Bug Summary

File:tools/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 11747, column 12
Value stored to 'Store' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp -faddrsig
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGOpenCLRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "PatternInit.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/OSLog.h"
25#include "clang/Basic/TargetBuiltins.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/CodeGen/CGFunctionInfo.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/Support/ConvertUTF.h"
35#include "llvm/Support/ScopedPrinter.h"
36#include "llvm/Support/TargetParser.h"
37#include <sstream>
38
39using namespace clang;
40using namespace CodeGen;
41using namespace llvm;
42
43static
44int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
45 return std::min(High, std::max(Low, Value));
46}
47
48static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
49 ConstantInt *Byte;
50 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
51 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
52 // Nothing to initialize.
53 return;
54 case LangOptions::TrivialAutoVarInitKind::Zero:
55 Byte = CGF.Builder.getInt8(0x00);
56 break;
57 case LangOptions::TrivialAutoVarInitKind::Pattern: {
58 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
59 Byte = llvm::dyn_cast<llvm::ConstantInt>(
60 initializationPatternFor(CGF.CGM, Int8));
61 break;
62 }
63 }
64 CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
65}
66
67/// getBuiltinLibFunction - Given a builtin id for a function like
68/// "__builtin_fabsf", return a Function* for "fabsf".
69llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
70 unsigned BuiltinID) {
71 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))((Context.BuiltinInfo.isLibFunction(BuiltinID)) ? static_cast
<void> (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 71, __PRETTY_FUNCTION__))
;
72
73 // Get the name, skip over the __builtin_ prefix (if necessary).
74 StringRef Name;
75 GlobalDecl D(FD);
76
77 // If the builtin has been declared explicitly with an assembler label,
78 // use the mangled name. This differs from the plain label on platforms
79 // that prefix labels.
80 if (FD->hasAttr<AsmLabelAttr>())
81 Name = getMangledName(D);
82 else
83 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
84
85 llvm::FunctionType *Ty =
86 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
87
88 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
89}
90
91/// Emit the conversions required to turn the given value into an
92/// integer of the given size.
93static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
94 QualType T, llvm::IntegerType *IntType) {
95 V = CGF.EmitToMemory(V, T);
96
97 if (V->getType()->isPointerTy())
98 return CGF.Builder.CreatePtrToInt(V, IntType);
99
100 assert(V->getType() == IntType)((V->getType() == IntType) ? static_cast<void> (0) :
__assert_fail ("V->getType() == IntType", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 100, __PRETTY_FUNCTION__))
;
101 return V;
102}
103
104static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
105 QualType T, llvm::Type *ResultType) {
106 V = CGF.EmitFromMemory(V, T);
107
108 if (ResultType->isPointerTy())
109 return CGF.Builder.CreateIntToPtr(V, ResultType);
110
111 assert(V->getType() == ResultType)((V->getType() == ResultType) ? static_cast<void> (0
) : __assert_fail ("V->getType() == ResultType", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 111, __PRETTY_FUNCTION__))
;
112 return V;
113}
114
115/// Utility to insert an atomic instruction based on Intrinsic::ID
116/// and the expression node.
117static Value *MakeBinaryAtomicValue(
118 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
119 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
120 QualType T = E->getType();
121 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 121, __PRETTY_FUNCTION__))
;
122 assert(CGF.getContext().hasSameUnqualifiedType(T,((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 123, __PRETTY_FUNCTION__))
123 E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 123, __PRETTY_FUNCTION__))
;
124 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->
getType())) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 124, __PRETTY_FUNCTION__))
;
125
126 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
127 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
128
129 llvm::IntegerType *IntType =
130 llvm::IntegerType::get(CGF.getLLVMContext(),
131 CGF.getContext().getTypeSize(T));
132 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
133
134 llvm::Value *Args[2];
135 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
137 llvm::Type *ValueType = Args[1]->getType();
138 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
139
140 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
141 Kind, Args[0], Args[1], Ordering);
142 return EmitFromInt(CGF, Result, T, ValueType);
143}
144
145static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
146 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
147 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
148
149 // Convert the type of the pointer to a pointer to the stored type.
150 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
151 Value *BC = CGF.Builder.CreateBitCast(
152 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
153 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
154 LV.setNontemporal(true);
155 CGF.EmitStoreOfScalar(Val, LV, false);
156 return nullptr;
157}
158
159static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
160 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
161
162 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
163 LV.setNontemporal(true);
164 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
165}
166
167static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
168 llvm::AtomicRMWInst::BinOp Kind,
169 const CallExpr *E) {
170 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
171}
172
173/// Utility to insert an atomic instruction based Intrinsic::ID and
174/// the expression node, where the return value is the result of the
175/// operation.
176static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
177 llvm::AtomicRMWInst::BinOp Kind,
178 const CallExpr *E,
179 Instruction::BinaryOps Op,
180 bool Invert = false) {
181 QualType T = E->getType();
182 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 182, __PRETTY_FUNCTION__))
;
183 assert(CGF.getContext().hasSameUnqualifiedType(T,((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 184, __PRETTY_FUNCTION__))
184 E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 184, __PRETTY_FUNCTION__))
;
185 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->
getType())) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 185, __PRETTY_FUNCTION__))
;
186
187 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
188 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
189
190 llvm::IntegerType *IntType =
191 llvm::IntegerType::get(CGF.getLLVMContext(),
192 CGF.getContext().getTypeSize(T));
193 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
194
195 llvm::Value *Args[2];
196 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
197 llvm::Type *ValueType = Args[1]->getType();
198 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
199 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
200
201 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
202 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
203 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
204 if (Invert)
205 Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
206 llvm::ConstantInt::get(IntType, -1));
207 Result = EmitFromInt(CGF, Result, T, ValueType);
208 return RValue::get(Result);
209}
210
211/// Utility to insert an atomic cmpxchg instruction.
212///
213/// @param CGF The current codegen function.
214/// @param E Builtin call expression to convert to cmpxchg.
215/// arg0 - address to operate on
216/// arg1 - value to compare with
217/// arg2 - new value
218/// @param ReturnBool Specifies whether to return success flag of
219/// cmpxchg result or the old value.
220///
221/// @returns result of cmpxchg, according to ReturnBool
222///
223/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
224/// invoke the function EmitAtomicCmpXchgForMSIntrin.
225static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
226 bool ReturnBool) {
227 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
228 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
229 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
230
231 llvm::IntegerType *IntType = llvm::IntegerType::get(
232 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
233 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
234
235 Value *Args[3];
236 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
237 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
238 llvm::Type *ValueType = Args[1]->getType();
239 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
240 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
241
242 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
243 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
244 llvm::AtomicOrdering::SequentiallyConsistent);
245 if (ReturnBool)
246 // Extract boolean success flag and zext it to int.
247 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
248 CGF.ConvertType(E->getType()));
249 else
250 // Extract old value and emit it using the same type as compare value.
251 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
252 ValueType);
253}
254
255/// This function should be invoked to emit atomic cmpxchg for Microsoft's
256/// _InterlockedCompareExchange* intrinsics which have the following signature:
257/// T _InterlockedCompareExchange(T volatile *Destination,
258/// T Exchange,
259/// T Comparand);
260///
261/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
262/// cmpxchg *Destination, Comparand, Exchange.
263/// So we need to swap Comparand and Exchange when invoking
264/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
265/// function MakeAtomicCmpXchgValue since it expects the arguments to be
266/// already swapped.
267
268static
269Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
270 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
271 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 assert(CGF.getContext().hasSameUnqualifiedType(((CGF.getContext().hasSameUnqualifiedType( E->getType(), E
->getArg(0)->getType()->getPointeeType())) ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 273, __PRETTY_FUNCTION__))
273 E->getType(), E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType( E->getType(), E
->getArg(0)->getType()->getPointeeType())) ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 273, __PRETTY_FUNCTION__))
;
274 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(1)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 275, __PRETTY_FUNCTION__))
275 E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(1)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 275, __PRETTY_FUNCTION__))
;
276 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(2)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 277, __PRETTY_FUNCTION__))
277 E->getArg(2)->getType()))((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(2)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 277, __PRETTY_FUNCTION__))
;
278
279 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
280 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
281 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
282
283 // For Release ordering, the failure ordering should be Monotonic.
284 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
285 AtomicOrdering::Monotonic :
286 SuccessOrdering;
287
288 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
289 Destination, Comparand, Exchange,
290 SuccessOrdering, FailureOrdering);
291 Result->setVolatile(true);
292 return CGF.Builder.CreateExtractValue(Result, 0);
293}
294
295static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
296 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
297 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 297, __PRETTY_FUNCTION__))
;
298
299 auto *IntTy = CGF.ConvertType(E->getType());
300 auto *Result = CGF.Builder.CreateAtomicRMW(
301 AtomicRMWInst::Add,
302 CGF.EmitScalarExpr(E->getArg(0)),
303 ConstantInt::get(IntTy, 1),
304 Ordering);
305 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
306}
307
308static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
309 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
310 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 310, __PRETTY_FUNCTION__))
;
311
312 auto *IntTy = CGF.ConvertType(E->getType());
313 auto *Result = CGF.Builder.CreateAtomicRMW(
314 AtomicRMWInst::Sub,
315 CGF.EmitScalarExpr(E->getArg(0)),
316 ConstantInt::get(IntTy, 1),
317 Ordering);
318 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
319}
320
321// Build a plain volatile load.
322static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
323 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
324 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
325 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
326 llvm::Type *ITy =
327 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
328 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
329 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
330 Load->setVolatile(true);
331 return Load;
332}
333
334// Build a plain volatile store.
335static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
336 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
337 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
338 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
339 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
340 llvm::Type *ITy =
341 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
342 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
343 llvm::StoreInst *Store =
344 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
345 Store->setVolatile(true);
346 return Store;
347}
348
349// Emit a simple mangled intrinsic that has 1 argument and a return type
350// matching the argument type.
351static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
352 const CallExpr *E,
353 unsigned IntrinsicID) {
354 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
355
356 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
357 return CGF.Builder.CreateCall(F, Src0);
358}
359
360// Emit an intrinsic that has 2 operands of the same type as its result.
361static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
362 const CallExpr *E,
363 unsigned IntrinsicID) {
364 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
365 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
366
367 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
368 return CGF.Builder.CreateCall(F, { Src0, Src1 });
369}
370
371// Emit an intrinsic that has 3 operands of the same type as its result.
372static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
373 const CallExpr *E,
374 unsigned IntrinsicID) {
375 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
376 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
377 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
378
379 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
381}
382
383// Emit an intrinsic that has 1 float or double operand, and 1 integer.
384static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
385 const CallExpr *E,
386 unsigned IntrinsicID) {
387 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
388 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
389
390 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
391 return CGF.Builder.CreateCall(F, {Src0, Src1});
392}
393
394// Emit an intrinsic that has overloaded integer result and fp operand.
395static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
396 const CallExpr *E,
397 unsigned IntrinsicID) {
398 llvm::Type *ResultType = CGF.ConvertType(E->getType());
399 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
400
401 Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
402 {ResultType, Src0->getType()});
403 return CGF.Builder.CreateCall(F, Src0);
404}
405
406/// EmitFAbs - Emit a call to @llvm.fabs().
407static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
408 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
409 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
410 Call->setDoesNotAccessMemory();
411 return Call;
412}
413
414/// Emit the computation of the sign bit for a floating point value. Returns
415/// the i1 sign bit value.
416static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
417 LLVMContext &C = CGF.CGM.getLLVMContext();
418
419 llvm::Type *Ty = V->getType();
420 int Width = Ty->getPrimitiveSizeInBits();
421 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
422 V = CGF.Builder.CreateBitCast(V, IntTy);
423 if (Ty->isPPC_FP128Ty()) {
424 // We want the sign bit of the higher-order double. The bitcast we just
425 // did works as if the double-double was stored to memory and then
426 // read as an i128. The "store" will put the higher-order double in the
427 // lower address in both little- and big-Endian modes, but the "load"
428 // will treat those bits as a different part of the i128: the low bits in
429 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
430 // we need to shift the high bits down to the low before truncating.
431 Width >>= 1;
432 if (CGF.getTarget().isBigEndian()) {
433 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
434 V = CGF.Builder.CreateLShr(V, ShiftCst);
435 }
436 // We are truncating value in order to extract the higher-order
437 // double, which we will be using to extract the sign from.
438 IntTy = llvm::IntegerType::get(C, Width);
439 V = CGF.Builder.CreateTrunc(V, IntTy);
440 }
441 Value *Zero = llvm::Constant::getNullValue(IntTy);
442 return CGF.Builder.CreateICmpSLT(V, Zero);
443}
444
445static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
446 const CallExpr *E, llvm::Constant *calleeValue) {
447 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
448 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
449}
450
451/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
452/// depending on IntrinsicID.
453///
454/// \arg CGF The current codegen function.
455/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
456/// \arg X The first argument to the llvm.*.with.overflow.*.
457/// \arg Y The second argument to the llvm.*.with.overflow.*.
458/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
459/// \returns The result (i.e. sum/product) returned by the intrinsic.
460static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
461 const llvm::Intrinsic::ID IntrinsicID,
462 llvm::Value *X, llvm::Value *Y,
463 llvm::Value *&Carry) {
464 // Make sure we have integers of the same width.
465 assert(X->getType() == Y->getType() &&((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
466 "Arguments must be the same type. (Did you forget to make sure both "((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
467 "arguments have the same integer width?)")((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
;
468
469 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
470 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
471 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
472 return CGF.Builder.CreateExtractValue(Tmp, 0);
473}
474
475static Value *emitRangedBuiltin(CodeGenFunction &CGF,
476 unsigned IntrinsicID,
477 int low, int high) {
478 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
479 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
480 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
481 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
482 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
483 return Call;
484}
485
486namespace {
487 struct WidthAndSignedness {
488 unsigned Width;
489 bool Signed;
490 };
491}
492
493static WidthAndSignedness
494getIntegerWidthAndSignedness(const clang::ASTContext &context,
495 const clang::QualType Type) {
496 assert(Type->isIntegerType() && "Given type is not an integer.")((Type->isIntegerType() && "Given type is not an integer."
) ? static_cast<void> (0) : __assert_fail ("Type->isIntegerType() && \"Given type is not an integer.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 496, __PRETTY_FUNCTION__))
;
497 unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
498 bool Signed = Type->isSignedIntegerType();
499 return {Width, Signed};
500}
501
502// Given one or more integer types, this function produces an integer type that
503// encompasses them: any value in one of the given types could be expressed in
504// the encompassing type.
505static struct WidthAndSignedness
506EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
507 assert(Types.size() > 0 && "Empty list of types.")((Types.size() > 0 && "Empty list of types.") ? static_cast
<void> (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 507, __PRETTY_FUNCTION__))
;
508
509 // If any of the given types is signed, we must return a signed type.
510 bool Signed = false;
511 for (const auto &Type : Types) {
512 Signed |= Type.Signed;
513 }
514
515 // The encompassing type must have a width greater than or equal to the width
516 // of the specified types. Additionally, if the encompassing type is signed,
517 // its width must be strictly greater than the width of any unsigned types
518 // given.
519 unsigned Width = 0;
520 for (const auto &Type : Types) {
521 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
522 if (Width < MinWidth) {
523 Width = MinWidth;
524 }
525 }
526
527 return {Width, Signed};
528}
529
530Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
531 llvm::Type *DestType = Int8PtrTy;
532 if (ArgValue->getType() != DestType)
533 ArgValue =
534 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
535
536 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
537 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
538}
539
540/// Checks if using the result of __builtin_object_size(p, @p From) in place of
541/// __builtin_object_size(p, @p To) is correct
542static bool areBOSTypesCompatible(int From, int To) {
543 // Note: Our __builtin_object_size implementation currently treats Type=0 and
544 // Type=2 identically. Encoding this implementation detail here may make
545 // improving __builtin_object_size difficult in the future, so it's omitted.
546 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
547}
548
549static llvm::Value *
550getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
551 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
552}
553
554llvm::Value *
555CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
556 llvm::IntegerType *ResType,
557 llvm::Value *EmittedE,
558 bool IsDynamic) {
559 uint64_t ObjectSize;
560 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
561 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
562 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
563}
564
565/// Returns a Value corresponding to the size of the given expression.
566/// This Value may be either of the following:
567/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
568/// it)
569/// - A call to the @llvm.objectsize intrinsic
570///
571/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
572/// and we wouldn't otherwise try to reference a pass_object_size parameter,
573/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
574llvm::Value *
575CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
576 llvm::IntegerType *ResType,
577 llvm::Value *EmittedE, bool IsDynamic) {
578 // We need to reference an argument if the pointer is a parameter with the
579 // pass_object_size attribute.
580 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
581 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
582 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
583 if (Param != nullptr && PS != nullptr &&
584 areBOSTypesCompatible(PS->getType(), Type)) {
585 auto Iter = SizeArguments.find(Param);
586 assert(Iter != SizeArguments.end())((Iter != SizeArguments.end()) ? static_cast<void> (0) :
__assert_fail ("Iter != SizeArguments.end()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 586, __PRETTY_FUNCTION__))
;
587
588 const ImplicitParamDecl *D = Iter->second;
589 auto DIter = LocalDeclMap.find(D);
590 assert(DIter != LocalDeclMap.end())((DIter != LocalDeclMap.end()) ? static_cast<void> (0) :
__assert_fail ("DIter != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 590, __PRETTY_FUNCTION__))
;
591
592 return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
593 getContext().getSizeType(), E->getBeginLoc());
594 }
595 }
596
597 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
598 // evaluate E for side-effects. In either case, we shouldn't lower to
599 // @llvm.objectsize.
600 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
601 return getDefaultBuiltinObjectSizeResult(Type, ResType);
602
603 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
604 assert(Ptr->getType()->isPointerTy() &&((Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 605, __PRETTY_FUNCTION__))
605 "Non-pointer passed to __builtin_object_size?")((Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 605, __PRETTY_FUNCTION__))
;
606
607 Function *F =
608 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
609
610 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
611 Value *Min = Builder.getInt1((Type & 2) != 0);
612 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
613 Value *NullIsUnknown = Builder.getTrue();
614 Value *Dynamic = Builder.getInt1(IsDynamic);
615 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
616}
617
618namespace {
619/// A struct to generically describe a bit test intrinsic.
620struct BitTest {
621 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
622 enum InterlockingKind : uint8_t {
623 Unlocked,
624 Sequential,
625 Acquire,
626 Release,
627 NoFence
628 };
629
630 ActionKind Action;
631 InterlockingKind Interlocking;
632 bool Is64Bit;
633
634 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
635};
636} // namespace
637
638BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
639 switch (BuiltinID) {
640 // Main portable variants.
641 case Builtin::BI_bittest:
642 return {TestOnly, Unlocked, false};
643 case Builtin::BI_bittestandcomplement:
644 return {Complement, Unlocked, false};
645 case Builtin::BI_bittestandreset:
646 return {Reset, Unlocked, false};
647 case Builtin::BI_bittestandset:
648 return {Set, Unlocked, false};
649 case Builtin::BI_interlockedbittestandreset:
650 return {Reset, Sequential, false};
651 case Builtin::BI_interlockedbittestandset:
652 return {Set, Sequential, false};
653
654 // X86-specific 64-bit variants.
655 case Builtin::BI_bittest64:
656 return {TestOnly, Unlocked, true};
657 case Builtin::BI_bittestandcomplement64:
658 return {Complement, Unlocked, true};
659 case Builtin::BI_bittestandreset64:
660 return {Reset, Unlocked, true};
661 case Builtin::BI_bittestandset64:
662 return {Set, Unlocked, true};
663 case Builtin::BI_interlockedbittestandreset64:
664 return {Reset, Sequential, true};
665 case Builtin::BI_interlockedbittestandset64:
666 return {Set, Sequential, true};
667
668 // ARM/AArch64-specific ordering variants.
669 case Builtin::BI_interlockedbittestandset_acq:
670 return {Set, Acquire, false};
671 case Builtin::BI_interlockedbittestandset_rel:
672 return {Set, Release, false};
673 case Builtin::BI_interlockedbittestandset_nf:
674 return {Set, NoFence, false};
675 case Builtin::BI_interlockedbittestandreset_acq:
676 return {Reset, Acquire, false};
677 case Builtin::BI_interlockedbittestandreset_rel:
678 return {Reset, Release, false};
679 case Builtin::BI_interlockedbittestandreset_nf:
680 return {Reset, NoFence, false};
681 }
682 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 682)
;
683}
684
685static char bitActionToX86BTCode(BitTest::ActionKind A) {
686 switch (A) {
687 case BitTest::TestOnly: return '\0';
688 case BitTest::Complement: return 'c';
689 case BitTest::Reset: return 'r';
690 case BitTest::Set: return 's';
691 }
692 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 692)
;
693}
694
695static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
696 BitTest BT,
697 const CallExpr *E, Value *BitBase,
698 Value *BitPos) {
699 char Action = bitActionToX86BTCode(BT.Action);
700 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
701
702 // Build the assembly.
703 SmallString<64> Asm;
704 raw_svector_ostream AsmOS(Asm);
705 if (BT.Interlocking != BitTest::Unlocked)
706 AsmOS << "lock ";
707 AsmOS << "bt";
708 if (Action)
709 AsmOS << Action;
710 AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
711
712 // Build the constraints. FIXME: We should support immediates when possible.
713 std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
714 llvm::IntegerType *IntType = llvm::IntegerType::get(
715 CGF.getLLVMContext(),
716 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
717 llvm::Type *IntPtrType = IntType->getPointerTo();
718 llvm::FunctionType *FTy =
719 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
720
721 llvm::InlineAsm *IA =
722 llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
723 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
724}
725
726static llvm::AtomicOrdering
727getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
728 switch (I) {
729 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
730 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
731 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
732 case BitTest::Release: return llvm::AtomicOrdering::Release;
733 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
734 }
735 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 735)
;
736}
737
738/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
739/// bits and a bit position and read and optionally modify the bit at that
740/// position. The position index can be arbitrarily large, i.e. it can be larger
741/// than 31 or 63, so we need an indexed load in the general case.
742static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
743 unsigned BuiltinID,
744 const CallExpr *E) {
745 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
746 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
747
748 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
749
750 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
751 // indexing operation internally. Use them if possible.
752 llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
753 if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
754 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
755
756 // Otherwise, use generic code to load one byte and test the bit. Use all but
757 // the bottom three bits as the array index, and the bottom three bits to form
758 // a mask.
759 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
760 Value *ByteIndex = CGF.Builder.CreateAShr(
761 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
762 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
763 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
764 ByteIndex, "bittest.byteaddr"),
765 CharUnits::One());
766 Value *PosLow =
767 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
768 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
769
770 // The updating instructions will need a mask.
771 Value *Mask = nullptr;
772 if (BT.Action != BitTest::TestOnly) {
773 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
774 "bittest.mask");
775 }
776
777 // Check the action and ordering of the interlocked intrinsics.
778 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
779
780 Value *OldByte = nullptr;
781 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
782 // Emit a combined atomicrmw load/store operation for the interlocked
783 // intrinsics.
784 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
785 if (BT.Action == BitTest::Reset) {
786 Mask = CGF.Builder.CreateNot(Mask);
787 RMWOp = llvm::AtomicRMWInst::And;
788 }
789 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
790 Ordering);
791 } else {
792 // Emit a plain load for the non-interlocked intrinsics.
793 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
794 Value *NewByte = nullptr;
795 switch (BT.Action) {
796 case BitTest::TestOnly:
797 // Don't store anything.
798 break;
799 case BitTest::Complement:
800 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
801 break;
802 case BitTest::Reset:
803 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
804 break;
805 case BitTest::Set:
806 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
807 break;
808 }
809 if (NewByte)
810 CGF.Builder.CreateStore(NewByte, ByteAddr);
811 }
812
813 // However we loaded the old byte, either by plain load or atomicrmw, shift
814 // the bit into the low position and mask it to 0 or 1.
815 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
816 return CGF.Builder.CreateAnd(
817 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
818}
819
820namespace {
821enum class MSVCSetJmpKind {
822 _setjmpex,
823 _setjmp3,
824 _setjmp
825};
826}
827
828/// MSVC handles setjmp a bit differently on different platforms. On every
829/// architecture except 32-bit x86, the frame address is passed. On x86, extra
830/// parameters can be passed as variadic arguments, but we always pass none.
831static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
832 const CallExpr *E) {
833 llvm::Value *Arg1 = nullptr;
834 llvm::Type *Arg1Ty = nullptr;
835 StringRef Name;
836 bool IsVarArg = false;
837 if (SJKind == MSVCSetJmpKind::_setjmp3) {
838 Name = "_setjmp3";
839 Arg1Ty = CGF.Int32Ty;
840 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
841 IsVarArg = true;
842 } else {
843 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
844 Arg1Ty = CGF.Int8PtrTy;
845 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
846 Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::sponentry));
847 } else
848 Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::frameaddress),
849 llvm::ConstantInt::get(CGF.Int32Ty, 0));
850 }
851
852 // Mark the call site and declaration with ReturnsTwice.
853 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
854 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
855 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
856 llvm::Attribute::ReturnsTwice);
857 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
858 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
859 ReturnsTwiceAttr, /*Local=*/true);
860
861 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
862 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
863 llvm::Value *Args[] = {Buf, Arg1};
864 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
865 CB->setAttributes(ReturnsTwiceAttr);
866 return RValue::get(CB);
867}
868
869// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
870// we handle them here.
871enum class CodeGenFunction::MSVCIntrin {
872 _BitScanForward,
873 _BitScanReverse,
874 _InterlockedAnd,
875 _InterlockedDecrement,
876 _InterlockedExchange,
877 _InterlockedExchangeAdd,
878 _InterlockedExchangeSub,
879 _InterlockedIncrement,
880 _InterlockedOr,
881 _InterlockedXor,
882 _InterlockedExchangeAdd_acq,
883 _InterlockedExchangeAdd_rel,
884 _InterlockedExchangeAdd_nf,
885 _InterlockedExchange_acq,
886 _InterlockedExchange_rel,
887 _InterlockedExchange_nf,
888 _InterlockedCompareExchange_acq,
889 _InterlockedCompareExchange_rel,
890 _InterlockedCompareExchange_nf,
891 _InterlockedOr_acq,
892 _InterlockedOr_rel,
893 _InterlockedOr_nf,
894 _InterlockedXor_acq,
895 _InterlockedXor_rel,
896 _InterlockedXor_nf,
897 _InterlockedAnd_acq,
898 _InterlockedAnd_rel,
899 _InterlockedAnd_nf,
900 _InterlockedIncrement_acq,
901 _InterlockedIncrement_rel,
902 _InterlockedIncrement_nf,
903 _InterlockedDecrement_acq,
904 _InterlockedDecrement_rel,
905 _InterlockedDecrement_nf,
906 __fastfail,
907};
908
909Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
910 const CallExpr *E) {
911 switch (BuiltinID) {
912 case MSVCIntrin::_BitScanForward:
913 case MSVCIntrin::_BitScanReverse: {
914 Value *ArgValue = EmitScalarExpr(E->getArg(1));
915
916 llvm::Type *ArgType = ArgValue->getType();
917 llvm::Type *IndexType =
918 EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
919 llvm::Type *ResultType = ConvertType(E->getType());
920
921 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
922 Value *ResZero = llvm::Constant::getNullValue(ResultType);
923 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
924
925 BasicBlock *Begin = Builder.GetInsertBlock();
926 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
927 Builder.SetInsertPoint(End);
928 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
929
930 Builder.SetInsertPoint(Begin);
931 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
932 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
933 Builder.CreateCondBr(IsZero, End, NotZero);
934 Result->addIncoming(ResZero, Begin);
935
936 Builder.SetInsertPoint(NotZero);
937 Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
938
939 if (BuiltinID == MSVCIntrin::_BitScanForward) {
940 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
941 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
942 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
943 Builder.CreateStore(ZeroCount, IndexAddress, false);
944 } else {
945 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
946 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
947
948 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
949 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
950 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
951 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
952 Builder.CreateStore(Index, IndexAddress, false);
953 }
954 Builder.CreateBr(End);
955 Result->addIncoming(ResOne, NotZero);
956
957 Builder.SetInsertPoint(End);
958 return Result;
959 }
960 case MSVCIntrin::_InterlockedAnd:
961 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
962 case MSVCIntrin::_InterlockedExchange:
963 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
964 case MSVCIntrin::_InterlockedExchangeAdd:
965 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
966 case MSVCIntrin::_InterlockedExchangeSub:
967 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
968 case MSVCIntrin::_InterlockedOr:
969 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
970 case MSVCIntrin::_InterlockedXor:
971 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
972 case MSVCIntrin::_InterlockedExchangeAdd_acq:
973 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
974 AtomicOrdering::Acquire);
975 case MSVCIntrin::_InterlockedExchangeAdd_rel:
976 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
977 AtomicOrdering::Release);
978 case MSVCIntrin::_InterlockedExchangeAdd_nf:
979 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
980 AtomicOrdering::Monotonic);
981 case MSVCIntrin::_InterlockedExchange_acq:
982 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
983 AtomicOrdering::Acquire);
984 case MSVCIntrin::_InterlockedExchange_rel:
985 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
986 AtomicOrdering::Release);
987 case MSVCIntrin::_InterlockedExchange_nf:
988 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
989 AtomicOrdering::Monotonic);
990 case MSVCIntrin::_InterlockedCompareExchange_acq:
991 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
992 case MSVCIntrin::_InterlockedCompareExchange_rel:
993 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
994 case MSVCIntrin::_InterlockedCompareExchange_nf:
995 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
996 case MSVCIntrin::_InterlockedOr_acq:
997 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
998 AtomicOrdering::Acquire);
999 case MSVCIntrin::_InterlockedOr_rel:
1000 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1001 AtomicOrdering::Release);
1002 case MSVCIntrin::_InterlockedOr_nf:
1003 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1004 AtomicOrdering::Monotonic);
1005 case MSVCIntrin::_InterlockedXor_acq:
1006 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1007 AtomicOrdering::Acquire);
1008 case MSVCIntrin::_InterlockedXor_rel:
1009 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1010 AtomicOrdering::Release);
1011 case MSVCIntrin::_InterlockedXor_nf:
1012 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1013 AtomicOrdering::Monotonic);
1014 case MSVCIntrin::_InterlockedAnd_acq:
1015 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1016 AtomicOrdering::Acquire);
1017 case MSVCIntrin::_InterlockedAnd_rel:
1018 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1019 AtomicOrdering::Release);
1020 case MSVCIntrin::_InterlockedAnd_nf:
1021 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1022 AtomicOrdering::Monotonic);
1023 case MSVCIntrin::_InterlockedIncrement_acq:
1024 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1025 case MSVCIntrin::_InterlockedIncrement_rel:
1026 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1027 case MSVCIntrin::_InterlockedIncrement_nf:
1028 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1029 case MSVCIntrin::_InterlockedDecrement_acq:
1030 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1031 case MSVCIntrin::_InterlockedDecrement_rel:
1032 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1033 case MSVCIntrin::_InterlockedDecrement_nf:
1034 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1035
1036 case MSVCIntrin::_InterlockedDecrement:
1037 return EmitAtomicDecrementValue(*this, E);
1038 case MSVCIntrin::_InterlockedIncrement:
1039 return EmitAtomicIncrementValue(*this, E);
1040
1041 case MSVCIntrin::__fastfail: {
1042 // Request immediate process termination from the kernel. The instruction
1043 // sequences to do this are documented on MSDN:
1044 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1045 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1046 StringRef Asm, Constraints;
1047 switch (ISA) {
1048 default:
1049 ErrorUnsupported(E, "__fastfail call for this architecture");
1050 break;
1051 case llvm::Triple::x86:
1052 case llvm::Triple::x86_64:
1053 Asm = "int $$0x29";
1054 Constraints = "{cx}";
1055 break;
1056 case llvm::Triple::thumb:
1057 Asm = "udf #251";
1058 Constraints = "{r0}";
1059 break;
1060 case llvm::Triple::aarch64:
1061 Asm = "brk #0xF003";
1062 Constraints = "{w0}";
1063 }
1064 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1065 llvm::InlineAsm *IA =
1066 llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
1067 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1068 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1069 llvm::Attribute::NoReturn);
1070 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1071 CI->setAttributes(NoReturnAttr);
1072 return CI;
1073 }
1074 }
1075 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1075)
;
1076}
1077
1078namespace {
1079// ARC cleanup for __builtin_os_log_format
1080struct CallObjCArcUse final : EHScopeStack::Cleanup {
1081 CallObjCArcUse(llvm::Value *object) : object(object) {}
1082 llvm::Value *object;
1083
1084 void Emit(CodeGenFunction &CGF, Flags flags) override {
1085 CGF.EmitARCIntrinsicUse(object);
1086 }
1087};
1088}
1089
1090Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1091 BuiltinCheckKind Kind) {
1092 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) &&
"Unsupported builtin check kind") ? static_cast<void> (
0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1093, __PRETTY_FUNCTION__))
1093 && "Unsupported builtin check kind")(((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) &&
"Unsupported builtin check kind") ? static_cast<void> (
0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1093, __PRETTY_FUNCTION__))
;
1094
1095 Value *ArgValue = EmitScalarExpr(E);
1096 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1097 return ArgValue;
1098
1099 SanitizerScope SanScope(this);
1100 Value *Cond = Builder.CreateICmpNE(
1101 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1102 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1103 SanitizerHandler::InvalidBuiltin,
1104 {EmitCheckSourceLocation(E->getExprLoc()),
1105 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1106 None);
1107 return ArgValue;
1108}
1109
1110/// Get the argument type for arguments to os_log_helper.
1111static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1112 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1113 return C.getCanonicalType(UnsignedTy);
1114}
1115
1116llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1117 const analyze_os_log::OSLogBufferLayout &Layout,
1118 CharUnits BufferAlignment) {
1119 ASTContext &Ctx = getContext();
1120
1121 llvm::SmallString<64> Name;
1122 {
1123 raw_svector_ostream OS(Name);
1124 OS << "__os_log_helper";
1125 OS << "_" << BufferAlignment.getQuantity();
1126 OS << "_" << int(Layout.getSummaryByte());
1127 OS << "_" << int(Layout.getNumArgsByte());
1128 for (const auto &Item : Layout.Items)
1129 OS << "_" << int(Item.getSizeByte()) << "_"
1130 << int(Item.getDescriptorByte());
1131 }
1132
1133 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1134 return F;
1135
1136 llvm::SmallVector<QualType, 4> ArgTys;
1137 FunctionArgList Args;
1138 Args.push_back(ImplicitParamDecl::Create(
1139 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1140 ImplicitParamDecl::Other));
1141 ArgTys.emplace_back(Ctx.VoidPtrTy);
1142
1143 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1144 char Size = Layout.Items[I].getSizeByte();
1145 if (!Size)
1146 continue;
1147
1148 QualType ArgTy = getOSLogArgType(Ctx, Size);
1149 Args.push_back(ImplicitParamDecl::Create(
1150 Ctx, nullptr, SourceLocation(),
1151 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1152 ImplicitParamDecl::Other));
1153 ArgTys.emplace_back(ArgTy);
1154 }
1155
1156 QualType ReturnTy = Ctx.VoidTy;
1157 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1158
1159 // The helper function has linkonce_odr linkage to enable the linker to merge
1160 // identical functions. To ensure the merging always happens, 'noinline' is
1161 // attached to the function when compiling with -Oz.
1162 const CGFunctionInfo &FI =
1163 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1164 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1165 llvm::Function *Fn = llvm::Function::Create(
1166 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1167 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1168 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1169 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1170 Fn->setDoesNotThrow();
1171
1172 // Attach 'noinline' at -Oz.
1173 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1174 Fn->addFnAttr(llvm::Attribute::NoInline);
1175
1176 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1177 IdentifierInfo *II = &Ctx.Idents.get(Name);
1178 FunctionDecl *FD = FunctionDecl::Create(
1179 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1180 FuncionTy, nullptr, SC_PrivateExtern, false, false);
1181
1182 StartFunction(FD, ReturnTy, Fn, FI, Args);
1183
1184 // Create a scope with an artificial location for the body of this function.
1185 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1186
1187 CharUnits Offset;
1188 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1189 BufferAlignment);
1190 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1191 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1192 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1193 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1194
1195 unsigned I = 1;
1196 for (const auto &Item : Layout.Items) {
1197 Builder.CreateStore(
1198 Builder.getInt8(Item.getDescriptorByte()),
1199 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1200 Builder.CreateStore(
1201 Builder.getInt8(Item.getSizeByte()),
1202 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1203
1204 CharUnits Size = Item.size();
1205 if (!Size.getQuantity())
1206 continue;
1207
1208 Address Arg = GetAddrOfLocalVar(Args[I]);
1209 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1210 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1211 "argDataCast");
1212 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1213 Offset += Size;
1214 ++I;
1215 }
1216
1217 FinishFunction();
1218
1219 return Fn;
1220}
1221
1222RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1223 assert(E.getNumArgs() >= 2 &&((E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1224, __PRETTY_FUNCTION__))
1224 "__builtin_os_log_format takes at least 2 arguments")((E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1224, __PRETTY_FUNCTION__))
;
1225 ASTContext &Ctx = getContext();
1226 analyze_os_log::OSLogBufferLayout Layout;
1227 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1228 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1229 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1230
1231 // Ignore argument 1, the format string. It is not currently used.
1232 CallArgList Args;
1233 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1234
1235 for (const auto &Item : Layout.Items) {
1236 int Size = Item.getSizeByte();
1237 if (!Size)
1238 continue;
1239
1240 llvm::Value *ArgVal;
1241
1242 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1243 uint64_t Val = 0;
1244 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1245 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1246 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1247 } else if (const Expr *TheExpr = Item.getExpr()) {
1248 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1249
1250 // Check if this is a retainable type.
1251 if (TheExpr->getType()->isObjCRetainableType()) {
1252 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&((getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type") ? static_cast<
void> (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1253, __PRETTY_FUNCTION__))
1253 "Only scalar can be a ObjC retainable type")((getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type") ? static_cast<
void> (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1253, __PRETTY_FUNCTION__))
;
1254 // Check if the object is constant, if not, save it in
1255 // RetainableOperands.
1256 if (!isa<Constant>(ArgVal))
1257 RetainableOperands.push_back(ArgVal);
1258 }
1259 } else {
1260 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1261 }
1262
1263 unsigned ArgValSize =
1264 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1265 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1266 ArgValSize);
1267 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1268 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1269 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1270 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1271 Args.add(RValue::get(ArgVal), ArgTy);
1272 }
1273
1274 const CGFunctionInfo &FI =
1275 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1276 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1277 Layout, BufAddr.getAlignment());
1278 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1279
1280 // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1281 // cleanup will cause the use to appear after the final log call, keeping
1282 // the object valid while it’s held in the log buffer. Note that if there’s
1283 // a release cleanup on the object, it will already be active; since
1284 // cleanups are emitted in reverse order, the use will occur before the
1285 // object is released.
1286 if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1287 CGM.getCodeGenOpts().OptimizationLevel != 0)
1288 for (llvm::Value *Object : RetainableOperands)
1289 pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1290
1291 return RValue::get(BufAddr.getPointer());
1292}
1293
1294/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1295static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1296 WidthAndSignedness Op1Info,
1297 WidthAndSignedness Op2Info,
1298 WidthAndSignedness ResultInfo) {
1299 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1300 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1301 Op1Info.Signed != Op2Info.Signed;
1302}
1303
1304/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1305/// the generic checked-binop irgen.
1306static RValue
1307EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1308 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1309 WidthAndSignedness Op2Info,
1310 const clang::Expr *ResultArg, QualType ResultQTy,
1311 WidthAndSignedness ResultInfo) {
1312 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1314, __PRETTY_FUNCTION__))
1313 Op2Info, ResultInfo) &&((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1314, __PRETTY_FUNCTION__))
1314 "Not a mixed-sign multipliction we can specialize")((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1314, __PRETTY_FUNCTION__))
;
1315
1316 // Emit the signed and unsigned operands.
1317 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1318 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1319 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1320 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1321 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1322 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1323
1324 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1325 if (SignedOpWidth < UnsignedOpWidth)
1326 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1327 if (UnsignedOpWidth < SignedOpWidth)
1328 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1329
1330 llvm::Type *OpTy = Signed->getType();
1331 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1332 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1333 llvm::Type *ResTy = ResultPtr.getElementType();
1334 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1335
1336 // Take the absolute value of the signed operand.
1337 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1338 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1339 llvm::Value *AbsSigned =
1340 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1341
1342 // Perform a checked unsigned multiplication.
1343 llvm::Value *UnsignedOverflow;
1344 llvm::Value *UnsignedResult =
1345 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1346 Unsigned, UnsignedOverflow);
1347
1348 llvm::Value *Overflow, *Result;
1349 if (ResultInfo.Signed) {
1350 // Signed overflow occurs if the result is greater than INT_MAX or lesser
1351 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1352 auto IntMax =
1353 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1354 llvm::Value *MaxResult =
1355 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1356 CGF.Builder.CreateZExt(IsNegative, OpTy));
1357 llvm::Value *SignedOverflow =
1358 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1359 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1360
1361 // Prepare the signed result (possibly by negating it).
1362 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1363 llvm::Value *SignedResult =
1364 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1365 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1366 } else {
1367 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1368 llvm::Value *Underflow = CGF.Builder.CreateAnd(
1369 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1370 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1371 if (ResultInfo.Width < OpWidth) {
1372 auto IntMax =
1373 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1374 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1375 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1376 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1377 }
1378
1379 // Negate the product if it would be negative in infinite precision.
1380 Result = CGF.Builder.CreateSelect(
1381 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1382
1383 Result = CGF.Builder.CreateTrunc(Result, ResTy);
1384 }
1385 assert(Overflow && Result && "Missing overflow or result")((Overflow && Result && "Missing overflow or result"
) ? static_cast<void> (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1385, __PRETTY_FUNCTION__))
;
1386
1387 bool isVolatile =
1388 ResultArg->getType()->getPointeeType().isVolatileQualified();
1389 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1390 isVolatile);
1391 return RValue::get(Overflow);
1392}
1393
1394static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1395 Value *&RecordPtr, CharUnits Align,
1396 llvm::FunctionCallee Func, int Lvl) {
1397 const auto *RT = RType->getAs<RecordType>();
1398 ASTContext &Context = CGF.getContext();
1399 RecordDecl *RD = RT->getDecl()->getDefinition();
1400 std::string Pad = std::string(Lvl * 4, ' ');
1401
1402 Value *GString =
1403 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1404 Value *Res = CGF.Builder.CreateCall(Func, {GString});
1405
1406 static llvm::DenseMap<QualType, const char *> Types;
1407 if (Types.empty()) {
1408 Types[Context.CharTy] = "%c";
1409 Types[Context.BoolTy] = "%d";
1410 Types[Context.SignedCharTy] = "%hhd";
1411 Types[Context.UnsignedCharTy] = "%hhu";
1412 Types[Context.IntTy] = "%d";
1413 Types[Context.UnsignedIntTy] = "%u";
1414 Types[Context.LongTy] = "%ld";
1415 Types[Context.UnsignedLongTy] = "%lu";
1416 Types[Context.LongLongTy] = "%lld";
1417 Types[Context.UnsignedLongLongTy] = "%llu";
1418 Types[Context.ShortTy] = "%hd";
1419 Types[Context.UnsignedShortTy] = "%hu";
1420 Types[Context.VoidPtrTy] = "%p";
1421 Types[Context.FloatTy] = "%f";
1422 Types[Context.DoubleTy] = "%f";
1423 Types[Context.LongDoubleTy] = "%Lf";
1424 Types[Context.getPointerType(Context.CharTy)] = "%s";
1425 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1426 }
1427
1428 for (const auto *FD : RD->fields()) {
1429 Value *FieldPtr = RecordPtr;
1430 if (RD->isUnion())
1431 FieldPtr = CGF.Builder.CreatePointerCast(
1432 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1433 else
1434 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1435 FD->getFieldIndex());
1436
1437 GString = CGF.Builder.CreateGlobalStringPtr(
1438 llvm::Twine(Pad)
1439 .concat(FD->getType().getAsString())
1440 .concat(llvm::Twine(' '))
1441 .concat(FD->getNameAsString())
1442 .concat(" : ")
1443 .str());
1444 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1445 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1446
1447 QualType CanonicalType =
1448 FD->getType().getUnqualifiedType().getCanonicalType();
1449
1450 // We check whether we are in a recursive type
1451 if (CanonicalType->isRecordType()) {
1452 Value *TmpRes =
1453 dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1454 Res = CGF.Builder.CreateAdd(TmpRes, Res);
1455 continue;
1456 }
1457
1458 // We try to determine the best format to print the current field
1459 llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1460 ? Types[Context.VoidPtrTy]
1461 : Types[CanonicalType];
1462
1463 Address FieldAddress = Address(FieldPtr, Align);
1464 FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1465
1466 // FIXME Need to handle bitfield here
1467 GString = CGF.Builder.CreateGlobalStringPtr(
1468 Format.concat(llvm::Twine('\n')).str());
1469 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1470 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1471 }
1472
1473 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1474 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1475 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1476 return Res;
1477}
1478
1479static bool
1480TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1481 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1482 if (const auto *Arr = Ctx.getAsArrayType(Ty))
1483 Ty = Ctx.getBaseElementType(Arr);
1484
1485 const auto *Record = Ty->getAsCXXRecordDecl();
1486 if (!Record)
1487 return false;
1488
1489 // We've already checked this type, or are in the process of checking it.
1490 if (!Seen.insert(Record).second)
1491 return false;
1492
1493 assert(Record->hasDefinition() &&((Record->hasDefinition() && "Incomplete types should already be diagnosed"
) ? static_cast<void> (0) : __assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1494, __PRETTY_FUNCTION__))
1494 "Incomplete types should already be diagnosed")((Record->hasDefinition() && "Incomplete types should already be diagnosed"
) ? static_cast<void> (0) : __assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1494, __PRETTY_FUNCTION__))
;
1495
1496 if (Record->isDynamicClass())
1497 return true;
1498
1499 for (FieldDecl *F : Record->fields()) {
1500 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1501 return true;
1502 }
1503 return false;
1504}
1505
1506/// Determine if the specified type requires laundering by checking if it is a
1507/// dynamic class type or contains a subobject which is a dynamic class type.
1508static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1509 if (!CGM.getCodeGenOpts().StrictVTablePointers)
1510 return false;
1511 llvm::SmallPtrSet<const Decl *, 16> Seen;
1512 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1513}
1514
1515RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1516 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1517 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1518
1519 // The builtin's shift arg may have a different type than the source arg and
1520 // result, but the LLVM intrinsic uses the same type for all values.
1521 llvm::Type *Ty = Src->getType();
1522 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1523
1524 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1525 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1526 Function *F = CGM.getIntrinsic(IID, Ty);
1527 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1528}
1529
1530RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1531 const CallExpr *E,
1532 ReturnValueSlot ReturnValue) {
1533 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1534 // See if we can constant fold this builtin. If so, don't emit it at all.
1535 Expr::EvalResult Result;
1536 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1537 !Result.hasSideEffects()) {
1538 if (Result.Val.isInt())
1539 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1540 Result.Val.getInt()));
1541 if (Result.Val.isFloat())
1542 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1543 Result.Val.getFloat()));
1544 }
1545
1546 // There are LLVM math intrinsics/instructions corresponding to math library
1547 // functions except the LLVM op will never set errno while the math library
1548 // might. Also, math builtins have the same semantics as their math library
1549 // twins. Thus, we can transform math library and builtin calls to their
1550 // LLVM counterparts if the call is marked 'const' (known to never set errno).
1551 if (FD->hasAttr<ConstAttr>()) {
1552 switch (BuiltinID) {
1553 case Builtin::BIceil:
1554 case Builtin::BIceilf:
1555 case Builtin::BIceill:
1556 case Builtin::BI__builtin_ceil:
1557 case Builtin::BI__builtin_ceilf:
1558 case Builtin::BI__builtin_ceill:
1559 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
1560
1561 case Builtin::BIcopysign:
1562 case Builtin::BIcopysignf:
1563 case Builtin::BIcopysignl:
1564 case Builtin::BI__builtin_copysign:
1565 case Builtin::BI__builtin_copysignf:
1566 case Builtin::BI__builtin_copysignl:
1567 case Builtin::BI__builtin_copysignf128:
1568 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1569
1570 case Builtin::BIcos:
1571 case Builtin::BIcosf:
1572 case Builtin::BIcosl:
1573 case Builtin::BI__builtin_cos:
1574 case Builtin::BI__builtin_cosf:
1575 case Builtin::BI__builtin_cosl:
1576 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
1577
1578 case Builtin::BIexp:
1579 case Builtin::BIexpf:
1580 case Builtin::BIexpl:
1581 case Builtin::BI__builtin_exp:
1582 case Builtin::BI__builtin_expf:
1583 case Builtin::BI__builtin_expl:
1584 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
1585
1586 case Builtin::BIexp2:
1587 case Builtin::BIexp2f:
1588 case Builtin::BIexp2l:
1589 case Builtin::BI__builtin_exp2:
1590 case Builtin::BI__builtin_exp2f:
1591 case Builtin::BI__builtin_exp2l:
1592 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
1593
1594 case Builtin::BIfabs:
1595 case Builtin::BIfabsf:
1596 case Builtin::BIfabsl:
1597 case Builtin::BI__builtin_fabs:
1598 case Builtin::BI__builtin_fabsf:
1599 case Builtin::BI__builtin_fabsl:
1600 case Builtin::BI__builtin_fabsf128:
1601 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1602
1603 case Builtin::BIfloor:
1604 case Builtin::BIfloorf:
1605 case Builtin::BIfloorl:
1606 case Builtin::BI__builtin_floor:
1607 case Builtin::BI__builtin_floorf:
1608 case Builtin::BI__builtin_floorl:
1609 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1610
1611 case Builtin::BIfma:
1612 case Builtin::BIfmaf:
1613 case Builtin::BIfmal:
1614 case Builtin::BI__builtin_fma:
1615 case Builtin::BI__builtin_fmaf:
1616 case Builtin::BI__builtin_fmal:
1617 return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1618
1619 case Builtin::BIfmax:
1620 case Builtin::BIfmaxf:
1621 case Builtin::BIfmaxl:
1622 case Builtin::BI__builtin_fmax:
1623 case Builtin::BI__builtin_fmaxf:
1624 case Builtin::BI__builtin_fmaxl:
1625 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1626
1627 case Builtin::BIfmin:
1628 case Builtin::BIfminf:
1629 case Builtin::BIfminl:
1630 case Builtin::BI__builtin_fmin:
1631 case Builtin::BI__builtin_fminf:
1632 case Builtin::BI__builtin_fminl:
1633 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1634
1635 // fmod() is a special-case. It maps to the frem instruction rather than an
1636 // LLVM intrinsic.
1637 case Builtin::BIfmod:
1638 case Builtin::BIfmodf:
1639 case Builtin::BIfmodl:
1640 case Builtin::BI__builtin_fmod:
1641 case Builtin::BI__builtin_fmodf:
1642 case Builtin::BI__builtin_fmodl: {
1643 Value *Arg1 = EmitScalarExpr(E->getArg(0));
1644 Value *Arg2 = EmitScalarExpr(E->getArg(1));
1645 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1646 }
1647
1648 case Builtin::BIlog:
1649 case Builtin::BIlogf:
1650 case Builtin::BIlogl:
1651 case Builtin::BI__builtin_log:
1652 case Builtin::BI__builtin_logf:
1653 case Builtin::BI__builtin_logl:
1654 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1655
1656 case Builtin::BIlog10:
1657 case Builtin::BIlog10f:
1658 case Builtin::BIlog10l:
1659 case Builtin::BI__builtin_log10:
1660 case Builtin::BI__builtin_log10f:
1661 case Builtin::BI__builtin_log10l:
1662 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1663
1664 case Builtin::BIlog2:
1665 case Builtin::BIlog2f:
1666 case Builtin::BIlog2l:
1667 case Builtin::BI__builtin_log2:
1668 case Builtin::BI__builtin_log2f:
1669 case Builtin::BI__builtin_log2l:
1670 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1671
1672 case Builtin::BInearbyint:
1673 case Builtin::BInearbyintf:
1674 case Builtin::BInearbyintl:
1675 case Builtin::BI__builtin_nearbyint:
1676 case Builtin::BI__builtin_nearbyintf:
1677 case Builtin::BI__builtin_nearbyintl:
1678 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1679
1680 case Builtin::BIpow:
1681 case Builtin::BIpowf:
1682 case Builtin::BIpowl:
1683 case Builtin::BI__builtin_pow:
1684 case Builtin::BI__builtin_powf:
1685 case Builtin::BI__builtin_powl:
1686 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1687
1688 case Builtin::BIrint:
1689 case Builtin::BIrintf:
1690 case Builtin::BIrintl:
1691 case Builtin::BI__builtin_rint:
1692 case Builtin::BI__builtin_rintf:
1693 case Builtin::BI__builtin_rintl:
1694 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1695
1696 case Builtin::BIround:
1697 case Builtin::BIroundf:
1698 case Builtin::BIroundl:
1699 case Builtin::BI__builtin_round:
1700 case Builtin::BI__builtin_roundf:
1701 case Builtin::BI__builtin_roundl:
1702 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1703
1704 case Builtin::BIsin:
1705 case Builtin::BIsinf:
1706 case Builtin::BIsinl:
1707 case Builtin::BI__builtin_sin:
1708 case Builtin::BI__builtin_sinf:
1709 case Builtin::BI__builtin_sinl:
1710 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1711
1712 case Builtin::BIsqrt:
1713 case Builtin::BIsqrtf:
1714 case Builtin::BIsqrtl:
1715 case Builtin::BI__builtin_sqrt:
1716 case Builtin::BI__builtin_sqrtf:
1717 case Builtin::BI__builtin_sqrtl:
1718 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1719
1720 case Builtin::BItrunc:
1721 case Builtin::BItruncf:
1722 case Builtin::BItruncl:
1723 case Builtin::BI__builtin_trunc:
1724 case Builtin::BI__builtin_truncf:
1725 case Builtin::BI__builtin_truncl:
1726 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1727
1728 case Builtin::BIlround:
1729 case Builtin::BIlroundf:
1730 case Builtin::BIlroundl:
1731 case Builtin::BI__builtin_lround:
1732 case Builtin::BI__builtin_lroundf:
1733 case Builtin::BI__builtin_lroundl:
1734 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
1735
1736 case Builtin::BIllround:
1737 case Builtin::BIllroundf:
1738 case Builtin::BIllroundl:
1739 case Builtin::BI__builtin_llround:
1740 case Builtin::BI__builtin_llroundf:
1741 case Builtin::BI__builtin_llroundl:
1742 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
1743
1744 case Builtin::BIlrint:
1745 case Builtin::BIlrintf:
1746 case Builtin::BIlrintl:
1747 case Builtin::BI__builtin_lrint:
1748 case Builtin::BI__builtin_lrintf:
1749 case Builtin::BI__builtin_lrintl:
1750 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
1751
1752 case Builtin::BIllrint:
1753 case Builtin::BIllrintf:
1754 case Builtin::BIllrintl:
1755 case Builtin::BI__builtin_llrint:
1756 case Builtin::BI__builtin_llrintf:
1757 case Builtin::BI__builtin_llrintl:
1758 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
1759
1760 default:
1761 break;
1762 }
1763 }
1764
1765 switch (BuiltinID) {
1766 default: break;
1767 case Builtin::BI__builtin___CFStringMakeConstantString:
1768 case Builtin::BI__builtin___NSStringMakeConstantString:
1769 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1770 case Builtin::BI__builtin_stdarg_start:
1771 case Builtin::BI__builtin_va_start:
1772 case Builtin::BI__va_start:
1773 case Builtin::BI__builtin_va_end:
1774 return RValue::get(
1775 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1776 ? EmitScalarExpr(E->getArg(0))
1777 : EmitVAListRef(E->getArg(0)).getPointer(),
1778 BuiltinID != Builtin::BI__builtin_va_end));
1779 case Builtin::BI__builtin_va_copy: {
1780 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1781 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1782
1783 llvm::Type *Type = Int8PtrTy;
1784
1785 DstPtr = Builder.CreateBitCast(DstPtr, Type);
1786 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1787 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1788 {DstPtr, SrcPtr}));
1789 }
1790 case Builtin::BI__builtin_abs:
1791 case Builtin::BI__builtin_labs:
1792 case Builtin::BI__builtin_llabs: {
1793 // X < 0 ? -X : X
1794 // The negation has 'nsw' because abs of INT_MIN is undefined.
1795 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1796 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1797 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1798 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1799 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1800 return RValue::get(Result);
1801 }
1802 case Builtin::BI__builtin_conj:
1803 case Builtin::BI__builtin_conjf:
1804 case Builtin::BI__builtin_conjl: {
1805 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1806 Value *Real = ComplexVal.first;
1807 Value *Imag = ComplexVal.second;
1808 Value *Zero =
1809 Imag->getType()->isFPOrFPVectorTy()
1810 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1811 : llvm::Constant::getNullValue(Imag->getType());
1812
1813 Imag = Builder.CreateFSub(Zero, Imag, "sub");
1814 return RValue::getComplex(std::make_pair(Real, Imag));
1815 }
1816 case Builtin::BI__builtin_creal:
1817 case Builtin::BI__builtin_crealf:
1818 case Builtin::BI__builtin_creall:
1819 case Builtin::BIcreal:
1820 case Builtin::BIcrealf:
1821 case Builtin::BIcreall: {
1822 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1823 return RValue::get(ComplexVal.first);
1824 }
1825
1826 case Builtin::BI__builtin_dump_struct: {
1827 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
1828 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
1829 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
1830
1831 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1832 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1833
1834 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1835 QualType Arg0Type = Arg0->getType()->getPointeeType();
1836
1837 Value *RecordPtr = EmitScalarExpr(Arg0);
1838 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
1839 {LLVMFuncType, Func}, 0);
1840 return RValue::get(Res);
1841 }
1842
1843 case Builtin::BI__builtin_cimag:
1844 case Builtin::BI__builtin_cimagf:
1845 case Builtin::BI__builtin_cimagl:
1846 case Builtin::BIcimag:
1847 case Builtin::BIcimagf:
1848 case Builtin::BIcimagl: {
1849 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1850 return RValue::get(ComplexVal.second);
1851 }
1852
1853 case Builtin::BI__builtin_clrsb:
1854 case Builtin::BI__builtin_clrsbl:
1855 case Builtin::BI__builtin_clrsbll: {
1856 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
1857 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1858
1859 llvm::Type *ArgType = ArgValue->getType();
1860 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1861
1862 llvm::Type *ResultType = ConvertType(E->getType());
1863 Value *Zero = llvm::Constant::getNullValue(ArgType);
1864 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
1865 Value *Inverse = Builder.CreateNot(ArgValue, "not");
1866 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
1867 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
1868 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
1869 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1870 "cast");
1871 return RValue::get(Result);
1872 }
1873 case Builtin::BI__builtin_ctzs:
1874 case Builtin::BI__builtin_ctz:
1875 case Builtin::BI__builtin_ctzl:
1876 case Builtin::BI__builtin_ctzll: {
1877 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1878
1879 llvm::Type *ArgType = ArgValue->getType();
1880 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1881
1882 llvm::Type *ResultType = ConvertType(E->getType());
1883 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1884 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1885 if (Result->getType() != ResultType)
1886 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1887 "cast");
1888 return RValue::get(Result);
1889 }
1890 case Builtin::BI__builtin_clzs:
1891 case Builtin::BI__builtin_clz:
1892 case Builtin::BI__builtin_clzl:
1893 case Builtin::BI__builtin_clzll: {
1894 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1895
1896 llvm::Type *ArgType = ArgValue->getType();
1897 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1898
1899 llvm::Type *ResultType = ConvertType(E->getType());
1900 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1901 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1902 if (Result->getType() != ResultType)
1903 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1904 "cast");
1905 return RValue::get(Result);
1906 }
1907 case Builtin::BI__builtin_ffs:
1908 case Builtin::BI__builtin_ffsl:
1909 case Builtin::BI__builtin_ffsll: {
1910 // ffs(x) -> x ? cttz(x) + 1 : 0
1911 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1912
1913 llvm::Type *ArgType = ArgValue->getType();
1914 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1915
1916 llvm::Type *ResultType = ConvertType(E->getType());
1917 Value *Tmp =
1918 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1919 llvm::ConstantInt::get(ArgType, 1));
1920 Value *Zero = llvm::Constant::getNullValue(ArgType);
1921 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1922 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1923 if (Result->getType() != ResultType)
1924 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1925 "cast");
1926 return RValue::get(Result);
1927 }
1928 case Builtin::BI__builtin_parity:
1929 case Builtin::BI__builtin_parityl:
1930 case Builtin::BI__builtin_parityll: {
1931 // parity(x) -> ctpop(x) & 1
1932 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1933
1934 llvm::Type *ArgType = ArgValue->getType();
1935 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1936
1937 llvm::Type *ResultType = ConvertType(E->getType());
1938 Value *Tmp = Builder.CreateCall(F, ArgValue);
1939 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1940 if (Result->getType() != ResultType)
1941 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1942 "cast");
1943 return RValue::get(Result);
1944 }
1945 case Builtin::BI__lzcnt16:
1946 case Builtin::BI__lzcnt:
1947 case Builtin::BI__lzcnt64: {
1948 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1949
1950 llvm::Type *ArgType = ArgValue->getType();
1951 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1952
1953 llvm::Type *ResultType = ConvertType(E->getType());
1954 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
1955 if (Result->getType() != ResultType)
1956 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1957 "cast");
1958 return RValue::get(Result);
1959 }
1960 case Builtin::BI__popcnt16:
1961 case Builtin::BI__popcnt:
1962 case Builtin::BI__popcnt64:
1963 case Builtin::BI__builtin_popcount:
1964 case Builtin::BI__builtin_popcountl:
1965 case Builtin::BI__builtin_popcountll: {
1966 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1967
1968 llvm::Type *ArgType = ArgValue->getType();
1969 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1970
1971 llvm::Type *ResultType = ConvertType(E->getType());
1972 Value *Result = Builder.CreateCall(F, ArgValue);
1973 if (Result->getType() != ResultType)
1974 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1975 "cast");
1976 return RValue::get(Result);
1977 }
1978 case Builtin::BI__builtin_unpredictable: {
1979 // Always return the argument of __builtin_unpredictable. LLVM does not
1980 // handle this builtin. Metadata for this builtin should be added directly
1981 // to instructions such as branches or switches that use it.
1982 return RValue::get(EmitScalarExpr(E->getArg(0)));
1983 }
1984 case Builtin::BI__builtin_expect: {
1985 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1986 llvm::Type *ArgType = ArgValue->getType();
1987
1988 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
1989 // Don't generate llvm.expect on -O0 as the backend won't use it for
1990 // anything.
1991 // Note, we still IRGen ExpectedValue because it could have side-effects.
