecwide128kl;
15198 BlockName = "aesdecwide128kl";
15199 break;
15200 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15201 IID = Intrinsic::x86_aesencwide256kl;
15202 BlockName = "aesencwide256kl";
15203 break;
15204 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15205 IID = Intrinsic::x86_aesdecwide256kl;
15206 BlockName = "aesdecwide256kl";
15207 break;
15208 }
15209
15210 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15211 Value *InOps[9];
15212 InOps[0] = Ops[2];
15213 for (int i = 0; i != 8; ++i) {
15214 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15215 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15216 }
15217
15218 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15219
15220 BasicBlock *NoError =
15221 createBasicBlock(BlockName + "_no_error", this->CurFn);
15222 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15223 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15224
15225 Value *Ret = Builder.CreateExtractValue(Call, 0);
15226 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15227 Builder.CreateCondBr(Succ, NoError, Error);
15228
15229 Builder.SetInsertPoint(NoError);
15230 for (int i = 0; i != 8; ++i) {
15231 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15232 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15233 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15234 }
15235 Builder.CreateBr(End);
15236
15237 Builder.SetInsertPoint(Error);
15238 for (int i = 0; i != 8; ++i) {
15239 Value *Out = Builder.CreateExtractValue(Call, i + 1);
15240 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15241 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15242 Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15243 }
15244 Builder.CreateBr(End);
15245
15246 Builder.SetInsertPoint(End);
15247 return Builder.CreateExtractValue(Call, 0);
15248 }
15249 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
15250 IsConjFMA = true;
15251 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15252 case X86::BI__builtin_ia32_vfmaddcph512_mask: {
15253 Intrinsic::ID IID = IsConjFMA
15254 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
15255 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
15256 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15257 return EmitX86Select(*this, Ops[3], Call, Ops[0]);
15258 }
15259 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
15260 IsConjFMA = true;
15261 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15262 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
15263 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15264 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15265 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15266 Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
15267 return EmitX86Select(*this, And, Call, Ops[0]);
15268 }
15269 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
15270 IsConjFMA = true;
15271 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15272 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
15273 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15274 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15275 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15276 static constexpr int Mask[] = {0, 5, 6, 7};
15277 return Builder.CreateShuffleVector(Call, Ops[2], Mask);
15278 }
15279 }
15280}
15281
15282Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15283 const CallExpr *E) {
15284 SmallVector<Value*, 4> Ops;
15285
15286 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1
Assuming 'i' is equal to 'e'
2
Loop condition is false. Execution continues on line 15293
15287 if (E->getArg(i)->getType()->isArrayType())
15288 Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
15289 else
15290 Ops.push_back(EmitScalarExpr(E->getArg(i)));
15291 }
15292
15293 Intrinsic::ID ID = Intrinsic::not_intrinsic;
15294
15295 switch (BuiltinID) {
3
Control jumps to 'case BI__builtin_vsx_strmb:' at line 15491
15296 default: return nullptr;
15297
15298 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15299 // call __builtin_readcyclecounter.
15300 case PPC::BI__builtin_ppc_get_timebase:
15301 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15302
15303 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15304 case PPC::BI__builtin_altivec_lvx:
15305 case PPC::BI__builtin_altivec_lvxl:
15306 case PPC::BI__builtin_altivec_lvebx:
15307 case PPC::BI__builtin_altivec_lvehx:
15308 case PPC::BI__builtin_altivec_lvewx:
15309 case PPC::BI__builtin_altivec_lvsl:
15310 case PPC::BI__builtin_altivec_lvsr:
15311 case PPC::BI__builtin_vsx_lxvd2x:
15312 case PPC::BI__builtin_vsx_lxvw4x:
15313 case PPC::BI__builtin_vsx_lxvd2x_be:
15314 case PPC::BI__builtin_vsx_lxvw4x_be:
15315 case PPC::BI__builtin_vsx_lxvl:
15316 case PPC::BI__builtin_vsx_lxvll:
15317 {
15318 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15319 BuiltinID == PPC::BI__builtin_vsx_lxvll){
15320 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15321 }else {
15322 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15323 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15324 Ops.pop_back();
15325 }
15326
15327 switch (BuiltinID) {
15328 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15328)
;
15329 case PPC::BI__builtin_altivec_lvx:
15330 ID = Intrinsic::ppc_altivec_lvx;
15331 break;
15332 case PPC::BI__builtin_altivec_lvxl:
15333 ID = Intrinsic::ppc_altivec_lvxl;
15334 break;
15335 case PPC::BI__builtin_altivec_lvebx:
15336 ID = Intrinsic::ppc_altivec_lvebx;
15337 break;
15338 case PPC::BI__builtin_altivec_lvehx:
15339 ID = Intrinsic::ppc_altivec_lvehx;
15340 break;
15341 case PPC::BI__builtin_altivec_lvewx:
15342 ID = Intrinsic::ppc_altivec_lvewx;
15343 break;
15344 case PPC::BI__builtin_altivec_lvsl:
15345 ID = Intrinsic::ppc_altivec_lvsl;
15346 break;
15347 case PPC::BI__builtin_altivec_lvsr:
15348 ID = Intrinsic::ppc_altivec_lvsr;
15349 break;
15350 case PPC::BI__builtin_vsx_lxvd2x:
15351 ID = Intrinsic::ppc_vsx_lxvd2x;
15352 break;
15353 case PPC::BI__builtin_vsx_lxvw4x:
15354 ID = Intrinsic::ppc_vsx_lxvw4x;
15355 break;
15356 case PPC::BI__builtin_vsx_lxvd2x_be:
15357 ID = Intrinsic::ppc_vsx_lxvd2x_be;
15358 break;
15359 case PPC::BI__builtin_vsx_lxvw4x_be:
15360 ID = Intrinsic::ppc_vsx_lxvw4x_be;
15361 break;
15362 case PPC::BI__builtin_vsx_lxvl:
15363 ID = Intrinsic::ppc_vsx_lxvl;
15364 break;
15365 case PPC::BI__builtin_vsx_lxvll:
15366 ID = Intrinsic::ppc_vsx_lxvll;
15367 break;
15368 }
15369 llvm::Function *F = CGM.getIntrinsic(ID);
15370 return Builder.CreateCall(F, Ops, "");
15371 }
15372
15373 // vec_st, vec_xst_be
15374 case PPC::BI__builtin_altivec_stvx:
15375 case PPC::BI__builtin_altivec_stvxl:
15376 case PPC::BI__builtin_altivec_stvebx:
15377 case PPC::BI__builtin_altivec_stvehx:
15378 case PPC::BI__builtin_altivec_stvewx:
15379 case PPC::BI__builtin_vsx_stxvd2x:
15380 case PPC::BI__builtin_vsx_stxvw4x:
15381 case PPC::BI__builtin_vsx_stxvd2x_be:
15382 case PPC::BI__builtin_vsx_stxvw4x_be:
15383 case PPC::BI__builtin_vsx_stxvl:
15384 case PPC::BI__builtin_vsx_stxvll:
15385 {
15386 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15387 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15388 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15389 }else {
15390 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15391 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15392 Ops.pop_back();
15393 }
15394
15395 switch (BuiltinID) {
15396 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15396)
;
15397 case PPC::BI__builtin_altivec_stvx:
15398 ID = Intrinsic::ppc_altivec_stvx;
15399 break;
15400 case PPC::BI__builtin_altivec_stvxl:
15401 ID = Intrinsic::ppc_altivec_stvxl;
15402 break;
15403 case PPC::BI__builtin_altivec_stvebx:
15404 ID = Intrinsic::ppc_altivec_stvebx;
15405 break;
15406 case PPC::BI__builtin_altivec_stvehx:
15407 ID = Intrinsic::ppc_altivec_stvehx;
15408 break;
15409 case PPC::BI__builtin_altivec_stvewx:
15410 ID = Intrinsic::ppc_altivec_stvewx;
15411 break;
15412 case PPC::BI__builtin_vsx_stxvd2x:
15413 ID = Intrinsic::ppc_vsx_stxvd2x;
15414 break;
15415 case PPC::BI__builtin_vsx_stxvw4x:
15416 ID = Intrinsic::ppc_vsx_stxvw4x;
15417 break;
15418 case PPC::BI__builtin_vsx_stxvd2x_be:
15419 ID = Intrinsic::ppc_vsx_stxvd2x_be;
15420 break;
15421 case PPC::BI__builtin_vsx_stxvw4x_be:
15422 ID = Intrinsic::ppc_vsx_stxvw4x_be;
15423 break;
15424 case PPC::BI__builtin_vsx_stxvl:
15425 ID = Intrinsic::ppc_vsx_stxvl;
15426 break;
15427 case PPC::BI__builtin_vsx_stxvll:
15428 ID = Intrinsic::ppc_vsx_stxvll;
15429 break;
15430 }
15431 llvm::Function *F = CGM.getIntrinsic(ID);
15432 return Builder.CreateCall(F, Ops, "");
15433 }
15434 case PPC::BI__builtin_vsx_ldrmb: {
15435 // Essentially boils down to performing an unaligned VMX load sequence so
15436 // as to avoid crossing a page boundary and then shuffling the elements
15437 // into the right side of the vector register.
15438 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15439 llvm::Type *ResTy = ConvertType(E->getType());
15440 bool IsLE = getTarget().isLittleEndian();
15441
15442 // If the user wants the entire vector, just load the entire vector.
15443 if (NumBytes == 16) {
15444 Value *BC = Builder.CreateBitCast(Ops[0], ResTy->getPointerTo());
15445 Value *LD =
15446 Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
15447 if (!IsLE)
15448 return LD;
15449
15450 // Reverse the bytes on LE.
15451 SmallVector<int, 16> RevMask;
15452 for (int Idx = 0; Idx < 16; Idx++)
15453 RevMask.push_back(15 - Idx);
15454 return Builder.CreateShuffleVector(LD, LD, RevMask);
15455 }
15456
15457 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15458 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15459 : Intrinsic::ppc_altivec_lvsl);
15460 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15461 Value *HiMem = Builder.CreateGEP(
15462 Int8Ty, Ops[0], ConstantInt::get(Ops[1]->getType(), NumBytes - 1));
15463 Value *LoLd = Builder.CreateCall(Lvx, Ops[0], "ld.lo");
15464 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15465 Value *Mask1 = Builder.CreateCall(Lvs, Ops[0], "mask1");
15466
15467 Ops.clear();
15468 Ops.push_back(IsLE ? HiLd : LoLd);
15469 Ops.push_back(IsLE ? LoLd : HiLd);
15470 Ops.push_back(Mask1);
15471 Value *AllElts = Builder.CreateCall(Vperm, Ops, "shuffle1");
15472 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15473
15474 if (IsLE) {
15475 SmallVector<int, 16> Consts;
15476 for (int Idx = 0; Idx < 16; Idx++) {
15477 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15478 : 16 - (NumBytes - Idx);
15479 Consts.push_back(Val);
15480 }
15481 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15482 Zero, Consts);
15483 }
15484 SmallVector<Constant *, 16> Consts;
15485 for (int Idx = 0; Idx < 16; Idx++)
15486 Consts.push_back(Builder.getInt8(NumBytes + Idx));
15487 Value *Mask2 = ConstantVector::get(Consts);
15488 return Builder.CreateBitCast(
15489 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15490 }
15491 case PPC::BI__builtin_vsx_strmb: {
15492 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
4
The object is a 'ConstantInt'
15493 bool IsLE = getTarget().isLittleEndian();
15494 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15495 // Storing the whole vector, simply store it on BE and reverse bytes and
15496 // store on LE.
15497 if (Width == 16) {
15498 Value *BC =
15499 Builder.CreateBitCast(Ops[0], Ops[2]->getType()->getPointerTo());
15500 Value *StVec = Ops[2];
15501 if (IsLE) {
15502 SmallVector<int, 16> RevMask;
15503 for (int Idx = 0; Idx < 16; Idx++)
15504 RevMask.push_back(15 - Idx);
15505 StVec = Builder.CreateShuffleVector(Ops[2], Ops[2], RevMask);
15506 }
15507 return Builder.CreateStore(
15508 StVec, Address(BC, Ops[2]->getType(), CharUnits::fromQuantity(1)));
15509 }
15510 auto *ConvTy = Int64Ty;
15511 unsigned NumElts = 0;
15512 switch (Width) {
15513 default:
15514 llvm_unreachable("width for stores must be a power of 2")::llvm::llvm_unreachable_internal("width for stores must be a power of 2"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15514)
;
15515 case 8:
15516 ConvTy = Int64Ty;
15517 NumElts = 2;
15518 break;
15519 case 4:
15520 ConvTy = Int32Ty;
15521 NumElts = 4;
15522 break;
15523 case 2:
15524 ConvTy = Int16Ty;
15525 NumElts = 8;
15526 break;
15527 case 1:
15528 ConvTy = Int8Ty;
15529 NumElts = 16;
15530 break;
15531 }
15532 Value *Vec = Builder.CreateBitCast(
15533 Ops[2], llvm::FixedVectorType::get(ConvTy, NumElts));
15534 Value *Ptr = Builder.CreateGEP(Int8Ty, Ops[0],
15535 ConstantInt::get(Int64Ty, Offset));
15536 Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15537 Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15538 if (IsLE && Width > 1) {
15539 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15540 Elt = Builder.CreateCall(F, Elt);
15541 }
15542 return Builder.CreateStore(
15543 Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
15544 };
15545 unsigned Stored = 0;
15546 unsigned RemainingBytes = NumBytes;
15547 Value *Result;
5
'Result' declared without an initial value
15548 if (NumBytes == 16)
6
Assuming 'NumBytes' is not equal to 16
7
Taking false branch
15549 return StoreSubVec(16, 0, 0);
15550 if (NumBytes >= 8) {
8
Assuming 'NumBytes' is < 8
9
Taking false branch
15551 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15552 RemainingBytes -= 8;
15553 Stored += 8;
15554 }
15555 if (RemainingBytes >= 4) {
10
Assuming 'RemainingBytes' is < 4
11
Taking false branch
15556 Result = StoreSubVec(4, NumBytes - Stored - 4,
15557 IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15558 RemainingBytes -= 4;
15559 Stored += 4;
15560 }
15561 if (RemainingBytes >= 2) {
12
Assuming 'RemainingBytes' is < 2
13
Taking false branch
15562 Result = StoreSubVec(2, NumBytes - Stored - 2,
15563 IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15564 RemainingBytes -= 2;
15565 Stored += 2;
15566 }
15567 if (RemainingBytes)
14
Assuming 'RemainingBytes' is 0
15
Taking false branch
15568 Result =
15569 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15570 return Result;
16
Undefined or garbage value returned to caller
15571 }
15572 // Square root
15573 case PPC::BI__builtin_vsx_xvsqrtsp:
15574 case PPC::BI__builtin_vsx_xvsqrtdp: {
15575 llvm::Type *ResultType = ConvertType(E->getType());
15576 Value *X = EmitScalarExpr(E->getArg(0));
15577 if (Builder.getIsFPConstrained()) {
15578 llvm::Function *F = CGM.getIntrinsic(
15579 Intrinsic::experimental_constrained_sqrt, ResultType);
15580 return Builder.CreateConstrainedFPCall(F, X);
15581 } else {
15582 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15583 return Builder.CreateCall(F, X);
15584 }
15585 }
15586 // Count leading zeros
15587 case PPC::BI__builtin_altivec_vclzb:
15588 case PPC::BI__builtin_altivec_vclzh:
15589 case PPC::BI__builtin_altivec_vclzw:
15590 case PPC::BI__builtin_altivec_vclzd: {
15591 llvm::Type *ResultType = ConvertType(E->getType());
15592 Value *X = EmitScalarExpr(E->getArg(0));
15593 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15594 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15595 return Builder.CreateCall(F, {X, Undef});
15596 }
15597 case PPC::BI__builtin_altivec_vctzb:
15598 case PPC::BI__builtin_altivec_vctzh:
15599 case PPC::BI__builtin_altivec_vctzw:
15600 case PPC::BI__builtin_altivec_vctzd: {
15601 llvm::Type *ResultType = ConvertType(E->getType());
15602 Value *X = EmitScalarExpr(E->getArg(0));
15603 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15604 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15605 return Builder.CreateCall(F, {X, Undef});
15606 }
15607 case PPC::BI__builtin_altivec_vec_replace_elt:
15608 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
15609 // The third argument of vec_replace_elt and vec_replace_unaligned must
15610 // be a compile time constant and will be emitted either to the vinsw
15611 // or vinsd instruction.
15612 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15613 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15614, __extension__ __PRETTY_FUNCTION__
))
15614 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15614, __extension__ __PRETTY_FUNCTION__
))
;
15615 llvm::Type *ResultType = ConvertType(E->getType());
15616 llvm::Function *F = nullptr;
15617 Value *Call = nullptr;
15618 int64_t ConstArg = ArgCI->getSExtValue();
15619 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
15620 bool Is32Bit = false;
15621 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width")(static_cast <bool> ((ArgWidth == 32 || ArgWidth == 64)
&& "Invalid argument width") ? void (0) : __assert_fail
("(ArgWidth == 32 || ArgWidth == 64) && \"Invalid argument width\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15621, __extension__ __PRETTY_FUNCTION__
))
;
15622 // The input to vec_replace_elt is an element index, not a byte index.
15623 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
15624 ConstArg *= ArgWidth / 8;
15625 if (ArgWidth == 32) {
15626 Is32Bit = true;
15627 // When the second argument is 32 bits, it can either be an integer or
15628 // a float. The vinsw intrinsic is used in this case.
15629 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
15630 // Fix the constant according to endianess.
15631 if (getTarget().isLittleEndian())
15632 ConstArg = 12 - ConstArg;
15633 } else {
15634 // When the second argument is 64 bits, it can either be a long long or
15635 // a double. The vinsd intrinsic is used in this case.
15636 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15637 // Fix the constant for little endian.
15638 if (getTarget().isLittleEndian())
15639 ConstArg = 8 - ConstArg;
15640 }
15641 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15642 // Depending on ArgWidth, the input vector could be a float or a double.
15643 // If the input vector is a float type, bitcast the inputs to integers. Or,
15644 // if the input vector is a double, bitcast the inputs to 64-bit integers.
