Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 12300, column 22
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/CodeGen/CGBuiltin.cpp
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGOpenCLRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "PatternInit.h"
22#include "TargetInfo.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/OSLog.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/CodeGen/CGFunctionInfo.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/IntrinsicsAArch64.h"
39#include "llvm/IR/IntrinsicsAMDGPU.h"
40#include "llvm/IR/IntrinsicsARM.h"
41#include "llvm/IR/IntrinsicsBPF.h"
42#include "llvm/IR/IntrinsicsHexagon.h"
43#include "llvm/IR/IntrinsicsNVPTX.h"
44#include "llvm/IR/IntrinsicsPowerPC.h"
45#include "llvm/IR/IntrinsicsR600.h"
46#include "llvm/IR/IntrinsicsRISCV.h"
47#include "llvm/IR/IntrinsicsS390.h"
48#include "llvm/IR/IntrinsicsVE.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
51#include "llvm/IR/MDBuilder.h"
52#include "llvm/IR/MatrixBuilder.h"
53#include "llvm/Support/ConvertUTF.h"
54#include "llvm/Support/ScopedPrinter.h"
55#include "llvm/Support/X86TargetParser.h"
56#include <sstream>
57
58using namespace clang;
59using namespace CodeGen;
60using namespace llvm;
61
62static
63int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
64 return std::min(High, std::max(Low, Value));
65}
66
67static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
68 Align AlignmentInBytes) {
69 ConstantInt *Byte;
70 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
71 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
72 // Nothing to initialize.
73 return;
74 case LangOptions::TrivialAutoVarInitKind::Zero:
75 Byte = CGF.Builder.getInt8(0x00);
76 break;
77 case LangOptions::TrivialAutoVarInitKind::Pattern: {
78 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
79 Byte = llvm::dyn_cast<llvm::ConstantInt>(
80 initializationPatternFor(CGF.CGM, Int8));
81 break;
82 }
83 }
84 if (CGF.CGM.stopAutoInit())
85 return;
86 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
87 I->addAnnotationMetadata("auto-init");
88}
89
90/// getBuiltinLibFunction - Given a builtin id for a function like
91/// "__builtin_fabsf", return a Function* for "fabsf".
92llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
93 unsigned BuiltinID) {
94 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 94, __extension__ __PRETTY_FUNCTION__
))
;
95
96 // Get the name, skip over the __builtin_ prefix (if necessary).
97 StringRef Name;
98 GlobalDecl D(FD);
99
100 // TODO: This list should be expanded or refactored after all GCC-compatible
101 // std libcall builtins are implemented.
102 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
103 {Builtin::BI__builtin_printf, "__printfieee128"},
104 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
105 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
106 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
107 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
108 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
109 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
110 };
111
112 // If the builtin has been declared explicitly with an assembler label,
113 // use the mangled name. This differs from the plain label on platforms
114 // that prefix labels.
115 if (FD->hasAttr<AsmLabelAttr>())
116 Name = getMangledName(D);
117 else {
118 // TODO: This mutation should also be applied to other targets other than
119 // PPC, after backend supports IEEE 128-bit style libcalls.
120 if (getTriple().isPPC64() &&
121 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
122 F128Builtins.find(BuiltinID) != F128Builtins.end())
123 Name = F128Builtins[BuiltinID];
124 else
125 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
126 }
127
128 llvm::FunctionType *Ty =
129 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
130
131 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
132}
133
134/// Emit the conversions required to turn the given value into an
135/// integer of the given size.
136static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
137 QualType T, llvm::IntegerType *IntType) {
138 V = CGF.EmitToMemory(V, T);
139
140 if (V->getType()->isPointerTy())
141 return CGF.Builder.CreatePtrToInt(V, IntType);
142
143 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 143, __extension__ __PRETTY_FUNCTION__))
;
144 return V;
145}
146
147static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
148 QualType T, llvm::Type *ResultType) {
149 V = CGF.EmitFromMemory(V, T);
150
151 if (ResultType->isPointerTy())
152 return CGF.Builder.CreateIntToPtr(V, ResultType);
153
154 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 154, __extension__ __PRETTY_FUNCTION__))
;
155 return V;
156}
157
158/// Utility to insert an atomic instruction based on Intrinsic::ID
159/// and the expression node.
160static Value *MakeBinaryAtomicValue(
161 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
162 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
163
164 QualType T = E->getType();
165 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 165, __extension__ __PRETTY_FUNCTION__
))
;
166 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 167, __extension__ __PRETTY_FUNCTION__
))
167 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 167, __extension__ __PRETTY_FUNCTION__
))
;
168 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 168, __extension__ __PRETTY_FUNCTION__
))
;
169
170 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
171 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
172
173 llvm::IntegerType *IntType =
174 llvm::IntegerType::get(CGF.getLLVMContext(),
175 CGF.getContext().getTypeSize(T));
176 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
177
178 llvm::Value *Args[2];
179 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
180 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
181 llvm::Type *ValueType = Args[1]->getType();
182 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
183
184 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
185 Kind, Args[0], Args[1], Ordering);
186 return EmitFromInt(CGF, Result, T, ValueType);
187}
188
189static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
190 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
191 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
192
193 // Convert the type of the pointer to a pointer to the stored type.
194 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
195 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
196 Value *BC = CGF.Builder.CreateBitCast(
197 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
198 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
199 LV.setNontemporal(true);
200 CGF.EmitStoreOfScalar(Val, LV, false);
201 return nullptr;
202}
203
204static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
205 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
206
207 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
208 LV.setNontemporal(true);
209 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
210}
211
212static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
213 llvm::AtomicRMWInst::BinOp Kind,
214 const CallExpr *E) {
215 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
216}
217
218/// Utility to insert an atomic instruction based Intrinsic::ID and
219/// the expression node, where the return value is the result of the
220/// operation.
221static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
222 llvm::AtomicRMWInst::BinOp Kind,
223 const CallExpr *E,
224 Instruction::BinaryOps Op,
225 bool Invert = false) {
226 QualType T = E->getType();
227 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 227, __extension__ __PRETTY_FUNCTION__
))
;
228 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 229, __extension__ __PRETTY_FUNCTION__
))
229 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 229, __extension__ __PRETTY_FUNCTION__
))
;
230 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 230, __extension__ __PRETTY_FUNCTION__
))
;
231
232 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
233 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
234
235 llvm::IntegerType *IntType =
236 llvm::IntegerType::get(CGF.getLLVMContext(),
237 CGF.getContext().getTypeSize(T));
238 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
239
240 llvm::Value *Args[2];
241 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
242 llvm::Type *ValueType = Args[1]->getType();
243 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
244 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
245
246 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
247 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
248 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
249 if (Invert)
250 Result =
251 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
252 llvm::ConstantInt::getAllOnesValue(IntType));
253 Result = EmitFromInt(CGF, Result, T, ValueType);
254 return RValue::get(Result);
255}
256
257/// Utility to insert an atomic cmpxchg instruction.
258///
259/// @param CGF The current codegen function.
260/// @param E Builtin call expression to convert to cmpxchg.
261/// arg0 - address to operate on
262/// arg1 - value to compare with
263/// arg2 - new value
264/// @param ReturnBool Specifies whether to return success flag of
265/// cmpxchg result or the old value.
266///
267/// @returns result of cmpxchg, according to ReturnBool
268///
269/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
270/// invoke the function EmitAtomicCmpXchgForMSIntrin.
271static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
272 bool ReturnBool) {
273 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
274 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
275 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
276
277 llvm::IntegerType *IntType = llvm::IntegerType::get(
278 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
279 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
280
281 Value *Args[3];
282 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
283 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
284 llvm::Type *ValueType = Args[1]->getType();
285 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
286 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
287
288 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
289 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
290 llvm::AtomicOrdering::SequentiallyConsistent);
291 if (ReturnBool)
292 // Extract boolean success flag and zext it to int.
293 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
294 CGF.ConvertType(E->getType()));
295 else
296 // Extract old value and emit it using the same type as compare value.
297 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
298 ValueType);
299}
300
301/// This function should be invoked to emit atomic cmpxchg for Microsoft's
302/// _InterlockedCompareExchange* intrinsics which have the following signature:
303/// T _InterlockedCompareExchange(T volatile *Destination,
304/// T Exchange,
305/// T Comparand);
306///
307/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
308/// cmpxchg *Destination, Comparand, Exchange.
309/// So we need to swap Comparand and Exchange when invoking
310/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
311/// function MakeAtomicCmpXchgValue since it expects the arguments to be
312/// already swapped.
313
314static
315Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
316 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
317 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 317, __extension__ __PRETTY_FUNCTION__
))
;
318 assert(CGF.getContext().hasSameUnqualifiedType((static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 319, __extension__ __PRETTY_FUNCTION__
))
319 E->getType(), E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 319, __extension__ __PRETTY_FUNCTION__
))
;
320 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 321, __extension__ __PRETTY_FUNCTION__
))
321 E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 321, __extension__ __PRETTY_FUNCTION__
))
;
322 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 323, __extension__ __PRETTY_FUNCTION__
))
323 E->getArg(2)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 323, __extension__ __PRETTY_FUNCTION__
))
;
324
325 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
326 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
327 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
328
329 // For Release ordering, the failure ordering should be Monotonic.
330 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
331 AtomicOrdering::Monotonic :
332 SuccessOrdering;
333
334 // The atomic instruction is marked volatile for consistency with MSVC. This
335 // blocks the few atomics optimizations that LLVM has. If we want to optimize
336 // _Interlocked* operations in the future, we will have to remove the volatile
337 // marker.