1992 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1993 return RValue::get(ArgValue);
1994
1995 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
1996 Value *Result =
1997 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
1998 return RValue::get(Result);
1999 }
2000 case Builtin::BI__builtin_assume_aligned: {
2001 const Expr *Ptr = E->getArg(0);
2002 Value *PtrValue = EmitScalarExpr(Ptr);
2003 Value *OffsetValue =
2004 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2005
2006 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2007 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2008 unsigned Alignment = (unsigned)AlignmentCI->getZExtValue();
2009
2010 EmitAlignmentAssumption(PtrValue, Ptr,
2011 /*The expr loc is sufficient.*/ SourceLocation(),
2012 Alignment, OffsetValue);
2013 return RValue::get(PtrValue);
2014 }
2015 case Builtin::BI__assume:
2016 case Builtin::BI__builtin_assume: {
2017 if (E->getArg(0)->HasSideEffects(getContext()))
2018 return RValue::get(nullptr);
2019
2020 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2021 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2022 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2023 }
2024 case Builtin::BI__builtin_bswap16:
2025 case Builtin::BI__builtin_bswap32:
2026 case Builtin::BI__builtin_bswap64: {
2027 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2028 }
2029 case Builtin::BI__builtin_bitreverse8:
2030 case Builtin::BI__builtin_bitreverse16:
2031 case Builtin::BI__builtin_bitreverse32:
2032 case Builtin::BI__builtin_bitreverse64: {
2033 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2034 }
2035 case Builtin::BI__builtin_rotateleft8:
2036 case Builtin::BI__builtin_rotateleft16:
2037 case Builtin::BI__builtin_rotateleft32:
2038 case Builtin::BI__builtin_rotateleft64:
2039 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2040 case Builtin::BI_rotl16:
2041 case Builtin::BI_rotl:
2042 case Builtin::BI_lrotl:
2043 case Builtin::BI_rotl64:
2044 return emitRotate(E, false);
2045
2046 case Builtin::BI__builtin_rotateright8:
2047 case Builtin::BI__builtin_rotateright16:
2048 case Builtin::BI__builtin_rotateright32:
2049 case Builtin::BI__builtin_rotateright64:
2050 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2051 case Builtin::BI_rotr16:
2052 case Builtin::BI_rotr:
2053 case Builtin::BI_lrotr:
2054 case Builtin::BI_rotr64:
2055 return emitRotate(E, true);
2056
2057 case Builtin::BI__builtin_constant_p: {
2058 llvm::Type *ResultType = ConvertType(E->getType());
2059 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2060 // At -O0, we don't perform inlining, so we don't need to delay the
2061 // processing.
2062 return RValue::get(ConstantInt::get(ResultType, 0));
2063
2064 const Expr *Arg = E->getArg(0);
2065 QualType ArgType = Arg->getType();
2066 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2067 // and likely a mistake.
2068 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2069 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2070 // Per the GCC documentation, only numeric constants are recognized after
2071 // inlining.
2072 return RValue::get(ConstantInt::get(ResultType, 0));
2073
2074 if (Arg->HasSideEffects(getContext()))
2075 // The argument is unevaluated, so be conservative if it might have
2076 // side-effects.
2077 return RValue::get(ConstantInt::get(ResultType, 0));
2078
2079 Value *ArgValue = EmitScalarExpr(Arg);
2080 if (ArgType->isObjCObjectPointerType()) {
2081 // Convert Objective-C objects to id because we cannot distinguish between
2082 // LLVM types for Obj-C classes as they are opaque.
2083 ArgType = CGM.getContext().getObjCIdType();
2084 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2085 }
2086 Function *F =
2087 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2088 Value *Result = Builder.CreateCall(F, ArgValue);
2089 if (Result->getType() != ResultType)
2090 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2091 return RValue::get(Result);
2092 }
2093 case Builtin::BI__builtin_dynamic_object_size:
2094 case Builtin::BI__builtin_object_size: {
2095 unsigned Type =
2096 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2097 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2098
2099 // We pass this builtin onto the optimizer so that it can figure out the
2100 // object size in more complex cases.
2101 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2102 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2103 /*EmittedE=*/nullptr, IsDynamic));
2104 }
2105 case Builtin::BI__builtin_prefetch: {
2106 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2107 // FIXME: Technically these constants should of type 'int', yes?
2108 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2109 llvm::ConstantInt::get(Int32Ty, 0);
2110 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2111 llvm::ConstantInt::get(Int32Ty, 3);
2112 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2113 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
2114 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2115 }
2116 case Builtin::BI__builtin_readcyclecounter: {
2117 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2118 return RValue::get(Builder.CreateCall(F));
2119 }
2120 case Builtin::BI__builtin___clear_cache: {
2121 Value *Begin = EmitScalarExpr(E->getArg(0));
2122 Value *End = EmitScalarExpr(E->getArg(1));
2123 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2124 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2125 }
2126 case Builtin::BI__builtin_trap:
2127 return RValue::get(EmitTrapCall(Intrinsic::trap));
2128 case Builtin::BI__debugbreak:
2129 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2130 case Builtin::BI__builtin_unreachable: {
2131 EmitUnreachable(E->getExprLoc());
2132
2133 // We do need to preserve an insertion point.
2134 EmitBlock(createBasicBlock("unreachable.cont"));
2135
2136 return RValue::get(nullptr);
2137 }
2138
2139 case Builtin::BI__builtin_powi:
2140 case Builtin::BI__builtin_powif:
2141 case Builtin::BI__builtin_powil: {
2142 Value *Base = EmitScalarExpr(E->getArg(0));
2143 Value *Exponent = EmitScalarExpr(E->getArg(1));
2144 llvm::Type *ArgType = Base->getType();
2145 Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2146 return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
2147 }
2148
2149 case Builtin::BI__builtin_isgreater:
2150 case Builtin::BI__builtin_isgreaterequal:
2151 case Builtin::BI__builtin_isless:
2152 case Builtin::BI__builtin_islessequal:
2153 case Builtin::BI__builtin_islessgreater:
2154 case Builtin::BI__builtin_isunordered: {
2155 // Ordered comparisons: we know the arguments to these are matching scalar
2156 // floating point values.
2157 Value *LHS = EmitScalarExpr(E->getArg(0));
2158 Value *RHS = EmitScalarExpr(E->getArg(1));
2159
2160 switch (BuiltinID) {
2161 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2161)
;
2162 case Builtin::BI__builtin_isgreater:
2163 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2164 break;
2165 case Builtin::BI__builtin_isgreaterequal:
2166 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2167 break;
2168 case Builtin::BI__builtin_isless:
2169 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2170 break;
2171 case Builtin::BI__builtin_islessequal:
2172 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2173 break;
2174 case Builtin::BI__builtin_islessgreater:
2175 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2176 break;
2177 case Builtin::BI__builtin_isunordered:
2178 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2179 break;
2180 }
2181 // ZExt bool to int type.
2182 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2183 }
2184 case Builtin::BI__builtin_isnan: {
2185 Value *V = EmitScalarExpr(E->getArg(0));
2186 V = Builder.CreateFCmpUNO(V, V, "cmp");
2187 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2188 }
2189
2190 case Builtin::BIfinite:
2191 case Builtin::BI__finite:
2192 case Builtin::BIfinitef:
2193 case Builtin::BI__finitef:
2194 case Builtin::BIfinitel:
2195 case Builtin::BI__finitel:
2196 case Builtin::BI__builtin_isinf:
2197 case Builtin::BI__builtin_isfinite: {
2198 // isinf(x) --> fabs(x) == infinity
2199 // isfinite(x) --> fabs(x) != infinity
2200 // x != NaN via the ordered compare in either case.
2201 Value *V = EmitScalarExpr(E->getArg(0));
2202 Value *Fabs = EmitFAbs(*this, V);
2203 Constant *Infinity = ConstantFP::getInfinity(V->getType());
2204 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2205 ? CmpInst::FCMP_OEQ
2206 : CmpInst::FCMP_ONE;
2207 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2208 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2209 }
2210
2211 case Builtin::BI__builtin_isinf_sign: {
2212 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2213 Value *Arg = EmitScalarExpr(E->getArg(0));
2214 Value *AbsArg = EmitFAbs(*this, Arg);
2215 Value *IsInf = Builder.CreateFCmpOEQ(
2216 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2217 Value *IsNeg = EmitSignBit(*this, Arg);
2218
2219 llvm::Type *IntTy = ConvertType(E->getType());
2220 Value *Zero = Constant::getNullValue(IntTy);
2221 Value *One = ConstantInt::get(IntTy, 1);
2222 Value *NegativeOne = ConstantInt::get(IntTy, -1);
2223 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2224 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2225 return RValue::get(Result);
2226 }
2227
2228 case Builtin::BI__builtin_isnormal: {
2229 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2230 Value *V = EmitScalarExpr(E->getArg(0));
2231 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2232
2233 Value *Abs = EmitFAbs(*this, V);
2234 Value *IsLessThanInf =
2235 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2236 APFloat Smallest = APFloat::getSmallestNormalized(
2237 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2238 Value *IsNormal =
2239 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2240 "isnormal");
2241 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2242 V = Builder.CreateAnd(V, IsNormal, "and");
2243 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2244 }
2245
2246 case Builtin::BI__builtin_flt_rounds: {
2247 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2248
2249 llvm::Type *ResultType = ConvertType(E->getType());
2250 Value *Result = Builder.CreateCall(F);
2251 if (Result->getType() != ResultType)
2252 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2253 "cast");
2254 return RValue::get(Result);
2255 }
2256
2257 case Builtin::BI__builtin_fpclassify: {
2258 Value *V = EmitScalarExpr(E->getArg(5));
2259 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2260
2261 // Create Result
2262 BasicBlock *Begin = Builder.GetInsertBlock();
2263 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2264 Builder.SetInsertPoint(End);
2265 PHINode *Result =
2266 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2267 "fpclassify_result");
2268
2269 // if (V==0) return FP_ZERO
2270 Builder.SetInsertPoint(Begin);
2271 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2272 "iszero");
2273 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2274 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2275 Builder.CreateCondBr(IsZero, End, NotZero);
2276 Result->addIncoming(ZeroLiteral, Begin);
2277
2278 // if (V != V) return FP_NAN
2279 Builder.SetInsertPoint(NotZero);
2280 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2281 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2282 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2283 Builder.CreateCondBr(IsNan, End, NotNan);
2284 Result->addIncoming(NanLiteral, NotZero);
2285
2286 // if (fabs(V) == infinity) return FP_INFINITY
2287 Builder.SetInsertPoint(NotNan);
2288 Value *VAbs = EmitFAbs(*this, V);
2289 Value *IsInf =
2290 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2291 "isinf");
2292 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2293 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2294 Builder.CreateCondBr(IsInf, End, NotInf);
2295 Result->addIncoming(InfLiteral, NotNan);
2296
2297 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2298 Builder.SetInsertPoint(NotInf);
2299 APFloat Smallest = APFloat::getSmallestNormalized(
2300 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2301 Value *IsNormal =
2302 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2303 "isnormal");
2304 Value *NormalResult =
2305 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2306 EmitScalarExpr(E->getArg(3)));
2307 Builder.CreateBr(End);
2308 Result->addIncoming(NormalResult, NotInf);
2309
2310 // return Result
2311 Builder.SetInsertPoint(End);
2312 return RValue::get(Result);
2313 }
2314
2315 case Builtin::BIalloca:
2316 case Builtin::BI_alloca:
2317 case Builtin::BI__builtin_alloca: {
2318 Value *Size = EmitScalarExpr(E->getArg(0));
2319 const TargetInfo &TI = getContext().getTargetInfo();
2320 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2321 unsigned SuitableAlignmentInBytes =
2322 CGM.getContext()
2323 .toCharUnitsFromBits(TI.getSuitableAlign())
2324 .getQuantity();
2325 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2326 AI->setAlignment(SuitableAlignmentInBytes);
2327 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2328 return RValue::get(AI);
2329 }
2330
2331 case Builtin::BI__builtin_alloca_with_align: {
2332 Value *Size = EmitScalarExpr(E->getArg(0));
2333 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2334 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2335 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2336 unsigned AlignmentInBytes =
2337 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
2338 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2339 AI->setAlignment(AlignmentInBytes);
2340 initializeAlloca(*this, AI, Size, AlignmentInBytes);
2341 return RValue::get(AI);
2342 }
2343
2344 case Builtin::BIbzero:
2345 case Builtin::BI__builtin_bzero: {
2346 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2347 Value *SizeVal = EmitScalarExpr(E->getArg(1));
2348 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2349 E->getArg(0)->getExprLoc(), FD, 0);
2350 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2351 return RValue::get(nullptr);
2352 }
2353 case Builtin::BImemcpy:
2354 case Builtin::BI__builtin_memcpy: {
2355 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2356 Address Src = EmitPointerWithAlignment(E->getArg(1));
2357 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2358 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2359 E->getArg(0)->getExprLoc(), FD, 0);
2360 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2361 E->getArg(1)->getExprLoc(), FD, 1);
2362 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2363 return RValue::get(Dest.getPointer());
2364 }
2365
2366 case Builtin::BI__builtin_char_memchr:
2367 BuiltinID = Builtin::BI__builtin_memchr;
2368 break;
2369
2370 case Builtin::BI__builtin___memcpy_chk: {
2371 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2372 Expr::EvalResult SizeResult, DstSizeResult;
2373 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2374 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2375 break;
2376 llvm::APSInt Size = SizeResult.Val.getInt();
2377 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2378 if (Size.ugt(DstSize))
2379 break;
2380 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2381 Address Src = EmitPointerWithAlignment(E->getArg(1));
2382 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2383 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2384 return RValue::get(Dest.getPointer());
2385 }
2386
2387 case Builtin::BI__builtin_objc_memmove_collectable: {
2388 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2389 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2390 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2391 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2392 DestAddr, SrcAddr, SizeVal);
2393 return RValue::get(DestAddr.getPointer());
2394 }
2395
2396 case Builtin::BI__builtin___memmove_chk: {
2397 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2398 Expr::EvalResult SizeResult, DstSizeResult;
2399 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2400 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2401 break;
2402 llvm::APSInt Size = SizeResult.Val.getInt();
2403 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2404 if (Size.ugt(DstSize))
2405 break;
2406 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2407 Address Src = EmitPointerWithAlignment(E->getArg(1));
2408 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2409 Builder.CreateMemMove(Dest, Src, SizeVal, false);
2410 return RValue::get(Dest.getPointer());
2411 }
2412
2413 case Builtin::BImemmove:
2414 case Builtin::BI__builtin_memmove: {
2415 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2416 Address Src = EmitPointerWithAlignment(E->getArg(1));
2417 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2418 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2419 E->getArg(0)->getExprLoc(), FD, 0);
2420 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2421 E->getArg(1)->getExprLoc(), FD, 1);
2422 Builder.CreateMemMove(Dest, Src, SizeVal, false);
2423 return RValue::get(Dest.getPointer());
2424 }
2425 case Builtin::BImemset:
2426 case Builtin::BI__builtin_memset: {
2427 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2428 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2429 Builder.getInt8Ty());
2430 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2431 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2432 E->getArg(0)->getExprLoc(), FD, 0);
2433 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2434 return RValue::get(Dest.getPointer());
2435 }
2436 case Builtin::BI__builtin___memset_chk: {
2437 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2438 Expr::EvalResult SizeResult, DstSizeResult;
2439 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2440 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2441 break;
2442 llvm::APSInt Size = SizeResult.Val.getInt();
2443 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2444 if (Size.ugt(DstSize))
2445 break;
2446 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2447 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2448 Builder.getInt8Ty());
2449 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2450 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2451 return RValue::get(Dest.getPointer());
2452 }
2453 case Builtin::BI__builtin_wmemcmp: {
2454 // The MSVC runtime library does not provide a definition of wmemcmp, so we
2455 // need an inline implementation.
2456 if (!getTarget().getTriple().isOSMSVCRT())
2457 break;
2458
2459 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2460
2461 Value *Dst = EmitScalarExpr(E->getArg(0));
2462 Value *Src = EmitScalarExpr(E->getArg(1));
2463 Value *Size = EmitScalarExpr(E->getArg(2));
2464
2465 BasicBlock *Entry = Builder.GetInsertBlock();
2466 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2467 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2468 BasicBlock *Next = createBasicBlock("wmemcmp.next");
2469 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2470 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2471 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2472
2473 EmitBlock(CmpGT);
2474 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2475 DstPhi->addIncoming(Dst, Entry);
2476 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2477 SrcPhi->addIncoming(Src, Entry);
2478 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2479 SizePhi->addIncoming(Size, Entry);
2480 CharUnits WCharAlign =
2481 getContext().getTypeAlignInChars(getContext().WCharTy);
2482 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2483 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2484 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2485 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2486
2487 EmitBlock(CmpLT);
2488 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2489 Builder.CreateCondBr(DstLtSrc, Exit, Next);
2490
2491 EmitBlock(Next);
2492 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2493 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2494 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2495 Value *NextSizeEq0 =
2496 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2497 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2498 DstPhi->addIncoming(NextDst, Next);
2499 SrcPhi->addIncoming(NextSrc, Next);
2500 SizePhi->addIncoming(NextSize, Next);
2501
2502 EmitBlock(Exit);
2503 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2504 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2505 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2506 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2507 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2508 return RValue::get(Ret);
2509 }
2510 case Builtin::BI__builtin_dwarf_cfa: {
2511 // The offset in bytes from the first argument to the CFA.
2512 //
2513 // Why on earth is this in the frontend? Is there any reason at
2514 // all that the backend can't reasonably determine this while
2515 // lowering llvm.eh.dwarf.cfa()?
2516 //
2517 // TODO: If there's a satisfactory reason, add a target hook for
2518 // this instead of hard-coding 0, which is correct for most targets.
2519 int32_t Offset = 0;
2520
2521 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2522 return RValue::get(Builder.CreateCall(F,
2523 llvm::ConstantInt::get(Int32Ty, Offset)));
2524 }
2525 case Builtin::BI__builtin_return_address: {
2526 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2527 getContext().UnsignedIntTy);
2528 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2529 return RValue::get(Builder.CreateCall(F, Depth));
2530 }
2531 case Builtin::BI_ReturnAddress: {
2532 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2533 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2534 }
2535 case Builtin::BI__builtin_frame_address: {
2536 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2537 getContext().UnsignedIntTy);
2538 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress);
2539 return RValue::get(Builder.CreateCall(F, Depth));
2540 }
2541 case Builtin::BI__builtin_extract_return_addr: {
2542 Value *Address = EmitScalarExpr(E->getArg(0));
2543 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2544 return RValue::get(Result);
2545 }
2546 case Builtin::BI__builtin_frob_return_addr: {
2547 Value *Address = EmitScalarExpr(E->getArg(0));
2548 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2549 return RValue::get(Result);
2550 }
2551 case Builtin::BI__builtin_dwarf_sp_column: {
2552 llvm::IntegerType *Ty
2553 = cast<llvm::IntegerType>(ConvertType(E->getType()));
2554 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2555 if (Column == -1) {
2556 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2557 return RValue::get(llvm::UndefValue::get(Ty));
2558 }
2559 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2560 }
2561 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2562 Value *Address = EmitScalarExpr(E->getArg(0));
2563 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2564 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2565 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2566 }
2567 case Builtin::BI__builtin_eh_return: {
2568 Value *Int = EmitScalarExpr(E->getArg(0));
2569 Value *Ptr = EmitScalarExpr(E->getArg(1));
2570
2571 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2572 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() ==
64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? static_cast<void> (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2573, __PRETTY_FUNCTION__))
2573 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() ==
64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? static_cast<void> (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2573, __PRETTY_FUNCTION__))
;
2574 Function *F =
2575 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2576 : Intrinsic::eh_return_i64);
2577 Builder.CreateCall(F, {Int, Ptr});
2578 Builder.CreateUnreachable();
2579
2580 // We do need to preserve an insertion point.
2581 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2582
2583 return RValue::get(nullptr);
2584 }
2585 case Builtin::BI__builtin_unwind_init: {
2586 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2587 return RValue::get(Builder.CreateCall(F));
2588 }
2589 case Builtin::BI__builtin_extend_pointer: {
2590 // Extends a pointer to the size of an _Unwind_Word, which is
2591 // uint64_t on all platforms. Generally this gets poked into a
2592 // register and eventually used as an address, so if the
2593 // addressing registers are wider than pointers and the platform
2594 // doesn't implicitly ignore high-order bits when doing
2595 // addressing, we need to make sure we zext / sext based on
2596 // the platform's expectations.
2597 //
2598 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2599
2600 // Cast the pointer to intptr_t.
2601 Value *Ptr = EmitScalarExpr(E->getArg(0));
2602 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2603
2604 // If that's 64 bits, we're done.
2605 if (IntPtrTy->getBitWidth() == 64)
2606 return RValue::get(Result);
2607
2608 // Otherwise, ask the codegen data what to do.
2609 if (getTargetHooks().extendPointerWithSExt())
2610 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2611 else
2612 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2613 }
2614 case Builtin::BI__builtin_setjmp: {
2615 // Buffer is a void**.
2616 Address Buf = EmitPointerWithAlignment(E->getArg(0));
2617
2618 // Store the frame pointer to the setjmp buffer.
2619 Value *FrameAddr =
2620 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2621 ConstantInt::get(Int32Ty, 0));
2622 Builder.CreateStore(FrameAddr, Buf);
2623
2624 // Store the stack pointer to the setjmp buffer.
2625 Value *StackAddr =
2626 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2627 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2628 Builder.CreateStore(StackAddr, StackSaveSlot);
2629
2630 // Call LLVM's EH setjmp, which is lightweight.
2631 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2632 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2633 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2634 }
2635 case Builtin::BI__builtin_longjmp: {
2636 Value *Buf = EmitScalarExpr(E->getArg(0));
2637 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2638
2639 // Call LLVM's EH longjmp, which is lightweight.
2640 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2641
2642 // longjmp doesn't return; mark this as unreachable.
2643 Builder.CreateUnreachable();
2644
2645 // We do need to preserve an insertion point.
2646 EmitBlock(createBasicBlock("longjmp.cont"));
2647
2648 return RValue::get(nullptr);
2649 }
2650 case Builtin::BI__builtin_launder: {
2651 const Expr *Arg = E->getArg(0);
2652 QualType ArgTy = Arg->getType()->getPointeeType();
2653 Value *Ptr = EmitScalarExpr(Arg);
2654 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2655 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2656
2657 return RValue::get(Ptr);
2658 }
2659 case Builtin::BI__sync_fetch_and_add:
2660 case Builtin::BI__sync_fetch_and_sub:
2661 case Builtin::BI__sync_fetch_and_or:
2662 case Builtin::BI__sync_fetch_and_and:
2663 case Builtin::BI__sync_fetch_and_xor:
2664 case Builtin::BI__sync_fetch_and_nand:
2665 case Builtin::BI__sync_add_and_fetch:
2666 case Builtin::BI__sync_sub_and_fetch:
2667 case Builtin::BI__sync_and_and_fetch:
2668 case Builtin::BI__sync_or_and_fetch:
2669 case Builtin::BI__sync_xor_and_fetch:
2670 case Builtin::BI__sync_nand_and_fetch:
2671 case Builtin::BI__sync_val_compare_and_swap:
2672 case Builtin::BI__sync_bool_compare_and_swap:
2673 case Builtin::BI__sync_lock_test_and_set:
2674 case Builtin::BI__sync_lock_release:
2675 case Builtin::BI__sync_swap:
2676 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2676)
;
2677 case Builtin::BI__sync_fetch_and_add_1:
2678 case Builtin::BI__sync_fetch_and_add_2:
2679 case Builtin::BI__sync_fetch_and_add_4:
2680 case Builtin::BI__sync_fetch_and_add_8:
2681 case Builtin::BI__sync_fetch_and_add_16:
2682 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2683 case Builtin::BI__sync_fetch_and_sub_1:
2684 case Builtin::BI__sync_fetch_and_sub_2:
2685 case Builtin::BI__sync_fetch_and_sub_4:
2686 case Builtin::BI__sync_fetch_and_sub_8:
2687 case Builtin::BI__sync_fetch_and_sub_16:
2688 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2689 case Builtin::BI__sync_fetch_and_or_1:
2690 case Builtin::BI__sync_fetch_and_or_2:
2691 case Builtin::BI__sync_fetch_and_or_4:
2692 case Builtin::BI__sync_fetch_and_or_8:
2693 case Builtin::BI__sync_fetch_and_or_16:
2694 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2695 case Builtin::BI__sync_fetch_and_and_1:
2696 case Builtin::BI__sync_fetch_and_and_2:
2697 case Builtin::BI__sync_fetch_and_and_4:
2698 case Builtin::BI__sync_fetch_and_and_8:
2699 case Builtin::BI__sync_fetch_and_and_16:
2700 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2701 case Builtin::BI__sync_fetch_and_xor_1:
2702 case Builtin::BI__sync_fetch_and_xor_2:
2703 case Builtin::BI__sync_fetch_and_xor_4:
2704 case Builtin::BI__sync_fetch_and_xor_8:
2705 case Builtin::BI__sync_fetch_and_xor_16:
2706 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2707 case Builtin::BI__sync_fetch_and_nand_1:
2708 case Builtin::BI__sync_fetch_and_nand_2:
2709 case Builtin::BI__sync_fetch_and_nand_4:
2710 case Builtin::BI__sync_fetch_and_nand_8:
2711 case Builtin::BI__sync_fetch_and_nand_16:
2712 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2713
2714 // Clang extensions: not overloaded yet.
2715 case Builtin::BI__sync_fetch_and_min:
2716 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2717 case Builtin::BI__sync_fetch_and_max:
2718 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2719 case Builtin::BI__sync_fetch_and_umin:
2720 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2721 case Builtin::BI__sync_fetch_and_umax:
2722 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2723
2724 case Builtin::BI__sync_add_and_fetch_1:
2725 case Builtin::BI__sync_add_and_fetch_2:
2726 case Builtin::BI__sync_add_and_fetch_4:
2727 case Builtin::BI__sync_add_and_fetch_8:
2728 case Builtin::BI__sync_add_and_fetch_16:
2729 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2730 llvm::Instruction::Add);
2731 case Builtin::BI__sync_sub_and_fetch_1:
2732 case Builtin::BI__sync_sub_and_fetch_2:
2733 case Builtin::BI__sync_sub_and_fetch_4:
2734 case Builtin::BI__sync_sub_and_fetch_8:
2735 case Builtin::BI__sync_sub_and_fetch_16:
2736 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2737 llvm::Instruction::Sub);
2738 case Builtin::BI__sync_and_and_fetch_1:
2739 case Builtin::BI__sync_and_and_fetch_2:
2740 case Builtin::BI__sync_and_and_fetch_4:
2741 case Builtin::BI__sync_and_and_fetch_8:
2742 case Builtin::BI__sync_and_and_fetch_16:
2743 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2744 llvm::Instruction::And);
2745 case Builtin::BI__sync_or_and_fetch_1:
2746 case Builtin::BI__sync_or_and_fetch_2:
2747 case Builtin::BI__sync_or_and_fetch_4:
2748 case Builtin::BI__sync_or_and_fetch_8:
2749 case Builtin::BI__sync_or_and_fetch_16:
2750 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2751 llvm::Instruction::Or);
2752 case Builtin::BI__sync_xor_and_fetch_1:
2753 case Builtin::BI__sync_xor_and_fetch_2:
2754 case Builtin::BI__sync_xor_and_fetch_4:
2755 case Builtin::BI__sync_xor_and_fetch_8:
2756 case Builtin::BI__sync_xor_and_fetch_16:
2757 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2758 llvm::Instruction::Xor);
2759 case Builtin::BI__sync_nand_and_fetch_1:
2760 case Builtin::BI__sync_nand_and_fetch_2:
2761 case Builtin::BI__sync_nand_and_fetch_4:
2762 case Builtin::BI__sync_nand_and_fetch_8:
2763 case Builtin::BI__sync_nand_and_fetch_16:
2764 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2765 llvm::Instruction::And, true);
2766
2767 case Builtin::BI__sync_val_compare_and_swap_1:
2768 case Builtin::BI__sync_val_compare_and_swap_2:
2769 case Builtin::BI__sync_val_compare_and_swap_4:
2770 case Builtin::BI__sync_val_compare_and_swap_8:
2771 case Builtin::BI__sync_val_compare_and_swap_16:
2772 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2773
2774 case Builtin::BI__sync_bool_compare_and_swap_1:
2775 case Builtin::BI__sync_bool_compare_and_swap_2:
2776 case Builtin::BI__sync_bool_compare_and_swap_4:
2777 case Builtin::BI__sync_bool_compare_and_swap_8:
2778 case Builtin::BI__sync_bool_compare_and_swap_16:
2779 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2780
2781 case Builtin::BI__sync_swap_1:
2782 case Builtin::BI__sync_swap_2:
2783 case Builtin::BI__sync_swap_4:
2784 case Builtin::BI__sync_swap_8:
2785 case Builtin::BI__sync_swap_16:
2786 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2787
2788 case Builtin::BI__sync_lock_test_and_set_1:
2789 case Builtin::BI__sync_lock_test_and_set_2:
2790 case Builtin::BI__sync_lock_test_and_set_4:
2791 case Builtin::BI__sync_lock_test_and_set_8:
2792 case Builtin::BI__sync_lock_test_and_set_16:
2793 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2794
2795 case Builtin::BI__sync_lock_release_1:
2796 case Builtin::BI__sync_lock_release_2:
2797 case Builtin::BI__sync_lock_release_4:
2798 case Builtin::BI__sync_lock_release_8:
2799 case Builtin::BI__sync_lock_release_16: {
2800 Value *Ptr = EmitScalarExpr(E->getArg(0));
2801 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2802 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2803 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2804 StoreSize.getQuantity() * 8);
2805 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2806 llvm::StoreInst *Store =
2807 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2808 StoreSize);
2809 Store->setAtomic(llvm::AtomicOrdering::Release);
2810 return RValue::get(nullptr);
2811 }
2812
2813 case Builtin::BI__sync_synchronize: {
2814 // We assume this is supposed to correspond to a C++0x-style
2815 // sequentially-consistent fence (i.e. this is only usable for
2816 // synchronization, not device I/O or anything like that). This intrinsic
2817 // is really badly designed in the sense that in theory, there isn't
2818 // any way to safely use it... but in practice, it mostly works
2819 // to use it with non-atomic loads and stores to get acquire/release
2820 // semantics.
2821 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2822 return RValue::get(nullptr);
2823 }
2824
2825 case Builtin::BI__builtin_nontemporal_load:
2826 return RValue::get(EmitNontemporalLoad(*this, E));
2827 case Builtin::BI__builtin_nontemporal_store:
2828 return RValue::get(EmitNontemporalStore(*this, E));
2829 case Builtin::BI__c11_atomic_is_lock_free:
2830 case Builtin::BI__atomic_is_lock_free: {
2831 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2832 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2833 // _Atomic(T) is always properly-aligned.
2834 const char *LibCallName = "__atomic_is_lock_free";
2835 CallArgList Args;
2836 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2837 getContext().getSizeType());
2838 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2839 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2840 getContext().VoidPtrTy);
2841 else
2842 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2843 getContext().VoidPtrTy);
2844 const CGFunctionInfo &FuncInfo =
2845 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2846 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2847 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2848 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2849 ReturnValueSlot(), Args);
2850 }
2851
2852 case Builtin::BI__atomic_test_and_set: {
2853 // Look at the argument type to determine whether this is a volatile
2854 // operation. The parameter type is always volatile.
2855 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2856 bool Volatile =
2857 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2858
2859 Value *Ptr = EmitScalarExpr(E->getArg(0));
2860 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2861 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2862 Value *NewVal = Builder.getInt8(1);
2863 Value *Order = EmitScalarExpr(E->getArg(1));
2864 if (isa<llvm::ConstantInt>(Order)) {
2865 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2866 AtomicRMWInst *Result = nullptr;
2867 switch (ord) {
2868 case 0: // memory_order_relaxed
2869 default: // invalid order
2870 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2871 llvm::AtomicOrdering::Monotonic);
2872 break;
2873 case 1: // memory_order_consume
2874 case 2: // memory_order_acquire
2875 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2876 llvm::AtomicOrdering::Acquire);
2877 break;
2878 case 3: // memory_order_release
2879 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2880 llvm::AtomicOrdering::Release);
2881 break;
2882 case 4: // memory_order_acq_rel
2883
2884 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2885 llvm::AtomicOrdering::AcquireRelease);
2886 break;
2887 case 5: // memory_order_seq_cst
2888 Result = Builder.CreateAtomicRMW(
2889 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2890 llvm::AtomicOrdering::SequentiallyConsistent);
2891 break;
2892 }
2893 Result->setVolatile(Volatile);
2894 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2895 }
2896
2897 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2898
2899 llvm::BasicBlock *BBs[5] = {
2900 createBasicBlock("monotonic", CurFn),
2901 createBasicBlock("acquire", CurFn),
2902 createBasicBlock("release", CurFn),
2903 createBasicBlock("acqrel", CurFn),
2904 createBasicBlock("seqcst", CurFn)
2905 };
2906 llvm::AtomicOrdering Orders[5] = {
2907 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2908 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2909 llvm::AtomicOrdering::SequentiallyConsistent};
2910
2911 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2912 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2913
2914 Builder.SetInsertPoint(ContBB);
2915 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2916
2917 for (unsigned i = 0; i < 5; ++i) {
2918 Builder.SetInsertPoint(BBs[i]);
2919 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2920 Ptr, NewVal, Orders[i]);
2921 RMW->setVolatile(Volatile);
2922 Result->addIncoming(RMW, BBs[i]);
2923 Builder.CreateBr(ContBB);
2924 }
2925
2926 SI->addCase(Builder.getInt32(0), BBs[0]);
2927 SI->addCase(Builder.getInt32(1), BBs[1]);
2928 SI->addCase(Builder.getInt32(2), BBs[1]);
2929 SI->addCase(Builder.getInt32(3), BBs[2]);
2930 SI->addCase(Builder.getInt32(4), BBs[3]);
2931 SI->addCase(Builder.getInt32(5), BBs[4]);
2932
2933 Builder.SetInsertPoint(ContBB);
2934 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2935 }
2936
2937 case Builtin::BI__atomic_clear: {
2938 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2939 bool Volatile =
2940 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2941
2942 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2943 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2944 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2945 Value *NewVal = Builder.getInt8(0);
2946 Value *Order = EmitScalarExpr(E->getArg(1));
2947 if (isa<llvm::ConstantInt>(Order)) {
2948 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2949 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2950 switch (ord) {
2951 case 0: // memory_order_relaxed
2952 default: // invalid order
2953 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2954 break;
2955 case 3: // memory_order_release
2956 Store->setOrdering(llvm::AtomicOrdering::Release);
2957 break;
2958 case 5: // memory_order_seq_cst
2959 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
2960 break;
2961 }
2962 return RValue::get(nullptr);
2963 }
2964
2965 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2966
2967 llvm::BasicBlock *BBs[3] = {
2968 createBasicBlock("monotonic", CurFn),
2969 createBasicBlock("release", CurFn),
2970 createBasicBlock("seqcst", CurFn)
2971 };
2972 llvm::AtomicOrdering Orders[3] = {
2973 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
2974 llvm::AtomicOrdering::SequentiallyConsistent};
2975
2976 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2977 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2978
2979 for (unsigned i = 0; i < 3; ++i) {
2980 Builder.SetInsertPoint(BBs[i]);
2981 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2982 Store->setOrdering(Orders[i]);
2983 Builder.CreateBr(ContBB);
2984 }
2985
2986 SI->addCase(Builder.getInt32(0), BBs[0]);
2987 SI->addCase(Builder.getInt32(3), BBs[1]);
2988 SI->addCase(Builder.getInt32(5), BBs[2]);
2989
2990 Builder.SetInsertPoint(ContBB);
2991 return RValue::get(nullptr);
2992 }
2993
2994 case Builtin::BI__atomic_thread_fence:
2995 case Builtin::BI__atomic_signal_fence:
2996 case Builtin::BI__c11_atomic_thread_fence:
2997 case Builtin::BI__c11_atomic_signal_fence: {
2998 llvm::SyncScope::ID SSID;
2999 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3000 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3001 SSID = llvm::SyncScope::SingleThread;
3002 else
3003 SSID = llvm::SyncScope::System;
3004 Value *Order = EmitScalarExpr(E->getArg(0));
3005 if (isa<llvm::ConstantInt>(Order)) {
3006 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3007 switch (ord) {
3008 case 0: // memory_order_relaxed
3009 default: // invalid order
3010 break;
3011 case 1: // memory_order_consume
3012 case 2: // memory_order_acquire
3013 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3014 break;
3015 case 3: // memory_order_release
3016 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3017 break;
3018 case 4: // memory_order_acq_rel
3019 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3020 break;
3021 case 5: // memory_order_seq_cst
3022 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3023 break;
3024 }
3025 return RValue::get(nullptr);
3026 }
3027
3028 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3029 AcquireBB = createBasicBlock("acquire", CurFn);
3030 ReleaseBB = createBasicBlock("release", CurFn);
3031 AcqRelBB = createBasicBlock("acqrel", CurFn);
3032 SeqCstBB = createBasicBlock("seqcst", CurFn);
3033 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3034
3035 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3036 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3037
3038 Builder.SetInsertPoint(AcquireBB);
3039 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3040 Builder.CreateBr(ContBB);
3041 SI->addCase(Builder.getInt32(1), AcquireBB);
3042 SI->addCase(Builder.getInt32(2), AcquireBB);
3043
3044 Builder.SetInsertPoint(ReleaseBB);
3045 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3046 Builder.CreateBr(ContBB);
3047 SI->addCase(Builder.getInt32(3), ReleaseBB);
3048
3049 Builder.SetInsertPoint(AcqRelBB);
3050 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3051 Builder.CreateBr(ContBB);
3052 SI->addCase(Builder.getInt32(4), AcqRelBB);
3053
3054 Builder.SetInsertPoint(SeqCstBB);
3055 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3056 Builder.CreateBr(ContBB);
3057 SI->addCase(Builder.getInt32(5), SeqCstBB);
3058
3059 Builder.SetInsertPoint(ContBB);
3060 return RValue::get(nullptr);
3061 }
3062
3063 case Builtin::BI__builtin_signbit:
3064 case Builtin::BI__builtin_signbitf:
3065 case Builtin::BI__builtin_signbitl: {
3066 return RValue::get(
3067 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3068 ConvertType(E->getType())));
3069 }
3070 case Builtin::BI__annotation: {
3071 // Re-encode each wide string to UTF8 and make an MDString.
3072 SmallVector<Metadata *, 1> Strings;
3073 for (const Expr *Arg : E->arguments()) {
3074 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3075 assert(Str->getCharByteWidth() == 2)((Str->getCharByteWidth() == 2) ? static_cast<void> (
0) : __assert_fail ("Str->getCharByteWidth() == 2", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3075, __PRETTY_FUNCTION__))
;
3076 StringRef WideBytes = Str->getBytes();
3077 std::string StrUtf8;
3078 if (!convertUTF16ToUTF8String(
3079 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3080 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3081 continue;
3082 }
3083 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3084 }
3085
3086 // Build and MDTuple of MDStrings and emit the intrinsic call.
3087 llvm::Function *F =
3088 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3089 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3090 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3091 return RValue::getIgnored();
3092 }
3093 case Builtin::BI__builtin_annotation: {
3094 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3095 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3096 AnnVal->getType());
3097
3098 // Get the annotation string, go through casts. Sema requires this to be a
3099 // non-wide string literal, potentially casted, so the cast<> is safe.
3100 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3101 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3102 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3103 }
3104 case Builtin::BI__builtin_addcb:
3105 case Builtin::BI__builtin_addcs:
3106 case Builtin::BI__builtin_addc:
3107 case Builtin::BI__builtin_addcl:
3108 case Builtin::BI__builtin_addcll:
3109 case Builtin::BI__builtin_subcb:
3110 case Builtin::BI__builtin_subcs:
3111 case Builtin::BI__builtin_subc:
3112 case Builtin::BI__builtin_subcl:
3113 case Builtin::BI__builtin_subcll: {
3114
3115 // We translate all of these builtins from expressions of the form:
3116 // int x = ..., y = ..., carryin = ..., carryout, result;
3117 // result = __builtin_addc(x, y, carryin, &carryout);
3118 //
3119 // to LLVM IR of the form:
3120 //
3121 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3122 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3123 // %carry1 = extractvalue {i32, i1} %tmp1, 1
3124 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3125 // i32 %carryin)
3126 // %result = extractvalue {i32, i1} %tmp2, 0
3127 // %carry2 = extractvalue {i32, i1} %tmp2, 1
3128 // %tmp3 = or i1 %carry1, %carry2
3129 // %tmp4 = zext i1 %tmp3 to i32
3130 // store i32 %tmp4, i32* %carryout
3131
3132 // Scalarize our inputs.
3133 llvm::Value *X = EmitScalarExpr(E->getArg(0));
3134 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3135 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3136 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3137
3138 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3139 llvm::Intrinsic::ID IntrinsicId;
3140 switch (BuiltinID) {
3141 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3141)
;
3142 case Builtin::BI__builtin_addcb:
3143 case Builtin::BI__builtin_addcs:
3144 case Builtin::BI__builtin_addc:
3145 case Builtin::BI__builtin_addcl:
3146 case Builtin::BI__builtin_addcll:
3147 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3148 break;
3149 case Builtin::BI__builtin_subcb:
3150 case Builtin::BI__builtin_subcs:
3151 case Builtin::BI__builtin_subc:
3152 case Builtin::BI__builtin_subcl:
3153 case Builtin::BI__builtin_subcll:
3154 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3155 break;
3156 }
3157
3158 // Construct our resulting LLVM IR expression.
3159 llvm::Value *Carry1;
3160 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3161 X, Y, Carry1);
3162 llvm::Value *Carry2;
3163 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3164 Sum1, Carryin, Carry2);
3165 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3166 X->getType());
3167 Builder.CreateStore(CarryOut, CarryOutPtr);
3168 return RValue::get(Sum2);
3169 }
3170
3171 case Builtin::BI__builtin_add_overflow:
3172 case Builtin::BI__builtin_sub_overflow:
3173 case Builtin::BI__builtin_mul_overflow: {
3174 const clang::Expr *LeftArg = E->getArg(0);
3175 const clang::Expr *RightArg = E->getArg(1);
3176 const clang::Expr *ResultArg = E->getArg(2);
3177
3178 clang::QualType ResultQTy =
3179 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3180
3181 WidthAndSignedness LeftInfo =
3182 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3183 WidthAndSignedness RightInfo =
3184 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3185 WidthAndSignedness ResultInfo =
3186 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3187
3188 // Handle mixed-sign multiplication as a special case, because adding
3189 // runtime or backend support for our generic irgen would be too expensive.
3190 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3191 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3192 RightInfo, ResultArg, ResultQTy,
3193 ResultInfo);
3194
3195 WidthAndSignedness EncompassingInfo =
3196 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3197
3198 llvm::Type *EncompassingLLVMTy =
3199 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3200
3201 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3202
3203 llvm::Intrinsic::ID IntrinsicId;
3204 switch (BuiltinID) {
3205 default:
3206 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3206)
;
3207 case Builtin::BI__builtin_add_overflow:
3208 IntrinsicId = EncompassingInfo.Signed
3209 ? llvm::Intrinsic::sadd_with_overflow
3210 : llvm::Intrinsic::uadd_with_overflow;
3211 break;
3212 case Builtin::BI__builtin_sub_overflow:
3213 IntrinsicId = EncompassingInfo.Signed
3214 ? llvm::Intrinsic::ssub_with_overflow
3215 : llvm::Intrinsic::usub_with_overflow;
3216 break;
3217 case Builtin::BI__builtin_mul_overflow:
3218 IntrinsicId = EncompassingInfo.Signed
3219 ? llvm::Intrinsic::smul_with_overflow
3220 : llvm::Intrinsic::umul_with_overflow;
3221 break;
3222 }
3223
3224 llvm::Value *Left = EmitScalarExpr(LeftArg);
3225 llvm::Value *Right = EmitScalarExpr(RightArg);
3226 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3227
3228 // Extend each operand to the encompassing type.
3229 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3230 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3231
3232 // Perform the operation on the extended values.
3233 llvm::Value *Overflow, *Result;
3234 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3235
3236 if (EncompassingInfo.Width > ResultInfo.Width) {
3237 // The encompassing type is wider than the result type, so we need to
3238 // truncate it.
3239 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3240
3241 // To see if the truncation caused an overflow, we will extend
3242 // the result and then compare it to the original result.
3243 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3244 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3245 llvm::Value *TruncationOverflow =
3246 Builder.CreateICmpNE(Result, ResultTruncExt);
3247
3248 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3249 Result = ResultTrunc;
3250 }
3251
3252 // Finally, store the result using the pointer.
3253 bool isVolatile =
3254 ResultArg->getType()->getPointeeType().isVolatileQualified();
3255 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3256
3257 return RValue::get(Overflow);
3258 }
3259
3260 case Builtin::BI__builtin_uadd_overflow:
3261 case Builtin::BI__builtin_uaddl_overflow:
3262 case Builtin::BI__builtin_uaddll_overflow:
3263 case Builtin::BI__builtin_usub_overflow:
3264 case Builtin::BI__builtin_usubl_overflow:
3265 case Builtin::BI__builtin_usubll_overflow:
3266 case Builtin::BI__builtin_umul_overflow:
3267 case Builtin::BI__builtin_umull_overflow:
3268 case Builtin::BI__builtin_umulll_overflow:
3269 case Builtin::BI__builtin_sadd_overflow:
3270 case Builtin::BI__builtin_saddl_overflow:
3271 case Builtin::BI__builtin_saddll_overflow:
3272 case Builtin::BI__builtin_ssub_overflow:
3273 case Builtin::BI__builtin_ssubl_overflow:
3274 case Builtin::BI__builtin_ssubll_overflow:
3275 case Builtin::BI__builtin_smul_overflow:
3276 case Builtin::BI__builtin_smull_overflow:
3277 case Builtin::BI__builtin_smulll_overflow: {
3278
3279 // We translate all of these builtins directly to the relevant llvm IR node.
3280
3281 // Scalarize our inputs.
3282 llvm::Value *X = EmitScalarExpr(E->getArg(0));
3283 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3284 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3285
3286 // Decide which of the overflow intrinsics we are lowering to:
3287 llvm::Intrinsic::ID IntrinsicId;
3288 switch (BuiltinID) {
3289 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3289)
;
3290 case Builtin::BI__builtin_uadd_overflow:
3291 case Builtin::BI__builtin_uaddl_overflow:
3292 case Builtin::BI__builtin_uaddll_overflow:
3293 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3294 break;
3295 case Builtin::BI__builtin_usub_overflow:
3296 case Builtin::BI__builtin_usubl_overflow:
3297 case Builtin::BI__builtin_usubll_overflow:
3298 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3299 break;
3300 case Builtin::BI__builtin_umul_overflow:
3301 case Builtin::BI__builtin_umull_overflow:
3302 case Builtin::BI__builtin_umulll_overflow:
3303 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3304 break;
3305 case Builtin::BI__builtin_sadd_overflow:
3306 case Builtin::BI__builtin_saddl_overflow:
3307 case Builtin::BI__builtin_saddll_overflow:
3308 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3309 break;
3310 case Builtin::BI__builtin_ssub_overflow:
3311 case Builtin::BI__builtin_ssubl_overflow:
3312 case Builtin::BI__builtin_ssubll_overflow:
3313 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3314 break;
3315 case Builtin::BI__builtin_smul_overflow:
3316 case Builtin::BI__builtin_smull_overflow:
3317 case Builtin::BI__builtin_smulll_overflow:
3318 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3319 break;
3320 }
3321
3322
3323 llvm::Value *Carry;
3324 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3325 Builder.CreateStore(Sum, SumOutPtr);
3326
3327 return RValue::get(Carry);
3328 }
3329 case Builtin::BI__builtin_addressof:
3330 return RValue::get(EmitLValue(E->getArg(0)).getPointer());
3331 case Builtin::BI__builtin_operator_new:
3332 return EmitBuiltinNewDeleteCall(
3333 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3334 case Builtin::BI__builtin_operator_delete:
3335 return EmitBuiltinNewDeleteCall(
3336 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3337
3338 case Builtin::BI__noop:
3339 // __noop always evaluates to an integer literal zero.
3340 return RValue::get(ConstantInt::get(IntTy, 0));
3341 case Builtin::BI__builtin_call_with_static_chain: {
3342 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3343 const Expr *Chain = E->getArg(1);
3344 return EmitCall(Call->getCallee()->getType(),
3345 EmitCallee(Call->getCallee()), Call, ReturnValue,
3346 EmitScalarExpr(Chain));
3347 }
3348 case Builtin::BI_InterlockedExchange8:
3349 case Builtin::BI_InterlockedExchange16:
3350 case Builtin::BI_InterlockedExchange:
3351 case Builtin::BI_InterlockedExchangePointer:
3352 return RValue::get(
3353 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3354 case Builtin::BI_InterlockedCompareExchangePointer:
3355 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3356 llvm::Type *RTy;
3357 llvm::IntegerType *IntType =
3358 IntegerType::get(getLLVMContext(),
3359 getContext().getTypeSize(E->getType()));
3360 llvm::Type *IntPtrType = IntType->getPointerTo();
3361
3362 llvm::Value *Destination =
3363 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3364
3365 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3366 RTy = Exchange->getType();
3367 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3368
3369 llvm::Value *Comparand =
3370 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3371
3372 auto Ordering =
3373 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3374 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3375
3376 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3377 Ordering, Ordering);
3378 Result->setVolatile(true);
3379
3380 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3381 0),
3382 RTy));
3383 }
3384 case Builtin::BI_InterlockedCompareExchange8:
3385 case Builtin::BI_InterlockedCompareExchange16:
3386 case Builtin::BI_InterlockedCompareExchange:
3387 case Builtin::BI_InterlockedCompareExchange64:
3388 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3389 case Builtin::BI_InterlockedIncrement16:
3390 case Builtin::BI_InterlockedIncrement:
3391 return RValue::get(
3392 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3393 case Builtin::BI_InterlockedDecrement16:
3394 case Builtin::BI_InterlockedDecrement:
3395 return RValue::get(
3396 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3397 case Builtin::BI_InterlockedAnd8:
3398 case Builtin::BI_InterlockedAnd16:
3399 case Builtin::BI_InterlockedAnd:
3400 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3401 case Builtin::BI_InterlockedExchangeAdd8:
3402 case Builtin::BI_InterlockedExchangeAdd16:
3403 case Builtin::BI_InterlockedExchangeAdd:
3404 return RValue::get(
3405 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3406 case Builtin::BI_InterlockedExchangeSub8:
3407 case Builtin::BI_InterlockedExchangeSub16:
3408 case Builtin::BI_InterlockedExchangeSub:
3409 return RValue::get(
3410 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3411 case Builtin::BI_InterlockedOr8:
3412 case Builtin::BI_InterlockedOr16:
3413 case Builtin::BI_InterlockedOr:
3414 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3415 case Builtin::BI_InterlockedXor8:
3416 case Builtin::BI_InterlockedXor16:
3417 case Builtin::BI_InterlockedXor:
3418 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3419
3420 case Builtin::BI_bittest64:
3421 case Builtin::BI_bittest:
3422 case Builtin::BI_bittestandcomplement64:
3423 case Builtin::BI_bittestandcomplement:
3424 case Builtin::BI_bittestandreset64:
3425 case Builtin::BI_bittestandreset:
3426 case Builtin::BI_bittestandset64:
3427 case Builtin::BI_bittestandset:
3428 case Builtin::BI_interlockedbittestandreset:
3429 case Builtin::BI_interlockedbittestandreset64:
3430 case Builtin::BI_interlockedbittestandset64:
3431 case Builtin::BI_interlockedbittestandset:
3432 case Builtin::BI_interlockedbittestandset_acq:
3433 case Builtin::BI_interlockedbittestandset_rel:
3434 case Builtin::BI_interlockedbittestandset_nf:
3435 case Builtin::BI_interlockedbittestandreset_acq:
3436 case Builtin::BI_interlockedbittestandreset_rel:
3437 case Builtin::BI_interlockedbittestandreset_nf:
3438 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3439
3440 // These builtins exist to emit regular volatile loads and stores not
3441 // affected by the -fms-volatile setting.
3442 case Builtin::BI__iso_volatile_load8:
3443 case Builtin::BI__iso_volatile_load16:
3444 case Builtin::BI__iso_volatile_load32:
3445 case Builtin::BI__iso_volatile_load64:
3446 return RValue::get(EmitISOVolatileLoad(*this, E));
3447 case Builtin::BI__iso_volatile_store8:
3448 case Builtin::BI__iso_volatile_store16:
3449 case Builtin::BI__iso_volatile_store32:
3450 case Builtin::BI__iso_volatile_store64:
3451 return RValue::get(EmitISOVolatileStore(*this, E));
3452
3453 case Builtin::BI__exception_code:
3454 case Builtin::BI_exception_code:
3455 return RValue::get(EmitSEHExceptionCode());
3456 case Builtin::BI__exception_info:
3457 case Builtin::BI_exception_info:
3458 return RValue::get(EmitSEHExceptionInfo());
3459 case Builtin::BI__abnormal_termination:
3460 case Builtin::BI_abnormal_termination:
3461 return RValue::get(EmitSEHAbnormalTermination());
3462 case Builtin::BI_setjmpex:
3463 if (getTarget().getTriple().isOSMSVCRT())
3464 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3465 break;
3466 case Builtin::BI_setjmp:
3467 if (getTarget().getTriple().isOSMSVCRT()) {
3468 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3469 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3470 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3471 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3472 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3473 }
3474 break;
3475
3476 case Builtin::BI__GetExceptionInfo: {
3477 if (llvm::GlobalVariable *GV =
3478 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3479 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3480 break;
3481 }
3482
3483 case Builtin::BI__fastfail:
3484 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3485
3486 case Builtin::BI__builtin_coro_size: {
3487 auto & Context = getContext();
3488 auto SizeTy = Context.getSizeType();
3489 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3490 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3491 return RValue::get(Builder.CreateCall(F));
3492 }
3493
3494 case Builtin::BI__builtin_coro_id:
3495 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3496 case Builtin::BI__builtin_coro_promise:
3497 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3498 case Builtin::BI__builtin_coro_resume:
3499 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3500 case Builtin::BI__builtin_coro_frame:
3501 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3502 case Builtin::BI__builtin_coro_noop:
3503 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3504 case Builtin::BI__builtin_coro_free:
3505 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3506 case Builtin::BI__builtin_coro_destroy:
3507 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3508 case Builtin::BI__builtin_coro_done:
3509 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3510 case Builtin::BI__builtin_coro_alloc:
3511 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3512 case Builtin::BI__builtin_coro_begin:
3513 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3514 case Builtin::BI__builtin_coro_end:
3515 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3516 case Builtin::BI__builtin_coro_suspend:
3517 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3518 case Builtin::BI__builtin_coro_param:
3519 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3520
3521 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3522 case Builtin::BIread_pipe:
3523 case Builtin::BIwrite_pipe: {
3524 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3525 *Arg1 = EmitScalarExpr(E->getArg(1));
3526 CGOpenCLRuntime OpenCLRT(CGM);
3527 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3528 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3529
3530 // Type of the generic packet parameter.
3531 unsigned GenericAS =
3532 getContext().getTargetAddressSpace(LangAS::opencl_generic);
3533 llvm::Type *I8PTy = llvm::PointerType::get(
3534 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3535
3536 // Testing which overloaded version we should generate the call for.
3537 if (2U == E->getNumArgs()) {
3538 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3539 : "__write_pipe_2";
3540 // Creating a generic function type to be able to call with any builtin or
3541 // user defined type.
3542 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3543 llvm::FunctionType *FTy = llvm::FunctionType::get(
3544 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3545 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3546 return RValue::get(
3547 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3548 {Arg0, BCast, PacketSize, PacketAlign}));
3549 } else {
3550 assert(4 == E->getNumArgs() &&((4 == E->getNumArgs() && "Illegal number of parameters to pipe function"
) ? static_cast<void> (0) : __assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3551, __PRETTY_FUNCTION__))
3551 "Illegal number of parameters to pipe function")((4 == E->getNumArgs() && "Illegal number of parameters to pipe function"
) ? static_cast<void> (0) : __assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3551, __PRETTY_FUNCTION__))
;
3552 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3553 : "__write_pipe_4";
3554
3555 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3556 Int32Ty, Int32Ty};
3557 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3558 *Arg3 = EmitScalarExpr(E->getArg(3));
3559 llvm::FunctionType *FTy = llvm::FunctionType::get(
3560 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3561 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3562 // We know the third argument is an integer type, but we may need to cast
3563 // it to i32.
3564 if (Arg2->getType() != Int32Ty)
3565 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3566 return RValue::get(Builder.CreateCall(
3567 CGM.CreateRuntimeFunction(FTy, Name),
3568 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3569 }
3570 }
3571 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3572 // functions
3573 case Builtin::BIreserve_read_pipe:
3574 case Builtin::BIreserve_write_pipe:
3575 case Builtin::BIwork_group_reserve_read_pipe:
3576 case Builtin::BIwork_group_reserve_write_pipe:
3577 case Builtin::BIsub_group_reserve_read_pipe:
3578 case Builtin::BIsub_group_reserve_write_pipe: {
3579 // Composing the mangled name for the function.
3580 const char *Name;
3581 if (BuiltinID == Builtin::BIreserve_read_pipe)
3582 Name = "__reserve_read_pipe";
3583 else if (BuiltinID == Builtin::BIreserve_write_pipe)
3584 Name = "__reserve_write_pipe";
3585 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3586 Name = "__work_group_reserve_read_pipe";
3587 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3588 Name = "__work_group_reserve_write_pipe";
3589 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3590 Name = "__sub_group_reserve_read_pipe";
3591 else
3592 Name = "__sub_group_reserve_write_pipe";
3593
3594 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3595 *Arg1 = EmitScalarExpr(E->getArg(1));
3596 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3597 CGOpenCLRuntime OpenCLRT(CGM);
3598 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3599 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3600
3601 // Building the generic function prototype.
3602 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3603 llvm::FunctionType *FTy = llvm::FunctionType::get(
3604 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3605 // We know the second argument is an integer type, but we may need to cast
3606 // it to i32.
3607 if (Arg1->getType() != Int32Ty)
3608 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3609 return RValue::get(
3610 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3611 {Arg0, Arg1, PacketSize, PacketAlign}));
3612 }
3613 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3614 // functions
3615 case Builtin::BIcommit_read_pipe:
3616 case Builtin::BIcommit_write_pipe:
3617 case Builtin::BIwork_group_commit_read_pipe:
3618 case Builtin::BIwork_group_commit_write_pipe:
3619 case Builtin::BIsub_group_commit_read_pipe:
3620 case Builtin::BIsub_group_commit_write_pipe: {
3621 const char *Name;
3622 if (BuiltinID == Builtin::BIcommit_read_pipe)
3623 Name = "__commit_read_pipe";
3624 else if (BuiltinID == Builtin::BIcommit_write_pipe)
3625 Name = "__commit_write_pipe";
3626 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3627 Name = "__work_group_commit_read_pipe";
3628 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3629 Name = "__work_group_commit_write_pipe";
3630 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3631 Name = "__sub_group_commit_read_pipe";
3632 else
3633 Name = "__sub_group_commit_write_pipe";
3634
3635 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3636 *Arg1 = EmitScalarExpr(E->getArg(1));
3637 CGOpenCLRuntime OpenCLRT(CGM);
3638 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3639 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3640
3641 // Building the generic function prototype.
3642 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3643 llvm::FunctionType *FTy =
3644 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3645 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3646
3647 return RValue::get(
3648 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3649 {Arg0, Arg1, PacketSize, PacketAlign}));
3650 }
3651 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3652 case Builtin::BIget_pipe_num_packets:
3653 case Builtin::BIget_pipe_max_packets: {
3654 const char *BaseName;
3655 const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>();
3656 if (BuiltinID == Builtin::BIget_pipe_num_packets)
3657 BaseName = "__get_pipe_num_packets";
3658 else
3659 BaseName = "__get_pipe_max_packets";
3660 auto Name = std::string(BaseName) +
3661 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3662
3663 // Building the generic function prototype.
3664 Value *Arg0 = EmitScalarExpr(E->getArg(0));
3665 CGOpenCLRuntime OpenCLRT(CGM);
3666 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3667 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3668 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3669 llvm::FunctionType *FTy = llvm::FunctionType::get(
3670 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3671
3672 return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3673 {Arg0, PacketSize, PacketAlign}));
3674 }
3675
3676 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3677 case Builtin::BIto_global:
3678 case Builtin::BIto_local:
3679 case Builtin::BIto_private: {
3680 auto Arg0 = EmitScalarExpr(E->getArg(0));
3681 auto NewArgT = llvm::PointerType::get(Int8Ty,
3682 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3683 auto NewRetT = llvm::PointerType::get(Int8Ty,
3684 CGM.getContext().getTargetAddressSpace(
3685 E->getType()->getPointeeType().getAddressSpace()));
3686 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3687 llvm::Value *NewArg;
3688 if (Arg0->getType()->getPointerAddressSpace() !=
3689 NewArgT->getPointerAddressSpace())
3690 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3691 else
3692 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3693 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3694 auto NewCall =
3695 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3696 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3697 ConvertType(E->getType())));
3698 }
3699
3700 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3701 // It contains four different overload formats specified in Table 6.13.17.1.
3702 case Builtin::BIenqueue_kernel: {
3703 StringRef Name; // Generated function call name
3704 unsigned NumArgs = E->getNumArgs();
3705
3706 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3707 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3708 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3709
3710 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3711 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3712 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3713 llvm::Value *Range = NDRangeL.getAddress().getPointer();
3714 llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3715
3716 if (NumArgs == 4) {
3717 // The most basic form of the call with parameters:
3718 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3719 Name = "__enqueue_kernel_basic";
3720 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3721 GenericVoidPtrTy};
3722 llvm::FunctionType *FTy = llvm::FunctionType::get(
3723 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3724
3725 auto Info =
3726 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3727 llvm::Value *Kernel =
3728 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3729 llvm::Value *Block =
3730 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3731
3732 AttrBuilder B;
3733 B.addAttribute(Attribute::ByVal);
3734 llvm::AttributeList ByValAttrSet =
3735 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3736
3737 auto RTCall =
3738 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3739 {Queue, Flags, Range, Kernel, Block});
3740 RTCall->setAttributes(ByValAttrSet);
3741 return RValue::get(RTCall);
3742 }
3743 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")((NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? static_cast<void> (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3743, __PRETTY_FUNCTION__))
;
3744
3745 // Create a temporary array to hold the sizes of local pointer arguments
3746 // for the block. \p First is the position of the first size argument.
3747 auto CreateArrayForSizeVar = [=](unsigned First)
3748 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3749 llvm::APInt ArraySize(32, NumArgs - First);
3750 QualType SizeArrayTy = getContext().getConstantArrayType(
3751 getContext().getSizeType(), ArraySize, ArrayType::Normal,
3752 /*IndexTypeQuals=*/0);
3753 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3754 llvm::Value *TmpPtr = Tmp.getPointer();
3755 llvm::Value *TmpSize = EmitLifetimeStart(
3756 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3757 llvm::Value *ElemPtr;
3758 // Each of the following arguments specifies the size of the corresponding
3759 // argument passed to the enqueued block.