15645 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15646 Ops[0] = Builder.CreateBitCast(
15647 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15648 : llvm::FixedVectorType::get(Int64Ty, 2));
15649 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15650 }
15651 // Emit the call to vinsw or vinsd.
15652 Call = Builder.CreateCall(F, Ops);
15653 // Depending on the builtin, bitcast to the approriate result type.
15654 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15655 !Ops[1]->getType()->isIntegerTy())
15656 return Builder.CreateBitCast(Call, ResultType);
15657 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15658 Ops[1]->getType()->isIntegerTy())
15659 return Call;
15660 else
15661 return Builder.CreateBitCast(Call,
15662 llvm::FixedVectorType::get(Int8Ty, 16));
15663 }
15664 case PPC::BI__builtin_altivec_vpopcntb:
15665 case PPC::BI__builtin_altivec_vpopcnth:
15666 case PPC::BI__builtin_altivec_vpopcntw:
15667 case PPC::BI__builtin_altivec_vpopcntd: {
15668 llvm::Type *ResultType = ConvertType(E->getType());
15669 Value *X = EmitScalarExpr(E->getArg(0));
15670 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15671 return Builder.CreateCall(F, X);
15672 }
15673 case PPC::BI__builtin_altivec_vadduqm:
15674 case PPC::BI__builtin_altivec_vsubuqm: {
15675 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15676 Ops[0] =
15677 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15678 Ops[1] =
15679 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15680 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15681 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15682 else
15683 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15684 }
15685 // Rotate and insert under mask operation.
15686 // __rldimi(rs, is, shift, mask)
15687 // (rotl64(rs, shift) & mask) | (is & ~mask)
15688 // __rlwimi(rs, is, shift, mask)
15689 // (rotl(rs, shift) & mask) | (is & ~mask)
15690 case PPC::BI__builtin_ppc_rldimi:
15691 case PPC::BI__builtin_ppc_rlwimi: {
15692 llvm::Type *Ty = Ops[0]->getType();
15693 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15694 if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
15695 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15696 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[2]});
15697 Value *X = Builder.CreateAnd(Shift, Ops[3]);
15698 Value *Y = Builder.CreateAnd(Ops[1], Builder.CreateNot(Ops[3]));
15699 return Builder.CreateOr(X, Y);
15700 }
15701 // Rotate and insert under mask operation.
15702 // __rlwnm(rs, shift, mask)
15703 // rotl(rs, shift) & mask
15704 case PPC::BI__builtin_ppc_rlwnm: {
15705 llvm::Type *Ty = Ops[0]->getType();
15706 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15707 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[1]});
15708 return Builder.CreateAnd(Shift, Ops[2]);
15709 }
15710 case PPC::BI__builtin_ppc_poppar4:
15711 case PPC::BI__builtin_ppc_poppar8: {
15712 llvm::Type *ArgType = Ops[0]->getType();
15713 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
15714 Value *Tmp = Builder.CreateCall(F, Ops[0]);
15715
15716 llvm::Type *ResultType = ConvertType(E->getType());
15717 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
15718 if (Result->getType() != ResultType)
15719 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
15720 "cast");
15721 return Result;
15722 }
15723 case PPC::BI__builtin_ppc_cmpb: {
15724 if (getTarget().getTriple().isPPC64()) {
15725 Function *F =
15726 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
15727 return Builder.CreateCall(F, Ops, "cmpb");
15728 }
15729 // For 32 bit, emit the code as below:
15730 // %conv = trunc i64 %a to i32
15731 // %conv1 = trunc i64 %b to i32
15732 // %shr = lshr i64 %a, 32
15733 // %conv2 = trunc i64 %shr to i32
15734 // %shr3 = lshr i64 %b, 32
15735 // %conv4 = trunc i64 %shr3 to i32
15736 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
15737 // %conv5 = zext i32 %0 to i64
15738 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
15739 // %conv614 = zext i32 %1 to i64
15740 // %shl = shl nuw i64 %conv614, 32
15741 // %or = or i64 %shl, %conv5
15742 // ret i64 %or
15743 Function *F =
15744 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
15745 Value *ArgOneLo = Builder.CreateTrunc(Ops[0], Int32Ty);
15746 Value *ArgTwoLo = Builder.CreateTrunc(Ops[1], Int32Ty);
15747 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
15748 Value *ArgOneHi =
15749 Builder.CreateTrunc(Builder.CreateLShr(Ops[0], ShiftAmt), Int32Ty);
15750 Value *ArgTwoHi =
15751 Builder.CreateTrunc(Builder.CreateLShr(Ops[1], ShiftAmt), Int32Ty);
15752 Value *ResLo = Builder.CreateZExt(
15753 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
15754 Value *ResHiShift = Builder.CreateZExt(
15755 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
15756 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
15757 return Builder.CreateOr(ResLo, ResHi);
15758 }
15759 // Copy sign
15760 case PPC::BI__builtin_vsx_xvcpsgnsp:
15761 case PPC::BI__builtin_vsx_xvcpsgndp: {
15762 llvm::Type *ResultType = ConvertType(E->getType());
15763 Value *X = EmitScalarExpr(E->getArg(0));
15764 Value *Y = EmitScalarExpr(E->getArg(1));
15765 ID = Intrinsic::copysign;
15766 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15767 return Builder.CreateCall(F, {X, Y});
15768 }
15769 // Rounding/truncation
15770 case PPC::BI__builtin_vsx_xvrspip:
15771 case PPC::BI__builtin_vsx_xvrdpip:
15772 case PPC::BI__builtin_vsx_xvrdpim:
15773 case PPC::BI__builtin_vsx_xvrspim:
15774 case PPC::BI__builtin_vsx_xvrdpi:
15775 case PPC::BI__builtin_vsx_xvrspi:
15776 case PPC::BI__builtin_vsx_xvrdpic:
15777 case PPC::BI__builtin_vsx_xvrspic:
15778 case PPC::BI__builtin_vsx_xvrdpiz:
15779 case PPC::BI__builtin_vsx_xvrspiz: {
15780 llvm::Type *ResultType = ConvertType(E->getType());
15781 Value *X = EmitScalarExpr(E->getArg(0));
15782 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15783 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15784 ID = Builder.getIsFPConstrained()
15785 ? Intrinsic::experimental_constrained_floor
15786 : Intrinsic::floor;
15787 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15788 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15789 ID = Builder.getIsFPConstrained()
15790 ? Intrinsic::experimental_constrained_round
15791 : Intrinsic::round;
15792 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15793 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15794 ID = Builder.getIsFPConstrained()
15795 ? Intrinsic::experimental_constrained_rint
15796 : Intrinsic::rint;
15797 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15798 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15799 ID = Builder.getIsFPConstrained()
15800 ? Intrinsic::experimental_constrained_ceil
15801 : Intrinsic::ceil;
15802 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15803 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15804 ID = Builder.getIsFPConstrained()
15805 ? Intrinsic::experimental_constrained_trunc
15806 : Intrinsic::trunc;
15807 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15808 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15809 : Builder.CreateCall(F, X);
15810 }
15811
15812 // Absolute value
15813 case PPC::BI__builtin_vsx_xvabsdp:
15814 case PPC::BI__builtin_vsx_xvabssp: {
15815 llvm::Type *ResultType = ConvertType(E->getType());
15816 Value *X = EmitScalarExpr(E->getArg(0));
15817 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15818 return Builder.CreateCall(F, X);
15819 }
15820
15821 // Fastmath by default
15822 case PPC::BI__builtin_ppc_recipdivf:
15823 case PPC::BI__builtin_ppc_recipdivd:
15824 case PPC::BI__builtin_ppc_rsqrtf:
15825 case PPC::BI__builtin_ppc_rsqrtd: {
15826 FastMathFlags FMF = Builder.getFastMathFlags();
15827 Builder.getFastMathFlags().setFast();
15828 llvm::Type *ResultType = ConvertType(E->getType());
15829 Value *X = EmitScalarExpr(E->getArg(0));
15830
15831 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15832 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15833 Value *Y = EmitScalarExpr(E->getArg(1));
15834 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
15835 Builder.getFastMathFlags() &= (FMF);
15836 return FDiv;
15837 }
15838 auto *One = ConstantFP::get(ResultType, 1.0);
15839 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15840 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15841 Builder.getFastMathFlags() &= (FMF);
15842 return FDiv;
15843 }
15844 case PPC::BI__builtin_ppc_alignx: {
15845 ConstantInt *AlignmentCI = cast<ConstantInt>(Ops[0]);
15846 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
15847 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
15848 llvm::Value::MaximumAlignment);
15849
15850 emitAlignmentAssumption(Ops[1], E->getArg(1),
15851 /*The expr loc is sufficient.*/ SourceLocation(),
15852 AlignmentCI, nullptr);
15853 return Ops[1];
15854 }
15855 case PPC::BI__builtin_ppc_rdlam: {
15856 llvm::Type *Ty = Ops[0]->getType();
15857 Value *ShiftAmt = Builder.CreateIntCast(Ops[1], Ty, false);
15858 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15859 Value *Rotate = Builder.CreateCall(F, {Ops[0], Ops[0], ShiftAmt});
15860 return Builder.CreateAnd(Rotate, Ops[2]);
15861 }
15862 case PPC::BI__builtin_ppc_load2r: {
15863 Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
15864 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15865 Value *LoadIntrinsic = Builder.CreateCall(F, Ops);
15866 return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
15867 }
15868 // FMA variations
15869 case PPC::BI__builtin_ppc_fnmsub:
15870 case PPC::BI__builtin_ppc_fnmsubs:
15871 case PPC::BI__builtin_vsx_xvmaddadp:
15872 case PPC::BI__builtin_vsx_xvmaddasp:
15873 case PPC::BI__builtin_vsx_xvnmaddadp:
15874 case PPC::BI__builtin_vsx_xvnmaddasp:
15875 case PPC::BI__builtin_vsx_xvmsubadp:
15876 case PPC::BI__builtin_vsx_xvmsubasp:
15877 case PPC::BI__builtin_vsx_xvnmsubadp:
15878 case PPC::BI__builtin_vsx_xvnmsubasp: {
15879 llvm::Type *ResultType = ConvertType(E->getType());
15880 Value *X = EmitScalarExpr(E->getArg(0));
15881 Value *Y = EmitScalarExpr(E->getArg(1));
15882 Value *Z = EmitScalarExpr(E->getArg(2));
15883 llvm::Function *F;
15884 if (Builder.getIsFPConstrained())
15885 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15886 else
15887 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15888 switch (BuiltinID) {
15889 case PPC::BI__builtin_vsx_xvmaddadp:
15890 case PPC::BI__builtin_vsx_xvmaddasp:
15891 if (Builder.getIsFPConstrained())
15892 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15893 else
15894 return Builder.CreateCall(F, {X, Y, Z});
15895 case PPC::BI__builtin_vsx_xvnmaddadp:
15896 case PPC::BI__builtin_vsx_xvnmaddasp:
15897 if (Builder.getIsFPConstrained())
15898 return Builder.CreateFNeg(
15899 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15900 else
15901 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15902 case PPC::BI__builtin_vsx_xvmsubadp:
15903 case PPC::BI__builtin_vsx_xvmsubasp:
15904 if (Builder.getIsFPConstrained())
15905 return Builder.CreateConstrainedFPCall(
15906 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15907 else
15908 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15909 case PPC::BI__builtin_ppc_fnmsub:
15910 case PPC::BI__builtin_ppc_fnmsubs:
15911 case PPC::BI__builtin_vsx_xvnmsubadp:
15912 case PPC::BI__builtin_vsx_xvnmsubasp:
15913 if (Builder.getIsFPConstrained())
15914 return Builder.CreateFNeg(
15915 Builder.CreateConstrainedFPCall(
15916 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15917 "neg");
15918 else
15919 return Builder.CreateCall(
15920 CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
15921 }
15922 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15922)
;
15923 return nullptr; // Suppress no-return warning
15924 }
15925
15926 case PPC::BI__builtin_vsx_insertword: {
15927 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15928
15929 // Third argument is a compile time constant int. It must be clamped to
15930 // to the range [0, 12].
15931 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15932 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15933, __extension__ __PRETTY_FUNCTION__
))
15933 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15933, __extension__ __PRETTY_FUNCTION__
))
;
15934 const int64_t MaxIndex = 12;
15935 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15936
15937 // The builtin semantics don't exactly match the xxinsertw instructions
15938 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15939 // word from the first argument, and inserts it in the second argument. The
15940 // instruction extracts the word from its second input register and inserts
15941 // it into its first input register, so swap the first and second arguments.
15942 std::swap(Ops[0], Ops[1]);
15943
15944 // Need to cast the second argument from a vector of unsigned int to a
15945 // vector of long long.
15946 Ops[1] =
15947 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15948
15949 if (getTarget().isLittleEndian()) {
15950 // Reverse the double words in the vector we will extract from.
15951 Ops[0] =
15952 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15953 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15954
15955 // Reverse the index.
15956 Index = MaxIndex - Index;
15957 }
15958
15959 // Intrinsic expects the first arg to be a vector of int.
15960 Ops[0] =
15961 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15962 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15963 return Builder.CreateCall(F, Ops);
15964 }
15965
15966 case PPC::BI__builtin_vsx_extractuword: {
15967 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15968
15969 // Intrinsic expects the first argument to be a vector of doublewords.
15970 Ops[0] =
15971 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15972
15973 // The second argument is a compile time constant int that needs to
15974 // be clamped to the range [0, 12].
15975 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15976 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15977, __extension__ __PRETTY_FUNCTION__
))
15977 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15977, __extension__ __PRETTY_FUNCTION__
))
;
15978 const int64_t MaxIndex = 12;
15979 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15980
15981 if (getTarget().isLittleEndian()) {
15982 // Reverse the index.
15983 Index = MaxIndex - Index;
15984 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15985
15986 // Emit the call, then reverse the double words of the results vector.
15987 Value *Call = Builder.CreateCall(F, Ops);
15988
15989 Value *ShuffleCall =
15990 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15991 return ShuffleCall;
15992 } else {
15993 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15994 return Builder.CreateCall(F, Ops);
15995 }
15996 }
15997
15998 case PPC::BI__builtin_vsx_xxpermdi: {
15999 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
16000 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16000, __extension__ __PRETTY_FUNCTION__
))
;
16001
16002 unsigned Index = ArgCI->getZExtValue();
16003 Ops[0] =
16004 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
16005 Ops[1] =
16006 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
16007
16008 // Account for endianness by treating this as just a shuffle. So we use the
16009 // same indices for both LE and BE in order to produce expected results in
16010 // both cases.
16011 int ElemIdx0 = (Index & 2) >> 1;
16012 int ElemIdx1 = 2 + (Index & 1);
16013
16014 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
16015 Value *ShuffleCall =
16016 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
16017 QualType BIRetType = E->getType();
16018 auto RetTy = ConvertType(BIRetType);
16019 return Builder.CreateBitCast(ShuffleCall, RetTy);
16020 }
16021
16022 case PPC::BI__builtin_vsx_xxsldwi: {
16023 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
16024 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16024, __extension__ __PRETTY_FUNCTION__
))
;
16025 unsigned Index = ArgCI->getZExtValue() & 0x3;
16026 Ops[0] =
16027 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
16028 Ops[1] =
16029 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
16030
16031 // Create a shuffle mask
16032 int ElemIdx0;
16033 int ElemIdx1;
16034 int ElemIdx2;
16035 int ElemIdx3;
16036 if (getTarget().isLittleEndian()) {
16037 // Little endian element N comes from element 8+N-Index of the
16038 // concatenated wide vector (of course, using modulo arithmetic on
16039 // the total number of elements).
16040 ElemIdx0 = (8 - Index) % 8;
16041 ElemIdx1 = (9 - Index) % 8;
16042 ElemIdx2 = (10 - Index) % 8;
16043 ElemIdx3 = (11 - Index) % 8;
16044 } else {
16045 // Big endian ElemIdx<N> = Index + N
16046 ElemIdx0 = Index;
16047 ElemIdx1 = Index + 1;
16048 ElemIdx2 = Index + 2;
16049 ElemIdx3 = Index + 3;
16050 }
16051
16052 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
16053 Value *ShuffleCall =
16054 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
16055 QualType BIRetType = E->getType();
16056 auto RetTy = ConvertType(BIRetType);
16057 return Builder.CreateBitCast(ShuffleCall, RetTy);
16058 }
16059
16060 case PPC::BI__builtin_pack_vector_int128: {
16061 bool isLittleEndian = getTarget().isLittleEndian();
16062 Value *UndefValue =
16063 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
16064 Value *Res = Builder.CreateInsertElement(
16065 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
16066 Res = Builder.CreateInsertElement(Res, Ops[1],
16067 (uint64_t)(isLittleEndian ? 0 : 1));
16068 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
16069 }
16070
16071 case PPC::BI__builtin_unpack_vector_int128: {
16072 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
16073 Value *Unpacked = Builder.CreateBitCast(
16074 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
16075
16076 if (getTarget().isLittleEndian())
16077 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
16078
16079 return Builder.CreateExtractElement(Unpacked, Index);
16080 }
16081
16082 case PPC::BI__builtin_ppc_sthcx: {
16083 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
16084 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
16085 Ops[1] = Builder.CreateSExt(Ops[1], Int32Ty);
16086 return Builder.CreateCall(F, Ops);
16087 }
16088
16089 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
16090 // Some of the MMA instructions accumulate their result into an existing
16091 // accumulator whereas the others generate a new accumulator. So we need to
16092 // use custom code generation to expand a builtin call with a pointer to a
16093 // load (if the corresponding instruction accumulates its result) followed by
16094 // the call to the intrinsic and a store of the result.
16095#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
16096 case PPC::BI__builtin_##Name:
16097#include "clang/Basic/BuiltinsPPC.def"
16098 {
16099 // The first argument of these two builtins is a pointer used to store their
16100 // result. However, the llvm intrinsics return their result in multiple
16101 // return values. So, here we emit code extracting these values from the
16102 // intrinsic results and storing them using that pointer.