338 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
339 Destination, Comparand, Exchange,
340 SuccessOrdering, FailureOrdering);
341 Result->setVolatile(true);
342 return CGF.Builder.CreateExtractValue(Result, 0);
343}
344
345// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
346// prototyped like this:
347//
348// unsigned char _InterlockedCompareExchange128...(
349// __int64 volatile * _Destination,
350// __int64 _ExchangeHigh,
351// __int64 _ExchangeLow,
352// __int64 * _ComparandResult);
353static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
354 const CallExpr *E,
355 AtomicOrdering SuccessOrdering) {
356 assert(E->getNumArgs() == 4)(static_cast <bool> (E->getNumArgs() == 4) ? void (0
) : __assert_fail ("E->getNumArgs() == 4", "clang/lib/CodeGen/CGBuiltin.cpp"
, 356, __extension__ __PRETTY_FUNCTION__))
;
357 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
358 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
359 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
360 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
361
362 assert(Destination->getType()->isPointerTy())(static_cast <bool> (Destination->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Destination->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 362, __extension__ __PRETTY_FUNCTION__
))
;
363 assert(!ExchangeHigh->getType()->isPointerTy())(static_cast <bool> (!ExchangeHigh->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeHigh->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 363, __extension__ __PRETTY_FUNCTION__
))
;
364 assert(!ExchangeLow->getType()->isPointerTy())(static_cast <bool> (!ExchangeLow->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeLow->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 364, __extension__ __PRETTY_FUNCTION__
))
;
365 assert(ComparandPtr->getType()->isPointerTy())(static_cast <bool> (ComparandPtr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("ComparandPtr->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 365, __extension__ __PRETTY_FUNCTION__
))
;
366
367 // For Release ordering, the failure ordering should be Monotonic.
368 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
369 ? AtomicOrdering::Monotonic
370 : SuccessOrdering;
371
372 // Convert to i128 pointers and values.
373 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
374 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
375 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
376 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
377 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
378
379 // (((i128)hi) << 64) | ((i128)lo)
380 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
381 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
382 ExchangeHigh =
383 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
384 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
385
386 // Load the comparand for the instruction.
387 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
388
389 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
390 SuccessOrdering, FailureOrdering);
391
392 // The atomic instruction is marked volatile for consistency with MSVC. This
393 // blocks the few atomics optimizations that LLVM has. If we want to optimize
394 // _Interlocked* operations in the future, we will have to remove the volatile
395 // marker.
396 CXI->setVolatile(true);
397
398 // Store the result as an outparameter.
399 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
400 ComparandResult);
401
402 // Get the success boolean and zero extend it to i8.
403 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
404 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
405}
406
407static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
408 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
409 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 409, __extension__ __PRETTY_FUNCTION__
))
;
410
411 auto *IntTy = CGF.ConvertType(E->getType());
412 auto *Result = CGF.Builder.CreateAtomicRMW(
413 AtomicRMWInst::Add,
414 CGF.EmitScalarExpr(E->getArg(0)),
415 ConstantInt::get(IntTy, 1),
416 Ordering);
417 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
418}
419
420static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
421 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
422 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 422, __extension__ __PRETTY_FUNCTION__
))
;
423
424 auto *IntTy = CGF.ConvertType(E->getType());
425 auto *Result = CGF.Builder.CreateAtomicRMW(
426 AtomicRMWInst::Sub,
427 CGF.EmitScalarExpr(E->getArg(0)),
428 ConstantInt::get(IntTy, 1),
429 Ordering);
430 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
431}
432
433// Build a plain volatile load.
434static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
435 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
436 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
437 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
438 llvm::Type *ITy =
439 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
440 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
441 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
442 Load->setVolatile(true);
443 return Load;
444}
445
446// Build a plain volatile store.
447static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
448 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
449 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
450 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
451 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
452 llvm::Type *ITy =
453 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
454 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
455 llvm::StoreInst *Store =
456 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
457 Store->setVolatile(true);
458 return Store;
459}
460
461// Emit a simple mangled intrinsic that has 1 argument and a return type
462// matching the argument type. Depending on mode, this may be a constrained
463// floating-point intrinsic.
464static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
465 const CallExpr *E, unsigned IntrinsicID,
466 unsigned ConstrainedIntrinsicID) {
467 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
468
469 if (CGF.Builder.getIsFPConstrained()) {
470 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
471 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
472 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
473 } else {
474 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
475 return CGF.Builder.CreateCall(F, Src0);
476 }
477}
478
479// Emit an intrinsic that has 2 operands of the same type as its result.
480// Depending on mode, this may be a constrained floating-point intrinsic.
481static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
482 const CallExpr *E, unsigned IntrinsicID,
483 unsigned ConstrainedIntrinsicID) {
484 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
485 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
486
487 if (CGF.Builder.getIsFPConstrained()) {
488 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
489 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
490 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
491 } else {
492 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
493 return CGF.Builder.CreateCall(F, { Src0, Src1 });
494 }
495}
496
497// Emit an intrinsic that has 3 operands of the same type as its result.
498// Depending on mode, this may be a constrained floating-point intrinsic.
499static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
500 const CallExpr *E, unsigned IntrinsicID,
501 unsigned ConstrainedIntrinsicID) {
502 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
503 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
504 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
505
506 if (CGF.Builder.getIsFPConstrained()) {
507 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
508 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
509 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
510 } else {
511 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
512 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
513 }
514}
515
516// Emit an intrinsic where all operands are of the same type as the result.
517// Depending on mode, this may be a constrained floating-point intrinsic.
518static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
519 unsigned IntrinsicID,
520 unsigned ConstrainedIntrinsicID,
521 llvm::Type *Ty,
522 ArrayRef<Value *> Args) {
523 Function *F;
524 if (CGF.Builder.getIsFPConstrained())
525 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
526 else
527 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
528
529 if (CGF.Builder.getIsFPConstrained())
530 return CGF.Builder.CreateConstrainedFPCall(F, Args);
531 else
532 return CGF.Builder.CreateCall(F, Args);
533}
534
535// Emit a simple mangled intrinsic that has 1 argument and a return type
536// matching the argument type.
537static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
538 unsigned IntrinsicID,
539 llvm::StringRef Name = "") {
540 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
541
542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543 return CGF.Builder.CreateCall(F, Src0, Name);
544}
545
546// Emit an intrinsic that has 2 operands of the same type as its result.
547static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
548 const CallExpr *E,
549 unsigned IntrinsicID) {
550 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552
553 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554 return CGF.Builder.CreateCall(F, { Src0, Src1 });
555}
556
557// Emit an intrinsic that has 3 operands of the same type as its result.
558static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
559 const CallExpr *E,
560 unsigned IntrinsicID) {
561 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
562 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
563 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
564
565 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
566 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
567}
568
569// Emit an intrinsic that has 1 float or double operand, and 1 integer.
570static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
571 const CallExpr *E,
572 unsigned IntrinsicID) {
573 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
574 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
575
576 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
577 return CGF.Builder.CreateCall(F, {Src0, Src1});
578}
579
580// Emit an intrinsic that has overloaded integer result and fp operand.
581static Value *
582emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
583 unsigned IntrinsicID,
584 unsigned ConstrainedIntrinsicID) {
585 llvm::Type *ResultType = CGF.ConvertType(E->getType());
586 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
587
588 if (CGF.Builder.getIsFPConstrained()) {
589 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
590 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
591 {ResultType, Src0->getType()});
592 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
593 } else {
594 Function *F =
595 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
596 return CGF.Builder.CreateCall(F, Src0);
597 }
598}
599
600/// EmitFAbs - Emit a call to @llvm.fabs().
601static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
602 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
603 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
604 Call->setDoesNotAccessMemory();
605 return Call;
606}
607
608/// Emit the computation of the sign bit for a floating point value. Returns
609/// the i1 sign bit value.
610static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
611 LLVMContext &C = CGF.CGM.getLLVMContext();
612
613 llvm::Type *Ty = V->getType();
614 int Width = Ty->getPrimitiveSizeInBits();
615 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
616 V = CGF.Builder.CreateBitCast(V, IntTy);
617 if (Ty->isPPC_FP128Ty()) {
618 // We want the sign bit of the higher-order double. The bitcast we just
619 // did works as if the double-double was stored to memory and then
620 // read as an i128. The "store" will put the higher-order double in the
621 // lower address in both little- and big-Endian modes, but the "load"
622 // will treat those bits as a different part of the i128: the low bits in
623 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
624 // we need to shift the high bits down to the low before truncating.
625 Width >>= 1;
626 if (CGF.getTarget().isBigEndian()) {
627 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
628 V = CGF.Builder.CreateLShr(V, ShiftCst);
629 }
630 // We are truncating value in order to extract the higher-order
631 // double, which we will be using to extract the sign from.
632 IntTy = llvm::IntegerType::get(C, Width);
633 V = CGF.Builder.CreateTrunc(V, IntTy);
634 }
635 Value *Zero = llvm::Constant::getNullValue(IntTy);
636 return CGF.Builder.CreateICmpSLT(V, Zero);
637}
638
639static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
640 const CallExpr *E, llvm::Constant *calleeValue) {
641 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
642 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
643}
644
645/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
646/// depending on IntrinsicID.
647///
648/// \arg CGF The current codegen function.
649/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
650/// \arg X The first argument to the llvm.*.with.overflow.*.
651/// \arg Y The second argument to the llvm.*.with.overflow.*.
652/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
653/// \returns The result (i.e. sum/product) returned by the intrinsic.
654static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
655 const llvm::Intrinsic::ID IntrinsicID,
656 llvm::Value *X, llvm::Value *Y,
657 llvm::Value *&Carry) {
658 // Make sure we have integers of the same width.
659 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 661, __extension__ __PRETTY_FUNCTION__
))
660 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 661, __extension__ __PRETTY_FUNCTION__
))
661 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 661, __extension__ __PRETTY_FUNCTION__
))
;
662
663 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
664 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
665 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
666 return CGF.Builder.CreateExtractValue(Tmp, 0);
667}
668
669static Value *emitRangedBuiltin(CodeGenFunction &CGF,
670 unsigned IntrinsicID,
671 int low, int high) {
672 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
673 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
674 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
675 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
676 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
677 return Call;
678}
679
680namespace {
681 struct WidthAndSignedness {
682 unsigned Width;
683 bool Signed;
684 };
685}
686
687static WidthAndSignedness
688getIntegerWidthAndSignedness(const clang::ASTContext &context,
689 const clang::QualType Type) {
690 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 690, __extension__ __PRETTY_FUNCTION__
))
;
691 unsigned Width = Type->isBooleanType() ? 1
692 : Type->isBitIntType() ? context.getIntWidth(Type)
693 : context.getTypeInfo(Type).Width;
694 bool Signed = Type->isSignedIntegerType();
695 return {Width, Signed};
696}
697
698// Given one or more integer types, this function produces an integer type that
699// encompasses them: any value in one of the given types could be expressed in
700// the encompassing type.