3760 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3761 for (unsigned I = First; I < NumArgs; ++I) {
3762 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3763 auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3764 if (I == First)
3765 ElemPtr = GEP;
3766 auto *V =
3767 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3768 Builder.CreateAlignedStore(
3769 V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3770 }
3771 return std::tie(ElemPtr, TmpSize, TmpPtr);
3772 };
3773
3774 // Could have events and/or varargs.
3775 if (E->getArg(3)->getType()->isBlockPointerType()) {
3776 // No events passed, but has variadic arguments.
3777 Name = "__enqueue_kernel_varargs";
3778 auto Info =
3779 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3780 llvm::Value *Kernel =
3781 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3782 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3783 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3784 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3785
3786 // Create a vector of the arguments, as well as a constant value to
3787 // express to the runtime the number of variadic arguments.
3788 std::vector<llvm::Value *> Args = {
3789 Queue, Flags, Range,
3790 Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3791 ElemPtr};
3792 std::vector<llvm::Type *> ArgTys = {
3793 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
3794 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3795
3796 llvm::FunctionType *FTy = llvm::FunctionType::get(
3797 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3798 auto Call =
3799 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3800 llvm::ArrayRef<llvm::Value *>(Args)));
3801 if (TmpSize)
3802 EmitLifetimeEnd(TmpSize, TmpPtr);
3803 return Call;
3804 }
3805 // Any calls now have event arguments passed.
3806 if (NumArgs >= 7) {
3807 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3808 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
3809 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3810
3811 llvm::Value *NumEvents =
3812 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3813
3814 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
3815 // to be a null pointer constant (including `0` literal), we can take it
3816 // into account and emit null pointer directly.
3817 llvm::Value *EventWaitList = nullptr;
3818 if (E->getArg(4)->isNullPointerConstant(
3819 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3820 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
3821 } else {
3822 EventWaitList = E->getArg(4)->getType()->isArrayType()
3823 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3824 : EmitScalarExpr(E->getArg(4));
3825 // Convert to generic address space.
3826 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
3827 }
3828 llvm::Value *EventRet = nullptr;
3829 if (E->getArg(5)->isNullPointerConstant(
3830 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3831 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
3832 } else {
3833 EventRet =
3834 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
3835 }
3836
3837 auto Info =
3838 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3839 llvm::Value *Kernel =
3840 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3841 llvm::Value *Block =
3842 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3843
3844 std::vector<llvm::Type *> ArgTys = {
3845 QueueTy, Int32Ty, RangeTy, Int32Ty,
3846 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3847
3848 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
3849 NumEvents, EventWaitList, EventRet,
3850 Kernel, Block};
3851
3852 if (NumArgs == 7) {
3853 // Has events but no variadics.
3854 Name = "__enqueue_kernel_basic_events";
3855 llvm::FunctionType *FTy = llvm::FunctionType::get(
3856 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3857 return RValue::get(
3858 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3859 llvm::ArrayRef<llvm::Value *>(Args)));
3860 }
3861 // Has event info and variadics
3862 // Pass the number of variadics to the runtime function too.
3863 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3864 ArgTys.push_back(Int32Ty);
3865 Name = "__enqueue_kernel_events_varargs";
3866
3867 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3868 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
3869 Args.push_back(ElemPtr);
3870 ArgTys.push_back(ElemPtr->getType());
3871
3872 llvm::FunctionType *FTy = llvm::FunctionType::get(
3873 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3874 auto Call =
3875 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3876 llvm::ArrayRef<llvm::Value *>(Args)));
3877 if (TmpSize)
3878 EmitLifetimeEnd(TmpSize, TmpPtr);
3879 return Call;
3880 }
3881 LLVM_FALLTHROUGH[[clang::fallthrough]];
3882 }
3883 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3884 // parameter.
3885 case Builtin::BIget_kernel_work_group_size: {
3886 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3887 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3888 auto Info =
3889 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3890 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3891 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3892 return RValue::get(Builder.CreateCall(
3893 CGM.CreateRuntimeFunction(
3894 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3895 false),
3896 "__get_kernel_work_group_size_impl"),
3897 {Kernel, Arg}));
3898 }
3899 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3900 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3901 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3902 auto Info =
3903 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3904 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3905 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3906 return RValue::get(Builder.CreateCall(
3907 CGM.CreateRuntimeFunction(
3908 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3909 false),
3910 "__get_kernel_preferred_work_group_size_multiple_impl"),
3911 {Kernel, Arg}));
3912 }
3913 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3914 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3915 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3916 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3917 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3918 llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3919 auto Info =
3920 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3921 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3922 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3923 const char *Name =
3924 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3925 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3926 : "__get_kernel_sub_group_count_for_ndrange_impl";
3927 return RValue::get(Builder.CreateCall(
3928 CGM.CreateRuntimeFunction(
3929 llvm::FunctionType::get(
3930 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3931 false),
3932 Name),
3933 {NDRange, Kernel, Block}));
3934 }
3935
3936 case Builtin::BI__builtin_store_half:
3937 case Builtin::BI__builtin_store_halff: {
3938 Value *Val = EmitScalarExpr(E->getArg(0));
3939 Address Address = EmitPointerWithAlignment(E->getArg(1));
3940 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3941 return RValue::get(Builder.CreateStore(HalfVal, Address));
3942 }
3943 case Builtin::BI__builtin_load_half: {
3944 Address Address = EmitPointerWithAlignment(E->getArg(0));
3945 Value *HalfVal = Builder.CreateLoad(Address);
3946 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3947 }
3948 case Builtin::BI__builtin_load_halff: {
3949 Address Address = EmitPointerWithAlignment(E->getArg(0));
3950 Value *HalfVal = Builder.CreateLoad(Address);
3951 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3952 }
3953 case Builtin::BIprintf:
3954 if (getTarget().getTriple().isNVPTX())
3955 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3956 break;
3957 case Builtin::BI__builtin_canonicalize:
3958 case Builtin::BI__builtin_canonicalizef:
3959 case Builtin::BI__builtin_canonicalizel:
3960 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
3961
3962 case Builtin::BI__builtin_thread_pointer: {
3963 if (!getContext().getTargetInfo().isTLSSupported())
3964 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
3965 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
3966 break;
3967 }
3968 case Builtin::BI__builtin_os_log_format:
3969 return emitBuiltinOSLogFormat(*E);
3970
3971 case Builtin::BI__xray_customevent: {
3972 if (!ShouldXRayInstrumentFunction())
3973 return RValue::getIgnored();
3974
3975 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
3976 XRayInstrKind::Custom))
3977 return RValue::getIgnored();
3978
3979 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
3980 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
3981 return RValue::getIgnored();
3982
3983 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
3984 auto FTy = F->getFunctionType();
3985 auto Arg0 = E->getArg(0);
3986 auto Arg0Val = EmitScalarExpr(Arg0);
3987 auto Arg0Ty = Arg0->getType();
3988 auto PTy0 = FTy->getParamType(0);
3989 if (PTy0 != Arg0Val->getType()) {
3990 if (Arg0Ty->isArrayType())
3991 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
3992 else
3993 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
3994 }
3995 auto Arg1 = EmitScalarExpr(E->getArg(1));
3996 auto PTy1 = FTy->getParamType(1);
3997 if (PTy1 != Arg1->getType())
3998 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
3999 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4000 }
4001
4002 case Builtin::BI__xray_typedevent: {
4003 // TODO: There should be a way to always emit events even if the current
4004 // function is not instrumented. Losing events in a stream can cripple
4005 // a trace.
4006 if (!ShouldXRayInstrumentFunction())
4007 return RValue::getIgnored();
4008
4009 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4010 XRayInstrKind::Typed))
4011 return RValue::getIgnored();
4012
4013 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4014 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4015 return RValue::getIgnored();
4016
4017 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4018 auto FTy = F->getFunctionType();
4019 auto Arg0 = EmitScalarExpr(E->getArg(0));
4020 auto PTy0 = FTy->getParamType(0);
4021 if (PTy0 != Arg0->getType())
4022 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4023 auto Arg1 = E->getArg(1);
4024 auto Arg1Val = EmitScalarExpr(Arg1);
4025 auto Arg1Ty = Arg1->getType();
4026 auto PTy1 = FTy->getParamType(1);
4027 if (PTy1 != Arg1Val->getType()) {
4028 if (Arg1Ty->isArrayType())
4029 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4030 else
4031 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4032 }
4033 auto Arg2 = EmitScalarExpr(E->getArg(2));
4034 auto PTy2 = FTy->getParamType(2);
4035 if (PTy2 != Arg2->getType())
4036 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4037 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4038 }
4039
4040 case Builtin::BI__builtin_ms_va_start:
4041 case Builtin::BI__builtin_ms_va_end:
4042 return RValue::get(
4043 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4044 BuiltinID == Builtin::BI__builtin_ms_va_start));
4045
4046 case Builtin::BI__builtin_ms_va_copy: {
4047 // Lower this manually. We can't reliably determine whether or not any
4048 // given va_copy() is for a Win64 va_list from the calling convention
4049 // alone, because it's legal to do this from a System V ABI function.
4050 // With opaque pointer types, we won't have enough information in LLVM
4051 // IR to determine this from the argument types, either. Best to do it
4052 // now, while we have enough information.
4053 Address DestAddr = EmitMSVAListRef(E->getArg(0));
4054 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4055
4056 llvm::Type *BPP = Int8PtrPtrTy;
4057
4058 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4059 DestAddr.getAlignment());
4060 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4061 SrcAddr.getAlignment());
4062
4063 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4064 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4065 }
4066 }
4067
4068 // If this is an alias for a lib function (e.g. __builtin_sin), emit
4069 // the call using the normal call path, but using the unmangled
4070 // version of the function name.
4071 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4072 return emitLibraryCall(*this, FD, E,
4073 CGM.getBuiltinLibFunction(FD, BuiltinID));
4074
4075 // If this is a predefined lib function (e.g. malloc), emit the call
4076 // using exactly the normal call path.
4077 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4078 return emitLibraryCall(*this, FD, E,
4079 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4080
4081 // Check that a call to a target specific builtin has the correct target
4082 // features.
4083 // This is down here to avoid non-target specific builtins, however, if
4084 // generic builtins start to require generic target features then we
4085 // can move this up to the beginning of the function.
4086 checkTargetFeatures(E, FD);
4087
4088 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4089 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4090
4091 // See if we have a target specific intrinsic.
4092 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4093 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4094 StringRef Prefix =
4095 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4096 if (!Prefix.empty()) {
4097 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4098 // NOTE we don't need to perform a compatibility flag check here since the
4099 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4100 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4101 if (IntrinsicID == Intrinsic::not_intrinsic)
4102 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4103 }
4104
4105 if (IntrinsicID != Intrinsic::not_intrinsic) {
4106 SmallVector<Value*, 16> Args;
4107
4108 // Find out if any arguments are required to be integer constant
4109 // expressions.
4110 unsigned ICEArguments = 0;
4111 ASTContext::GetBuiltinTypeError Error;
4112 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4113 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4113, __PRETTY_FUNCTION__))
;
4114
4115 Function *F = CGM.getIntrinsic(IntrinsicID);
4116 llvm::FunctionType *FTy = F->getFunctionType();
4117
4118 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4119 Value *ArgValue;
4120 // If this is a normal argument, just emit it as a scalar.
4121 if ((ICEArguments & (1 << i)) == 0) {
4122 ArgValue = EmitScalarExpr(E->getArg(i));
4123 } else {
4124 // If this is required to be a constant, constant fold it so that we
4125 // know that the generated intrinsic gets a ConstantInt.
4126 llvm::APSInt Result;
4127 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4128 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4128, __PRETTY_FUNCTION__))
;
4129 (void)IsConst;
4130 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4131 }
4132
4133 // If the intrinsic arg type is different from the builtin arg type
4134 // we need to do a bit cast.
4135 llvm::Type *PTy = FTy->getParamType(i);
4136 if (PTy != ArgValue->getType()) {
4137 // XXX - vector of pointers?
4138 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4139 if (PtrTy->getAddressSpace() !=
4140 ArgValue->getType()->getPointerAddressSpace()) {
4141 ArgValue = Builder.CreateAddrSpaceCast(
4142 ArgValue,
4143 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4144 }
4145 }
4146
4147 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&((PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param") ? static_cast
<void> (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4148, __PRETTY_FUNCTION__))
4148 "Must be able to losslessly bit cast to param")((PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param") ? static_cast
<void> (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4148, __PRETTY_FUNCTION__))
;
4149 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4150 }
4151
4152 Args.push_back(ArgValue);
4153 }
4154
4155 Value *V = Builder.CreateCall(F, Args);
4156 QualType BuiltinRetType = E->getType();
4157
4158 llvm::Type *RetTy = VoidTy;
4159 if (!BuiltinRetType->isVoidType())
4160 RetTy = ConvertType(BuiltinRetType);
4161
4162 if (RetTy != V->getType()) {
4163 // XXX - vector of pointers?
4164 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4165 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4166 V = Builder.CreateAddrSpaceCast(
4167 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4168 }
4169 }
4170
4171 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&((V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type") ? static_cast
<void> (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4172, __PRETTY_FUNCTION__))
4172 "Must be able to losslessly bit cast result type")((V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type") ? static_cast
<void> (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4172, __PRETTY_FUNCTION__))
;
4173 V = Builder.CreateBitCast(V, RetTy);
4174 }
4175
4176 return RValue::get(V);
4177 }
4178
4179 // See if we have a target specific builtin that needs to be lowered.
4180 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
4181 return RValue::get(V);
4182
4183 ErrorUnsupported(E, "builtin function");
4184
4185 // Unknown builtin, for now just dump it out and return undef.
4186 return GetUndefRValue(E->getType());
4187}
4188
4189static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4190 unsigned BuiltinID, const CallExpr *E,
4191 llvm::Triple::ArchType Arch) {
4192 switch (Arch) {
4193 case llvm::Triple::arm:
4194 case llvm::Triple::armeb:
4195 case llvm::Triple::thumb:
4196 case llvm::Triple::thumbeb:
4197 return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
4198 case llvm::Triple::aarch64:
4199 case llvm::Triple::aarch64_be:
4200 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4201 case llvm::Triple::x86:
4202 case llvm::Triple::x86_64:
4203 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4204 case llvm::Triple::ppc:
4205 case llvm::Triple::ppc64:
4206 case llvm::Triple::ppc64le:
4207 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4208 case llvm::Triple::r600:
4209 case llvm::Triple::amdgcn:
4210 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4211 case llvm::Triple::systemz:
4212 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4213 case llvm::Triple::nvptx:
4214 case llvm::Triple::nvptx64:
4215 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4216 case llvm::Triple::wasm32:
4217 case llvm::Triple::wasm64:
4218 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4219 case llvm::Triple::hexagon:
4220 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4221 default:
4222 return nullptr;
4223 }
4224}
4225
4226Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4227 const CallExpr *E) {
4228 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4229 assert(getContext().getAuxTargetInfo() && "Missing aux target info")((getContext().getAuxTargetInfo() && "Missing aux target info"
) ? static_cast<void> (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4229, __PRETTY_FUNCTION__))
;
4230 return EmitTargetArchBuiltinExpr(
4231 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4232 getContext().getAuxTargetInfo()->getTriple().getArch());
4233 }
4234
4235 return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
4236 getTarget().getTriple().getArch());
4237}
4238
4239static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4240 NeonTypeFlags TypeFlags,
4241 bool HasLegalHalfType=true,
4242 bool V1Ty=false) {
4243 int IsQuad = TypeFlags.isQuad();
4244 switch (TypeFlags.getEltType()) {
4245 case NeonTypeFlags::Int8:
4246 case NeonTypeFlags::Poly8:
4247 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4248 case NeonTypeFlags::Int16:
4249 case NeonTypeFlags::Poly16:
4250 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4251 case NeonTypeFlags::Float16:
4252 if (HasLegalHalfType)
4253 return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4254 else
4255 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4256 case NeonTypeFlags::Int32:
4257 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4258 case NeonTypeFlags::Int64:
4259 case NeonTypeFlags::Poly64:
4260 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4261 case NeonTypeFlags::Poly128:
4262 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4263 // There is a lot of i128 and f128 API missing.
4264 // so we use v16i8 to represent poly128 and get pattern matched.
4265 return llvm::VectorType::get(CGF->Int8Ty, 16);
4266 case NeonTypeFlags::Float32:
4267 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4268 case NeonTypeFlags::Float64:
4269 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4270 }
4271 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4271)
;
4272}
4273
4274static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4275 NeonTypeFlags IntTypeFlags) {
4276 int IsQuad = IntTypeFlags.isQuad();
4277 switch (IntTypeFlags.getEltType()) {
4278 case NeonTypeFlags::Int16:
4279 return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4280 case NeonTypeFlags::Int32:
4281 return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4282 case NeonTypeFlags::Int64:
4283 return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4284 default:
4285 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4285)
;
4286 }
4287}
4288
4289Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4290 unsigned nElts = V->getType()->getVectorNumElements();
4291 Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4292 return Builder.CreateShuffleVector(V, V, SV, "lane");
4293}
4294
4295Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4296 const char *name,
4297 unsigned shift, bool rightshift) {
4298 unsigned j = 0;
4299 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4300 ai != ae; ++ai, ++j)
4301 if (shift > 0 && shift == j)
4302 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4303 else
4304 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4305
4306 return Builder.CreateCall(F, Ops, name);
4307}
4308
4309Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4310 bool neg) {
4311 int SV = cast<ConstantInt>(V)->getSExtValue();
4312 return ConstantInt::get(Ty, neg ? -SV : SV);
4313}
4314
4315// Right-shift a vector by a constant.
4316Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4317 llvm::Type *Ty, bool usgn,
4318 const char *name) {
4319 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4320
4321 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4322 int EltSize = VTy->getScalarSizeInBits();
4323
4324 Vec = Builder.CreateBitCast(Vec, Ty);
4325
4326 // lshr/ashr are undefined when the shift amount is equal to the vector
4327 // element size.
4328 if (ShiftAmt == EltSize) {
4329 if (usgn) {
4330 // Right-shifting an unsigned value by its size yields 0.
4331 return llvm::ConstantAggregateZero::get(VTy);
4332 } else {
4333 // Right-shifting a signed value by its size is equivalent
4334 // to a shift of size-1.
4335 --ShiftAmt;
4336 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4337 }
4338 }
4339
4340 Shift = EmitNeonShiftVector(Shift, Ty, false);
4341 if (usgn)
4342 return Builder.CreateLShr(Vec, Shift, name);
4343 else
4344 return Builder.CreateAShr(Vec, Shift, name);
4345}
4346
4347enum {
4348 AddRetType = (1 << 0),
4349 Add1ArgType = (1 << 1),
4350 Add2ArgTypes = (1 << 2),
4351
4352 VectorizeRetType = (1 << 3),
4353 VectorizeArgTypes = (1 << 4),
4354
4355 InventFloatType = (1 << 5),
4356 UnsignedAlts = (1 << 6),
4357
4358 Use64BitVectors = (1 << 7),
4359 Use128BitVectors = (1 << 8),
4360
4361 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4362 VectorRet = AddRetType | VectorizeRetType,
4363 VectorRetGetArgs01 =
4364 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4365 FpCmpzModifiers =
4366 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4367};
4368
4369namespace {
4370struct NeonIntrinsicInfo {
4371 const char *NameHint;
4372 unsigned BuiltinID;
4373 unsigned LLVMIntrinsic;
4374 unsigned AltLLVMIntrinsic;
4375 unsigned TypeModifier;
4376
4377 bool operator<(unsigned RHSBuiltinID) const {
4378 return BuiltinID < RHSBuiltinID;
4379 }
4380 bool operator<(const NeonIntrinsicInfo &TE) const {
4381 return BuiltinID < TE.BuiltinID;
4382 }
4383};
4384} // end anonymous namespace
4385
4386#define NEONMAP0(NameBase) \
4387 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4388
4389#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4390 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4391 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4392
4393#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4394 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4395 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4396 TypeModifier }
4397
4398static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4399 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4400 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4401 NEONMAP1(vabs_v, arm_neon_vabs, 0),
4402 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4403 NEONMAP0(vaddhn_v),
4404 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4405 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4406 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4407 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4408 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4409 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4410 NEONMAP1(vcage_v, arm_neon_vacge, 0),
4411 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4412 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4413 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4414 NEONMAP1(vcale_v, arm_neon_vacge, 0),
4415 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4416 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4417 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4418 NEONMAP0(vceqz_v),
4419 NEONMAP0(vceqzq_v),
4420 NEONMAP0(vcgez_v),
4421 NEONMAP0(vcgezq_v),
4422 NEONMAP0(vcgtz_v),
4423 NEONMAP0(vcgtzq_v),
4424 NEONMAP0(vclez_v),
4425 NEONMAP0(vclezq_v),
4426 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4427 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4428 NEONMAP0(vcltz_v),
4429 NEONMAP0(vcltzq_v),
4430 NEONMAP1(vclz_v, ctlz, Add1ArgType),
4431 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4432 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4433 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4434 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4435 NEONMAP0(vcvt_f16_v),
4436 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4437 NEONMAP0(vcvt_f32_v),
4438 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4439 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4440 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4441 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4442 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4443 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4444 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4445 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4446 NEONMAP0(vcvt_s16_v),
4447 NEONMAP0(vcvt_s32_v),
4448 NEONMAP0(vcvt_s64_v),
4449 NEONMAP0(vcvt_u16_v),
4450 NEONMAP0(vcvt_u32_v),
4451 NEONMAP0(vcvt_u64_v),
4452 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4453 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4454 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4455 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4456 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4457 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4458 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4459 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4460 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4461 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4462 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4463 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4464 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4465 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4466 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4467 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4468 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4469 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4470 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4471 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4472 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4473 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4474 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4475 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4476 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4477 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4478 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4479 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4480 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4481 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4482 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4483 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4484 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4485 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4486 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4487 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4488 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4489 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4490 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4491 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4492 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4493 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4494 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4495 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4496 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4497 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4498 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4499 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4500 NEONMAP0(vcvtq_f16_v),
4501 NEONMAP0(vcvtq_f32_v),
4502 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4503 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4504 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4505 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4506 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4507 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4508 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4509 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4510 NEONMAP0(vcvtq_s16_v),
4511 NEONMAP0(vcvtq_s32_v),
4512 NEONMAP0(vcvtq_s64_v),
4513 NEONMAP0(vcvtq_u16_v),
4514 NEONMAP0(vcvtq_u32_v),
4515 NEONMAP0(vcvtq_u64_v),
4516 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4517 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4518 NEONMAP0(vext_v),
4519 NEONMAP0(vextq_v),
4520 NEONMAP0(vfma_v),
4521 NEONMAP0(vfmaq_v),
4522 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4523 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4524 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4525 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4526 NEONMAP0(vld1_dup_v),
4527 NEONMAP1(vld1_v, arm_neon_vld1, 0),
4528 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4529 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4530 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4531 NEONMAP0(vld1q_dup_v),
4532 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4533 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4534 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4535 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4536 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4537 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4538 NEONMAP1(vld2_v, arm_neon_vld2, 0),
4539 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4540 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4541 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4542 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4543 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4544 NEONMAP1(vld3_v, arm_neon_vld3, 0),
4545 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4546 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4547 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4548 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4549 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4550 NEONMAP1(vld4_v, arm_neon_vld4, 0),
4551 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4552 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4553 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4554 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4555 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4556 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4557 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4558 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4559 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4560 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4561 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4562 NEONMAP0(vmovl_v),
4563 NEONMAP0(vmovn_v),
4564 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4565 NEONMAP0(vmull_v),
4566 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4567 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4568 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4569 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4570 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4571 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4572 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4573 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4574 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4575 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4576 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4577 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4578 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4579 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
4580 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
4581 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4582 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4583 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4584 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4585 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4586 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4587 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4588 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4589 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4590 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4591 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4592 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4593 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4594 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4595 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4596 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4597 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4598 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4599 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4600 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4601 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4602 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4603 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4604 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4605 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4606 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4607 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4608 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4609 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4610 NEONMAP0(vrndi_v),
4611 NEONMAP0(vrndiq_v),
4612 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4613 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4614 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4615 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4616 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4617 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4618 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4619 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4620 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4621 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4622 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4623 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4624 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4625 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4626 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4627 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4628 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4629 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4630 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4631 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4632 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4633 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4634 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4635 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4636 NEONMAP0(vshl_n_v),
4637 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4638 NEONMAP0(vshll_n_v),
4639 NEONMAP0(vshlq_n_v),
4640 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4641 NEONMAP0(vshr_n_v),
4642 NEONMAP0(vshrn_n_v),
4643 NEONMAP0(vshrq_n_v),
4644 NEONMAP1(vst1_v, arm_neon_vst1, 0),
4645 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4646 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4647 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4648 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4649 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4650 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4651 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4652 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4653 NEONMAP1(vst2_v, arm_neon_vst2, 0),
4654 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4655 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4656 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4657 NEONMAP1(vst3_v, arm_neon_vst3, 0),
4658 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4659 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4660 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4661 NEONMAP1(vst4_v, arm_neon_vst4, 0),
4662 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4663 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4664 NEONMAP0(vsubhn_v),
4665 NEONMAP0(vtrn_v),
4666 NEONMAP0(vtrnq_v),
4667 NEONMAP0(vtst_v),
4668 NEONMAP0(vtstq_v),
4669 NEONMAP0(vuzp_v),
4670 NEONMAP0(vuzpq_v),
4671 NEONMAP0(vzip_v),
4672 NEONMAP0(vzipq_v)
4673};
4674
4675static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4676 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4677 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4678 NEONMAP0(vaddhn_v),
4679 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4680 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4681 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4682 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4683 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4684 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4685 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4686 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4687 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4688 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4689 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4690 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4691 NEONMAP0(vceqz_v),
4692 NEONMAP0(vceqzq_v),
4693 NEONMAP0(vcgez_v),
4694 NEONMAP0(vcgezq_v),
4695 NEONMAP0(vcgtz_v),
4696 NEONMAP0(vcgtzq_v),
4697 NEONMAP0(vclez_v),
4698 NEONMAP0(vclezq_v),
4699 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4700 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4701 NEONMAP0(vcltz_v),
4702 NEONMAP0(vcltzq_v),
4703 NEONMAP1(vclz_v, ctlz, Add1ArgType),
4704 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4705 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4706 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4707 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4708 NEONMAP0(vcvt_f16_v),
4709 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4710 NEONMAP0(vcvt_f32_v),
4711 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4712 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4713 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4714 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4715 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4716 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4717 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4718 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4719 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4720 NEONMAP0(vcvtq_f16_v),
4721 NEONMAP0(vcvtq_f32_v),
4722 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4723 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4724 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4725 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4726 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4727 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4728 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4729 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4730 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4731 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4732 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4733 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4734 NEONMAP0(vext_v),
4735 NEONMAP0(vextq_v),
4736 NEONMAP0(vfma_v),
4737 NEONMAP0(vfmaq_v),
4738 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4739 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4740 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4741 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4742 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4743 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4744 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4745 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4746 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4747 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4748 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4749 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4750 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4751 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4752 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4753 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4754 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4755 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4756 NEONMAP0(vmovl_v),
4757 NEONMAP0(vmovn_v),
4758 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4759 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4760 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4761 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4762 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4763 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4764 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4765 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4766 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4767 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4768 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4769 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4770 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4771 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4772 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4773 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4774 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4775 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4776 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4777 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4778 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4779 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4780 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4781 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4782 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4783 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4784 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4785 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4786 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4787 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4788 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4789 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4790 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4791 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4792 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4793 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4794 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4795 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4796 NEONMAP0(vrndi_v),
4797 NEONMAP0(vrndiq_v),
4798 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4799 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4800 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4801 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4802 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4803 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4804 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
4805 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
4806 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
4807 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
4808 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
4809 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
4810 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
4811 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
4812 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
4813 NEONMAP0(vshl_n_v),
4814 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4815 NEONMAP0(vshll_n_v),
4816 NEONMAP0(vshlq_n_v),
4817 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4818 NEONMAP0(vshr_n_v),
4819 NEONMAP0(vshrn_n_v),
4820 NEONMAP0(vshrq_n_v),
4821 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
4822 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
4823 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
4824 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
4825 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
4826 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
4827 NEONMAP0(vsubhn_v),
4828 NEONMAP0(vtst_v),
4829 NEONMAP0(vtstq_v),
4830};
4831
4832static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
4833 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
4834 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
4835 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
4836 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4837 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4838 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4839 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4840 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4841 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4842 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4843 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4844 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
4845 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4846 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
4847 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4848 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4849 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4850 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4851 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4852 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4853 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4854 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4855 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4856 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4857 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4858 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4859 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4860 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4861 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4862 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4863 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4864 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4865 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4866 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4867 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4868 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4869 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4870 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4871 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4872 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4873 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4874 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4875 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4876 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4877 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4878 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4879 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4880 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4881 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4882 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4883 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4884 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4885 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4886 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4887 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4888 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4889 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4890 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4891 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4892 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4893 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4894 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4895 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4896 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4897 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4898 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4899 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4900 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4901 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4902 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4903 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4904 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4905 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4906 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4907 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4908 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4909 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4910 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4911 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4912 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4913 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4914 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4915 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4916 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4917 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4918 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4919 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4920 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4921 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4922 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4923 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4924 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4925 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4926 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4927 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4928 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4929 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4930 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4931 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4932 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4933 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4934 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4935 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4936 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4937 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4938 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4939 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4940 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4941 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4942 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4943 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4944 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4945 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4946 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4947 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4948 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4949 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4950 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4951 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4952 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4953 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4954 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
4955 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
4956 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4957 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4958 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4959 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4960 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
4961 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4962 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4963 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4964 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4965 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4966 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4967 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
4968 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
4969 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4970 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4971 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4972 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4973 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
4974 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
4975 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
4976 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
4977 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4978 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4979 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
4980 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
4981 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
4982 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4983 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4984 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4985 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4986 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
4987 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4988 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4989 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4990 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4991 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
4992 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
4993 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4994 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4995 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
4996 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
4997 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
4998 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
4999 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5000 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5001 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5002 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5003 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5004 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5005 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5006 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5007 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5008 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5009 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5010 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5011 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5012 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5013 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5014 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5015 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5016 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5017 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5018 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5019 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5020 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5021 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5022 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5023 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5024 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5025 // FP16 scalar intrinisics go here.
5026 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5027 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5028 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5029 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5030 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5031 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5032 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5033 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5034 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5035 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5036 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5037 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5038 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5039 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5040 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5041 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5042 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5043 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5044 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5045 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5046 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5047 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5048 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5049 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5050 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5051 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5052 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5053 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5054 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5055 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5056};
5057
5058#undef NEONMAP0
5059#undef NEONMAP1
5060#undef NEONMAP2
5061
5062static bool NEONSIMDIntrinsicsProvenSorted = false;
5063
5064static bool AArch64SIMDIntrinsicsProvenSorted = false;
5065static bool AArch64SISDIntrinsicsProvenSorted = false;
5066
5067
5068static const NeonIntrinsicInfo *
5069findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
5070 unsigned BuiltinID, bool &MapProvenSorted) {
5071
5072#ifndef NDEBUG
5073 if (!MapProvenSorted) {
5074 assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)))((std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap
))) ? static_cast<void> (0) : __assert_fail ("std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5074, __PRETTY_FUNCTION__))
;
5075 MapProvenSorted = true;
5076 }
5077#endif
5078
5079 const NeonIntrinsicInfo *Builtin =
5080 std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
5081
5082 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5083 return Builtin;
5084
5085 return nullptr;
5086}
5087
5088Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5089 unsigned Modifier,
5090 llvm::Type *ArgType,
5091 const CallExpr *E) {
5092 int VectorSize = 0;
5093 if (Modifier & Use64BitVectors)
5094 VectorSize = 64;
5095 else if (Modifier & Use128BitVectors)
5096 VectorSize = 128;
5097
5098 // Return type.
5099 SmallVector<llvm::Type *, 3> Tys;
5100 if (Modifier & AddRetType) {
5101 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5102 if (Modifier & VectorizeRetType)
5103 Ty = llvm::VectorType::get(
5104 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5105
5106 Tys.push_back(Ty);
5107 }
5108
5109 // Arguments.
5110 if (Modifier & VectorizeArgTypes) {
5111 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5112 ArgType = llvm::VectorType::get(ArgType, Elts);
5113 }
5114
5115 if (Modifier & (Add1ArgType | Add2ArgTypes))
5116 Tys.push_back(ArgType);
5117
5118 if (Modifier & Add2ArgTypes)
5119 Tys.push_back(ArgType);
5120
5121 if (Modifier & InventFloatType)
5122 Tys.push_back(FloatTy);
5123
5124 return CGM.getIntrinsic(IntrinsicID, Tys);
5125}
5126
5127static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
5128 const NeonIntrinsicInfo &SISDInfo,
5129 SmallVectorImpl<Value *> &Ops,
5130 const CallExpr *E) {
5131 unsigned BuiltinID = SISDInfo.BuiltinID;
5132 unsigned int Int = SISDInfo.LLVMIntrinsic;
5133 unsigned Modifier = SISDInfo.TypeModifier;
5134 const char *s = SISDInfo.NameHint;
5135
5136 switch (BuiltinID) {
5137 case NEON::BI__builtin_neon_vcled_s64:
5138 case NEON::BI__builtin_neon_vcled_u64:
5139 case NEON::BI__builtin_neon_vcles_f32:
5140 case NEON::BI__builtin_neon_vcled_f64:
5141 case NEON::BI__builtin_neon_vcltd_s64:
5142 case NEON::BI__builtin_neon_vcltd_u64:
5143 case NEON::BI__builtin_neon_vclts_f32:
5144 case NEON::BI__builtin_neon_vcltd_f64:
5145 case NEON::BI__builtin_neon_vcales_f32:
5146 case NEON::BI__builtin_neon_vcaled_f64:
5147 case NEON::BI__builtin_neon_vcalts_f32:
5148 case NEON::BI__builtin_neon_vcaltd_f64:
5149 // Only one direction of comparisons actually exist, cmle is actually a cmge
5150 // with swapped operands. The table gives us the right intrinsic but we
5151 // still need to do the swap.
5152 std::swap(Ops[0], Ops[1]);
5153 break;
5154 }
5155
5156 assert(Int && "Generic code assumes a valid intrinsic")((Int && "Generic code assumes a valid intrinsic") ? static_cast
<void> (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5156, __PRETTY_FUNCTION__))
;
5157
5158 // Determine the type(s) of this overloaded AArch64 intrinsic.
5159 const Expr *Arg = E->getArg(0);
5160 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5161 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5162
5163 int j = 0;
5164 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5165 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5166 ai != ae; ++ai, ++j) {
5167 llvm::Type *ArgTy = ai->getType();
5168 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5169 ArgTy->getPrimitiveSizeInBits())
5170 continue;
5171
5172 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())((ArgTy->isVectorTy() && !Ops[j]->getType()->
isVectorTy()) ? static_cast<void> (0) : __assert_fail (
"ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5172, __PRETTY_FUNCTION__))
;
5173 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5174 // it before inserting.
5175 Ops[j] =
5176 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5177 Ops[j] =
5178 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5179 }
5180
5181 Value *Result = CGF.EmitNeonCall(F, Ops, s);
5182 llvm::Type *ResultType = CGF.ConvertType(E->getType());
5183 if (ResultType->getPrimitiveSizeInBits() <
5184 Result->getType()->getPrimitiveSizeInBits())
5185 return CGF.Builder.CreateExtractElement(Result, C0);
5186
5187 return CGF.Builder.CreateBitCast(Result, ResultType, s);
5188}
5189
5190Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5191 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5192 const char *NameHint, unsigned Modifier, const CallExpr *E,
5193 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5194 llvm::Triple::ArchType Arch) {
5195 // Get the last argument, which specifies the vector type.
5196 llvm::APSInt NeonTypeConst;
5197 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5198 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5199 return nullptr;
5200
5201 // Determine the type of this overloaded NEON intrinsic.
5202 NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5203 bool Usgn = Type.isUnsigned();
5204 bool Quad = Type.isQuad();
5205 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5206
5207 llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5208 llvm::Type *Ty = VTy;
5209 if (!Ty)
5210 return nullptr;
5211
5212 auto getAlignmentValue32 = [&](Address addr) -> Value* {
5213 return Builder.getInt32(addr.getAlignment().getQuantity());
5214 };
5215
5216 unsigned Int = LLVMIntrinsic;
5217 if ((Modifier & UnsignedAlts) && !Usgn)
5218 Int = AltLLVMIntrinsic;
5219
5220 switch (BuiltinID) {
5221 default: break;
5222 case NEON::BI__builtin_neon_vpadd_v:
5223 case NEON::BI__builtin_neon_vpaddq_v:
5224 // We don't allow fp/int overloading of intrinsics.
5225 if (VTy->getElementType()->isFloatingPointTy() &&
5226 Int == Intrinsic::aarch64_neon_addp)
5227 Int = Intrinsic::aarch64_neon_faddp;
5228 break;
5229 case NEON::BI__builtin_neon_vabs_v:
5230 case NEON::BI__builtin_neon_vabsq_v:
5231 if (VTy->getElementType()->isFloatingPointTy())
5232 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5233 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5234 case NEON::BI__builtin_neon_vaddhn_v: {
5235 llvm::VectorType *SrcTy =
5236 llvm::VectorType::getExtendedElementVectorType(VTy);
5237
5238 // %sum = add <4 x i32> %lhs, %rhs
5239 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5240 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5241 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5242
5243 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5244 Constant *ShiftAmt =
5245 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5246 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5247
5248 // %res = trunc <4 x i32> %high to <4 x i16>
5249 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5250 }
5251 case NEON::BI__builtin_neon_vcale_v:
5252 case NEON::BI__builtin_neon_vcaleq_v:
5253 case NEON::BI__builtin_neon_vcalt_v:
5254 case NEON::BI__builtin_neon_vcaltq_v:
5255 std::swap(Ops[0], Ops[1]);
5256 LLVM_FALLTHROUGH[[clang::fallthrough]];
5257 case NEON::BI__builtin_neon_vcage_v:
5258 case NEON::BI__builtin_neon_vcageq_v:
5259 case NEON::BI__builtin_neon_vcagt_v:
5260 case NEON::BI__builtin_neon_vcagtq_v: {
5261 llvm::Type *Ty;
5262 switch (VTy->getScalarSizeInBits()) {
5263 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5263)
;
5264 case 32:
5265 Ty = FloatTy;
5266 break;
5267 case 64:
5268 Ty = DoubleTy;
5269 break;
5270 case 16:
5271 Ty = HalfTy;
5272 break;
5273 }
5274 llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5275 llvm::Type *Tys[] = { VTy, VecFlt };
5276 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5277 return EmitNeonCall(F, Ops, NameHint);
5278 }
5279 case NEON::BI__builtin_neon_vceqz_v:
5280 case NEON::BI__builtin_neon_vceqzq_v:
5281 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5282 ICmpInst::ICMP_EQ, "vceqz");
5283 case NEON::BI__builtin_neon_vcgez_v:
5284 case NEON::BI__builtin_neon_vcgezq_v:
5285 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5286 ICmpInst::ICMP_SGE, "vcgez");
5287 case NEON::BI__builtin_neon_vclez_v:
5288 case NEON::BI__builtin_neon_vclezq_v:
5289 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5290 ICmpInst::ICMP_SLE, "vclez");
5291 case NEON::BI__builtin_neon_vcgtz_v:
5292 case NEON::BI__builtin_neon_vcgtzq_v:
5293 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5294 ICmpInst::ICMP_SGT, "vcgtz");
5295 case NEON::BI__builtin_neon_vcltz_v:
5296 case NEON::BI__builtin_neon_vcltzq_v:
5297 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5298 ICmpInst::ICMP_SLT, "vcltz");
5299 case NEON::BI__builtin_neon_vclz_v:
5300 case NEON::BI__builtin_neon_vclzq_v:
5301 // We generate target-independent intrinsic, which needs a second argument
5302 // for whether or not clz of zero is undefined; on ARM it isn't.
5303 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5304 break;
5305 case NEON::BI__builtin_neon_vcvt_f32_v:
5306 case NEON::BI__builtin_neon_vcvtq_f32_v:
5307 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5308 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5309 HasLegalHalfType);
5310 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5311 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5312 case NEON::BI__builtin_neon_vcvt_f16_v:
5313 case NEON::BI__builtin_neon_vcvtq_f16_v:
5314 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5315 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5316 HasLegalHalfType);
5317 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5318 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5319 case NEON::BI__builtin_neon_vcvt_n_f16_v:
5320 case NEON::BI__builtin_neon_vcvt_n_f32_v:
5321 case NEON::BI__builtin_neon_vcvt_n_f64_v:
5322 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5323 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5324 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5325 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5326 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5327 Function *F = CGM.getIntrinsic(Int, Tys);
5328 return EmitNeonCall(F, Ops, "vcvt_n");
5329 }
5330 case NEON::BI__builtin_neon_vcvt_n_s16_v:
5331 case NEON::BI__builtin_neon_vcvt_n_s32_v:
5332 case NEON::BI__builtin_neon_vcvt_n_u16_v:
5333 case NEON::BI__builtin_neon_vcvt_n_u32_v:
5334 case NEON::BI__builtin_neon_vcvt_n_s64_v:
5335 case NEON::BI__builtin_neon_vcvt_n_u64_v:
5336 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5337 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5338 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5339 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5340 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5341 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5342 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5343 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5344 return EmitNeonCall(F, Ops, "vcvt_n");
5345 }
5346 case NEON::BI__builtin_neon_vcvt_s32_v:
5347 case NEON::BI__builtin_neon_vcvt_u32_v:
5348 case NEON::BI__builtin_neon_vcvt_s64_v:
5349 case NEON::BI__builtin_neon_vcvt_u64_v:
5350 case NEON::BI__builtin_neon_vcvt_s16_v:
5351 case NEON::BI__builtin_neon_vcvt_u16_v:
5352 case NEON::BI__builtin_neon_vcvtq_s32_v:
5353 case NEON::BI__builtin_neon_vcvtq_u32_v:
5354 case NEON::BI__builtin_neon_vcvtq_s64_v:
5355 case NEON::BI__builtin_neon_vcvtq_u64_v:
5356 case NEON::BI__builtin_neon_vcvtq_s16_v:
5357 case NEON::BI__builtin_neon_vcvtq_u16_v: {
5358 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5359 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5360 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5361 }
5362 case NEON::BI__builtin_neon_vcvta_s16_v:
5363 case NEON::BI__builtin_neon_vcvta_s32_v:
5364 case NEON::BI__builtin_neon_vcvta_s64_v:
5365 case NEON::BI__builtin_neon_vcvta_u16_v:
5366 case NEON::BI__builtin_neon_vcvta_u32_v:
5367 case NEON::BI__builtin_neon_vcvta_u64_v:
5368 case NEON::BI__builtin_neon_vcvtaq_s16_v:
5369 case NEON::BI__builtin_neon_vcvtaq_s32_v:
5370 case NEON::BI__builtin_neon_vcvtaq_s64_v:
5371 case NEON::BI__builtin_neon_vcvtaq_u16_v:
5372 case NEON::BI__builtin_neon_vcvtaq_u32_v:
5373 case NEON::BI__builtin_neon_vcvtaq_u64_v:
5374 case NEON::BI__builtin_neon_vcvtn_s16_v:
5375 case NEON::BI__builtin_neon_vcvtn_s32_v:
5376 case NEON::BI__builtin_neon_vcvtn_s64_v:
5377 case NEON::BI__builtin_neon_vcvtn_u16_v:
5378 case NEON::BI__builtin_neon_vcvtn_u32_v:
5379 case NEON::BI__builtin_neon_vcvtn_u64_v:
5380 case NEON::BI__builtin_neon_vcvtnq_s16_v:
5381 case NEON::BI__builtin_neon_vcvtnq_s32_v:
5382 case NEON::BI__builtin_neon_vcvtnq_s64_v:
5383 case NEON::BI__builtin_neon_vcvtnq_u16_v:
5384 case NEON::BI__builtin_neon_vcvtnq_u32_v:
5385 case NEON::BI__builtin_neon_vcvtnq_u64_v:
5386 case NEON::BI__builtin_neon_vcvtp_s16_v:
5387 case NEON::BI__builtin_neon_vcvtp_s32_v:
5388 case NEON::BI__builtin_neon_vcvtp_s64_v:
5389 case NEON::BI__builtin_neon_vcvtp_u16_v:
5390 case NEON::BI__builtin_neon_vcvtp_u32_v:
5391 case NEON::BI__builtin_neon_vcvtp_u64_v:
5392 case NEON::BI__builtin_neon_vcvtpq_s16_v:
5393 case NEON::BI__builtin_neon_vcvtpq_s32_v:
5394 case NEON::BI__builtin_neon_vcvtpq_s64_v:
5395 case NEON::BI__builtin_neon_vcvtpq_u16_v:
5396 case NEON::BI__builtin_neon_vcvtpq_u32_v:
5397 case NEON::BI__builtin_neon_vcvtpq_u64_v:
5398 case NEON::BI__builtin_neon_vcvtm_s16_v:
5399 case NEON::BI__builtin_neon_vcvtm_s32_v:
5400 case NEON::BI__builtin_neon_vcvtm_s64_v:
5401 case NEON::BI__builtin_neon_vcvtm_u16_v:
5402 case NEON::BI__builtin_neon_vcvtm_u32_v:
5403 case NEON::BI__builtin_neon_vcvtm_u64_v:
5404 case NEON::BI__builtin_neon_vcvtmq_s16_v:
5405 case NEON::BI__builtin_neon_vcvtmq_s32_v:
5406 case NEON::BI__builtin_neon_vcvtmq_s64_v:
5407 case NEON::BI__builtin_neon_vcvtmq_u16_v:
5408 case NEON::BI__builtin_neon_vcvtmq_u32_v:
5409 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5410 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5411 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5412 }
5413 case NEON::BI__builtin_neon_vext_v:
5414 case NEON::BI__builtin_neon_vextq_v: {
5415 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5416 SmallVector<uint32_t, 16> Indices;
5417 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5418 Indices.push_back(i+CV);
5419
5420 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5421 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5422 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5423 }
5424 case NEON::BI__builtin_neon_vfma_v:
5425 case NEON::BI__builtin_neon_vfmaq_v: {
5426 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5427 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5428 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5429 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5430
5431 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5432 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5433 }
5434 case NEON::BI__builtin_neon_vld1_v:
5435 case NEON::BI__builtin_neon_vld1q_v: {
5436 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5437 Ops.push_back(getAlignmentValue32(PtrOp0));
5438 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5439 }
5440 case NEON::BI__builtin_neon_vld1_x2_v:
5441 case NEON::BI__builtin_neon_vld1q_x2_v:
5442 case NEON::BI__builtin_neon_vld1_x3_v:
5443 case NEON::BI__builtin_neon_vld1q_x3_v:
5444 case NEON::BI__builtin_neon_vld1_x4_v:
5445 case NEON::BI__builtin_neon_vld1q_x4_v: {
5446 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5447 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5448 llvm::Type *Tys[2] = { VTy, PTy };
5449 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5450 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5451 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5452 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5453 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5454 }
5455 case NEON::BI__builtin_neon_vld2_v:
5456 case NEON::BI__builtin_neon_vld2q_v:
5457 case NEON::BI__builtin_neon_vld3_v:
5458 case NEON::BI__builtin_neon_vld3q_v:
5459 case NEON::BI__builtin_neon_vld4_v:
5460 case NEON::BI__builtin_neon_vld4q_v:
5461 case NEON::BI__builtin_neon_vld2_dup_v:
5462 case NEON::BI__builtin_neon_vld2q_dup_v:
5463 case NEON::BI__builtin_neon_vld3_dup_v:
5464 case NEON::BI__builtin_neon_vld3q_dup_v:
5465 case NEON::BI__builtin_neon_vld4_dup_v:
5466 case NEON::BI__builtin_neon_vld4q_dup_v: {
5467 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5468 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5469 Value *Align = getAlignmentValue32(PtrOp1);
5470 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5471 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5472 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5473 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5474 }
5475 case NEON::BI__builtin_neon_vld1_dup_v:
5476 case NEON::BI__builtin_neon_vld1q_dup_v: {
5477 Value *V = UndefValue::get(Ty);
5478 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5479 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5480 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5481 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5482 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5483 return EmitNeonSplat(Ops[0], CI);
5484 }
5485 case NEON::BI__builtin_neon_vld2_lane_v:
5486 case NEON::BI__builtin_neon_vld2q_lane_v:
5487 case NEON::BI__builtin_neon_vld3_lane_v:
5488 case NEON::BI__builtin_neon_vld3q_lane_v:
5489 case NEON::BI__builtin_neon_vld4_lane_v:
5490 case NEON::BI__builtin_neon_vld4q_lane_v: {
5491 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5492 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5493 for (unsigned I = 2; I < Ops.size() - 1; ++I)
5494 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5495 Ops.push_back(getAlignmentValue32(PtrOp1));
5496 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5497 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5498 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5499 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5500 }
5501 case NEON::BI__builtin_neon_vmovl_v: {
5502 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5503 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5504 if (Usgn)
5505 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5506 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5507 }
5508 case NEON::BI__builtin_neon_vmovn_v: {
5509 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5510 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5511 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5512 }
5513 case NEON::BI__builtin_neon_vmull_v:
5514 // FIXME: the integer vmull operations could be emitted in terms of pure
5515 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5516 // hoisting the exts outside loops. Until global ISel comes along that can
5517 // see through such movement this leads to bad CodeGen. So we need an
5518 // intrinsic for now.
5519 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5520 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5521 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5522 case NEON::BI__builtin_neon_vpadal_v:
5523 case NEON::BI__builtin_neon_vpadalq_v: {
5524 // The source operand type has twice as many elements of half the size.
5525 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5526 llvm::Type *EltTy =
5527 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5528 llvm::Type *NarrowTy =
5529 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5530 llvm::Type *Tys[2] = { Ty, NarrowTy };
5531 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5532 }
5533 case NEON::BI__builtin_neon_vpaddl_v:
5534 case NEON::BI__builtin_neon_vpaddlq_v: {
5535 // The source operand type has twice as many elements of half the size.
5536 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5537 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5538 llvm::Type *NarrowTy =
5539 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5540 llvm::Type *Tys[2] = { Ty, NarrowTy };
5541 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5542 }
5543 case NEON::BI__builtin_neon_vqdmlal_v:
5544 case NEON::BI__builtin_neon_vqdmlsl_v: {
5545 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5546 Ops[1] =
5547 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5548 Ops.resize(2);
5549 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5550 }
5551 case NEON::BI__builtin_neon_vqshl_n_v:
5552 case NEON::BI__builtin_neon_vqshlq_n_v:
5553 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5554 1, false);
5555 case NEON::BI__builtin_neon_vqshlu_n_v:
5556 case NEON::BI__builtin_neon_vqshluq_n_v:
5557 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5558 1, false);
5559 case NEON::BI__builtin_neon_vrecpe_v:
5560 case NEON::BI__builtin_neon_vrecpeq_v:
5561 case NEON::BI__builtin_neon_vrsqrte_v:
5562 case NEON::BI__builtin_neon_vrsqrteq_v:
5563 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5564 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5565 case NEON::BI__builtin_neon_vrndi_v:
5566 case NEON::BI__builtin_neon_vrndiq_v:
5567 Int = Intrinsic::nearbyint;
5568 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5569 case NEON::BI__builtin_neon_vrshr_n_v:
5570 case NEON::BI__builtin_neon_vrshrq_n_v:
5571 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5572 1, true);
5573 case NEON::BI__builtin_neon_vshl_n_v:
5574 case NEON::BI__builtin_neon_vshlq_n_v:
5575 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5576 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5577 "vshl_n");
5578 case NEON::BI__builtin_neon_vshll_n_v: {
5579 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5580 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5581 if (Usgn)
5582 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5583 else
5584 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5585 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5586 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5587 }
5588 case NEON::BI__builtin_neon_vshrn_n_v: {
5589 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5590 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5591 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5592 if (Usgn)
5593 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5594 else
5595 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5596 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5597 }
5598 case NEON::BI__builtin_neon_vshr_n_v:
5599 case NEON::BI__builtin_neon_vshrq_n_v:
5600 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5601 case NEON::BI__builtin_neon_vst1_v:
5602 case NEON::BI__builtin_neon_vst1q_v:
5603 case NEON::BI__builtin_neon_vst2_v:
5604 case NEON::BI__builtin_neon_vst2q_v:
5605 case NEON::BI__builtin_neon_vst3_v:
5606 case NEON::BI__builtin_neon_vst3q_v:
5607 case NEON::BI__builtin_neon_vst4_v:
5608 case NEON::BI__builtin_neon_vst4q_v:
5609 case NEON::BI__builtin_neon_vst2_lane_v:
5610 case NEON::BI__builtin_neon_vst2q_lane_v:
5611 case NEON::BI__builtin_neon_vst3_lane_v:
5612 case NEON::BI__builtin_neon_vst3q_lane_v:
5613 case NEON::BI__builtin_neon_vst4_lane_v:
5614 case NEON::BI__builtin_neon_vst4q_lane_v: {
5615 llvm::Type *Tys[] = {Int8PtrTy, Ty};
5616 Ops.push_back(getAlignmentValue32(PtrOp0));
5617 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5618 }
5619 case NEON::BI__builtin_neon_vst1_x2_v:
5620 case NEON::BI__builtin_neon_vst1q_x2_v:
5621 case NEON::BI__builtin_neon_vst1_x3_v:
5622 case NEON::BI__builtin_neon_vst1q_x3_v:
5623 case NEON::BI__builtin_neon_vst1_x4_v:
5624 case NEON::BI__builtin_neon_vst1q_x4_v: {
5625 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5626 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5627 // in AArch64 it comes last. We may want to stick to one or another.
5628 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
5629 llvm::Type *Tys[2] = { VTy, PTy };
5630 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5631 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5632 }
5633 llvm::Type *Tys[2] = { PTy, VTy };
5634 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5635 }
5636 case NEON::BI__builtin_neon_vsubhn_v: {
5637 llvm::VectorType *SrcTy =
5638 llvm::VectorType::getExtendedElementVectorType(VTy);
5639
5640 // %sum = add <4 x i32> %lhs, %rhs
5641 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5642 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5643 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5644
5645 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5646 Constant *ShiftAmt =
5647 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5648 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5649
5650 // %res = trunc <4 x i32> %high to <4 x i16>
5651 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5652 }
5653 case NEON::BI__builtin_neon_vtrn_v:
5654 case NEON::BI__builtin_neon_vtrnq_v: {
5655 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5656 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5657 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5658 Value *SV = nullptr;
5659
5660 for (unsigned vi = 0; vi != 2; ++vi) {
5661 SmallVector<uint32_t, 16> Indices;
5662 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5663 Indices.push_back(i+vi);
5664 Indices.push_back(i+e+vi);
5665 }
5666 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5667 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5668 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5669 }
5670 return SV;
5671 }
5672 case NEON::BI__builtin_neon_vtst_v:
5673 case NEON::BI__builtin_neon_vtstq_v: {
5674 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5675 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5676 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5677 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5678 ConstantAggregateZero::get(Ty));
5679 return Builder.CreateSExt(Ops[0], Ty, "vtst");
5680 }
5681 case NEON::BI__builtin_neon_vuzp_v:
5682 case NEON::BI__builtin_neon_vuzpq_v: {
5683 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5684 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5685 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5686 Value *SV = nullptr;
5687
5688 for (unsigned vi = 0; vi != 2; ++vi) {
5689 SmallVector<uint32_t, 16> Indices;
5690 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5691 Indices.push_back(2*i+vi);
5692
5693 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5694 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5695 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5696 }
5697 return SV;
5698 }
5699 case NEON::BI__builtin_neon_vzip_v:
5700 case NEON::BI__builtin_neon_vzipq_v: {
5701 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5702 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5703 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5704 Value *SV = nullptr;
5705
5706 for (unsigned vi = 0; vi != 2; ++vi) {
5707 SmallVector<uint32_t, 16> Indices;
5708 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5709 Indices.push_back((i + vi*e) >> 1);
5710 Indices.push_back(((i + vi*e) >> 1)+e);
5711 }
5712 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5713 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5714 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5715 }
5716 return SV;
5717 }
5718 case NEON::BI__builtin_neon_vdot_v:
5719 case NEON::BI__builtin_neon_vdotq_v: {
5720 llvm::Type *InputTy =
5721 llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5722 llvm::Type *Tys[2] = { Ty, InputTy };
5723 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5724 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5725 }
5726 case NEON::BI__builtin_neon_vfmlal_low_v:
5727 case NEON::BI__builtin_neon_vfmlalq_low_v: {
5728 llvm::Type *InputTy =
5729 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5730 llvm::Type *Tys[2] = { Ty, InputTy };
5731 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5732 }
5733 case NEON::BI__builtin_neon_vfmlsl_low_v:
5734 case NEON::BI__builtin_neon_vfmlslq_low_v: {
5735 llvm::Type *InputTy =
5736 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5737 llvm::Type *Tys[2] = { Ty, InputTy };
5738 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5739 }
5740 case NEON::BI__builtin_neon_vfmlal_high_v:
5741 case NEON::BI__builtin_neon_vfmlalq_high_v: {
5742 llvm::Type *InputTy =
5743 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5744 llvm::Type *Tys[2] = { Ty, InputTy };
5745 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5746 }
5747 case NEON::BI__builtin_neon_vfmlsl_high_v:
5748 case NEON::BI__builtin_neon_vfmlslq_high_v: {
5749 llvm::Type *InputTy =
5750 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5751 llvm::Type *Tys[2] = { Ty, InputTy };
5752 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5753 }
5754 }
5755
5756 assert(Int && "Expected valid intrinsic number")((Int && "Expected valid intrinsic number") ? static_cast
<void> (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5756, __PRETTY_FUNCTION__))
;
5757
5758 // Determine the type(s) of this overloaded AArch64 intrinsic.
5759 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5760
5761 Value *Result = EmitNeonCall(F, Ops, NameHint);
5762 llvm::Type *ResultType = ConvertType(E->getType());
5763 // AArch64 intrinsic one-element vector type cast to
5764 // scalar type expected by the builtin
5765 return Builder.CreateBitCast(Result, ResultType, NameHint);
5766}
5767
5768Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5769 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5770 const CmpInst::Predicate Ip, const Twine &Name) {
5771 llvm::Type *OTy = Op->getType();
5772
5773 // FIXME: this is utterly horrific. We should not be looking at previous
5774 // codegen context to find out what needs doing. Unfortunately TableGen
5775 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5776 // (etc).
5777 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5778 OTy = BI->getOperand(0)->getType();
5779
5780 Op = Builder.CreateBitCast(Op, OTy);
5781 if (OTy->getScalarType()->isFloatingPointTy()) {
5782 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5783 } else {
5784 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5785 }
5786 return Builder.CreateSExt(Op, Ty, Name);
5787}
5788
5789static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5790 Value *ExtOp, Value *IndexOp,
5791 llvm::Type *ResTy, unsigned IntID,
5792 const char *Name) {
5793 SmallVector<Value *, 2> TblOps;
5794 if (ExtOp)
5795 TblOps.push_back(ExtOp);
5796
5797 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
5798 SmallVector<uint32_t, 16> Indices;
5799 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
5800 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
5801 Indices.push_back(2*i);
5802 Indices.push_back(2*i+1);
5803 }
5804
5805 int PairPos = 0, End = Ops.size() - 1;
5806 while (PairPos < End) {
5807 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5808 Ops[PairPos+1], Indices,
5809 Name));
5810 PairPos += 2;
5811 }
5812
5813 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
5814 // of the 128-bit lookup table with zero.
5815 if (PairPos == End) {
5816 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
5817 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5818 ZeroTbl, Indices, Name));
5819 }
5820
5821 Function *TblF;
5822 TblOps.push_back(IndexOp);
5823 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
5824
5825 return CGF.EmitNeonCall(TblF, TblOps, Name);
5826}
5827
5828Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
5829 unsigned Value;
5830 switch (BuiltinID) {
5831 default:
5832 return nullptr;
5833 case ARM::BI__builtin_arm_nop:
5834 Value = 0;
5835 break;
5836 case ARM::BI__builtin_arm_yield:
5837 case ARM::BI__yield:
5838 Value = 1;
5839 break;
5840 case ARM::BI__builtin_arm_wfe:
5841 case ARM::BI__wfe:
5842 Value = 2;
5843 break;
5844 case ARM::BI__builtin_arm_wfi:
5845 case ARM::BI__wfi:
5846 Value = 3;
5847 break;
5848 case ARM::BI__builtin_arm_sev:
5849 case ARM::BI__sev:
5850 Value = 4;
5851 break;
5852 case ARM::BI__builtin_arm_sevl:
5853 case ARM::BI__sevl:
5854 Value = 5;
5855 break;
5856 }
5857
5858 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
5859 llvm::ConstantInt::get(Int32Ty, Value));
5860}
5861
5862// Generates the IR for the read/write special register builtin,
5863// ValueType is the type of the value that is to be written or read,
5864// RegisterType is the type of the register being written to or read from.
5865static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
5866 const CallExpr *E,
5867 llvm::Type *RegisterType,
5868 llvm::Type *ValueType,
5869 bool IsRead,
5870 StringRef SysReg = "") {
5871 // write and register intrinsics only support 32 and 64 bit operations.
5872 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy
(64)) && "Unsupported size for register.") ? static_cast
<void> (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5873, __PRETTY_FUNCTION__))
5873 && "Unsupported size for register.")(((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy
(64)) && "Unsupported size for register.") ? static_cast
<void> (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5873, __PRETTY_FUNCTION__))
;
5874
5875 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5876 CodeGen::CodeGenModule &CGM = CGF.CGM;
5877 LLVMContext &Context = CGM.getLLVMContext();
5878
5879 if (SysReg.empty()) {
5880 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
5881 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
5882 }
5883
5884 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
5885 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
5886 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
5887
5888 llvm::Type *Types[] = { RegisterType };
5889
5890 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
5891 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))((!(RegisterType->isIntegerTy(32) && ValueType->
isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? static_cast<void> (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5892, __PRETTY_FUNCTION__))
5892 && "Can't fit 64-bit value in 32-bit register")((!(RegisterType->isIntegerTy(32) && ValueType->
isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? static_cast<void> (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5892, __PRETTY_FUNCTION__))
;
5893
5894 if (IsRead) {
5895 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
5896 llvm::Value *Call = Builder.CreateCall(F, Metadata);
5897
5898 if (MixedTypes)
5899 // Read into 64 bit register and then truncate result to 32 bit.
5900 return Builder.CreateTrunc(Call, ValueType);
5901
5902 if (ValueType->isPointerTy())
5903 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
5904 return Builder.CreateIntToPtr(Call, ValueType);
5905
5906 return Call;
5907 }
5908
5909 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
5910 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
5911 if (MixedTypes) {
5912 // Extend 32 bit write value to 64 bit to pass to write.
5913 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
5914 return Builder.CreateCall(F, { Metadata, ArgValue });
5915 }
5916
5917 if (ValueType->isPointerTy()) {
5918 // Have VoidPtrTy ArgValue but want to return an i32/i64.
5919 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
5920 return Builder.CreateCall(F, { Metadata, ArgValue });
5921 }
5922
5923 return Builder.CreateCall(F, { Metadata, ArgValue });
5924}
5925
5926/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
5927/// argument that specifies the vector type.