16103 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
16104 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
16105 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
16106 unsigned NumVecs = 2;
16107 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
16108 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
16109 NumVecs = 4;
16110 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
16111 }
16112 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
16113 Address Addr = EmitPointerWithAlignment(E->getArg(1));
16114 Value *Vec = Builder.CreateLoad(Addr);
16115 Value *Call = Builder.CreateCall(F, {Vec});
16116 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
16117 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
16118 for (unsigned i=0; i<NumVecs; i++) {
16119 Value *Vec = Builder.CreateExtractValue(Call, i);
16120 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
16121 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
16122 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
16123 }
16124 return Call;
16125 }
16126 if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
16127 BuiltinID == PPC::BI__builtin_mma_build_acc) {
16128 // Reverse the order of the operands for LE, so the
16129 // same builtin call can be used on both LE and BE
16130 // without the need for the programmer to swap operands.
16131 // The operands are reversed starting from the second argument,
16132 // the first operand is the pointer to the pair/accumulator
16133 // that is being built.
16134 if (getTarget().isLittleEndian())
16135 std::reverse(Ops.begin() + 1, Ops.end());
16136 }
16137 bool Accumulate;
16138 switch (BuiltinID) {
16139 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
16140 case PPC::BI__builtin_##Name: \
16141 ID = Intrinsic::ppc_##Intr; \
16142 Accumulate = Acc; \
16143 break;
16144 #include "clang/Basic/BuiltinsPPC.def"
16145 }
16146 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16147 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
16148 BuiltinID == PPC::BI__builtin_mma_lxvp ||
16149 BuiltinID == PPC::BI__builtin_mma_stxvp) {
16150 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16151 BuiltinID == PPC::BI__builtin_mma_lxvp) {
16152 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
16153 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16154 } else {
16155 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
16156 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16157 }
16158 Ops.pop_back();
16159 llvm::Function *F = CGM.getIntrinsic(ID);
16160 return Builder.CreateCall(F, Ops, "");
16161 }
16162 SmallVector<Value*, 4> CallOps;
16163 if (Accumulate) {
16164 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16165 Value *Acc = Builder.CreateLoad(Addr);
16166 CallOps.push_back(Acc);
16167 }
16168 for (unsigned i=1; i<Ops.size(); i++)
16169 CallOps.push_back(Ops[i]);
16170 llvm::Function *F = CGM.getIntrinsic(ID);
16171 Value *Call = Builder.CreateCall(F, CallOps);
16172 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
16173 }
16174
16175 case PPC::BI__builtin_ppc_compare_and_swap:
16176 case PPC::BI__builtin_ppc_compare_and_swaplp: {
16177 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16178 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
16179 Value *OldVal = Builder.CreateLoad(OldValAddr);
16180 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
16181 LValue LV = MakeAddrLValue(Addr, AtomicTy);
16182 auto Pair = EmitAtomicCompareExchange(
16183 LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(),
16184 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
16185 // Unlike c11's atomic_compare_exchange, accroding to
16186 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
16187 // > In either case, the contents of the memory location specified by addr
16188 // > are copied into the memory location specified by old_val_addr.
16189 // But it hasn't specified storing to OldValAddr is atomic or not and
16190 // which order to use. Now following XL's codegen, treat it as a normal
16191 // store.
16192 Value *LoadedVal = Pair.first.getScalarVal();
16193 Builder.CreateStore(LoadedVal, OldValAddr);
16194 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
16195 }
16196 case PPC::BI__builtin_ppc_fetch_and_add:
16197 case PPC::BI__builtin_ppc_fetch_and_addlp: {
16198 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
16199 llvm::AtomicOrdering::Monotonic);
16200 }
16201 case PPC::BI__builtin_ppc_fetch_and_and:
16202 case PPC::BI__builtin_ppc_fetch_and_andlp: {
16203 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
16204 llvm::AtomicOrdering::Monotonic);
16205 }
16206
16207 case PPC::BI__builtin_ppc_fetch_and_or:
16208 case PPC::BI__builtin_ppc_fetch_and_orlp: {
16209 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
16210 llvm::AtomicOrdering::Monotonic);
16211 }
16212 case PPC::BI__builtin_ppc_fetch_and_swap:
16213 case PPC::BI__builtin_ppc_fetch_and_swaplp: {
16214 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
16215 llvm::AtomicOrdering::Monotonic);
16216 }
16217 case PPC::BI__builtin_ppc_ldarx:
16218 case PPC::BI__builtin_ppc_lwarx:
16219 case PPC::BI__builtin_ppc_lharx:
16220 case PPC::BI__builtin_ppc_lbarx:
16221 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
16222 case PPC::BI__builtin_ppc_mfspr: {
16223 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16224 ? Int32Ty
16225 : Int64Ty;
16226 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
16227 return Builder.CreateCall(F, Ops);
16228 }
16229 case PPC::BI__builtin_ppc_mtspr: {
16230 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16231 ? Int32Ty
16232 : Int64Ty;
16233 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
16234 return Builder.CreateCall(F, Ops);
16235 }
16236 case PPC::BI__builtin_ppc_popcntb: {
16237 Value *ArgValue = EmitScalarExpr(E->getArg(0));
16238 llvm::Type *ArgType = ArgValue->getType();
16239 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
16240 return Builder.CreateCall(F, Ops, "popcntb");
16241 }
16242 case PPC::BI__builtin_ppc_mtfsf: {
16243 // The builtin takes a uint32 that needs to be cast to an
16244 // f64 to be passed to the intrinsic.
16245 Value *Cast = Builder.CreateUIToFP(Ops[1], DoubleTy);
16246 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
16247 return Builder.CreateCall(F, {Ops[0], Cast}, "");
16248 }
16249
16250 case PPC::BI__builtin_ppc_swdiv_nochk:
16251 case PPC::BI__builtin_ppc_swdivs_nochk: {
16252 FastMathFlags FMF = Builder.getFastMathFlags();
16253 Builder.getFastMathFlags().setFast();
16254 Value *FDiv = Builder.CreateFDiv(Ops[0], Ops[1], "swdiv_nochk");
16255 Builder.getFastMathFlags() &= (FMF);
16256 return FDiv;
16257 }
16258 case PPC::BI__builtin_ppc_fric:
16259 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16260 *this, E, Intrinsic::rint,
16261 Intrinsic::experimental_constrained_rint))
16262 .getScalarVal();
16263 case PPC::BI__builtin_ppc_frim:
16264 case PPC::BI__builtin_ppc_frims:
16265 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16266 *this, E, Intrinsic::floor,
16267 Intrinsic::experimental_constrained_floor))
16268 .getScalarVal();
16269 case PPC::BI__builtin_ppc_frin:
16270 case PPC::BI__builtin_ppc_frins:
16271 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16272 *this, E, Intrinsic::round,
16273 Intrinsic::experimental_constrained_round))
16274 .getScalarVal();
16275 case PPC::BI__builtin_ppc_frip:
16276 case PPC::BI__builtin_ppc_frips:
16277 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16278 *this, E, Intrinsic::ceil,
16279 Intrinsic::experimental_constrained_ceil))
16280 .getScalarVal();
16281 case PPC::BI__builtin_ppc_friz:
16282 case PPC::BI__builtin_ppc_frizs:
16283 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16284 *this, E, Intrinsic::trunc,
16285 Intrinsic::experimental_constrained_trunc))
16286 .getScalarVal();
16287 case PPC::BI__builtin_ppc_fsqrt:
16288 case PPC::BI__builtin_ppc_fsqrts:
16289 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16290 *this, E, Intrinsic::sqrt,
16291 Intrinsic::experimental_constrained_sqrt))
16292 .getScalarVal();
16293 case PPC::BI__builtin_ppc_test_data_class: {
16294 llvm::Type *ArgType = EmitScalarExpr(E->getArg(0))->getType();
16295 unsigned IntrinsicID;
16296 if (ArgType->isDoubleTy())
16297 IntrinsicID = Intrinsic::ppc_test_data_class_d;
16298 else if (ArgType->isFloatTy())
16299 IntrinsicID = Intrinsic::ppc_test_data_class_f;
16300 else
16301 llvm_unreachable("Invalid Argument Type")::llvm::llvm_unreachable_internal("Invalid Argument Type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16301)
;
16302 return Builder.CreateCall(CGM.getIntrinsic(IntrinsicID), Ops,
16303 "test_data_class");
16304 }
16305 case PPC::BI__builtin_ppc_maxfe:
16306 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe), Ops);
16307 case PPC::BI__builtin_ppc_maxfl:
16308 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl), Ops);
16309 case PPC::BI__builtin_ppc_maxfs:
16310 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs), Ops);
16311 case PPC::BI__builtin_ppc_minfe:
16312 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe), Ops);
16313 case PPC::BI__builtin_ppc_minfl:
16314 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl), Ops);
16315 case PPC::BI__builtin_ppc_minfs:
16316 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs), Ops);
16317 case PPC::BI__builtin_ppc_swdiv:
16318 case PPC::BI__builtin_ppc_swdivs:
16319 return Builder.CreateFDiv(Ops[0], Ops[1], "swdiv");
16320 }
16321}
16322
16323namespace {
16324// If \p E is not null pointer, insert address space cast to match return
16325// type of \p E if necessary.
16326Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16327 const CallExpr *E = nullptr) {
16328 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16329 auto *Call = CGF.Builder.CreateCall(F);
16330 Call->addRetAttr(
16331 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16332 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16333 if (!E)
16334 return Call;
16335 QualType BuiltinRetType = E->getType();
16336 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16337 if (RetTy == Call->getType())
16338 return Call;
16339 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16340}
16341
16342Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
16343 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
16344 auto *Call = CGF.Builder.CreateCall(F);
16345 Call->addRetAttr(
16346 Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
16347 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
16348 return Call;
16349}
16350
16351// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16352Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16353 bool IsCOV_5 = CGF.getTarget().getTargetOpts().CodeObjectVersion ==
16354 clang::TargetOptions::COV_5;
16355 Constant *Offset;
16356 Value *DP;
16357 if (IsCOV_5) {
16358 // Indexing the implicit kernarg segment.
16359 Offset = llvm::ConstantInt::get(CGF.Int32Ty, 12 + Index * 2);
16360 DP = EmitAMDGPUImplicitArgPtr(CGF);
16361 } else {
16362 // Indexing the HSA kernel_dispatch_packet struct.
16363 Offset = llvm::ConstantInt::get(CGF.Int32Ty, 4 + Index * 2);
16364 DP = EmitAMDGPUDispatchPtr(CGF);
16365 }
16366
16367 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16368 auto *DstTy =
16369 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16370 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16371 auto *LD = CGF.Builder.CreateLoad(
16372 Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
16373 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16374 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16375 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16376 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16377 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16378 llvm::MDNode::get(CGF.getLLVMContext(), None));
16379 return LD;
16380}
16381
16382// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16383Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16384 const unsigned XOffset = 12;
16385 auto *DP = EmitAMDGPUDispatchPtr(CGF);
16386 // Indexing the HSA kernel_dispatch_packet struct.
16387 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16388 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16389 auto *DstTy =
16390 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16391 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16392 auto *LD = CGF.Builder.CreateLoad(
16393 Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
16394 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16395 llvm::MDNode::get(CGF.getLLVMContext(), None));
16396 return LD;
16397}
16398} // namespace
16399
16400// For processing memory ordering and memory scope arguments of various
16401// amdgcn builtins.
16402// \p Order takes a C++11 comptabile memory-ordering specifier and converts
16403// it into LLVM's memory ordering specifier using atomic C ABI, and writes
16404// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16405// specific SyncScopeID and writes it to \p SSID.
16406bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16407 llvm::AtomicOrdering &AO,
16408 llvm::SyncScope::ID &SSID) {
16409 if (isa<llvm::ConstantInt>(Order)) {
16410 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16411
16412 // Map C11/C++11 memory ordering to LLVM memory ordering
16413 assert(llvm::isValidAtomicOrderingCABI(ord))(static_cast <bool> (llvm::isValidAtomicOrderingCABI(ord
)) ? void (0) : __assert_fail ("llvm::isValidAtomicOrderingCABI(ord)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16413, __extension__ __PRETTY_FUNCTION__
))
;
16414 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16415 case llvm::AtomicOrderingCABI::acquire:
16416 case llvm::AtomicOrderingCABI::consume:
16417 AO = llvm::AtomicOrdering::Acquire;
16418 break;
16419 case llvm::AtomicOrderingCABI::release:
16420 AO = llvm::AtomicOrdering::Release;
16421 break;
16422 case llvm::AtomicOrderingCABI::acq_rel:
16423 AO = llvm::AtomicOrdering::AcquireRelease;
16424 break;
16425 case llvm::AtomicOrderingCABI::seq_cst:
16426 AO = llvm::AtomicOrdering::SequentiallyConsistent;
16427 break;
16428 case llvm::AtomicOrderingCABI::relaxed:
16429 AO = llvm::AtomicOrdering::Monotonic;
16430 break;
16431 }
16432
16433 StringRef scp;
16434 llvm::getConstantStringInfo(Scope, scp);
16435 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16436 return true;
16437 }
16438 return false;
16439}
16440
16441Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16442 const CallExpr *E) {
16443 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16444 llvm::SyncScope::ID SSID;
16445 switch (BuiltinID) {
16446 case AMDGPU::BI__builtin_amdgcn_div_scale:
16447 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16448 // Translate from the intrinsics's struct return to the builtin's out
16449 // argument.
16450
16451 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16452
16453 llvm::Value *X = EmitScalarExpr(E->getArg(0));
16454 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16455 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16456
16457 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16458 X->getType());
16459
16460 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16461
16462 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16463 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16464
16465 llvm::Type *RealFlagType = FlagOutPtr.getElementType();
16466
16467 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16468 Builder.CreateStore(FlagExt, FlagOutPtr);
16469 return Result;
16470 }
16471 case AMDGPU::BI__builtin_amdgcn_div_fmas:
16472 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16473 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16474 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16475 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16476 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16477
16478 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16479 Src0->getType());
16480 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16481 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16482 }
16483
16484 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16485 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16486 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16487 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16488 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16489 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16490 llvm::SmallVector<llvm::Value *, 6> Args;
16491 for (unsigned I = 0; I != E->getNumArgs(); ++I)
16492 Args.push_back(EmitScalarExpr(E->getArg(I)));
16493 assert(Args.size() == 5 || Args.size() == 6)(static_cast <bool> (Args.size() == 5 || Args.size() ==
6) ? void (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16493, __extension__ __PRETTY_FUNCTION__
))
;
16494 if (Args.size() == 5)
16495 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
16496 Function *F =
16497 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16498 return Builder.CreateCall(F, Args);
16499 }
16500 case AMDGPU::BI__builtin_amdgcn_div_fixup:
16501 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16502 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16503 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16504 case AMDGPU::BI__builtin_amdgcn_trig_preop:
16505 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16506 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16507 case AMDGPU::BI__builtin_amdgcn_rcp:
16508 case AMDGPU::BI__builtin_amdgcn_rcpf:
16509 case AMDGPU::BI__builtin_amdgcn_rcph:
16510 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16511 case AMDGPU::BI__builtin_amdgcn_sqrt:
16512 case AMDGPU::BI__builtin_amdgcn_sqrtf:
16513 case AMDGPU::BI__builtin_amdgcn_sqrth:
16514 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16515 case AMDGPU::BI__builtin_amdgcn_rsq:
16516 case AMDGPU::BI__builtin_amdgcn_rsqf:
16517 case AMDGPU::BI__builtin_amdgcn_rsqh:
16518 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16519 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16520 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16521 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16522 case AMDGPU::BI__builtin_amdgcn_sinf:
16523 case AMDGPU::BI__builtin_amdgcn_sinh:
16524 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16525 case AMDGPU::BI__builtin_amdgcn_cosf:
16526 case AMDGPU::BI__builtin_amdgcn_cosh:
16527 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16528 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16529 return EmitAMDGPUDispatchPtr(*this, E);
16530 case AMDGPU::BI__builtin_amdgcn_log_clampf:
16531 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16532 case AMDGPU::BI__builtin_amdgcn_ldexp:
16533 case AMDGPU::BI__builtin_amdgcn_ldexpf:
16534 case AMDGPU::BI__builtin_amdgcn_ldexph:
16535 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16536 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16537 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16538 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16539 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16540 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16541 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16542 Value *Src0 = EmitScalarExpr(E->getArg(0));
16543 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16544 { Builder.getInt32Ty(), Src0->getType() });
16545 return Builder.CreateCall(F, Src0);
16546 }
16547 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16548 Value *Src0 = EmitScalarExpr(E->getArg(0));
16549 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16550 { Builder.getInt16Ty(), Src0->getType() });
16551 return Builder.CreateCall(F, Src0);
16552 }
16553 case AMDGPU::BI__builtin_amdgcn_fract:
16554 case AMDGPU::BI__builtin_amdgcn_fractf:
16555 case AMDGPU::BI__builtin_amdgcn_fracth:
16556 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16557 case AMDGPU::BI__builtin_amdgcn_lerp:
16558 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16559 case AMDGPU::BI__builtin_amdgcn_ubfe:
16560 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16561 case AMDGPU::BI__builtin_amdgcn_sbfe:
16562 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16563 case AMDGPU::BI__builtin_amdgcn_uicmp:
16564 case AMDGPU::BI__builtin_amdgcn_uicmpl:
16565 case AMDGPU::BI__builtin_amdgcn_sicmp:
16566 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16567 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16568 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16569 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16570
16571 // FIXME-GFX10: How should 32 bit mask be handled?
16572 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
16573 { Builder.getInt64Ty(), Src0->getType() });
16574 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16575 }
16576 case AMDGPU::BI__builtin_amdgcn_fcmp:
16577 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
16578 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16579 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16580 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16581
16582 // FIXME-GFX10: How should 32 bit mask be handled?