701static struct WidthAndSignedness
702EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
703 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 703, __extension__ __PRETTY_FUNCTION__
))
;
704
705 // If any of the given types is signed, we must return a signed type.
706 bool Signed = false;
707 for (const auto &Type : Types) {
708 Signed |= Type.Signed;
709 }
710
711 // The encompassing type must have a width greater than or equal to the width
712 // of the specified types. Additionally, if the encompassing type is signed,
713 // its width must be strictly greater than the width of any unsigned types
714 // given.
715 unsigned Width = 0;
716 for (const auto &Type : Types) {
717 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
718 if (Width < MinWidth) {
719 Width = MinWidth;
720 }
721 }
722
723 return {Width, Signed};
724}
725
726Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
727 llvm::Type *DestType = Int8PtrTy;
728 if (ArgValue->getType() != DestType)
729 ArgValue =
730 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
731
732 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
733 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
734}
735
736/// Checks if using the result of __builtin_object_size(p, @p From) in place of
737/// __builtin_object_size(p, @p To) is correct
738static bool areBOSTypesCompatible(int From, int To) {
739 // Note: Our __builtin_object_size implementation currently treats Type=0 and
740 // Type=2 identically. Encoding this implementation detail here may make
741 // improving __builtin_object_size difficult in the future, so it's omitted.
742 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
743}
744
745static llvm::Value *
746getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
747 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
748}
749
750llvm::Value *
751CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
752 llvm::IntegerType *ResType,
753 llvm::Value *EmittedE,
754 bool IsDynamic) {
755 uint64_t ObjectSize;
756 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
757 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
758 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
759}
760
761/// Returns a Value corresponding to the size of the given expression.
762/// This Value may be either of the following:
763/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
764/// it)
765/// - A call to the @llvm.objectsize intrinsic
766///
767/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
768/// and we wouldn't otherwise try to reference a pass_object_size parameter,
769/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
770llvm::Value *
771CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
772 llvm::IntegerType *ResType,
773 llvm::Value *EmittedE, bool IsDynamic) {
774 // We need to reference an argument if the pointer is a parameter with the
775 // pass_object_size attribute.
776 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
777 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
778 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
779 if (Param != nullptr && PS != nullptr &&
780 areBOSTypesCompatible(PS->getType(), Type)) {
781 auto Iter = SizeArguments.find(Param);
782 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
;
783
784 const ImplicitParamDecl *D = Iter->second;
785 auto DIter = LocalDeclMap.find(D);
786 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 786, __extension__ __PRETTY_FUNCTION__))
;
787
788 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
789 getContext().getSizeType(), E->getBeginLoc());
790 }
791 }
792
793 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
794 // evaluate E for side-effects. In either case, we shouldn't lower to
795 // @llvm.objectsize.
796 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
797 return getDefaultBuiltinObjectSizeResult(Type, ResType);
798
799 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
800 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 801, __extension__ __PRETTY_FUNCTION__
))
801 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 801, __extension__ __PRETTY_FUNCTION__
))
;
802
803 Function *F =
804 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
805
806 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
807 Value *Min = Builder.getInt1((Type & 2) != 0);
808 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
809 Value *NullIsUnknown = Builder.getTrue();
810 Value *Dynamic = Builder.getInt1(IsDynamic);
811 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
812}
813
814namespace {
815/// A struct to generically describe a bit test intrinsic.
816struct BitTest {
817 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
818 enum InterlockingKind : uint8_t {
819 Unlocked,
820 Sequential,
821 Acquire,
822 Release,
823 NoFence
824 };
825
826 ActionKind Action;
827 InterlockingKind Interlocking;
828 bool Is64Bit;
829
830 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
831};
832} // namespace
833
834BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
835 switch (BuiltinID) {
836 // Main portable variants.
837 case Builtin::BI_bittest:
838 return {TestOnly, Unlocked, false};
839 case Builtin::BI_bittestandcomplement:
840 return {Complement, Unlocked, false};
841 case Builtin::BI_bittestandreset:
842 return {Reset, Unlocked, false};
843 case Builtin::BI_bittestandset:
844 return {Set, Unlocked, false};
845 case Builtin::BI_interlockedbittestandreset:
846 return {Reset, Sequential, false};
847 case Builtin::BI_interlockedbittestandset:
848 return {Set, Sequential, false};
849
850 // X86-specific 64-bit variants.
851 case Builtin::BI_bittest64:
852 return {TestOnly, Unlocked, true};
853 case Builtin::BI_bittestandcomplement64:
854 return {Complement, Unlocked, true};
855 case Builtin::BI_bittestandreset64:
856 return {Reset, Unlocked, true};
857 case Builtin::BI_bittestandset64:
858 return {Set, Unlocked, true};
859 case Builtin::BI_interlockedbittestandreset64:
860 return {Reset, Sequential, true};
861 case Builtin::BI_interlockedbittestandset64:
862 return {Set, Sequential, true};
863
864 // ARM/AArch64-specific ordering variants.
865 case Builtin::BI_interlockedbittestandset_acq:
866 return {Set, Acquire, false};
867 case Builtin::BI_interlockedbittestandset_rel:
868 return {Set, Release, false};
869 case Builtin::BI_interlockedbittestandset_nf:
870 return {Set, NoFence, false};
871 case Builtin::BI_interlockedbittestandreset_acq:
872 return {Reset, Acquire, false};
873 case Builtin::BI_interlockedbittestandreset_rel:
874 return {Reset, Release, false};
875 case Builtin::BI_interlockedbittestandreset_nf:
876 return {Reset, NoFence, false};
877 }
878 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 878)
;
879}
880
881static char bitActionToX86BTCode(BitTest::ActionKind A) {
882 switch (A) {
883 case BitTest::TestOnly: return '\0';
884 case BitTest::Complement: return 'c';
885 case BitTest::Reset: return 'r';
886 case BitTest::Set: return 's';
887 }
888 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "clang/lib/CodeGen/CGBuiltin.cpp"
, 888)
;
889}
890
891static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
892 BitTest BT,
893 const CallExpr *E, Value *BitBase,
894 Value *BitPos) {
895 char Action = bitActionToX86BTCode(BT.Action);
896 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
897
898 // Build the assembly.
899 SmallString<64> Asm;
900 raw_svector_ostream AsmOS(Asm);
901 if (BT.Interlocking != BitTest::Unlocked)
902 AsmOS << "lock ";
903 AsmOS << "bt";
904 if (Action)
905 AsmOS << Action;
906 AsmOS << SizeSuffix << " $2, ($1)";
907
908 // Build the constraints. FIXME: We should support immediates when possible.
909 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
910 std::string MachineClobbers = CGF.getTarget().getClobbers();
911 if (!MachineClobbers.empty()) {
912 Constraints += ',';
913 Constraints += MachineClobbers;
914 }
915 llvm::IntegerType *IntType = llvm::IntegerType::get(
916 CGF.getLLVMContext(),
917 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
918 llvm::Type *IntPtrType = IntType->getPointerTo();
919 llvm::FunctionType *FTy =
920 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
921
922 llvm::InlineAsm *IA =
923 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
924 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
925}
926
927static llvm::AtomicOrdering
928getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
929 switch (I) {
930 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
931 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
932 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
933 case BitTest::Release: return llvm::AtomicOrdering::Release;
934 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
935 }
936 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "clang/lib/CodeGen/CGBuiltin.cpp"
, 936)
;
937}
938
939/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
940/// bits and a bit position and read and optionally modify the bit at that
941/// position. The position index can be arbitrarily large, i.e. it can be larger
942/// than 31 or 63, so we need an indexed load in the general case.
943static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
944 unsigned BuiltinID,
945 const CallExpr *E) {
946 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
947 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
948
949 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
950
951 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
952 // indexing operation internally. Use them if possible.
953 if (CGF.getTarget().getTriple().isX86())
954 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
955
956 // Otherwise, use generic code to load one byte and test the bit. Use all but
957 // the bottom three bits as the array index, and the bottom three bits to form
958 // a mask.
959 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
960 Value *ByteIndex = CGF.Builder.CreateAShr(
961 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
962 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
963 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
964 ByteIndex, "bittest.byteaddr"),
965 CGF.Int8Ty, CharUnits::One());
966 Value *PosLow =
967 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
968 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
969
970 // The updating instructions will need a mask.
971 Value *Mask = nullptr;
972 if (BT.Action != BitTest::TestOnly) {
973 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
974 "bittest.mask");
975 }
976
977 // Check the action and ordering of the interlocked intrinsics.
978 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
979
980 Value *OldByte = nullptr;
981 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
982 // Emit a combined atomicrmw load/store operation for the interlocked
983 // intrinsics.
984 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
985 if (BT.Action == BitTest::Reset) {
986 Mask = CGF.Builder.CreateNot(Mask);
987 RMWOp = llvm::AtomicRMWInst::And;
988 }
989 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
990 Ordering);
991 } else {
992 // Emit a plain load for the non-interlocked intrinsics.
993 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
994 Value *NewByte = nullptr;
995 switch (BT.Action) {
996 case BitTest::TestOnly:
997 // Don't store anything.
998 break;
999 case BitTest::Complement:
1000 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1001 break;
1002 case BitTest::Reset:
1003 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1004 break;
1005 case BitTest::Set:
1006 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1007 break;
1008 }
1009 if (NewByte)
1010 CGF.Builder.CreateStore(NewByte, ByteAddr);
1011 }
1012
1013 // However we loaded the old byte, either by plain load or atomicrmw, shift
1014 // the bit into the low position and mask it to 0 or 1.