5928static bool HasExtraNeonArgument(unsigned BuiltinID) {
5929 switch (BuiltinID) {
5930 default: break;
5931 case NEON::BI__builtin_neon_vget_lane_i8:
5932 case NEON::BI__builtin_neon_vget_lane_i16:
5933 case NEON::BI__builtin_neon_vget_lane_i32:
5934 case NEON::BI__builtin_neon_vget_lane_i64:
5935 case NEON::BI__builtin_neon_vget_lane_f32:
5936 case NEON::BI__builtin_neon_vgetq_lane_i8:
5937 case NEON::BI__builtin_neon_vgetq_lane_i16:
5938 case NEON::BI__builtin_neon_vgetq_lane_i32:
5939 case NEON::BI__builtin_neon_vgetq_lane_i64:
5940 case NEON::BI__builtin_neon_vgetq_lane_f32:
5941 case NEON::BI__builtin_neon_vset_lane_i8:
5942 case NEON::BI__builtin_neon_vset_lane_i16:
5943 case NEON::BI__builtin_neon_vset_lane_i32:
5944 case NEON::BI__builtin_neon_vset_lane_i64:
5945 case NEON::BI__builtin_neon_vset_lane_f32:
5946 case NEON::BI__builtin_neon_vsetq_lane_i8:
5947 case NEON::BI__builtin_neon_vsetq_lane_i16:
5948 case NEON::BI__builtin_neon_vsetq_lane_i32:
5949 case NEON::BI__builtin_neon_vsetq_lane_i64:
5950 case NEON::BI__builtin_neon_vsetq_lane_f32:
5951 case NEON::BI__builtin_neon_vsha1h_u32:
5952 case NEON::BI__builtin_neon_vsha1cq_u32:
5953 case NEON::BI__builtin_neon_vsha1pq_u32:
5954 case NEON::BI__builtin_neon_vsha1mq_u32:
5955 case clang::ARM::BI_MoveToCoprocessor:
5956 case clang::ARM::BI_MoveToCoprocessor2:
5957 return false;
5958 }
5959 return true;
5960}
5961
5962Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
5963 const CallExpr *E,
5964 llvm::Triple::ArchType Arch) {
5965 if (auto Hint = GetValueForARMHint(BuiltinID))
5966 return Hint;
5967
5968 if (BuiltinID == ARM::BI__emit) {
5969 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
5970 llvm::FunctionType *FTy =
5971 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
5972
5973 Expr::EvalResult Result;
5974 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
5975 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5975)
;
5976
5977 llvm::APSInt Value = Result.Val.getInt();
5978 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
5979
5980 llvm::InlineAsm *Emit =
5981 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
5982 /*SideEffects=*/true)
5983 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
5984 /*SideEffects=*/true);
5985
5986 return Builder.CreateCall(Emit);
5987 }
5988
5989 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
5990 Value *Option = EmitScalarExpr(E->getArg(0));
5991 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
5992 }
5993
5994 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
5995 Value *Address = EmitScalarExpr(E->getArg(0));
5996 Value *RW = EmitScalarExpr(E->getArg(1));
5997 Value *IsData = EmitScalarExpr(E->getArg(2));
5998
5999 // Locality is not supported on ARM target
6000 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6001
6002 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
6003 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6004 }
6005
6006 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6007 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6008 return Builder.CreateCall(
6009 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6010 }
6011
6012 if (BuiltinID == ARM::BI__clear_cache) {
6013 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")((E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6013, __PRETTY_FUNCTION__))
;
6014 const FunctionDecl *FD = E->getDirectCallee();
6015 Value *Ops[2];
6016 for (unsigned i = 0; i < 2; i++)
6017 Ops[i] = EmitScalarExpr(E->getArg(i));
6018 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6019 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6020 StringRef Name = FD->getName();
6021 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6022 }
6023
6024 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6025 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6026 Function *F;
6027
6028 switch (BuiltinID) {
6029 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6029)
;
6030 case ARM::BI__builtin_arm_mcrr:
6031 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6032 break;
6033 case ARM::BI__builtin_arm_mcrr2:
6034 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6035 break;
6036 }
6037
6038 // MCRR{2} instruction has 5 operands but
6039 // the intrinsic has 4 because Rt and Rt2
6040 // are represented as a single unsigned 64
6041 // bit integer in the intrinsic definition
6042 // but internally it's represented as 2 32
6043 // bit integers.
6044
6045 Value *Coproc = EmitScalarExpr(E->getArg(0));
6046 Value *Opc1 = EmitScalarExpr(E->getArg(1));
6047 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6048 Value *CRm = EmitScalarExpr(E->getArg(3));
6049
6050 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6051 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6052 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6053 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6054
6055 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6056 }
6057
6058 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6059 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6060 Function *F;
6061
6062 switch (BuiltinID) {
6063 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6063)
;
6064 case ARM::BI__builtin_arm_mrrc:
6065 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6066 break;
6067 case ARM::BI__builtin_arm_mrrc2:
6068 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6069 break;
6070 }
6071
6072 Value *Coproc = EmitScalarExpr(E->getArg(0));
6073 Value *Opc1 = EmitScalarExpr(E->getArg(1));
6074 Value *CRm = EmitScalarExpr(E->getArg(2));
6075 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6076
6077 // Returns an unsigned 64 bit integer, represented
6078 // as two 32 bit integers.
6079
6080 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6081 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6082 Rt = Builder.CreateZExt(Rt, Int64Ty);
6083 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6084
6085 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6086 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6087 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6088
6089 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6090 }
6091
6092 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6093 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6094 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6095 getContext().getTypeSize(E->getType()) == 64) ||
6096 BuiltinID == ARM::BI__ldrexd) {
6097 Function *F;
6098
6099 switch (BuiltinID) {
6100 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6100)
;
6101 case ARM::BI__builtin_arm_ldaex:
6102 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6103 break;
6104 case ARM::BI__builtin_arm_ldrexd:
6105 case ARM::BI__builtin_arm_ldrex:
6106 case ARM::BI__ldrexd:
6107 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6108 break;
6109 }
6110
6111 Value *LdPtr = EmitScalarExpr(E->getArg(0));
6112 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6113 "ldrexd");
6114
6115 Value *Val0 = Builder.CreateExtractValue(Val, 1);
6116 Value *Val1 = Builder.CreateExtractValue(Val, 0);
6117 Val0 = Builder.CreateZExt(Val0, Int64Ty);
6118 Val1 = Builder.CreateZExt(Val1, Int64Ty);
6119
6120 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6121 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6122 Val = Builder.CreateOr(Val, Val1);
6123 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6124 }
6125
6126 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6127 BuiltinID == ARM::BI__builtin_arm_ldaex) {
6128 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6129
6130 QualType Ty = E->getType();
6131 llvm::Type *RealResTy = ConvertType(Ty);
6132 llvm::Type *PtrTy = llvm::IntegerType::get(
6133 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6134 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6135
6136 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6137 ? Intrinsic::arm_ldaex
6138 : Intrinsic::arm_ldrex,
6139 PtrTy);
6140 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6141
6142 if (RealResTy->isPointerTy())
6143 return Builder.CreateIntToPtr(Val, RealResTy);
6144 else {
6145 llvm::Type *IntResTy = llvm::IntegerType::get(
6146 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6147 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6148 return Builder.CreateBitCast(Val, RealResTy);
6149 }
6150 }
6151
6152 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6153 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6154 BuiltinID == ARM::BI__builtin_arm_strex) &&
6155 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6156 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6157 ? Intrinsic::arm_stlexd
6158 : Intrinsic::arm_strexd);
6159 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6160
6161 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6162 Value *Val = EmitScalarExpr(E->getArg(0));
6163 Builder.CreateStore(Val, Tmp);
6164
6165 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6166 Val = Builder.CreateLoad(LdPtr);
6167
6168 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6169 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6170 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6171 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6172 }
6173
6174 if (BuiltinID == ARM::BI__builtin_arm_strex ||
6175 BuiltinID == ARM::BI__builtin_arm_stlex) {
6176 Value *StoreVal = EmitScalarExpr(E->getArg(0));
6177 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6178
6179 QualType Ty = E->getArg(0)->getType();
6180 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6181 getContext().getTypeSize(Ty));
6182 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6183
6184 if (StoreVal->getType()->isPointerTy())
6185 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6186 else {
6187 llvm::Type *IntTy = llvm::IntegerType::get(
6188 getLLVMContext(),
6189 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6190 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6191 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6192 }
6193
6194 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6195 ? Intrinsic::arm_stlex
6196 : Intrinsic::arm_strex,
6197 StoreAddr->getType());
6198 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6199 }
6200
6201 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6202 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6203 return Builder.CreateCall(F);
6204 }
6205
6206 // CRC32
6207 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6208 switch (BuiltinID) {
6209 case ARM::BI__builtin_arm_crc32b:
6210 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6211 case ARM::BI__builtin_arm_crc32cb:
6212 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6213 case ARM::BI__builtin_arm_crc32h:
6214 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6215 case ARM::BI__builtin_arm_crc32ch:
6216 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6217 case ARM::BI__builtin_arm_crc32w:
6218 case ARM::BI__builtin_arm_crc32d:
6219 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6220 case ARM::BI__builtin_arm_crc32cw:
6221 case ARM::BI__builtin_arm_crc32cd:
6222 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6223 }
6224
6225 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6226 Value *Arg0 = EmitScalarExpr(E->getArg(0));
6227 Value *Arg1 = EmitScalarExpr(E->getArg(1));
6228
6229 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6230 // intrinsics, hence we need different codegen for these cases.
6231 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6232 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6233 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6234 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6235 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6236 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6237
6238 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6239 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6240 return Builder.CreateCall(F, {Res, Arg1b});
6241 } else {
6242 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6243
6244 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6245 return Builder.CreateCall(F, {Arg0, Arg1});
6246 }
6247 }
6248
6249 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6250 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6251 BuiltinID == ARM::BI__builtin_arm_rsrp ||
6252 BuiltinID == ARM::BI__builtin_arm_wsr ||
6253 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6254 BuiltinID == ARM::BI__builtin_arm_wsrp) {
6255
6256 bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6257 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6258 BuiltinID == ARM::BI__builtin_arm_rsrp;
6259
6260 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6261 BuiltinID == ARM::BI__builtin_arm_wsrp;
6262
6263 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6264 BuiltinID == ARM::BI__builtin_arm_wsr64;
6265
6266 llvm::Type *ValueType;
6267 llvm::Type *RegisterType;
6268 if (IsPointerBuiltin) {
6269 ValueType = VoidPtrTy;
6270 RegisterType = Int32Ty;
6271 } else if (Is64Bit) {
6272 ValueType = RegisterType = Int64Ty;
6273 } else {
6274 ValueType = RegisterType = Int32Ty;
6275 }
6276
6277 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6278 }
6279
6280 // Find out if any arguments are required to be integer constant
6281 // expressions.
6282 unsigned ICEArguments = 0;
6283 ASTContext::GetBuiltinTypeError Error;
6284 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6285 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6285, __PRETTY_FUNCTION__))
;
6286
6287 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6288 return Builder.getInt32(addr.getAlignment().getQuantity());
6289 };
6290
6291 Address PtrOp0 = Address::invalid();
6292 Address PtrOp1 = Address::invalid();
6293 SmallVector<Value*, 4> Ops;
6294 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6295 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6296 for (unsigned i = 0, e = NumArgs; i != e; i++) {
6297 if (i == 0) {
6298 switch (BuiltinID) {
6299 case NEON::BI__builtin_neon_vld1_v:
6300 case NEON::BI__builtin_neon_vld1q_v:
6301 case NEON::BI__builtin_neon_vld1q_lane_v:
6302 case NEON::BI__builtin_neon_vld1_lane_v:
6303 case NEON::BI__builtin_neon_vld1_dup_v:
6304 case NEON::BI__builtin_neon_vld1q_dup_v:
6305 case NEON::BI__builtin_neon_vst1_v:
6306 case NEON::BI__builtin_neon_vst1q_v:
6307 case NEON::BI__builtin_neon_vst1q_lane_v:
6308 case NEON::BI__builtin_neon_vst1_lane_v:
6309 case NEON::BI__builtin_neon_vst2_v:
6310 case NEON::BI__builtin_neon_vst2q_v:
6311 case NEON::BI__builtin_neon_vst2_lane_v:
6312 case NEON::BI__builtin_neon_vst2q_lane_v:
6313 case NEON::BI__builtin_neon_vst3_v:
6314 case NEON::BI__builtin_neon_vst3q_v:
6315 case NEON::BI__builtin_neon_vst3_lane_v:
6316 case NEON::BI__builtin_neon_vst3q_lane_v:
6317 case NEON::BI__builtin_neon_vst4_v:
6318 case NEON::BI__builtin_neon_vst4q_v:
6319 case NEON::BI__builtin_neon_vst4_lane_v:
6320 case NEON::BI__builtin_neon_vst4q_lane_v:
6321 // Get the alignment for the argument in addition to the value;
6322 // we'll use it later.
6323 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6324 Ops.push_back(PtrOp0.getPointer());
6325 continue;
6326 }
6327 }
6328 if (i == 1) {
6329 switch (BuiltinID) {
6330 case NEON::BI__builtin_neon_vld2_v:
6331 case NEON::BI__builtin_neon_vld2q_v:
6332 case NEON::BI__builtin_neon_vld3_v:
6333 case NEON::BI__builtin_neon_vld3q_v:
6334 case NEON::BI__builtin_neon_vld4_v:
6335 case NEON::BI__builtin_neon_vld4q_v:
6336 case NEON::BI__builtin_neon_vld2_lane_v:
6337 case NEON::BI__builtin_neon_vld2q_lane_v:
6338 case NEON::BI__builtin_neon_vld3_lane_v:
6339 case NEON::BI__builtin_neon_vld3q_lane_v:
6340 case NEON::BI__builtin_neon_vld4_lane_v:
6341 case NEON::BI__builtin_neon_vld4q_lane_v:
6342 case NEON::BI__builtin_neon_vld2_dup_v:
6343 case NEON::BI__builtin_neon_vld2q_dup_v:
6344 case NEON::BI__builtin_neon_vld3_dup_v:
6345 case NEON::BI__builtin_neon_vld3q_dup_v:
6346 case NEON::BI__builtin_neon_vld4_dup_v:
6347 case NEON::BI__builtin_neon_vld4q_dup_v:
6348 // Get the alignment for the argument in addition to the value;
6349 // we'll use it later.
6350 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6351 Ops.push_back(PtrOp1.getPointer());
6352 continue;
6353 }
6354 }
6355
6356 if ((ICEArguments & (1 << i)) == 0) {
6357 Ops.push_back(EmitScalarExpr(E->getArg(i)));
6358 } else {
6359 // If this is required to be a constant, constant fold it so that we know
6360 // that the generated intrinsic gets a ConstantInt.
6361 llvm::APSInt Result;
6362 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6363 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6363, __PRETTY_FUNCTION__))
; (void)IsConst;
6364 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6365 }
6366 }
6367
6368 switch (BuiltinID) {
6369 default: break;
6370
6371 case NEON::BI__builtin_neon_vget_lane_i8:
6372 case NEON::BI__builtin_neon_vget_lane_i16:
6373 case NEON::BI__builtin_neon_vget_lane_i32:
6374 case NEON::BI__builtin_neon_vget_lane_i64:
6375 case NEON::BI__builtin_neon_vget_lane_f32:
6376 case NEON::BI__builtin_neon_vgetq_lane_i8:
6377 case NEON::BI__builtin_neon_vgetq_lane_i16:
6378 case NEON::BI__builtin_neon_vgetq_lane_i32:
6379 case NEON::BI__builtin_neon_vgetq_lane_i64:
6380 case NEON::BI__builtin_neon_vgetq_lane_f32:
6381 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6382
6383 case NEON::BI__builtin_neon_vrndns_f32: {
6384 Value *Arg = EmitScalarExpr(E->getArg(0));
6385 llvm::Type *Tys[] = {Arg->getType()};
6386 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6387 return Builder.CreateCall(F, {Arg}, "vrndn"); }
6388
6389 case NEON::BI__builtin_neon_vset_lane_i8:
6390 case NEON::BI__builtin_neon_vset_lane_i16:
6391 case NEON::BI__builtin_neon_vset_lane_i32:
6392 case NEON::BI__builtin_neon_vset_lane_i64:
6393 case NEON::BI__builtin_neon_vset_lane_f32:
6394 case NEON::BI__builtin_neon_vsetq_lane_i8:
6395 case NEON::BI__builtin_neon_vsetq_lane_i16:
6396 case NEON::BI__builtin_neon_vsetq_lane_i32:
6397 case NEON::BI__builtin_neon_vsetq_lane_i64:
6398 case NEON::BI__builtin_neon_vsetq_lane_f32:
6399 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6400
6401 case NEON::BI__builtin_neon_vsha1h_u32:
6402 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6403 "vsha1h");
6404 case NEON::BI__builtin_neon_vsha1cq_u32:
6405 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6406 "vsha1h");
6407 case NEON::BI__builtin_neon_vsha1pq_u32:
6408 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6409 "vsha1h");
6410 case NEON::BI__builtin_neon_vsha1mq_u32:
6411 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6412 "vsha1h");
6413
6414 // The ARM _MoveToCoprocessor builtins put the input register value as
6415 // the first argument, but the LLVM intrinsic expects it as the third one.
6416 case ARM::BI_MoveToCoprocessor:
6417 case ARM::BI_MoveToCoprocessor2: {
6418 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6419 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6420 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6421 Ops[3], Ops[4], Ops[5]});
6422 }
6423 case ARM::BI_BitScanForward:
6424 case ARM::BI_BitScanForward64:
6425 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6426 case ARM::BI_BitScanReverse:
6427 case ARM::BI_BitScanReverse64:
6428 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6429
6430 case ARM::BI_InterlockedAnd64:
6431 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6432 case ARM::BI_InterlockedExchange64:
6433 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6434 case ARM::BI_InterlockedExchangeAdd64:
6435 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6436 case ARM::BI_InterlockedExchangeSub64:
6437 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6438 case ARM::BI_InterlockedOr64:
6439 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6440 case ARM::BI_InterlockedXor64:
6441 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6442 case ARM::BI_InterlockedDecrement64:
6443 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6444 case ARM::BI_InterlockedIncrement64:
6445 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6446 case ARM::BI_InterlockedExchangeAdd8_acq:
6447 case ARM::BI_InterlockedExchangeAdd16_acq:
6448 case ARM::BI_InterlockedExchangeAdd_acq:
6449 case ARM::BI_InterlockedExchangeAdd64_acq:
6450 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6451 case ARM::BI_InterlockedExchangeAdd8_rel:
6452 case ARM::BI_InterlockedExchangeAdd16_rel:
6453 case ARM::BI_InterlockedExchangeAdd_rel:
6454 case ARM::BI_InterlockedExchangeAdd64_rel:
6455 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6456 case ARM::BI_InterlockedExchangeAdd8_nf:
6457 case ARM::BI_InterlockedExchangeAdd16_nf:
6458 case ARM::BI_InterlockedExchangeAdd_nf:
6459 case ARM::BI_InterlockedExchangeAdd64_nf:
6460 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6461 case ARM::BI_InterlockedExchange8_acq:
6462 case ARM::BI_InterlockedExchange16_acq:
6463 case ARM::BI_InterlockedExchange_acq:
6464 case ARM::BI_InterlockedExchange64_acq:
6465 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6466 case ARM::BI_InterlockedExchange8_rel:
6467 case ARM::BI_InterlockedExchange16_rel:
6468 case ARM::BI_InterlockedExchange_rel:
6469 case ARM::BI_InterlockedExchange64_rel:
6470 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6471 case ARM::BI_InterlockedExchange8_nf:
6472 case ARM::BI_InterlockedExchange16_nf:
6473 case ARM::BI_InterlockedExchange_nf:
6474 case ARM::BI_InterlockedExchange64_nf:
6475 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6476 case ARM::BI_InterlockedCompareExchange8_acq:
6477 case ARM::BI_InterlockedCompareExchange16_acq:
6478 case ARM::BI_InterlockedCompareExchange_acq:
6479 case ARM::BI_InterlockedCompareExchange64_acq:
6480 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6481 case ARM::BI_InterlockedCompareExchange8_rel:
6482 case ARM::BI_InterlockedCompareExchange16_rel:
6483 case ARM::BI_InterlockedCompareExchange_rel:
6484 case ARM::BI_InterlockedCompareExchange64_rel:
6485 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6486 case ARM::BI_InterlockedCompareExchange8_nf:
6487 case ARM::BI_InterlockedCompareExchange16_nf:
6488 case ARM::BI_InterlockedCompareExchange_nf:
6489 case ARM::BI_InterlockedCompareExchange64_nf:
6490 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6491 case ARM::BI_InterlockedOr8_acq:
6492 case ARM::BI_InterlockedOr16_acq:
6493 case ARM::BI_InterlockedOr_acq:
6494 case ARM::BI_InterlockedOr64_acq:
6495 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6496 case ARM::BI_InterlockedOr8_rel:
6497 case ARM::BI_InterlockedOr16_rel:
6498 case ARM::BI_InterlockedOr_rel:
6499 case ARM::BI_InterlockedOr64_rel:
6500 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6501 case ARM::BI_InterlockedOr8_nf:
6502 case ARM::BI_InterlockedOr16_nf:
6503 case ARM::BI_InterlockedOr_nf:
6504 case ARM::BI_InterlockedOr64_nf:
6505 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6506 case ARM::BI_InterlockedXor8_acq:
6507 case ARM::BI_InterlockedXor16_acq:
6508 case ARM::BI_InterlockedXor_acq:
6509 case ARM::BI_InterlockedXor64_acq:
6510 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6511 case ARM::BI_InterlockedXor8_rel:
6512 case ARM::BI_InterlockedXor16_rel:
6513 case ARM::BI_InterlockedXor_rel:
6514 case ARM::BI_InterlockedXor64_rel:
6515 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6516 case ARM::BI_InterlockedXor8_nf:
6517 case ARM::BI_InterlockedXor16_nf:
6518 case ARM::BI_InterlockedXor_nf:
6519 case ARM::BI_InterlockedXor64_nf:
6520 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6521 case ARM::BI_InterlockedAnd8_acq:
6522 case ARM::BI_InterlockedAnd16_acq:
6523 case ARM::BI_InterlockedAnd_acq:
6524 case ARM::BI_InterlockedAnd64_acq:
6525 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6526 case ARM::BI_InterlockedAnd8_rel:
6527 case ARM::BI_InterlockedAnd16_rel:
6528 case ARM::BI_InterlockedAnd_rel:
6529 case ARM::BI_InterlockedAnd64_rel:
6530 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6531 case ARM::BI_InterlockedAnd8_nf:
6532 case ARM::BI_InterlockedAnd16_nf:
6533 case ARM::BI_InterlockedAnd_nf:
6534 case ARM::BI_InterlockedAnd64_nf:
6535 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6536 case ARM::BI_InterlockedIncrement16_acq:
6537 case ARM::BI_InterlockedIncrement_acq:
6538 case ARM::BI_InterlockedIncrement64_acq:
6539 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6540 case ARM::BI_InterlockedIncrement16_rel:
6541 case ARM::BI_InterlockedIncrement_rel:
6542 case ARM::BI_InterlockedIncrement64_rel:
6543 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6544 case ARM::BI_InterlockedIncrement16_nf:
6545 case ARM::BI_InterlockedIncrement_nf:
6546 case ARM::BI_InterlockedIncrement64_nf:
6547 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6548 case ARM::BI_InterlockedDecrement16_acq:
6549 case ARM::BI_InterlockedDecrement_acq:
6550 case ARM::BI_InterlockedDecrement64_acq:
6551 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6552 case ARM::BI_InterlockedDecrement16_rel:
6553 case ARM::BI_InterlockedDecrement_rel:
6554 case ARM::BI_InterlockedDecrement64_rel:
6555 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6556 case ARM::BI_InterlockedDecrement16_nf:
6557 case ARM::BI_InterlockedDecrement_nf:
6558 case ARM::BI_InterlockedDecrement64_nf:
6559 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6560 }
6561
6562 // Get the last argument, which specifies the vector type.
6563 assert(HasExtraArg)((HasExtraArg) ? static_cast<void> (0) : __assert_fail (
"HasExtraArg", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6563, __PRETTY_FUNCTION__))
;
6564 llvm::APSInt Result;
6565 const Expr *Arg = E->getArg(E->getNumArgs()-1);
6566 if (!Arg->isIntegerConstantExpr(Result, getContext()))
6567 return nullptr;
6568
6569 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6570 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6571 // Determine the overloaded type of this builtin.
6572 llvm::Type *Ty;
6573 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6574 Ty = FloatTy;
6575 else
6576 Ty = DoubleTy;
6577
6578 // Determine whether this is an unsigned conversion or not.
6579 bool usgn = Result.getZExtValue() == 1;
6580 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6581
6582 // Call the appropriate intrinsic.
6583 Function *F = CGM.getIntrinsic(Int, Ty);
6584 return Builder.CreateCall(F, Ops, "vcvtr");
6585 }
6586
6587 // Determine the type of this overloaded NEON intrinsic.
6588 NeonTypeFlags Type(Result.getZExtValue());
6589 bool usgn = Type.isUnsigned();
6590 bool rightShift = false;
6591
6592 llvm::VectorType *VTy = GetNeonType(this, Type,
6593 getTarget().hasLegalHalfType());
6594 llvm::Type *Ty = VTy;
6595 if (!Ty)
6596 return nullptr;
6597
6598 // Many NEON builtins have identical semantics and uses in ARM and
6599 // AArch64. Emit these in a single function.
6600 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6601 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6602 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6603 if (Builtin)
6604 return EmitCommonNeonBuiltinExpr(
6605 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6606 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6607
6608 unsigned Int;
6609 switch (BuiltinID) {
6610 default: return nullptr;
6611 case NEON::BI__builtin_neon_vld1q_lane_v:
6612 // Handle 64-bit integer elements as a special case. Use shuffles of
6613 // one-element vectors to avoid poor code for i64 in the backend.
6614 if (VTy->getElementType()->isIntegerTy(64)) {
6615 // Extract the other lane.
6616 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6617 uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6618 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6619 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6620 // Load the value as a one-element vector.
6621 Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6622 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6623 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6624 Value *Align = getAlignmentValue32(PtrOp0);
6625 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6626 // Combine them.
6627 uint32_t Indices[] = {1 - Lane, Lane};
6628 SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6629 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6630 }
6631 LLVM_FALLTHROUGH[[clang::fallthrough]];
6632 case NEON::BI__builtin_neon_vld1_lane_v: {
6633 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6634 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6635 Value *Ld = Builder.CreateLoad(PtrOp0);
6636 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6637 }
6638 case NEON::BI__builtin_neon_vqrshrn_n_v:
6639 Int =
6640 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6641 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6642 1, true);
6643 case NEON::BI__builtin_neon_vqrshrun_n_v:
6644 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6645 Ops, "vqrshrun_n", 1, true);
6646 case NEON::BI__builtin_neon_vqshrn_n_v:
6647 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6648 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6649 1, true);
6650 case NEON::BI__builtin_neon_vqshrun_n_v:
6651 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6652 Ops, "vqshrun_n", 1, true);
6653 case NEON::BI__builtin_neon_vrecpe_v:
6654 case NEON::BI__builtin_neon_vrecpeq_v:
6655 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6656 Ops, "vrecpe");
6657 case NEON::BI__builtin_neon_vrshrn_n_v:
6658 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6659 Ops, "vrshrn_n", 1, true);
6660 case NEON::BI__builtin_neon_vrsra_n_v:
6661 case NEON::BI__builtin_neon_vrsraq_n_v:
6662 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6663 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6664 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6665 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6666 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6667 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6668 case NEON::BI__builtin_neon_vsri_n_v:
6669 case NEON::BI__builtin_neon_vsriq_n_v:
6670 rightShift = true;
6671 LLVM_FALLTHROUGH[[clang::fallthrough]];
6672 case NEON::BI__builtin_neon_vsli_n_v:
6673 case NEON::BI__builtin_neon_vsliq_n_v:
6674 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6675 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6676 Ops, "vsli_n");
6677 case NEON::BI__builtin_neon_vsra_n_v:
6678 case NEON::BI__builtin_neon_vsraq_n_v:
6679 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6680 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6681 return Builder.CreateAdd(Ops[0], Ops[1]);
6682 case NEON::BI__builtin_neon_vst1q_lane_v:
6683 // Handle 64-bit integer elements as a special case. Use a shuffle to get
6684 // a one-element vector and avoid poor code for i64 in the backend.
6685 if (VTy->getElementType()->isIntegerTy(64)) {
6686 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6687 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6688 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6689 Ops[2] = getAlignmentValue32(PtrOp0);
6690 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6691 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6692 Tys), Ops);
6693 }
6694 LLVM_FALLTHROUGH[[clang::fallthrough]];
6695 case NEON::BI__builtin_neon_vst1_lane_v: {
6696 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6697 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6698 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6699 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6700 return St;
6701 }
6702 case NEON::BI__builtin_neon_vtbl1_v:
6703 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6704 Ops, "vtbl1");
6705 case NEON::BI__builtin_neon_vtbl2_v:
6706 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6707 Ops, "vtbl2");
6708 case NEON::BI__builtin_neon_vtbl3_v:
6709 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6710 Ops, "vtbl3");
6711 case NEON::BI__builtin_neon_vtbl4_v:
6712 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6713 Ops, "vtbl4");
6714 case NEON::BI__builtin_neon_vtbx1_v:
6715 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6716 Ops, "vtbx1");
6717 case NEON::BI__builtin_neon_vtbx2_v:
6718 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6719 Ops, "vtbx2");
6720 case NEON::BI__builtin_neon_vtbx3_v:
6721 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6722 Ops, "vtbx3");
6723 case NEON::BI__builtin_neon_vtbx4_v:
6724 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6725 Ops, "vtbx4");
6726 }
6727}
6728
6729static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
6730 const CallExpr *E,
6731 SmallVectorImpl<Value *> &Ops,
6732 llvm::Triple::ArchType Arch) {
6733 unsigned int Int = 0;
6734 const char *s = nullptr;
6735
6736 switch (BuiltinID) {
6737 default:
6738 return nullptr;
6739 case NEON::BI__builtin_neon_vtbl1_v:
6740 case NEON::BI__builtin_neon_vqtbl1_v:
6741 case NEON::BI__builtin_neon_vqtbl1q_v:
6742 case NEON::BI__builtin_neon_vtbl2_v:
6743 case NEON::BI__builtin_neon_vqtbl2_v:
6744 case NEON::BI__builtin_neon_vqtbl2q_v:
6745 case NEON::BI__builtin_neon_vtbl3_v:
6746 case NEON::BI__builtin_neon_vqtbl3_v:
6747 case NEON::BI__builtin_neon_vqtbl3q_v:
6748 case NEON::BI__builtin_neon_vtbl4_v:
6749 case NEON::BI__builtin_neon_vqtbl4_v:
6750 case NEON::BI__builtin_neon_vqtbl4q_v:
6751 break;
6752 case NEON::BI__builtin_neon_vtbx1_v:
6753 case NEON::BI__builtin_neon_vqtbx1_v:
6754 case NEON::BI__builtin_neon_vqtbx1q_v:
6755 case NEON::BI__builtin_neon_vtbx2_v:
6756 case NEON::BI__builtin_neon_vqtbx2_v:
6757 case NEON::BI__builtin_neon_vqtbx2q_v:
6758 case NEON::BI__builtin_neon_vtbx3_v:
6759 case NEON::BI__builtin_neon_vqtbx3_v:
6760 case NEON::BI__builtin_neon_vqtbx3q_v:
6761 case NEON::BI__builtin_neon_vtbx4_v:
6762 case NEON::BI__builtin_neon_vqtbx4_v:
6763 case NEON::BI__builtin_neon_vqtbx4q_v:
6764 break;
6765 }
6766
6767 assert(E->getNumArgs() >= 3)((E->getNumArgs() >= 3) ? static_cast<void> (0) :
__assert_fail ("E->getNumArgs() >= 3", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6767, __PRETTY_FUNCTION__))
;
6768
6769 // Get the last argument, which specifies the vector type.
6770 llvm::APSInt Result;
6771 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6772 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
6773 return nullptr;
6774
6775 // Determine the type of this overloaded NEON intrinsic.
6776 NeonTypeFlags Type(Result.getZExtValue());
6777 llvm::VectorType *Ty = GetNeonType(&CGF, Type);
6778 if (!Ty)
6779 return nullptr;
6780
6781 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6782
6783 // AArch64 scalar builtins are not overloaded, they do not have an extra
6784 // argument that specifies the vector type, need to handle each case.
6785 switch (BuiltinID) {
6786 case NEON::BI__builtin_neon_vtbl1_v: {
6787 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
6788 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
6789 "vtbl1");
6790 }
6791 case NEON::BI__builtin_neon_vtbl2_v: {
6792 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
6793 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
6794 "vtbl1");
6795 }
6796 case NEON::BI__builtin_neon_vtbl3_v: {
6797 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
6798 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
6799 "vtbl2");
6800 }
6801 case NEON::BI__builtin_neon_vtbl4_v: {
6802 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
6803 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
6804 "vtbl2");
6805 }
6806 case NEON::BI__builtin_neon_vtbx1_v: {
6807 Value *TblRes =
6808 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
6809 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
6810
6811 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
6812 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
6813 CmpRes = Builder.CreateSExt(CmpRes, Ty);
6814
6815 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6816 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6817 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6818 }
6819 case NEON::BI__builtin_neon_vtbx2_v: {
6820 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
6821 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
6822 "vtbx1");
6823 }
6824 case NEON::BI__builtin_neon_vtbx3_v: {
6825 Value *TblRes =
6826 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
6827 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
6828
6829 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
6830 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
6831 TwentyFourV);
6832 CmpRes = Builder.CreateSExt(CmpRes, Ty);
6833
6834 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6835 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6836 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6837 }
6838 case NEON::BI__builtin_neon_vtbx4_v: {
6839 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
6840 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
6841 "vtbx2");
6842 }
6843 case NEON::BI__builtin_neon_vqtbl1_v:
6844 case NEON::BI__builtin_neon_vqtbl1q_v:
6845 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
6846 case NEON::BI__builtin_neon_vqtbl2_v:
6847 case NEON::BI__builtin_neon_vqtbl2q_v: {
6848 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
6849 case NEON::BI__builtin_neon_vqtbl3_v:
6850 case NEON::BI__builtin_neon_vqtbl3q_v:
6851 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
6852 case NEON::BI__builtin_neon_vqtbl4_v:
6853 case NEON::BI__builtin_neon_vqtbl4q_v:
6854 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
6855 case NEON::BI__builtin_neon_vqtbx1_v:
6856 case NEON::BI__builtin_neon_vqtbx1q_v:
6857 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
6858 case NEON::BI__builtin_neon_vqtbx2_v:
6859 case NEON::BI__builtin_neon_vqtbx2q_v:
6860 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
6861 case NEON::BI__builtin_neon_vqtbx3_v:
6862 case NEON::BI__builtin_neon_vqtbx3q_v:
6863 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
6864 case NEON::BI__builtin_neon_vqtbx4_v:
6865 case NEON::BI__builtin_neon_vqtbx4q_v:
6866 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
6867 }
6868 }
6869
6870 if (!Int)
6871 return nullptr;
6872
6873 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
6874 return CGF.EmitNeonCall(F, Ops, s);
6875}
6876
6877Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
6878 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
6879 Op = Builder.CreateBitCast(Op, Int16Ty);
6880 Value *V = UndefValue::get(VTy);
6881 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6882 Op = Builder.CreateInsertElement(V, Op, CI);
6883 return Op;
6884}
6885
6886Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
6887 const CallExpr *E,
6888 llvm::Triple::ArchType Arch) {
6889 unsigned HintID = static_cast<unsigned>(-1);
6890 switch (BuiltinID) {
6891 default: break;
6892 case AArch64::BI__builtin_arm_nop:
6893 HintID = 0;
6894 break;
6895 case AArch64::BI__builtin_arm_yield:
6896 case AArch64::BI__yield:
6897 HintID = 1;
6898 break;
6899 case AArch64::BI__builtin_arm_wfe:
6900 case AArch64::BI__wfe:
6901 HintID = 2;
6902 break;
6903 case AArch64::BI__builtin_arm_wfi:
6904 case AArch64::BI__wfi:
6905 HintID = 3;
6906 break;
6907 case AArch64::BI__builtin_arm_sev:
6908 case AArch64::BI__sev:
6909 HintID = 4;
6910 break;
6911 case AArch64::BI__builtin_arm_sevl:
6912 case AArch64::BI__sevl:
6913 HintID = 5;
6914 break;
6915 }
6916
6917 if (HintID != static_cast<unsigned>(-1)) {
6918 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
6919 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
6920 }
6921
6922 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
6923 Value *Address = EmitScalarExpr(E->getArg(0));
6924 Value *RW = EmitScalarExpr(E->getArg(1));
6925 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
6926 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
6927 Value *IsData = EmitScalarExpr(E->getArg(4));
6928
6929 Value *Locality = nullptr;
6930 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
6931 // Temporal fetch, needs to convert cache level to locality.
6932 Locality = llvm::ConstantInt::get(Int32Ty,
6933 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
6934 } else {
6935 // Streaming fetch.
6936 Locality = llvm::ConstantInt::get(Int32Ty, 0);
6937 }
6938
6939 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
6940 // PLDL3STRM or PLDL2STRM.
6941 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
6942 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6943 }
6944
6945 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
6946 assert((getContext().getTypeSize(E->getType()) == 32) &&(((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6947, __PRETTY_FUNCTION__))
6947 "rbit of unusual size!")(((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6947, __PRETTY_FUNCTION__))
;
6948 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6949 return Builder.CreateCall(
6950 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6951 }
6952 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
6953 assert((getContext().getTypeSize(E->getType()) == 64) &&(((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6954, __PRETTY_FUNCTION__))
6954 "rbit of unusual size!")(((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6954, __PRETTY_FUNCTION__))
;
6955 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6956 return Builder.CreateCall(
6957 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6958 }
6959
6960 if (BuiltinID == AArch64::BI__clear_cache) {
6961 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")((E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6961, __PRETTY_FUNCTION__))
;
6962 const FunctionDecl *FD = E->getDirectCallee();
6963 Value *Ops[2];
6964 for (unsigned i = 0; i < 2; i++)
6965 Ops[i] = EmitScalarExpr(E->getArg(i));
6966 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6967 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6968 StringRef Name = FD->getName();
6969 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6970 }
6971
6972 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6973 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
6974 getContext().getTypeSize(E->getType()) == 128) {
6975 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
6976 ? Intrinsic::aarch64_ldaxp
6977 : Intrinsic::aarch64_ldxp);
6978
6979 Value *LdPtr = EmitScalarExpr(E->getArg(0));
6980 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6981 "ldxp");
6982
6983 Value *Val0 = Builder.CreateExtractValue(Val, 1);
6984 Value *Val1 = Builder.CreateExtractValue(Val, 0);
6985 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
6986 Val0 = Builder.CreateZExt(Val0, Int128Ty);
6987 Val1 = Builder.CreateZExt(Val1, Int128Ty);
6988
6989 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
6990 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6991 Val = Builder.CreateOr(Val, Val1);
6992 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6993 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6994 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
6995 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6996
6997 QualType Ty = E->getType();
6998 llvm::Type *RealResTy = ConvertType(Ty);
6999 llvm::Type *PtrTy = llvm::IntegerType::get(
7000 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7001 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7002
7003 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
7004 ? Intrinsic::aarch64_ldaxr
7005 : Intrinsic::aarch64_ldxr,
7006 PtrTy);
7007 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
7008
7009 if (RealResTy->isPointerTy())
7010 return Builder.CreateIntToPtr(Val, RealResTy);
7011
7012 llvm::Type *IntResTy = llvm::IntegerType::get(
7013 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7014 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7015 return Builder.CreateBitCast(Val, RealResTy);
7016 }
7017
7018 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
7019 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
7020 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
7021 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7022 ? Intrinsic::aarch64_stlxp
7023 : Intrinsic::aarch64_stxp);
7024 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
7025
7026 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7027 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
7028
7029 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
7030 llvm::Value *Val = Builder.CreateLoad(Tmp);
7031
7032 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7033 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7034 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
7035 Int8PtrTy);
7036 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
7037 }
7038
7039 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
7040 BuiltinID == AArch64::BI__builtin_arm_stlex) {
7041 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7042 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7043
7044 QualType Ty = E->getArg(0)->getType();
7045 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7046 getContext().getTypeSize(Ty));
7047 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7048
7049 if (StoreVal->getType()->isPointerTy())
7050 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
7051 else {
7052 llvm::Type *IntTy = llvm::IntegerType::get(
7053 getLLVMContext(),
7054 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7055 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7056 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
7057 }
7058
7059 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7060 ? Intrinsic::aarch64_stlxr
7061 : Intrinsic::aarch64_stxr,
7062 StoreAddr->getType());
7063 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
7064 }
7065
7066 if (BuiltinID == AArch64::BI__getReg) {
7067 Expr::EvalResult Result;
7068 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7069 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7069)
;
7070
7071 llvm::APSInt Value = Result.Val.getInt();
7072 LLVMContext &Context = CGM.getLLVMContext();
7073 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
7074
7075 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
7076 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7077 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7078
7079 llvm::Function *F =
7080 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
7081 return Builder.CreateCall(F, Metadata);
7082 }
7083
7084 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
7085 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
7086 return Builder.CreateCall(F);
7087 }
7088
7089 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
7090 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
7091 llvm::SyncScope::SingleThread);
7092
7093 // CRC32
7094 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7095 switch (BuiltinID) {
7096 case AArch64::BI__builtin_arm_crc32b:
7097 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
7098 case AArch64::BI__builtin_arm_crc32cb:
7099 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
7100 case AArch64::BI__builtin_arm_crc32h:
7101 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
7102 case AArch64::BI__builtin_arm_crc32ch:
7103 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
7104 case AArch64::BI__builtin_arm_crc32w:
7105 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
7106 case AArch64::BI__builtin_arm_crc32cw:
7107 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
7108 case AArch64::BI__builtin_arm_crc32d:
7109 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
7110 case AArch64::BI__builtin_arm_crc32cd:
7111 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
7112 }
7113
7114 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7115 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7116 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7117 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7118
7119 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7120 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7121
7122 return Builder.CreateCall(F, {Arg0, Arg1});
7123 }
7124
7125 // Memory Tagging Extensions (MTE) Intrinsics
7126 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
7127 switch (BuiltinID) {
7128 case AArch64::BI__builtin_arm_irg:
7129 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
7130 case AArch64::BI__builtin_arm_addg:
7131 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
7132 case AArch64::BI__builtin_arm_gmi:
7133 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
7134 case AArch64::BI__builtin_arm_ldg:
7135 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
7136 case AArch64::BI__builtin_arm_stg:
7137 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
7138 case AArch64::BI__builtin_arm_subp:
7139 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
7140 }
7141
7142 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
7143 llvm::Type *T = ConvertType(E->getType());
7144
7145 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
7146 Value *Pointer = EmitScalarExpr(E->getArg(0));
7147 Value *Mask = EmitScalarExpr(E->getArg(1));
7148
7149 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7150 Mask = Builder.CreateZExt(Mask, Int64Ty);
7151 Value *RV = Builder.CreateCall(
7152 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
7153 return Builder.CreatePointerCast(RV, T);
7154 }
7155 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
7156 Value *Pointer = EmitScalarExpr(E->getArg(0));
7157 Value *TagOffset = EmitScalarExpr(E->getArg(1));
7158
7159 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7160 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
7161 Value *RV = Builder.CreateCall(
7162 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
7163 return Builder.CreatePointerCast(RV, T);
7164 }
7165 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
7166 Value *Pointer = EmitScalarExpr(E->getArg(0));
7167 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
7168
7169 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
7170 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7171 return Builder.CreateCall(
7172 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
7173 }
7174 // Although it is possible to supply a different return
7175 // address (first arg) to this intrinsic, for now we set
7176 // return address same as input address.
7177 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
7178 Value *TagAddress = EmitScalarExpr(E->getArg(0));
7179 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7180 Value *RV = Builder.CreateCall(
7181 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7182 return Builder.CreatePointerCast(RV, T);
7183 }
7184 // Although it is possible to supply a different tag (to set)
7185 // to this intrinsic (as first arg), for now we supply
7186 // the tag that is in input address arg (common use case).
7187 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
7188 Value *TagAddress = EmitScalarExpr(E->getArg(0));
7189 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7190 return Builder.CreateCall(
7191 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7192 }
7193 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
7194 Value *PointerA = EmitScalarExpr(E->getArg(0));
7195 Value *PointerB = EmitScalarExpr(E->getArg(1));
7196 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
7197 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
7198 return Builder.CreateCall(
7199 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
7200 }
7201 }
7202
7203 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7204 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7205 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7206 BuiltinID == AArch64::BI__builtin_arm_wsr ||
7207 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7208 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7209
7210 bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7211 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7212 BuiltinID == AArch64::BI__builtin_arm_rsrp;
7213
7214 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7215 BuiltinID == AArch64::BI__builtin_arm_wsrp;
7216
7217 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7218 BuiltinID != AArch64::BI__builtin_arm_wsr;
7219
7220 llvm::Type *ValueType;
7221 llvm::Type *RegisterType = Int64Ty;
7222 if (IsPointerBuiltin) {
7223 ValueType = VoidPtrTy;
7224 } else if (Is64Bit) {
7225 ValueType = Int64Ty;
7226 } else {
7227 ValueType = Int32Ty;
7228 }
7229
7230 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7231 }
7232
7233 if (BuiltinID == AArch64::BI_ReadStatusReg ||
7234 BuiltinID == AArch64::BI_WriteStatusReg) {
7235 LLVMContext &Context = CGM.getLLVMContext();
7236
7237 unsigned SysReg =
7238 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7239
7240 std::string SysRegStr;
7241 llvm::raw_string_ostream(SysRegStr) <<
7242 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
7243 ((SysReg >> 11) & 7) << ":" <<
7244 ((SysReg >> 7) & 15) << ":" <<
7245 ((SysReg >> 3) & 15) << ":" <<
7246 ( SysReg & 7);
7247
7248 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7249 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7250 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7251
7252 llvm::Type *RegisterType = Int64Ty;
7253 llvm::Type *Types[] = { RegisterType };
7254
7255 if (BuiltinID == AArch64::BI_ReadStatusReg) {
7256 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7257
7258 return Builder.CreateCall(F, Metadata);
7259 }
7260
7261 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7262 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7263
7264 return Builder.CreateCall(F, { Metadata, ArgValue });
7265 }
7266
7267 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7268 llvm::Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
7269 return Builder.CreateCall(F);
7270 }
7271
7272 if (BuiltinID == AArch64::BI__builtin_sponentry) {
7273 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry);
7274 return Builder.CreateCall(F);
7275 }
7276
7277 // Find out if any arguments are required to be integer constant
7278 // expressions.
7279 unsigned ICEArguments = 0;
7280 ASTContext::GetBuiltinTypeError Error;
7281 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7282 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7282, __PRETTY_FUNCTION__))
;
7283
7284 llvm::SmallVector<Value*, 4> Ops;
7285 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7286 if ((ICEArguments & (1 << i)) == 0) {
7287 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7288 } else {
7289 // If this is required to be a constant, constant fold it so that we know
7290 // that the generated intrinsic gets a ConstantInt.
7291 llvm::APSInt Result;
7292 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7293 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7293, __PRETTY_FUNCTION__))
;
7294 (void)IsConst;
7295 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7296 }
7297 }
7298
7299 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7300 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7301 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7302
7303 if (Builtin) {
7304 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7305 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7306 assert(Result && "SISD intrinsic should have been handled")((Result && "SISD intrinsic should have been handled"
) ? static_cast<void> (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7306, __PRETTY_FUNCTION__))
;
7307 return Result;
7308 }
7309
7310 llvm::APSInt Result;
7311 const Expr *Arg = E->getArg(E->getNumArgs()-1);
7312 NeonTypeFlags Type(0);
7313 if (Arg->isIntegerConstantExpr(Result, getContext()))
7314 // Determine the type of this overloaded NEON intrinsic.
7315 Type = NeonTypeFlags(Result.getZExtValue());
7316
7317 bool usgn = Type.isUnsigned();
7318 bool quad = Type.isQuad();
7319
7320 // Handle non-overloaded intrinsics first.
7321 switch (BuiltinID) {
7322 default: break;
7323 case NEON::BI__builtin_neon_vabsh_f16:
7324 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7325 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7326 case NEON::BI__builtin_neon_vldrq_p128: {
7327 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7328 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7329 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7330 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7331 CharUnits::fromQuantity(16));
7332 }
7333 case NEON::BI__builtin_neon_vstrq_p128: {
7334 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7335 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7336 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7337 }
7338 case NEON::BI__builtin_neon_vcvts_u32_f32:
7339 case NEON::BI__builtin_neon_vcvtd_u64_f64:
7340 usgn = true;
7341 LLVM_FALLTHROUGH[[clang::fallthrough]];
7342 case NEON::BI__builtin_neon_vcvts_s32_f32:
7343 case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7344 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7345 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7346 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7347 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7348 Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7349 if (usgn)
7350 return Builder.CreateFPToUI(Ops[0], InTy);
7351 return Builder.CreateFPToSI(Ops[0], InTy);
7352 }
7353 case NEON::BI__builtin_neon_vcvts_f32_u32:
7354 case NEON::BI__builtin_neon_vcvtd_f64_u64:
7355 usgn = true;
7356 LLVM_FALLTHROUGH[[clang::fallthrough]];
7357 case NEON::BI__builtin_neon_vcvts_f32_s32:
7358 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7359 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7360 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7361 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7362 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7363 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7364 if (usgn)
7365 return Builder.CreateUIToFP(Ops[0], FTy);
7366 return Builder.CreateSIToFP(Ops[0], FTy);
7367 }
7368 case NEON::BI__builtin_neon_vcvth_f16_u16:
7369 case NEON::BI__builtin_neon_vcvth_f16_u32:
7370 case NEON::BI__builtin_neon_vcvth_f16_u64:
7371 usgn = true;
7372 LLVM_FALLTHROUGH[[clang::fallthrough]];
7373 case NEON::BI__builtin_neon_vcvth_f16_s16:
7374 case NEON::BI__builtin_neon_vcvth_f16_s32:
7375 case NEON::BI__builtin_neon_vcvth_f16_s64: {
7376 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7377 llvm::Type *FTy = HalfTy;
7378 llvm::Type *InTy;
7379 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7380 InTy = Int64Ty;
7381 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7382 InTy = Int32Ty;
7383 else
7384 InTy = Int16Ty;
7385 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7386 if (usgn)
7387 return Builder.CreateUIToFP(Ops[0], FTy);
7388 return Builder.CreateSIToFP(Ops[0], FTy);
7389 }
7390 case NEON::BI__builtin_neon_vcvth_u16_f16:
7391 usgn = true;
7392 LLVM_FALLTHROUGH[[clang::fallthrough]];
7393 case NEON::BI__builtin_neon_vcvth_s16_f16: {
7394 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7395 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7396 if (usgn)
7397 return Builder.CreateFPToUI(Ops[0], Int16Ty);
7398 return Builder.CreateFPToSI(Ops[0], Int16Ty);
7399 }
7400 case NEON::BI__builtin_neon_vcvth_u32_f16:
7401 usgn = true;
7402 LLVM_FALLTHROUGH[[clang::fallthrough]];
7403 case NEON::BI__builtin_neon_vcvth_s32_f16: {
7404 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7405 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7406 if (usgn)
7407 return Builder.CreateFPToUI(Ops[0], Int32Ty);
7408 return Builder.CreateFPToSI(Ops[0], Int32Ty);
7409 }
7410 case NEON::BI__builtin_neon_vcvth_u64_f16:
7411 usgn = true;
7412 LLVM_FALLTHROUGH[[clang::fallthrough]];
7413 case NEON::BI__builtin_neon_vcvth_s64_f16: {
7414 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7415 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7416 if (usgn)
7417 return Builder.CreateFPToUI(Ops[0], Int64Ty);
7418 return Builder.CreateFPToSI(Ops[0], Int64Ty);
7419 }
7420 case NEON::BI__builtin_neon_vcvtah_u16_f16:
7421 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7422 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7423 case NEON::BI__builtin_neon_vcvtph_u16_f16:
7424 case NEON::BI__builtin_neon_vcvtah_s16_f16:
7425 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7426 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7427 case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7428 unsigned Int;
7429 llvm::Type* InTy = Int32Ty;
7430 llvm::Type* FTy = HalfTy;
7431 llvm::Type *Tys[2] = {InTy, FTy};
7432 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7433 switch (BuiltinID) {
7434 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7434)
;
7435 case NEON::BI__builtin_neon_vcvtah_u16_f16:
7436 Int = Intrinsic::aarch64_neon_fcvtau; break;
7437 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7438 Int = Intrinsic::aarch64_neon_fcvtmu; break;
7439 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7440 Int = Intrinsic::aarch64_neon_fcvtnu; break;
7441 case NEON::BI__builtin_neon_vcvtph_u16_f16:
7442 Int = Intrinsic::aarch64_neon_fcvtpu; break;
7443 case NEON::BI__builtin_neon_vcvtah_s16_f16:
7444 Int = Intrinsic::aarch64_neon_fcvtas; break;
7445 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7446 Int = Intrinsic::aarch64_neon_fcvtms; break;
7447 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7448 Int = Intrinsic::aarch64_neon_fcvtns; break;
7449 case NEON::BI__builtin_neon_vcvtph_s16_f16:
7450 Int = Intrinsic::aarch64_neon_fcvtps; break;
7451 }
7452 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7453 return Builder.CreateTrunc(Ops[0], Int16Ty);
7454 }
7455 case NEON::BI__builtin_neon_vcaleh_f16:
7456 case NEON::BI__builtin_neon_vcalth_f16:
7457 case NEON::BI__builtin_neon_vcageh_f16:
7458 case NEON::BI__builtin_neon_vcagth_f16: {
7459 unsigned Int;
7460 llvm::Type* InTy = Int32Ty;
7461 llvm::Type* FTy = HalfTy;
7462 llvm::Type *Tys[2] = {InTy, FTy};
7463 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7464 switch (BuiltinID) {
7465 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7465)
;
7466 case NEON::BI__builtin_neon_vcageh_f16:
7467 Int = Intrinsic::aarch64_neon_facge; break;
7468 case NEON::BI__builtin_neon_vcagth_f16:
7469 Int = Intrinsic::aarch64_neon_facgt; break;
7470 case NEON::BI__builtin_neon_vcaleh_f16:
7471 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7472 case NEON::BI__builtin_neon_vcalth_f16:
7473 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7474 }
7475 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7476 return Builder.CreateTrunc(Ops[0], Int16Ty);
7477 }
7478 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7479 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7480 unsigned Int;
7481 llvm::Type* InTy = Int32Ty;
7482 llvm::Type* FTy = HalfTy;
7483 llvm::Type *Tys[2] = {InTy, FTy};
7484 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7485 switch (BuiltinID) {
7486 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7486)
;
7487 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7488 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7489 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7490 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7491 }
7492 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7493 return Builder.CreateTrunc(Ops[0], Int16Ty);
7494 }
7495 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7496 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7497 unsigned Int;
7498 llvm::Type* FTy = HalfTy;
7499 llvm::Type* InTy = Int32Ty;
7500 llvm::Type *Tys[2] = {FTy, InTy};
7501 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7502 switch (BuiltinID) {
7503 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7503)
;
7504 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7505 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7506 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7507 break;
7508 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7509 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7510 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7511 break;
7512 }
7513 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7514 }
7515 case NEON::BI__builtin_neon_vpaddd_s64: {
7516 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7517 Value *Vec = EmitScalarExpr(E->getArg(0));
7518 // The vector is v2f64, so make sure it's bitcast to that.
7519 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7520 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7521 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7522 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7523 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7524 // Pairwise addition of a v2f64 into a scalar f64.
7525 return Builder.CreateAdd(Op0, Op1, "vpaddd");
7526 }
7527 case NEON::BI__builtin_neon_vpaddd_f64: {
7528 llvm::Type *Ty =
7529 llvm::VectorType::get(DoubleTy, 2);
7530 Value *Vec = EmitScalarExpr(E->getArg(0));
7531 // The vector is v2f64, so make sure it's bitcast to that.
7532 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7533 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7534 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7535 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7536 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7537 // Pairwise addition of a v2f64 into a scalar f64.
7538 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7539 }
7540 case NEON::BI__builtin_neon_vpadds_f32: {
7541 llvm::Type *Ty =
7542 llvm::VectorType::get(FloatTy, 2);
7543 Value *Vec = EmitScalarExpr(E->getArg(0));
7544 // The vector is v2f32, so make sure it's bitcast to that.
7545 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7546 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7547 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7548 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7549 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7550 // Pairwise addition of a v2f32 into a scalar f32.
7551 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7552 }
7553 case NEON::BI__builtin_neon_vceqzd_s64:
7554 case NEON::BI__builtin_neon_vceqzd_f64:
7555 case NEON::BI__builtin_neon_vceqzs_f32:
7556 case NEON::BI__builtin_neon_vceqzh_f16:
7557 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7558 return EmitAArch64CompareBuiltinExpr(
7559 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7560 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7561 case NEON::BI__builtin_neon_vcgezd_s64:
7562 case NEON::BI__builtin_neon_vcgezd_f64:
7563 case NEON::BI__builtin_neon_vcgezs_f32:
7564 case NEON::BI__builtin_neon_vcgezh_f16:
7565 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7566 return EmitAArch64CompareBuiltinExpr(
7567 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7568 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7569 case NEON::BI__builtin_neon_vclezd_s64:
7570 case NEON::BI__builtin_neon_vclezd_f64:
7571 case NEON::BI__builtin_neon_vclezs_f32:
7572 case NEON::BI__builtin_neon_vclezh_f16:
7573 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7574 return EmitAArch64CompareBuiltinExpr(
7575 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7576 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7577 case NEON::BI__builtin_neon_vcgtzd_s64:
7578 case NEON::BI__builtin_neon_vcgtzd_f64:
7579 case NEON::BI__builtin_neon_vcgtzs_f32:
7580 case NEON::BI__builtin_neon_vcgtzh_f16:
7581 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7582 return EmitAArch64CompareBuiltinExpr(
7583 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7584 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7585 case NEON::BI__builtin_neon_vcltzd_s64:
7586 case NEON::BI__builtin_neon_vcltzd_f64:
7587 case NEON::BI__builtin_neon_vcltzs_f32:
7588 case NEON::BI__builtin_neon_vcltzh_f16:
7589 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7590 return EmitAArch64CompareBuiltinExpr(
7591 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7592 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7593
7594 case NEON::BI__builtin_neon_vceqzd_u64: {
7595 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7596 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7597 Ops[0] =
7598 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7599 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7600 }
7601 case NEON::BI__builtin_neon_vceqd_f64:
7602 case NEON::BI__builtin_neon_vcled_f64:
7603 case NEON::BI__builtin_neon_vcltd_f64:
7604 case NEON::BI__builtin_neon_vcged_f64:
7605 case NEON::BI__builtin_neon_vcgtd_f64: {
7606 llvm::CmpInst::Predicate P;
7607 switch (BuiltinID) {
7608 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7608)
;
7609 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7610 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7611 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7612 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7613 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7614 }
7615 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7616 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7617 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7618 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7619 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
7620 }
7621 case NEON::BI__builtin_neon_vceqs_f32:
7622 case NEON::BI__builtin_neon_vcles_f32:
7623 case NEON::BI__builtin_neon_vclts_f32:
7624 case NEON::BI__builtin_neon_vcges_f32:
7625 case NEON::BI__builtin_neon_vcgts_f32: {
7626 llvm::CmpInst::Predicate P;
7627 switch (BuiltinID) {
7628 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7628)
;
7629 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
7630 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
7631 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
7632 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
7633 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
7634 }
7635 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7636 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
7637 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
7638 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7639 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
7640 }
7641 case NEON::BI__builtin_neon_vceqh_f16:
7642 case NEON::BI__builtin_neon_vcleh_f16:
7643 case NEON::BI__builtin_neon_vclth_f16:
7644 case NEON::BI__builtin_neon_vcgeh_f16:
7645 case NEON::BI__builtin_neon_vcgth_f16: {
7646 llvm::CmpInst::Predicate P;
7647 switch (BuiltinID) {
7648 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7648)
;
7649 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
7650 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
7651 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
7652 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
7653 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
7654 }
7655 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7656 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7657 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
7658 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7659 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
7660 }
7661 case NEON::BI__builtin_neon_vceqd_s64:
7662 case NEON::BI__builtin_neon_vceqd_u64:
7663 case NEON::BI__builtin_neon_vcgtd_s64:
7664 case NEON::BI__builtin_neon_vcgtd_u64:
7665 case NEON::BI__builtin_neon_vcltd_s64:
7666 case NEON::BI__builtin_neon_vcltd_u64:
7667 case NEON::BI__builtin_neon_vcged_u64:
7668 case NEON::BI__builtin_neon_vcged_s64:
7669 case NEON::BI__builtin_neon_vcled_u64:
7670 case NEON::BI__builtin_neon_vcled_s64: {
7671 llvm::CmpInst::Predicate P;
7672 switch (BuiltinID) {
7673 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7673)
;
7674 case NEON::BI__builtin_neon_vceqd_s64:
7675 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
7676 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
7677 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
7678 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
7679 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
7680 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
7681 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
7682 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
7683 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
7684 }
7685 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7686 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7687 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7688 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
7689 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
7690 }
7691 case NEON::BI__builtin_neon_vtstd_s64:
7692 case NEON::BI__builtin_neon_vtstd_u64: {
7693 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7694 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7695 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7696 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7697 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7698 llvm::Constant::getNullValue(Int64Ty));
7699 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
7700 }
7701 case NEON::BI__builtin_neon_vset_lane_i8:
7702 case NEON::BI__builtin_neon_vset_lane_i16:
7703 case NEON::BI__builtin_neon_vset_lane_i32:
7704 case NEON::BI__builtin_neon_vset_lane_i64:
7705 case NEON::BI__builtin_neon_vset_lane_f32:
7706 case NEON::BI__builtin_neon_vsetq_lane_i8:
7707 case NEON::BI__builtin_neon_vsetq_lane_i16:
7708 case NEON::BI__builtin_neon_vsetq_lane_i32:
7709 case NEON::BI__builtin_neon_vsetq_lane_i64:
7710 case NEON::BI__builtin_neon_vsetq_lane_f32:
7711 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7712 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7713 case NEON::BI__builtin_neon_vset_lane_f64:
7714 // The vector type needs a cast for the v1f64 variant.
7715 Ops[1] = Builder.CreateBitCast(Ops[1],
7716 llvm::VectorType::get(DoubleTy, 1));
7717 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7718 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7719 case NEON::BI__builtin_neon_vsetq_lane_f64:
7720 // The vector type needs a cast for the v2f64 variant.