16583 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
16584 { Builder.getInt64Ty(), Src0->getType() });
16585 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16586 }
16587 case AMDGPU::BI__builtin_amdgcn_class:
16588 case AMDGPU::BI__builtin_amdgcn_classf:
16589 case AMDGPU::BI__builtin_amdgcn_classh:
16590 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
16591 case AMDGPU::BI__builtin_amdgcn_fmed3f:
16592 case AMDGPU::BI__builtin_amdgcn_fmed3h:
16593 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
16594 case AMDGPU::BI__builtin_amdgcn_ds_append:
16595 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
16596 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
16597 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
16598 Value *Src0 = EmitScalarExpr(E->getArg(0));
16599 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
16600 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
16601 }
16602 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16603 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16604 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
16605 Intrinsic::ID Intrin;
16606 switch (BuiltinID) {
16607 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16608 Intrin = Intrinsic::amdgcn_ds_fadd;
16609 break;
16610 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16611 Intrin = Intrinsic::amdgcn_ds_fmin;
16612 break;
16613 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
16614 Intrin = Intrinsic::amdgcn_ds_fmax;
16615 break;
16616 }
16617 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16618 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16619 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16620 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16621 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
16622 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
16623 llvm::FunctionType *FTy = F->getFunctionType();
16624 llvm::Type *PTy = FTy->getParamType(0);
16625 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
16626 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
16627 }
16628 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16629 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16630 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16631 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16632 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16633 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16634 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16635 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16636 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
16637 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
16638 Intrinsic::ID IID;
16639 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16640 switch (BuiltinID) {
16641 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16642 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16643 IID = Intrinsic::amdgcn_global_atomic_fadd;
16644 break;
16645 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16646 ArgTy = llvm::FixedVectorType::get(
16647 llvm::Type::getHalfTy(getLLVMContext()), 2);
16648 IID = Intrinsic::amdgcn_global_atomic_fadd;
16649 break;
16650 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16651 IID = Intrinsic::amdgcn_global_atomic_fadd;
16652 break;
16653 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16654 IID = Intrinsic::amdgcn_global_atomic_fmin;
16655 break;
16656 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16657 IID = Intrinsic::amdgcn_global_atomic_fmax;
16658 break;
16659 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16660 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16661 break;
16662 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16663 IID = Intrinsic::amdgcn_flat_atomic_fmin;
16664 break;
16665 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16666 IID = Intrinsic::amdgcn_flat_atomic_fmax;
16667 break;
16668 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
16669 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16670 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16671 break;
16672 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
16673 ArgTy = llvm::FixedVectorType::get(
16674 llvm::Type::getHalfTy(getLLVMContext()), 2);
16675 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16676 break;
16677 }
16678 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16679 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16680 llvm::Function *F =
16681 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
16682 return Builder.CreateCall(F, {Addr, Val});
16683 }
16684 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
16685 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
16686 Intrinsic::ID IID;
16687 switch (BuiltinID) {
16688 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
16689 IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
16690 break;
16691 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
16692 IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
16693 break;
16694 }
16695 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16696 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16697 llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
16698 return Builder.CreateCall(F, {Addr, Val});
16699 }
16700 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16701 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
16702 Intrinsic::ID IID;
16703 llvm::Type *ArgTy;
16704 switch (BuiltinID) {
16705 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
16706 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16707 IID = Intrinsic::amdgcn_ds_fadd;
16708 break;
16709 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16710 ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16711 IID = Intrinsic::amdgcn_ds_fadd;
16712 break;
16713 }
16714 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16715 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16716 llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
16717 llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
16718 llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
16719 llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
16720 llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
16721 return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
16722 }
16723 case AMDGPU::BI__builtin_amdgcn_read_exec: {
16724 CallInst *CI = cast<CallInst>(
16725 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
16726 CI->setConvergent();
16727 return CI;
16728 }
16729 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
16730 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
16731 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
16732 "exec_lo" : "exec_hi";
16733 CallInst *CI = cast<CallInst>(
16734 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
16735 CI->setConvergent();
16736 return CI;
16737 }
16738 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
16739 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
16740 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
16741 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
16742 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
16743 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
16744 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
16745 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
16746 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
16747 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
16748
16749 // The builtins take these arguments as vec4 where the last element is
16750 // ignored. The intrinsic takes them as vec3.
16751 RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
16752 ArrayRef<int>{0, 1, 2});
16753 RayDir =
16754 Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
16755 RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
16756 ArrayRef<int>{0, 1, 2});
16757
16758 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
16759 {NodePtr->getType(), RayDir->getType()});
16760 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
16761 RayInverseDir, TextureDescr});
16762 }
16763
16764 // amdgcn workitem
16765 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
16766 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
16767 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
16768 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
16769 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
16770 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
16771
16772 // amdgcn workgroup size
16773 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
16774 return EmitAMDGPUWorkGroupSize(*this, 0);
16775 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
16776 return EmitAMDGPUWorkGroupSize(*this, 1);
16777 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
16778 return EmitAMDGPUWorkGroupSize(*this, 2);
16779
16780 // amdgcn grid size
16781 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
16782 return EmitAMDGPUGridSize(*this, 0);
16783 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
16784 return EmitAMDGPUGridSize(*this, 1);
16785 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
16786 return EmitAMDGPUGridSize(*this, 2);
16787
16788 // r600 intrinsics
16789 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
16790 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
16791 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
16792 case AMDGPU::BI__builtin_r600_read_tidig_x:
16793 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
16794 case AMDGPU::BI__builtin_r600_read_tidig_y:
16795 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
16796 case AMDGPU::BI__builtin_r600_read_tidig_z:
16797 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
16798 case AMDGPU::BI__builtin_amdgcn_alignbit: {
16799 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16800 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16801 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16802 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
16803 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16804 }
16805
16806 case AMDGPU::BI__builtin_amdgcn_fence: {
16807 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
16808 EmitScalarExpr(E->getArg(1)), AO, SSID))
16809 return Builder.CreateFence(AO, SSID);
16810 LLVM_FALLTHROUGH[[gnu::fallthrough]];
16811 }
16812 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16813 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16814 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16815 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
16816 unsigned BuiltinAtomicOp;
16817 llvm::Type *ResultType = ConvertType(E->getType());
16818
16819 switch (BuiltinID) {
16820 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16821 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16822 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
16823 break;
16824 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16825 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
16826 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
16827 break;
16828 }
16829
16830 Value *Ptr = EmitScalarExpr(E->getArg(0));
16831 Value *Val = EmitScalarExpr(E->getArg(1));
16832
16833 llvm::Function *F =
16834 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
16835
16836 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
16837 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
16838
16839 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
16840 // scope as unsigned values
16841 Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
16842 Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
16843
16844 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
16845 bool Volatile =
16846 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
16847 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
16848
16849 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
16850 }
16851 LLVM_FALLTHROUGH[[gnu::fallthrough]];
16852 }
16853 default:
16854 return nullptr;
16855 }
16856}
16857
16858/// Handle a SystemZ function in which the final argument is a pointer
16859/// to an int that receives the post-instruction CC value. At the LLVM level
16860/// this is represented as a function that returns a {result, cc} pair.
16861static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
16862 unsigned IntrinsicID,
16863 const CallExpr *E) {
16864 unsigned NumArgs = E->getNumArgs() - 1;
16865 SmallVector<Value *, 8> Args(NumArgs);
16866 for (unsigned I = 0; I < NumArgs; ++I)
16867 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
16868 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
16869 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
16870 Value *Call = CGF.Builder.CreateCall(F, Args);
16871 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
16872 CGF.Builder.CreateStore(CC, CCPtr);
16873 return CGF.Builder.CreateExtractValue(Call, 0);
16874}
16875
16876Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
16877 const CallExpr *E) {
16878 switch (BuiltinID) {
16879 case SystemZ::BI__builtin_tbegin: {
16880 Value *TDB = EmitScalarExpr(E->getArg(0));
16881 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16882 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
16883 return Builder.CreateCall(F, {TDB, Control});
16884 }
16885 case SystemZ::BI__builtin_tbegin_nofloat: {
16886 Value *TDB = EmitScalarExpr(E->getArg(0));
16887 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16888 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
16889 return Builder.CreateCall(F, {TDB, Control});
16890 }
16891 case SystemZ::BI__builtin_tbeginc: {
16892 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
16893 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
16894 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
16895 return Builder.CreateCall(F, {TDB, Control});
16896 }
16897 case SystemZ::BI__builtin_tabort: {
16898 Value *Data = EmitScalarExpr(E->getArg(0));
16899 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
16900 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
16901 }
16902 case SystemZ::BI__builtin_non_tx_store: {
16903 Value *Address = EmitScalarExpr(E->getArg(0));
16904 Value *Data = EmitScalarExpr(E->getArg(1));
16905 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
16906 return Builder.CreateCall(F, {Data, Address});
16907 }
16908
16909 // Vector builtins. Note that most vector builtins are mapped automatically
16910 // to target-specific LLVM intrinsics. The ones handled specially here can
16911 // be represented via standard LLVM IR, which is preferable to enable common
16912 // LLVM optimizations.
16913
16914 case SystemZ::BI__builtin_s390_vpopctb:
16915 case SystemZ::BI__builtin_s390_vpopcth:
16916 case SystemZ::BI__builtin_s390_vpopctf:
16917 case SystemZ::BI__builtin_s390_vpopctg: {
16918 llvm::Type *ResultType = ConvertType(E->getType());
16919 Value *X = EmitScalarExpr(E->getArg(0));
16920 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
16921 return Builder.CreateCall(F, X);
16922 }
16923
16924 case SystemZ::BI__builtin_s390_vclzb:
16925 case SystemZ::BI__builtin_s390_vclzh:
16926 case SystemZ::BI__builtin_s390_vclzf:
16927 case SystemZ::BI__builtin_s390_vclzg: {
16928 llvm::Type *ResultType = ConvertType(E->getType());
16929 Value *X = EmitScalarExpr(E->getArg(0));
16930 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16931 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
16932 return Builder.CreateCall(F, {X, Undef});
16933 }
16934
16935 case SystemZ::BI__builtin_s390_vctzb:
16936 case SystemZ::BI__builtin_s390_vctzh:
16937 case SystemZ::BI__builtin_s390_vctzf:
16938 case SystemZ::BI__builtin_s390_vctzg: {
16939 llvm::Type *ResultType = ConvertType(E->getType());
16940 Value *X = EmitScalarExpr(E->getArg(0));
16941 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16942 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
16943 return Builder.CreateCall(F, {X, Undef});
16944 }
16945
16946 case SystemZ::BI__builtin_s390_vfsqsb:
16947 case SystemZ::BI__builtin_s390_vfsqdb: {
16948 llvm::Type *ResultType = ConvertType(E->getType());
16949 Value *X = EmitScalarExpr(E->getArg(0));
16950 if (Builder.getIsFPConstrained()) {
16951 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
16952 return Builder.CreateConstrainedFPCall(F, { X });
16953 } else {
16954 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16955 return Builder.CreateCall(F, X);
16956 }
16957 }
16958 case SystemZ::BI__builtin_s390_vfmasb:
16959 case SystemZ::BI__builtin_s390_vfmadb: {
16960 llvm::Type *ResultType = ConvertType(E->getType());
16961 Value *X = EmitScalarExpr(E->getArg(0));
16962 Value *Y = EmitScalarExpr(E->getArg(1));
16963 Value *Z = EmitScalarExpr(E->getArg(2));
16964 if (Builder.getIsFPConstrained()) {
16965 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16966 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16967 } else {
16968 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16969 return Builder.CreateCall(F, {X, Y, Z});
16970 }
16971 }
16972 case SystemZ::BI__builtin_s390_vfmssb:
16973 case SystemZ::BI__builtin_s390_vfmsdb: {
16974 llvm::Type *ResultType = ConvertType(E->getType());
16975 Value *X = EmitScalarExpr(E->getArg(0));
16976 Value *Y = EmitScalarExpr(E->getArg(1));
16977 Value *Z = EmitScalarExpr(E->getArg(2));
16978 if (Builder.getIsFPConstrained()) {
16979 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16980 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16981 } else {
16982 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16983 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16984 }
16985 }
16986 case SystemZ::BI__builtin_s390_vfnmasb:
16987 case SystemZ::BI__builtin_s390_vfnmadb: {
16988 llvm::Type *ResultType = ConvertType(E->getType());
16989 Value *X = EmitScalarExpr(E->getArg(0));
16990 Value *Y = EmitScalarExpr(E->getArg(1));
16991 Value *Z = EmitScalarExpr(E->getArg(2));
16992 if (Builder.getIsFPConstrained()) {
16993 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16994 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
16995 } else {
16996 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16997 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16998 }
16999 }
17000 case SystemZ::BI__builtin_s390_vfnmssb:
17001 case SystemZ::BI__builtin_s390_vfnmsdb: {
17002 llvm::Type *ResultType = ConvertType(E->getType());
17003 Value *X = EmitScalarExpr(E->getArg(0));
17004 Value *Y = EmitScalarExpr(E->getArg(1));
17005 Value *Z = EmitScalarExpr(E->getArg(2));
17006 if (Builder.getIsFPConstrained()) {
17007 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17008 Value *NegZ = Builder.CreateFNeg(Z, "sub");
17009 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
17010 } else {
17011 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17012 Value *NegZ = Builder.CreateFNeg(Z, "neg");
17013 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
17014 }
17015 }
17016 case SystemZ::BI__builtin_s390_vflpsb:
17017 case SystemZ::BI__builtin_s390_vflpdb: {
17018 llvm::Type *ResultType = ConvertType(E->getType());
17019 Value *X = EmitScalarExpr(E->getArg(0));
17020 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17021 return Builder.CreateCall(F, X);
17022 }
17023 case SystemZ::BI__builtin_s390_vflnsb:
17024 case SystemZ::BI__builtin_s390_vflndb: {
17025 llvm::Type *ResultType = ConvertType(E->getType());
17026 Value *X = EmitScalarExpr(E->getArg(0));
17027 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17028 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
17029 }
17030 case SystemZ::BI__builtin_s390_vfisb:
17031 case SystemZ::BI__builtin_s390_vfidb: {
17032 llvm::Type *ResultType = ConvertType(E->getType());
17033 Value *X = EmitScalarExpr(E->getArg(0));
17034 // Constant-fold the M4 and M5 mask arguments.
17035 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
17036 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17037 // Check whether this instance can be represented via a LLVM standard
17038 // intrinsic. We only support some combinations of M4 and M5.
17039 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17040 Intrinsic::ID CI;
17041 switch (M4.getZExtValue()) {
17042 default: break;
17043 case 0: // IEEE-inexact exception allowed
17044 switch (M5.getZExtValue()) {
17045 default: break;
17046 case 0: ID = Intrinsic::rint;
17047 CI = Intrinsic::experimental_constrained_rint; break;
17048 }
17049 break;
17050 case 4: // IEEE-inexact exception suppressed
17051 switch (M5.getZExtValue()) {
17052 default: break;
17053 case 0: ID = Intrinsic::nearbyint;
17054 CI = Intrinsic::experimental_constrained_nearbyint; break;
17055 case 1: ID = Intrinsic::round;
17056 CI = Intrinsic::experimental_constrained_round; break;
17057 case 5: ID = Intrinsic::trunc;
17058 CI = Intrinsic::experimental_constrained_trunc; break;
17059 case 6: ID = Intrinsic::ceil;
17060 CI = Intrinsic::experimental_constrained_ceil; break;
17061 case 7: ID = Intrinsic::floor;
17062 CI = Intrinsic::experimental_constrained_floor; break;
17063 }
17064 break;
17065 }
17066 if (ID != Intrinsic::not_intrinsic) {
17067 if (Builder.getIsFPConstrained()) {
17068 Function *F = CGM.getIntrinsic(CI, ResultType);
17069 return Builder.CreateConstrainedFPCall(F, X);
17070 } else {
17071 Function *F = CGM.getIntrinsic(ID, ResultType);
17072 return Builder.CreateCall(F, X);
17073 }
17074 }
17075 switch (BuiltinID) { // FIXME: constrained version?
17076 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
17077 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
17078 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17078)
;
17079 }
17080 Function *F = CGM.getIntrinsic(ID);
17081 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17082 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
17083 return Builder.CreateCall(F, {X, M4Value, M5Value});
17084 }
17085 case SystemZ::BI__builtin_s390_vfmaxsb:
17086 case SystemZ::BI__builtin_s390_vfmaxdb: {
17087 llvm::Type *ResultType = ConvertType(E->getType());
17088 Value *X = EmitScalarExpr(E->getArg(0));
17089 Value *Y = EmitScalarExpr(E->getArg(1));
17090 // Constant-fold the M4 mask argument.
17091 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17092 // Check whether this instance can be represented via a LLVM standard
17093 // intrinsic. We only support some values of M4.
17094 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17095 Intrinsic::ID CI;
17096 switch (M4.getZExtValue()) {
17097 default: break;
17098 case 4: ID = Intrinsic::maxnum;
17099 CI = Intrinsic::experimental_constrained_maxnum; break;
17100 }
17101 if (ID != Intrinsic::not_intrinsic) {
17102 if (Builder.getIsFPConstrained()) {
17103 Function *F = CGM.getIntrinsic(CI, ResultType);
17104 return Builder.CreateConstrainedFPCall(F, {X, Y});
17105 } else {
17106 Function *F = CGM.getIntrinsic(ID, ResultType);
17107 return Builder.CreateCall(F, {X, Y});
17108 }
17109 }
17110 switch (BuiltinID) {
17111 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
17112 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
17113 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17113)
;
17114 }
17115 Function *F = CGM.getIntrinsic(ID);
17116 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17117 return Builder.CreateCall(F, {X, Y, M4Value});
17118 }
17119 case SystemZ::BI__builtin_s390_vfminsb:
17120 case SystemZ::BI__builtin_s390_vfmindb: {
17121 llvm::Type *ResultType = ConvertType(E->getType());
17122 Value *X = EmitScalarExpr(E->getArg(0));
17123 Value *Y = EmitScalarExpr(E->getArg(1));
17124 // Constant-fold the M4 mask argument.
17125 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17126 // Check whether this instance can be represented via a LLVM standard
17127 // intrinsic. We only support some values of M4.
17128 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17129 Intrinsic::ID CI;
17130 switch (M4.getZExtValue()) {
17131 default: break;
17132 case 4: ID = Intrinsic::minnum;
17133 CI = Intrinsic::experimental_constrained_minnum; break;
17134 }
17135 if (ID != Intrinsic::not_intrinsic) {
17136 if (Builder.getIsFPConstrained()) {
17137 Function *F = CGM.getIntrinsic(CI, ResultType);
17138 return Builder.CreateConstrainedFPCall(F, {X, Y});
17139 } else {
17140 Function *F = CGM.getIntrinsic(ID, ResultType);
17141 return Builder.CreateCall(F, {X, Y});
17142 }
17143 }
17144 switch (BuiltinID) {
17145 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
17146 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
17147 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17147)
;
17148 }
17149 Function *F = CGM.getIntrinsic(ID);
17150 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17151 return Builder.CreateCall(F, {X, Y, M4Value});
17152 }
17153
17154 case SystemZ::BI__builtin_s390_vlbrh:
17155 case SystemZ::BI__builtin_s390_vlbrf:
17156 case SystemZ::BI__builtin_s390_vlbrg: {
17157 llvm::Type *ResultType = ConvertType(E->getType());
17158 Value *X = EmitScalarExpr(E->getArg(0));
17159 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
17160 return Builder.CreateCall(F, X);
17161 }
17162
17163 // Vector intrinsics that output the post-instruction CC value.