1015 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1016 return CGF.Builder.CreateAnd(
1017 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1018}
1019
1020static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1021 unsigned BuiltinID,
1022 const CallExpr *E) {
1023 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1024
1025 SmallString<64> Asm;
1026 raw_svector_ostream AsmOS(Asm);
1027 llvm::IntegerType *RetType = CGF.Int32Ty;
1028
1029 switch (BuiltinID) {
1030 case clang::PPC::BI__builtin_ppc_ldarx:
1031 AsmOS << "ldarx ";
1032 RetType = CGF.Int64Ty;
1033 break;
1034 case clang::PPC::BI__builtin_ppc_lwarx:
1035 AsmOS << "lwarx ";
1036 RetType = CGF.Int32Ty;
1037 break;
1038 case clang::PPC::BI__builtin_ppc_lharx:
1039 AsmOS << "lharx ";
1040 RetType = CGF.Int16Ty;
1041 break;
1042 case clang::PPC::BI__builtin_ppc_lbarx:
1043 AsmOS << "lbarx ";
1044 RetType = CGF.Int8Ty;
1045 break;
1046 default:
1047 llvm_unreachable("Expected only PowerPC load reserve intrinsics")::llvm::llvm_unreachable_internal("Expected only PowerPC load reserve intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1047)
;
1048 }
1049
1050 AsmOS << "$0, ${1:y}";
1051
1052 std::string Constraints = "=r,*Z,~{memory}";
1053 std::string MachineClobbers = CGF.getTarget().getClobbers();
1054 if (!MachineClobbers.empty()) {
1055 Constraints += ',';
1056 Constraints += MachineClobbers;
1057 }
1058
1059 llvm::Type *IntPtrType = RetType->getPointerTo();
1060 llvm::FunctionType *FTy =
1061 llvm::FunctionType::get(RetType, {IntPtrType}, false);
1062
1063 llvm::InlineAsm *IA =
1064 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1065 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1066 CI->addParamAttr(
1067 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1068 return CI;
1069}
1070
1071namespace {
1072enum class MSVCSetJmpKind {
1073 _setjmpex,
1074 _setjmp3,
1075 _setjmp
1076};
1077}
1078
1079/// MSVC handles setjmp a bit differently on different platforms. On every
1080/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1081/// parameters can be passed as variadic arguments, but we always pass none.
1082static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1083 const CallExpr *E) {
1084 llvm::Value *Arg1 = nullptr;
1085 llvm::Type *Arg1Ty = nullptr;
1086 StringRef Name;
1087 bool IsVarArg = false;
1088 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1089 Name = "_setjmp3";
1090 Arg1Ty = CGF.Int32Ty;
1091 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1092 IsVarArg = true;
1093 } else {
1094 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1095 Arg1Ty = CGF.Int8PtrTy;
1096 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1097 Arg1 = CGF.Builder.CreateCall(
1098 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1099 } else
1100 Arg1 = CGF.Builder.CreateCall(
1101 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1102 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1103 }
1104
1105 // Mark the call site and declaration with ReturnsTwice.
1106 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1107 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1108 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1109 llvm::Attribute::ReturnsTwice);
1110 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1111 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1112 ReturnsTwiceAttr, /*Local=*/true);
1113
1114 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1115 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1116 llvm::Value *Args[] = {Buf, Arg1};
1117 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1118 CB->setAttributes(ReturnsTwiceAttr);
1119 return RValue::get(CB);
1120}
1121
1122// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1123// we handle them here.
1124enum class CodeGenFunction::MSVCIntrin {
1125 _BitScanForward,
1126 _BitScanReverse,
1127 _InterlockedAnd,
1128 _InterlockedDecrement,
1129 _InterlockedExchange,
1130 _InterlockedExchangeAdd,
1131 _InterlockedExchangeSub,
1132 _InterlockedIncrement,
1133 _InterlockedOr,
1134 _InterlockedXor,
1135 _InterlockedExchangeAdd_acq,
1136 _InterlockedExchangeAdd_rel,
1137 _InterlockedExchangeAdd_nf,
1138 _InterlockedExchange_acq,
1139 _InterlockedExchange_rel,
1140 _InterlockedExchange_nf,
1141 _InterlockedCompareExchange_acq,
1142 _InterlockedCompareExchange_rel,
1143 _InterlockedCompareExchange_nf,
1144 _InterlockedCompareExchange128,
1145 _InterlockedCompareExchange128_acq,
1146 _InterlockedCompareExchange128_rel,
1147 _InterlockedCompareExchange128_nf,
1148 _InterlockedOr_acq,
1149 _InterlockedOr_rel,
1150 _InterlockedOr_nf,
1151 _InterlockedXor_acq,
1152 _InterlockedXor_rel,
1153 _InterlockedXor_nf,
1154 _InterlockedAnd_acq,
1155 _InterlockedAnd_rel,
1156 _InterlockedAnd_nf,
1157 _InterlockedIncrement_acq,
1158 _InterlockedIncrement_rel,
1159 _InterlockedIncrement_nf,
1160 _InterlockedDecrement_acq,
1161 _InterlockedDecrement_rel,
1162 _InterlockedDecrement_nf,
1163 __fastfail,
1164};
1165
1166static Optional<CodeGenFunction::MSVCIntrin>
1167translateArmToMsvcIntrin(unsigned BuiltinID) {
1168 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1169 switch (BuiltinID) {
1170 default:
1171 return None;
1172 case ARM::BI_BitScanForward:
1173 case ARM::BI_BitScanForward64:
1174 return MSVCIntrin::_BitScanForward;
1175 case ARM::BI_BitScanReverse:
1176 case ARM::BI_BitScanReverse64:
1177 return MSVCIntrin::_BitScanReverse;
1178 case ARM::BI_InterlockedAnd64:
1179 return MSVCIntrin::_InterlockedAnd;
1180 case ARM::BI_InterlockedExchange64:
1181 return MSVCIntrin::_InterlockedExchange;
1182 case ARM::BI_InterlockedExchangeAdd64:
1183 return MSVCIntrin::_InterlockedExchangeAdd;
1184 case ARM::BI_InterlockedExchangeSub64:
1185 return MSVCIntrin::_InterlockedExchangeSub;
1186 case ARM::BI_InterlockedOr64:
1187 return MSVCIntrin::_InterlockedOr;
1188 case ARM::BI_InterlockedXor64:
1189 return MSVCIntrin::_InterlockedXor;
1190 case ARM::BI_InterlockedDecrement64:
1191 return MSVCIntrin::_InterlockedDecrement;
1192 case ARM::BI_InterlockedIncrement64:
1193 return MSVCIntrin::_InterlockedIncrement;
1194 case ARM::BI_InterlockedExchangeAdd8_acq:
1195 case ARM::BI_InterlockedExchangeAdd16_acq:
1196 case ARM::BI_InterlockedExchangeAdd_acq:
1197 case ARM::BI_InterlockedExchangeAdd64_acq:
1198 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1199 case ARM::BI_InterlockedExchangeAdd8_rel:
1200 case ARM::BI_InterlockedExchangeAdd16_rel:
1201 case ARM::BI_InterlockedExchangeAdd_rel:
1202 case ARM::BI_InterlockedExchangeAdd64_rel:
1203 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1204 case ARM::BI_InterlockedExchangeAdd8_nf:
1205 case ARM::BI_InterlockedExchangeAdd16_nf:
1206 case ARM::BI_InterlockedExchangeAdd_nf:
1207 case ARM::BI_InterlockedExchangeAdd64_nf:
1208 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1209 case ARM::BI_InterlockedExchange8_acq:
1210 case ARM::BI_InterlockedExchange16_acq:
1211 case ARM::BI_InterlockedExchange_acq:
1212 case ARM::BI_InterlockedExchange64_acq:
1213 return MSVCIntrin::_InterlockedExchange_acq;
1214 case ARM::BI_InterlockedExchange8_rel:
1215 case ARM::BI_InterlockedExchange16_rel:
1216 case ARM::BI_InterlockedExchange_rel:
1217 case ARM::BI_InterlockedExchange64_rel:
1218 return MSVCIntrin::_InterlockedExchange_rel;
1219 case ARM::BI_InterlockedExchange8_nf:
1220 case ARM::BI_InterlockedExchange16_nf:
1221 case ARM::BI_InterlockedExchange_nf:
1222 case ARM::BI_InterlockedExchange64_nf:
1223 return MSVCIntrin::_InterlockedExchange_nf;
1224 case ARM::BI_InterlockedCompareExchange8_acq:
1225 case ARM::BI_InterlockedCompareExchange16_acq:
1226 case ARM::BI_InterlockedCompareExchange_acq:
1227 case ARM::BI_InterlockedCompareExchange64_acq:
1228 return MSVCIntrin::_InterlockedCompareExchange_acq;
1229 case ARM::BI_InterlockedCompareExchange8_rel:
1230 case ARM::BI_InterlockedCompareExchange16_rel:
1231 case ARM::BI_InterlockedCompareExchange_rel:
1232 case ARM::BI_InterlockedCompareExchange64_rel:
1233 return MSVCIntrin::_InterlockedCompareExchange_rel;
1234 case ARM::BI_InterlockedCompareExchange8_nf:
1235 case ARM::BI_InterlockedCompareExchange16_nf:
1236 case ARM::BI_InterlockedCompareExchange_nf:
1237 case ARM::BI_InterlockedCompareExchange64_nf:
1238 return MSVCIntrin::_InterlockedCompareExchange_nf;
1239 case ARM::BI_InterlockedOr8_acq:
1240 case ARM::BI_InterlockedOr16_acq:
1241 case ARM::BI_InterlockedOr_acq:
1242 case ARM::BI_InterlockedOr64_acq:
1243 return MSVCIntrin::_InterlockedOr_acq;
1244 case ARM::BI_InterlockedOr8_rel:
1245 case ARM::BI_InterlockedOr16_rel:
1246 case ARM::BI_InterlockedOr_rel:
1247 case ARM::BI_InterlockedOr64_rel:
1248 return MSVCIntrin::_InterlockedOr_rel;
1249 case ARM::BI_InterlockedOr8_nf:
1250 case ARM::BI_InterlockedOr16_nf:
1251 case ARM::BI_InterlockedOr_nf:
1252 case ARM::BI_InterlockedOr64_nf:
1253 return MSVCIntrin::_InterlockedOr_nf;
1254 case ARM::BI_InterlockedXor8_acq:
1255 case ARM::BI_InterlockedXor16_acq:
1256 case ARM::BI_InterlockedXor_acq:
1257 case ARM::BI_InterlockedXor64_acq:
1258 return MSVCIntrin::_InterlockedXor_acq;
1259 case ARM::BI_InterlockedXor8_rel:
1260 case ARM::BI_InterlockedXor16_rel:
1261 case ARM::BI_InterlockedXor_rel:
1262 case ARM::BI_InterlockedXor64_rel:
1263 return MSVCIntrin::_InterlockedXor_rel;
1264 case ARM::BI_InterlockedXor8_nf:
1265 case ARM::BI_InterlockedXor16_nf:
1266 case ARM::BI_InterlockedXor_nf:
1267 case ARM::BI_InterlockedXor64_nf:
1268 return MSVCIntrin::_InterlockedXor_nf;
1269 case ARM::BI_InterlockedAnd8_acq:
1270 case ARM::BI_InterlockedAnd16_acq:
1271 case ARM::BI_InterlockedAnd_acq:
1272 case ARM::BI_InterlockedAnd64_acq:
1273 return MSVCIntrin::_InterlockedAnd_acq;
1274 case ARM::BI_InterlockedAnd8_rel:
1275 case ARM::BI_InterlockedAnd16_rel:
1276 case ARM::BI_InterlockedAnd_rel:
1277 case ARM::BI_InterlockedAnd64_rel:
1278 return MSVCIntrin::_InterlockedAnd_rel;
1279 case ARM::BI_InterlockedAnd8_nf:
1280 case ARM::BI_InterlockedAnd16_nf:
1281 case ARM::BI_InterlockedAnd_nf:
1282 case ARM::BI_InterlockedAnd64_nf:
1283 return MSVCIntrin::_InterlockedAnd_nf;
1284 case ARM::BI_InterlockedIncrement16_acq:
1285 case ARM::BI_InterlockedIncrement_acq:
1286 case ARM::BI_InterlockedIncrement64_acq:
1287 return MSVCIntrin::_InterlockedIncrement_acq;
1288 case ARM::BI_InterlockedIncrement16_rel:
1289 case ARM::BI_InterlockedIncrement_rel:
1290 case ARM::BI_InterlockedIncrement64_rel:
1291 return MSVCIntrin::_InterlockedIncrement_rel;
1292 case ARM::BI_InterlockedIncrement16_nf:
1293 case ARM::BI_InterlockedIncrement_nf:
1294 case ARM::BI_InterlockedIncrement64_nf:
1295 return MSVCIntrin::_InterlockedIncrement_nf;
1296 case ARM::BI_InterlockedDecrement16_acq:
1297 case ARM::BI_InterlockedDecrement_acq:
1298 case ARM::BI_InterlockedDecrement64_acq:
1299 return MSVCIntrin::_InterlockedDecrement_acq;
1300 case ARM::BI_InterlockedDecrement16_rel:
1301 case ARM::BI_InterlockedDecrement_rel:
1302 case ARM::BI_InterlockedDecrement64_rel:
1303 return MSVCIntrin::_InterlockedDecrement_rel;
1304 case ARM::BI_InterlockedDecrement16_nf:
1305 case ARM::BI_InterlockedDecrement_nf:
1306 case ARM::BI_InterlockedDecrement64_nf:
1307 return MSVCIntrin::_InterlockedDecrement_nf;
1308 }
1309 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1309)
;
1310}
1311
1312static Optional<CodeGenFunction::MSVCIntrin>
1313translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1314 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1315 switch (BuiltinID) {
1316 default:
1317 return None;
1318 case AArch64::BI_BitScanForward:
1319 case AArch64::BI_BitScanForward64:
1320 return MSVCIntrin::_BitScanForward;
1321 case AArch64::BI_BitScanReverse:
1322 case AArch64::BI_BitScanReverse64:
1323 return MSVCIntrin::_BitScanReverse;
1324 case AArch64::BI_InterlockedAnd64:
1325 return MSVCIntrin::_InterlockedAnd;
1326 case AArch64::BI_InterlockedExchange64:
1327 return MSVCIntrin::_InterlockedExchange;
1328 case AArch64::BI_InterlockedExchangeAdd64:
1329 return MSVCIntrin::_InterlockedExchangeAdd;
1330 case AArch64::BI_InterlockedExchangeSub64:
1331 return MSVCIntrin::_InterlockedExchangeSub;
1332 case AArch64::BI_InterlockedOr64:
1333 return MSVCIntrin::_InterlockedOr;
1334 case AArch64::BI_InterlockedXor64:
1335 return MSVCIntrin::_InterlockedXor;
1336 case AArch64::BI_InterlockedDecrement64:
1337 return MSVCIntrin::_InterlockedDecrement;
1338 case AArch64::BI_InterlockedIncrement64:
1339 return MSVCIntrin::_InterlockedIncrement;
1340 case AArch64::BI_InterlockedExchangeAdd8_acq:
1341 case AArch64::BI_InterlockedExchangeAdd16_acq:
1342 case AArch64::BI_InterlockedExchangeAdd_acq:
1343 case AArch64::BI_InterlockedExchangeAdd64_acq:
1344 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1345 case AArch64::BI_InterlockedExchangeAdd8_rel:
1346 case AArch64::BI_InterlockedExchangeAdd16_rel:
1347 case AArch64::BI_InterlockedExchangeAdd_rel:
1348 case AArch64::BI_InterlockedExchangeAdd64_rel:
1349 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1350 case AArch64::BI_InterlockedExchangeAdd8_nf:
1351 case AArch64::BI_InterlockedExchangeAdd16_nf:
1352 case AArch64::BI_InterlockedExchangeAdd_nf:
1353 case AArch64::BI_InterlockedExchangeAdd64_nf:
1354 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1355 case AArch64::BI_InterlockedExchange8_acq:
1356 case AArch64::BI_InterlockedExchange16_acq:
1357 case AArch64::BI_InterlockedExchange_acq:
1358 case AArch64::BI_InterlockedExchange64_acq:
1359 return MSVCIntrin::_InterlockedExchange_acq;
1360 case AArch64::BI_InterlockedExchange8_rel:
1361 case AArch64::BI_InterlockedExchange16_rel:
1362 case AArch64::BI_InterlockedExchange_rel:
1363 case AArch64::BI_InterlockedExchange64_rel:
1364 return MSVCIntrin::_InterlockedExchange_rel;
1365 case AArch64::BI_InterlockedExchange8_nf:
1366 case AArch64::BI_InterlockedExchange16_nf:
1367 case AArch64::BI_InterlockedExchange_nf:
1368 case AArch64::BI_InterlockedExchange64_nf:
1369 return MSVCIntrin::_InterlockedExchange_nf;
1370 case AArch64::BI_InterlockedCompareExchange8_acq:
1371 case AArch64::BI_InterlockedCompareExchange16_acq:
1372 case AArch64::BI_InterlockedCompareExchange_acq:
1373 case AArch64::BI_InterlockedCompareExchange64_acq:
1374 return MSVCIntrin::_InterlockedCompareExchange_acq;
1375 case AArch64::BI_InterlockedCompareExchange8_rel:
1376 case AArch64::BI_InterlockedCompareExchange16_rel:
1377 case AArch64::BI_InterlockedCompareExchange_rel:
1378 case AArch64::BI_InterlockedCompareExchange64_rel:
1379 return MSVCIntrin::_InterlockedCompareExchange_rel;
1380 case AArch64::BI_InterlockedCompareExchange8_nf:
1381 case AArch64::BI_InterlockedCompareExchange16_nf:
1382 case AArch64::BI_InterlockedCompareExchange_nf:
1383 case AArch64::BI_InterlockedCompareExchange64_nf:
1384 return MSVCIntrin::_InterlockedCompareExchange_nf;
1385 case AArch64::BI_InterlockedCompareExchange128:
1386 return MSVCIntrin::_InterlockedCompareExchange128;
1387 case AArch64::BI_InterlockedCompareExchange128_acq:
1388 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1389 case AArch64::BI_InterlockedCompareExchange128_nf:
1390 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1391 case AArch64::BI_InterlockedCompareExchange128_rel:
1392 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1393 case AArch64::BI_InterlockedOr8_acq:
1394 case AArch64::BI_InterlockedOr16_acq:
1395 case AArch64::BI_InterlockedOr_acq:
1396 case AArch64::BI_InterlockedOr64_acq:
1397 return MSVCIntrin::_InterlockedOr_acq;
1398 case AArch64::BI_InterlockedOr8_rel:
1399 case AArch64::BI_InterlockedOr16_rel:
1400 case AArch64::BI_InterlockedOr_rel:
1401 case AArch64::BI_InterlockedOr64_rel:
1402 return MSVCIntrin::_InterlockedOr_rel;
1403 case AArch64::BI_InterlockedOr8_nf:
1404 case AArch64::BI_InterlockedOr16_nf:
1405 case AArch64::BI_InterlockedOr_nf:
1406 case AArch64::BI_InterlockedOr64_nf:
1407 return MSVCIntrin::_InterlockedOr_nf;
1408 case AArch64::BI_InterlockedXor8_acq:
1409 case AArch64::BI_InterlockedXor16_acq:
1410 case AArch64::BI_InterlockedXor_acq:
1411 case AArch64::BI_InterlockedXor64_acq:
1412 return MSVCIntrin::_InterlockedXor_acq;
1413 case AArch64::BI_InterlockedXor8_rel:
1414 case AArch64::BI_InterlockedXor16_rel:
1415 case AArch64::BI_InterlockedXor_rel:
1416 case AArch64::BI_InterlockedXor64_rel:
1417 return MSVCIntrin::_InterlockedXor_rel;
1418 case AArch64::BI_InterlockedXor8_nf:
1419 case AArch64::BI_InterlockedXor16_nf:
1420 case AArch64::BI_InterlockedXor_nf:
1421 case AArch64::BI_InterlockedXor64_nf:
1422 return MSVCIntrin::_InterlockedXor_nf;
1423 case AArch64::BI_InterlockedAnd8_acq:
1424 case AArch64::BI_InterlockedAnd16_acq:
1425 case AArch64::BI_InterlockedAnd_acq:
1426 case AArch64::BI_InterlockedAnd64_acq:
1427 return MSVCIntrin::_InterlockedAnd_acq;
1428 case AArch64::BI_InterlockedAnd8_rel:
1429 case AArch64::BI_InterlockedAnd16_rel:
1430 case AArch64::BI_InterlockedAnd_rel:
1431 case AArch64::BI_InterlockedAnd64_rel:
1432 return MSVCIntrin::_InterlockedAnd_rel;
1433 case AArch64::BI_InterlockedAnd8_nf:
1434 case AArch64::BI_InterlockedAnd16_nf:
1435 case AArch64::BI_InterlockedAnd_nf:
1436 case AArch64::BI_InterlockedAnd64_nf:
1437 return MSVCIntrin::_InterlockedAnd_nf;
1438 case AArch64::BI_InterlockedIncrement16_acq:
1439 case AArch64::BI_InterlockedIncrement_acq:
1440 case AArch64::BI_InterlockedIncrement64_acq:
1441 return MSVCIntrin::_InterlockedIncrement_acq;
1442 case AArch64::BI_InterlockedIncrement16_rel:
1443 case AArch64::BI_InterlockedIncrement_rel:
1444 case AArch64::BI_InterlockedIncrement64_rel:
1445 return MSVCIntrin::_InterlockedIncrement_rel;
1446 case AArch64::BI_InterlockedIncrement16_nf:
1447 case AArch64::BI_InterlockedIncrement_nf:
1448 case AArch64::BI_InterlockedIncrement64_nf:
1449 return MSVCIntrin::_InterlockedIncrement_nf;
1450 case AArch64::BI_InterlockedDecrement16_acq:
1451 case AArch64::BI_InterlockedDecrement_acq:
1452 case AArch64::BI_InterlockedDecrement64_acq:
1453 return MSVCIntrin::_InterlockedDecrement_acq;
1454 case AArch64::BI_InterlockedDecrement16_rel:
1455 case AArch64::BI_InterlockedDecrement_rel:
1456 case AArch64::BI_InterlockedDecrement64_rel:
1457 return MSVCIntrin::_InterlockedDecrement_rel;
1458 case AArch64::BI_InterlockedDecrement16_nf:
1459 case AArch64::BI_InterlockedDecrement_nf:
1460 case AArch64::BI_InterlockedDecrement64_nf:
1461 return MSVCIntrin::_InterlockedDecrement_nf;
1462 }
1463 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1463)
;
1464}
1465
1466static Optional<CodeGenFunction::MSVCIntrin>
1467translateX86ToMsvcIntrin(unsigned BuiltinID) {
1468 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1469 switch (BuiltinID) {
1470 default:
1471 return None;
1472 case clang::X86::BI_BitScanForward:
1473 case clang::X86::BI_BitScanForward64:
1474 return MSVCIntrin::_BitScanForward;
1475 case clang::X86::BI_BitScanReverse:
1476 case clang::X86::BI_BitScanReverse64:
1477 return MSVCIntrin::_BitScanReverse;
1478 case clang::X86::BI_InterlockedAnd64:
1479 return MSVCIntrin::_InterlockedAnd;
1480 case clang::X86::BI_InterlockedCompareExchange128:
1481 return MSVCIntrin::_InterlockedCompareExchange128;