7721 Ops[1] = Builder.CreateBitCast(Ops[1],
7722 llvm::VectorType::get(DoubleTy, 2));
7723 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7724 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7725
7726 case NEON::BI__builtin_neon_vget_lane_i8:
7727 case NEON::BI__builtin_neon_vdupb_lane_i8:
7728 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
7729 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7730 "vget_lane");
7731 case NEON::BI__builtin_neon_vgetq_lane_i8:
7732 case NEON::BI__builtin_neon_vdupb_laneq_i8:
7733 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
7734 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7735 "vgetq_lane");
7736 case NEON::BI__builtin_neon_vget_lane_i16:
7737 case NEON::BI__builtin_neon_vduph_lane_i16:
7738 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
7739 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7740 "vget_lane");
7741 case NEON::BI__builtin_neon_vgetq_lane_i16:
7742 case NEON::BI__builtin_neon_vduph_laneq_i16:
7743 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
7744 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7745 "vgetq_lane");
7746 case NEON::BI__builtin_neon_vget_lane_i32:
7747 case NEON::BI__builtin_neon_vdups_lane_i32:
7748 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
7749 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7750 "vget_lane");
7751 case NEON::BI__builtin_neon_vdups_lane_f32:
7752 Ops[0] = Builder.CreateBitCast(Ops[0],
7753 llvm::VectorType::get(FloatTy, 2));
7754 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7755 "vdups_lane");
7756 case NEON::BI__builtin_neon_vgetq_lane_i32:
7757 case NEON::BI__builtin_neon_vdups_laneq_i32:
7758 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
7759 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7760 "vgetq_lane");
7761 case NEON::BI__builtin_neon_vget_lane_i64:
7762 case NEON::BI__builtin_neon_vdupd_lane_i64:
7763 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
7764 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7765 "vget_lane");
7766 case NEON::BI__builtin_neon_vdupd_lane_f64:
7767 Ops[0] = Builder.CreateBitCast(Ops[0],
7768 llvm::VectorType::get(DoubleTy, 1));
7769 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7770 "vdupd_lane");
7771 case NEON::BI__builtin_neon_vgetq_lane_i64:
7772 case NEON::BI__builtin_neon_vdupd_laneq_i64:
7773 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
7774 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7775 "vgetq_lane");
7776 case NEON::BI__builtin_neon_vget_lane_f32:
7777 Ops[0] = Builder.CreateBitCast(Ops[0],
7778 llvm::VectorType::get(FloatTy, 2));
7779 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7780 "vget_lane");
7781 case NEON::BI__builtin_neon_vget_lane_f64:
7782 Ops[0] = Builder.CreateBitCast(Ops[0],
7783 llvm::VectorType::get(DoubleTy, 1));
7784 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7785 "vget_lane");
7786 case NEON::BI__builtin_neon_vgetq_lane_f32:
7787 case NEON::BI__builtin_neon_vdups_laneq_f32:
7788 Ops[0] = Builder.CreateBitCast(Ops[0],
7789 llvm::VectorType::get(FloatTy, 4));
7790 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7791 "vgetq_lane");
7792 case NEON::BI__builtin_neon_vgetq_lane_f64:
7793 case NEON::BI__builtin_neon_vdupd_laneq_f64:
7794 Ops[0] = Builder.CreateBitCast(Ops[0],
7795 llvm::VectorType::get(DoubleTy, 2));
7796 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7797 "vgetq_lane");
7798 case NEON::BI__builtin_neon_vaddh_f16:
7799 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7800 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
7801 case NEON::BI__builtin_neon_vsubh_f16:
7802 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7803 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
7804 case NEON::BI__builtin_neon_vmulh_f16:
7805 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7806 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
7807 case NEON::BI__builtin_neon_vdivh_f16:
7808 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7809 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
7810 case NEON::BI__builtin_neon_vfmah_f16: {
7811 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7812 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7813 return Builder.CreateCall(F,
7814 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
7815 }
7816 case NEON::BI__builtin_neon_vfmsh_f16: {
7817 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7818 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
7819 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
7820 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7821 return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
7822 }
7823 case NEON::BI__builtin_neon_vaddd_s64:
7824 case NEON::BI__builtin_neon_vaddd_u64:
7825 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
7826 case NEON::BI__builtin_neon_vsubd_s64:
7827 case NEON::BI__builtin_neon_vsubd_u64:
7828 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
7829 case NEON::BI__builtin_neon_vqdmlalh_s16:
7830 case NEON::BI__builtin_neon_vqdmlslh_s16: {
7831 SmallVector<Value *, 2> ProductOps;
7832 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7833 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
7834 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7835 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7836 ProductOps, "vqdmlXl");
7837 Constant *CI = ConstantInt::get(SizeTy, 0);
7838 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7839
7840 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
7841 ? Intrinsic::aarch64_neon_sqadd
7842 : Intrinsic::aarch64_neon_sqsub;
7843 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
7844 }
7845 case NEON::BI__builtin_neon_vqshlud_n_s64: {
7846 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7847 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7848 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
7849 Ops, "vqshlu_n");
7850 }
7851 case NEON::BI__builtin_neon_vqshld_n_u64:
7852 case NEON::BI__builtin_neon_vqshld_n_s64: {
7853 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
7854 ? Intrinsic::aarch64_neon_uqshl
7855 : Intrinsic::aarch64_neon_sqshl;
7856 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7857 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7858 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
7859 }
7860 case NEON::BI__builtin_neon_vrshrd_n_u64:
7861 case NEON::BI__builtin_neon_vrshrd_n_s64: {
7862 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
7863 ? Intrinsic::aarch64_neon_urshl
7864 : Intrinsic::aarch64_neon_srshl;
7865 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7866 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
7867 Ops[1] = ConstantInt::get(Int64Ty, -SV);
7868 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
7869 }
7870 case NEON::BI__builtin_neon_vrsrad_n_u64:
7871 case NEON::BI__builtin_neon_vrsrad_n_s64: {
7872 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
7873 ? Intrinsic::aarch64_neon_urshl
7874 : Intrinsic::aarch64_neon_srshl;
7875 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7876 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
7877 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
7878 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
7879 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
7880 }
7881 case NEON::BI__builtin_neon_vshld_n_s64:
7882 case NEON::BI__builtin_neon_vshld_n_u64: {
7883 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7884 return Builder.CreateShl(
7885 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
7886 }
7887 case NEON::BI__builtin_neon_vshrd_n_s64: {
7888 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7889 return Builder.CreateAShr(
7890 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7891 Amt->getZExtValue())),
7892 "shrd_n");
7893 }
7894 case NEON::BI__builtin_neon_vshrd_n_u64: {
7895 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7896 uint64_t ShiftAmt = Amt->getZExtValue();
7897 // Right-shifting an unsigned value by its size yields 0.
7898 if (ShiftAmt == 64)
7899 return ConstantInt::get(Int64Ty, 0);
7900 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
7901 "shrd_n");
7902 }
7903 case NEON::BI__builtin_neon_vsrad_n_s64: {
7904 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7905 Ops[1] = Builder.CreateAShr(
7906 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7907 Amt->getZExtValue())),
7908 "shrd_n");
7909 return Builder.CreateAdd(Ops[0], Ops[1]);
7910 }
7911 case NEON::BI__builtin_neon_vsrad_n_u64: {
7912 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7913 uint64_t ShiftAmt = Amt->getZExtValue();
7914 // Right-shifting an unsigned value by its size yields 0.
7915 // As Op + 0 = Op, return Ops[0] directly.
7916 if (ShiftAmt == 64)
7917 return Ops[0];
7918 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
7919 "shrd_n");
7920 return Builder.CreateAdd(Ops[0], Ops[1]);
7921 }
7922 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
7923 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
7924 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
7925 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
7926 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7927 "lane");
7928 SmallVector<Value *, 2> ProductOps;
7929 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7930 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
7931 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7932 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7933 ProductOps, "vqdmlXl");
7934 Constant *CI = ConstantInt::get(SizeTy, 0);
7935 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7936 Ops.pop_back();
7937
7938 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
7939 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
7940 ? Intrinsic::aarch64_neon_sqadd
7941 : Intrinsic::aarch64_neon_sqsub;
7942 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
7943 }
7944 case NEON::BI__builtin_neon_vqdmlals_s32:
7945 case NEON::BI__builtin_neon_vqdmlsls_s32: {
7946 SmallVector<Value *, 2> ProductOps;
7947 ProductOps.push_back(Ops[1]);
7948 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
7949 Ops[1] =
7950 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
7951 ProductOps, "vqdmlXl");
7952
7953 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
7954 ? Intrinsic::aarch64_neon_sqadd
7955 : Intrinsic::aarch64_neon_sqsub;
7956 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
7957 }
7958 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
7959 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
7960 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
7961 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
7962 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7963 "lane");
7964 SmallVector<Value *, 2> ProductOps;
7965 ProductOps.push_back(Ops[1]);
7966 ProductOps.push_back(Ops[2]);
7967 Ops[1] =
7968 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
7969 ProductOps, "vqdmlXl");
7970 Ops.pop_back();
7971
7972 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
7973 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
7974 ? Intrinsic::aarch64_neon_sqadd
7975 : Intrinsic::aarch64_neon_sqsub;
7976 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
7977 }
7978 case NEON::BI__builtin_neon_vduph_lane_f16: {
7979 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7980 "vget_lane");
7981 }
7982 case NEON::BI__builtin_neon_vduph_laneq_f16: {
7983 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7984 "vgetq_lane");
7985 }
7986 }
7987
7988 llvm::VectorType *VTy = GetNeonType(this, Type);
7989 llvm::Type *Ty = VTy;
7990 if (!Ty)
7991 return nullptr;
7992
7993 // Not all intrinsics handled by the common case work for AArch64 yet, so only
7994 // defer to common code if it's been added to our special map.
7995 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
7996 AArch64SIMDIntrinsicsProvenSorted);
7997
7998 if (Builtin)
7999 return EmitCommonNeonBuiltinExpr(
8000 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8001 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
8002 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
8003
8004 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
8005 return V;
8006
8007 unsigned Int;
8008 switch (BuiltinID) {
8009 default: return nullptr;
8010 case NEON::BI__builtin_neon_vbsl_v:
8011 case NEON::BI__builtin_neon_vbslq_v: {
8012 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
8013 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
8014 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
8015 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
8016
8017 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
8018 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
8019 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
8020 return Builder.CreateBitCast(Ops[0], Ty);
8021 }
8022 case NEON::BI__builtin_neon_vfma_lane_v:
8023 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
8024 // The ARM builtins (and instructions) have the addend as the first
8025 // operand, but the 'fma' intrinsics have it last. Swap it around here.
8026 Value *Addend = Ops[0];
8027 Value *Multiplicand = Ops[1];
8028 Value *LaneSource = Ops[2];
8029 Ops[0] = Multiplicand;
8030 Ops[1] = LaneSource;
8031 Ops[2] = Addend;
8032
8033 // Now adjust things to handle the lane access.
8034 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
8035 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
8036 VTy;
8037 llvm::Constant *cst = cast<Constant>(Ops[3]);
8038 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
8039 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
8040 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
8041
8042 Ops.pop_back();
8043 Int = Intrinsic::fma;
8044 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
8045 }
8046 case NEON::BI__builtin_neon_vfma_laneq_v: {
8047 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
8048 // v1f64 fma should be mapped to Neon scalar f64 fma
8049 if (VTy && VTy->getElementType() == DoubleTy) {
8050 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8051 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8052 llvm::Type *VTy = GetNeonType(this,
8053 NeonTypeFlags(NeonTypeFlags::Float64, false, true));
8054 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
8055 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8056 Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
8057 Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8058 return Builder.CreateBitCast(Result, Ty);
8059 }
8060 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8061 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8062 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8063
8064 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
8065 VTy->getNumElements() * 2);
8066 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
8067 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
8068 cast<ConstantInt>(Ops[3]));
8069 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
8070
8071 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8072 }
8073 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
8074 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8075 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8076 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8077
8078 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8079 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
8080 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8081 }
8082 case NEON::BI__builtin_neon_vfmah_lane_f16:
8083 case NEON::BI__builtin_neon_vfmas_lane_f32:
8084 case NEON::BI__builtin_neon_vfmah_laneq_f16:
8085 case NEON::BI__builtin_neon_vfmas_laneq_f32:
8086 case NEON::BI__builtin_neon_vfmad_lane_f64:
8087 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
8088 Ops.push_back(EmitScalarExpr(E->getArg(3)));
8089 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
8090 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8091 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8092 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8093 }
8094 case NEON::BI__builtin_neon_vmull_v:
8095 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8096 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
8097 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
8098 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8099 case NEON::BI__builtin_neon_vmax_v:
8100 case NEON::BI__builtin_neon_vmaxq_v:
8101 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8102 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
8103 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
8104 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
8105 case NEON::BI__builtin_neon_vmaxh_f16: {
8106 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8107 Int = Intrinsic::aarch64_neon_fmax;
8108 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
8109 }
8110 case NEON::BI__builtin_neon_vmin_v:
8111 case NEON::BI__builtin_neon_vminq_v:
8112 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8113 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
8114 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
8115 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
8116 case NEON::BI__builtin_neon_vminh_f16: {
8117 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8118 Int = Intrinsic::aarch64_neon_fmin;
8119 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
8120 }
8121 case NEON::BI__builtin_neon_vabd_v:
8122 case NEON::BI__builtin_neon_vabdq_v:
8123 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8124 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
8125 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
8126 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
8127 case NEON::BI__builtin_neon_vpadal_v:
8128 case NEON::BI__builtin_neon_vpadalq_v: {
8129 unsigned ArgElts = VTy->getNumElements();
8130 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
8131 unsigned BitWidth = EltTy->getBitWidth();
8132 llvm::Type *ArgTy = llvm::VectorType::get(
8133 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
8134 llvm::Type* Tys[2] = { VTy, ArgTy };
8135 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
8136 SmallVector<llvm::Value*, 1> TmpOps;
8137 TmpOps.push_back(Ops[1]);
8138 Function *F = CGM.getIntrinsic(Int, Tys);
8139 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
8140 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
8141 return Builder.CreateAdd(tmp, addend);
8142 }
8143 case NEON::BI__builtin_neon_vpmin_v:
8144 case NEON::BI__builtin_neon_vpminq_v:
8145 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8146 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
8147 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
8148 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
8149 case NEON::BI__builtin_neon_vpmax_v:
8150 case NEON::BI__builtin_neon_vpmaxq_v:
8151 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8152 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
8153 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
8154 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
8155 case NEON::BI__builtin_neon_vminnm_v:
8156 case NEON::BI__builtin_neon_vminnmq_v:
8157 Int = Intrinsic::aarch64_neon_fminnm;
8158 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
8159 case NEON::BI__builtin_neon_vminnmh_f16:
8160 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8161 Int = Intrinsic::aarch64_neon_fminnm;
8162 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
8163 case NEON::BI__builtin_neon_vmaxnm_v:
8164 case NEON::BI__builtin_neon_vmaxnmq_v:
8165 Int = Intrinsic::aarch64_neon_fmaxnm;
8166 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
8167 case NEON::BI__builtin_neon_vmaxnmh_f16:
8168 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8169 Int = Intrinsic::aarch64_neon_fmaxnm;
8170 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
8171 case NEON::BI__builtin_neon_vrecpss_f32: {
8172 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8173 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
8174 Ops, "vrecps");
8175 }
8176 case NEON::BI__builtin_neon_vrecpsd_f64:
8177 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8178 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
8179 Ops, "vrecps");
8180 case NEON::BI__builtin_neon_vrecpsh_f16:
8181 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8182 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
8183 Ops, "vrecps");
8184 case NEON::BI__builtin_neon_vqshrun_n_v:
8185 Int = Intrinsic::aarch64_neon_sqshrun;
8186 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
8187 case NEON::BI__builtin_neon_vqrshrun_n_v:
8188 Int = Intrinsic::aarch64_neon_sqrshrun;
8189 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
8190 case NEON::BI__builtin_neon_vqshrn_n_v:
8191 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
8192 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
8193 case NEON::BI__builtin_neon_vrshrn_n_v:
8194 Int = Intrinsic::aarch64_neon_rshrn;
8195 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
8196 case NEON::BI__builtin_neon_vqrshrn_n_v:
8197 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
8198 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
8199 case NEON::BI__builtin_neon_vrndah_f16: {
8200 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8201 Int = Intrinsic::round;
8202 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
8203 }
8204 case NEON::BI__builtin_neon_vrnda_v:
8205 case NEON::BI__builtin_neon_vrndaq_v: {
8206 Int = Intrinsic::round;
8207 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
8208 }
8209 case NEON::BI__builtin_neon_vrndih_f16: {
8210 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8211 Int = Intrinsic::nearbyint;
8212 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8213 }
8214 case NEON::BI__builtin_neon_vrndmh_f16: {
8215 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8216 Int = Intrinsic::floor;
8217 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8218 }
8219 case NEON::BI__builtin_neon_vrndm_v:
8220 case NEON::BI__builtin_neon_vrndmq_v: {
8221 Int = Intrinsic::floor;
8222 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8223 }
8224 case NEON::BI__builtin_neon_vrndnh_f16: {
8225 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8226 Int = Intrinsic::aarch64_neon_frintn;
8227 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8228 }
8229 case NEON::BI__builtin_neon_vrndn_v:
8230 case NEON::BI__builtin_neon_vrndnq_v: {
8231 Int = Intrinsic::aarch64_neon_frintn;
8232 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8233 }
8234 case NEON::BI__builtin_neon_vrndns_f32: {
8235 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8236 Int = Intrinsic::aarch64_neon_frintn;
8237 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8238 }
8239 case NEON::BI__builtin_neon_vrndph_f16: {
8240 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8241 Int = Intrinsic::ceil;
8242 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8243 }
8244 case NEON::BI__builtin_neon_vrndp_v:
8245 case NEON::BI__builtin_neon_vrndpq_v: {
8246 Int = Intrinsic::ceil;
8247 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8248 }
8249 case NEON::BI__builtin_neon_vrndxh_f16: {
8250 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8251 Int = Intrinsic::rint;
8252 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8253 }
8254 case NEON::BI__builtin_neon_vrndx_v:
8255 case NEON::BI__builtin_neon_vrndxq_v: {
8256 Int = Intrinsic::rint;
8257 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8258 }
8259 case NEON::BI__builtin_neon_vrndh_f16: {
8260 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8261 Int = Intrinsic::trunc;
8262 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8263 }
8264 case NEON::BI__builtin_neon_vrnd_v:
8265 case NEON::BI__builtin_neon_vrndq_v: {
8266 Int = Intrinsic::trunc;
8267 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8268 }
8269 case NEON::BI__builtin_neon_vcvt_f64_v:
8270 case NEON::BI__builtin_neon_vcvtq_f64_v:
8271 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8272 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8273 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8274 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8275 case NEON::BI__builtin_neon_vcvt_f64_f32: {
8276 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&((Type.getEltType() == NeonTypeFlags::Float64 && quad
&& "unexpected vcvt_f64_f32 builtin") ? static_cast<
void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8277, __PRETTY_FUNCTION__))
8277 "unexpected vcvt_f64_f32 builtin")((Type.getEltType() == NeonTypeFlags::Float64 && quad
&& "unexpected vcvt_f64_f32 builtin") ? static_cast<
void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8277, __PRETTY_FUNCTION__))
;
8278 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8279 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8280
8281 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8282 }
8283 case NEON::BI__builtin_neon_vcvt_f32_f64: {
8284 assert(Type.getEltType() == NeonTypeFlags::Float32 &&((Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"
) ? static_cast<void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8285, __PRETTY_FUNCTION__))
8285 "unexpected vcvt_f32_f64 builtin")((Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"
) ? static_cast<void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8285, __PRETTY_FUNCTION__))
;
8286 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8287 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8288
8289 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8290 }
8291 case NEON::BI__builtin_neon_vcvt_s32_v:
8292 case NEON::BI__builtin_neon_vcvt_u32_v:
8293 case NEON::BI__builtin_neon_vcvt_s64_v:
8294 case NEON::BI__builtin_neon_vcvt_u64_v:
8295 case NEON::BI__builtin_neon_vcvt_s16_v:
8296 case NEON::BI__builtin_neon_vcvt_u16_v:
8297 case NEON::BI__builtin_neon_vcvtq_s32_v:
8298 case NEON::BI__builtin_neon_vcvtq_u32_v:
8299 case NEON::BI__builtin_neon_vcvtq_s64_v:
8300 case NEON::BI__builtin_neon_vcvtq_u64_v:
8301 case NEON::BI__builtin_neon_vcvtq_s16_v:
8302 case NEON::BI__builtin_neon_vcvtq_u16_v: {
8303 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8304 if (usgn)
8305 return Builder.CreateFPToUI(Ops[0], Ty);
8306 return Builder.CreateFPToSI(Ops[0], Ty);
8307 }
8308 case NEON::BI__builtin_neon_vcvta_s16_v:
8309 case NEON::BI__builtin_neon_vcvta_u16_v:
8310 case NEON::BI__builtin_neon_vcvta_s32_v:
8311 case NEON::BI__builtin_neon_vcvtaq_s16_v:
8312 case NEON::BI__builtin_neon_vcvtaq_s32_v:
8313 case NEON::BI__builtin_neon_vcvta_u32_v:
8314 case NEON::BI__builtin_neon_vcvtaq_u16_v:
8315 case NEON::BI__builtin_neon_vcvtaq_u32_v:
8316 case NEON::BI__builtin_neon_vcvta_s64_v:
8317 case NEON::BI__builtin_neon_vcvtaq_s64_v:
8318 case NEON::BI__builtin_neon_vcvta_u64_v:
8319 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8320 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8321 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8322 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8323 }
8324 case NEON::BI__builtin_neon_vcvtm_s16_v:
8325 case NEON::BI__builtin_neon_vcvtm_s32_v:
8326 case NEON::BI__builtin_neon_vcvtmq_s16_v:
8327 case NEON::BI__builtin_neon_vcvtmq_s32_v:
8328 case NEON::BI__builtin_neon_vcvtm_u16_v:
8329 case NEON::BI__builtin_neon_vcvtm_u32_v:
8330 case NEON::BI__builtin_neon_vcvtmq_u16_v:
8331 case NEON::BI__builtin_neon_vcvtmq_u32_v:
8332 case NEON::BI__builtin_neon_vcvtm_s64_v:
8333 case NEON::BI__builtin_neon_vcvtmq_s64_v:
8334 case NEON::BI__builtin_neon_vcvtm_u64_v:
8335 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8336 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8337 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8338 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8339 }
8340 case NEON::BI__builtin_neon_vcvtn_s16_v:
8341 case NEON::BI__builtin_neon_vcvtn_s32_v:
8342 case NEON::BI__builtin_neon_vcvtnq_s16_v:
8343 case NEON::BI__builtin_neon_vcvtnq_s32_v:
8344 case NEON::BI__builtin_neon_vcvtn_u16_v:
8345 case NEON::BI__builtin_neon_vcvtn_u32_v:
8346 case NEON::BI__builtin_neon_vcvtnq_u16_v:
8347 case NEON::BI__builtin_neon_vcvtnq_u32_v:
8348 case NEON::BI__builtin_neon_vcvtn_s64_v:
8349 case NEON::BI__builtin_neon_vcvtnq_s64_v:
8350 case NEON::BI__builtin_neon_vcvtn_u64_v:
8351 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8352 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8353 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8354 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8355 }
8356 case NEON::BI__builtin_neon_vcvtp_s16_v:
8357 case NEON::BI__builtin_neon_vcvtp_s32_v:
8358 case NEON::BI__builtin_neon_vcvtpq_s16_v:
8359 case NEON::BI__builtin_neon_vcvtpq_s32_v:
8360 case NEON::BI__builtin_neon_vcvtp_u16_v:
8361 case NEON::BI__builtin_neon_vcvtp_u32_v:
8362 case NEON::BI__builtin_neon_vcvtpq_u16_v:
8363 case NEON::BI__builtin_neon_vcvtpq_u32_v:
8364 case NEON::BI__builtin_neon_vcvtp_s64_v:
8365 case NEON::BI__builtin_neon_vcvtpq_s64_v:
8366 case NEON::BI__builtin_neon_vcvtp_u64_v:
8367 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8368 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8369 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8370 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8371 }
8372 case NEON::BI__builtin_neon_vmulx_v:
8373 case NEON::BI__builtin_neon_vmulxq_v: {
8374 Int = Intrinsic::aarch64_neon_fmulx;
8375 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8376 }
8377 case NEON::BI__builtin_neon_vmulxh_lane_f16:
8378 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8379 // vmulx_lane should be mapped to Neon scalar mulx after
8380 // extracting the scalar element
8381 Ops.push_back(EmitScalarExpr(E->getArg(2)));
8382 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8383 Ops.pop_back();
8384 Int = Intrinsic::aarch64_neon_fmulx;
8385 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8386 }
8387 case NEON::BI__builtin_neon_vmul_lane_v:
8388 case NEON::BI__builtin_neon_vmul_laneq_v: {
8389 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8390 bool Quad = false;
8391 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8392 Quad = true;
8393 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8394 llvm::Type *VTy = GetNeonType(this,
8395 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8396 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8397 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8398 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8399 return Builder.CreateBitCast(Result, Ty);
8400 }
8401 case NEON::BI__builtin_neon_vnegd_s64:
8402 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8403 case NEON::BI__builtin_neon_vnegh_f16:
8404 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8405 case NEON::BI__builtin_neon_vpmaxnm_v:
8406 case NEON::BI__builtin_neon_vpmaxnmq_v: {
8407 Int = Intrinsic::aarch64_neon_fmaxnmp;
8408 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8409 }
8410 case NEON::BI__builtin_neon_vpminnm_v:
8411 case NEON::BI__builtin_neon_vpminnmq_v: {
8412 Int = Intrinsic::aarch64_neon_fminnmp;
8413 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8414 }
8415 case NEON::BI__builtin_neon_vsqrth_f16: {
8416 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8417 Int = Intrinsic::sqrt;
8418 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8419 }
8420 case NEON::BI__builtin_neon_vsqrt_v:
8421 case NEON::BI__builtin_neon_vsqrtq_v: {
8422 Int = Intrinsic::sqrt;
8423 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8424 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8425 }
8426 case NEON::BI__builtin_neon_vrbit_v:
8427 case NEON::BI__builtin_neon_vrbitq_v: {
8428 Int = Intrinsic::aarch64_neon_rbit;
8429 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8430 }
8431 case NEON::BI__builtin_neon_vaddv_u8:
8432 // FIXME: These are handled by the AArch64 scalar code.
8433 usgn = true;
8434 LLVM_FALLTHROUGH[[clang::fallthrough]];
8435 case NEON::BI__builtin_neon_vaddv_s8: {
8436 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8437 Ty = Int32Ty;
8438 VTy = llvm::VectorType::get(Int8Ty, 8);
8439 llvm::Type *Tys[2] = { Ty, VTy };
8440 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8441 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8442 return Builder.CreateTrunc(Ops[0], Int8Ty);
8443 }
8444 case NEON::BI__builtin_neon_vaddv_u16:
8445 usgn = true;
8446 LLVM_FALLTHROUGH[[clang::fallthrough]];
8447 case NEON::BI__builtin_neon_vaddv_s16: {
8448 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8449 Ty = Int32Ty;
8450 VTy = llvm::VectorType::get(Int16Ty, 4);
8451 llvm::Type *Tys[2] = { Ty, VTy };
8452 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8453 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8454 return Builder.CreateTrunc(Ops[0], Int16Ty);
8455 }
8456 case NEON::BI__builtin_neon_vaddvq_u8:
8457 usgn = true;
8458 LLVM_FALLTHROUGH[[clang::fallthrough]];
8459 case NEON::BI__builtin_neon_vaddvq_s8: {
8460 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8461 Ty = Int32Ty;
8462 VTy = llvm::VectorType::get(Int8Ty, 16);
8463 llvm::Type *Tys[2] = { Ty, VTy };
8464 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8465 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8466 return Builder.CreateTrunc(Ops[0], Int8Ty);
8467 }
8468 case NEON::BI__builtin_neon_vaddvq_u16:
8469 usgn = true;
8470 LLVM_FALLTHROUGH[[clang::fallthrough]];
8471 case NEON::BI__builtin_neon_vaddvq_s16: {
8472 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8473 Ty = Int32Ty;
8474 VTy = llvm::VectorType::get(Int16Ty, 8);
8475 llvm::Type *Tys[2] = { Ty, VTy };
8476 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8477 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8478 return Builder.CreateTrunc(Ops[0], Int16Ty);
8479 }
8480 case NEON::BI__builtin_neon_vmaxv_u8: {
8481 Int = Intrinsic::aarch64_neon_umaxv;
8482 Ty = Int32Ty;
8483 VTy = llvm::VectorType::get(Int8Ty, 8);
8484 llvm::Type *Tys[2] = { Ty, VTy };
8485 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8486 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8487 return Builder.CreateTrunc(Ops[0], Int8Ty);
8488 }
8489 case NEON::BI__builtin_neon_vmaxv_u16: {
8490 Int = Intrinsic::aarch64_neon_umaxv;
8491 Ty = Int32Ty;
8492 VTy = llvm::VectorType::get(Int16Ty, 4);
8493 llvm::Type *Tys[2] = { Ty, VTy };
8494 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8495 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8496 return Builder.CreateTrunc(Ops[0], Int16Ty);
8497 }
8498 case NEON::BI__builtin_neon_vmaxvq_u8: {
8499 Int = Intrinsic::aarch64_neon_umaxv;
8500 Ty = Int32Ty;
8501 VTy = llvm::VectorType::get(Int8Ty, 16);
8502 llvm::Type *Tys[2] = { Ty, VTy };
8503 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8504 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8505 return Builder.CreateTrunc(Ops[0], Int8Ty);
8506 }
8507 case NEON::BI__builtin_neon_vmaxvq_u16: {
8508 Int = Intrinsic::aarch64_neon_umaxv;
8509 Ty = Int32Ty;
8510 VTy = llvm::VectorType::get(Int16Ty, 8);
8511 llvm::Type *Tys[2] = { Ty, VTy };
8512 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8513 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8514 return Builder.CreateTrunc(Ops[0], Int16Ty);
8515 }
8516 case NEON::BI__builtin_neon_vmaxv_s8: {
8517 Int = Intrinsic::aarch64_neon_smaxv;
8518 Ty = Int32Ty;
8519 VTy = llvm::VectorType::get(Int8Ty, 8);
8520 llvm::Type *Tys[2] = { Ty, VTy };
8521 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8522 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8523 return Builder.CreateTrunc(Ops[0], Int8Ty);
8524 }
8525 case NEON::BI__builtin_neon_vmaxv_s16: {
8526 Int = Intrinsic::aarch64_neon_smaxv;
8527 Ty = Int32Ty;
8528 VTy = llvm::VectorType::get(Int16Ty, 4);
8529 llvm::Type *Tys[2] = { Ty, VTy };
8530 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8531 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8532 return Builder.CreateTrunc(Ops[0], Int16Ty);
8533 }
8534 case NEON::BI__builtin_neon_vmaxvq_s8: {
8535 Int = Intrinsic::aarch64_neon_smaxv;
8536 Ty = Int32Ty;
8537 VTy = llvm::VectorType::get(Int8Ty, 16);
8538 llvm::Type *Tys[2] = { Ty, VTy };
8539 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8540 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8541 return Builder.CreateTrunc(Ops[0], Int8Ty);
8542 }
8543 case NEON::BI__builtin_neon_vmaxvq_s16: {
8544 Int = Intrinsic::aarch64_neon_smaxv;
8545 Ty = Int32Ty;
8546 VTy = llvm::VectorType::get(Int16Ty, 8);
8547 llvm::Type *Tys[2] = { Ty, VTy };
8548 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8549 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8550 return Builder.CreateTrunc(Ops[0], Int16Ty);
8551 }
8552 case NEON::BI__builtin_neon_vmaxv_f16: {
8553 Int = Intrinsic::aarch64_neon_fmaxv;
8554 Ty = HalfTy;
8555 VTy = llvm::VectorType::get(HalfTy, 4);
8556 llvm::Type *Tys[2] = { Ty, VTy };
8557 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8558 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8559 return Builder.CreateTrunc(Ops[0], HalfTy);
8560 }
8561 case NEON::BI__builtin_neon_vmaxvq_f16: {
8562 Int = Intrinsic::aarch64_neon_fmaxv;
8563 Ty = HalfTy;
8564 VTy = llvm::VectorType::get(HalfTy, 8);
8565 llvm::Type *Tys[2] = { Ty, VTy };
8566 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8567 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8568 return Builder.CreateTrunc(Ops[0], HalfTy);
8569 }
8570 case NEON::BI__builtin_neon_vminv_u8: {
8571 Int = Intrinsic::aarch64_neon_uminv;
8572 Ty = Int32Ty;
8573 VTy = llvm::VectorType::get(Int8Ty, 8);
8574 llvm::Type *Tys[2] = { Ty, VTy };
8575 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8576 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8577 return Builder.CreateTrunc(Ops[0], Int8Ty);
8578 }
8579 case NEON::BI__builtin_neon_vminv_u16: {
8580 Int = Intrinsic::aarch64_neon_uminv;
8581 Ty = Int32Ty;
8582 VTy = llvm::VectorType::get(Int16Ty, 4);
8583 llvm::Type *Tys[2] = { Ty, VTy };
8584 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8585 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8586 return Builder.CreateTrunc(Ops[0], Int16Ty);
8587 }
8588 case NEON::BI__builtin_neon_vminvq_u8: {
8589 Int = Intrinsic::aarch64_neon_uminv;
8590 Ty = Int32Ty;
8591 VTy = llvm::VectorType::get(Int8Ty, 16);
8592 llvm::Type *Tys[2] = { Ty, VTy };
8593 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8594 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8595 return Builder.CreateTrunc(Ops[0], Int8Ty);
8596 }
8597 case NEON::BI__builtin_neon_vminvq_u16: {
8598 Int = Intrinsic::aarch64_neon_uminv;
8599 Ty = Int32Ty;
8600 VTy = llvm::VectorType::get(Int16Ty, 8);
8601 llvm::Type *Tys[2] = { Ty, VTy };
8602 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8603 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8604 return Builder.CreateTrunc(Ops[0], Int16Ty);
8605 }
8606 case NEON::BI__builtin_neon_vminv_s8: {
8607 Int = Intrinsic::aarch64_neon_sminv;
8608 Ty = Int32Ty;
8609 VTy = llvm::VectorType::get(Int8Ty, 8);
8610 llvm::Type *Tys[2] = { Ty, VTy };
8611 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8612 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8613 return Builder.CreateTrunc(Ops[0], Int8Ty);
8614 }
8615 case NEON::BI__builtin_neon_vminv_s16: {
8616 Int = Intrinsic::aarch64_neon_sminv;
8617 Ty = Int32Ty;
8618 VTy = llvm::VectorType::get(Int16Ty, 4);
8619 llvm::Type *Tys[2] = { Ty, VTy };
8620 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8621 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8622 return Builder.CreateTrunc(Ops[0], Int16Ty);
8623 }
8624 case NEON::BI__builtin_neon_vminvq_s8: {
8625 Int = Intrinsic::aarch64_neon_sminv;
8626 Ty = Int32Ty;
8627 VTy = llvm::VectorType::get(Int8Ty, 16);
8628 llvm::Type *Tys[2] = { Ty, VTy };
8629 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8630 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8631 return Builder.CreateTrunc(Ops[0], Int8Ty);
8632 }
8633 case NEON::BI__builtin_neon_vminvq_s16: {
8634 Int = Intrinsic::aarch64_neon_sminv;
8635 Ty = Int32Ty;
8636 VTy = llvm::VectorType::get(Int16Ty, 8);
8637 llvm::Type *Tys[2] = { Ty, VTy };
8638 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8639 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8640 return Builder.CreateTrunc(Ops[0], Int16Ty);
8641 }
8642 case NEON::BI__builtin_neon_vminv_f16: {
8643 Int = Intrinsic::aarch64_neon_fminv;
8644 Ty = HalfTy;
8645 VTy = llvm::VectorType::get(HalfTy, 4);
8646 llvm::Type *Tys[2] = { Ty, VTy };
8647 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8648 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8649 return Builder.CreateTrunc(Ops[0], HalfTy);
8650 }
8651 case NEON::BI__builtin_neon_vminvq_f16: {
8652 Int = Intrinsic::aarch64_neon_fminv;
8653 Ty = HalfTy;
8654 VTy = llvm::VectorType::get(HalfTy, 8);
8655 llvm::Type *Tys[2] = { Ty, VTy };
8656 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8657 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8658 return Builder.CreateTrunc(Ops[0], HalfTy);
8659 }
8660 case NEON::BI__builtin_neon_vmaxnmv_f16: {
8661 Int = Intrinsic::aarch64_neon_fmaxnmv;
8662 Ty = HalfTy;
8663 VTy = llvm::VectorType::get(HalfTy, 4);
8664 llvm::Type *Tys[2] = { Ty, VTy };
8665 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8666 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8667 return Builder.CreateTrunc(Ops[0], HalfTy);
8668 }
8669 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
8670 Int = Intrinsic::aarch64_neon_fmaxnmv;
8671 Ty = HalfTy;
8672 VTy = llvm::VectorType::get(HalfTy, 8);
8673 llvm::Type *Tys[2] = { Ty, VTy };
8674 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8675 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8676 return Builder.CreateTrunc(Ops[0], HalfTy);
8677 }
8678 case NEON::BI__builtin_neon_vminnmv_f16: {
8679 Int = Intrinsic::aarch64_neon_fminnmv;
8680 Ty = HalfTy;
8681 VTy = llvm::VectorType::get(HalfTy, 4);
8682 llvm::Type *Tys[2] = { Ty, VTy };
8683 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8684 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8685 return Builder.CreateTrunc(Ops[0], HalfTy);
8686 }
8687 case NEON::BI__builtin_neon_vminnmvq_f16: {
8688 Int = Intrinsic::aarch64_neon_fminnmv;
8689 Ty = HalfTy;
8690 VTy = llvm::VectorType::get(HalfTy, 8);
8691 llvm::Type *Tys[2] = { Ty, VTy };
8692 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8693 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8694 return Builder.CreateTrunc(Ops[0], HalfTy);
8695 }
8696 case NEON::BI__builtin_neon_vmul_n_f64: {
8697 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8698 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
8699 return Builder.CreateFMul(Ops[0], RHS);
8700 }
8701 case NEON::BI__builtin_neon_vaddlv_u8: {
8702 Int = Intrinsic::aarch64_neon_uaddlv;
8703 Ty = Int32Ty;
8704 VTy = llvm::VectorType::get(Int8Ty, 8);
8705 llvm::Type *Tys[2] = { Ty, VTy };
8706 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8707 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8708 return Builder.CreateTrunc(Ops[0], Int16Ty);
8709 }
8710 case NEON::BI__builtin_neon_vaddlv_u16: {
8711 Int = Intrinsic::aarch64_neon_uaddlv;
8712 Ty = Int32Ty;
8713 VTy = llvm::VectorType::get(Int16Ty, 4);
8714 llvm::Type *Tys[2] = { Ty, VTy };
8715 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8716 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8717 }
8718 case NEON::BI__builtin_neon_vaddlvq_u8: {
8719 Int = Intrinsic::aarch64_neon_uaddlv;
8720 Ty = Int32Ty;
8721 VTy = llvm::VectorType::get(Int8Ty, 16);
8722 llvm::Type *Tys[2] = { Ty, VTy };
8723 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8724 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8725 return Builder.CreateTrunc(Ops[0], Int16Ty);
8726 }
8727 case NEON::BI__builtin_neon_vaddlvq_u16: {
8728 Int = Intrinsic::aarch64_neon_uaddlv;
8729 Ty = Int32Ty;
8730 VTy = llvm::VectorType::get(Int16Ty, 8);
8731 llvm::Type *Tys[2] = { Ty, VTy };
8732 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8733 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8734 }
8735 case NEON::BI__builtin_neon_vaddlv_s8: {
8736 Int = Intrinsic::aarch64_neon_saddlv;
8737 Ty = Int32Ty;
8738 VTy = llvm::VectorType::get(Int8Ty, 8);
8739 llvm::Type *Tys[2] = { Ty, VTy };
8740 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8741 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8742 return Builder.CreateTrunc(Ops[0], Int16Ty);
8743 }
8744 case NEON::BI__builtin_neon_vaddlv_s16: {
8745 Int = Intrinsic::aarch64_neon_saddlv;
8746 Ty = Int32Ty;
8747 VTy = llvm::VectorType::get(Int16Ty, 4);
8748 llvm::Type *Tys[2] = { Ty, VTy };
8749 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8750 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8751 }
8752 case NEON::BI__builtin_neon_vaddlvq_s8: {
8753 Int = Intrinsic::aarch64_neon_saddlv;
8754 Ty = Int32Ty;
8755 VTy = llvm::VectorType::get(Int8Ty, 16);
8756 llvm::Type *Tys[2] = { Ty, VTy };
8757 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8758 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8759 return Builder.CreateTrunc(Ops[0], Int16Ty);
8760 }
8761 case NEON::BI__builtin_neon_vaddlvq_s16: {
8762 Int = Intrinsic::aarch64_neon_saddlv;
8763 Ty = Int32Ty;
8764 VTy = llvm::VectorType::get(Int16Ty, 8);
8765 llvm::Type *Tys[2] = { Ty, VTy };
8766 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8767 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8768 }
8769 case NEON::BI__builtin_neon_vsri_n_v:
8770 case NEON::BI__builtin_neon_vsriq_n_v: {
8771 Int = Intrinsic::aarch64_neon_vsri;
8772 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8773 return EmitNeonCall(Intrin, Ops, "vsri_n");
8774 }
8775 case NEON::BI__builtin_neon_vsli_n_v:
8776 case NEON::BI__builtin_neon_vsliq_n_v: {
8777 Int = Intrinsic::aarch64_neon_vsli;
8778 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8779 return EmitNeonCall(Intrin, Ops, "vsli_n");
8780 }
8781 case NEON::BI__builtin_neon_vsra_n_v:
8782 case NEON::BI__builtin_neon_vsraq_n_v:
8783 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8784 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8785 return Builder.CreateAdd(Ops[0], Ops[1]);
8786 case NEON::BI__builtin_neon_vrsra_n_v:
8787 case NEON::BI__builtin_neon_vrsraq_n_v: {
8788 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
8789 SmallVector<llvm::Value*,2> TmpOps;
8790 TmpOps.push_back(Ops[1]);
8791 TmpOps.push_back(Ops[2]);
8792 Function* F = CGM.getIntrinsic(Int, Ty);
8793 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
8794 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
8795 return Builder.CreateAdd(Ops[0], tmp);
8796 }
8797 case NEON::BI__builtin_neon_vld1_v:
8798 case NEON::BI__builtin_neon_vld1q_v: {
8799 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8800 auto Alignment = CharUnits::fromQuantity(
8801 BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
8802 return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
8803 }
8804 case NEON::BI__builtin_neon_vst1_v:
8805 case NEON::BI__builtin_neon_vst1q_v:
8806 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8807 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8808 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8809 case NEON::BI__builtin_neon_vld1_lane_v:
8810 case NEON::BI__builtin_neon_vld1q_lane_v: {
8811 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8812 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
8813 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8814 auto Alignment = CharUnits::fromQuantity(
8815 BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
8816 Ops[0] =
8817 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
8818 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
8819 }
8820 case NEON::BI__builtin_neon_vld1_dup_v:
8821 case NEON::BI__builtin_neon_vld1q_dup_v: {
8822 Value *V = UndefValue::get(Ty);
8823 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
8824 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8825 auto Alignment = CharUnits::fromQuantity(
8826 BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
8827 Ops[0] =
8828 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
8829 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
8830 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
8831 return EmitNeonSplat(Ops[0], CI);
8832 }
8833 case NEON::BI__builtin_neon_vst1_lane_v:
8834 case NEON::BI__builtin_neon_vst1q_lane_v:
8835 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8836 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8837 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8838 return Builder.CreateDefaultAlignedStore(Ops[1],
8839 Builder.CreateBitCast(Ops[0], Ty));
8840 case NEON::BI__builtin_neon_vld2_v:
8841 case NEON::BI__builtin_neon_vld2q_v: {
8842 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8843 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8844 llvm::Type *Tys[2] = { VTy, PTy };
8845 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
8846 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
8847 Ops[0] = Builder.CreateBitCast(Ops[0],
8848 llvm::PointerType::getUnqual(Ops[1]->getType()));
8849 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8850 }
8851 case NEON::BI__builtin_neon_vld3_v:
8852 case NEON::BI__builtin_neon_vld3q_v: {
8853 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8854 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8855 llvm::Type *Tys[2] = { VTy, PTy };
8856 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
8857 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
8858 Ops[0] = Builder.CreateBitCast(Ops[0],
8859 llvm::PointerType::getUnqual(Ops[1]->getType()));
8860 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8861 }
8862 case NEON::BI__builtin_neon_vld4_v:
8863 case NEON::BI__builtin_neon_vld4q_v: {
8864 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8865 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8866 llvm::Type *Tys[2] = { VTy, PTy };
8867 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
8868 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
8869 Ops[0] = Builder.CreateBitCast(Ops[0],
8870 llvm::PointerType::getUnqual(Ops[1]->getType()));
8871 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8872 }
8873 case NEON::BI__builtin_neon_vld2_dup_v:
8874 case NEON::BI__builtin_neon_vld2q_dup_v: {
8875 llvm::Type *PTy =
8876 llvm::PointerType::getUnqual(VTy->getElementType());
8877 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8878 llvm::Type *Tys[2] = { VTy, PTy };
8879 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
8880 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
8881 Ops[0] = Builder.CreateBitCast(Ops[0],
8882 llvm::PointerType::getUnqual(Ops[1]->getType()));
8883 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8884 }
8885 case NEON::BI__builtin_neon_vld3_dup_v:
8886 case NEON::BI__builtin_neon_vld3q_dup_v: {
8887 llvm::Type *PTy =
8888 llvm::PointerType::getUnqual(VTy->getElementType());
8889 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8890 llvm::Type *Tys[2] = { VTy, PTy };
8891 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
8892 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
8893 Ops[0] = Builder.CreateBitCast(Ops[0],
8894 llvm::PointerType::getUnqual(Ops[1]->getType()));
8895 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8896 }
8897 case NEON::BI__builtin_neon_vld4_dup_v:
8898 case NEON::BI__builtin_neon_vld4q_dup_v: {
8899 llvm::Type *PTy =
8900 llvm::PointerType::getUnqual(VTy->getElementType());
8901 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8902 llvm::Type *Tys[2] = { VTy, PTy };
8903 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
8904 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
8905 Ops[0] = Builder.CreateBitCast(Ops[0],
8906 llvm::PointerType::getUnqual(Ops[1]->getType()));
8907 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8908 }
8909 case NEON::BI__builtin_neon_vld2_lane_v:
8910 case NEON::BI__builtin_neon_vld2q_lane_v: {
8911 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8912 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
8913 Ops.push_back(Ops[1]);
8914 Ops.erase(Ops.begin()+1);
8915 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8916 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8917 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8918 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
8919 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8920 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8921 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8922 }
8923 case NEON::BI__builtin_neon_vld3_lane_v:
8924 case NEON::BI__builtin_neon_vld3q_lane_v: {
8925 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8926 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
8927 Ops.push_back(Ops[1]);
8928 Ops.erase(Ops.begin()+1);
8929 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8930 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8931 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
8932 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
8933 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
8934 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8935 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8936 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8937 }
8938 case NEON::BI__builtin_neon_vld4_lane_v:
8939 case NEON::BI__builtin_neon_vld4q_lane_v: {
8940 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8941 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
8942 Ops.push_back(Ops[1]);
8943 Ops.erase(Ops.begin()+1);
8944 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8945 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8946 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
8947 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
8948 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
8949 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
8950 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8951 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8952 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8953 }
8954 case NEON::BI__builtin_neon_vst2_v:
8955 case NEON::BI__builtin_neon_vst2q_v: {
8956 Ops.push_back(Ops[0]);
8957 Ops.erase(Ops.begin());
8958 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
8959 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
8960 Ops, "");
8961 }
8962 case NEON::BI__builtin_neon_vst2_lane_v:
8963 case NEON::BI__builtin_neon_vst2q_lane_v: {
8964 Ops.push_back(Ops[0]);
8965 Ops.erase(Ops.begin());
8966 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
8967 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
8968 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
8969 Ops, "");
8970 }
8971 case NEON::BI__builtin_neon_vst3_v:
8972 case NEON::BI__builtin_neon_vst3q_v: {
8973 Ops.push_back(Ops[0]);
8974 Ops.erase(Ops.begin());
8975 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
8976 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
8977 Ops, "");
8978 }
8979 case NEON::BI__builtin_neon_vst3_lane_v:
8980 case NEON::BI__builtin_neon_vst3q_lane_v: {
8981 Ops.push_back(Ops[0]);
8982 Ops.erase(Ops.begin());
8983 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8984 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
8985 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
8986 Ops, "");
8987 }
8988 case NEON::BI__builtin_neon_vst4_v:
8989 case NEON::BI__builtin_neon_vst4q_v: {
8990 Ops.push_back(Ops[0]);
8991 Ops.erase(Ops.begin());
8992 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
8993 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
8994 Ops, "");
8995 }
8996 case NEON::BI__builtin_neon_vst4_lane_v:
8997 case NEON::BI__builtin_neon_vst4q_lane_v: {
8998 Ops.push_back(Ops[0]);
8999 Ops.erase(Ops.begin());
9000 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
9001 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
9002 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
9003 Ops, "");
9004 }
9005 case NEON::BI__builtin_neon_vtrn_v:
9006 case NEON::BI__builtin_neon_vtrnq_v: {
9007 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9008 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9009 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9010 Value *SV = nullptr;
9011
9012 for (unsigned vi = 0; vi != 2; ++vi) {
9013 SmallVector<uint32_t, 16> Indices;
9014 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9015 Indices.push_back(i+vi);
9016 Indices.push_back(i+e+vi);
9017 }
9018 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9019 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
9020 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9021 }
9022 return SV;
9023 }
9024 case NEON::BI__builtin_neon_vuzp_v:
9025 case NEON::BI__builtin_neon_vuzpq_v: {
9026 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9027 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9028 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9029 Value *SV = nullptr;
9030
9031 for (unsigned vi = 0; vi != 2; ++vi) {
9032 SmallVector<uint32_t, 16> Indices;
9033 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
9034 Indices.push_back(2*i+vi);
9035
9036 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9037 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
9038 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9039 }
9040 return SV;
9041 }
9042 case NEON::BI__builtin_neon_vzip_v:
9043 case NEON::BI__builtin_neon_vzipq_v: {
9044 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9045 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9046 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9047 Value *SV = nullptr;
9048
9049 for (unsigned vi = 0; vi != 2; ++vi) {
9050 SmallVector<uint32_t, 16> Indices;
9051 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9052 Indices.push_back((i + vi*e) >> 1);
9053 Indices.push_back(((i + vi*e) >> 1)+e);
9054 }
9055 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9056 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
9057 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9058 }
9059 return SV;
9060 }
9061 case NEON::BI__builtin_neon_vqtbl1q_v: {
9062 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
9063 Ops, "vtbl1");
9064 }
9065 case NEON::BI__builtin_neon_vqtbl2q_v: {
9066 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
9067 Ops, "vtbl2");
9068 }
9069 case NEON::BI__builtin_neon_vqtbl3q_v: {
9070 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
9071 Ops, "vtbl3");
9072 }
9073 case NEON::BI__builtin_neon_vqtbl4q_v: {
9074 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
9075 Ops, "vtbl4");
9076 }
9077 case NEON::BI__builtin_neon_vqtbx1q_v: {
9078 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
9079 Ops, "vtbx1");
9080 }
9081 case NEON::BI__builtin_neon_vqtbx2q_v: {
9082 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
9083 Ops, "vtbx2");
9084 }
9085 case NEON::BI__builtin_neon_vqtbx3q_v: {
9086 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
9087 Ops, "vtbx3");
9088 }
9089 case NEON::BI__builtin_neon_vqtbx4q_v: {
9090 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
9091 Ops, "vtbx4");
9092 }
9093 case NEON::BI__builtin_neon_vsqadd_v:
9094 case NEON::BI__builtin_neon_vsqaddq_v: {
9095 Int = Intrinsic::aarch64_neon_usqadd;
9096 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
9097 }
9098 case NEON::BI__builtin_neon_vuqadd_v:
9099 case NEON::BI__builtin_neon_vuqaddq_v: {
9100 Int = Intrinsic::aarch64_neon_suqadd;
9101 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
9102 }
9103 case AArch64::BI_BitScanForward:
9104 case AArch64::BI_BitScanForward64:
9105 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
9106 case AArch64::BI_BitScanReverse:
9107 case AArch64::BI_BitScanReverse64:
9108 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
9109 case AArch64::BI_InterlockedAnd64:
9110 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
9111 case AArch64::BI_InterlockedExchange64:
9112 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
9113 case AArch64::BI_InterlockedExchangeAdd64:
9114 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
9115 case AArch64::BI_InterlockedExchangeSub64:
9116 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
9117 case AArch64::BI_InterlockedOr64:
9118 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
9119 case AArch64::BI_InterlockedXor64:
9120 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
9121 case AArch64::BI_InterlockedDecrement64:
9122 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
9123 case AArch64::BI_InterlockedIncrement64:
9124 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
9125 case AArch64::BI_InterlockedExchangeAdd8_acq:
9126 case AArch64::BI_InterlockedExchangeAdd16_acq:
9127 case AArch64::BI_InterlockedExchangeAdd_acq:
9128 case AArch64::BI_InterlockedExchangeAdd64_acq:
9129 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
9130 case AArch64::BI_InterlockedExchangeAdd8_rel:
9131 case AArch64::BI_InterlockedExchangeAdd16_rel:
9132 case AArch64::BI_InterlockedExchangeAdd_rel:
9133 case AArch64::BI_InterlockedExchangeAdd64_rel:
9134 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
9135 case AArch64::BI_InterlockedExchangeAdd8_nf:
9136 case AArch64::BI_InterlockedExchangeAdd16_nf:
9137 case AArch64::BI_InterlockedExchangeAdd_nf:
9138 case AArch64::BI_InterlockedExchangeAdd64_nf:
9139 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
9140 case AArch64::BI_InterlockedExchange8_acq:
9141 case AArch64::BI_InterlockedExchange16_acq:
9142 case AArch64::BI_InterlockedExchange_acq:
9143 case AArch64::BI_InterlockedExchange64_acq:
9144 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
9145 case AArch64::BI_InterlockedExchange8_rel:
9146 case AArch64::BI_InterlockedExchange16_rel:
9147 case AArch64::BI_InterlockedExchange_rel:
9148 case AArch64::BI_InterlockedExchange64_rel:
9149 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
9150 case AArch64::BI_InterlockedExchange8_nf:
9151 case AArch64::BI_InterlockedExchange16_nf:
9152 case AArch64::BI_InterlockedExchange_nf:
9153 case AArch64::BI_InterlockedExchange64_nf:
9154 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
9155 case AArch64::BI_InterlockedCompareExchange8_acq:
9156 case AArch64::BI_InterlockedCompareExchange16_acq:
9157 case AArch64::BI_InterlockedCompareExchange_acq:
9158 case AArch64::BI_InterlockedCompareExchange64_acq:
9159 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
9160 case AArch64::BI_InterlockedCompareExchange8_rel:
9161 case AArch64::BI_InterlockedCompareExchange16_rel:
9162 case AArch64::BI_InterlockedCompareExchange_rel:
9163 case AArch64::BI_InterlockedCompareExchange64_rel:
9164 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
9165 case AArch64::BI_InterlockedCompareExchange8_nf:
9166 case AArch64::BI_InterlockedCompareExchange16_nf:
9167 case AArch64::BI_InterlockedCompareExchange_nf:
9168 case AArch64::BI_InterlockedCompareExchange64_nf:
9169 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
9170 case AArch64::BI_InterlockedOr8_acq:
9171 case AArch64::BI_InterlockedOr16_acq:
9172 case AArch64::BI_InterlockedOr_acq:
9173 case AArch64::BI_InterlockedOr64_acq:
9174 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
9175 case AArch64::BI_InterlockedOr8_rel:
9176 case AArch64::BI_InterlockedOr16_rel:
9177 case AArch64::BI_InterlockedOr_rel:
9178 case AArch64::BI_InterlockedOr64_rel:
9179 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
9180 case AArch64::BI_InterlockedOr8_nf:
9181 case AArch64::BI_InterlockedOr16_nf:
9182 case AArch64::BI_InterlockedOr_nf:
9183 case AArch64::BI_InterlockedOr64_nf:
9184 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
9185 case AArch64::BI_InterlockedXor8_acq:
9186 case AArch64::BI_InterlockedXor16_acq:
9187 case AArch64::BI_InterlockedXor_acq:
9188 case AArch64::BI_InterlockedXor64_acq:
9189 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
9190 case AArch64::BI_InterlockedXor8_rel:
9191 case AArch64::BI_InterlockedXor16_rel:
9192 case AArch64::BI_InterlockedXor_rel:
9193 case AArch64::BI_InterlockedXor64_rel:
9194 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
9195 case AArch64::BI_InterlockedXor8_nf:
9196 case AArch64::BI_InterlockedXor16_nf:
9197 case AArch64::BI_InterlockedXor_nf:
9198 case AArch64::BI_InterlockedXor64_nf:
9199 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
9200 case AArch64::BI_InterlockedAnd8_acq:
9201 case AArch64::BI_InterlockedAnd16_acq:
9202 case AArch64::BI_InterlockedAnd_acq:
9203 case AArch64::BI_InterlockedAnd64_acq:
9204 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
9205 case AArch64::BI_InterlockedAnd8_rel:
9206 case AArch64::BI_InterlockedAnd16_rel:
9207 case AArch64::BI_InterlockedAnd_rel:
9208 case AArch64::BI_InterlockedAnd64_rel:
9209 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
9210 case AArch64::BI_InterlockedAnd8_nf:
9211 case AArch64::BI_InterlockedAnd16_nf:
9212 case AArch64::BI_InterlockedAnd_nf:
9213 case AArch64::BI_InterlockedAnd64_nf:
9214 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
9215 case AArch64::BI_InterlockedIncrement16_acq:
9216 case AArch64::BI_InterlockedIncrement_acq:
9217 case AArch64::BI_InterlockedIncrement64_acq:
9218 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
9219 case AArch64::BI_InterlockedIncrement16_rel:
9220 case AArch64::BI_InterlockedIncrement_rel:
9221 case AArch64::BI_InterlockedIncrement64_rel:
9222 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
9223 case AArch64::BI_InterlockedIncrement16_nf:
9224 case AArch64::BI_InterlockedIncrement_nf:
9225 case AArch64::BI_InterlockedIncrement64_nf:
9226 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
9227 case AArch64::BI_InterlockedDecrement16_acq:
9228 case AArch64::BI_InterlockedDecrement_acq:
9229 case AArch64::BI_InterlockedDecrement64_acq:
9230 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
9231 case AArch64::BI_InterlockedDecrement16_rel:
9232 case AArch64::BI_InterlockedDecrement_rel:
9233 case AArch64::BI_InterlockedDecrement64_rel:
9234 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
9235 case AArch64::BI_InterlockedDecrement16_nf:
9236 case AArch64::BI_InterlockedDecrement_nf:
9237 case AArch64::BI_InterlockedDecrement64_nf:
9238 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
9239
9240 case AArch64::BI_InterlockedAdd: {
9241 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9242 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9243 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9244 AtomicRMWInst::Add, Arg0, Arg1,
9245 llvm::AtomicOrdering::SequentiallyConsistent);
9246 return Builder.CreateAdd(RMWI, Arg1);
9247 }
9248 }
9249}
9250
9251llvm::Value *CodeGenFunction::
9252BuildVector(ArrayRef<llvm::Value*> Ops) {
9253 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9254, __PRETTY_FUNCTION__))
9254 "Not a power-of-two sized vector!")(((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9254, __PRETTY_FUNCTION__))
;
9255 bool AllConstants = true;
9256 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9257 AllConstants &= isa<Constant>(Ops[i]);
9258
9259 // If this is a constant vector, create a ConstantVector.
9260 if (AllConstants) {
9261 SmallVector<llvm::Constant*, 16> CstOps;
9262 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9263 CstOps.push_back(cast<Constant>(Ops[i]));
9264 return llvm::ConstantVector::get(CstOps);
9265 }
9266
9267 // Otherwise, insertelement the values to build the vector.
9268 Value *Result =
9269 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9270
9271 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9272 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9273
9274 return Result;
9275}
9276
9277// Convert the mask from an integer type to a vector of i1.
9278static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9279 unsigned NumElts) {
9280
9281 llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9282 cast<IntegerType>(Mask->getType())->getBitWidth());
9283 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9284
9285 // If we have less than 8 elements, then the starting mask was an i8 and
9286 // we need to extract down to the right number of elements.
9287 if (NumElts < 8) {
9288 uint32_t Indices[4];
9289 for (unsigned i = 0; i != NumElts; ++i)
9290 Indices[i] = i;
9291 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9292 makeArrayRef(Indices, NumElts),
9293 "extract");
9294 }
9295 return MaskVec;
9296}
9297
9298static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9299 ArrayRef<Value *> Ops,
9300 unsigned Align) {
9301 // Cast the pointer to right type.
9302 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9303 llvm::PointerType::getUnqual(Ops[1]->getType()));
9304
9305 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9306 Ops[1]->getType()->getVectorNumElements());
9307
9308 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9309}
9310
9311static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9312 ArrayRef<Value *> Ops, unsigned Align) {
9313 // Cast the pointer to right type.
9314 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9315 llvm::PointerType::getUnqual(Ops[1]->getType()));
9316
9317 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9318 Ops[1]->getType()->getVectorNumElements());
9319
9320 return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9321}
9322
9323static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9324 ArrayRef<Value *> Ops) {
9325 llvm::Type *ResultTy = Ops[1]->getType();
9326 llvm::Type *PtrTy = ResultTy->getVectorElementType();
9327
9328 // Cast the pointer to element type.
9329 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9330 llvm::PointerType::getUnqual(PtrTy));
9331
9332 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9333 ResultTy->getVectorNumElements());
9334
9335 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9336 ResultTy);
9337 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9338}
9339
9340static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
9341 ArrayRef<Value *> Ops,
9342 bool IsCompress) {
9343 llvm::Type *ResultTy = Ops[1]->getType();
9344
9345 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9346 ResultTy->getVectorNumElements());
9347
9348 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
9349 : Intrinsic::x86_avx512_mask_expand;
9350 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
9351 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
9352}
9353
9354static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9355 ArrayRef<Value *> Ops) {
9356 llvm::Type *ResultTy = Ops[1]->getType();
9357 llvm::Type *PtrTy = ResultTy->getVectorElementType();
9358
9359 // Cast the pointer to element type.
9360 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9361 llvm::PointerType::getUnqual(PtrTy));
9362
9363 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9364 ResultTy->getVectorNumElements());
9365
9366 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9367 ResultTy);
9368 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9369}
9370
9371static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9372 ArrayRef<Value *> Ops,
9373 bool InvertLHS = false) {
9374 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9375 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9376 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9377
9378 if (InvertLHS)
9379 LHS = CGF.Builder.CreateNot(LHS);
9380
9381 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9382 Ops[0]->getType());
9383}
9384
9385static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9386 Value *Amt, bool IsRight) {
9387 llvm::Type *Ty = Op0->getType();
9388
9389 // Amount may be scalar immediate, in which case create a splat vector.