17164
17165#define INTRINSIC_WITH_CC(NAME) \
17166 case SystemZ::BI__builtin_##NAME: \
17167 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
17168
17169 INTRINSIC_WITH_CC(s390_vpkshs);
17170 INTRINSIC_WITH_CC(s390_vpksfs);
17171 INTRINSIC_WITH_CC(s390_vpksgs);
17172
17173 INTRINSIC_WITH_CC(s390_vpklshs);
17174 INTRINSIC_WITH_CC(s390_vpklsfs);
17175 INTRINSIC_WITH_CC(s390_vpklsgs);
17176
17177 INTRINSIC_WITH_CC(s390_vceqbs);
17178 INTRINSIC_WITH_CC(s390_vceqhs);
17179 INTRINSIC_WITH_CC(s390_vceqfs);
17180 INTRINSIC_WITH_CC(s390_vceqgs);
17181
17182 INTRINSIC_WITH_CC(s390_vchbs);
17183 INTRINSIC_WITH_CC(s390_vchhs);
17184 INTRINSIC_WITH_CC(s390_vchfs);
17185 INTRINSIC_WITH_CC(s390_vchgs);
17186
17187 INTRINSIC_WITH_CC(s390_vchlbs);
17188 INTRINSIC_WITH_CC(s390_vchlhs);
17189 INTRINSIC_WITH_CC(s390_vchlfs);
17190 INTRINSIC_WITH_CC(s390_vchlgs);
17191
17192 INTRINSIC_WITH_CC(s390_vfaebs);
17193 INTRINSIC_WITH_CC(s390_vfaehs);
17194 INTRINSIC_WITH_CC(s390_vfaefs);
17195
17196 INTRINSIC_WITH_CC(s390_vfaezbs);
17197 INTRINSIC_WITH_CC(s390_vfaezhs);
17198 INTRINSIC_WITH_CC(s390_vfaezfs);
17199
17200 INTRINSIC_WITH_CC(s390_vfeebs);
17201 INTRINSIC_WITH_CC(s390_vfeehs);
17202 INTRINSIC_WITH_CC(s390_vfeefs);
17203
17204 INTRINSIC_WITH_CC(s390_vfeezbs);
17205 INTRINSIC_WITH_CC(s390_vfeezhs);
17206 INTRINSIC_WITH_CC(s390_vfeezfs);
17207
17208 INTRINSIC_WITH_CC(s390_vfenebs);
17209 INTRINSIC_WITH_CC(s390_vfenehs);
17210 INTRINSIC_WITH_CC(s390_vfenefs);
17211
17212 INTRINSIC_WITH_CC(s390_vfenezbs);
17213 INTRINSIC_WITH_CC(s390_vfenezhs);
17214 INTRINSIC_WITH_CC(s390_vfenezfs);
17215
17216 INTRINSIC_WITH_CC(s390_vistrbs);
17217 INTRINSIC_WITH_CC(s390_vistrhs);
17218 INTRINSIC_WITH_CC(s390_vistrfs);
17219
17220 INTRINSIC_WITH_CC(s390_vstrcbs);
17221 INTRINSIC_WITH_CC(s390_vstrchs);
17222 INTRINSIC_WITH_CC(s390_vstrcfs);
17223
17224 INTRINSIC_WITH_CC(s390_vstrczbs);
17225 INTRINSIC_WITH_CC(s390_vstrczhs);
17226 INTRINSIC_WITH_CC(s390_vstrczfs);
17227
17228 INTRINSIC_WITH_CC(s390_vfcesbs);
17229 INTRINSIC_WITH_CC(s390_vfcedbs);
17230 INTRINSIC_WITH_CC(s390_vfchsbs);
17231 INTRINSIC_WITH_CC(s390_vfchdbs);
17232 INTRINSIC_WITH_CC(s390_vfchesbs);
17233 INTRINSIC_WITH_CC(s390_vfchedbs);
17234
17235 INTRINSIC_WITH_CC(s390_vftcisb);
17236 INTRINSIC_WITH_CC(s390_vftcidb);
17237
17238 INTRINSIC_WITH_CC(s390_vstrsb);
17239 INTRINSIC_WITH_CC(s390_vstrsh);
17240 INTRINSIC_WITH_CC(s390_vstrsf);
17241
17242 INTRINSIC_WITH_CC(s390_vstrszb);
17243 INTRINSIC_WITH_CC(s390_vstrszh);
17244 INTRINSIC_WITH_CC(s390_vstrszf);
17245
17246#undef INTRINSIC_WITH_CC
17247
17248 default:
17249 return nullptr;
17250 }
17251}
17252
17253namespace {
17254// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
17255struct NVPTXMmaLdstInfo {
17256 unsigned NumResults; // Number of elements to load/store
17257 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
17258 unsigned IID_col;
17259 unsigned IID_row;
17260};
17261
17262#define MMA_INTR(geom_op_type, layout) \
17263 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
17264#define MMA_LDST(n, geom_op_type) \
17265 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
17266
17267static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
17268 switch (BuiltinID) {
17269 // FP MMA loads
17270 case NVPTX::BI__hmma_m16n16k16_ld_a:
17271 return MMA_LDST(8, m16n16k16_load_a_f16);
17272 case NVPTX::BI__hmma_m16n16k16_ld_b:
17273 return MMA_LDST(8, m16n16k16_load_b_f16);
17274 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17275 return MMA_LDST(4, m16n16k16_load_c_f16);
17276 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17277 return MMA_LDST(8, m16n16k16_load_c_f32);
17278 case NVPTX::BI__hmma_m32n8k16_ld_a:
17279 return MMA_LDST(8, m32n8k16_load_a_f16);
17280 case NVPTX::BI__hmma_m32n8k16_ld_b:
17281 return MMA_LDST(8, m32n8k16_load_b_f16);
17282 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17283 return MMA_LDST(4, m32n8k16_load_c_f16);
17284 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17285 return MMA_LDST(8, m32n8k16_load_c_f32);
17286 case NVPTX::BI__hmma_m8n32k16_ld_a:
17287 return MMA_LDST(8, m8n32k16_load_a_f16);
17288 case NVPTX::BI__hmma_m8n32k16_ld_b:
17289 return MMA_LDST(8, m8n32k16_load_b_f16);
17290 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17291 return MMA_LDST(4, m8n32k16_load_c_f16);
17292 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17293 return MMA_LDST(8, m8n32k16_load_c_f32);
17294
17295 // Integer MMA loads
17296 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17297 return MMA_LDST(2, m16n16k16_load_a_s8);
17298 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17299 return MMA_LDST(2, m16n16k16_load_a_u8);
17300 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17301 return MMA_LDST(2, m16n16k16_load_b_s8);
17302 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17303 return MMA_LDST(2, m16n16k16_load_b_u8);
17304 case NVPTX::BI__imma_m16n16k16_ld_c:
17305 return MMA_LDST(8, m16n16k16_load_c_s32);
17306 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17307 return MMA_LDST(4, m32n8k16_load_a_s8);
17308 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17309 return MMA_LDST(4, m32n8k16_load_a_u8);
17310 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17311 return MMA_LDST(1, m32n8k16_load_b_s8);
17312 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17313 return MMA_LDST(1, m32n8k16_load_b_u8);
17314 case NVPTX::BI__imma_m32n8k16_ld_c:
17315 return MMA_LDST(8, m32n8k16_load_c_s32);
17316 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17317 return MMA_LDST(1, m8n32k16_load_a_s8);
17318 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17319 return MMA_LDST(1, m8n32k16_load_a_u8);
17320 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17321 return MMA_LDST(4, m8n32k16_load_b_s8);
17322 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17323 return MMA_LDST(4, m8n32k16_load_b_u8);
17324 case NVPTX::BI__imma_m8n32k16_ld_c:
17325 return MMA_LDST(8, m8n32k16_load_c_s32);
17326
17327 // Sub-integer MMA loads.
17328 // Only row/col layout is supported by A/B fragments.
17329 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17330 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
17331 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17332 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
17333 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17334 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
17335 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17336 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
17337 case NVPTX::BI__imma_m8n8k32_ld_c:
17338 return MMA_LDST(2, m8n8k32_load_c_s32);
17339 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17340 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17341 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17342 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17343 case NVPTX::BI__bmma_m8n8k128_ld_c:
17344 return MMA_LDST(2, m8n8k128_load_c_s32);
17345
17346 // Double MMA loads
17347 case NVPTX::BI__dmma_m8n8k4_ld_a:
17348 return MMA_LDST(1, m8n8k4_load_a_f64);
17349 case NVPTX::BI__dmma_m8n8k4_ld_b:
17350 return MMA_LDST(1, m8n8k4_load_b_f64);
17351 case NVPTX::BI__dmma_m8n8k4_ld_c:
17352 return MMA_LDST(2, m8n8k4_load_c_f64);
17353
17354 // Alternate float MMA loads
17355 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17356 return MMA_LDST(4, m16n16k16_load_a_bf16);
17357 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17358 return MMA_LDST(4, m16n16k16_load_b_bf16);
17359 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17360 return MMA_LDST(2, m8n32k16_load_a_bf16);
17361 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17362 return MMA_LDST(8, m8n32k16_load_b_bf16);
17363 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17364 return MMA_LDST(8, m32n8k16_load_a_bf16);
17365 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17366 return MMA_LDST(2, m32n8k16_load_b_bf16);
17367 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17368 return MMA_LDST(4, m16n16k8_load_a_tf32);
17369 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17370 return MMA_LDST(4, m16n16k8_load_b_tf32);
17371 case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17372 return MMA_LDST(8, m16n16k8_load_c_f32);
17373
17374 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
17375 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17376 // use fragment C for both loads and stores.
17377 // FP MMA stores.
17378 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17379 return MMA_LDST(4, m16n16k16_store_d_f16);
17380 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17381 return MMA_LDST(8, m16n16k16_store_d_f32);
17382 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17383 return MMA_LDST(4, m32n8k16_store_d_f16);
17384 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17385 return MMA_LDST(8, m32n8k16_store_d_f32);
17386 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17387 return MMA_LDST(4, m8n32k16_store_d_f16);
17388 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17389 return MMA_LDST(8, m8n32k16_store_d_f32);
17390
17391 // Integer and sub-integer MMA stores.
17392 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17393 // name, integer loads/stores use LLVM's i32.
17394 case NVPTX::BI__imma_m16n16k16_st_c_i32:
17395 return MMA_LDST(8, m16n16k16_store_d_s32);
17396 case NVPTX::BI__imma_m32n8k16_st_c_i32:
17397 return MMA_LDST(8, m32n8k16_store_d_s32);
17398 case NVPTX::BI__imma_m8n32k16_st_c_i32:
17399 return MMA_LDST(8, m8n32k16_store_d_s32);
17400 case NVPTX::BI__imma_m8n8k32_st_c_i32:
17401 return MMA_LDST(2, m8n8k32_store_d_s32);
17402 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17403 return MMA_LDST(2, m8n8k128_store_d_s32);
17404
17405 // Double MMA store
17406 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17407 return MMA_LDST(2, m8n8k4_store_d_f64);
17408
17409 // Alternate float MMA store
17410 case NVPTX::BI__mma_m16n16k8_st_c_f32:
17411 return MMA_LDST(8, m16n16k8_store_d_f32);
17412
17413 default:
17414 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17414)
;
17415 }
17416}
17417#undef MMA_LDST
17418#undef MMA_INTR
17419
17420
17421struct NVPTXMmaInfo {
17422 unsigned NumEltsA;
17423 unsigned NumEltsB;
17424 unsigned NumEltsC;
17425 unsigned NumEltsD;
17426
17427 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
17428 // over 'col' for layout. The index of non-satf variants is expected to match
17429 // the undocumented layout constants used by CUDA's mma.hpp.
17430 std::array<unsigned, 8> Variants;
17431
17432 unsigned getMMAIntrinsic(int Layout, bool Satf) {
17433 unsigned Index = Layout + 4 * Satf;
17434 if (Index >= Variants.size())
17435 return 0;
17436 return Variants[Index];
17437 }
17438};
17439
17440 // Returns an intrinsic that matches Layout and Satf for valid combinations of
17441 // Layout and Satf, 0 otherwise.
17442static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
17443 // clang-format off
17444#define MMA_VARIANTS(geom, type) \
17445 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
17446 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
17447 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
17448 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
17449#define MMA_SATF_VARIANTS(geom, type) \
17450 MMA_VARIANTS(geom, type), \
17451 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
17452 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17453 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
17454 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
17455// Sub-integer MMA only supports row.col layout.
17456#define MMA_VARIANTS_I4(geom, type) \
17457 0, \
17458 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
17459 0, \
17460 0, \
17461 0, \
17462 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17463 0, \
17464 0
17465// b1 MMA does not support .satfinite.
17466#define MMA_VARIANTS_B1_XOR(geom, type) \
17467 0, \
17468 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
17469 0, \
17470 0, \
17471 0, \
17472 0, \
17473 0, \
17474 0
17475#define MMA_VARIANTS_B1_AND(geom, type) \
17476 0, \
17477 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
17478 0, \
17479 0, \
17480 0, \
17481 0, \
17482 0, \
17483 0
17484 // clang-format on
17485 switch (BuiltinID) {
17486 // FP MMA
17487 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
17488 // NumEltsN of return value are ordered as A,B,C,D.
17489 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17490 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
17491 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17492 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
17493 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17494 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
17495 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17496 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
17497 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17498 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
17499 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17500 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
17501 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17502 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
17503 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17504 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
17505 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17506 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
17507 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17508 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
17509 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17510 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
17511 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17512 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
17513
17514 // Integer MMA
17515 case NVPTX::BI__imma_m16n16k16_mma_s8:
17516 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
17517 case NVPTX::BI__imma_m16n16k16_mma_u8:
17518 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
17519 case NVPTX::BI__imma_m32n8k16_mma_s8:
17520 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
17521 case NVPTX::BI__imma_m32n8k16_mma_u8:
17522 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
17523 case NVPTX::BI__imma_m8n32k16_mma_s8:
17524 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
17525 case NVPTX::BI__imma_m8n32k16_mma_u8:
17526 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
17527
17528 // Sub-integer MMA
17529 case NVPTX::BI__imma_m8n8k32_mma_s4:
17530 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
17531 case NVPTX::BI__imma_m8n8k32_mma_u4:
17532 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
17533 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17534 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
17535 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17536 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
17537
17538 // Double MMA
17539 case NVPTX::BI__dmma_m8n8k4_mma_f64:
17540 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
17541
17542 // Alternate FP MMA
17543 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17544 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
17545 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17546 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
17547 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17548 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
17549 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
17550 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
17551 default:
17552 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17552)
;
17553 }
17554#undef MMA_VARIANTS
17555#undef MMA_SATF_VARIANTS
17556#undef MMA_VARIANTS_I4
17557#undef MMA_VARIANTS_B1_AND
17558#undef MMA_VARIANTS_B1_XOR
17559}
17560
17561} // namespace
17562
17563Value *
17564CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
17565 auto MakeLdg = [&](unsigned IntrinsicID) {
17566 Value *Ptr = EmitScalarExpr(E->getArg(0));
17567 QualType ArgType = E->getArg(0)->getType();
17568 clang::CharUnits Align = CGM.getNaturalPointeeTypeAlignment(ArgType);
17569 llvm::Type *ElemTy = ConvertTypeForMem(ArgType->getPointeeType());
17570 return Builder.CreateCall(
17571 CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
17572 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
17573 };
17574 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
17575 Value *Ptr = EmitScalarExpr(E->getArg(0));
17576 llvm::Type *ElemTy =
17577 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17578 return Builder.CreateCall(
17579 CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
17580 {Ptr, EmitScalarExpr(E->getArg(1))});
17581 };
17582 switch (BuiltinID) {
17583 case NVPTX::BI__nvvm_atom_add_gen_i:
17584 case NVPTX::BI__nvvm_atom_add_gen_l:
17585 case NVPTX::BI__nvvm_atom_add_gen_ll:
17586 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
17587
17588 case NVPTX::BI__nvvm_atom_sub_gen_i:
17589 case NVPTX::BI__nvvm_atom_sub_gen_l:
17590 case NVPTX::BI__nvvm_atom_sub_gen_ll:
17591 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
17592
17593 case NVPTX::BI__nvvm_atom_and_gen_i:
17594 case NVPTX::BI__nvvm_atom_and_gen_l:
17595 case NVPTX::BI__nvvm_atom_and_gen_ll:
17596 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
17597
17598 case NVPTX::BI__nvvm_atom_or_gen_i:
17599 case NVPTX::BI__nvvm_atom_or_gen_l:
17600 case NVPTX::BI__nvvm_atom_or_gen_ll:
17601 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
17602
17603 case NVPTX::BI__nvvm_atom_xor_gen_i:
17604 case NVPTX::BI__nvvm_atom_xor_gen_l:
17605 case NVPTX::BI__nvvm_atom_xor_gen_ll:
17606 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
17607
17608 case NVPTX::BI__nvvm_atom_xchg_gen_i:
17609 case NVPTX::BI__nvvm_atom_xchg_gen_l:
17610 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
17611 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
17612
17613 case NVPTX::BI__nvvm_atom_max_gen_i:
17614 case NVPTX::BI__nvvm_atom_max_gen_l:
17615 case NVPTX::BI__nvvm_atom_max_gen_ll:
17616 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
17617
17618 case NVPTX::BI__nvvm_atom_max_gen_ui:
17619 case NVPTX::BI__nvvm_atom_max_gen_ul:
17620 case NVPTX::BI__nvvm_atom_max_gen_ull:
17621 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
17622
17623 case NVPTX::BI__nvvm_atom_min_gen_i:
17624 case NVPTX::BI__nvvm_atom_min_gen_l:
17625 case NVPTX::BI__nvvm_atom_min_gen_ll:
17626 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
17627
17628 case NVPTX::BI__nvvm_atom_min_gen_ui:
17629 case NVPTX::BI__nvvm_atom_min_gen_ul:
17630 case NVPTX::BI__nvvm_atom_min_gen_ull:
17631 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
17632
17633 case NVPTX::BI__nvvm_atom_cas_gen_i:
17634 case NVPTX::BI__nvvm_atom_cas_gen_l:
17635 case NVPTX::BI__nvvm_atom_cas_gen_ll:
17636 // __nvvm_atom_cas_gen_* should return the old value rather than the
17637 // success flag.