1482 case clang::X86::BI_InterlockedExchange64:
1483 return MSVCIntrin::_InterlockedExchange;
1484 case clang::X86::BI_InterlockedExchangeAdd64:
1485 return MSVCIntrin::_InterlockedExchangeAdd;
1486 case clang::X86::BI_InterlockedExchangeSub64:
1487 return MSVCIntrin::_InterlockedExchangeSub;
1488 case clang::X86::BI_InterlockedOr64:
1489 return MSVCIntrin::_InterlockedOr;
1490 case clang::X86::BI_InterlockedXor64:
1491 return MSVCIntrin::_InterlockedXor;
1492 case clang::X86::BI_InterlockedDecrement64:
1493 return MSVCIntrin::_InterlockedDecrement;
1494 case clang::X86::BI_InterlockedIncrement64:
1495 return MSVCIntrin::_InterlockedIncrement;
1496 }
1497 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1497)
;
1498}
1499
1500// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1501Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1502 const CallExpr *E) {
1503 switch (BuiltinID) {
1504 case MSVCIntrin::_BitScanForward:
1505 case MSVCIntrin::_BitScanReverse: {
1506 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1507 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1508
1509 llvm::Type *ArgType = ArgValue->getType();
1510 llvm::Type *IndexType = IndexAddress.getElementType();
1511 llvm::Type *ResultType = ConvertType(E->getType());
1512
1513 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1514 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1515 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1516
1517 BasicBlock *Begin = Builder.GetInsertBlock();
1518 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1519 Builder.SetInsertPoint(End);
1520 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1521
1522 Builder.SetInsertPoint(Begin);
1523 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1524 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1525 Builder.CreateCondBr(IsZero, End, NotZero);
1526 Result->addIncoming(ResZero, Begin);
1527
1528 Builder.SetInsertPoint(NotZero);
1529
1530 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1531 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1532 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1533 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1534 Builder.CreateStore(ZeroCount, IndexAddress, false);
1535 } else {
1536 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1537 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1538
1539 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1540 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1541 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1542 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1543 Builder.CreateStore(Index, IndexAddress, false);
1544 }
1545 Builder.CreateBr(End);
1546 Result->addIncoming(ResOne, NotZero);
1547
1548 Builder.SetInsertPoint(End);
1549 return Result;
1550 }
1551 case MSVCIntrin::_InterlockedAnd:
1552 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1553 case MSVCIntrin::_InterlockedExchange:
1554 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1555 case MSVCIntrin::_InterlockedExchangeAdd:
1556 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1557 case MSVCIntrin::_InterlockedExchangeSub:
1558 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1559 case MSVCIntrin::_InterlockedOr:
1560 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1561 case MSVCIntrin::_InterlockedXor:
1562 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1563 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1564 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1565 AtomicOrdering::Acquire);
1566 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1567 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1568 AtomicOrdering::Release);
1569 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1570 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1571 AtomicOrdering::Monotonic);
1572 case MSVCIntrin::_InterlockedExchange_acq:
1573 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1574 AtomicOrdering::Acquire);
1575 case MSVCIntrin::_InterlockedExchange_rel:
1576 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1577 AtomicOrdering::Release);
1578 case MSVCIntrin::_InterlockedExchange_nf:
1579 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1580 AtomicOrdering::Monotonic);
1581 case MSVCIntrin::_InterlockedCompareExchange_acq:
1582 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1583 case MSVCIntrin::_InterlockedCompareExchange_rel:
1584 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1585 case MSVCIntrin::_InterlockedCompareExchange_nf:
1586 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1587 case MSVCIntrin::_InterlockedCompareExchange128:
1588 return EmitAtomicCmpXchg128ForMSIntrin(
1589 *this, E, AtomicOrdering::SequentiallyConsistent);
1590 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1591 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1592 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1593 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1594 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1595 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1596 case MSVCIntrin::_InterlockedOr_acq:
1597 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1598 AtomicOrdering::Acquire);
1599 case MSVCIntrin::_InterlockedOr_rel:
1600 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1601 AtomicOrdering::Release);
1602 case MSVCIntrin::_InterlockedOr_nf:
1603 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1604 AtomicOrdering::Monotonic);
1605 case MSVCIntrin::_InterlockedXor_acq:
1606 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1607 AtomicOrdering::Acquire);
1608 case MSVCIntrin::_InterlockedXor_rel:
1609 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1610 AtomicOrdering::Release);
1611 case MSVCIntrin::_InterlockedXor_nf:
1612 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1613 AtomicOrdering::Monotonic);
1614 case MSVCIntrin::_InterlockedAnd_acq:
1615 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1616 AtomicOrdering::Acquire);
1617 case MSVCIntrin::_InterlockedAnd_rel:
1618 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1619 AtomicOrdering::Release);
1620 case MSVCIntrin::_InterlockedAnd_nf:
1621 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1622 AtomicOrdering::Monotonic);
1623 case MSVCIntrin::_InterlockedIncrement_acq:
1624 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1625 case MSVCIntrin::_InterlockedIncrement_rel:
1626 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1627 case MSVCIntrin::_InterlockedIncrement_nf:
1628 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1629 case MSVCIntrin::_InterlockedDecrement_acq:
1630 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1631 case MSVCIntrin::_InterlockedDecrement_rel:
1632 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1633 case MSVCIntrin::_InterlockedDecrement_nf:
1634 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1635
1636 case MSVCIntrin::_InterlockedDecrement:
1637 return EmitAtomicDecrementValue(*this, E);
1638 case MSVCIntrin::_InterlockedIncrement:
1639 return EmitAtomicIncrementValue(*this, E);
1640
1641 case MSVCIntrin::__fastfail: {
1642 // Request immediate process termination from the kernel. The instruction
1643 // sequences to do this are documented on MSDN:
1644 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1645 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1646 StringRef Asm, Constraints;
1647 switch (ISA) {
1648 default:
1649 ErrorUnsupported(E, "__fastfail call for this architecture");
1650 break;
1651 case llvm::Triple::x86:
1652 case llvm::Triple::x86_64:
1653 Asm = "int $$0x29";
1654 Constraints = "{cx}";
1655 break;
1656 case llvm::Triple::thumb:
1657 Asm = "udf #251";
1658 Constraints = "{r0}";
1659 break;
1660 case llvm::Triple::aarch64:
1661 Asm = "brk #0xF003";
1662 Constraints = "{w0}";
1663 }
1664 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1665 llvm::InlineAsm *IA =
1666 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1667 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1668 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1669 llvm::Attribute::NoReturn);
1670 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1671 CI->setAttributes(NoReturnAttr);
1672 return CI;
1673 }
1674 }
1675 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1675)
;
1676}
1677
1678namespace {
1679// ARC cleanup for __builtin_os_log_format
1680struct CallObjCArcUse final : EHScopeStack::Cleanup {
1681 CallObjCArcUse(llvm::Value *object) : object(object) {}
1682 llvm::Value *object;
1683
1684 void Emit(CodeGenFunction &CGF, Flags flags) override {
1685 CGF.EmitARCIntrinsicUse(object);
1686 }
1687};
1688}
1689
1690Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1691 BuiltinCheckKind Kind) {
1692 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1693, __extension__ __PRETTY_FUNCTION__
))
1693 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1693, __extension__ __PRETTY_FUNCTION__
))
;
1694
1695 Value *ArgValue = EmitScalarExpr(E);
1696 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1697 return ArgValue;
1698
1699 SanitizerScope SanScope(this);
1700 Value *Cond = Builder.CreateICmpNE(
1701 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1702 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1703 SanitizerHandler::InvalidBuiltin,
1704 {EmitCheckSourceLocation(E->getExprLoc()),
1705 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1706 None);
1707 return ArgValue;
1708}
1709
1710/// Get the argument type for arguments to os_log_helper.