9390 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9391 // we only care about the lowest log2 bits anyway.
9392 if (Amt->getType() != Ty) {
9393 unsigned NumElts = Ty->getVectorNumElements();
9394 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9395 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9396 }
9397
9398 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9399 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
9400 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9401}
9402
9403static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9404 bool IsSigned) {
9405 Value *Op0 = Ops[0];
9406 Value *Op1 = Ops[1];
9407 llvm::Type *Ty = Op0->getType();
9408 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
9409
9410 CmpInst::Predicate Pred;
9411 switch (Imm) {
9412 case 0x0:
9413 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
9414 break;
9415 case 0x1:
9416 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9417 break;
9418 case 0x2:
9419 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
9420 break;
9421 case 0x3:
9422 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
9423 break;
9424 case 0x4:
9425 Pred = ICmpInst::ICMP_EQ;
9426 break;
9427 case 0x5:
9428 Pred = ICmpInst::ICMP_NE;
9429 break;
9430 case 0x6:
9431 return llvm::Constant::getNullValue(Ty); // FALSE
9432 case 0x7:
9433 return llvm::Constant::getAllOnesValue(Ty); // TRUE
9434 default:
9435 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9435)
;
9436 }
9437
9438 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
9439 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
9440 return Res;
9441}
9442
9443static Value *EmitX86Select(CodeGenFunction &CGF,
9444 Value *Mask, Value *Op0, Value *Op1) {
9445
9446 // If the mask is all ones just return first argument.
9447 if (const auto *C = dyn_cast<Constant>(Mask))
9448 if (C->isAllOnesValue())
9449 return Op0;
9450
9451 Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9452
9453 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9454}
9455
9456static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9457 Value *Mask, Value *Op0, Value *Op1) {
9458 // If the mask is all ones just return first argument.
9459 if (const auto *C = dyn_cast<Constant>(Mask))
9460 if (C->isAllOnesValue())
9461 return Op0;
9462
9463 llvm::VectorType *MaskTy =
9464 llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9465 Mask->getType()->getIntegerBitWidth());
9466 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9467 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9468 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9469}
9470
9471static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9472 unsigned NumElts, Value *MaskIn) {
9473 if (MaskIn) {
9474 const auto *C = dyn_cast<Constant>(MaskIn);
9475 if (!C || !C->isAllOnesValue())
9476 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9477 }
9478
9479 if (NumElts < 8) {
9480 uint32_t Indices[8];
9481 for (unsigned i = 0; i != NumElts; ++i)
9482 Indices[i] = i;
9483 for (unsigned i = NumElts; i != 8; ++i)
9484 Indices[i] = i % NumElts + NumElts;
9485 Cmp = CGF.Builder.CreateShuffleVector(
9486 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9487 }
9488
9489 return CGF.Builder.CreateBitCast(Cmp,
9490 IntegerType::get(CGF.getLLVMContext(),
9491 std::max(NumElts, 8U)));
9492}
9493
9494static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9495 bool Signed, ArrayRef<Value *> Ops) {
9496 assert((Ops.size() == 2 || Ops.size() == 4) &&(((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9497, __PRETTY_FUNCTION__))
9497 "Unexpected number of arguments")(((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9497, __PRETTY_FUNCTION__))
;
9498 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9499 Value *Cmp;
9500
9501 if (CC == 3) {
9502 Cmp = Constant::getNullValue(
9503 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9504 } else if (CC == 7) {
9505 Cmp = Constant::getAllOnesValue(
9506 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9507 } else {
9508 ICmpInst::Predicate Pred;
9509 switch (CC) {
9510 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9510)
;
9511 case 0: Pred = ICmpInst::ICMP_EQ; break;
9512 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9513 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9514 case 4: Pred = ICmpInst::ICMP_NE; break;
9515 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9516 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9517 }
9518 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9519 }
9520
9521 Value *MaskIn = nullptr;
9522 if (Ops.size() == 4)
9523 MaskIn = Ops[3];
9524
9525 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9526}
9527
9528static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9529 Value *Zero = Constant::getNullValue(In->getType());
9530 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9531}
9532
9533static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
9534 ArrayRef<Value *> Ops, bool IsSigned) {
9535 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
9536 llvm::Type *Ty = Ops[1]->getType();
9537
9538 Value *Res;
9539 if (Rnd != 4) {
9540 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
9541 : Intrinsic::x86_avx512_uitofp_round;
9542 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
9543 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
9544 } else {
9545 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
9546 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
9547 }
9548
9549 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
9550}
9551
9552static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9553
9554 llvm::Type *Ty = Ops[0]->getType();
9555 Value *Zero = llvm::Constant::getNullValue(Ty);
9556 Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9557 Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9558 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9559 return Res;
9560}
9561
9562static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9563 ArrayRef<Value *> Ops) {
9564 Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9565 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9566
9567 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9567, __PRETTY_FUNCTION__))
;
9568 return Res;
9569}
9570
9571// Lowers X86 FMA intrinsics to IR.
9572static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9573 unsigned BuiltinID, bool IsAddSub) {
9574
9575 bool Subtract = false;
9576 Intrinsic::ID IID = Intrinsic::not_intrinsic;
9577 switch (BuiltinID) {
9578 default: break;
9579 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9580 Subtract = true;
9581 LLVM_FALLTHROUGH[[clang::fallthrough]];
9582 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9583 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9584 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9585 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
9586 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9587 Subtract = true;
9588 LLVM_FALLTHROUGH[[clang::fallthrough]];
9589 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9590 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9591 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9592 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
9593 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9594 Subtract = true;
9595 LLVM_FALLTHROUGH[[clang::fallthrough]];
9596 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9597 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9598 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9599 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
9600 break;
9601 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9602 Subtract = true;
9603 LLVM_FALLTHROUGH[[clang::fallthrough]];
9604 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9605 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9606 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9607 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
9608 break;
9609 }
9610
9611 Value *A = Ops[0];
9612 Value *B = Ops[1];
9613 Value *C = Ops[2];
9614
9615 if (Subtract)
9616 C = CGF.Builder.CreateFNeg(C);
9617
9618 Value *Res;
9619
9620 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
9621 if (IID != Intrinsic::not_intrinsic &&
9622 cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
9623 Function *Intr = CGF.CGM.getIntrinsic(IID);
9624 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
9625 } else {
9626 llvm::Type *Ty = A->getType();
9627 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
9628 Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
9629
9630 if (IsAddSub) {
9631 // Negate even elts in C using a mask.
9632 unsigned NumElts = Ty->getVectorNumElements();
9633 SmallVector<uint32_t, 16> Indices(NumElts);
9634 for (unsigned i = 0; i != NumElts; ++i)
9635 Indices[i] = i + (i % 2) * NumElts;
9636
9637 Value *NegC = CGF.Builder.CreateFNeg(C);
9638 Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
9639 Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
9640 }
9641 }
9642
9643 // Handle any required masking.
9644 Value *MaskFalseVal = nullptr;
9645 switch (BuiltinID) {
9646 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9647 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9648 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9649 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9650 MaskFalseVal = Ops[0];
9651 break;
9652 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9653 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9654 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9655 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9656 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
9657 break;
9658 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9659 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9660 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9661 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9662 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9663 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9664 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9665 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9666 MaskFalseVal = Ops[2];
9667 break;
9668 }
9669
9670 if (MaskFalseVal)
9671 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
9672
9673 return Res;
9674}
9675
9676static Value *
9677EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
9678 Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
9679 bool NegAcc = false) {
9680 unsigned Rnd = 4;
9681 if (Ops.size() > 4)
9682 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
9683
9684 if (NegAcc)
9685 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
9686
9687 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
9688 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
9689 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
9690 Value *Res;
9691 if (Rnd != 4) {
9692 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
9693 Intrinsic::x86_avx512_vfmadd_f32 :
9694 Intrinsic::x86_avx512_vfmadd_f64;
9695 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9696 {Ops[0], Ops[1], Ops[2], Ops[4]});
9697 } else {
9698 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
9699 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
9700 }
9701 // If we have more than 3 arguments, we need to do masking.
9702 if (Ops.size() > 3) {
9703 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
9704 : Ops[PTIdx];
9705
9706 // If we negated the accumulator and the its the PassThru value we need to
9707 // bypass the negate. Conveniently Upper should be the same thing in this
9708 // case.
9709 if (NegAcc && PTIdx == 2)
9710 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
9711
9712 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
9713 }
9714 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
9715}
9716
9717static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
9718 ArrayRef<Value *> Ops) {
9719 llvm::Type *Ty = Ops[0]->getType();
9720 // Arguments have a vXi32 type so cast to vXi64.
9721 Ty = llvm::VectorType::get(CGF.Int64Ty,
9722 Ty->getPrimitiveSizeInBits() / 64);
9723 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
9724 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
9725
9726 if (IsSigned) {
9727 // Shift left then arithmetic shift right.
9728 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
9729 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
9730 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
9731 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
9732 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
9733 } else {
9734 // Clear the upper bits.
9735 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
9736 LHS = CGF.Builder.CreateAnd(LHS, Mask);
9737 RHS = CGF.Builder.CreateAnd(RHS, Mask);
9738 }
9739
9740 return CGF.Builder.CreateMul(LHS, RHS);
9741}
9742
9743// Emit a masked pternlog intrinsic. This only exists because the header has to
9744// use a macro and we aren't able to pass the input argument to a pternlog
9745// builtin and a select builtin without evaluating it twice.
9746static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
9747 ArrayRef<Value *> Ops) {
9748 llvm::Type *Ty = Ops[0]->getType();
9749
9750 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
9751 unsigned EltWidth = Ty->getScalarSizeInBits();
9752 Intrinsic::ID IID;
9753 if (VecWidth == 128 && EltWidth == 32)
9754 IID = Intrinsic::x86_avx512_pternlog_d_128;
9755 else if (VecWidth == 256 && EltWidth == 32)
9756 IID = Intrinsic::x86_avx512_pternlog_d_256;
9757 else if (VecWidth == 512 && EltWidth == 32)
9758 IID = Intrinsic::x86_avx512_pternlog_d_512;
9759 else if (VecWidth == 128 && EltWidth == 64)
9760 IID = Intrinsic::x86_avx512_pternlog_q_128;
9761 else if (VecWidth == 256 && EltWidth == 64)
9762 IID = Intrinsic::x86_avx512_pternlog_q_256;
9763 else if (VecWidth == 512 && EltWidth == 64)
9764 IID = Intrinsic::x86_avx512_pternlog_q_512;
9765 else
9766 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9766)
;
9767
9768 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9769 Ops.drop_back());
9770 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
9771 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
9772}
9773
9774static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
9775 llvm::Type *DstTy) {
9776 unsigned NumberOfElements = DstTy->getVectorNumElements();
9777 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
9778 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
9779}
9780
9781// Emit addition or subtraction with signed/unsigned saturation.
9782static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
9783 ArrayRef<Value *> Ops, bool IsSigned,
9784 bool IsAddition) {
9785 Intrinsic::ID IID =
9786 IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
9787 : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
9788 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
9789 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
9790}
9791
9792Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
9793 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
9794 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
9795 return EmitX86CpuIs(CPUStr);
9796}
9797
9798Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
9799
9800 llvm::Type *Int32Ty = Builder.getInt32Ty();
9801
9802 // Matching the struct layout from the compiler-rt/libgcc structure that is
9803 // filled in:
9804 // unsigned int __cpu_vendor;
9805 // unsigned int __cpu_type;
9806 // unsigned int __cpu_subtype;
9807 // unsigned int __cpu_features[1];
9808 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9809 llvm::ArrayType::get(Int32Ty, 1));
9810
9811 // Grab the global __cpu_model.
9812 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9813 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9814
9815 // Calculate the index needed to access the correct field based on the
9816 // range. Also adjust the expected value.
9817 unsigned Index;
9818 unsigned Value;
9819 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
9820#define X86_VENDOR(ENUM, STRING) \
9821 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
9822#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
9823 .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9824#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
9825 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9826#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
9827 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
9828#include "llvm/Support/X86TargetParser.def"
9829 .Default({0, 0});
9830 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")((Value != 0 && "Invalid CPUStr passed to CpuIs") ? static_cast
<void> (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9830, __PRETTY_FUNCTION__))
;
9831
9832 // Grab the appropriate field from __cpu_model.
9833 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
9834 ConstantInt::get(Int32Ty, Index)};
9835 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
9836 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
9837
9838 // Check the value of the field against the requested value.
9839 return Builder.CreateICmpEQ(CpuValue,
9840 llvm::ConstantInt::get(Int32Ty, Value));
9841}
9842
9843Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
9844 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
9845 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
9846 return EmitX86CpuSupports(FeatureStr);
9847}
9848
9849uint64_t
9850CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
9851 // Processor features and mapping to processor feature value.
9852 uint64_t FeaturesMask = 0;
9853 for (const StringRef &FeatureStr : FeatureStrs) {
9854 unsigned Feature =
9855 StringSwitch<unsigned>(FeatureStr)
9856#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
9857#include "llvm/Support/X86TargetParser.def"
9858 ;
9859 FeaturesMask |= (1ULL << Feature);
9860 }
9861 return FeaturesMask;
9862}
9863
9864Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
9865 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
9866}
9867
9868llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
9869 uint32_t Features1 = Lo_32(FeaturesMask);
9870 uint32_t Features2 = Hi_32(FeaturesMask);
9871
9872 Value *Result = Builder.getTrue();
9873
9874 if (Features1 != 0) {
9875 // Matching the struct layout from the compiler-rt/libgcc structure that is
9876 // filled in:
9877 // unsigned int __cpu_vendor;
9878 // unsigned int __cpu_type;
9879 // unsigned int __cpu_subtype;
9880 // unsigned int __cpu_features[1];
9881 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9882 llvm::ArrayType::get(Int32Ty, 1));
9883
9884 // Grab the global __cpu_model.
9885 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9886 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9887
9888 // Grab the first (0th) element from the field __cpu_features off of the
9889 // global in the struct STy.
9890 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
9891 Builder.getInt32(0)};
9892 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
9893 Value *Features =
9894 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
9895
9896 // Check the value of the bit corresponding to the feature requested.
9897 Value *Mask = Builder.getInt32(Features1);
9898 Value *Bitset = Builder.CreateAnd(Features, Mask);
9899 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9900 Result = Builder.CreateAnd(Result, Cmp);
9901 }
9902
9903 if (Features2 != 0) {
9904 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
9905 "__cpu_features2");
9906 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
9907
9908 Value *Features =
9909 Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
9910
9911 // Check the value of the bit corresponding to the feature requested.
9912 Value *Mask = Builder.getInt32(Features2);
9913 Value *Bitset = Builder.CreateAnd(Features, Mask);
9914 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9915 Result = Builder.CreateAnd(Result, Cmp);
9916 }
9917
9918 return Result;
9919}
9920
9921Value *CodeGenFunction::EmitX86CpuInit() {
9922 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
9923 /*Variadic*/ false);
9924 llvm::FunctionCallee Func =
9925 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
9926 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
9927 cast<llvm::GlobalValue>(Func.getCallee())
9928 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
9929 return Builder.CreateCall(Func);
9930}
9931
9932Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
9933 const CallExpr *E) {
9934 if (BuiltinID == X86::BI__builtin_cpu_is)
9935 return EmitX86CpuIs(E);
9936 if (BuiltinID == X86::BI__builtin_cpu_supports)
9937 return EmitX86CpuSupports(E);
9938 if (BuiltinID == X86::BI__builtin_cpu_init)
9939 return EmitX86CpuInit();
9940
9941 SmallVector<Value*, 4> Ops;
9942
9943 // Find out if any arguments are required to be integer constant expressions.
9944 unsigned ICEArguments = 0;
9945 ASTContext::GetBuiltinTypeError Error;
9946 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9947 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9947, __PRETTY_FUNCTION__))
;
9948
9949 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9950 // If this is a normal argument, just emit it as a scalar.
9951 if ((ICEArguments & (1 << i)) == 0) {
9952 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9953 continue;
9954 }
9955
9956 // If this is required to be a constant, constant fold it so that we know
9957 // that the generated intrinsic gets a ConstantInt.
9958 llvm::APSInt Result;
9959 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
9960 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9960, __PRETTY_FUNCTION__))
; (void)IsConst;
9961 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
9962 }
9963
9964 // These exist so that the builtin that takes an immediate can be bounds
9965 // checked by clang to avoid passing bad immediates to the backend. Since
9966 // AVX has a larger immediate than SSE we would need separate builtins to
9967 // do the different bounds checking. Rather than create a clang specific
9968 // SSE only builtin, this implements eight separate builtins to match gcc
9969 // implementation.
9970 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
9971 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
9972 llvm::Function *F = CGM.getIntrinsic(ID);
9973 return Builder.CreateCall(F, Ops);
9974 };
9975
9976 // For the vector forms of FP comparisons, translate the builtins directly to
9977 // IR.
9978 // TODO: The builtins could be removed if the SSE header files used vector
9979 // extension comparisons directly (vector ordered/unordered may need
9980 // additional support via __builtin_isnan()).
9981 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
9982 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
9983 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
9984 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
9985 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
9986 return Builder.CreateBitCast(Sext, FPVecTy);
9987 };
9988
9989 switch (BuiltinID) {
9990 default: return nullptr;
9991 case X86::BI_mm_prefetch: {
9992 Value *Address = Ops[0];
9993 ConstantInt *C = cast<ConstantInt>(Ops[1]);
9994 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
9995 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
9996 Value *Data = ConstantInt::get(Int32Ty, 1);
9997 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
9998 return Builder.CreateCall(F, {Address, RW, Locality, Data});
9999 }
10000 case X86::BI_mm_clflush: {
10001 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
10002 Ops[0]);
10003 }
10004 case X86::BI_mm_lfence: {
10005 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
10006 }
10007 case X86::BI_mm_mfence: {
10008 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
10009 }
10010 case X86::BI_mm_sfence: {
10011 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
10012 }
10013 case X86::BI_mm_pause: {
10014 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
10015 }
10016 case X86::BI__rdtsc: {
10017 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
10018 }
10019 case X86::BI__builtin_ia32_rdtscp: {
10020 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
10021 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
10022 Ops[0]);
10023 return Builder.CreateExtractValue(Call, 0);
10024 }
10025 case X86::BI__builtin_ia32_lzcnt_u16:
10026 case X86::BI__builtin_ia32_lzcnt_u32:
10027 case X86::BI__builtin_ia32_lzcnt_u64: {
10028 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10029 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10030 }
10031 case X86::BI__builtin_ia32_tzcnt_u16:
10032 case X86::BI__builtin_ia32_tzcnt_u32:
10033 case X86::BI__builtin_ia32_tzcnt_u64: {
10034 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
10035 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10036 }
10037 case X86::BI__builtin_ia32_undef128:
10038 case X86::BI__builtin_ia32_undef256:
10039 case X86::BI__builtin_ia32_undef512:
10040 // The x86 definition of "undef" is not the same as the LLVM definition
10041 // (PR32176). We leave optimizing away an unnecessary zero constant to the
10042 // IR optimizer and backend.
10043 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
10044 // value, we should use that here instead of a zero.
10045 return llvm::Constant::getNullValue(ConvertType(E->getType()));
10046 case X86::BI__builtin_ia32_vec_init_v8qi:
10047 case X86::BI__builtin_ia32_vec_init_v4hi:
10048 case X86::BI__builtin_ia32_vec_init_v2si:
10049 return Builder.CreateBitCast(BuildVector(Ops),
10050 llvm::Type::getX86_MMXTy(getLLVMContext()));
10051 case X86::BI__builtin_ia32_vec_ext_v2si:
10052 case X86::BI__builtin_ia32_vec_ext_v16qi:
10053 case X86::BI__builtin_ia32_vec_ext_v8hi:
10054 case X86::BI__builtin_ia32_vec_ext_v4si:
10055 case X86::BI__builtin_ia32_vec_ext_v4sf:
10056 case X86::BI__builtin_ia32_vec_ext_v2di:
10057 case X86::BI__builtin_ia32_vec_ext_v32qi:
10058 case X86::BI__builtin_ia32_vec_ext_v16hi:
10059 case X86::BI__builtin_ia32_vec_ext_v8si:
10060 case X86::BI__builtin_ia32_vec_ext_v4di: {
10061 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10062 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10063 Index &= NumElts - 1;
10064 // These builtins exist so we can ensure the index is an ICE and in range.
10065 // Otherwise we could just do this in the header file.
10066 return Builder.CreateExtractElement(Ops[0], Index);
10067 }
10068 case X86::BI__builtin_ia32_vec_set_v16qi:
10069 case X86::BI__builtin_ia32_vec_set_v8hi:
10070 case X86::BI__builtin_ia32_vec_set_v4si:
10071 case X86::BI__builtin_ia32_vec_set_v2di:
10072 case X86::BI__builtin_ia32_vec_set_v32qi:
10073 case X86::BI__builtin_ia32_vec_set_v16hi:
10074 case X86::BI__builtin_ia32_vec_set_v8si:
10075 case X86::BI__builtin_ia32_vec_set_v4di: {
10076 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10077 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10078 Index &= NumElts - 1;
10079 // These builtins exist so we can ensure the index is an ICE and in range.
10080 // Otherwise we could just do this in the header file.
10081 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
10082 }
10083 case X86::BI_mm_setcsr:
10084 case X86::BI__builtin_ia32_ldmxcsr: {
10085 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10086 Builder.CreateStore(Ops[0], Tmp);
10087 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
10088 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10089 }
10090 case X86::BI_mm_getcsr:
10091 case X86::BI__builtin_ia32_stmxcsr: {
10092 Address Tmp = CreateMemTemp(E->getType());
10093 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
10094 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10095 return Builder.CreateLoad(Tmp, "stmxcsr");
10096 }
10097 case X86::BI__builtin_ia32_xsave:
10098 case X86::BI__builtin_ia32_xsave64:
10099 case X86::BI__builtin_ia32_xrstor:
10100 case X86::BI__builtin_ia32_xrstor64:
10101 case X86::BI__builtin_ia32_xsaveopt:
10102 case X86::BI__builtin_ia32_xsaveopt64:
10103 case X86::BI__builtin_ia32_xrstors:
10104 case X86::BI__builtin_ia32_xrstors64:
10105 case X86::BI__builtin_ia32_xsavec:
10106 case X86::BI__builtin_ia32_xsavec64:
10107 case X86::BI__builtin_ia32_xsaves:
10108 case X86::BI__builtin_ia32_xsaves64:
10109 case X86::BI__builtin_ia32_xsetbv:
10110 case X86::BI_xsetbv: {
10111 Intrinsic::ID ID;
10112#define INTRINSIC_X86_XSAVE_ID(NAME) \
10113 case X86::BI__builtin_ia32_##NAME: \
10114 ID = Intrinsic::x86_##NAME; \
10115 break
10116 switch (BuiltinID) {
10117 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10117)
;
10118 INTRINSIC_X86_XSAVE_ID(xsave);
10119 INTRINSIC_X86_XSAVE_ID(xsave64);
10120 INTRINSIC_X86_XSAVE_ID(xrstor);
10121 INTRINSIC_X86_XSAVE_ID(xrstor64);
10122 INTRINSIC_X86_XSAVE_ID(xsaveopt);
10123 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
10124 INTRINSIC_X86_XSAVE_ID(xrstors);
10125 INTRINSIC_X86_XSAVE_ID(xrstors64);
10126 INTRINSIC_X86_XSAVE_ID(xsavec);
10127 INTRINSIC_X86_XSAVE_ID(xsavec64);
10128 INTRINSIC_X86_XSAVE_ID(xsaves);
10129 INTRINSIC_X86_XSAVE_ID(xsaves64);
10130 INTRINSIC_X86_XSAVE_ID(xsetbv);
10131 case X86::BI_xsetbv:
10132 ID = Intrinsic::x86_xsetbv;
10133 break;
10134 }
10135#undef INTRINSIC_X86_XSAVE_ID
10136 Value *Mhi = Builder.CreateTrunc(
10137 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
10138 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
10139 Ops[1] = Mhi;
10140 Ops.push_back(Mlo);
10141 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10142 }
10143 case X86::BI__builtin_ia32_xgetbv:
10144 case X86::BI_xgetbv:
10145 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
10146 case X86::BI__builtin_ia32_storedqudi128_mask:
10147 case X86::BI__builtin_ia32_storedqusi128_mask:
10148 case X86::BI__builtin_ia32_storedquhi128_mask:
10149 case X86::BI__builtin_ia32_storedquqi128_mask:
10150 case X86::BI__builtin_ia32_storeupd128_mask:
10151 case X86::BI__builtin_ia32_storeups128_mask:
10152 case X86::BI__builtin_ia32_storedqudi256_mask:
10153 case X86::BI__builtin_ia32_storedqusi256_mask:
10154 case X86::BI__builtin_ia32_storedquhi256_mask:
10155 case X86::BI__builtin_ia32_storedquqi256_mask:
10156 case X86::BI__builtin_ia32_storeupd256_mask:
10157 case X86::BI__builtin_ia32_storeups256_mask:
10158 case X86::BI__builtin_ia32_storedqudi512_mask:
10159 case X86::BI__builtin_ia32_storedqusi512_mask:
10160 case X86::BI__builtin_ia32_storedquhi512_mask:
10161 case X86::BI__builtin_ia32_storedquqi512_mask:
10162 case X86::BI__builtin_ia32_storeupd512_mask:
10163 case X86::BI__builtin_ia32_storeups512_mask:
10164 return EmitX86MaskedStore(*this, Ops, 1);
10165
10166 case X86::BI__builtin_ia32_storess128_mask:
10167 case X86::BI__builtin_ia32_storesd128_mask: {
10168 return EmitX86MaskedStore(*this, Ops, 1);
10169 }
10170 case X86::BI__builtin_ia32_vpopcntb_128:
10171 case X86::BI__builtin_ia32_vpopcntd_128:
10172 case X86::BI__builtin_ia32_vpopcntq_128:
10173 case X86::BI__builtin_ia32_vpopcntw_128:
10174 case X86::BI__builtin_ia32_vpopcntb_256:
10175 case X86::BI__builtin_ia32_vpopcntd_256:
10176 case X86::BI__builtin_ia32_vpopcntq_256:
10177 case X86::BI__builtin_ia32_vpopcntw_256:
10178 case X86::BI__builtin_ia32_vpopcntb_512:
10179 case X86::BI__builtin_ia32_vpopcntd_512:
10180 case X86::BI__builtin_ia32_vpopcntq_512:
10181 case X86::BI__builtin_ia32_vpopcntw_512: {
10182 llvm::Type *ResultType = ConvertType(E->getType());
10183 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
10184 return Builder.CreateCall(F, Ops);
10185 }
10186 case X86::BI__builtin_ia32_cvtmask2b128:
10187 case X86::BI__builtin_ia32_cvtmask2b256:
10188 case X86::BI__builtin_ia32_cvtmask2b512:
10189 case X86::BI__builtin_ia32_cvtmask2w128:
10190 case X86::BI__builtin_ia32_cvtmask2w256:
10191 case X86::BI__builtin_ia32_cvtmask2w512:
10192 case X86::BI__builtin_ia32_cvtmask2d128:
10193 case X86::BI__builtin_ia32_cvtmask2d256:
10194 case X86::BI__builtin_ia32_cvtmask2d512:
10195 case X86::BI__builtin_ia32_cvtmask2q128:
10196 case X86::BI__builtin_ia32_cvtmask2q256:
10197 case X86::BI__builtin_ia32_cvtmask2q512:
10198 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
10199
10200 case X86::BI__builtin_ia32_cvtb2mask128:
10201 case X86::BI__builtin_ia32_cvtb2mask256:
10202 case X86::BI__builtin_ia32_cvtb2mask512:
10203 case X86::BI__builtin_ia32_cvtw2mask128:
10204 case X86::BI__builtin_ia32_cvtw2mask256:
10205 case X86::BI__builtin_ia32_cvtw2mask512:
10206 case X86::BI__builtin_ia32_cvtd2mask128:
10207 case X86::BI__builtin_ia32_cvtd2mask256:
10208 case X86::BI__builtin_ia32_cvtd2mask512:
10209 case X86::BI__builtin_ia32_cvtq2mask128:
10210 case X86::BI__builtin_ia32_cvtq2mask256:
10211 case X86::BI__builtin_ia32_cvtq2mask512:
10212 return EmitX86ConvertToMask(*this, Ops[0]);
10213
10214 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
10215 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
10216 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
10217 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
10218 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
10219 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
10220 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
10221 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
10222
10223 case X86::BI__builtin_ia32_vfmaddss3:
10224 case X86::BI__builtin_ia32_vfmaddsd3:
10225 case X86::BI__builtin_ia32_vfmaddss3_mask:
10226 case X86::BI__builtin_ia32_vfmaddsd3_mask:
10227 return EmitScalarFMAExpr(*this, Ops, Ops[0]);
10228 case X86::BI__builtin_ia32_vfmaddss:
10229 case X86::BI__builtin_ia32_vfmaddsd:
10230 return EmitScalarFMAExpr(*this, Ops,
10231 Constant::getNullValue(Ops[0]->getType()));
10232 case X86::BI__builtin_ia32_vfmaddss3_maskz:
10233 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
10234 return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
10235 case X86::BI__builtin_ia32_vfmaddss3_mask3:
10236 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
10237 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
10238 case X86::BI__builtin_ia32_vfmsubss3_mask3:
10239 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
10240 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
10241 /*NegAcc*/true);
10242 case X86::BI__builtin_ia32_vfmaddps:
10243 case X86::BI__builtin_ia32_vfmaddpd:
10244 case X86::BI__builtin_ia32_vfmaddps256:
10245 case X86::BI__builtin_ia32_vfmaddpd256:
10246 case X86::BI__builtin_ia32_vfmaddps512_mask:
10247 case X86::BI__builtin_ia32_vfmaddps512_maskz:
10248 case X86::BI__builtin_ia32_vfmaddps512_mask3:
10249 case X86::BI__builtin_ia32_vfmsubps512_mask3:
10250 case X86::BI__builtin_ia32_vfmaddpd512_mask:
10251 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
10252 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
10253 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
10254 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
10255 case X86::BI__builtin_ia32_vfmaddsubps:
10256 case X86::BI__builtin_ia32_vfmaddsubpd:
10257 case X86::BI__builtin_ia32_vfmaddsubps256:
10258 case X86::BI__builtin_ia32_vfmaddsubpd256:
10259 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
10260 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10261 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10262 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10263 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10264 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10265 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10266 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10267 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
10268
10269 case X86::BI__builtin_ia32_movdqa32store128_mask:
10270 case X86::BI__builtin_ia32_movdqa64store128_mask:
10271 case X86::BI__builtin_ia32_storeaps128_mask:
10272 case X86::BI__builtin_ia32_storeapd128_mask:
10273 case X86::BI__builtin_ia32_movdqa32store256_mask:
10274 case X86::BI__builtin_ia32_movdqa64store256_mask:
10275 case X86::BI__builtin_ia32_storeaps256_mask:
10276 case X86::BI__builtin_ia32_storeapd256_mask:
10277 case X86::BI__builtin_ia32_movdqa32store512_mask:
10278 case X86::BI__builtin_ia32_movdqa64store512_mask:
10279 case X86::BI__builtin_ia32_storeaps512_mask:
10280 case X86::BI__builtin_ia32_storeapd512_mask: {
10281 unsigned Align =
10282 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10283 return EmitX86MaskedStore(*this, Ops, Align);
10284 }
10285 case X86::BI__builtin_ia32_loadups128_mask:
10286 case X86::BI__builtin_ia32_loadups256_mask:
10287 case X86::BI__builtin_ia32_loadups512_mask:
10288 case X86::BI__builtin_ia32_loadupd128_mask:
10289 case X86::BI__builtin_ia32_loadupd256_mask:
10290 case X86::BI__builtin_ia32_loadupd512_mask:
10291 case X86::BI__builtin_ia32_loaddquqi128_mask:
10292 case X86::BI__builtin_ia32_loaddquqi256_mask:
10293 case X86::BI__builtin_ia32_loaddquqi512_mask:
10294 case X86::BI__builtin_ia32_loaddquhi128_mask:
10295 case X86::BI__builtin_ia32_loaddquhi256_mask:
10296 case X86::BI__builtin_ia32_loaddquhi512_mask:
10297 case X86::BI__builtin_ia32_loaddqusi128_mask:
10298 case X86::BI__builtin_ia32_loaddqusi256_mask:
10299 case X86::BI__builtin_ia32_loaddqusi512_mask:
10300 case X86::BI__builtin_ia32_loaddqudi128_mask:
10301 case X86::BI__builtin_ia32_loaddqudi256_mask:
10302 case X86::BI__builtin_ia32_loaddqudi512_mask:
10303 return EmitX86MaskedLoad(*this, Ops, 1);
10304
10305 case X86::BI__builtin_ia32_loadss128_mask:
10306 case X86::BI__builtin_ia32_loadsd128_mask:
10307 return EmitX86MaskedLoad(*this, Ops, 1);
10308
10309 case X86::BI__builtin_ia32_loadaps128_mask:
10310 case X86::BI__builtin_ia32_loadaps256_mask:
10311 case X86::BI__builtin_ia32_loadaps512_mask:
10312 case X86::BI__builtin_ia32_loadapd128_mask:
10313 case X86::BI__builtin_ia32_loadapd256_mask:
10314 case X86::BI__builtin_ia32_loadapd512_mask:
10315 case X86::BI__builtin_ia32_movdqa32load128_mask:
10316 case X86::BI__builtin_ia32_movdqa32load256_mask:
10317 case X86::BI__builtin_ia32_movdqa32load512_mask:
10318 case X86::BI__builtin_ia32_movdqa64load128_mask:
10319 case X86::BI__builtin_ia32_movdqa64load256_mask:
10320 case X86::BI__builtin_ia32_movdqa64load512_mask: {
10321 unsigned Align =
10322 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10323 return EmitX86MaskedLoad(*this, Ops, Align);
10324 }
10325
10326 case X86::BI__builtin_ia32_expandloaddf128_mask:
10327 case X86::BI__builtin_ia32_expandloaddf256_mask:
10328 case X86::BI__builtin_ia32_expandloaddf512_mask:
10329 case X86::BI__builtin_ia32_expandloadsf128_mask:
10330 case X86::BI__builtin_ia32_expandloadsf256_mask:
10331 case X86::BI__builtin_ia32_expandloadsf512_mask:
10332 case X86::BI__builtin_ia32_expandloaddi128_mask:
10333 case X86::BI__builtin_ia32_expandloaddi256_mask:
10334 case X86::BI__builtin_ia32_expandloaddi512_mask:
10335 case X86::BI__builtin_ia32_expandloadsi128_mask:
10336 case X86::BI__builtin_ia32_expandloadsi256_mask:
10337 case X86::BI__builtin_ia32_expandloadsi512_mask:
10338 case X86::BI__builtin_ia32_expandloadhi128_mask:
10339 case X86::BI__builtin_ia32_expandloadhi256_mask:
10340 case X86::BI__builtin_ia32_expandloadhi512_mask:
10341 case X86::BI__builtin_ia32_expandloadqi128_mask:
10342 case X86::BI__builtin_ia32_expandloadqi256_mask:
10343 case X86::BI__builtin_ia32_expandloadqi512_mask:
10344 return EmitX86ExpandLoad(*this, Ops);
10345
10346 case X86::BI__builtin_ia32_compressstoredf128_mask:
10347 case X86::BI__builtin_ia32_compressstoredf256_mask:
10348 case X86::BI__builtin_ia32_compressstoredf512_mask:
10349 case X86::BI__builtin_ia32_compressstoresf128_mask:
10350 case X86::BI__builtin_ia32_compressstoresf256_mask:
10351 case X86::BI__builtin_ia32_compressstoresf512_mask:
10352 case X86::BI__builtin_ia32_compressstoredi128_mask:
10353 case X86::BI__builtin_ia32_compressstoredi256_mask:
10354 case X86::BI__builtin_ia32_compressstoredi512_mask:
10355 case X86::BI__builtin_ia32_compressstoresi128_mask:
10356 case X86::BI__builtin_ia32_compressstoresi256_mask:
10357 case X86::BI__builtin_ia32_compressstoresi512_mask:
10358 case X86::BI__builtin_ia32_compressstorehi128_mask:
10359 case X86::BI__builtin_ia32_compressstorehi256_mask:
10360 case X86::BI__builtin_ia32_compressstorehi512_mask:
10361 case X86::BI__builtin_ia32_compressstoreqi128_mask:
10362 case X86::BI__builtin_ia32_compressstoreqi256_mask:
10363 case X86::BI__builtin_ia32_compressstoreqi512_mask:
10364 return EmitX86CompressStore(*this, Ops);
10365
10366 case X86::BI__builtin_ia32_expanddf128_mask:
10367 case X86::BI__builtin_ia32_expanddf256_mask:
10368 case X86::BI__builtin_ia32_expanddf512_mask:
10369 case X86::BI__builtin_ia32_expandsf128_mask:
10370 case X86::BI__builtin_ia32_expandsf256_mask:
10371 case X86::BI__builtin_ia32_expandsf512_mask:
10372 case X86::BI__builtin_ia32_expanddi128_mask:
10373 case X86::BI__builtin_ia32_expanddi256_mask:
10374 case X86::BI__builtin_ia32_expanddi512_mask:
10375 case X86::BI__builtin_ia32_expandsi128_mask:
10376 case X86::BI__builtin_ia32_expandsi256_mask:
10377 case X86::BI__builtin_ia32_expandsi512_mask:
10378 case X86::BI__builtin_ia32_expandhi128_mask:
10379 case X86::BI__builtin_ia32_expandhi256_mask:
10380 case X86::BI__builtin_ia32_expandhi512_mask:
10381 case X86::BI__builtin_ia32_expandqi128_mask:
10382 case X86::BI__builtin_ia32_expandqi256_mask:
10383 case X86::BI__builtin_ia32_expandqi512_mask:
10384 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
10385
10386 case X86::BI__builtin_ia32_compressdf128_mask:
10387 case X86::BI__builtin_ia32_compressdf256_mask:
10388 case X86::BI__builtin_ia32_compressdf512_mask:
10389 case X86::BI__builtin_ia32_compresssf128_mask:
10390 case X86::BI__builtin_ia32_compresssf256_mask:
10391 case X86::BI__builtin_ia32_compresssf512_mask:
10392 case X86::BI__builtin_ia32_compressdi128_mask:
10393 case X86::BI__builtin_ia32_compressdi256_mask:
10394 case X86::BI__builtin_ia32_compressdi512_mask:
10395 case X86::BI__builtin_ia32_compresssi128_mask:
10396 case X86::BI__builtin_ia32_compresssi256_mask:
10397 case X86::BI__builtin_ia32_compresssi512_mask:
10398 case X86::BI__builtin_ia32_compresshi128_mask:
10399 case X86::BI__builtin_ia32_compresshi256_mask:
10400 case X86::BI__builtin_ia32_compresshi512_mask:
10401 case X86::BI__builtin_ia32_compressqi128_mask:
10402 case X86::BI__builtin_ia32_compressqi256_mask:
10403 case X86::BI__builtin_ia32_compressqi512_mask:
10404 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
10405
10406 case X86::BI__builtin_ia32_gather3div2df:
10407 case X86::BI__builtin_ia32_gather3div2di:
10408 case X86::BI__builtin_ia32_gather3div4df:
10409 case X86::BI__builtin_ia32_gather3div4di:
10410 case X86::BI__builtin_ia32_gather3div4sf:
10411 case X86::BI__builtin_ia32_gather3div4si:
10412 case X86::BI__builtin_ia32_gather3div8sf:
10413 case X86::BI__builtin_ia32_gather3div8si:
10414 case X86::BI__builtin_ia32_gather3siv2df:
10415 case X86::BI__builtin_ia32_gather3siv2di:
10416 case X86::BI__builtin_ia32_gather3siv4df:
10417 case X86::BI__builtin_ia32_gather3siv4di:
10418 case X86::BI__builtin_ia32_gather3siv4sf:
10419 case X86::BI__builtin_ia32_gather3siv4si:
10420 case X86::BI__builtin_ia32_gather3siv8sf:
10421 case X86::BI__builtin_ia32_gather3siv8si:
10422 case X86::BI__builtin_ia32_gathersiv8df:
10423 case X86::BI__builtin_ia32_gathersiv16sf:
10424 case X86::BI__builtin_ia32_gatherdiv8df:
10425 case X86::BI__builtin_ia32_gatherdiv16sf:
10426 case X86::BI__builtin_ia32_gathersiv8di:
10427 case X86::BI__builtin_ia32_gathersiv16si:
10428 case X86::BI__builtin_ia32_gatherdiv8di:
10429 case X86::BI__builtin_ia32_gatherdiv16si: {
10430 Intrinsic::ID IID;
10431 switch (BuiltinID) {
10432 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10432)
;
10433 case X86::BI__builtin_ia32_gather3div2df:
10434 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
10435 break;
10436 case X86::BI__builtin_ia32_gather3div2di:
10437 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
10438 break;
10439 case X86::BI__builtin_ia32_gather3div4df:
10440 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
10441 break;
10442 case X86::BI__builtin_ia32_gather3div4di:
10443 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
10444 break;
10445 case X86::BI__builtin_ia32_gather3div4sf:
10446 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
10447 break;
10448 case X86::BI__builtin_ia32_gather3div4si:
10449 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
10450 break;
10451 case X86::BI__builtin_ia32_gather3div8sf:
10452 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
10453 break;
10454 case X86::BI__builtin_ia32_gather3div8si:
10455 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
10456 break;
10457 case X86::BI__builtin_ia32_gather3siv2df:
10458 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
10459 break;
10460 case X86::BI__builtin_ia32_gather3siv2di:
10461 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
10462 break;
10463 case X86::BI__builtin_ia32_gather3siv4df:
10464 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
10465 break;
10466 case X86::BI__builtin_ia32_gather3siv4di:
10467 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
10468 break;
10469 case X86::BI__builtin_ia32_gather3siv4sf:
10470 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
10471 break;
10472 case X86::BI__builtin_ia32_gather3siv4si:
10473 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
10474 break;
10475 case X86::BI__builtin_ia32_gather3siv8sf:
10476 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
10477 break;
10478 case X86::BI__builtin_ia32_gather3siv8si:
10479 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
10480 break;
10481 case X86::BI__builtin_ia32_gathersiv8df:
10482 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
10483 break;
10484 case X86::BI__builtin_ia32_gathersiv16sf:
10485 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
10486 break;
10487 case X86::BI__builtin_ia32_gatherdiv8df:
10488 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
10489 break;
10490 case X86::BI__builtin_ia32_gatherdiv16sf:
10491 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
10492 break;
10493 case X86::BI__builtin_ia32_gathersiv8di:
10494 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
10495 break;
10496 case X86::BI__builtin_ia32_gathersiv16si:
10497 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
10498 break;
10499 case X86::BI__builtin_ia32_gatherdiv8di:
10500 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
10501 break;
10502 case X86::BI__builtin_ia32_gatherdiv16si:
10503 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
10504 break;
10505 }
10506
10507 unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
10508 Ops[2]->getType()->getVectorNumElements());
10509 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
10510 Function *Intr = CGM.getIntrinsic(IID);
10511 return Builder.CreateCall(Intr, Ops);
10512 }
10513
10514 case X86::BI__builtin_ia32_scattersiv8df:
10515 case X86::BI__builtin_ia32_scattersiv16sf:
10516 case X86::BI__builtin_ia32_scatterdiv8df:
10517 case X86::BI__builtin_ia32_scatterdiv16sf:
10518 case X86::BI__builtin_ia32_scattersiv8di:
10519 case X86::BI__builtin_ia32_scattersiv16si:
10520 case X86::BI__builtin_ia32_scatterdiv8di:
10521 case X86::BI__builtin_ia32_scatterdiv16si:
10522 case X86::BI__builtin_ia32_scatterdiv2df:
10523 case X86::BI__builtin_ia32_scatterdiv2di:
10524 case X86::BI__builtin_ia32_scatterdiv4df:
10525 case X86::BI__builtin_ia32_scatterdiv4di:
10526 case X86::BI__builtin_ia32_scatterdiv4sf:
10527 case X86::BI__builtin_ia32_scatterdiv4si:
10528 case X86::BI__builtin_ia32_scatterdiv8sf:
10529 case X86::BI__builtin_ia32_scatterdiv8si:
10530 case X86::BI__builtin_ia32_scattersiv2df:
10531 case X86::BI__builtin_ia32_scattersiv2di:
10532 case X86::BI__builtin_ia32_scattersiv4df:
10533 case X86::BI__builtin_ia32_scattersiv4di:
10534 case X86::BI__builtin_ia32_scattersiv4sf:
10535 case X86::BI__builtin_ia32_scattersiv4si:
10536 case X86::BI__builtin_ia32_scattersiv8sf:
10537 case X86::BI__builtin_ia32_scattersiv8si: {
10538 Intrinsic::ID IID;
10539 switch (BuiltinID) {
10540 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10540)
;
10541 case X86::BI__builtin_ia32_scattersiv8df:
10542 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
10543 break;
10544 case X86::BI__builtin_ia32_scattersiv16sf:
10545 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
10546 break;
10547 case X86::BI__builtin_ia32_scatterdiv8df:
10548 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
10549 break;
10550 case X86::BI__builtin_ia32_scatterdiv16sf:
10551 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
10552 break;
10553 case X86::BI__builtin_ia32_scattersiv8di:
10554 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
10555 break;
10556 case X86::BI__builtin_ia32_scattersiv16si:
10557 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
10558 break;
10559 case X86::BI__builtin_ia32_scatterdiv8di:
10560 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
10561 break;
10562 case X86::BI__builtin_ia32_scatterdiv16si:
10563 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
10564 break;
10565 case X86::BI__builtin_ia32_scatterdiv2df:
10566 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
10567 break;
10568 case X86::BI__builtin_ia32_scatterdiv2di:
10569 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
10570 break;
10571 case X86::BI__builtin_ia32_scatterdiv4df:
10572 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
10573 break;
10574 case X86::BI__builtin_ia32_scatterdiv4di:
10575 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
10576 break;
10577 case X86::BI__builtin_ia32_scatterdiv4sf:
10578 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
10579 break;
10580 case X86::BI__builtin_ia32_scatterdiv4si:
10581 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
10582 break;
10583 case X86::BI__builtin_ia32_scatterdiv8sf:
10584 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
10585 break;
10586 case X86::BI__builtin_ia32_scatterdiv8si:
10587 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
10588 break;
10589 case X86::BI__builtin_ia32_scattersiv2df:
10590 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
10591 break;
10592 case X86::BI__builtin_ia32_scattersiv2di:
10593 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
10594 break;
10595 case X86::BI__builtin_ia32_scattersiv4df:
10596 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
10597 break;
10598 case X86::BI__builtin_ia32_scattersiv4di:
10599 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
10600 break;
10601 case X86::BI__builtin_ia32_scattersiv4sf:
10602 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
10603 break;
10604 case X86::BI__builtin_ia32_scattersiv4si:
10605 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
10606 break;
10607 case X86::BI__builtin_ia32_scattersiv8sf:
10608 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
10609 break;
10610 case X86::BI__builtin_ia32_scattersiv8si:
10611 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
10612 break;
10613 }
10614
10615 unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
10616 Ops[3]->getType()->getVectorNumElements());
10617 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
10618 Function *Intr = CGM.getIntrinsic(IID);
10619 return Builder.CreateCall(Intr, Ops);
10620 }
10621
10622 case X86::BI__builtin_ia32_storehps:
10623 case X86::BI__builtin_ia32_storelps: {
10624 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
10625 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
10626
10627 // cast val v2i64
10628 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
10629
10630 // extract (0, 1)
10631 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
10632 Ops[1] = Builder.CreateExtractElement(Ops[1], Index, "extract");
10633
10634 // cast pointer to i64 & store
10635 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
10636 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10637 }
10638 case X86::BI__builtin_ia32_vextractf128_pd256:
10639 case X86::BI__builtin_ia32_vextractf128_ps256:
10640 case X86::BI__builtin_ia32_vextractf128_si256:
10641 case X86::BI__builtin_ia32_extract128i256:
10642 case X86::BI__builtin_ia32_extractf64x4_mask:
10643 case X86::BI__builtin_ia32_extractf32x4_mask:
10644 case X86::BI__builtin_ia32_extracti64x4_mask:
10645 case X86::BI__builtin_ia32_extracti32x4_mask:
10646 case X86::BI__builtin_ia32_extractf32x8_mask:
10647 case X86::BI__builtin_ia32_extracti32x8_mask:
10648 case X86::BI__builtin_ia32_extractf32x4_256_mask:
10649 case X86::BI__builtin_ia32_extracti32x4_256_mask:
10650 case X86::BI__builtin_ia32_extractf64x2_256_mask:
10651 case X86::BI__builtin_ia32_extracti64x2_256_mask:
10652 case X86::BI__builtin_ia32_extractf64x2_512_mask:
10653 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
10654 llvm::Type *DstTy = ConvertType(E->getType());
10655 unsigned NumElts = DstTy->getVectorNumElements();
10656 unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
10657 unsigned SubVectors = SrcNumElts / NumElts;
10658 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10659 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")((llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10659, __PRETTY_FUNCTION__))
;
10660 Index &= SubVectors - 1; // Remove any extra bits.
10661 Index *= NumElts;
10662
10663 uint32_t Indices[16];
10664 for (unsigned i = 0; i != NumElts; ++i)
10665 Indices[i] = i + Index;
10666
10667 Value *Res = Builder.CreateShuffleVector(Ops[0],
10668 UndefValue::get(Ops[0]->getType()),
10669 makeArrayRef(Indices, NumElts),
10670 "extract");
10671
10672 if (Ops.size() == 4)
10673 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
10674
10675 return Res;
10676 }
10677 case X86::BI__builtin_ia32_vinsertf128_pd256:
10678 case X86::BI__builtin_ia32_vinsertf128_ps256:
10679 case X86::BI__builtin_ia32_vinsertf128_si256:
10680 case X86::BI__builtin_ia32_insert128i256:
10681 case X86::BI__builtin_ia32_insertf64x4:
10682 case X86::BI__builtin_ia32_insertf32x4:
10683 case X86::BI__builtin_ia32_inserti64x4:
10684 case X86::BI__builtin_ia32_inserti32x4:
10685 case X86::BI__builtin_ia32_insertf32x8:
10686 case X86::BI__builtin_ia32_inserti32x8:
10687 case X86::BI__builtin_ia32_insertf32x4_256:
10688 case X86::BI__builtin_ia32_inserti32x4_256:
10689 case X86::BI__builtin_ia32_insertf64x2_256:
10690 case X86::BI__builtin_ia32_inserti64x2_256:
10691 case X86::BI__builtin_ia32_insertf64x2_512:
10692 case X86::BI__builtin_ia32_inserti64x2_512: {
10693 unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
10694 unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
10695 unsigned SubVectors = DstNumElts / SrcNumElts;
10696 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10697 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")((llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10697, __PRETTY_FUNCTION__))
;
10698 Index &= SubVectors - 1; // Remove any extra bits.
10699 Index *= SrcNumElts;
10700
10701 uint32_t Indices[16];
10702 for (unsigned i = 0; i != DstNumElts; ++i)
10703 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
10704
10705 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
10706 UndefValue::get(Ops[1]->getType()),
10707 makeArrayRef(Indices, DstNumElts),
10708 "widen");
10709
10710 for (unsigned i = 0; i != DstNumElts; ++i) {
10711 if (i >= Index && i < (Index + SrcNumElts))
10712 Indices[i] = (i - Index) + DstNumElts;
10713 else
10714 Indices[i] = i;
10715 }
10716
10717 return Builder.CreateShuffleVector(Ops[0], Op1,
10718 makeArrayRef(Indices, DstNumElts),
10719 "insert");
10720 }
10721 case X86::BI__builtin_ia32_pmovqd512_mask:
10722 case X86::BI__builtin_ia32_pmovwb512_mask: {
10723 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10724 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
10725 }
10726 case X86::BI__builtin_ia32_pmovdb512_mask:
10727 case X86::BI__builtin_ia32_pmovdw512_mask:
10728 case X86::BI__builtin_ia32_pmovqw512_mask: {
10729 if (const auto *C = dyn_cast<Constant>(Ops[2]))
10730 if (C->isAllOnesValue())
10731 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10732
10733 Intrinsic::ID IID;
10734 switch (BuiltinID) {
10735 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10735)
;
10736 case X86::BI__builtin_ia32_pmovdb512_mask:
10737 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
10738 break;
10739 case X86::BI__builtin_ia32_pmovdw512_mask:
10740 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
10741 break;
10742 case X86::BI__builtin_ia32_pmovqw512_mask:
10743 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
10744 break;
10745 }
10746
10747 Function *Intr = CGM.getIntrinsic(IID);
10748 return Builder.CreateCall(Intr, Ops);
10749 }
10750 case X86::BI__builtin_ia32_pblendw128:
10751 case X86::BI__builtin_ia32_blendpd:
10752 case X86::BI__builtin_ia32_blendps:
10753 case X86::BI__builtin_ia32_blendpd256:
10754 case X86::BI__builtin_ia32_blendps256:
10755 case X86::BI__builtin_ia32_pblendw256:
10756 case X86::BI__builtin_ia32_pblendd128:
10757 case X86::BI__builtin_ia32_pblendd256: {
10758 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10759 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10760
10761 uint32_t Indices[16];
10762 // If there are more than 8 elements, the immediate is used twice so make
10763 // sure we handle that.
10764 for (unsigned i = 0; i != NumElts; ++i)
10765 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
10766
10767 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10768 makeArrayRef(Indices, NumElts),
10769 "blend");
10770 }
10771 case X86::BI__builtin_ia32_pshuflw:
10772 case X86::BI__builtin_ia32_pshuflw256:
10773 case X86::BI__builtin_ia32_pshuflw512: {
10774 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10775 llvm::Type *Ty = Ops[0]->getType();
10776 unsigned NumElts = Ty->getVectorNumElements();
10777
10778 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10779 Imm = (Imm & 0xff) * 0x01010101;
10780
10781 uint32_t Indices[32];
10782 for (unsigned l = 0; l != NumElts; l += 8) {
10783 for (unsigned i = 0; i != 4; ++i) {
10784 Indices[l + i] = l + (Imm & 3);
10785 Imm >>= 2;
10786 }
10787 for (unsigned i = 4; i != 8; ++i)
10788 Indices[l + i] = l + i;
10789 }
10790
10791 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10792 makeArrayRef(Indices, NumElts),
10793 "pshuflw");
10794 }
10795 case X86::BI__builtin_ia32_pshufhw:
10796 case X86::BI__builtin_ia32_pshufhw256:
10797 case X86::BI__builtin_ia32_pshufhw512: {
10798 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10799 llvm::Type *Ty = Ops[0]->getType();
10800 unsigned NumElts = Ty->getVectorNumElements();
10801
10802 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10803 Imm = (Imm & 0xff) * 0x01010101;
10804
10805 uint32_t Indices[32];
10806 for (unsigned l = 0; l != NumElts; l += 8) {
10807 for (unsigned i = 0; i != 4; ++i)
10808 Indices[l + i] = l + i;
10809 for (unsigned i = 4; i != 8; ++i) {
10810 Indices[l + i] = l + 4 + (Imm & 3);
10811 Imm >>= 2;
10812 }
10813 }
10814
10815 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10816 makeArrayRef(Indices, NumElts),
10817 "pshufhw");
10818 }
10819 case X86::BI__builtin_ia32_pshufd:
10820 case X86::BI__builtin_ia32_pshufd256:
10821 case X86::BI__builtin_ia32_pshufd512:
10822 case X86::BI__builtin_ia32_vpermilpd:
10823 case X86::BI__builtin_ia32_vpermilps:
10824 case X86::BI__builtin_ia32_vpermilpd256:
10825 case X86::BI__builtin_ia32_vpermilps256:
10826 case X86::BI__builtin_ia32_vpermilpd512:
10827 case X86::BI__builtin_ia32_vpermilps512: {
10828 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10829 llvm::Type *Ty = Ops[0]->getType();
10830 unsigned NumElts = Ty->getVectorNumElements();
10831 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10832 unsigned NumLaneElts = NumElts / NumLanes;
10833
10834 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10835 Imm = (Imm & 0xff) * 0x01010101;
10836
10837 uint32_t Indices[16];
10838 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10839 for (unsigned i = 0; i != NumLaneElts; ++i) {
10840 Indices[i + l] = (Imm % NumLaneElts) + l;
10841 Imm /= NumLaneElts;
10842 }
10843 }
10844
10845 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10846 makeArrayRef(Indices, NumElts),
10847 "permil");
10848 }
10849 case X86::BI__builtin_ia32_shufpd:
10850 case X86::BI__builtin_ia32_shufpd256:
10851 case X86::BI__builtin_ia32_shufpd512:
10852 case X86::BI__builtin_ia32_shufps:
10853 case X86::BI__builtin_ia32_shufps256:
10854 case X86::BI__builtin_ia32_shufps512: {
10855 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10856 llvm::Type *Ty = Ops[0]->getType();
10857 unsigned NumElts = Ty->getVectorNumElements();
10858 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10859 unsigned NumLaneElts = NumElts / NumLanes;
10860
10861 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10862 Imm = (Imm & 0xff) * 0x01010101;
10863
10864 uint32_t Indices[16];
10865 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10866 for (unsigned i = 0; i != NumLaneElts; ++i) {
10867 unsigned Index = Imm % NumLaneElts;
10868 Imm /= NumLaneElts;
10869 if (i >= (NumLaneElts / 2))
10870 Index += NumElts;
10871 Indices[l + i] = l + Index;
10872 }
10873 }
10874
10875 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10876 makeArrayRef(Indices, NumElts),
10877 "shufp");
10878 }
10879 case X86::BI__builtin_ia32_permdi256:
10880 case X86::BI__builtin_ia32_permdf256:
10881 case X86::BI__builtin_ia32_permdi512:
10882 case X86::BI__builtin_ia32_permdf512: {
10883 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10884 llvm::Type *Ty = Ops[0]->getType();
10885 unsigned NumElts = Ty->getVectorNumElements();
10886
10887 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
10888 uint32_t Indices[8];
10889 for (unsigned l = 0; l != NumElts; l += 4)
10890 for (unsigned i = 0; i != 4; ++i)
10891 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
10892
10893 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10894 makeArrayRef(Indices, NumElts),
10895 "perm");
10896 }
10897 case X86::BI__builtin_ia32_palignr128:
10898 case X86::BI__builtin_ia32_palignr256:
10899 case X86::BI__builtin_ia32_palignr512: {
10900 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10901
10902 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10903 assert(NumElts % 16 == 0)((NumElts % 16 == 0) ? static_cast<void> (0) : __assert_fail
("NumElts % 16 == 0", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10903, __PRETTY_FUNCTION__))
;
10904
10905 // If palignr is shifting the pair of vectors more than the size of two
10906 // lanes, emit zero.
10907 if (ShiftVal >= 32)
10908 return llvm::Constant::getNullValue(ConvertType(E->getType()));
10909
10910 // If palignr is shifting the pair of input vectors more than one lane,
10911 // but less than two lanes, convert to shifting in zeroes.
10912 if (ShiftVal > 16) {
10913 ShiftVal -= 16;
10914 Ops[1] = Ops[0];
10915 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
10916 }
10917
10918 uint32_t Indices[64];
10919 // 256-bit palignr operates on 128-bit lanes so we need to handle that
10920 for (unsigned l = 0; l != NumElts; l += 16) {
10921 for (unsigned i = 0; i != 16; ++i) {
10922 unsigned Idx = ShiftVal + i;
10923 if (Idx >= 16)
10924 Idx += NumElts - 16; // End of lane, switch operand.
10925 Indices[l + i] = Idx + l;
10926 }
10927 }
10928
10929 return Builder.CreateShuffleVector(Ops[1], Ops[0],
10930 makeArrayRef(Indices, NumElts),
10931 "palignr");
10932 }
10933 case X86::BI__builtin_ia32_alignd128:
10934 case X86::BI__builtin_ia32_alignd256:
10935 case X86::BI__builtin_ia32_alignd512:
10936 case X86::BI__builtin_ia32_alignq128:
10937 case X86::BI__builtin_ia32_alignq256:
10938 case X86::BI__builtin_ia32_alignq512: {
10939 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10940 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10941
10942 // Mask the shift amount to width of two vectors.
10943 ShiftVal &= (2 * NumElts) - 1;
10944
10945 uint32_t Indices[16];
10946 for (unsigned i = 0; i != NumElts; ++i)
10947 Indices[i] = i + ShiftVal;
10948
10949 return Builder.CreateShuffleVector(Ops[1], Ops[0],
10950 makeArrayRef(Indices, NumElts),
10951 "valign");
10952 }
10953 case X86::BI__builtin_ia32_shuf_f32x4_256:
10954 case X86::BI__builtin_ia32_shuf_f64x2_256:
10955 case X86::BI__builtin_ia32_shuf_i32x4_256:
10956 case X86::BI__builtin_ia32_shuf_i64x2_256:
10957 case X86::BI__builtin_ia32_shuf_f32x4:
10958 case X86::BI__builtin_ia32_shuf_f64x2:
10959 case X86::BI__builtin_ia32_shuf_i32x4:
10960 case X86::BI__builtin_ia32_shuf_i64x2: {
10961 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10962 llvm::Type *Ty = Ops[0]->getType();
10963 unsigned NumElts = Ty->getVectorNumElements();
10964 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
10965 unsigned NumLaneElts = NumElts / NumLanes;
10966
10967 uint32_t Indices[16];
10968 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10969 unsigned Index = (Imm % NumLanes) * NumLaneElts;
10970 Imm /= NumLanes; // Discard the bits we just used.
10971 if (l >= (NumElts / 2))
10972 Index += NumElts; // Switch to other source.
10973 for (unsigned i = 0; i != NumLaneElts; ++i) {
10974 Indices[l + i] = Index + i;
10975 }
10976 }
10977
10978 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10979 makeArrayRef(Indices, NumElts),
10980 "shuf");
10981 }
10982
10983 case X86::BI__builtin_ia32_vperm2f128_pd256:
10984 case X86::BI__builtin_ia32_vperm2f128_ps256:
10985 case X86::BI__builtin_ia32_vperm2f128_si256:
10986 case X86::BI__builtin_ia32_permti256: {
10987 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10988 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10989
10990 // This takes a very simple approach since there are two lanes and a
10991 // shuffle can have 2 inputs. So we reserve the first input for the first
10992 // lane and the second input for the second lane. This may result in
10993 // duplicate sources, but this can be dealt with in the backend.
10994
10995 Value *OutOps[2];
10996 uint32_t Indices[8];
10997 for (unsigned l = 0; l != 2; ++l) {
10998 // Determine the source for this lane.
10999 if (Imm & (1 << ((l * 4) + 3)))
11000 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
11001 else if (Imm & (1 << ((l * 4) + 1)))
11002 OutOps[l] = Ops[1];
11003 else
11004 OutOps[l] = Ops[0];
11005
11006 for (unsigned i = 0; i != NumElts/2; ++i) {
11007 // Start with ith element of the source for this lane.