17638 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
17639
17640 case NVPTX::BI__nvvm_atom_add_gen_f:
17641 case NVPTX::BI__nvvm_atom_add_gen_d: {
17642 Value *Ptr = EmitScalarExpr(E->getArg(0));
17643 Value *Val = EmitScalarExpr(E->getArg(1));
17644 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
17645 AtomicOrdering::SequentiallyConsistent);
17646 }
17647
17648 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
17649 Value *Ptr = EmitScalarExpr(E->getArg(0));
17650 Value *Val = EmitScalarExpr(E->getArg(1));
17651 Function *FnALI32 =
17652 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
17653 return Builder.CreateCall(FnALI32, {Ptr, Val});
17654 }
17655
17656 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
17657 Value *Ptr = EmitScalarExpr(E->getArg(0));
17658 Value *Val = EmitScalarExpr(E->getArg(1));
17659 Function *FnALD32 =
17660 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
17661 return Builder.CreateCall(FnALD32, {Ptr, Val});
17662 }
17663
17664 case NVPTX::BI__nvvm_ldg_c:
17665 case NVPTX::BI__nvvm_ldg_c2:
17666 case NVPTX::BI__nvvm_ldg_c4:
17667 case NVPTX::BI__nvvm_ldg_s:
17668 case NVPTX::BI__nvvm_ldg_s2:
17669 case NVPTX::BI__nvvm_ldg_s4:
17670 case NVPTX::BI__nvvm_ldg_i:
17671 case NVPTX::BI__nvvm_ldg_i2:
17672 case NVPTX::BI__nvvm_ldg_i4:
17673 case NVPTX::BI__nvvm_ldg_l:
17674 case NVPTX::BI__nvvm_ldg_ll:
17675 case NVPTX::BI__nvvm_ldg_ll2:
17676 case NVPTX::BI__nvvm_ldg_uc:
17677 case NVPTX::BI__nvvm_ldg_uc2:
17678 case NVPTX::BI__nvvm_ldg_uc4:
17679 case NVPTX::BI__nvvm_ldg_us:
17680 case NVPTX::BI__nvvm_ldg_us2:
17681 case NVPTX::BI__nvvm_ldg_us4:
17682 case NVPTX::BI__nvvm_ldg_ui:
17683 case NVPTX::BI__nvvm_ldg_ui2:
17684 case NVPTX::BI__nvvm_ldg_ui4:
17685 case NVPTX::BI__nvvm_ldg_ul:
17686 case NVPTX::BI__nvvm_ldg_ull:
17687 case NVPTX::BI__nvvm_ldg_ull2:
17688 // PTX Interoperability section 2.2: "For a vector with an even number of
17689 // elements, its alignment is set to number of elements times the alignment
17690 // of its member: n*alignof(t)."
17691 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
17692 case NVPTX::BI__nvvm_ldg_f:
17693 case NVPTX::BI__nvvm_ldg_f2:
17694 case NVPTX::BI__nvvm_ldg_f4:
17695 case NVPTX::BI__nvvm_ldg_d:
17696 case NVPTX::BI__nvvm_ldg_d2:
17697 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
17698
17699 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
17700 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
17701 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
17702 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
17703 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
17704 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
17705 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
17706 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
17707 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
17708 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
17709 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
17710 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
17711 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
17712 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
17713 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
17714 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
17715 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
17716 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
17717 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
17718 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
17719 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
17720 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
17721 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
17722 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
17723 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
17724 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
17725 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
17726 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
17727 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
17728 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
17729 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
17730 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
17731 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
17732 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
17733 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
17734 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
17735 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
17736 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
17737 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
17738 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
17739 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
17740 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
17741 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
17742 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
17743 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
17744 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
17745 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
17746 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
17747 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
17748 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
17749 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
17750 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
17751 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
17752 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
17753 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
17754 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
17755 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
17756 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
17757 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
17758 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
17759 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
17760 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
17761 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
17762 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
17763 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
17764 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
17765 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
17766 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
17767 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
17768 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
17769 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
17770 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
17771 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
17772 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
17773 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
17774 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
17775 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
17776 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
17777 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
17778 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
17779 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
17780 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
17781 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
17782 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
17783 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
17784 Value *Ptr = EmitScalarExpr(E->getArg(0));
17785 llvm::Type *ElemTy =
17786 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17787 return Builder.CreateCall(
17788 CGM.getIntrinsic(
17789 Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
17790 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17791 }
17792 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
17793 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
17794 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
17795 Value *Ptr = EmitScalarExpr(E->getArg(0));
17796 llvm::Type *ElemTy =
17797 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17798 return Builder.CreateCall(
17799 CGM.getIntrinsic(
17800 Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
17801 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17802 }
17803 case NVPTX::BI__nvvm_match_all_sync_i32p:
17804 case NVPTX::BI__nvvm_match_all_sync_i64p: {
17805 Value *Mask = EmitScalarExpr(E->getArg(0));
17806 Value *Val = EmitScalarExpr(E->getArg(1));
17807 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
17808 Value *ResultPair = Builder.CreateCall(
17809 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
17810 ? Intrinsic::nvvm_match_all_sync_i32p
17811 : Intrinsic::nvvm_match_all_sync_i64p),
17812 {Mask, Val});
17813 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
17814 PredOutPtr.getElementType());
17815 Builder.CreateStore(Pred, PredOutPtr);
17816 return Builder.CreateExtractValue(ResultPair, 0);
17817 }
17818
17819 // FP MMA loads
17820 case NVPTX::BI__hmma_m16n16k16_ld_a:
17821 case NVPTX::BI__hmma_m16n16k16_ld_b:
17822 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17823 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17824 case NVPTX::BI__hmma_m32n8k16_ld_a:
17825 case NVPTX::BI__hmma_m32n8k16_ld_b:
17826 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17827 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17828 case NVPTX::BI__hmma_m8n32k16_ld_a:
17829 case NVPTX::BI__hmma_m8n32k16_ld_b:
17830 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17831 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17832 // Integer MMA loads.
17833 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17834 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17835 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17836 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17837 case NVPTX::BI__imma_m16n16k16_ld_c:
17838 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17839 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17840 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17841 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17842 case NVPTX::BI__imma_m32n8k16_ld_c:
17843 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17844 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17845 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17846 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17847 case NVPTX::BI__imma_m8n32k16_ld_c:
17848 // Sub-integer MMA loads.
17849 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17850 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17851 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17852 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17853 case NVPTX::BI__imma_m8n8k32_ld_c:
17854 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17855 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17856 case NVPTX::BI__bmma_m8n8k128_ld_c:
17857 // Double MMA loads.
17858 case NVPTX::BI__dmma_m8n8k4_ld_a:
17859 case NVPTX::BI__dmma_m8n8k4_ld_b:
17860 case NVPTX::BI__dmma_m8n8k4_ld_c:
17861 // Alternate float MMA loads.
17862 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17863 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17864 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17865 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17866 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17867 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17868 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17869 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17870 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
17871 Address Dst = EmitPointerWithAlignment(E->getArg(0));
17872 Value *Src = EmitScalarExpr(E->getArg(1));
17873 Value *Ldm = EmitScalarExpr(E->getArg(2));
17874 Optional<llvm::APSInt> isColMajorArg =
17875 E->getArg(3)->getIntegerConstantExpr(getContext());
17876 if (!isColMajorArg)
17877 return nullptr;
17878 bool isColMajor = isColMajorArg->getSExtValue();
17879 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17880 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17881 if (IID == 0)
17882 return nullptr;
17883
17884 Value *Result =
17885 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
17886
17887 // Save returned values.
17888 assert(II.NumResults)(static_cast <bool> (II.NumResults) ? void (0) : __assert_fail
("II.NumResults", "clang/lib/CodeGen/CGBuiltin.cpp", 17888, __extension__
__PRETTY_FUNCTION__))
;
17889 if (II.NumResults == 1) {
17890 Builder.CreateAlignedStore(Result, Dst.getPointer(),
17891 CharUnits::fromQuantity(4));
17892 } else {
17893 for (unsigned i = 0; i < II.NumResults; ++i) {
17894 Builder.CreateAlignedStore(
17895 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
17896 Dst.getElementType()),
17897 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17898 llvm::ConstantInt::get(IntTy, i)),
17899 CharUnits::fromQuantity(4));
17900 }
17901 }
17902 return Result;
17903 }
17904
17905 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17906 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17907 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17908 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17909 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17910 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17911 case NVPTX::BI__imma_m16n16k16_st_c_i32:
17912 case NVPTX::BI__imma_m32n8k16_st_c_i32:
17913 case NVPTX::BI__imma_m8n32k16_st_c_i32:
17914 case NVPTX::BI__imma_m8n8k32_st_c_i32:
17915 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17916 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17917 case NVPTX::BI__mma_m16n16k8_st_c_f32: {
17918 Value *Dst = EmitScalarExpr(E->getArg(0));
17919 Address Src = EmitPointerWithAlignment(E->getArg(1));
17920 Value *Ldm = EmitScalarExpr(E->getArg(2));
17921 Optional<llvm::APSInt> isColMajorArg =
17922 E->getArg(3)->getIntegerConstantExpr(getContext());
17923 if (!isColMajorArg)
17924 return nullptr;
17925 bool isColMajor = isColMajorArg->getSExtValue();
17926 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17927 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17928 if (IID == 0)
17929 return nullptr;
17930 Function *Intrinsic =
17931 CGM.getIntrinsic(IID, Dst->getType());
17932 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
17933 SmallVector<Value *, 10> Values = {Dst};
17934 for (unsigned i = 0; i < II.NumResults; ++i) {
17935 Value *V = Builder.CreateAlignedLoad(
17936 Src.getElementType(),
17937 Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
17938 llvm::ConstantInt::get(IntTy, i)),
17939 CharUnits::fromQuantity(4));
17940 Values.push_back(Builder.CreateBitCast(V, ParamType));
17941 }
17942 Values.push_back(Ldm);
17943 Value *Result = Builder.CreateCall(Intrinsic, Values);
17944 return Result;
17945 }
17946
17947 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
17948 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
17949 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17950 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17951 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17952 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17953 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17954 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17955 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17956 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17957 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17958 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17959 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17960 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17961 case NVPTX::BI__imma_m16n16k16_mma_s8:
17962 case NVPTX::BI__imma_m16n16k16_mma_u8:
17963 case NVPTX::BI__imma_m32n8k16_mma_s8:
17964 case NVPTX::BI__imma_m32n8k16_mma_u8:
17965 case NVPTX::BI__imma_m8n32k16_mma_s8:
17966 case NVPTX::BI__imma_m8n32k16_mma_u8:
17967 case NVPTX::BI__imma_m8n8k32_mma_s4:
17968 case NVPTX::BI__imma_m8n8k32_mma_u4:
17969 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17970 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17971 case NVPTX::BI__dmma_m8n8k4_mma_f64:
17972 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17973 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17974 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17975 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
17976 Address Dst = EmitPointerWithAlignment(E->getArg(0));
17977 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
17978 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
17979 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
17980 Optional<llvm::APSInt> LayoutArg =
17981 E->getArg(4)->getIntegerConstantExpr(getContext());
17982 if (!LayoutArg)
17983 return nullptr;
17984 int Layout = LayoutArg->getSExtValue();
17985 if (Layout < 0 || Layout > 3)
17986 return nullptr;
17987 llvm::APSInt SatfArg;
17988 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
17989 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
17990 SatfArg = 0; // .b1 does not have satf argument.
17991 else if (Optional<llvm::APSInt> OptSatfArg =
17992 E->getArg(5)->getIntegerConstantExpr(getContext()))
17993 SatfArg = *OptSatfArg;
17994 else
17995 return nullptr;
17996 bool Satf = SatfArg.getSExtValue();
17997 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
17998 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
17999 if (IID == 0) // Unsupported combination of Layout/Satf.
18000 return nullptr;
18001
18002 SmallVector<Value *, 24> Values;
18003 Function *Intrinsic = CGM.getIntrinsic(IID);
18004 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
18005 // Load A
18006 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
18007 Value *V = Builder.CreateAlignedLoad(
18008 SrcA.getElementType(),
18009 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
18010 llvm::ConstantInt::get(IntTy, i)),
18011 CharUnits::fromQuantity(4));
18012 Values.push_back(Builder.CreateBitCast(V, AType));
18013 }
18014 // Load B
18015 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
18016 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
18017 Value *V = Builder.CreateAlignedLoad(
18018 SrcB.getElementType(),
18019 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
18020 llvm::ConstantInt::get(IntTy, i)),
18021 CharUnits::fromQuantity(4));
18022 Values.push_back(Builder.CreateBitCast(V, BType));
18023 }
18024 // Load C
18025 llvm::Type *CType =
18026 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
18027 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
18028 Value *V = Builder.CreateAlignedLoad(
18029 SrcC.getElementType(),
18030 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
18031 llvm::ConstantInt::get(IntTy, i)),
18032 CharUnits::fromQuantity(4));
18033 Values.push_back(Builder.CreateBitCast(V, CType));
18034 }
18035 Value *Result = Builder.CreateCall(Intrinsic, Values);
18036 llvm::Type *DType = Dst.getElementType();
18037 for (unsigned i = 0; i < MI.NumEltsD; ++i)
18038 Builder.CreateAlignedStore(
18039 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
18040 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18041 llvm::ConstantInt::get(IntTy, i)),
18042 CharUnits::fromQuantity(4));
18043 return Result;
18044 }
18045 default:
18046 return nullptr;
18047 }
18048}
18049
18050namespace {
18051struct BuiltinAlignArgs {
18052 llvm::Value *Src = nullptr;
18053 llvm::Type *SrcType = nullptr;
18054 llvm::Value *Alignment = nullptr;
18055 llvm::Value *Mask = nullptr;
18056 llvm::IntegerType *IntType = nullptr;
18057
18058 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
18059 QualType AstType = E->getArg(0)->getType();
18060 if (AstType->isArrayType())
18061 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
18062 else
18063 Src = CGF.EmitScalarExpr(E->getArg(0));
18064 SrcType = Src->getType();
18065 if (SrcType->isPointerTy()) {
18066 IntType = IntegerType::get(
18067 CGF.getLLVMContext(),
18068 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
18069 } else {
18070 assert(SrcType->isIntegerTy())(static_cast <bool> (SrcType->isIntegerTy()) ? void (
0) : __assert_fail ("SrcType->isIntegerTy()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18070, __extension__ __PRETTY_FUNCTION__))
;
18071 IntType = cast<llvm::IntegerType>(SrcType);
18072 }
18073 Alignment = CGF.EmitScalarExpr(E->getArg(1));
18074 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
18075 auto *One = llvm::ConstantInt::get(IntType, 1);
18076 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
18077 }
18078};
18079} // namespace
18080
18081/// Generate (x & (y-1)) == 0.
18082RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
18083 BuiltinAlignArgs Args(E, *this);
18084 llvm::Value *SrcAddress = Args.Src;
18085 if (Args.SrcType->isPointerTy())
18086 SrcAddress =
18087 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
18088 return RValue::get(Builder.CreateICmpEQ(
18089 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
18090 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
18091}
18092
18093/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
18094/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
18095/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
18096/// TODO: actually use ptrmask once most optimization passes know about it.
18097RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
18098 BuiltinAlignArgs Args(E, *this);
18099 llvm::Value *SrcAddr = Args.Src;
18100 if (Args.Src->getType()->isPointerTy())
18101 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
18102 llvm::Value *SrcForMask = SrcAddr;
18103 if (AlignUp) {
18104 // When aligning up we have to first add the mask to ensure we go over the
18105 // next alignment value and then align down to the next valid multiple.
18106 // By adding the mask, we ensure that align_up on an already aligned
18107 // value will not change the value.
18108 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
18109 }
18110 // Invert the mask to only clear the lower bits.
18111 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
18112 llvm::Value *Result =
18113 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
18114 if (Args.Src->getType()->isPointerTy()) {
18115 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
18116 // Result = Builder.CreateIntrinsic(
18117 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
18118 // {SrcForMask, NegatedMask}, nullptr, "aligned_result");
18119 Result->setName("aligned_intptr");
18120 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
18121 // The result must point to the same underlying allocation. This means we
18122 // can use an inbounds GEP to enable better optimization.
18123 Value *Base = EmitCastToVoidPtr(Args.Src);
18124 if (getLangOpts().isSignedOverflowDefined())
18125 Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
18126 else
18127 Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
18128 /*SignedIndices=*/true,
18129 /*isSubtraction=*/!AlignUp,
18130 E->getExprLoc(), "aligned_result");
18131 Result = Builder.CreatePointerCast(Result, Args.SrcType);
18132 // Emit an alignment assumption to ensure that the new alignment is
18133 // propagated to loads/stores, etc.