1711static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1712 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1713 return C.getCanonicalType(UnsignedTy);
1714}
1715
1716llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1717 const analyze_os_log::OSLogBufferLayout &Layout,
1718 CharUnits BufferAlignment) {
1719 ASTContext &Ctx = getContext();
1720
1721 llvm::SmallString<64> Name;
1722 {
1723 raw_svector_ostream OS(Name);
1724 OS << "__os_log_helper";
1725 OS << "_" << BufferAlignment.getQuantity();
1726 OS << "_" << int(Layout.getSummaryByte());
1727 OS << "_" << int(Layout.getNumArgsByte());
1728 for (const auto &Item : Layout.Items)
1729 OS << "_" << int(Item.getSizeByte()) << "_"
1730 << int(Item.getDescriptorByte());
1731 }
1732
1733 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1734 return F;
1735
1736 llvm::SmallVector<QualType, 4> ArgTys;
1737 FunctionArgList Args;
1738 Args.push_back(ImplicitParamDecl::Create(
1739 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1740 ImplicitParamDecl::Other));
1741 ArgTys.emplace_back(Ctx.VoidPtrTy);
1742
1743 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1744 char Size = Layout.Items[I].getSizeByte();
1745 if (!Size)
1746 continue;
1747
1748 QualType ArgTy = getOSLogArgType(Ctx, Size);
1749 Args.push_back(ImplicitParamDecl::Create(
1750 Ctx, nullptr, SourceLocation(),
1751 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1752 ImplicitParamDecl::Other));
1753 ArgTys.emplace_back(ArgTy);
1754 }
1755
1756 QualType ReturnTy = Ctx.VoidTy;
1757
1758 // The helper function has linkonce_odr linkage to enable the linker to merge
1759 // identical functions. To ensure the merging always happens, 'noinline' is
1760 // attached to the function when compiling with -Oz.
1761 const CGFunctionInfo &FI =
1762 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1763 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1764 llvm::Function *Fn = llvm::Function::Create(
1765 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1766 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1767 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1768 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1769 Fn->setDoesNotThrow();
1770
1771 // Attach 'noinline' at -Oz.
1772 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1773 Fn->addFnAttr(llvm::Attribute::NoInline);
1774
1775 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1776 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1777
1778 // Create a scope with an artificial location for the body of this function.
1779 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1780
1781 CharUnits Offset;
1782 Address BufAddr =
1783 Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1784 BufferAlignment);
1785 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1786 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1787 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1788 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1789
1790 unsigned I = 1;
1791 for (const auto &Item : Layout.Items) {
1792 Builder.CreateStore(
1793 Builder.getInt8(Item.getDescriptorByte()),
1794 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1795 Builder.CreateStore(
1796 Builder.getInt8(Item.getSizeByte()),
1797 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1798
1799 CharUnits Size = Item.size();
1800 if (!Size.getQuantity())
1801 continue;
1802
1803 Address Arg = GetAddrOfLocalVar(Args[I]);
1804 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1805 Addr =
1806 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1807 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1808 Offset += Size;
1809 ++I;
1810 }
1811
1812 FinishFunction();
1813
1814 return Fn;
1815}
1816
1817RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1818 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1819, __extension__ __PRETTY_FUNCTION__
))
1819 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1819, __extension__ __PRETTY_FUNCTION__
))
;
1820 ASTContext &Ctx = getContext();
1821 analyze_os_log::OSLogBufferLayout Layout;
1822 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1823 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1824 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1825
1826 // Ignore argument 1, the format string. It is not currently used.
1827 CallArgList Args;
1828 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1829
1830 for (const auto &Item : Layout.Items) {
1831 int Size = Item.getSizeByte();
1832 if (!Size)
1833 continue;
1834
1835 llvm::Value *ArgVal;
1836
1837 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1838 uint64_t Val = 0;
1839 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1840 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1841 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1842 } else if (const Expr *TheExpr = Item.getExpr()) {
1843 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1844
1845 // If a temporary object that requires destruction after the full
1846 // expression is passed, push a lifetime-extended cleanup to extend its
1847 // lifetime to the end of the enclosing block scope.
1848 auto LifetimeExtendObject = [&](const Expr *E) {
1849 E = E->IgnoreParenCasts();
1850 // Extend lifetimes of objects returned by function calls and message
1851 // sends.
1852
1853 // FIXME: We should do this in other cases in which temporaries are
1854 // created including arguments of non-ARC types (e.g., C++
1855 // temporaries).
1856 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1857 return true;
1858 return false;
1859 };
1860
1861 if (TheExpr->getType()->isObjCRetainableType() &&
1862 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1863 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1864, __extension__ __PRETTY_FUNCTION__
))
1864 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1864, __extension__ __PRETTY_FUNCTION__
))
;
1865 if (!isa<Constant>(ArgVal)) {
1866 CleanupKind Cleanup = getARCCleanupKind();
1867 QualType Ty = TheExpr->getType();
1868 Address Alloca = Address::invalid();
1869 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1870 ArgVal = EmitARCRetain(Ty, ArgVal);
1871 Builder.CreateStore(ArgVal, Addr);
1872 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1873 CodeGenFunction::destroyARCStrongPrecise,
1874 Cleanup & EHCleanup);
1875
1876 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1877 // argument has to be alive.
1878 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1879 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1880 }
1881 }
1882 } else {
1883 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1884 }
1885
1886 unsigned ArgValSize =
1887 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1888 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1889 ArgValSize);
1890 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1891 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1892 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1893 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1894 Args.add(RValue::get(ArgVal), ArgTy);
1895 }
1896
1897 const CGFunctionInfo &FI =
1898 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1899 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1900 Layout, BufAddr.getAlignment());
1901 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1902 return RValue::get(BufAddr.getPointer());
1903}
1904
1905static bool isSpecialUnsignedMultiplySignedResult(
1906 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1907 WidthAndSignedness ResultInfo) {
1908 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1909 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1910 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1911}
1912
1913static RValue EmitCheckedUnsignedMultiplySignedResult(
1914 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1915 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1916 const clang::Expr *ResultArg, QualType ResultQTy,
1917 WidthAndSignedness ResultInfo) {
1918 assert(isSpecialUnsignedMultiplySignedResult((static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
1919 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
1920 "Cannot specialize this multiply")(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1920, __extension__ __PRETTY_FUNCTION__
))
;
1921
1922 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1923 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1924
1925 llvm::Value *HasOverflow;
1926 llvm::Value *Result = EmitOverflowIntrinsic(
1927 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1928
1929 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1930 // however, since the original builtin had a signed result, we need to report
1931 // an overflow when the result is greater than INT_MAX.
1932 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1933 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1934
1935 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1936 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1937
1938 bool isVolatile =
1939 ResultArg->getType()->getPointeeType().isVolatileQualified();
1940 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1941 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1942 isVolatile);
1943 return RValue::get(HasOverflow);
1944}
1945
1946/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1947static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1948 WidthAndSignedness Op1Info,
1949 WidthAndSignedness Op2Info,
1950 WidthAndSignedness ResultInfo) {
1951 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1952 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1953 Op1Info.Signed != Op2Info.Signed;
1954}
1955
1956/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1957/// the generic checked-binop irgen.
1958static RValue
1959EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1960 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1961 WidthAndSignedness Op2Info,
1962 const clang::Expr *ResultArg, QualType ResultQTy,
1963 WidthAndSignedness ResultInfo) {
1964 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
1965 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
1966 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1966, __extension__ __PRETTY_FUNCTION__
))
;
1967
1968 // Emit the signed and unsigned operands.
1969 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1970 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1971 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1972 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1973 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1974 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1975
1976 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1977 if (SignedOpWidth < UnsignedOpWidth)
1978 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1979 if (UnsignedOpWidth < SignedOpWidth)
1980 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1981
1982 llvm::Type *OpTy = Signed->getType();
1983 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1984 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1985 llvm::Type *ResTy = ResultPtr.getElementType();
1986 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1987
1988 // Take the absolute value of the signed operand.
1989 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1990 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1991 llvm::Value *AbsSigned =
1992 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1993
1994 // Perform a checked unsigned multiplication.
1995 llvm::Value *UnsignedOverflow;
1996 llvm::Value *UnsignedResult =
1997 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1998 Unsigned, UnsignedOverflow);
1999
2000 llvm::Value *Overflow, *Result;
2001 if (ResultInfo.Signed) {
2002 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2003 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2004 auto IntMax =
2005 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
2006 llvm::Value *MaxResult =
2007 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2008 CGF.Builder.CreateZExt(IsNegative, OpTy));
2009 llvm::Value *SignedOverflow =
2010 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2011 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2012
2013 // Prepare the signed result (possibly by negating it).
2014 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2015 llvm::Value *SignedResult =
2016 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2017 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2018 } else {
2019 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2020 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2021 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2022 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2023 if (ResultInfo.Width < OpWidth) {
2024 auto IntMax =
2025 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2026 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2027 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2028 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2029 }
2030
2031 // Negate the product if it would be negative in infinite precision.