11008 unsigned Idx = (l * NumElts) + i;
11009 // If bit 0 of the immediate half is set, switch to the high half of
11010 // the source.
11011 if (Imm & (1 << (l * 4)))
11012 Idx += NumElts/2;
11013 Indices[(l * (NumElts/2)) + i] = Idx;
11014 }
11015 }
11016
11017 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
11018 makeArrayRef(Indices, NumElts),
11019 "vperm");
11020 }
11021
11022 case X86::BI__builtin_ia32_pslldqi128_byteshift:
11023 case X86::BI__builtin_ia32_pslldqi256_byteshift:
11024 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
11025 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11026 llvm::Type *ResultType = Ops[0]->getType();
11027 // Builtin type is vXi64 so multiply by 8 to get bytes.
11028 unsigned NumElts = ResultType->getVectorNumElements() * 8;
11029
11030 // If pslldq is shifting the vector more than 15 bytes, emit zero.
11031 if (ShiftVal >= 16)
11032 return llvm::Constant::getNullValue(ResultType);
11033
11034 uint32_t Indices[64];
11035 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
11036 for (unsigned l = 0; l != NumElts; l += 16) {
11037 for (unsigned i = 0; i != 16; ++i) {
11038 unsigned Idx = NumElts + i - ShiftVal;
11039 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
11040 Indices[l + i] = Idx + l;
11041 }
11042 }
11043
11044 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11045 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11046 Value *Zero = llvm::Constant::getNullValue(VecTy);
11047 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
11048 makeArrayRef(Indices, NumElts),
11049 "pslldq");
11050 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
11051 }
11052 case X86::BI__builtin_ia32_psrldqi128_byteshift:
11053 case X86::BI__builtin_ia32_psrldqi256_byteshift:
11054 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
11055 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11056 llvm::Type *ResultType = Ops[0]->getType();
11057 // Builtin type is vXi64 so multiply by 8 to get bytes.
11058 unsigned NumElts = ResultType->getVectorNumElements() * 8;
11059
11060 // If psrldq is shifting the vector more than 15 bytes, emit zero.
11061 if (ShiftVal >= 16)
11062 return llvm::Constant::getNullValue(ResultType);
11063
11064 uint32_t Indices[64];
11065 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
11066 for (unsigned l = 0; l != NumElts; l += 16) {
11067 for (unsigned i = 0; i != 16; ++i) {
11068 unsigned Idx = i + ShiftVal;
11069 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
11070 Indices[l + i] = Idx + l;
11071 }
11072 }
11073
11074 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11075 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11076 Value *Zero = llvm::Constant::getNullValue(VecTy);
11077 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
11078 makeArrayRef(Indices, NumElts),
11079 "psrldq");
11080 return Builder.CreateBitCast(SV, ResultType, "cast");
11081 }
11082 case X86::BI__builtin_ia32_kshiftliqi:
11083 case X86::BI__builtin_ia32_kshiftlihi:
11084 case X86::BI__builtin_ia32_kshiftlisi:
11085 case X86::BI__builtin_ia32_kshiftlidi: {
11086 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11087 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11088
11089 if (ShiftVal >= NumElts)
11090 return llvm::Constant::getNullValue(Ops[0]->getType());
11091
11092 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11093
11094 uint32_t Indices[64];
11095 for (unsigned i = 0; i != NumElts; ++i)
11096 Indices[i] = NumElts + i - ShiftVal;
11097
11098 Value *Zero = llvm::Constant::getNullValue(In->getType());
11099 Value *SV = Builder.CreateShuffleVector(Zero, In,
11100 makeArrayRef(Indices, NumElts),
11101 "kshiftl");
11102 return Builder.CreateBitCast(SV, Ops[0]->getType());
11103 }
11104 case X86::BI__builtin_ia32_kshiftriqi:
11105 case X86::BI__builtin_ia32_kshiftrihi:
11106 case X86::BI__builtin_ia32_kshiftrisi:
11107 case X86::BI__builtin_ia32_kshiftridi: {
11108 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11109 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11110
11111 if (ShiftVal >= NumElts)
11112 return llvm::Constant::getNullValue(Ops[0]->getType());
11113
11114 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11115
11116 uint32_t Indices[64];
11117 for (unsigned i = 0; i != NumElts; ++i)
11118 Indices[i] = i + ShiftVal;
11119
11120 Value *Zero = llvm::Constant::getNullValue(In->getType());
11121 Value *SV = Builder.CreateShuffleVector(In, Zero,
11122 makeArrayRef(Indices, NumElts),
11123 "kshiftr");
11124 return Builder.CreateBitCast(SV, Ops[0]->getType());
11125 }
11126 case X86::BI__builtin_ia32_movnti:
11127 case X86::BI__builtin_ia32_movnti64:
11128 case X86::BI__builtin_ia32_movntsd:
11129 case X86::BI__builtin_ia32_movntss: {
11130 llvm::MDNode *Node = llvm::MDNode::get(
11131 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
11132
11133 Value *Ptr = Ops[0];
11134 Value *Src = Ops[1];
11135
11136 // Extract the 0'th element of the source vector.
11137 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
11138 BuiltinID == X86::BI__builtin_ia32_movntss)
11139 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
11140
11141 // Convert the type of the pointer to a pointer to the stored type.
11142 Value *BC = Builder.CreateBitCast(
11143 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
11144
11145 // Unaligned nontemporal store of the scalar value.
11146 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
11147 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
11148 SI->setAlignment(1);
11149 return SI;
11150 }
11151 // Rotate is a special case of funnel shift - 1st 2 args are the same.
11152 case X86::BI__builtin_ia32_vprotb:
11153 case X86::BI__builtin_ia32_vprotw:
11154 case X86::BI__builtin_ia32_vprotd:
11155 case X86::BI__builtin_ia32_vprotq:
11156 case X86::BI__builtin_ia32_vprotbi:
11157 case X86::BI__builtin_ia32_vprotwi:
11158 case X86::BI__builtin_ia32_vprotdi:
11159 case X86::BI__builtin_ia32_vprotqi:
11160 case X86::BI__builtin_ia32_prold128:
11161 case X86::BI__builtin_ia32_prold256:
11162 case X86::BI__builtin_ia32_prold512:
11163 case X86::BI__builtin_ia32_prolq128:
11164 case X86::BI__builtin_ia32_prolq256:
11165 case X86::BI__builtin_ia32_prolq512:
11166 case X86::BI__builtin_ia32_prolvd128:
11167 case X86::BI__builtin_ia32_prolvd256:
11168 case X86::BI__builtin_ia32_prolvd512:
11169 case X86::BI__builtin_ia32_prolvq128:
11170 case X86::BI__builtin_ia32_prolvq256:
11171 case X86::BI__builtin_ia32_prolvq512:
11172 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
11173 case X86::BI__builtin_ia32_prord128:
11174 case X86::BI__builtin_ia32_prord256:
11175 case X86::BI__builtin_ia32_prord512:
11176 case X86::BI__builtin_ia32_prorq128:
11177 case X86::BI__builtin_ia32_prorq256:
11178 case X86::BI__builtin_ia32_prorq512:
11179 case X86::BI__builtin_ia32_prorvd128:
11180 case X86::BI__builtin_ia32_prorvd256:
11181 case X86::BI__builtin_ia32_prorvd512:
11182 case X86::BI__builtin_ia32_prorvq128:
11183 case X86::BI__builtin_ia32_prorvq256:
11184 case X86::BI__builtin_ia32_prorvq512:
11185 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
11186 case X86::BI__builtin_ia32_selectb_128:
11187 case X86::BI__builtin_ia32_selectb_256:
11188 case X86::BI__builtin_ia32_selectb_512:
11189 case X86::BI__builtin_ia32_selectw_128:
11190 case X86::BI__builtin_ia32_selectw_256:
11191 case X86::BI__builtin_ia32_selectw_512:
11192 case X86::BI__builtin_ia32_selectd_128:
11193 case X86::BI__builtin_ia32_selectd_256:
11194 case X86::BI__builtin_ia32_selectd_512:
11195 case X86::BI__builtin_ia32_selectq_128:
11196 case X86::BI__builtin_ia32_selectq_256:
11197 case X86::BI__builtin_ia32_selectq_512:
11198 case X86::BI__builtin_ia32_selectps_128:
11199 case X86::BI__builtin_ia32_selectps_256:
11200 case X86::BI__builtin_ia32_selectps_512:
11201 case X86::BI__builtin_ia32_selectpd_128:
11202 case X86::BI__builtin_ia32_selectpd_256:
11203 case X86::BI__builtin_ia32_selectpd_512:
11204 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
11205 case X86::BI__builtin_ia32_selectss_128:
11206 case X86::BI__builtin_ia32_selectsd_128: {
11207 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11208 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11209 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
11210 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
11211 }
11212 case X86::BI__builtin_ia32_cmpb128_mask:
11213 case X86::BI__builtin_ia32_cmpb256_mask:
11214 case X86::BI__builtin_ia32_cmpb512_mask:
11215 case X86::BI__builtin_ia32_cmpw128_mask:
11216 case X86::BI__builtin_ia32_cmpw256_mask:
11217 case X86::BI__builtin_ia32_cmpw512_mask:
11218 case X86::BI__builtin_ia32_cmpd128_mask:
11219 case X86::BI__builtin_ia32_cmpd256_mask:
11220 case X86::BI__builtin_ia32_cmpd512_mask:
11221 case X86::BI__builtin_ia32_cmpq128_mask:
11222 case X86::BI__builtin_ia32_cmpq256_mask:
11223 case X86::BI__builtin_ia32_cmpq512_mask: {
11224 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11225 return EmitX86MaskedCompare(*this, CC, true, Ops);
11226 }
11227 case X86::BI__builtin_ia32_ucmpb128_mask:
11228 case X86::BI__builtin_ia32_ucmpb256_mask:
11229 case X86::BI__builtin_ia32_ucmpb512_mask:
11230 case X86::BI__builtin_ia32_ucmpw128_mask:
11231 case X86::BI__builtin_ia32_ucmpw256_mask:
11232 case X86::BI__builtin_ia32_ucmpw512_mask:
11233 case X86::BI__builtin_ia32_ucmpd128_mask:
11234 case X86::BI__builtin_ia32_ucmpd256_mask:
11235 case X86::BI__builtin_ia32_ucmpd512_mask:
11236 case X86::BI__builtin_ia32_ucmpq128_mask:
11237 case X86::BI__builtin_ia32_ucmpq256_mask:
11238 case X86::BI__builtin_ia32_ucmpq512_mask: {
11239 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11240 return EmitX86MaskedCompare(*this, CC, false, Ops);
11241 }
11242 case X86::BI__builtin_ia32_vpcomb:
11243 case X86::BI__builtin_ia32_vpcomw:
11244 case X86::BI__builtin_ia32_vpcomd:
11245 case X86::BI__builtin_ia32_vpcomq:
11246 return EmitX86vpcom(*this, Ops, true);
11247 case X86::BI__builtin_ia32_vpcomub:
11248 case X86::BI__builtin_ia32_vpcomuw:
11249 case X86::BI__builtin_ia32_vpcomud:
11250 case X86::BI__builtin_ia32_vpcomuq:
11251 return EmitX86vpcom(*this, Ops, false);
11252
11253 case X86::BI__builtin_ia32_kortestcqi:
11254 case X86::BI__builtin_ia32_kortestchi:
11255 case X86::BI__builtin_ia32_kortestcsi:
11256 case X86::BI__builtin_ia32_kortestcdi: {
11257 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11258 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
11259 Value *Cmp = Builder.CreateICmpEQ(Or, C);
11260 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11261 }
11262 case X86::BI__builtin_ia32_kortestzqi:
11263 case X86::BI__builtin_ia32_kortestzhi:
11264 case X86::BI__builtin_ia32_kortestzsi:
11265 case X86::BI__builtin_ia32_kortestzdi: {
11266 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11267 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
11268 Value *Cmp = Builder.CreateICmpEQ(Or, C);
11269 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11270 }
11271
11272 case X86::BI__builtin_ia32_ktestcqi:
11273 case X86::BI__builtin_ia32_ktestzqi:
11274 case X86::BI__builtin_ia32_ktestchi:
11275 case X86::BI__builtin_ia32_ktestzhi:
11276 case X86::BI__builtin_ia32_ktestcsi:
11277 case X86::BI__builtin_ia32_ktestzsi:
11278 case X86::BI__builtin_ia32_ktestcdi:
11279 case X86::BI__builtin_ia32_ktestzdi: {
11280 Intrinsic::ID IID;
11281 switch (BuiltinID) {
11282 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11282)
;
11283 case X86::BI__builtin_ia32_ktestcqi:
11284 IID = Intrinsic::x86_avx512_ktestc_b;
11285 break;
11286 case X86::BI__builtin_ia32_ktestzqi:
11287 IID = Intrinsic::x86_avx512_ktestz_b;
11288 break;
11289 case X86::BI__builtin_ia32_ktestchi:
11290 IID = Intrinsic::x86_avx512_ktestc_w;
11291 break;
11292 case X86::BI__builtin_ia32_ktestzhi:
11293 IID = Intrinsic::x86_avx512_ktestz_w;
11294 break;
11295 case X86::BI__builtin_ia32_ktestcsi:
11296 IID = Intrinsic::x86_avx512_ktestc_d;
11297 break;
11298 case X86::BI__builtin_ia32_ktestzsi:
11299 IID = Intrinsic::x86_avx512_ktestz_d;
11300 break;
11301 case X86::BI__builtin_ia32_ktestcdi:
11302 IID = Intrinsic::x86_avx512_ktestc_q;
11303 break;
11304 case X86::BI__builtin_ia32_ktestzdi:
11305 IID = Intrinsic::x86_avx512_ktestz_q;
11306 break;
11307 }
11308
11309 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11310 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11311 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11312 Function *Intr = CGM.getIntrinsic(IID);
11313 return Builder.CreateCall(Intr, {LHS, RHS});
11314 }
11315
11316 case X86::BI__builtin_ia32_kaddqi:
11317 case X86::BI__builtin_ia32_kaddhi:
11318 case X86::BI__builtin_ia32_kaddsi:
11319 case X86::BI__builtin_ia32_kadddi: {
11320 Intrinsic::ID IID;
11321 switch (BuiltinID) {
11322 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11322)
;
11323 case X86::BI__builtin_ia32_kaddqi:
11324 IID = Intrinsic::x86_avx512_kadd_b;
11325 break;
11326 case X86::BI__builtin_ia32_kaddhi:
11327 IID = Intrinsic::x86_avx512_kadd_w;
11328 break;
11329 case X86::BI__builtin_ia32_kaddsi:
11330 IID = Intrinsic::x86_avx512_kadd_d;
11331 break;
11332 case X86::BI__builtin_ia32_kadddi:
11333 IID = Intrinsic::x86_avx512_kadd_q;
11334 break;
11335 }
11336
11337 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11338 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11339 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11340 Function *Intr = CGM.getIntrinsic(IID);
11341 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
11342 return Builder.CreateBitCast(Res, Ops[0]->getType());
11343 }
11344 case X86::BI__builtin_ia32_kandqi:
11345 case X86::BI__builtin_ia32_kandhi:
11346 case X86::BI__builtin_ia32_kandsi:
11347 case X86::BI__builtin_ia32_kanddi:
11348 return EmitX86MaskLogic(*this, Instruction::And, Ops);
11349 case X86::BI__builtin_ia32_kandnqi:
11350 case X86::BI__builtin_ia32_kandnhi:
11351 case X86::BI__builtin_ia32_kandnsi:
11352 case X86::BI__builtin_ia32_kandndi:
11353 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
11354 case X86::BI__builtin_ia32_korqi:
11355 case X86::BI__builtin_ia32_korhi:
11356 case X86::BI__builtin_ia32_korsi:
11357 case X86::BI__builtin_ia32_kordi:
11358 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
11359 case X86::BI__builtin_ia32_kxnorqi:
11360 case X86::BI__builtin_ia32_kxnorhi:
11361 case X86::BI__builtin_ia32_kxnorsi:
11362 case X86::BI__builtin_ia32_kxnordi:
11363 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
11364 case X86::BI__builtin_ia32_kxorqi:
11365 case X86::BI__builtin_ia32_kxorhi:
11366 case X86::BI__builtin_ia32_kxorsi:
11367 case X86::BI__builtin_ia32_kxordi:
11368 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
11369 case X86::BI__builtin_ia32_knotqi:
11370 case X86::BI__builtin_ia32_knothi:
11371 case X86::BI__builtin_ia32_knotsi:
11372 case X86::BI__builtin_ia32_knotdi: {
11373 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11374 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11375 return Builder.CreateBitCast(Builder.CreateNot(Res),
11376 Ops[0]->getType());
11377 }
11378 case X86::BI__builtin_ia32_kmovb:
11379 case X86::BI__builtin_ia32_kmovw:
11380 case X86::BI__builtin_ia32_kmovd:
11381 case X86::BI__builtin_ia32_kmovq: {
11382 // Bitcast to vXi1 type and then back to integer. This gets the mask
11383 // register type into the IR, but might be optimized out depending on
11384 // what's around it.
11385 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11386 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11387 return Builder.CreateBitCast(Res, Ops[0]->getType());
11388 }
11389
11390 case X86::BI__builtin_ia32_kunpckdi:
11391 case X86::BI__builtin_ia32_kunpcksi:
11392 case X86::BI__builtin_ia32_kunpckhi: {
11393 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11394 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11395 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11396 uint32_t Indices[64];
11397 for (unsigned i = 0; i != NumElts; ++i)
11398 Indices[i] = i;
11399
11400 // First extract half of each vector. This gives better codegen than
11401 // doing it in a single shuffle.
11402 LHS = Builder.CreateShuffleVector(LHS, LHS,
11403 makeArrayRef(Indices, NumElts / 2));
11404 RHS = Builder.CreateShuffleVector(RHS, RHS,
11405 makeArrayRef(Indices, NumElts / 2));
11406 // Concat the vectors.
11407 // NOTE: Operands are swapped to match the intrinsic definition.
11408 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
11409 makeArrayRef(Indices, NumElts));
11410 return Builder.CreateBitCast(Res, Ops[0]->getType());
11411 }
11412
11413 case X86::BI__builtin_ia32_vplzcntd_128:
11414 case X86::BI__builtin_ia32_vplzcntd_256:
11415 case X86::BI__builtin_ia32_vplzcntd_512:
11416 case X86::BI__builtin_ia32_vplzcntq_128:
11417 case X86::BI__builtin_ia32_vplzcntq_256:
11418 case X86::BI__builtin_ia32_vplzcntq_512: {
11419 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11420 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
11421 }
11422 case X86::BI__builtin_ia32_sqrtss:
11423 case X86::BI__builtin_ia32_sqrtsd: {
11424 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11425 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11426 A = Builder.CreateCall(F, {A});
11427 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11428 }
11429 case X86::BI__builtin_ia32_sqrtsd_round_mask:
11430 case X86::BI__builtin_ia32_sqrtss_round_mask: {
11431 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11432 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11433 // otherwise keep the intrinsic.
11434 if (CC != 4) {
11435 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
11436 Intrinsic::x86_avx512_mask_sqrt_sd :
11437 Intrinsic::x86_avx512_mask_sqrt_ss;
11438 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11439 }
11440 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11441 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11442 A = Builder.CreateCall(F, A);
11443 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11444 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
11445 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11446 }
11447 case X86::BI__builtin_ia32_sqrtpd256:
11448 case X86::BI__builtin_ia32_sqrtpd:
11449 case X86::BI__builtin_ia32_sqrtps256:
11450 case X86::BI__builtin_ia32_sqrtps:
11451 case X86::BI__builtin_ia32_sqrtps512:
11452 case X86::BI__builtin_ia32_sqrtpd512: {
11453 if (Ops.size() == 2) {
11454 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11455 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11456 // otherwise keep the intrinsic.
11457 if (CC != 4) {
11458 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
11459 Intrinsic::x86_avx512_sqrt_ps_512 :
11460 Intrinsic::x86_avx512_sqrt_pd_512;
11461 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11462 }
11463 }
11464 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
11465 return Builder.CreateCall(F, Ops[0]);
11466 }
11467 case X86::BI__builtin_ia32_pabsb128:
11468 case X86::BI__builtin_ia32_pabsw128:
11469 case X86::BI__builtin_ia32_pabsd128:
11470 case X86::BI__builtin_ia32_pabsb256:
11471 case X86::BI__builtin_ia32_pabsw256:
11472 case X86::BI__builtin_ia32_pabsd256:
11473 case X86::BI__builtin_ia32_pabsq128:
11474 case X86::BI__builtin_ia32_pabsq256:
11475 case X86::BI__builtin_ia32_pabsb512:
11476 case X86::BI__builtin_ia32_pabsw512:
11477 case X86::BI__builtin_ia32_pabsd512:
11478 case X86::BI__builtin_ia32_pabsq512:
11479 return EmitX86Abs(*this, Ops);
11480
11481 case X86::BI__builtin_ia32_pmaxsb128:
11482 case X86::BI__builtin_ia32_pmaxsw128:
11483 case X86::BI__builtin_ia32_pmaxsd128:
11484 case X86::BI__builtin_ia32_pmaxsq128:
11485 case X86::BI__builtin_ia32_pmaxsb256:
11486 case X86::BI__builtin_ia32_pmaxsw256:
11487 case X86::BI__builtin_ia32_pmaxsd256:
11488 case X86::BI__builtin_ia32_pmaxsq256:
11489 case X86::BI__builtin_ia32_pmaxsb512:
11490 case X86::BI__builtin_ia32_pmaxsw512:
11491 case X86::BI__builtin_ia32_pmaxsd512:
11492 case X86::BI__builtin_ia32_pmaxsq512:
11493 return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
11494 case X86::BI__builtin_ia32_pmaxub128:
11495 case X86::BI__builtin_ia32_pmaxuw128:
11496 case X86::BI__builtin_ia32_pmaxud128:
11497 case X86::BI__builtin_ia32_pmaxuq128:
11498 case X86::BI__builtin_ia32_pmaxub256:
11499 case X86::BI__builtin_ia32_pmaxuw256:
11500 case X86::BI__builtin_ia32_pmaxud256:
11501 case X86::BI__builtin_ia32_pmaxuq256:
11502 case X86::BI__builtin_ia32_pmaxub512:
11503 case X86::BI__builtin_ia32_pmaxuw512:
11504 case X86::BI__builtin_ia32_pmaxud512:
11505 case X86::BI__builtin_ia32_pmaxuq512:
11506 return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
11507 case X86::BI__builtin_ia32_pminsb128:
11508 case X86::BI__builtin_ia32_pminsw128:
11509 case X86::BI__builtin_ia32_pminsd128:
11510 case X86::BI__builtin_ia32_pminsq128:
11511 case X86::BI__builtin_ia32_pminsb256:
11512 case X86::BI__builtin_ia32_pminsw256:
11513 case X86::BI__builtin_ia32_pminsd256:
11514 case X86::BI__builtin_ia32_pminsq256:
11515 case X86::BI__builtin_ia32_pminsb512:
11516 case X86::BI__builtin_ia32_pminsw512:
11517 case X86::BI__builtin_ia32_pminsd512:
11518 case X86::BI__builtin_ia32_pminsq512:
11519 return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
11520 case X86::BI__builtin_ia32_pminub128:
11521 case X86::BI__builtin_ia32_pminuw128:
11522 case X86::BI__builtin_ia32_pminud128:
11523 case X86::BI__builtin_ia32_pminuq128:
11524 case X86::BI__builtin_ia32_pminub256:
11525 case X86::BI__builtin_ia32_pminuw256:
11526 case X86::BI__builtin_ia32_pminud256:
11527 case X86::BI__builtin_ia32_pminuq256:
11528 case X86::BI__builtin_ia32_pminub512:
11529 case X86::BI__builtin_ia32_pminuw512:
11530 case X86::BI__builtin_ia32_pminud512:
11531 case X86::BI__builtin_ia32_pminuq512:
11532 return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
11533
11534 case X86::BI__builtin_ia32_pmuludq128:
11535 case X86::BI__builtin_ia32_pmuludq256:
11536 case X86::BI__builtin_ia32_pmuludq512:
11537 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
11538
11539 case X86::BI__builtin_ia32_pmuldq128:
11540 case X86::BI__builtin_ia32_pmuldq256:
11541 case X86::BI__builtin_ia32_pmuldq512:
11542 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
11543
11544 case X86::BI__builtin_ia32_pternlogd512_mask:
11545 case X86::BI__builtin_ia32_pternlogq512_mask:
11546 case X86::BI__builtin_ia32_pternlogd128_mask:
11547 case X86::BI__builtin_ia32_pternlogd256_mask:
11548 case X86::BI__builtin_ia32_pternlogq128_mask:
11549 case X86::BI__builtin_ia32_pternlogq256_mask:
11550 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
11551
11552 case X86::BI__builtin_ia32_pternlogd512_maskz:
11553 case X86::BI__builtin_ia32_pternlogq512_maskz:
11554 case X86::BI__builtin_ia32_pternlogd128_maskz:
11555 case X86::BI__builtin_ia32_pternlogd256_maskz:
11556 case X86::BI__builtin_ia32_pternlogq128_maskz:
11557 case X86::BI__builtin_ia32_pternlogq256_maskz:
11558 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11559
11560 case X86::BI__builtin_ia32_vpshldd128:
11561 case X86::BI__builtin_ia32_vpshldd256:
11562 case X86::BI__builtin_ia32_vpshldd512:
11563 case X86::BI__builtin_ia32_vpshldq128:
11564 case X86::BI__builtin_ia32_vpshldq256:
11565 case X86::BI__builtin_ia32_vpshldq512:
11566 case X86::BI__builtin_ia32_vpshldw128:
11567 case X86::BI__builtin_ia32_vpshldw256:
11568 case X86::BI__builtin_ia32_vpshldw512:
11569 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11570
11571 case X86::BI__builtin_ia32_vpshrdd128:
11572 case X86::BI__builtin_ia32_vpshrdd256:
11573 case X86::BI__builtin_ia32_vpshrdd512:
11574 case X86::BI__builtin_ia32_vpshrdq128:
11575 case X86::BI__builtin_ia32_vpshrdq256:
11576 case X86::BI__builtin_ia32_vpshrdq512:
11577 case X86::BI__builtin_ia32_vpshrdw128:
11578 case X86::BI__builtin_ia32_vpshrdw256:
11579 case X86::BI__builtin_ia32_vpshrdw512:
11580 // Ops 0 and 1 are swapped.
11581 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11582
11583 case X86::BI__builtin_ia32_vpshldvd128:
11584 case X86::BI__builtin_ia32_vpshldvd256:
11585 case X86::BI__builtin_ia32_vpshldvd512:
11586 case X86::BI__builtin_ia32_vpshldvq128:
11587 case X86::BI__builtin_ia32_vpshldvq256:
11588 case X86::BI__builtin_ia32_vpshldvq512:
11589 case X86::BI__builtin_ia32_vpshldvw128:
11590 case X86::BI__builtin_ia32_vpshldvw256:
11591 case X86::BI__builtin_ia32_vpshldvw512:
11592 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11593
11594 case X86::BI__builtin_ia32_vpshrdvd128:
11595 case X86::BI__builtin_ia32_vpshrdvd256:
11596 case X86::BI__builtin_ia32_vpshrdvd512:
11597 case X86::BI__builtin_ia32_vpshrdvq128:
11598 case X86::BI__builtin_ia32_vpshrdvq256:
11599 case X86::BI__builtin_ia32_vpshrdvq512:
11600 case X86::BI__builtin_ia32_vpshrdvw128:
11601 case X86::BI__builtin_ia32_vpshrdvw256:
11602 case X86::BI__builtin_ia32_vpshrdvw512:
11603 // Ops 0 and 1 are swapped.
11604 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11605
11606 // 3DNow!
11607 case X86::BI__builtin_ia32_pswapdsf:
11608 case X86::BI__builtin_ia32_pswapdsi: {
11609 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
11610 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
11611 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
11612 return Builder.CreateCall(F, Ops, "pswapd");
11613 }
11614 case X86::BI__builtin_ia32_rdrand16_step:
11615 case X86::BI__builtin_ia32_rdrand32_step:
11616 case X86::BI__builtin_ia32_rdrand64_step:
11617 case X86::BI__builtin_ia32_rdseed16_step:
11618 case X86::BI__builtin_ia32_rdseed32_step:
11619 case X86::BI__builtin_ia32_rdseed64_step: {
11620 Intrinsic::ID ID;
11621 switch (BuiltinID) {
11622 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11622)
;
11623 case X86::BI__builtin_ia32_rdrand16_step:
11624 ID = Intrinsic::x86_rdrand_16;
11625 break;
11626 case X86::BI__builtin_ia32_rdrand32_step:
11627 ID = Intrinsic::x86_rdrand_32;
11628 break;
11629 case X86::BI__builtin_ia32_rdrand64_step:
11630 ID = Intrinsic::x86_rdrand_64;
11631 break;
11632 case X86::BI__builtin_ia32_rdseed16_step:
11633 ID = Intrinsic::x86_rdseed_16;
11634 break;
11635 case X86::BI__builtin_ia32_rdseed32_step:
11636 ID = Intrinsic::x86_rdseed_32;
11637 break;
11638 case X86::BI__builtin_ia32_rdseed64_step:
11639 ID = Intrinsic::x86_rdseed_64;
11640 break;
11641 }
11642
11643 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
11644 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
11645 Ops[0]);
11646 return Builder.CreateExtractValue(Call, 1);
11647 }
11648 case X86::BI__builtin_ia32_addcarryx_u32:
11649 case X86::BI__builtin_ia32_addcarryx_u64:
11650 case X86::BI__builtin_ia32_subborrow_u32:
11651 case X86::BI__builtin_ia32_subborrow_u64: {
11652 Intrinsic::ID IID;
11653 switch (BuiltinID) {
11654 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11654)
;
11655 case X86::BI__builtin_ia32_addcarryx_u32:
11656 IID = Intrinsic::x86_addcarry_32;
11657 break;
11658 case X86::BI__builtin_ia32_addcarryx_u64:
11659 IID = Intrinsic::x86_addcarry_64;
11660 break;
11661 case X86::BI__builtin_ia32_subborrow_u32:
11662 IID = Intrinsic::x86_subborrow_32;
11663 break;
11664 case X86::BI__builtin_ia32_subborrow_u64:
11665 IID = Intrinsic::x86_subborrow_64;
11666 break;
11667 }
11668
11669 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
11670 { Ops[0], Ops[1], Ops[2] });
11671 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11672 Ops[3]);
11673 return Builder.CreateExtractValue(Call, 0);
11674 }
11675
11676 case X86::BI__builtin_ia32_fpclassps128_mask:
11677 case X86::BI__builtin_ia32_fpclassps256_mask:
11678 case X86::BI__builtin_ia32_fpclassps512_mask:
11679 case X86::BI__builtin_ia32_fpclasspd128_mask:
11680 case X86::BI__builtin_ia32_fpclasspd256_mask:
11681 case X86::BI__builtin_ia32_fpclasspd512_mask: {
11682 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11683 Value *MaskIn = Ops[2];
11684 Ops.erase(&Ops[2]);
11685
11686 Intrinsic::ID ID;
11687 switch (BuiltinID) {
11688 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11688)
;
11689 case X86::BI__builtin_ia32_fpclassps128_mask:
11690 ID = Intrinsic::x86_avx512_fpclass_ps_128;
11691 break;
11692 case X86::BI__builtin_ia32_fpclassps256_mask:
11693 ID = Intrinsic::x86_avx512_fpclass_ps_256;
11694 break;
11695 case X86::BI__builtin_ia32_fpclassps512_mask:
11696 ID = Intrinsic::x86_avx512_fpclass_ps_512;
11697 break;
11698 case X86::BI__builtin_ia32_fpclasspd128_mask:
11699 ID = Intrinsic::x86_avx512_fpclass_pd_128;
11700 break;
11701 case X86::BI__builtin_ia32_fpclasspd256_mask:
11702 ID = Intrinsic::x86_avx512_fpclass_pd_256;
11703 break;
11704 case X86::BI__builtin_ia32_fpclasspd512_mask:
11705 ID = Intrinsic::x86_avx512_fpclass_pd_512;
11706 break;
11707 }
11708
11709 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11710 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
11711 }
11712
11713 case X86::BI__builtin_ia32_vp2intersect_q_512:
11714 case X86::BI__builtin_ia32_vp2intersect_q_256:
11715 case X86::BI__builtin_ia32_vp2intersect_q_128:
11716 case X86::BI__builtin_ia32_vp2intersect_d_512:
11717 case X86::BI__builtin_ia32_vp2intersect_d_256:
11718 case X86::BI__builtin_ia32_vp2intersect_d_128: {
11719 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11720 Intrinsic::ID ID;
11721
11722 switch (BuiltinID) {
11723 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11723)
;
11724 case X86::BI__builtin_ia32_vp2intersect_q_512:
11725 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
11726 break;
11727 case X86::BI__builtin_ia32_vp2intersect_q_256:
11728 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
11729 break;
11730 case X86::BI__builtin_ia32_vp2intersect_q_128:
11731 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
11732 break;
11733 case X86::BI__builtin_ia32_vp2intersect_d_512:
11734 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
11735 break;
11736 case X86::BI__builtin_ia32_vp2intersect_d_256:
11737 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
11738 break;
11739 case X86::BI__builtin_ia32_vp2intersect_d_128:
11740 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
11741 break;
11742 }
11743
11744 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
11745 Value *Result = Builder.CreateExtractValue(Call, 0);
11746 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11747 Value *Store = Builder.CreateDefaultAlignedStore(Result, Ops[2]);
Value stored to 'Store' during its initialization is never read
11748
11749 Result = Builder.CreateExtractValue(Call, 1);
11750 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
11751 Store = Builder.CreateDefaultAlignedStore(Result, Ops[3]);
11752 return Store;
11753 }
11754
11755 case X86::BI__builtin_ia32_vpmultishiftqb128:
11756 case X86::BI__builtin_ia32_vpmultishiftqb256:
11757 case X86::BI__builtin_ia32_vpmultishiftqb512: {
11758 Intrinsic::ID ID;
11759 switch (BuiltinID) {
11760 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11760)
;
11761 case X86::BI__builtin_ia32_vpmultishiftqb128:
11762 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
11763 break;
11764 case X86::BI__builtin_ia32_vpmultishiftqb256:
11765 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
11766 break;
11767 case X86::BI__builtin_ia32_vpmultishiftqb512:
11768 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
11769 break;
11770 }
11771
11772 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11773 }
11774
11775 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11776 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11777 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
11778 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11779 Value *MaskIn = Ops[2];
11780 Ops.erase(&Ops[2]);
11781
11782 Intrinsic::ID ID;
11783 switch (BuiltinID) {
11784 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11784)
;
11785 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11786 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
11787 break;
11788 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11789 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
11790 break;
11791 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
11792 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
11793 break;
11794 }
11795
11796 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11797 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
11798 }
11799
11800 // packed comparison intrinsics
11801 case X86::BI__builtin_ia32_cmpeqps:
11802 case X86::BI__builtin_ia32_cmpeqpd:
11803 return getVectorFCmpIR(CmpInst::FCMP_OEQ);
11804 case X86::BI__builtin_ia32_cmpltps:
11805 case X86::BI__builtin_ia32_cmpltpd:
11806 return getVectorFCmpIR(CmpInst::FCMP_OLT);
11807 case X86::BI__builtin_ia32_cmpleps:
11808 case X86::BI__builtin_ia32_cmplepd:
11809 return getVectorFCmpIR(CmpInst::FCMP_OLE);
11810 case X86::BI__builtin_ia32_cmpunordps:
11811 case X86::BI__builtin_ia32_cmpunordpd:
11812 return getVectorFCmpIR(CmpInst::FCMP_UNO);
11813 case X86::BI__builtin_ia32_cmpneqps:
11814 case X86::BI__builtin_ia32_cmpneqpd:
11815 return getVectorFCmpIR(CmpInst::FCMP_UNE);
11816 case X86::BI__builtin_ia32_cmpnltps:
11817 case X86::BI__builtin_ia32_cmpnltpd:
11818 return getVectorFCmpIR(CmpInst::FCMP_UGE);
11819 case X86::BI__builtin_ia32_cmpnleps:
11820 case X86::BI__builtin_ia32_cmpnlepd:
11821 return getVectorFCmpIR(CmpInst::FCMP_UGT);
11822 case X86::BI__builtin_ia32_cmpordps:
11823 case X86::BI__builtin_ia32_cmpordpd:
11824 return getVectorFCmpIR(CmpInst::FCMP_ORD);
11825 case X86::BI__builtin_ia32_cmpps:
11826 case X86::BI__builtin_ia32_cmpps256:
11827 case X86::BI__builtin_ia32_cmppd:
11828 case X86::BI__builtin_ia32_cmppd256:
11829 case X86::BI__builtin_ia32_cmpps128_mask:
11830 case X86::BI__builtin_ia32_cmpps256_mask:
11831 case X86::BI__builtin_ia32_cmpps512_mask:
11832 case X86::BI__builtin_ia32_cmppd128_mask:
11833 case X86::BI__builtin_ia32_cmppd256_mask:
11834 case X86::BI__builtin_ia32_cmppd512_mask: {
11835 // Lowering vector comparisons to fcmp instructions, while
11836 // ignoring signalling behaviour requested
11837 // ignoring rounding mode requested
11838 // This is is only possible as long as FENV_ACCESS is not implemented.
11839 // See also: https://reviews.llvm.org/D45616
11840
11841 // The third argument is the comparison condition, and integer in the
11842 // range [0, 31]
11843 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
11844
11845 // Lowering to IR fcmp instruction.
11846 // Ignoring requested signaling behaviour,
11847 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
11848 FCmpInst::Predicate Pred;
11849 switch (CC) {
11850 case 0x00: Pred = FCmpInst::FCMP_OEQ; break;
11851 case 0x01: Pred = FCmpInst::FCMP_OLT; break;
11852 case 0x02: Pred = FCmpInst::FCMP_OLE; break;
11853 case 0x03: Pred = FCmpInst::FCMP_UNO; break;
11854 case 0x04: Pred = FCmpInst::FCMP_UNE; break;
11855 case 0x05: Pred = FCmpInst::FCMP_UGE; break;
11856 case 0x06: Pred = FCmpInst::FCMP_UGT; break;
11857 case 0x07: Pred = FCmpInst::FCMP_ORD; break;
11858 case 0x08: Pred = FCmpInst::FCMP_UEQ; break;
11859 case 0x09: Pred = FCmpInst::FCMP_ULT; break;
11860 case 0x0a: Pred = FCmpInst::FCMP_ULE; break;
11861 case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
11862 case 0x0c: Pred = FCmpInst::FCMP_ONE; break;
11863 case 0x0d: Pred = FCmpInst::FCMP_OGE; break;
11864 case 0x0e: Pred = FCmpInst::FCMP_OGT; break;
11865 case 0x0f: Pred = FCmpInst::FCMP_TRUE; break;
11866 case 0x10: Pred = FCmpInst::FCMP_OEQ; break;
11867 case 0x11: Pred = FCmpInst::FCMP_OLT; break;
11868 case 0x12: Pred = FCmpInst::FCMP_OLE; break;
11869 case 0x13: Pred = FCmpInst::FCMP_UNO; break;
11870 case 0x14: Pred = FCmpInst::FCMP_UNE; break;
11871 case 0x15: Pred = FCmpInst::FCMP_UGE; break;
11872 case 0x16: Pred = FCmpInst::FCMP_UGT; break;
11873 case 0x17: Pred = FCmpInst::FCMP_ORD; break;
11874 case 0x18: Pred = FCmpInst::FCMP_UEQ; break;
11875 case 0x19: Pred = FCmpInst::FCMP_ULT; break;
11876 case 0x1a: Pred = FCmpInst::FCMP_ULE; break;
11877 case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
11878 case 0x1c: Pred = FCmpInst::FCMP_ONE; break;
11879 case 0x1d: Pred = FCmpInst::FCMP_OGE; break;
11880 case 0x1e: Pred = FCmpInst::FCMP_OGT; break;
11881 case 0x1f: Pred = FCmpInst::FCMP_TRUE; break;
11882 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11882)
;
11883 }
11884
11885 // Builtins without the _mask suffix return a vector of integers
11886 // of the same width as the input vectors
11887 switch (BuiltinID) {
11888 case X86::BI__builtin_ia32_cmpps512_mask:
11889 case X86::BI__builtin_ia32_cmppd512_mask:
11890 case X86::BI__builtin_ia32_cmpps128_mask:
11891 case X86::BI__builtin_ia32_cmpps256_mask:
11892 case X86::BI__builtin_ia32_cmppd128_mask:
11893 case X86::BI__builtin_ia32_cmppd256_mask: {
11894 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11895 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11896 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
11897 }
11898 default:
11899 return getVectorFCmpIR(Pred);
11900 }
11901 }
11902
11903 // SSE scalar comparison intrinsics
11904 case X86::BI__builtin_ia32_cmpeqss:
11905 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
11906 case X86::BI__builtin_ia32_cmpltss:
11907 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
11908 case X86::BI__builtin_ia32_cmpless:
11909 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
11910 case X86::BI__builtin_ia32_cmpunordss:
11911 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
11912 case X86::BI__builtin_ia32_cmpneqss:
11913 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
11914 case X86::BI__builtin_ia32_cmpnltss:
11915 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
11916 case X86::BI__builtin_ia32_cmpnless:
11917 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
11918 case X86::BI__builtin_ia32_cmpordss:
11919 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
11920 case X86::BI__builtin_ia32_cmpeqsd:
11921 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
11922 case X86::BI__builtin_ia32_cmpltsd:
11923 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
11924 case X86::BI__builtin_ia32_cmplesd:
11925 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
11926 case X86::BI__builtin_ia32_cmpunordsd:
11927 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
11928 case X86::BI__builtin_ia32_cmpneqsd:
11929 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
11930 case X86::BI__builtin_ia32_cmpnltsd:
11931 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
11932 case X86::BI__builtin_ia32_cmpnlesd:
11933 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
11934 case X86::BI__builtin_ia32_cmpordsd:
11935 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
11936
11937// AVX512 bf16 intrinsics
11938 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
11939 Ops[2] = getMaskVecValue(*this, Ops[2],
11940 Ops[0]->getType()->getVectorNumElements());
11941 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
11942 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11943 }
11944
11945 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
11946 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
11947 Intrinsic::ID IID;
11948 switch (BuiltinID) {
11949 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11949)
;
11950 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
11951 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
11952 break;
11953 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
11954 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
11955 break;
11956 }
11957 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
11958 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
11959 }
11960
11961 case X86::BI__emul:
11962 case X86::BI__emulu: {
11963 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
11964 bool isSigned = (BuiltinID == X86::BI__emul);
11965 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
11966 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
11967 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
11968 }
11969 case X86::BI__mulh:
11970 case X86::BI__umulh:
11971 case X86::BI_mul128:
11972 case X86::BI_umul128: {
11973 llvm::Type *ResType = ConvertType(E->getType());
11974 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11975
11976 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
11977 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
11978 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
11979
11980 Value *MulResult, *HigherBits;
11981 if (IsSigned) {
11982 MulResult = Builder.CreateNSWMul(LHS, RHS);
11983 HigherBits = Builder.CreateAShr(MulResult, 64);
11984 } else {
11985 MulResult = Builder.CreateNUWMul(LHS, RHS);
11986 HigherBits = Builder.CreateLShr(MulResult, 64);
11987 }
11988 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11989
11990 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
11991 return HigherBits;
11992
11993 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
11994 Builder.CreateStore(HigherBits, HighBitsAddress);
11995 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
11996 }
11997
11998 case X86::BI__faststorefence: {
11999 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12000 llvm::SyncScope::System);
12001 }
12002 case X86::BI__shiftleft128:
12003 case X86::BI__shiftright128: {
12004 // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
12005 // llvm::Function *F = CGM.getIntrinsic(
12006 // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
12007 // Int64Ty);
12008 // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12009 // return Builder.CreateCall(F, Ops);
12010 llvm::Type *Int128Ty = Builder.getInt128Ty();
12011 Value *HighPart128 =
12012 Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
12013 Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
12014 Value *Val = Builder.CreateOr(HighPart128, LowPart128);
12015 Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
12016 llvm::ConstantInt::get(Int128Ty, 0x3f));
12017 Value *Res;
12018 if (BuiltinID == X86::BI__shiftleft128)
12019 Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
12020 else
12021 Res = Builder.CreateLShr(Val, Amt);
12022 return Builder.CreateTrunc(Res, Int64Ty);
12023 }
12024 case X86::BI_ReadWriteBarrier:
12025 case X86::BI_ReadBarrier:
12026 case X86::BI_WriteBarrier: {
12027 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
12028 llvm::SyncScope::SingleThread);
12029 }
12030 case X86::BI_BitScanForward:
12031 case X86::BI_BitScanForward64:
12032 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
12033 case X86::BI_BitScanReverse:
12034 case X86::BI_BitScanReverse64:
12035 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
12036
12037 case X86::BI_InterlockedAnd64:
12038 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
12039 case X86::BI_InterlockedExchange64:
12040 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
12041 case X86::BI_InterlockedExchangeAdd64:
12042 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
12043 case X86::BI_InterlockedExchangeSub64:
12044 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
12045 case X86::BI_InterlockedOr64:
12046 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
12047 case X86::BI_InterlockedXor64:
12048 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
12049 case X86::BI_InterlockedDecrement64:
12050 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
12051 case X86::BI_InterlockedIncrement64:
12052 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
12053 case X86::BI_InterlockedCompareExchange128: {
12054 // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
12055 // instead it takes pointers to 64bit ints for Destination and
12056 // ComparandResult, and exchange is taken as two 64bit ints (high & low).
12057 // The previous value is written to ComparandResult, and success is
12058 // returned.
12059
12060 llvm::Type *Int128Ty = Builder.getInt128Ty();
12061 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
12062
12063 Value *Destination =
12064 Builder.CreateBitCast(Ops[0], Int128PtrTy);
12065 Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
12066 Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
12067 Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
12068 getContext().toCharUnitsFromBits(128));
12069
12070 Value *Exchange = Builder.CreateOr(
12071 Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
12072 ExchangeLow128);
12073
12074 Value *Comparand = Builder.CreateLoad(ComparandResult);
12075
12076 AtomicCmpXchgInst *CXI =
12077 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
12078 AtomicOrdering::SequentiallyConsistent,
12079 AtomicOrdering::SequentiallyConsistent);
12080 CXI->setVolatile(true);
12081
12082 // Write the result back to the inout pointer.
12083 Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
12084
12085 // Get the success boolean and zero extend it to i8.
12086 Value *Success = Builder.CreateExtractValue(CXI, 1);
12087 return Builder.CreateZExt(Success, ConvertType(E->getType()));
12088 }
12089
12090 case X86::BI_AddressOfReturnAddress: {
12091 Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
12092 return Builder.CreateCall(F);
12093 }
12094 case X86::BI__stosb: {
12095 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
12096 // instruction, but it will create a memset that won't be optimized away.
12097 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
12098 }
12099 case X86::BI__ud2:
12100 // llvm.trap makes a ud2a instruction on x86.
12101 return EmitTrapCall(Intrinsic::trap);
12102 case X86::BI__int2c: {
12103 // This syscall signals a driver assertion failure in x86 NT kernels.
12104 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
12105 llvm::InlineAsm *IA =
12106 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true);
12107 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
12108 getLLVMContext(), llvm::AttributeList::FunctionIndex,
12109 llvm::Attribute::NoReturn);
12110 llvm::CallInst *CI = Builder.CreateCall(IA);
12111 CI->setAttributes(NoReturnAttr);
12112 return CI;
12113 }
12114 case X86::BI__readfsbyte:
12115 case X86::BI__readfsword:
12116 case X86::BI__readfsdword:
12117 case X86::BI__readfsqword: {
12118 llvm::Type *IntTy = ConvertType(E->getType());
12119 Value *Ptr =
12120 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
12121 LoadInst *Load = Builder.CreateAlignedLoad(
12122 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12123 Load->setVolatile(true);
12124 return Load;
12125 }
12126 case X86::BI__readgsbyte:
12127 case X86::BI__readgsword:
12128 case X86::BI__readgsdword:
12129 case X86::BI__readgsqword: {
12130 llvm::Type *IntTy = ConvertType(E->getType());
12131 Value *Ptr =
12132 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
12133 LoadInst *Load = Builder.CreateAlignedLoad(
12134 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12135 Load->setVolatile(true);
12136 return Load;
12137 }
12138 case X86::BI__builtin_ia32_paddsb512:
12139 case X86::BI__builtin_ia32_paddsw512:
12140 case X86::BI__builtin_ia32_paddsb256:
12141 case X86::BI__builtin_ia32_paddsw256:
12142 case X86::BI__builtin_ia32_paddsb128:
12143 case X86::BI__builtin_ia32_paddsw128:
12144 return EmitX86AddSubSatExpr(*this, Ops, true, true);
12145 case X86::BI__builtin_ia32_paddusb512:
12146 case X86::BI__builtin_ia32_paddusw512:
12147 case X86::BI__builtin_ia32_paddusb256:
12148 case X86::BI__builtin_ia32_paddusw256:
12149 case X86::BI__builtin_ia32_paddusb128:
12150 case X86::BI__builtin_ia32_paddusw128:
12151 return EmitX86AddSubSatExpr(*this, Ops, false, true);
12152 case X86::BI__builtin_ia32_psubsb512:
12153 case X86::BI__builtin_ia32_psubsw512:
12154 case X86::BI__builtin_ia32_psubsb256:
12155 case X86::BI__builtin_ia32_psubsw256:
12156 case X86::BI__builtin_ia32_psubsb128:
12157 case X86::BI__builtin_ia32_psubsw128:
12158 return EmitX86AddSubSatExpr(*this, Ops, true, false);
12159 case X86::BI__builtin_ia32_psubusb512:
12160 case X86::BI__builtin_ia32_psubusw512:
12161 case X86::BI__builtin_ia32_psubusb256:
12162 case X86::BI__builtin_ia32_psubusw256:
12163 case X86::BI__builtin_ia32_psubusb128:
12164 case X86::BI__builtin_ia32_psubusw128:
12165 return EmitX86AddSubSatExpr(*this, Ops, false, false);
12166 }
12167}
12168
12169Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
12170 const CallExpr *E) {
12171 SmallVector<Value*, 4> Ops;
12172
12173 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
12174 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12175
12176 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12177
12178 switch (BuiltinID) {
12179 default: return nullptr;
12180
12181 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
12182 // call __builtin_readcyclecounter.
12183 case PPC::BI__builtin_ppc_get_timebase:
12184 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
12185
12186 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
12187 case PPC::BI__builtin_altivec_lvx:
12188 case PPC::BI__builtin_altivec_lvxl:
12189 case PPC::BI__builtin_altivec_lvebx:
12190 case PPC::BI__builtin_altivec_lvehx:
12191 case PPC::BI__builtin_altivec_lvewx:
12192 case PPC::BI__builtin_altivec_lvsl:
12193 case PPC::BI__builtin_altivec_lvsr:
12194 case PPC::BI__builtin_vsx_lxvd2x:
12195 case PPC::BI__builtin_vsx_lxvw4x:
12196 case PPC::BI__builtin_vsx_lxvd2x_be:
12197 case PPC::BI__builtin_vsx_lxvw4x_be:
12198 case PPC::BI__builtin_vsx_lxvl:
12199 case PPC::BI__builtin_vsx_lxvll:
12200 {
12201 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
12202 BuiltinID == PPC::BI__builtin_vsx_lxvll){
12203 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
12204 }else {
12205 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12206 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
12207 Ops.pop_back();
12208 }
12209
12210 switch (BuiltinID) {
12211 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12211)
;
12212 case PPC::BI__builtin_altivec_lvx:
12213 ID = Intrinsic::ppc_altivec_lvx;
12214 break;
12215 case PPC::BI__builtin_altivec_lvxl:
12216 ID = Intrinsic::ppc_altivec_lvxl;
12217 break;
12218 case PPC::BI__builtin_altivec_lvebx:
12219 ID = Intrinsic::ppc_altivec_lvebx;
12220 break;
12221 case PPC::BI__builtin_altivec_lvehx:
12222 ID = Intrinsic::ppc_altivec_lvehx;
12223 break;
12224 case PPC::BI__builtin_altivec_lvewx:
12225 ID = Intrinsic::ppc_altivec_lvewx;
12226 break;
12227 case PPC::BI__builtin_altivec_lvsl:
12228 ID = Intrinsic::ppc_altivec_lvsl;
12229 break;
12230 case PPC::BI__builtin_altivec_lvsr:
12231 ID = Intrinsic::ppc_altivec_lvsr;
12232 break;
12233 case PPC::BI__builtin_vsx_lxvd2x:
12234 ID = Intrinsic::ppc_vsx_lxvd2x;
12235 break;
12236 case PPC::BI__builtin_vsx_lxvw4x:
12237 ID = Intrinsic::ppc_vsx_lxvw4x;
12238 break;
12239 case PPC::BI__builtin_vsx_lxvd2x_be:
12240 ID = Intrinsic::ppc_vsx_lxvd2x_be;
12241 break;
12242 case PPC::BI__builtin_vsx_lxvw4x_be:
12243 ID = Intrinsic::ppc_vsx_lxvw4x_be;
12244 break;
12245 case PPC::BI__builtin_vsx_lxvl:
12246 ID = Intrinsic::ppc_vsx_lxvl;
12247 break;
12248 case PPC::BI__builtin_vsx_lxvll:
12249 ID = Intrinsic::ppc_vsx_lxvll;
12250 break;
12251 }
12252 llvm::Function *F = CGM.getIntrinsic(ID);
12253 return Builder.CreateCall(F, Ops, "");
12254 }
12255
12256 // vec_st, vec_xst_be
12257 case PPC::BI__builtin_altivec_stvx:
12258 case PPC::BI__builtin_altivec_stvxl:
12259 case PPC::BI__builtin_altivec_stvebx:
12260 case PPC::BI__builtin_altivec_stvehx:
12261 case PPC::BI__builtin_altivec_stvewx:
12262 case PPC::BI__builtin_vsx_stxvd2x:
12263 case PPC::BI__builtin_vsx_stxvw4x:
12264 case PPC::BI__builtin_vsx_stxvd2x_be:
12265 case PPC::BI__builtin_vsx_stxvw4x_be:
12266 case PPC::BI__builtin_vsx_stxvl:
12267 case PPC::BI__builtin_vsx_stxvll:
12268 {
12269 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
12270 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
12271 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12272 }else {
12273 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
12274 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
12275 Ops.pop_back();
12276 }
12277
12278 switch (BuiltinID) {
12279 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12279)
;
12280 case PPC::BI__builtin_altivec_stvx:
12281 ID = Intrinsic::ppc_altivec_stvx;
12282 break;
12283 case PPC::BI__builtin_altivec_stvxl:
12284 ID = Intrinsic::ppc_altivec_stvxl;
12285 break;
12286 case PPC::BI__builtin_altivec_stvebx:
12287 ID = Intrinsic::ppc_altivec_stvebx;
12288 break;
12289 case PPC::BI__builtin_altivec_stvehx:
12290 ID = Intrinsic::ppc_altivec_stvehx;
12291 break;
12292 case PPC::BI__builtin_altivec_stvewx:
12293 ID = Intrinsic::ppc_altivec_stvewx;
12294 break;
12295 case PPC::BI__builtin_vsx_stxvd2x:
12296 ID = Intrinsic::ppc_vsx_stxvd2x;
12297 break;
12298 case PPC::BI__builtin_vsx_stxvw4x:
12299 ID = Intrinsic::ppc_vsx_stxvw4x;
12300 break;
12301 case PPC::BI__builtin_vsx_stxvd2x_be:
12302 ID = Intrinsic::ppc_vsx_stxvd2x_be;
12303 break;
12304 case PPC::BI__builtin_vsx_stxvw4x_be:
12305 ID = Intrinsic::ppc_vsx_stxvw4x_be;
12306 break;
12307 case PPC::BI__builtin_vsx_stxvl:
12308 ID = Intrinsic::ppc_vsx_stxvl;
12309 break;
12310 case PPC::BI__builtin_vsx_stxvll:
12311 ID = Intrinsic::ppc_vsx_stxvll;
12312 break;
12313 }
12314 llvm::Function *F = CGM.getIntrinsic(ID);
12315 return Builder.CreateCall(F, Ops, "");
12316 }
12317 // Square root
12318 case PPC::BI__builtin_vsx_xvsqrtsp:
12319 case PPC::BI__builtin_vsx_xvsqrtdp: {
12320 llvm::Type *ResultType = ConvertType(E->getType());
12321 Value *X = EmitScalarExpr(E->getArg(0));
12322 ID = Intrinsic::sqrt;
12323 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12324 return Builder.CreateCall(F, X);
12325 }
12326 // Count leading zeros
12327 case PPC::BI__builtin_altivec_vclzb:
12328 case PPC::BI__builtin_altivec_vclzh:
12329 case PPC::BI__builtin_altivec_vclzw:
12330 case PPC::BI__builtin_altivec_vclzd: {
12331 llvm::Type *ResultType = ConvertType(E->getType());
12332 Value *X = EmitScalarExpr(E->getArg(0));
12333 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12334 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12335 return Builder.CreateCall(F, {X, Undef});
12336 }
12337 case PPC::BI__builtin_altivec_vctzb:
12338 case PPC::BI__builtin_altivec_vctzh:
12339 case PPC::BI__builtin_altivec_vctzw:
12340 case PPC::BI__builtin_altivec_vctzd: {
12341 llvm::Type *ResultType = ConvertType(E->getType());
12342 Value *X = EmitScalarExpr(E->getArg(0));
12343 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12344 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12345 return Builder.CreateCall(F, {X, Undef});
12346 }
12347 case PPC::BI__builtin_altivec_vpopcntb:
12348 case PPC::BI__builtin_altivec_vpopcnth:
12349 case PPC::BI__builtin_altivec_vpopcntw:
12350 case PPC::BI__builtin_altivec_vpopcntd: {
12351 llvm::Type *ResultType = ConvertType(E->getType());
12352 Value *X = EmitScalarExpr(E->getArg(0));
12353 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12354 return Builder.CreateCall(F, X);
12355 }
12356 // Copy sign
12357 case PPC::BI__builtin_vsx_xvcpsgnsp:
12358 case PPC::BI__builtin_vsx_xvcpsgndp: {
12359 llvm::Type *ResultType = ConvertType(E->getType());
12360 Value *X = EmitScalarExpr(E->getArg(0));
12361 Value *Y = EmitScalarExpr(E->getArg(1));
12362 ID = Intrinsic::copysign;
12363 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12364 return Builder.CreateCall(F, {X, Y});
12365 }
12366 // Rounding/truncation
12367 case PPC::BI__builtin_vsx_xvrspip:
12368 case PPC::BI__builtin_vsx_xvrdpip:
12369 case PPC::BI__builtin_vsx_xvrdpim:
12370 case PPC::BI__builtin_vsx_xvrspim:
12371 case PPC::BI__builtin_vsx_xvrdpi:
12372 case PPC::BI__builtin_vsx_xvrspi:
12373 case PPC::BI__builtin_vsx_xvrdpic:
12374 case PPC::BI__builtin_vsx_xvrspic:
12375 case PPC::BI__builtin_vsx_xvrdpiz:
12376 case PPC::BI__builtin_vsx_xvrspiz: {
12377 llvm::Type *ResultType = ConvertType(E->getType());
12378 Value *X = EmitScalarExpr(E->getArg(0));
12379 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
12380 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
12381 ID = Intrinsic::floor;
12382 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
12383 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
12384 ID = Intrinsic::round;
12385 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
12386 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
12387 ID = Intrinsic::nearbyint;
12388 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
12389 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
12390 ID = Intrinsic::ceil;
12391 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
12392 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
12393 ID = Intrinsic::trunc;
12394 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12395 return Builder.CreateCall(F, X);
12396 }
12397
12398 // Absolute value
12399 case PPC::BI__builtin_vsx_xvabsdp:
12400 case PPC::BI__builtin_vsx_xvabssp: {
12401 llvm::Type *ResultType = ConvertType(E->getType());
12402 Value *X = EmitScalarExpr(E->getArg(0));
12403 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12404 return Builder.CreateCall(F, X);
12405 }
12406
12407 // FMA variations
12408 case PPC::BI__builtin_vsx_xvmaddadp:
12409 case PPC::BI__builtin_vsx_xvmaddasp:
12410 case PPC::BI__builtin_vsx_xvnmaddadp:
12411 case PPC::BI__builtin_vsx_xvnmaddasp:
12412 case PPC::BI__builtin_vsx_xvmsubadp:
12413 case PPC::BI__builtin_vsx_xvmsubasp:
12414 case PPC::BI__builtin_vsx_xvnmsubadp:
12415 case PPC::BI__builtin_vsx_xvnmsubasp: {
12416 llvm::Type *ResultType = ConvertType(E->getType());
12417 Value *X = EmitScalarExpr(E->getArg(0));
12418 Value *Y = EmitScalarExpr(E->getArg(1));
12419 Value *Z = EmitScalarExpr(E->getArg(2));
12420 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12421 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12422 switch (BuiltinID) {
12423 case PPC::BI__builtin_vsx_xvmaddadp:
12424 case PPC::BI__builtin_vsx_xvmaddasp:
12425 return Builder.CreateCall(F, {X, Y, Z});
12426 case PPC::BI__builtin_vsx_xvnmaddadp:
12427 case PPC::BI__builtin_vsx_xvnmaddasp:
12428 return Builder.CreateFSub(Zero,
12429 Builder.CreateCall(F, {X, Y, Z}), "sub");
12430 case PPC::BI__builtin_vsx_xvmsubadp:
12431 case PPC::BI__builtin_vsx_xvmsubasp:
12432 return Builder.CreateCall(F,
12433 {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12434 case PPC::BI__builtin_vsx_xvnmsubadp:
12435 case PPC::BI__builtin_vsx_xvnmsubasp:
12436 Value *FsubRes =
12437 Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12438 return Builder.CreateFSub(Zero, FsubRes, "sub");
12439 }
12440 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12440)
;
12441 return nullptr; // Suppress no-return warning
12442 }
12443
12444 case PPC::BI__builtin_vsx_insertword: {
12445 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
12446
12447 // Third argument is a compile time constant int. It must be clamped to
12448 // to the range [0, 12].
12449 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12450 assert(ArgCI &&((ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12451, __PRETTY_FUNCTION__))
12451 "Third arg to xxinsertw intrinsic must be constant integer")((ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12451, __PRETTY_FUNCTION__))
;
12452 const int64_t MaxIndex = 12;
12453 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12454
12455 // The builtin semantics don't exactly match the xxinsertw instructions
12456 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
12457 // word from the first argument, and inserts it in the second argument. The
12458 // instruction extracts the word from its second input register and inserts
12459 // it into its first input register, so swap the first and second arguments.
12460 std::swap(Ops[0], Ops[1]);
12461
12462 // Need to cast the second argument from a vector of unsigned int to a
12463 // vector of long long.
12464 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12465
12466 if (getTarget().isLittleEndian()) {
12467 // Create a shuffle mask of (1, 0)
12468 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12469 ConstantInt::get(Int32Ty, 0)
12470 };
12471 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12472
12473 // Reverse the double words in the vector we will extract from.