18134 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
18135 }
18136 assert(Result->getType() == Args.SrcType)(static_cast <bool> (Result->getType() == Args.SrcType
) ? void (0) : __assert_fail ("Result->getType() == Args.SrcType"
, "clang/lib/CodeGen/CGBuiltin.cpp", 18136, __extension__ __PRETTY_FUNCTION__
))
;
18137 return RValue::get(Result);
18138}
18139
18140Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
18141 const CallExpr *E) {
18142 switch (BuiltinID) {
18143 case WebAssembly::BI__builtin_wasm_memory_size: {
18144 llvm::Type *ResultType = ConvertType(E->getType());
18145 Value *I = EmitScalarExpr(E->getArg(0));
18146 Function *Callee =
18147 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
18148 return Builder.CreateCall(Callee, I);
18149 }
18150 case WebAssembly::BI__builtin_wasm_memory_grow: {
18151 llvm::Type *ResultType = ConvertType(E->getType());
18152 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
18153 EmitScalarExpr(E->getArg(1))};
18154 Function *Callee =
18155 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
18156 return Builder.CreateCall(Callee, Args);
18157 }
18158 case WebAssembly::BI__builtin_wasm_tls_size: {
18159 llvm::Type *ResultType = ConvertType(E->getType());
18160 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
18161 return Builder.CreateCall(Callee);
18162 }
18163 case WebAssembly::BI__builtin_wasm_tls_align: {
18164 llvm::Type *ResultType = ConvertType(E->getType());
18165 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
18166 return Builder.CreateCall(Callee);
18167 }
18168 case WebAssembly::BI__builtin_wasm_tls_base: {
18169 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
18170 return Builder.CreateCall(Callee);
18171 }
18172 case WebAssembly::BI__builtin_wasm_throw: {
18173 Value *Tag = EmitScalarExpr(E->getArg(0));
18174 Value *Obj = EmitScalarExpr(E->getArg(1));
18175 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
18176 return Builder.CreateCall(Callee, {Tag, Obj});
18177 }
18178 case WebAssembly::BI__builtin_wasm_rethrow: {
18179 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
18180 return Builder.CreateCall(Callee);
18181 }
18182 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
18183 Value *Addr = EmitScalarExpr(E->getArg(0));
18184 Value *Expected = EmitScalarExpr(E->getArg(1));
18185 Value *Timeout = EmitScalarExpr(E->getArg(2));
18186 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
18187 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18188 }
18189 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
18190 Value *Addr = EmitScalarExpr(E->getArg(0));
18191 Value *Expected = EmitScalarExpr(E->getArg(1));
18192 Value *Timeout = EmitScalarExpr(E->getArg(2));
18193 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
18194 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18195 }
18196 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
18197 Value *Addr = EmitScalarExpr(E->getArg(0));
18198 Value *Count = EmitScalarExpr(E->getArg(1));
18199 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
18200 return Builder.CreateCall(Callee, {Addr, Count});
18201 }
18202 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
18203 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
18204 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
18205 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
18206 Value *Src = EmitScalarExpr(E->getArg(0));
18207 llvm::Type *ResT = ConvertType(E->getType());
18208 Function *Callee =
18209 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
18210 return Builder.CreateCall(Callee, {Src});
18211 }
18212 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
18213 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
18214 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
18215 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
18216 Value *Src = EmitScalarExpr(E->getArg(0));
18217 llvm::Type *ResT = ConvertType(E->getType());
18218 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
18219 {ResT, Src->getType()});
18220 return Builder.CreateCall(Callee, {Src});
18221 }
18222 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
18223 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
18224 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
18225 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
18226 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
18227 Value *Src = EmitScalarExpr(E->getArg(0));
18228 llvm::Type *ResT = ConvertType(E->getType());
18229 Function *Callee =
18230 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
18231 return Builder.CreateCall(Callee, {Src});
18232 }
18233 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
18234 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
18235 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
18236 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
18237 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
18238 Value *Src = EmitScalarExpr(E->getArg(0));
18239 llvm::Type *ResT = ConvertType(E->getType());
18240 Function *Callee =
18241 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
18242 return Builder.CreateCall(Callee, {Src});
18243 }
18244 case WebAssembly::BI__builtin_wasm_min_f32:
18245 case WebAssembly::BI__builtin_wasm_min_f64:
18246 case WebAssembly::BI__builtin_wasm_min_f32x4:
18247 case WebAssembly::BI__builtin_wasm_min_f64x2: {
18248 Value *LHS = EmitScalarExpr(E->getArg(0));
18249 Value *RHS = EmitScalarExpr(E->getArg(1));
18250 Function *Callee =
18251 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
18252 return Builder.CreateCall(Callee, {LHS, RHS});
18253 }
18254 case WebAssembly::BI__builtin_wasm_max_f32:
18255 case WebAssembly::BI__builtin_wasm_max_f64:
18256 case WebAssembly::BI__builtin_wasm_max_f32x4:
18257 case WebAssembly::BI__builtin_wasm_max_f64x2: {
18258 Value *LHS = EmitScalarExpr(E->getArg(0));
18259 Value *RHS = EmitScalarExpr(E->getArg(1));
18260 Function *Callee =
18261 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
18262 return Builder.CreateCall(Callee, {LHS, RHS});
18263 }
18264 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
18265 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
18266 Value *LHS = EmitScalarExpr(E->getArg(0));
18267 Value *RHS = EmitScalarExpr(E->getArg(1));
18268 Function *Callee =
18269 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
18270 return Builder.CreateCall(Callee, {LHS, RHS});
18271 }
18272 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
18273 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
18274 Value *LHS = EmitScalarExpr(E->getArg(0));
18275 Value *RHS = EmitScalarExpr(E->getArg(1));
18276 Function *Callee =
18277 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
18278 return Builder.CreateCall(Callee, {LHS, RHS});
18279 }
18280 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18281 case WebAssembly::BI__builtin_wasm_floor_f32x4:
18282 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18283 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18284 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18285 case WebAssembly::BI__builtin_wasm_floor_f64x2:
18286 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18287 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
18288 unsigned IntNo;
18289 switch (BuiltinID) {
18290 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18291 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18292 IntNo = Intrinsic::ceil;
18293 break;
18294 case WebAssembly::BI__builtin_wasm_floor_f32x4:
18295 case WebAssembly::BI__builtin_wasm_floor_f64x2:
18296 IntNo = Intrinsic::floor;
18297 break;
18298 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18299 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18300 IntNo = Intrinsic::trunc;
18301 break;
18302 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18303 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
18304 IntNo = Intrinsic::nearbyint;
18305 break;
18306 default:
18307 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18307)
;
18308 }
18309 Value *Value = EmitScalarExpr(E->getArg(0));
18310 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18311 return Builder.CreateCall(Callee, Value);
18312 }
18313 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
18314 Value *Src = EmitScalarExpr(E->getArg(0));
18315 Value *Indices = EmitScalarExpr(E->getArg(1));
18316 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
18317 return Builder.CreateCall(Callee, {Src, Indices});
18318 }
18319 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18320 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18321 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18322 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18323 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18324 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18325 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18326 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
18327 unsigned IntNo;
18328 switch (BuiltinID) {
18329 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18330 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18331 IntNo = Intrinsic::sadd_sat;
18332 break;
18333 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18334 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18335 IntNo = Intrinsic::uadd_sat;
18336 break;
18337 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18338 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18339 IntNo = Intrinsic::wasm_sub_sat_signed;
18340 break;
18341 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18342 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
18343 IntNo = Intrinsic::wasm_sub_sat_unsigned;
18344 break;
18345 default:
18346 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18346)
;
18347 }
18348 Value *LHS = EmitScalarExpr(E->getArg(0));
18349 Value *RHS = EmitScalarExpr(E->getArg(1));
18350 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18351 return Builder.CreateCall(Callee, {LHS, RHS});
18352 }
18353 case WebAssembly::BI__builtin_wasm_abs_i8x16:
18354 case WebAssembly::BI__builtin_wasm_abs_i16x8:
18355 case WebAssembly::BI__builtin_wasm_abs_i32x4:
18356 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
18357 Value *Vec = EmitScalarExpr(E->getArg(0));
18358 Value *Neg = Builder.CreateNeg(Vec, "neg");
18359 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
18360 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
18361 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
18362 }
18363 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18364 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18365 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18366 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18367 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18368 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18369 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18370 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18371 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18372 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18373 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18374 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
18375 Value *LHS = EmitScalarExpr(E->getArg(0));
18376 Value *RHS = EmitScalarExpr(E->getArg(1));
18377 Value *ICmp;
18378 switch (BuiltinID) {
18379 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18380 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18381 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18382 ICmp = Builder.CreateICmpSLT(LHS, RHS);
18383 break;
18384 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18385 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18386 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18387 ICmp = Builder.CreateICmpULT(LHS, RHS);
18388 break;
18389 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18390 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18391 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18392 ICmp = Builder.CreateICmpSGT(LHS, RHS);
18393 break;
18394 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18395 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18396 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
18397 ICmp = Builder.CreateICmpUGT(LHS, RHS);
18398 break;
18399 default:
18400 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18400)
;
18401 }
18402 return Builder.CreateSelect(ICmp, LHS, RHS);
18403 }
18404 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
18405 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
18406 Value *LHS = EmitScalarExpr(E->getArg(0));
18407 Value *RHS = EmitScalarExpr(E->getArg(1));
18408 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
18409 ConvertType(E->getType()));
18410 return Builder.CreateCall(Callee, {LHS, RHS});
18411 }
18412 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
18413 Value *LHS = EmitScalarExpr(E->getArg(0));
18414 Value *RHS = EmitScalarExpr(E->getArg(1));
18415 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
18416 return Builder.CreateCall(Callee, {LHS, RHS});
18417 }
18418 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18419 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18420 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18421 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
18422 Value *Vec = EmitScalarExpr(E->getArg(0));
18423 unsigned IntNo;
18424 switch (BuiltinID) {
18425 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18426 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18427 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
18428 break;
18429 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18430 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
18431 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
18432 break;
18433 default:
18434 llvm_unreachable("unexptected builtin ID")::llvm::llvm_unreachable_internal("unexptected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18434)
;
18435 }
18436
18437 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18438 return Builder.CreateCall(Callee, Vec);
18439 }
18440 case WebAssembly::BI__builtin_wasm_bitselect: {
18441 Value *V1 = EmitScalarExpr(E->getArg(0));
18442 Value *V2 = EmitScalarExpr(E->getArg(1));
18443 Value *C = EmitScalarExpr(E->getArg(2));
18444 Function *Callee =
18445 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
18446 return Builder.CreateCall(Callee, {V1, V2, C});
18447 }
18448 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
18449 Value *LHS = EmitScalarExpr(E->getArg(0));
18450 Value *RHS = EmitScalarExpr(E->getArg(1));
18451 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
18452 return Builder.CreateCall(Callee, {LHS, RHS});
18453 }
18454 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
18455 Value *Vec = EmitScalarExpr(E->getArg(0));
18456 Function *Callee =
18457 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
18458 return Builder.CreateCall(Callee, {Vec});
18459 }
18460 case WebAssembly::BI__builtin_wasm_any_true_v128:
18461 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18462 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18463 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18464 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
18465 unsigned IntNo;
18466 switch (BuiltinID) {
18467 case WebAssembly::BI__builtin_wasm_any_true_v128:
18468 IntNo = Intrinsic::wasm_anytrue;
18469 break;
18470 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18471 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18472 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18473 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
18474 IntNo = Intrinsic::wasm_alltrue;
18475 break;
18476 default:
18477 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18477)
;
18478 }
18479 Value *Vec = EmitScalarExpr(E->getArg(0));
18480 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
18481 return Builder.CreateCall(Callee, {Vec});
18482 }
18483 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
18484 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
18485 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
18486 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
18487 Value *Vec = EmitScalarExpr(E->getArg(0));
18488 Function *Callee =
18489 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
18490 return Builder.CreateCall(Callee, {Vec});
18491 }
18492 case WebAssembly::BI__builtin_wasm_abs_f32x4:
18493 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
18494 Value *Vec = EmitScalarExpr(E->getArg(0));
18495 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
18496 return Builder.CreateCall(Callee, {Vec});
18497 }
18498 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
18499 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
18500 Value *Vec = EmitScalarExpr(E->getArg(0));
18501 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
18502 return Builder.CreateCall(Callee, {Vec});
18503 }
18504 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18505 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18506 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18507 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
18508 Value *Low = EmitScalarExpr(E->getArg(0));
18509 Value *High = EmitScalarExpr(E->getArg(1));
18510 unsigned IntNo;
18511 switch (BuiltinID) {
18512 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18513 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18514 IntNo = Intrinsic::wasm_narrow_signed;
18515 break;
18516 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18517 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
18518 IntNo = Intrinsic::wasm_narrow_unsigned;
18519 break;
18520 default:
18521 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18521)
;
18522 }
18523 Function *Callee =
18524 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
18525 return Builder.CreateCall(Callee, {Low, High});
18526 }
18527 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
18528 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
18529 Value *Vec = EmitScalarExpr(E->getArg(0));
18530 unsigned IntNo;
18531 switch (BuiltinID) {
18532 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
18533 IntNo = Intrinsic::fptosi_sat;
18534 break;
18535 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
18536 IntNo = Intrinsic::fptoui_sat;
18537 break;
18538 default:
18539 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18539)
;
18540 }
18541 llvm::Type *SrcT = Vec->getType();
18542 llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
18543 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
18544 Value *Trunc = Builder.CreateCall(Callee, Vec);
18545 Value *Splat = Constant::getNullValue(TruncT);
18546 return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
18547 }
18548 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
18549 Value *Ops[18];
18550 size_t OpIdx = 0;
18551 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
18552 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
18553 while (OpIdx < 18) {
18554 Optional<llvm::APSInt> LaneConst =
18555 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
18556 assert(LaneConst && "Constant arg isn't actually constant?")(static_cast <bool> (LaneConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("LaneConst && \"Constant arg isn't actually constant?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 18556, __extension__ __PRETTY_FUNCTION__
))
;
18557 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
18558 }
18559 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
18560 return Builder.CreateCall(Callee, Ops);
18561 }
18562 case WebAssembly::BI__builtin_wasm_fma_f32x4:
18563 case WebAssembly::BI__builtin_wasm_fms_f32x4:
18564 case WebAssembly::BI__builtin_wasm_fma_f64x2:
18565 case WebAssembly::BI__builtin_wasm_fms_f64x2: {
18566 Value *A = EmitScalarExpr(E->getArg(0));
18567 Value *B = EmitScalarExpr(E->getArg(1));
18568 Value *C = EmitScalarExpr(E->getArg(2));
18569 unsigned IntNo;
18570 switch (BuiltinID) {
18571 case WebAssembly::BI__builtin_wasm_fma_f32x4:
18572 case WebAssembly::BI__builtin_wasm_fma_f64x2:
18573 IntNo = Intrinsic::wasm_fma;
18574 break;
18575 case WebAssembly::BI__builtin_wasm_fms_f32x4:
18576 case WebAssembly::BI__builtin_wasm_fms_f64x2:
18577 IntNo = Intrinsic::wasm_fms;
18578 break;
18579 default:
18580 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18580)
;
18581 }
18582 Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
18583 return Builder.CreateCall(Callee, {A, B, C});
18584 }
18585 case WebAssembly::BI__builtin_wasm_laneselect_i8x16:
18586 case WebAssembly::BI__builtin_wasm_laneselect_i16x8:
18587 case WebAssembly::BI__builtin_wasm_laneselect_i32x4:
18588 case WebAssembly::BI__builtin_wasm_laneselect_i64x2: {
18589 Value *A = EmitScalarExpr(E->getArg(0));
18590 Value *B = EmitScalarExpr(E->getArg(1));
18591 Value *C = EmitScalarExpr(E->getArg(2));
18592 Function *Callee =
18593 CGM.getIntrinsic(Intrinsic::wasm_laneselect, A->getType());
18594 return Builder.CreateCall(Callee, {A, B, C});
18595 }
18596 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
18597 Value *Src = EmitScalarExpr(E->getArg(0));
18598 Value *Indices = EmitScalarExpr(E->getArg(1));
18599 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
18600 return Builder.CreateCall(Callee, {Src, Indices});
18601 }
18602 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18603 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18604 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18605 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
18606 Value *LHS = EmitScalarExpr(E->getArg(0));
18607 Value *RHS = EmitScalarExpr(E->getArg(1));
18608 unsigned IntNo;
18609 switch (BuiltinID) {
18610 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18611 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18612 IntNo = Intrinsic::wasm_relaxed_min;
18613 break;
18614 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18615 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
18616 IntNo = Intrinsic::wasm_relaxed_max;
18617 break;
18618 default:
18619 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18619)
;
18620 }
18621 Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
18622 return Builder.CreateCall(Callee, {LHS, RHS});
18623 }
18624 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18625 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18626 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
18627 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
18628 Value *Vec = EmitScalarExpr(E->getArg(0));
18629 unsigned IntNo;
18630 switch (BuiltinID) {
18631 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18632 IntNo = Intrinsic::wasm_relaxed_trunc_signed;
18633 break;
18634 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18635 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
18636 break;
18637 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
18638 IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
18639 break;
18640 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
18641 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
18642 break;
18643 default:
18644 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18644)
;
18645 }
18646 Function *Callee = CGM.getIntrinsic(IntNo);
18647 return Builder.CreateCall(Callee, {Vec});
18648 }
18649 default:
18650 return nullptr;
18651 }
18652}
18653
18654static std::pair<Intrinsic::ID, unsigned>
18655getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
18656 struct Info {
18657 unsigned BuiltinID;
18658 Intrinsic::ID IntrinsicID;
18659 unsigned VecLen;
18660 };
18661 Info Infos[] = {
18662#define CUSTOM_BUILTIN_MAPPING(x,s) \
18663 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
18664 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
18665 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
18666 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
18667 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
18668 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
18669 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
18670 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
18671 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
18672 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
18673 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
18674 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
18675 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
18676 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
18677 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
18678 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
18679 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
18680 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
18681 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
18682 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
18683 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
18684 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
18685 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
18686 // Legacy builtins that take a vector in place of a vector predicate.
18687 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
18688 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
18689 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
18690 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
18691 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
18692 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
18693 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
18694 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
18695#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
18696#undef CUSTOM_BUILTIN_MAPPING
18697 };
18698
18699 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
18700 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
18701 (void)SortOnce;
18702
18703 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
18704 Info{BuiltinID, 0, 0}, CmpInfo);
18705 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
18706 return {Intrinsic::not_intrinsic, 0};
18707
18708 return {F->IntrinsicID, F->VecLen};
18709}
18710
18711Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
18712 const CallExpr *E) {
18713 Intrinsic::ID ID;
18714 unsigned VecLen;
18715 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
18716
18717 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
18718 // The base pointer is passed by address, so it needs to be loaded.
18719 Address A = EmitPointerWithAlignment(E->getArg(0));
18720 Address BP = Address(Builder.CreateBitCast(
18721 A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
18722 llvm::Value *Base = Builder.CreateLoad(BP);
18723 // The treatment of both loads and stores is the same: the arguments for
18724 // the builtin are the same as the arguments for the intrinsic.