12474 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12475 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
12476
12477 // Reverse the index.
12478 Index = MaxIndex - Index;
12479 }
12480
12481 // Intrinsic expects the first arg to be a vector of int.
12482 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12483 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
12484 return Builder.CreateCall(F, Ops);
12485 }
12486
12487 case PPC::BI__builtin_vsx_extractuword: {
12488 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
12489
12490 // Intrinsic expects the first argument to be a vector of doublewords.
12491 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12492
12493 // The second argument is a compile time constant int that needs to
12494 // be clamped to the range [0, 12].
12495 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
12496 assert(ArgCI &&((ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12497, __PRETTY_FUNCTION__))
12497 "Second Arg to xxextractuw intrinsic must be a constant integer!")((ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12497, __PRETTY_FUNCTION__))
;
12498 const int64_t MaxIndex = 12;
12499 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12500
12501 if (getTarget().isLittleEndian()) {
12502 // Reverse the index.
12503 Index = MaxIndex - Index;
12504 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12505
12506 // Emit the call, then reverse the double words of the results vector.
12507 Value *Call = Builder.CreateCall(F, Ops);
12508
12509 // Create a shuffle mask of (1, 0)
12510 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12511 ConstantInt::get(Int32Ty, 0)
12512 };
12513 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12514
12515 Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
12516 return ShuffleCall;
12517 } else {
12518 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12519 return Builder.CreateCall(F, Ops);
12520 }
12521 }
12522
12523 case PPC::BI__builtin_vsx_xxpermdi: {
12524 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12525 assert(ArgCI && "Third arg must be constant integer!")((ArgCI && "Third arg must be constant integer!") ? static_cast
<void> (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12525, __PRETTY_FUNCTION__))
;
12526
12527 unsigned Index = ArgCI->getZExtValue();
12528 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12529 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12530
12531 // Account for endianness by treating this as just a shuffle. So we use the
12532 // same indices for both LE and BE in order to produce expected results in
12533 // both cases.
12534 unsigned ElemIdx0 = (Index & 2) >> 1;
12535 unsigned ElemIdx1 = 2 + (Index & 1);
12536
12537 Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
12538 ConstantInt::get(Int32Ty, ElemIdx1)};
12539 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12540
12541 Value *ShuffleCall =
12542 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12543 QualType BIRetType = E->getType();
12544 auto RetTy = ConvertType(BIRetType);
12545 return Builder.CreateBitCast(ShuffleCall, RetTy);
12546 }
12547
12548 case PPC::BI__builtin_vsx_xxsldwi: {
12549 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12550 assert(ArgCI && "Third argument must be a compile time constant")((ArgCI && "Third argument must be a compile time constant"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12550, __PRETTY_FUNCTION__))
;
12551 unsigned Index = ArgCI->getZExtValue() & 0x3;
12552 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12553 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
12554
12555 // Create a shuffle mask
12556 unsigned ElemIdx0;
12557 unsigned ElemIdx1;
12558 unsigned ElemIdx2;
12559 unsigned ElemIdx3;
12560 if (getTarget().isLittleEndian()) {
12561 // Little endian element N comes from element 8+N-Index of the
12562 // concatenated wide vector (of course, using modulo arithmetic on
12563 // the total number of elements).
12564 ElemIdx0 = (8 - Index) % 8;
12565 ElemIdx1 = (9 - Index) % 8;
12566 ElemIdx2 = (10 - Index) % 8;
12567 ElemIdx3 = (11 - Index) % 8;
12568 } else {
12569 // Big endian ElemIdx<N> = Index + N
12570 ElemIdx0 = Index;
12571 ElemIdx1 = Index + 1;
12572 ElemIdx2 = Index + 2;
12573 ElemIdx3 = Index + 3;
12574 }
12575
12576 Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
12577 ConstantInt::get(Int32Ty, ElemIdx1),
12578 ConstantInt::get(Int32Ty, ElemIdx2),
12579 ConstantInt::get(Int32Ty, ElemIdx3)};
12580
12581 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12582 Value *ShuffleCall =
12583 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12584 QualType BIRetType = E->getType();
12585 auto RetTy = ConvertType(BIRetType);
12586 return Builder.CreateBitCast(ShuffleCall, RetTy);
12587 }
12588
12589 case PPC::BI__builtin_pack_vector_int128: {
12590 bool isLittleEndian = getTarget().isLittleEndian();
12591 Value *UndefValue =
12592 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
12593 Value *Res = Builder.CreateInsertElement(
12594 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
12595 Res = Builder.CreateInsertElement(Res, Ops[1],
12596 (uint64_t)(isLittleEndian ? 0 : 1));
12597 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
12598 }
12599
12600 case PPC::BI__builtin_unpack_vector_int128: {
12601 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
12602 Value *Unpacked = Builder.CreateBitCast(
12603 Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
12604
12605 if (getTarget().isLittleEndian())
12606 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
12607
12608 return Builder.CreateExtractElement(Unpacked, Index);
12609 }
12610 }
12611}
12612
12613Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
12614 const CallExpr *E) {
12615 switch (BuiltinID) {
12616 case AMDGPU::BI__builtin_amdgcn_div_scale:
12617 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
12618 // Translate from the intrinsics's struct return to the builtin's out
12619 // argument.
12620
12621 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
12622
12623 llvm::Value *X = EmitScalarExpr(E->getArg(0));
12624 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
12625 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
12626
12627 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
12628 X->getType());
12629
12630 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
12631
12632 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
12633 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
12634
12635 llvm::Type *RealFlagType
12636 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
12637
12638 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
12639 Builder.CreateStore(FlagExt, FlagOutPtr);
12640 return Result;
12641 }
12642 case AMDGPU::BI__builtin_amdgcn_div_fmas:
12643 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
12644 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12645 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12646 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12647 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
12648
12649 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
12650 Src0->getType());
12651 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
12652 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
12653 }
12654
12655 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
12656 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
12657 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
12658 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
12659 llvm::SmallVector<llvm::Value *, 6> Args;
12660 for (unsigned I = 0; I != E->getNumArgs(); ++I)
12661 Args.push_back(EmitScalarExpr(E->getArg(I)));
12662 assert(Args.size() == 5 || Args.size() == 6)((Args.size() == 5 || Args.size() == 6) ? static_cast<void
> (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12662, __PRETTY_FUNCTION__))
;
12663 if (Args.size() == 5)
12664 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
12665 Function *F =
12666 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
12667 return Builder.CreateCall(F, Args);
12668 }
12669 case AMDGPU::BI__builtin_amdgcn_div_fixup:
12670 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
12671 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
12672 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
12673 case AMDGPU::BI__builtin_amdgcn_trig_preop:
12674 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
12675 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
12676 case AMDGPU::BI__builtin_amdgcn_rcp:
12677 case AMDGPU::BI__builtin_amdgcn_rcpf:
12678 case AMDGPU::BI__builtin_amdgcn_rcph:
12679 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
12680 case AMDGPU::BI__builtin_amdgcn_rsq:
12681 case AMDGPU::BI__builtin_amdgcn_rsqf:
12682 case AMDGPU::BI__builtin_amdgcn_rsqh:
12683 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
12684 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
12685 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
12686 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
12687 case AMDGPU::BI__builtin_amdgcn_sinf:
12688 case AMDGPU::BI__builtin_amdgcn_sinh:
12689 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
12690 case AMDGPU::BI__builtin_amdgcn_cosf:
12691 case AMDGPU::BI__builtin_amdgcn_cosh:
12692 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
12693 case AMDGPU::BI__builtin_amdgcn_log_clampf:
12694 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
12695 case AMDGPU::BI__builtin_amdgcn_ldexp:
12696 case AMDGPU::BI__builtin_amdgcn_ldexpf:
12697 case AMDGPU::BI__builtin_amdgcn_ldexph:
12698 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
12699 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
12700 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
12701 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
12702 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
12703 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
12704 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
12705 Value *Src0 = EmitScalarExpr(E->getArg(0));
12706 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12707 { Builder.getInt32Ty(), Src0->getType() });
12708 return Builder.CreateCall(F, Src0);
12709 }
12710 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
12711 Value *Src0 = EmitScalarExpr(E->getArg(0));
12712 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12713 { Builder.getInt16Ty(), Src0->getType() });
12714 return Builder.CreateCall(F, Src0);
12715 }
12716 case AMDGPU::BI__builtin_amdgcn_fract:
12717 case AMDGPU::BI__builtin_amdgcn_fractf:
12718 case AMDGPU::BI__builtin_amdgcn_fracth:
12719 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
12720 case AMDGPU::BI__builtin_amdgcn_lerp:
12721 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
12722 case AMDGPU::BI__builtin_amdgcn_uicmp:
12723 case AMDGPU::BI__builtin_amdgcn_uicmpl:
12724 case AMDGPU::BI__builtin_amdgcn_sicmp:
12725 case AMDGPU::BI__builtin_amdgcn_sicmpl:
12726 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp);
12727 case AMDGPU::BI__builtin_amdgcn_fcmp:
12728 case AMDGPU::BI__builtin_amdgcn_fcmpf:
12729 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp);
12730 case AMDGPU::BI__builtin_amdgcn_class:
12731 case AMDGPU::BI__builtin_amdgcn_classf:
12732 case AMDGPU::BI__builtin_amdgcn_classh:
12733 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
12734 case AMDGPU::BI__builtin_amdgcn_fmed3f:
12735 case AMDGPU::BI__builtin_amdgcn_fmed3h:
12736 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
12737 case AMDGPU::BI__builtin_amdgcn_ds_append:
12738 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
12739 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
12740 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
12741 Value *Src0 = EmitScalarExpr(E->getArg(0));
12742 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
12743 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
12744 }
12745 case AMDGPU::BI__builtin_amdgcn_read_exec: {
12746 CallInst *CI = cast<CallInst>(
12747 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
12748 CI->setConvergent();
12749 return CI;
12750 }
12751 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
12752 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
12753 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
12754 "exec_lo" : "exec_hi";
12755 CallInst *CI = cast<CallInst>(
12756 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
12757 CI->setConvergent();
12758 return CI;
12759 }
12760 // amdgcn workitem
12761 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
12762 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
12763 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
12764 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
12765 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
12766 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
12767
12768 // r600 intrinsics
12769 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
12770 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
12771 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
12772 case AMDGPU::BI__builtin_r600_read_tidig_x:
12773 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
12774 case AMDGPU::BI__builtin_r600_read_tidig_y:
12775 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
12776 case AMDGPU::BI__builtin_r600_read_tidig_z:
12777 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
12778 default:
12779 return nullptr;
12780 }
12781}
12782
12783/// Handle a SystemZ function in which the final argument is a pointer
12784/// to an int that receives the post-instruction CC value. At the LLVM level
12785/// this is represented as a function that returns a {result, cc} pair.
12786static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
12787 unsigned IntrinsicID,
12788 const CallExpr *E) {
12789 unsigned NumArgs = E->getNumArgs() - 1;
12790 SmallVector<Value *, 8> Args(NumArgs);
12791 for (unsigned I = 0; I < NumArgs; ++I)
12792 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
12793 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
12794 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
12795 Value *Call = CGF.Builder.CreateCall(F, Args);
12796 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
12797 CGF.Builder.CreateStore(CC, CCPtr);
12798 return CGF.Builder.CreateExtractValue(Call, 0);
12799}
12800
12801Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
12802 const CallExpr *E) {
12803 switch (BuiltinID) {
12804 case SystemZ::BI__builtin_tbegin: {
12805 Value *TDB = EmitScalarExpr(E->getArg(0));
12806 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12807 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
12808 return Builder.CreateCall(F, {TDB, Control});
12809 }
12810 case SystemZ::BI__builtin_tbegin_nofloat: {
12811 Value *TDB = EmitScalarExpr(E->getArg(0));
12812 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12813 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
12814 return Builder.CreateCall(F, {TDB, Control});
12815 }
12816 case SystemZ::BI__builtin_tbeginc: {
12817 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
12818 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
12819 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
12820 return Builder.CreateCall(F, {TDB, Control});
12821 }
12822 case SystemZ::BI__builtin_tabort: {
12823 Value *Data = EmitScalarExpr(E->getArg(0));
12824 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
12825 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
12826 }
12827 case SystemZ::BI__builtin_non_tx_store: {
12828 Value *Address = EmitScalarExpr(E->getArg(0));
12829 Value *Data = EmitScalarExpr(E->getArg(1));
12830 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
12831 return Builder.CreateCall(F, {Data, Address});
12832 }
12833
12834 // Vector builtins. Note that most vector builtins are mapped automatically
12835 // to target-specific LLVM intrinsics. The ones handled specially here can
12836 // be represented via standard LLVM IR, which is preferable to enable common
12837 // LLVM optimizations.
12838
12839 case SystemZ::BI__builtin_s390_vpopctb:
12840 case SystemZ::BI__builtin_s390_vpopcth:
12841 case SystemZ::BI__builtin_s390_vpopctf:
12842 case SystemZ::BI__builtin_s390_vpopctg: {
12843 llvm::Type *ResultType = ConvertType(E->getType());
12844 Value *X = EmitScalarExpr(E->getArg(0));
12845 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12846 return Builder.CreateCall(F, X);
12847 }
12848
12849 case SystemZ::BI__builtin_s390_vclzb:
12850 case SystemZ::BI__builtin_s390_vclzh:
12851 case SystemZ::BI__builtin_s390_vclzf:
12852 case SystemZ::BI__builtin_s390_vclzg: {
12853 llvm::Type *ResultType = ConvertType(E->getType());
12854 Value *X = EmitScalarExpr(E->getArg(0));
12855 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12856 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12857 return Builder.CreateCall(F, {X, Undef});
12858 }
12859
12860 case SystemZ::BI__builtin_s390_vctzb:
12861 case SystemZ::BI__builtin_s390_vctzh:
12862 case SystemZ::BI__builtin_s390_vctzf:
12863 case SystemZ::BI__builtin_s390_vctzg: {
12864 llvm::Type *ResultType = ConvertType(E->getType());
12865 Value *X = EmitScalarExpr(E->getArg(0));
12866 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12867 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12868 return Builder.CreateCall(F, {X, Undef});
12869 }
12870
12871 case SystemZ::BI__builtin_s390_vfsqsb:
12872 case SystemZ::BI__builtin_s390_vfsqdb: {
12873 llvm::Type *ResultType = ConvertType(E->getType());
12874 Value *X = EmitScalarExpr(E->getArg(0));
12875 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
12876 return Builder.CreateCall(F, X);
12877 }
12878 case SystemZ::BI__builtin_s390_vfmasb:
12879 case SystemZ::BI__builtin_s390_vfmadb: {
12880 llvm::Type *ResultType = ConvertType(E->getType());
12881 Value *X = EmitScalarExpr(E->getArg(0));
12882 Value *Y = EmitScalarExpr(E->getArg(1));
12883 Value *Z = EmitScalarExpr(E->getArg(2));
12884 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12885 return Builder.CreateCall(F, {X, Y, Z});
12886 }
12887 case SystemZ::BI__builtin_s390_vfmssb:
12888 case SystemZ::BI__builtin_s390_vfmsdb: {
12889 llvm::Type *ResultType = ConvertType(E->getType());
12890 Value *X = EmitScalarExpr(E->getArg(0));
12891 Value *Y = EmitScalarExpr(E->getArg(1));
12892 Value *Z = EmitScalarExpr(E->getArg(2));
12893 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12894 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12895 return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12896 }
12897 case SystemZ::BI__builtin_s390_vfnmasb:
12898 case SystemZ::BI__builtin_s390_vfnmadb: {
12899 llvm::Type *ResultType = ConvertType(E->getType());
12900 Value *X = EmitScalarExpr(E->getArg(0));
12901 Value *Y = EmitScalarExpr(E->getArg(1));
12902 Value *Z = EmitScalarExpr(E->getArg(2));
12903 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12904 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12905 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
12906 }
12907 case SystemZ::BI__builtin_s390_vfnmssb:
12908 case SystemZ::BI__builtin_s390_vfnmsdb: {
12909 llvm::Type *ResultType = ConvertType(E->getType());
12910 Value *X = EmitScalarExpr(E->getArg(0));
12911 Value *Y = EmitScalarExpr(E->getArg(1));
12912 Value *Z = EmitScalarExpr(E->getArg(2));
12913 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12914 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12915 Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
12916 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
12917 }
12918 case SystemZ::BI__builtin_s390_vflpsb:
12919 case SystemZ::BI__builtin_s390_vflpdb: {
12920 llvm::Type *ResultType = ConvertType(E->getType());
12921 Value *X = EmitScalarExpr(E->getArg(0));
12922 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12923 return Builder.CreateCall(F, X);
12924 }
12925 case SystemZ::BI__builtin_s390_vflnsb:
12926 case SystemZ::BI__builtin_s390_vflndb: {
12927 llvm::Type *ResultType = ConvertType(E->getType());
12928 Value *X = EmitScalarExpr(E->getArg(0));
12929 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12930 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12931 return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
12932 }
12933 case SystemZ::BI__builtin_s390_vfisb:
12934 case SystemZ::BI__builtin_s390_vfidb: {
12935 llvm::Type *ResultType = ConvertType(E->getType());
12936 Value *X = EmitScalarExpr(E->getArg(0));
12937 // Constant-fold the M4 and M5 mask arguments.
12938 llvm::APSInt M4, M5;
12939 bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
12940 bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
12941 assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?")((IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && IsConstM5 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12941, __PRETTY_FUNCTION__))
;
12942 (void)IsConstM4; (void)IsConstM5;
12943 // Check whether this instance can be represented via a LLVM standard
12944 // intrinsic. We only support some combinations of M4 and M5.
12945 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12946 switch (M4.getZExtValue()) {
12947 default: break;
12948 case 0: // IEEE-inexact exception allowed
12949 switch (M5.getZExtValue()) {
12950 default: break;
12951 case 0: ID = Intrinsic::rint; break;
12952 }
12953 break;
12954 case 4: // IEEE-inexact exception suppressed
12955 switch (M5.getZExtValue()) {
12956 default: break;
12957 case 0: ID = Intrinsic::nearbyint; break;
12958 case 1: ID = Intrinsic::round; break;
12959 case 5: ID = Intrinsic::trunc; break;
12960 case 6: ID = Intrinsic::ceil; break;
12961 case 7: ID = Intrinsic::floor; break;
12962 }
12963 break;
12964 }
12965 if (ID != Intrinsic::not_intrinsic) {
12966 Function *F = CGM.getIntrinsic(ID, ResultType);
12967 return Builder.CreateCall(F, X);
12968 }
12969 switch (BuiltinID) {
12970 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
12971 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
12972 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12972)
;
12973 }
12974 Function *F = CGM.getIntrinsic(ID);
12975 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12976 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
12977 return Builder.CreateCall(F, {X, M4Value, M5Value});
12978 }
12979 case SystemZ::BI__builtin_s390_vfmaxsb:
12980 case SystemZ::BI__builtin_s390_vfmaxdb: {
12981 llvm::Type *ResultType = ConvertType(E->getType());
12982 Value *X = EmitScalarExpr(E->getArg(0));
12983 Value *Y = EmitScalarExpr(E->getArg(1));
12984 // Constant-fold the M4 mask argument.
12985 llvm::APSInt M4;
12986 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
12987 assert(IsConstM4 && "Constant arg isn't actually constant?")((IsConstM4 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12987, __PRETTY_FUNCTION__))
;
12988 (void)IsConstM4;
12989 // Check whether this instance can be represented via a LLVM standard
12990 // intrinsic. We only support some values of M4.
12991 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12992 switch (M4.getZExtValue()) {
12993 default: break;
12994 case 4: ID = Intrinsic::maxnum; break;
12995 }
12996 if (ID != Intrinsic::not_intrinsic) {
12997 Function *F = CGM.getIntrinsic(ID, ResultType);
12998 return Builder.CreateCall(F, {X, Y});
12999 }
13000 switch (BuiltinID) {
13001 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
13002 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
13003 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13003)
;
13004 }
13005 Function *F = CGM.getIntrinsic(ID);
13006 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13007 return Builder.CreateCall(F, {X, Y, M4Value});
13008 }
13009 case SystemZ::BI__builtin_s390_vfminsb:
13010 case SystemZ::BI__builtin_s390_vfmindb: {
13011 llvm::Type *ResultType = ConvertType(E->getType());
13012 Value *X = EmitScalarExpr(E->getArg(0));
13013 Value *Y = EmitScalarExpr(E->getArg(1));
13014 // Constant-fold the M4 mask argument.
13015 llvm::APSInt M4;
13016 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
13017 assert(IsConstM4 && "Constant arg isn't actually constant?")((IsConstM4 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13017, __PRETTY_FUNCTION__))
;
13018 (void)IsConstM4;
13019 // Check whether this instance can be represented via a LLVM standard
13020 // intrinsic. We only support some values of M4.
13021 Intrinsic::ID ID = Intrinsic::not_intrinsic;
13022 switch (M4.getZExtValue()) {
13023 default: break;
13024 case 4: ID = Intrinsic::minnum; break;
13025 }
13026 if (ID != Intrinsic::not_intrinsic) {
13027 Function *F = CGM.getIntrinsic(ID, ResultType);
13028 return Builder.CreateCall(F, {X, Y});
13029 }
13030 switch (BuiltinID) {
13031 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
13032 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
13033 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13033)
;
13034 }
13035 Function *F = CGM.getIntrinsic(ID);
13036 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
13037 return Builder.CreateCall(F, {X, Y, M4Value});
13038 }
13039
13040 // Vector intrinsics that output the post-instruction CC value.
13041
13042#define INTRINSIC_WITH_CC(NAME) \
13043 case SystemZ::BI__builtin_##NAME: \
13044 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
13045
13046 INTRINSIC_WITH_CC(s390_vpkshs);
13047 INTRINSIC_WITH_CC(s390_vpksfs);
13048 INTRINSIC_WITH_CC(s390_vpksgs);
13049
13050 INTRINSIC_WITH_CC(s390_vpklshs);
13051 INTRINSIC_WITH_CC(s390_vpklsfs);
13052 INTRINSIC_WITH_CC(s390_vpklsgs);
13053
13054 INTRINSIC_WITH_CC(s390_vceqbs);
13055 INTRINSIC_WITH_CC(s390_vceqhs);
13056 INTRINSIC_WITH_CC(s390_vceqfs);
13057 INTRINSIC_WITH_CC(s390_vceqgs);
13058
13059 INTRINSIC_WITH_CC(s390_vchbs);
13060 INTRINSIC_WITH_CC(s390_vchhs);
13061 INTRINSIC_WITH_CC(s390_vchfs);
13062 INTRINSIC_WITH_CC(s390_vchgs);
13063
13064 INTRINSIC_WITH_CC(s390_vchlbs);
13065 INTRINSIC_WITH_CC(s390_vchlhs);
13066 INTRINSIC_WITH_CC(s390_vchlfs);
13067 INTRINSIC_WITH_CC(s390_vchlgs);
13068
13069 INTRINSIC_WITH_CC(s390_vfaebs);
13070 INTRINSIC_WITH_CC(s390_vfaehs);
13071 INTRINSIC_WITH_CC(s390_vfaefs);
13072
13073 INTRINSIC_WITH_CC(s390_vfaezbs);
13074 INTRINSIC_WITH_CC(s390_vfaezhs);
13075 INTRINSIC_WITH_CC(s390_vfaezfs);
13076
13077 INTRINSIC_WITH_CC(s390_vfeebs);
13078 INTRINSIC_WITH_CC(s390_vfeehs);
13079 INTRINSIC_WITH_CC(s390_vfeefs);
13080
13081 INTRINSIC_WITH_CC(s390_vfeezbs);
13082 INTRINSIC_WITH_CC(s390_vfeezhs);
13083 INTRINSIC_WITH_CC(s390_vfeezfs);
13084
13085 INTRINSIC_WITH_CC(s390_vfenebs);
13086 INTRINSIC_WITH_CC(s390_vfenehs);
13087 INTRINSIC_WITH_CC(s390_vfenefs);
13088
13089 INTRINSIC_WITH_CC(s390_vfenezbs);
13090 INTRINSIC_WITH_CC(s390_vfenezhs);
13091 INTRINSIC_WITH_CC(s390_vfenezfs);
13092
13093 INTRINSIC_WITH_CC(s390_vistrbs);
13094 INTRINSIC_WITH_CC(s390_vistrhs);
13095 INTRINSIC_WITH_CC(s390_vistrfs);
13096
13097 INTRINSIC_WITH_CC(s390_vstrcbs);
13098 INTRINSIC_WITH_CC(s390_vstrchs);
13099 INTRINSIC_WITH_CC(s390_vstrcfs);
13100
13101 INTRINSIC_WITH_CC(s390_vstrczbs);
13102 INTRINSIC_WITH_CC(s390_vstrczhs);
13103 INTRINSIC_WITH_CC(s390_vstrczfs);
13104
13105 INTRINSIC_WITH_CC(s390_vfcesbs);
13106 INTRINSIC_WITH_CC(s390_vfcedbs);
13107 INTRINSIC_WITH_CC(s390_vfchsbs);
13108 INTRINSIC_WITH_CC(s390_vfchdbs);
13109 INTRINSIC_WITH_CC(s390_vfchesbs);
13110 INTRINSIC_WITH_CC(s390_vfchedbs);
13111
13112 INTRINSIC_WITH_CC(s390_vftcisb);
13113 INTRINSIC_WITH_CC(s390_vftcidb);
13114
13115#undef INTRINSIC_WITH_CC
13116
13117 default:
13118 return nullptr;
13119 }
13120}
13121
13122namespace {
13123// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
13124struct NVPTXMmaLdstInfo {
13125 unsigned NumResults; // Number of elements to load/store
13126 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
13127 unsigned IID_col;
13128 unsigned IID_row;
13129};
13130
13131#define MMA_INTR(geom_op_type, layout) \
13132 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
13133#define MMA_LDST(n, geom_op_type) \
13134 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
13135
13136static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
13137 switch (BuiltinID) {
13138 // FP MMA loads
13139 case NVPTX::BI__hmma_m16n16k16_ld_a:
13140 return MMA_LDST(8, m16n16k16_load_a_f16);
13141 case NVPTX::BI__hmma_m16n16k16_ld_b:
13142 return MMA_LDST(8, m16n16k16_load_b_f16);
13143 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13144 return MMA_LDST(4, m16n16k16_load_c_f16);
13145 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13146 return MMA_LDST(8, m16n16k16_load_c_f32);
13147 case NVPTX::BI__hmma_m32n8k16_ld_a:
13148 return MMA_LDST(8, m32n8k16_load_a_f16);
13149 case NVPTX::BI__hmma_m32n8k16_ld_b:
13150 return MMA_LDST(8, m32n8k16_load_b_f16);
13151 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13152 return MMA_LDST(4, m32n8k16_load_c_f16);
13153 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13154 return MMA_LDST(8, m32n8k16_load_c_f32);
13155 case NVPTX::BI__hmma_m8n32k16_ld_a:
13156 return MMA_LDST(8, m8n32k16_load_a_f16);
13157 case NVPTX::BI__hmma_m8n32k16_ld_b:
13158 return MMA_LDST(8, m8n32k16_load_b_f16);
13159 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13160 return MMA_LDST(4, m8n32k16_load_c_f16);
13161 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13162 return MMA_LDST(8, m8n32k16_load_c_f32);
13163
13164 // Integer MMA loads
13165 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13166 return MMA_LDST(2, m16n16k16_load_a_s8);
13167 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13168 return MMA_LDST(2, m16n16k16_load_a_u8);
13169 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13170 return MMA_LDST(2, m16n16k16_load_b_s8);
13171 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13172 return MMA_LDST(2, m16n16k16_load_b_u8);
13173 case NVPTX::BI__imma_m16n16k16_ld_c:
13174 return MMA_LDST(8, m16n16k16_load_c_s32);
13175 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13176 return MMA_LDST(4, m32n8k16_load_a_s8);
13177 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13178 return MMA_LDST(4, m32n8k16_load_a_u8);
13179 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13180 return MMA_LDST(1, m32n8k16_load_b_s8);
13181 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13182 return MMA_LDST(1, m32n8k16_load_b_u8);
13183 case NVPTX::BI__imma_m32n8k16_ld_c:
13184 return MMA_LDST(8, m32n8k16_load_c_s32);
13185 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13186 return MMA_LDST(1, m8n32k16_load_a_s8);
13187 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13188 return MMA_LDST(1, m8n32k16_load_a_u8);
13189 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13190 return MMA_LDST(4, m8n32k16_load_b_s8);
13191 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13192 return MMA_LDST(4, m8n32k16_load_b_u8);
13193 case NVPTX::BI__imma_m8n32k16_ld_c:
13194 return MMA_LDST(8, m8n32k16_load_c_s32);
13195
13196 // Sub-integer MMA loads.
13197 // Only row/col layout is supported by A/B fragments.
13198 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13199 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
13200 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13201 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
13202 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13203 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
13204 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13205 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
13206 case NVPTX::BI__imma_m8n8k32_ld_c:
13207 return MMA_LDST(2, m8n8k32_load_c_s32);
13208 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13209 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
13210 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13211 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
13212 case NVPTX::BI__bmma_m8n8k128_ld_c:
13213 return MMA_LDST(2, m8n8k128_load_c_s32);
13214
13215 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
13216 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
13217 // use fragment C for both loads and stores.
13218 // FP MMA stores.
13219 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13220 return MMA_LDST(4, m16n16k16_store_d_f16);
13221 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13222 return MMA_LDST(8, m16n16k16_store_d_f32);
13223 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13224 return MMA_LDST(4, m32n8k16_store_d_f16);
13225 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13226 return MMA_LDST(8, m32n8k16_store_d_f32);
13227 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13228 return MMA_LDST(4, m8n32k16_store_d_f16);
13229 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13230 return MMA_LDST(8, m8n32k16_store_d_f32);
13231
13232 // Integer and sub-integer MMA stores.
13233 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
13234 // name, integer loads/stores use LLVM's i32.
13235 case NVPTX::BI__imma_m16n16k16_st_c_i32:
13236 return MMA_LDST(8, m16n16k16_store_d_s32);
13237 case NVPTX::BI__imma_m32n8k16_st_c_i32:
13238 return MMA_LDST(8, m32n8k16_store_d_s32);
13239 case NVPTX::BI__imma_m8n32k16_st_c_i32:
13240 return MMA_LDST(8, m8n32k16_store_d_s32);
13241 case NVPTX::BI__imma_m8n8k32_st_c_i32:
13242 return MMA_LDST(2, m8n8k32_store_d_s32);
13243 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
13244 return MMA_LDST(2, m8n8k128_store_d_s32);
13245
13246 default:
13247 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13247)
;
13248 }
13249}
13250#undef MMA_LDST
13251#undef MMA_INTR
13252
13253
13254struct NVPTXMmaInfo {
13255 unsigned NumEltsA;
13256 unsigned NumEltsB;
13257 unsigned NumEltsC;
13258 unsigned NumEltsD;
13259 std::array<unsigned, 8> Variants;
13260
13261 unsigned getMMAIntrinsic(int Layout, bool Satf) {
13262 unsigned Index = Layout * 2 + Satf;
13263 if (Index >= Variants.size())
13264 return 0;
13265 return Variants[Index];
13266 }
13267};
13268
13269 // Returns an intrinsic that matches Layout and Satf for valid combinations of
13270 // Layout and Satf, 0 otherwise.
13271static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
13272 // clang-format off
13273#define MMA_VARIANTS(geom, type) {{ \
13274 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
13275 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
13276 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13277 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13278 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
13279 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
13280 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
13281 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
13282 }}
13283// Sub-integer MMA only supports row.col layout.
13284#define MMA_VARIANTS_I4(geom, type) {{ \
13285 0, \
13286 0, \
13287 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13288 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13289 0, \
13290 0, \
13291 0, \
13292 0 \
13293 }}
13294// b1 MMA does not support .satfinite.
13295#define MMA_VARIANTS_B1(geom, type) {{ \
13296 0, \
13297 0, \
13298 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13299 0, \
13300 0, \
13301 0, \
13302 0, \
13303 0 \
13304 }}
13305 // clang-format on
13306 switch (BuiltinID) {
13307 // FP MMA
13308 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
13309 // NumEltsN of return value are ordered as A,B,C,D.
13310 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13311 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
13312 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13313 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
13314 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13315 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
13316 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13317 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
13318 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13319 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
13320 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13321 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
13322 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13323 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
13324 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13325 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
13326 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13327 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
13328 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13329 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
13330 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13331 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
13332 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13333 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
13334
13335 // Integer MMA
13336 case NVPTX::BI__imma_m16n16k16_mma_s8:
13337 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
13338 case NVPTX::BI__imma_m16n16k16_mma_u8:
13339 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
13340 case NVPTX::BI__imma_m32n8k16_mma_s8:
13341 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
13342 case NVPTX::BI__imma_m32n8k16_mma_u8:
13343 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
13344 case NVPTX::BI__imma_m8n32k16_mma_s8:
13345 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
13346 case NVPTX::BI__imma_m8n32k16_mma_u8:
13347 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
13348
13349 // Sub-integer MMA
13350 case NVPTX::BI__imma_m8n8k32_mma_s4:
13351 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
13352 case NVPTX::BI__imma_m8n8k32_mma_u4:
13353 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
13354 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
13355 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
13356 default:
13357 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13357)
;
13358 }
13359#undef MMA_VARIANTS
13360#undef MMA_VARIANTS_I4
13361#undef MMA_VARIANTS_B1
13362}
13363
13364} // namespace
13365
13366Value *
13367CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
13368 auto MakeLdg = [&](unsigned IntrinsicID) {
13369 Value *Ptr = EmitScalarExpr(E->getArg(0));
13370 clang::CharUnits Align =
13371 getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
13372 return Builder.CreateCall(
13373 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13374 Ptr->getType()}),
13375 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
13376 };
13377 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
13378 Value *Ptr = EmitScalarExpr(E->getArg(0));
13379 return Builder.CreateCall(
13380 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13381 Ptr->getType()}),
13382 {Ptr, EmitScalarExpr(E->getArg(1))});
13383 };
13384 switch (BuiltinID) {
13385 case NVPTX::BI__nvvm_atom_add_gen_i:
13386 case NVPTX::BI__nvvm_atom_add_gen_l:
13387 case NVPTX::BI__nvvm_atom_add_gen_ll:
13388 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
13389
13390 case NVPTX::BI__nvvm_atom_sub_gen_i:
13391 case NVPTX::BI__nvvm_atom_sub_gen_l:
13392 case NVPTX::BI__nvvm_atom_sub_gen_ll:
13393 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
13394
13395 case NVPTX::BI__nvvm_atom_and_gen_i:
13396 case NVPTX::BI__nvvm_atom_and_gen_l:
13397 case NVPTX::BI__nvvm_atom_and_gen_ll:
13398 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
13399
13400 case NVPTX::BI__nvvm_atom_or_gen_i:
13401 case NVPTX::BI__nvvm_atom_or_gen_l:
13402 case NVPTX::BI__nvvm_atom_or_gen_ll:
13403 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
13404
13405 case NVPTX::BI__nvvm_atom_xor_gen_i:
13406 case NVPTX::BI__nvvm_atom_xor_gen_l:
13407 case NVPTX::BI__nvvm_atom_xor_gen_ll:
13408 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
13409
13410 case NVPTX::BI__nvvm_atom_xchg_gen_i:
13411 case NVPTX::BI__nvvm_atom_xchg_gen_l:
13412 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
13413 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
13414
13415 case NVPTX::BI__nvvm_atom_max_gen_i:
13416 case NVPTX::BI__nvvm_atom_max_gen_l:
13417 case NVPTX::BI__nvvm_atom_max_gen_ll:
13418 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
13419
13420 case NVPTX::BI__nvvm_atom_max_gen_ui:
13421 case NVPTX::BI__nvvm_atom_max_gen_ul:
13422 case NVPTX::BI__nvvm_atom_max_gen_ull:
13423 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
13424
13425 case NVPTX::BI__nvvm_atom_min_gen_i:
13426 case NVPTX::BI__nvvm_atom_min_gen_l:
13427 case NVPTX::BI__nvvm_atom_min_gen_ll:
13428 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
13429
13430 case NVPTX::BI__nvvm_atom_min_gen_ui:
13431 case NVPTX::BI__nvvm_atom_min_gen_ul:
13432 case NVPTX::BI__nvvm_atom_min_gen_ull:
13433 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
13434
13435 case NVPTX::BI__nvvm_atom_cas_gen_i:
13436 case NVPTX::BI__nvvm_atom_cas_gen_l:
13437 case NVPTX::BI__nvvm_atom_cas_gen_ll:
13438 // __nvvm_atom_cas_gen_* should return the old value rather than the
13439 // success flag.
13440 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
13441
13442 case NVPTX::BI__nvvm_atom_add_gen_f: {
13443 Value *Ptr = EmitScalarExpr(E->getArg(0));
13444 Value *Val = EmitScalarExpr(E->getArg(1));
13445 // atomicrmw only deals with integer arguments so we need to use
13446 // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
13447 Function *FnALAF32 =
13448 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
13449 return Builder.CreateCall(FnALAF32, {Ptr, Val});
13450 }
13451
13452 case NVPTX::BI__nvvm_atom_add_gen_d: {
13453 Value *Ptr = EmitScalarExpr(E->getArg(0));
13454 Value *Val = EmitScalarExpr(E->getArg(1));
13455 // atomicrmw only deals with integer arguments, so we need to use
13456 // LLVM's nvvm_atomic_load_add_f64 intrinsic.
13457 Function *FnALAF64 =
13458 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f64, Ptr->getType());
13459 return Builder.CreateCall(FnALAF64, {Ptr, Val});
13460 }
13461
13462 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
13463 Value *Ptr = EmitScalarExpr(E->getArg(0));
13464 Value *Val = EmitScalarExpr(E->getArg(1));
13465 Function *FnALI32 =
13466 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
13467 return Builder.CreateCall(FnALI32, {Ptr, Val});
13468 }
13469
13470 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
13471 Value *Ptr = EmitScalarExpr(E->getArg(0));
13472 Value *Val = EmitScalarExpr(E->getArg(1));
13473 Function *FnALD32 =
13474 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
13475 return Builder.CreateCall(FnALD32, {Ptr, Val});
13476 }
13477
13478 case NVPTX::BI__nvvm_ldg_c:
13479 case NVPTX::BI__nvvm_ldg_c2:
13480 case NVPTX::BI__nvvm_ldg_c4:
13481 case NVPTX::BI__nvvm_ldg_s:
13482 case NVPTX::BI__nvvm_ldg_s2:
13483 case NVPTX::BI__nvvm_ldg_s4:
13484 case NVPTX::BI__nvvm_ldg_i:
13485 case NVPTX::BI__nvvm_ldg_i2:
13486 case NVPTX::BI__nvvm_ldg_i4:
13487 case NVPTX::BI__nvvm_ldg_l:
13488 case NVPTX::BI__nvvm_ldg_ll:
13489 case NVPTX::BI__nvvm_ldg_ll2:
13490 case NVPTX::BI__nvvm_ldg_uc:
13491 case NVPTX::BI__nvvm_ldg_uc2:
13492 case NVPTX::BI__nvvm_ldg_uc4:
13493 case NVPTX::BI__nvvm_ldg_us:
13494 case NVPTX::BI__nvvm_ldg_us2:
13495 case NVPTX::BI__nvvm_ldg_us4:
13496 case NVPTX::BI__nvvm_ldg_ui:
13497 case NVPTX::BI__nvvm_ldg_ui2:
13498 case NVPTX::BI__nvvm_ldg_ui4:
13499 case NVPTX::BI__nvvm_ldg_ul:
13500 case NVPTX::BI__nvvm_ldg_ull:
13501 case NVPTX::BI__nvvm_ldg_ull2:
13502 // PTX Interoperability section 2.2: "For a vector with an even number of
13503 // elements, its alignment is set to number of elements times the alignment
13504 // of its member: n*alignof(t)."
13505 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
13506 case NVPTX::BI__nvvm_ldg_f:
13507 case NVPTX::BI__nvvm_ldg_f2:
13508 case NVPTX::BI__nvvm_ldg_f4:
13509 case NVPTX::BI__nvvm_ldg_d:
13510 case NVPTX::BI__nvvm_ldg_d2:
13511 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
13512
13513 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
13514 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
13515 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
13516 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
13517 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
13518 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
13519 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
13520 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
13521 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
13522 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
13523 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
13524 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
13525 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
13526 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
13527 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
13528 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
13529 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
13530 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
13531 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
13532 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
13533 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
13534 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
13535 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
13536 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
13537 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
13538 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
13539 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
13540 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
13541 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
13542 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
13543 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
13544 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
13545 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
13546 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
13547 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
13548 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
13549 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
13550 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
13551 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
13552 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
13553 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
13554 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
13555 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
13556 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
13557 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
13558 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
13559 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
13560 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
13561 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
13562 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
13563 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
13564 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
13565 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
13566 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
13567 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
13568 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
13569 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
13570 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
13571 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
13572 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
13573 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
13574 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
13575 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
13576 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
13577 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
13578 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
13579 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
13580 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
13581 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
13582 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
13583 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
13584 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
13585 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
13586 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
13587 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
13588 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
13589 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
13590 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
13591 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
13592 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
13593 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
13594 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
13595 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
13596 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
13597 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
13598 Value *Ptr = EmitScalarExpr(E->getArg(0));
13599 return Builder.CreateCall(
13600 CGM.getIntrinsic(
13601 Intrinsic::nvvm_atomic_cas_gen_i_cta,
13602 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13603 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13604 }
13605 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
13606 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
13607 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
13608 Value *Ptr = EmitScalarExpr(E->getArg(0));
13609 return Builder.CreateCall(
13610 CGM.getIntrinsic(
13611 Intrinsic::nvvm_atomic_cas_gen_i_sys,
13612 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13613 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13614 }
13615 case NVPTX::BI__nvvm_match_all_sync_i32p:
13616 case NVPTX::BI__nvvm_match_all_sync_i64p: {
13617 Value *Mask = EmitScalarExpr(E->getArg(0));
13618 Value *Val = EmitScalarExpr(E->getArg(1));
13619 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
13620 Value *ResultPair = Builder.CreateCall(
13621 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
13622 ? Intrinsic::nvvm_match_all_sync_i32p
13623 : Intrinsic::nvvm_match_all_sync_i64p),
13624 {Mask, Val});
13625 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
13626 PredOutPtr.getElementType());
13627 Builder.CreateStore(Pred, PredOutPtr);
13628 return Builder.CreateExtractValue(ResultPair, 0);
13629 }
13630
13631 // FP MMA loads
13632 case NVPTX::BI__hmma_m16n16k16_ld_a:
13633 case NVPTX::BI__hmma_m16n16k16_ld_b:
13634 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13635 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13636 case NVPTX::BI__hmma_m32n8k16_ld_a:
13637 case NVPTX::BI__hmma_m32n8k16_ld_b:
13638 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13639 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13640 case NVPTX::BI__hmma_m8n32k16_ld_a:
13641 case NVPTX::BI__hmma_m8n32k16_ld_b:
13642 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13643 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13644 // Integer MMA loads.
13645 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13646 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13647 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13648 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13649 case NVPTX::BI__imma_m16n16k16_ld_c:
13650 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13651 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13652 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13653 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13654 case NVPTX::BI__imma_m32n8k16_ld_c:
13655 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13656 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13657 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13658 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13659 case NVPTX::BI__imma_m8n32k16_ld_c:
13660 // Sub-integer MMA loads.
13661 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13662 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13663 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13664 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13665 case NVPTX::BI__imma_m8n8k32_ld_c:
13666 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13667 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13668 case NVPTX::BI__bmma_m8n8k128_ld_c:
13669 {
13670 Address Dst = EmitPointerWithAlignment(E->getArg(0));
13671 Value *Src = EmitScalarExpr(E->getArg(1));
13672 Value *Ldm = EmitScalarExpr(E->getArg(2));
13673 llvm::APSInt isColMajorArg;
13674 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13675 return nullptr;
13676 bool isColMajor = isColMajorArg.getSExtValue();
13677 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13678 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13679 if (IID == 0)
13680 return nullptr;
13681
13682 Value *Result =
13683 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
13684
13685 // Save returned values.
13686 assert(II.NumResults)((II.NumResults) ? static_cast<void> (0) : __assert_fail
("II.NumResults", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13686, __PRETTY_FUNCTION__))
;
13687 if (II.NumResults == 1) {
13688 Builder.CreateAlignedStore(Result, Dst.getPointer(),
13689 CharUnits::fromQuantity(4));
13690 } else {
13691 for (unsigned i = 0; i < II.NumResults; ++i) {
13692 Builder.CreateAlignedStore(
13693 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
13694 Dst.getElementType()),
13695 Builder.CreateGEP(Dst.getPointer(),
13696 llvm::ConstantInt::get(IntTy, i)),
13697 CharUnits::fromQuantity(4));
13698 }
13699 }
13700 return Result;
13701 }
13702
13703 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13704 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13705 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13706 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13707 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13708 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13709 case NVPTX::BI__imma_m16n16k16_st_c_i32:
13710 case NVPTX::BI__imma_m32n8k16_st_c_i32:
13711 case NVPTX::BI__imma_m8n32k16_st_c_i32:
13712 case NVPTX::BI__imma_m8n8k32_st_c_i32:
13713 case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
13714 Value *Dst = EmitScalarExpr(E->getArg(0));
13715 Address Src = EmitPointerWithAlignment(E->getArg(1));
13716 Value *Ldm = EmitScalarExpr(E->getArg(2));
13717 llvm::APSInt isColMajorArg;
13718 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13719 return nullptr;
13720 bool isColMajor = isColMajorArg.getSExtValue();
13721 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13722 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13723 if (IID == 0)
13724 return nullptr;
13725 Function *Intrinsic =
13726 CGM.getIntrinsic(IID, Dst->getType());
13727 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
13728 SmallVector<Value *, 10> Values = {Dst};
13729 for (unsigned i = 0; i < II.NumResults; ++i) {
13730 Value *V = Builder.CreateAlignedLoad(
13731 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13732 CharUnits::fromQuantity(4));
13733 Values.push_back(Builder.CreateBitCast(V, ParamType));
13734 }
13735 Values.push_back(Ldm);
13736 Value *Result = Builder.CreateCall(Intrinsic, Values);
13737 return Result;
13738 }
13739
13740 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
13741 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
13742 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13743 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13744 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13745 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13746 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13747 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13748 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13749 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13750 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13751 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13752 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13753 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13754 case NVPTX::BI__imma_m16n16k16_mma_s8:
13755 case NVPTX::BI__imma_m16n16k16_mma_u8:
13756 case NVPTX::BI__imma_m32n8k16_mma_s8:
13757 case NVPTX::BI__imma_m32n8k16_mma_u8:
13758 case NVPTX::BI__imma_m8n32k16_mma_s8:
13759 case NVPTX::BI__imma_m8n32k16_mma_u8:
13760 case NVPTX::BI__imma_m8n8k32_mma_s4:
13761 case NVPTX::BI__imma_m8n8k32_mma_u4:
13762 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
13763 Address Dst = EmitPointerWithAlignment(E->getArg(0));
13764 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
13765 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
13766 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
13767 llvm::APSInt LayoutArg;
13768 if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
13769 return nullptr;
13770 int Layout = LayoutArg.getSExtValue();
13771 if (Layout < 0 || Layout > 3)
13772 return nullptr;
13773 llvm::APSInt SatfArg;
13774 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
13775 SatfArg = 0; // .b1 does not have satf argument.
13776 else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
13777 return nullptr;
13778 bool Satf = SatfArg.getSExtValue();
13779 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
13780 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
13781 if (IID == 0) // Unsupported combination of Layout/Satf.
13782 return nullptr;
13783
13784 SmallVector<Value *, 24> Values;
13785 Function *Intrinsic = CGM.getIntrinsic(IID);
13786 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
13787 // Load A
13788 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
13789 Value *V = Builder.CreateAlignedLoad(
13790 Builder.CreateGEP(SrcA.getPointer(),
13791 llvm::ConstantInt::get(IntTy, i)),
13792 CharUnits::fromQuantity(4));
13793 Values.push_back(Builder.CreateBitCast(V, AType));
13794 }
13795 // Load B
13796 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
13797 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
13798 Value *V = Builder.CreateAlignedLoad(
13799 Builder.CreateGEP(SrcB.getPointer(),
13800 llvm::ConstantInt::get(IntTy, i)),
13801 CharUnits::fromQuantity(4));
13802 Values.push_back(Builder.CreateBitCast(V, BType));
13803 }
13804 // Load C
13805 llvm::Type *CType =
13806 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
13807 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
13808 Value *V = Builder.CreateAlignedLoad(
13809 Builder.CreateGEP(SrcC.getPointer(),
13810 llvm::ConstantInt::get(IntTy, i)),
13811 CharUnits::fromQuantity(4));
13812 Values.push_back(Builder.CreateBitCast(V, CType));
13813 }
13814 Value *Result = Builder.CreateCall(Intrinsic, Values);
13815 llvm::Type *DType = Dst.getElementType();
13816 for (unsigned i = 0; i < MI.NumEltsD; ++i)
13817 Builder.CreateAlignedStore(
13818 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
13819 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13820 CharUnits::fromQuantity(4));
13821 return Result;
13822 }
13823 default:
13824 return nullptr;
13825 }
13826}
13827
13828Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
13829 const CallExpr *E) {
13830 switch (BuiltinID) {
13831 case WebAssembly::BI__builtin_wasm_memory_size: {
13832 llvm::Type *ResultType = ConvertType(E->getType());
13833 Value *I = EmitScalarExpr(E->getArg(0));
13834 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
13835 return Builder.CreateCall(Callee, I);
13836 }
13837 case WebAssembly::BI__builtin_wasm_memory_grow: {
13838 llvm::Type *ResultType = ConvertType(E->getType());
13839 Value *Args[] = {
13840 EmitScalarExpr(E->getArg(0)),
13841 EmitScalarExpr(E->getArg(1))
13842 };
13843 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
13844 return Builder.CreateCall(Callee, Args);
13845 }
13846 case WebAssembly::BI__builtin_wasm_memory_init: {
13847 llvm::APSInt SegConst;
13848 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13849 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13849)
;
13850 llvm::APSInt MemConst;
13851 if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
13852 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13852)
;
13853 if (!MemConst.isNullValue())
13854 ErrorUnsupported(E, "non-zero memory index");
13855 Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
13856 llvm::ConstantInt::get(getLLVMContext(), MemConst),
13857 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
13858 EmitScalarExpr(E->getArg(4))};
13859 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
13860 return Builder.CreateCall(Callee, Args);
13861 }
13862 case WebAssembly::BI__builtin_wasm_data_drop: {
13863 llvm::APSInt SegConst;
13864 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13865 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13865)
;
13866 Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
13867 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
13868 return Builder.CreateCall(Callee, {Arg});
13869 }
13870 case WebAssembly::BI__builtin_wasm_throw: {
13871 Value *Tag = EmitScalarExpr(E->getArg(0));
13872 Value *Obj = EmitScalarExpr(E->getArg(1));
13873 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
13874 return Builder.CreateCall(Callee, {Tag, Obj});
13875 }
13876 case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
13877 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
13878 return Builder.CreateCall(Callee);
13879 }
13880 case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
13881 Value *Addr = EmitScalarExpr(E->getArg(0));
13882 Value *Expected = EmitScalarExpr(E->getArg(1));
13883 Value *Timeout = EmitScalarExpr(E->getArg(2));
13884 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
13885 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
13886 }
13887 case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
13888 Value *Addr = EmitScalarExpr(E->getArg(0));
13889 Value *Expected = EmitScalarExpr(E->getArg(1));
13890 Value *Timeout = EmitScalarExpr(E->getArg(2));
13891 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
13892 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
13893 }
13894 case WebAssembly::BI__builtin_wasm_atomic_notify: {
13895 Value *Addr = EmitScalarExpr(E->getArg(0));
13896 Value *Count = EmitScalarExpr(E->getArg(1));
13897 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
13898 return Builder.CreateCall(Callee, {Addr, Count});
13899 }
13900 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
13901 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
13902 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
13903 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
13904 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
13905 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
13906 Value *Src = EmitScalarExpr(E->getArg(0));
13907 llvm::Type *ResT = ConvertType(E->getType());
13908 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
13909 {ResT, Src->getType()});
13910 return Builder.CreateCall(Callee, {Src});
13911 }
13912 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
13913 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
13914 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
13915 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
13916 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
13917 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
13918 Value *Src = EmitScalarExpr(E->getArg(0));
13919 llvm::Type *ResT = ConvertType(E->getType());
13920 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
13921 {ResT, Src->getType()});
13922 return Builder.CreateCall(Callee, {Src});
13923 }
13924 case WebAssembly::BI__builtin_wasm_min_f32:
13925 case WebAssembly::BI__builtin_wasm_min_f64:
13926 case WebAssembly::BI__builtin_wasm_min_f32x4:
13927 case WebAssembly::BI__builtin_wasm_min_f64x2: {
13928 Value *LHS = EmitScalarExpr(E->getArg(0));
13929 Value *RHS = EmitScalarExpr(E->getArg(1));
13930 Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
13931 ConvertType(E->getType()));
13932 return Builder.CreateCall(Callee, {LHS, RHS});
13933 }
13934 case WebAssembly::BI__builtin_wasm_max_f32:
13935 case WebAssembly::BI__builtin_wasm_max_f64:
13936 case WebAssembly::BI__builtin_wasm_max_f32x4:
13937 case WebAssembly::BI__builtin_wasm_max_f64x2: {
13938 Value *LHS = EmitScalarExpr(E->getArg(0));
13939 Value *RHS = EmitScalarExpr(E->getArg(1));
13940 Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
13941 ConvertType(E->getType()));
13942 return Builder.CreateCall(Callee, {LHS, RHS});
13943 }
13944 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
13945 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
13946 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
13947 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
13948 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
13949 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
13950 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
13951 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
13952 llvm::APSInt LaneConst;
13953 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
13954 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13954)
;
13955 Value *Vec = EmitScalarExpr(E->getArg(0));
13956 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
13957 Value *Extract = Builder.CreateExtractElement(Vec, Lane);
13958 switch (BuiltinID) {
13959 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
13960 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
13961 return Builder.CreateSExt(Extract, ConvertType(E->getType()));
13962 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
13963 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
13964 return Builder.CreateZExt(Extract, ConvertType(E->getType()));
13965 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
13966 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
13967 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
13968 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
13969 return Extract;
13970 default:
13971 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13971)
;
13972 }
13973 }
13974 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
13975 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
13976 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
13977 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
13978 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
13979 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
13980 llvm::APSInt LaneConst;
13981 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
13982 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13982)
;
13983 Value *Vec = EmitScalarExpr(E->getArg(0));
13984 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
13985 Value *Val = EmitScalarExpr(E->getArg(2));
13986 switch (BuiltinID) {
13987 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
13988 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
13989 llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
13990 Value *Trunc = Builder.CreateTrunc(Val, ElemType);
13991 return Builder.CreateInsertElement(Vec, Trunc, Lane);
13992 }
13993 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
13994 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
13995 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
13996 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
13997 return Builder.CreateInsertElement(Vec, Val, Lane);
13998 default:
13999 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13999)
;
14000 }
14001 }
14002 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14003 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14004 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14005 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14006 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14007 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14008 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14009 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
14010 unsigned IntNo;
14011 switch (BuiltinID) {
14012 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
14013 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
14014 IntNo = Intrinsic::sadd_sat;
14015 break;
14016 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
14017 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
14018 IntNo = Intrinsic::uadd_sat;
14019 break;
14020 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
14021 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
14022 IntNo = Intrinsic::wasm_sub_saturate_signed;
14023 break;
14024 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
14025 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
14026 IntNo = Intrinsic::wasm_sub_saturate_unsigned;
14027 break;
14028 default:
14029 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14029)
;
14030 }
14031 Value *LHS = EmitScalarExpr(E->getArg(0));
14032 Value *RHS = EmitScalarExpr(E->getArg(1));
14033 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
14034 return Builder.CreateCall(Callee, {LHS, RHS});
14035 }
14036 case WebAssembly::BI__builtin_wasm_bitselect: {
14037 Value *V1 = EmitScalarExpr(E->getArg(0));
14038 Value *V2 = EmitScalarExpr(E->getArg(1));
14039 Value *C = EmitScalarExpr(E->getArg(2));
14040 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
14041 ConvertType(E->getType()));
14042 return Builder.CreateCall(Callee, {V1, V2, C});
14043 }
14044 case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14045 case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14046 case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14047 case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14048 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14049 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14050 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14051 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
14052 unsigned IntNo;
14053 switch (BuiltinID) {
14054 case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14055 case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14056 case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14057 case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14058 IntNo = Intrinsic::wasm_anytrue;
14059 break;
14060 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14061 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14062 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14063 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
14064 IntNo = Intrinsic::wasm_alltrue;
14065 break;
14066 default:
14067 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14067)
;
14068 }
14069 Value *Vec = EmitScalarExpr(E->getArg(0));
14070 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
14071 return Builder.CreateCall(Callee, {Vec});
14072 }
14073 case WebAssembly::BI__builtin_wasm_abs_f32x4:
14074 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
14075 Value *Vec = EmitScalarExpr(E->getArg(0));
14076 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
14077 return Builder.CreateCall(Callee, {Vec});
14078 }
14079 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
14080 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
14081 Value *Vec = EmitScalarExpr(E->getArg(0));
14082 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
14083 return Builder.CreateCall(Callee, {Vec});
14084 }
14085
14086 default:
14087 return nullptr;
14088 }
14089}
14090
14091Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
14092 const CallExpr *E) {
14093 SmallVector<llvm::Value *, 4> Ops;
14094 Intrinsic::ID ID = Intrinsic::not_intrinsic;
14095
14096 auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
14097 // The base pointer is passed by address, so it needs to be loaded.
14098 Address BP = EmitPointerWithAlignment(E->getArg(0));
14099 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14100 BP.getAlignment());
14101 llvm::Value *Base = Builder.CreateLoad(BP);
14102 // Operands are Base, Increment, Modifier, Start.
14103 if (HasImm)
14104 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14105 EmitScalarExpr(E->getArg(3)) };
14106 else
14107 Ops = { Base, EmitScalarExpr(E->getArg(1)),
14108 EmitScalarExpr(E->getArg(2)) };
14109
14110 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14111 llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
14112 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14113 NewBase->getType()->getPointerTo());
14114 Address Dest = EmitPointerWithAlignment(E->getArg(0));
14115 // The intrinsic generates two results. The new value for the base pointer
14116 // needs to be stored.
14117 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14118 return Builder.CreateExtractValue(Result, 0);
14119 };
14120
14121 auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
14122 // The base pointer is passed by address, so it needs to be loaded.
14123 Address BP = EmitPointerWithAlignment(E->getArg(0));
14124 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14125 BP.getAlignment());
14126 llvm::Value *Base = Builder.CreateLoad(BP);
14127 // Operands are Base, Increment, Modifier, Value, Start.
14128 if (HasImm)
14129 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14130 EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
14131 else
14132 Ops = { Base, EmitScalarExpr(E->getArg(1)),
14133 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
14134
14135 llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14136 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14137 NewBase->getType()->getPointerTo());
14138 Address Dest = EmitPointerWithAlignment(E->getArg(0));
14139 // The intrinsic generates one result, which is the new value for the base
14140 // pointer. It needs to be stored.
14141 return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14142 };
14143
14144 // Handle the conversion of bit-reverse load intrinsics to bit code.
14145 // The intrinsic call after this function only reads from memory and the
14146 // write to memory is dealt by the store instruction.
14147 auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
14148 // The intrinsic generates one result, which is the new value for the base
14149 // pointer. It needs to be returned. The result of the load instruction is
14150 // passed to intrinsic by address, so the value needs to be stored.
14151 llvm::Value *BaseAddress =
14152 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
14153
14154 // Expressions like &(*pt++) will be incremented per evaluation.
14155 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
14156 // per call.
14157 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
14158 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
14159 DestAddr.getAlignment());
14160 llvm::Value *DestAddress = DestAddr.getPointer();
14161
14162 // Operands are Base, Dest, Modifier.
14163 // The intrinsic format in LLVM IR is defined as
14164 // { ValueType, i8* } (i8*, i32).
14165 Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
14166
14167 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14168 // The value needs to be stored as the variable is passed by reference.
14169 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
14170
14171 // The store needs to be truncated to fit the destination type.
14172 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
14173 // to be handled with stores of respective destination type.
14174 DestVal = Builder.CreateTrunc(DestVal, DestTy);
14175
14176 llvm::Value *DestForStore =
14177 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
14178 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
14179 // The updated value of the base pointer is returned.
14180 return Builder.CreateExtractValue(Result, 1);
14181 };
14182
14183 switch (BuiltinID) {
14184 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
14185 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
14186 Address Dest = EmitPointerWithAlignment(E->getArg(2));
14187 unsigned Size;
14188 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
14189 Size = 512;
14190 ID = Intrinsic::hexagon_V6_vaddcarry;
14191 } else {
14192 Size = 1024;
14193 ID = Intrinsic::hexagon_V6_vaddcarry_128B;
14194 }
14195 Dest = Builder.CreateBitCast(Dest,
14196 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14197 LoadInst *QLd = Builder.CreateLoad(Dest);
14198 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14199 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14200 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14201 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14202 Vprd->getType()->getPointerTo(0));
14203 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14204 return Builder.CreateExtractValue(Result, 0);
14205 }
14206 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
14207 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
14208 Address Dest = EmitPointerWithAlignment(E->getArg(2));
14209 unsigned Size;
14210 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
14211 Size = 512;
14212 ID = Intrinsic::hexagon_V6_vsubcarry;
14213 } else {
14214 Size = 1024;
14215 ID = Intrinsic::hexagon_V6_vsubcarry_128B;
14216 }
14217 Dest = Builder.CreateBitCast(Dest,
14218 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14219 LoadInst *QLd = Builder.CreateLoad(Dest);
14220 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14221 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14222 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14223 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14224 Vprd->getType()->getPointerTo(0));
14225 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14226 return Builder.CreateExtractValue(Result, 0);
14227 }
14228 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
14229 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
14230 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
14231 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true);
14232 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
14233 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
14234 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
14235 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true);
14236 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
14237 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true);
14238 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
14239 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true);
14240 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
14241 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
14242 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
14243 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false);
14244 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
14245 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
14246 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
14247 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false);
14248 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
14249 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false);
14250 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
14251 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false);
14252 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
14253 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
14254 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
14255 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
14256 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
14257 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
14258 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
14259 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
14260 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
14261 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
14262 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
14263 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
14264 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
14265 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
14266 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
14267 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
14268 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
14269 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
14270 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
14271 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
14272 case Hexagon::BI__builtin_brev_ldub:
14273 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
14274 case Hexagon::BI__builtin_brev_ldb:
14275 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
14276 case Hexagon::BI__builtin_brev_lduh:
14277 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
14278 case Hexagon::BI__builtin_brev_ldh:
14279 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
14280 case Hexagon::BI__builtin_brev_ldw:
14281 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
14282 case Hexagon::BI__builtin_brev_ldd:
14283 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
14284 default:
14285 break;
14286 } // switch
14287
14288 return nullptr;
14289}