18725 // Load:
18726 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
18727 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
18728 // Store:
18729 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
18730 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
18731 SmallVector<llvm::Value*,5> Ops = { Base };
18732 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
18733 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18734
18735 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
18736 // The load intrinsics generate two results (Value, NewBase), stores
18737 // generate one (NewBase). The new base address needs to be stored.
18738 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
18739 : Result;
18740 llvm::Value *LV = Builder.CreateBitCast(
18741 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
18742 Address Dest = EmitPointerWithAlignment(E->getArg(0));
18743 llvm::Value *RetVal =
18744 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
18745 if (IsLoad)
18746 RetVal = Builder.CreateExtractValue(Result, 0);
18747 return RetVal;
18748 };
18749
18750 // Handle the conversion of bit-reverse load intrinsics to bit code.
18751 // The intrinsic call after this function only reads from memory and the
18752 // write to memory is dealt by the store instruction.
18753 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
18754 // The intrinsic generates one result, which is the new value for the base
18755 // pointer. It needs to be returned. The result of the load instruction is
18756 // passed to intrinsic by address, so the value needs to be stored.
18757 llvm::Value *BaseAddress =
18758 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
18759
18760 // Expressions like &(*pt++) will be incremented per evaluation.
18761 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
18762 // per call.
18763 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
18764 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
18765 Int8Ty, DestAddr.getAlignment());
18766 llvm::Value *DestAddress = DestAddr.getPointer();
18767
18768 // Operands are Base, Dest, Modifier.
18769 // The intrinsic format in LLVM IR is defined as
18770 // { ValueType, i8* } (i8*, i32).
18771 llvm::Value *Result = Builder.CreateCall(
18772 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
18773
18774 // The value needs to be stored as the variable is passed by reference.
18775 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
18776
18777 // The store needs to be truncated to fit the destination type.
18778 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
18779 // to be handled with stores of respective destination type.
18780 DestVal = Builder.CreateTrunc(DestVal, DestTy);
18781
18782 llvm::Value *DestForStore =
18783 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
18784 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
18785 // The updated value of the base pointer is returned.
18786 return Builder.CreateExtractValue(Result, 1);
18787 };
18788
18789 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
18790 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
18791 : Intrinsic::hexagon_V6_vandvrt;
18792 return Builder.CreateCall(CGM.getIntrinsic(ID),
18793 {Vec, Builder.getInt32(-1)});
18794 };
18795 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
18796 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
18797 : Intrinsic::hexagon_V6_vandqrt;
18798 return Builder.CreateCall(CGM.getIntrinsic(ID),
18799 {Pred, Builder.getInt32(-1)});
18800 };
18801
18802 switch (BuiltinID) {
18803 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
18804 // and the corresponding C/C++ builtins use loads/stores to update
18805 // the predicate.
18806 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
18807 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
18808 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
18809 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
18810 // Get the type from the 0-th argument.
18811 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
18812 Address PredAddr = Builder.CreateElementBitCast(
18813 EmitPointerWithAlignment(E->getArg(2)), VecType);
18814 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
18815 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
18816 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
18817
18818 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
18819 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
18820 PredAddr.getAlignment());
18821 return Builder.CreateExtractValue(Result, 0);
18822 }
18823
18824 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
18825 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
18826 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
18827 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
18828 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
18829 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
18830 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
18831 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
18832 SmallVector<llvm::Value*,4> Ops;
18833 const Expr *PredOp = E->getArg(0);
18834 // There will be an implicit cast to a boolean vector. Strip it.
18835 if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
18836 if (Cast->getCastKind() == CK_BitCast)
18837 PredOp = Cast->getSubExpr();
18838 Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
18839 }
18840 for (int i = 1, e = E->getNumArgs(); i != e; ++i)
18841 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18842 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
18843 }
18844
18845 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
18846 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
18847 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
18848 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
18849 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
18850 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
18851 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
18852 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
18853 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
18854 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
18855 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
18856 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
18857 return MakeCircOp(ID, /*IsLoad=*/true);
18858 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
18859 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
18860 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
18861 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
18862 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
18863 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
18864 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
18865 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
18866 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
18867 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
18868 return MakeCircOp(ID, /*IsLoad=*/false);
18869 case Hexagon::BI__builtin_brev_ldub:
18870 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
18871 case Hexagon::BI__builtin_brev_ldb:
18872 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
18873 case Hexagon::BI__builtin_brev_lduh:
18874 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
18875 case Hexagon::BI__builtin_brev_ldh:
18876 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
18877 case Hexagon::BI__builtin_brev_ldw:
18878 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
18879 case Hexagon::BI__builtin_brev_ldd:
18880 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
18881 } // switch
18882
18883 return nullptr;
18884}
18885
18886Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
18887 const CallExpr *E,
18888 ReturnValueSlot ReturnValue) {
18889 SmallVector<Value *, 4> Ops;
18890 llvm::Type *ResultType = ConvertType(E->getType());
18891
18892 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
18893 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18894
18895 Intrinsic::ID ID = Intrinsic::not_intrinsic;
18896 unsigned NF = 1;
18897 constexpr unsigned TAIL_UNDISTURBED = 0;
18898
18899 // Required for overloaded intrinsics.
18900 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
18901 switch (BuiltinID) {
18902 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18902)
;
18903 case RISCV::BI__builtin_riscv_orc_b_32:
18904 case RISCV::BI__builtin_riscv_orc_b_64:
18905 case RISCV::BI__builtin_riscv_clmul:
18906 case RISCV::BI__builtin_riscv_clmulh:
18907 case RISCV::BI__builtin_riscv_clmulr:
18908 case RISCV::BI__builtin_riscv_bcompress_32:
18909 case RISCV::BI__builtin_riscv_bcompress_64:
18910 case RISCV::BI__builtin_riscv_bdecompress_32:
18911 case RISCV::BI__builtin_riscv_bdecompress_64:
18912 case RISCV::BI__builtin_riscv_bfp_32:
18913 case RISCV::BI__builtin_riscv_bfp_64:
18914 case RISCV::BI__builtin_riscv_grev_32:
18915 case RISCV::BI__builtin_riscv_grev_64:
18916 case RISCV::BI__builtin_riscv_gorc_32:
18917 case RISCV::BI__builtin_riscv_gorc_64:
18918 case RISCV::BI__builtin_riscv_shfl_32:
18919 case RISCV::BI__builtin_riscv_shfl_64:
18920 case RISCV::BI__builtin_riscv_unshfl_32:
18921 case RISCV::BI__builtin_riscv_unshfl_64:
18922 case RISCV::BI__builtin_riscv_xperm4:
18923 case RISCV::BI__builtin_riscv_xperm8:
18924 case RISCV::BI__builtin_riscv_xperm_n:
18925 case RISCV::BI__builtin_riscv_xperm_b:
18926 case RISCV::BI__builtin_riscv_xperm_h:
18927 case RISCV::BI__builtin_riscv_xperm_w:
18928 case RISCV::BI__builtin_riscv_crc32_b:
18929 case RISCV::BI__builtin_riscv_crc32_h:
18930 case RISCV::BI__builtin_riscv_crc32_w:
18931 case RISCV::BI__builtin_riscv_crc32_d:
18932 case RISCV::BI__builtin_riscv_crc32c_b:
18933 case RISCV::BI__builtin_riscv_crc32c_h:
18934 case RISCV::BI__builtin_riscv_crc32c_w:
18935 case RISCV::BI__builtin_riscv_crc32c_d:
18936 case RISCV::BI__builtin_riscv_fsl_32:
18937 case RISCV::BI__builtin_riscv_fsr_32:
18938 case RISCV::BI__builtin_riscv_fsl_64:
18939 case RISCV::BI__builtin_riscv_fsr_64:
18940 case RISCV::BI__builtin_riscv_brev8:
18941 case RISCV::BI__builtin_riscv_zip_32:
18942 case RISCV::BI__builtin_riscv_unzip_32: {
18943 switch (BuiltinID) {
18944 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18944)
;
18945 // Zbb
18946 case RISCV::BI__builtin_riscv_orc_b_32:
18947 case RISCV::BI__builtin_riscv_orc_b_64:
18948 ID = Intrinsic::riscv_orc_b;
18949 break;
18950
18951 // Zbc
18952 case RISCV::BI__builtin_riscv_clmul:
18953 ID = Intrinsic::riscv_clmul;
18954 break;
18955 case RISCV::BI__builtin_riscv_clmulh:
18956 ID = Intrinsic::riscv_clmulh;
18957 break;
18958 case RISCV::BI__builtin_riscv_clmulr:
18959 ID = Intrinsic::riscv_clmulr;
18960 break;
18961
18962 // Zbe
18963 case RISCV::BI__builtin_riscv_bcompress_32:
18964 case RISCV::BI__builtin_riscv_bcompress_64:
18965 ID = Intrinsic::riscv_bcompress;
18966 break;
18967 case RISCV::BI__builtin_riscv_bdecompress_32:
18968 case RISCV::BI__builtin_riscv_bdecompress_64:
18969 ID = Intrinsic::riscv_bdecompress;
18970 break;
18971
18972 // Zbf
18973 case RISCV::BI__builtin_riscv_bfp_32:
18974 case RISCV::BI__builtin_riscv_bfp_64:
18975 ID = Intrinsic::riscv_bfp;
18976 break;
18977
18978 // Zbp
18979 case RISCV::BI__builtin_riscv_grev_32:
18980 case RISCV::BI__builtin_riscv_grev_64:
18981 ID = Intrinsic::riscv_grev;
18982 break;
18983 case RISCV::BI__builtin_riscv_gorc_32:
18984 case RISCV::BI__builtin_riscv_gorc_64:
18985 ID = Intrinsic::riscv_gorc;
18986 break;
18987 case RISCV::BI__builtin_riscv_shfl_32:
18988 case RISCV::BI__builtin_riscv_shfl_64:
18989 ID = Intrinsic::riscv_shfl;
18990 break;
18991 case RISCV::BI__builtin_riscv_unshfl_32:
18992 case RISCV::BI__builtin_riscv_unshfl_64:
18993 ID = Intrinsic::riscv_unshfl;
18994 break;
18995 case RISCV::BI__builtin_riscv_xperm_n:
18996 ID = Intrinsic::riscv_xperm_n;
18997 break;
18998 case RISCV::BI__builtin_riscv_xperm_b:
18999 ID = Intrinsic::riscv_xperm_b;
19000 break;
19001 case RISCV::BI__builtin_riscv_xperm_h:
19002 ID = Intrinsic::riscv_xperm_h;
19003 break;
19004 case RISCV::BI__builtin_riscv_xperm_w:
19005 ID = Intrinsic::riscv_xperm_w;
19006 break;
19007
19008 // Zbr
19009 case RISCV::BI__builtin_riscv_crc32_b:
19010 ID = Intrinsic::riscv_crc32_b;
19011 break;
19012 case RISCV::BI__builtin_riscv_crc32_h:
19013 ID = Intrinsic::riscv_crc32_h;
19014 break;
19015 case RISCV::BI__builtin_riscv_crc32_w:
19016 ID = Intrinsic::riscv_crc32_w;
19017 break;
19018 case RISCV::BI__builtin_riscv_crc32_d:
19019 ID = Intrinsic::riscv_crc32_d;
19020 break;
19021 case RISCV::BI__builtin_riscv_crc32c_b:
19022 ID = Intrinsic::riscv_crc32c_b;
19023 break;
19024 case RISCV::BI__builtin_riscv_crc32c_h:
19025 ID = Intrinsic::riscv_crc32c_h;
19026 break;
19027 case RISCV::BI__builtin_riscv_crc32c_w:
19028 ID = Intrinsic::riscv_crc32c_w;
19029 break;
19030 case RISCV::BI__builtin_riscv_crc32c_d:
19031 ID = Intrinsic::riscv_crc32c_d;
19032 break;
19033
19034 // Zbt
19035 case RISCV::BI__builtin_riscv_fsl_32:
19036 case RISCV::BI__builtin_riscv_fsl_64:
19037 ID = Intrinsic::riscv_fsl;
19038 break;
19039 case RISCV::BI__builtin_riscv_fsr_32:
19040 case RISCV::BI__builtin_riscv_fsr_64:
19041 ID = Intrinsic::riscv_fsr;
19042 break;
19043
19044 // Zbkx
19045 case RISCV::BI__builtin_riscv_xperm8:
19046 ID = Intrinsic::riscv_xperm8;
19047 break;
19048 case RISCV::BI__builtin_riscv_xperm4:
19049 ID = Intrinsic::riscv_xperm4;
19050 break;
19051
19052 // Zbkb
19053 case RISCV::BI__builtin_riscv_brev8:
19054 ID = Intrinsic::riscv_brev8;
19055 break;
19056 case RISCV::BI__builtin_riscv_zip_32:
19057 ID = Intrinsic::riscv_zip;
19058 break;
19059 case RISCV::BI__builtin_riscv_unzip_32:
19060 ID = Intrinsic::riscv_unzip;
19061 break;
19062 }
19063
19064 IntrinsicTypes = {ResultType};
19065 break;
19066 }
19067
19068 // Zk builtins
19069
19070 // Zknd
19071 case RISCV::BI__builtin_riscv_aes32dsi_32:
19072 ID = Intrinsic::riscv_aes32dsi;
19073 break;
19074 case RISCV::BI__builtin_riscv_aes32dsmi_32:
19075 ID = Intrinsic::riscv_aes32dsmi;
19076 break;
19077 case RISCV::BI__builtin_riscv_aes64ds_64:
19078 ID = Intrinsic::riscv_aes64ds;
19079 break;
19080 case RISCV::BI__builtin_riscv_aes64dsm_64:
19081 ID = Intrinsic::riscv_aes64dsm;
19082 break;
19083 case RISCV::BI__builtin_riscv_aes64im_64:
19084 ID = Intrinsic::riscv_aes64im;
19085 break;
19086
19087 // Zkne
19088 case RISCV::BI__builtin_riscv_aes32esi_32:
19089 ID = Intrinsic::riscv_aes32esi;
19090 break;
19091 case RISCV::BI__builtin_riscv_aes32esmi_32:
19092 ID = Intrinsic::riscv_aes32esmi;
19093 break;
19094 case RISCV::BI__builtin_riscv_aes64es_64:
19095 ID = Intrinsic::riscv_aes64es;
19096 break;
19097 case RISCV::BI__builtin_riscv_aes64esm_64:
19098 ID = Intrinsic::riscv_aes64esm;
19099 break;
19100
19101 // Zknd & Zkne
19102 case RISCV::BI__builtin_riscv_aes64ks1i_64:
19103 ID = Intrinsic::riscv_aes64ks1i;
19104 break;
19105 case RISCV::BI__builtin_riscv_aes64ks2_64:
19106 ID = Intrinsic::riscv_aes64ks2;
19107 break;
19108
19109 // Zknh
19110 case RISCV::BI__builtin_riscv_sha256sig0:
19111 ID = Intrinsic::riscv_sha256sig0;
19112 IntrinsicTypes = {ResultType};
19113 break;
19114 case RISCV::BI__builtin_riscv_sha256sig1:
19115 ID = Intrinsic::riscv_sha256sig1;
19116 IntrinsicTypes = {ResultType};
19117 break;
19118 case RISCV::BI__builtin_riscv_sha256sum0:
19119 ID = Intrinsic::riscv_sha256sum0;
19120 IntrinsicTypes = {ResultType};
19121 break;
19122 case RISCV::BI__builtin_riscv_sha256sum1:
19123 ID = Intrinsic::riscv_sha256sum1;
19124 IntrinsicTypes = {ResultType};
19125 break;
19126 case RISCV::BI__builtin_riscv_sha512sig0_64:
19127 ID = Intrinsic::riscv_sha512sig0;
19128 break;
19129 case RISCV::BI__builtin_riscv_sha512sig0h_32:
19130 ID = Intrinsic::riscv_sha512sig0h;
19131 break;
19132 case RISCV::BI__builtin_riscv_sha512sig0l_32:
19133 ID = Intrinsic::riscv_sha512sig0l;
19134 break;
19135 case RISCV::BI__builtin_riscv_sha512sig1_64:
19136 ID = Intrinsic::riscv_sha512sig1;
19137 break;
19138 case RISCV::BI__builtin_riscv_sha512sig1h_32:
19139 ID = Intrinsic::riscv_sha512sig1h;
19140 break;
19141 case RISCV::BI__builtin_riscv_sha512sig1l_32:
19142 ID = Intrinsic::riscv_sha512sig1l;
19143 break;
19144 case RISCV::BI__builtin_riscv_sha512sum0_64:
19145 ID = Intrinsic::riscv_sha512sum0;
19146 break;
19147 case RISCV::BI__builtin_riscv_sha512sum0r_32:
19148 ID = Intrinsic::riscv_sha512sum0r;
19149 break;
19150 case RISCV::BI__builtin_riscv_sha512sum1_64:
19151 ID = Intrinsic::riscv_sha512sum1;
19152 break;
19153 case RISCV::BI__builtin_riscv_sha512sum1r_32:
19154 ID = Intrinsic::riscv_sha512sum1r;
19155 break;
19156
19157 // Zksed
19158 case RISCV::BI__builtin_riscv_sm4ks:
19159 ID = Intrinsic::riscv_sm4ks;
19160 IntrinsicTypes = {ResultType};
19161 break;
19162 case RISCV::BI__builtin_riscv_sm4ed:
19163 ID = Intrinsic::riscv_sm4ed;
19164 IntrinsicTypes = {ResultType};
19165 break;
19166
19167 // Zksh
19168 case RISCV::BI__builtin_riscv_sm3p0:
19169 ID = Intrinsic::riscv_sm3p0;
19170 IntrinsicTypes = {ResultType};
19171 break;
19172 case RISCV::BI__builtin_riscv_sm3p1:
19173 ID = Intrinsic::riscv_sm3p1;
19174 IntrinsicTypes = {ResultType};
19175 break;
19176
19177 // Vector builtins are handled from here.
19178#include "clang/Basic/riscv_vector_builtin_cg.inc"
19179 }
19180
19181 assert(ID != Intrinsic::not_intrinsic)(static_cast <bool> (ID != Intrinsic::not_intrinsic) ? void
(0) : __assert_fail ("ID != Intrinsic::not_intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19181, __extension__ __PRETTY_FUNCTION__))
;
19182
19183 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
19184 return Builder.CreateCall(F, Ops, "");
19185}