2032 Result = CGF.Builder.CreateSelect(
2033 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2034
2035 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2036 }
2037 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2037, __extension__ __PRETTY_FUNCTION__
))
;
2038
2039 bool isVolatile =
2040 ResultArg->getType()->getPointeeType().isVolatileQualified();
2041 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2042 isVolatile);
2043 return RValue::get(Overflow);
2044}
2045
2046static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
2047 LValue RecordLV, CharUnits Align,
2048 llvm::FunctionCallee Func, int Lvl) {
2049 ASTContext &Context = CGF.getContext();
2050 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
2051 std::string Pad = std::string(Lvl * 4, ' ');
2052 std::string ElementPad = std::string((Lvl + 1) * 4, ' ');
2053
2054 PrintingPolicy Policy(Context.getLangOpts());
2055 Policy.AnonymousTagLocations = false;
2056 Value *GString = CGF.Builder.CreateGlobalStringPtr(
2057 llvm::Twine(Pad).concat(RType.getAsString(Policy)).concat(" {\n").str());
2058 Value *Res = CGF.Builder.CreateCall(Func, {GString});
2059
2060 static llvm::DenseMap<QualType, const char *> Types;
2061 if (Types.empty()) {
2062 Types[Context.CharTy] = "%c";
2063 Types[Context.BoolTy] = "%d";
2064 Types[Context.SignedCharTy] = "%hhd";
2065 Types[Context.UnsignedCharTy] = "%hhu";
2066 Types[Context.IntTy] = "%d";
2067 Types[Context.UnsignedIntTy] = "%u";
2068 Types[Context.LongTy] = "%ld";
2069 Types[Context.UnsignedLongTy] = "%lu";
2070 Types[Context.LongLongTy] = "%lld";
2071 Types[Context.UnsignedLongLongTy] = "%llu";
2072 Types[Context.ShortTy] = "%hd";
2073 Types[Context.UnsignedShortTy] = "%hu";
2074 Types[Context.VoidPtrTy] = "%p";
2075 Types[Context.FloatTy] = "%f";
2076 Types[Context.DoubleTy] = "%f";
2077 Types[Context.LongDoubleTy] = "%Lf";
2078 Types[Context.getPointerType(Context.CharTy)] = "%s";
2079 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2080 }
2081
2082 for (const auto *FD : RD->fields()) {
2083 Value *TmpRes = nullptr;
2084
2085 std::string Format = llvm::Twine(ElementPad)
2086 .concat(FD->getType().getAsString())
2087 .concat(llvm::Twine(' '))
2088 .concat(FD->getNameAsString())
2089 .str();
2090
2091 if (FD->isBitField()) {
2092 unsigned BitfieldWidth = FD->getBitWidthValue(CGF.getContext());
2093
2094 // If current field is a unnamed bitfield, we should dump only one ' '
2095 // between type-name and ':'
2096 if (!FD->getDeclName().isEmpty())
2097 Format += ' ';
2098 Format += llvm::Twine(": ").concat(llvm::Twine(BitfieldWidth)).str();
2099
2100 // If current field is a zero-width bitfield, we just dump a string like
2101 // 'type-name : 0'
2102 if (FD->isZeroSize(CGF.getContext())) {
2103 Format += "\n";
2104 GString = CGF.Builder.CreateGlobalStringPtr(Format);
2105 TmpRes = CGF.Builder.CreateCall(Func, {GString});
2106 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2107 continue;
2108 }
2109 }
2110
2111 LValue FieldLV = CGF.EmitLValueForField(RecordLV, FD);
2112 QualType CanonicalType =
2113 FD->getType().getUnqualifiedType().getCanonicalType();
2114
2115 // We check whether we are in a recursive type
2116 if (CanonicalType->isRecordType()) {
2117 TmpRes = dumpRecord(CGF, CanonicalType, FieldLV, Align, Func, Lvl + 1);
2118 Res = CGF.Builder.CreateAdd(TmpRes, Res);
2119 continue;
2120 }
2121
2122 // We try to determine the best format to print the current field
2123 const char *TypeFormat = Types.find(CanonicalType) == Types.end()
2124 ? Types[Context.VoidPtrTy]
2125 : Types[CanonicalType];
2126
2127 GString = CGF.Builder.CreateGlobalStringPtr(llvm::Twine(Format)
2128 .concat(" = ")
2129 .concat(TypeFormat)
2130 .concat(llvm::Twine('\n'))
2131 .str());
2132
2133 RValue RV = FD->isBitField()
2134 ? CGF.EmitLoadOfBitfieldLValue(FieldLV, FD->getLocation())
2135 : CGF.EmitLoadOfLValue(FieldLV, FD->getLocation());
2136 TmpRes = CGF.Builder.CreateCall(Func, {GString, RV.getScalarVal()});
2137 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2138 }
2139
2140 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2141 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2142 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2143 return Res;
2144}
2145
2146static bool
2147TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2148 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2149 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2150 Ty = Ctx.getBaseElementType(Arr);
2151
2152 const auto *Record = Ty->getAsCXXRecordDecl();
2153 if (!Record)
2154 return false;
2155
2156 // We've already checked this type, or are in the process of checking it.
2157 if (!Seen.insert(Record).second)
2158 return false;
2159
2160 assert(Record->hasDefinition() &&(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2161, __extension__ __PRETTY_FUNCTION__
))
2161 "Incomplete types should already be diagnosed")(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2161, __extension__ __PRETTY_FUNCTION__
))
;
2162
2163 if (Record->isDynamicClass())
2164 return true;
2165
2166 for (FieldDecl *F : Record->fields()) {
2167 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2168 return true;
2169 }
2170 return false;
2171}
2172
2173/// Determine if the specified type requires laundering by checking if it is a
2174/// dynamic class type or contains a subobject which is a dynamic class type.
2175static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2176 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2177 return false;
2178 llvm::SmallPtrSet<const Decl *, 16> Seen;
2179 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2180}
2181
2182RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2183 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2184 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2185
2186 // The builtin's shift arg may have a different type than the source arg and
2187 // result, but the LLVM intrinsic uses the same type for all values.
2188 llvm::Type *Ty = Src->getType();
2189 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2190
2191 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2192 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2193 Function *F = CGM.getIntrinsic(IID, Ty);
2194 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2195}
2196
2197// Map math builtins for long-double to f128 version.
2198static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2199 switch (BuiltinID) {
2200#define MUTATE_LDBL(func) \
2201 case Builtin::BI__builtin_##func##l: \
2202 return Builtin::BI__builtin_##func##f128;
2203 MUTATE_LDBL(sqrt)
2204 MUTATE_LDBL(cbrt)
2205 MUTATE_LDBL(fabs)
2206 MUTATE_LDBL(log)
2207 MUTATE_LDBL(log2)
2208 MUTATE_LDBL(log10)
2209 MUTATE_LDBL(log1p)
2210 MUTATE_LDBL(logb)
2211 MUTATE_LDBL(exp)
2212 MUTATE_LDBL(exp2)
2213 MUTATE_LDBL(expm1)
2214 MUTATE_LDBL(fdim)
2215 MUTATE_LDBL(hypot)
2216 MUTATE_LDBL(ilogb)
2217 MUTATE_LDBL(pow)
2218 MUTATE_LDBL(fmin)
2219 MUTATE_LDBL(fmax)
2220 MUTATE_LDBL(ceil)
2221 MUTATE_LDBL(trunc)
2222 MUTATE_LDBL(rint)
2223 MUTATE_LDBL(nearbyint)
2224 MUTATE_LDBL(round)
2225 MUTATE_LDBL(floor)
2226 MUTATE_LDBL(lround)
2227 MUTATE_LDBL(llround)
2228 MUTATE_LDBL(lrint)
2229 MUTATE_LDBL(llrint)
2230 MUTATE_LDBL(fmod)
2231 MUTATE_LDBL(modf)
2232 MUTATE_LDBL(nan)
2233 MUTATE_LDBL(nans)
2234 MUTATE_LDBL(inf)
2235 MUTATE_LDBL(fma)
2236 MUTATE_LDBL(sin)
2237 MUTATE_LDBL(cos)
2238 MUTATE_LDBL(tan)
2239 MUTATE_LDBL(sinh)
2240 MUTATE_LDBL(cosh)
2241 MUTATE_LDBL(tanh)
2242 MUTATE_LDBL(asin)
2243 MUTATE_LDBL(acos)
2244 MUTATE_LDBL(atan)
2245 MUTATE_LDBL(asinh)
2246 MUTATE_LDBL(acosh)
2247 MUTATE_LDBL(atanh)
2248 MUTATE_LDBL(atan2)
2249 MUTATE_LDBL(erf)
2250 MUTATE_LDBL(erfc)
2251 MUTATE_LDBL(ldexp)
2252 MUTATE_LDBL(frexp)
2253 MUTATE_LDBL(huge_val)
2254 MUTATE_LDBL(copysign)
2255 MUTATE_LDBL(nextafter)
2256 MUTATE_LDBL(nexttoward)
2257 MUTATE_LDBL(remainder)
2258 MUTATE_LDBL(remquo)
2259 MUTATE_LDBL(scalbln)
2260 MUTATE_LDBL(scalbn)
2261 MUTATE_LDBL(tgamma)
2262 MUTATE_LDBL(lgamma)
2263#undef MUTATE_LDBL
2264 default:
2265 return BuiltinID;
2266 }
2267}
2268
2269RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2270 const CallExpr *E,
2271 ReturnValueSlot ReturnValue) {
2272 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2273 // See if we can constant fold this builtin. If so, don't emit it at all.
2274 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2275 Expr::EvalResult Result;
2276 if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2277 !Result.hasSideEffects()) {
2278 if (Result.Val.isInt())
2279 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2280 Result.Val.getInt()));
2281 if (Result.Val.isFloat())
2282 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2283 Result.Val.getFloat()));
2284 }
2285
2286 // If current long-double semantics is IEEE 128-bit, replace math builtins
2287 // of long-double with f128 equivalent.
2288 // TODO: This mutation should also be applied to other targets other than PPC,
2289 // after backend supports IEEE 128-bit style libcalls.
2290 if (getTarget().getTriple().isPPC64() &&
2291 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2292 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2293
2294 // If the builtin has been declared explicitly with an assembler label,
2295 // disable the specialized emitting below. Ideally we should communicate the
2296 // rename in IR, or at least avoid generating the intrinsic calls that are
2297 // likely to get lowered to the renamed library functions.
2298 const unsigned BuiltinIDIfNoAsmLabel =
2299 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2300
2301 // There are LLVM math intrinsics/instructions corresponding to math library
2302 // functions except the LLVM op will never set errno while the math library
2303 // might. Also, math builtins have the same semantics as their math library
2304 // twins. Thus, we can transform math library and builtin calls to their
2305 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2306 if (FD->hasAttr<ConstAttr>()) {
2307 switch (BuiltinIDIfNoAsmLabel) {
2308 case Builtin::BIceil:
2309 case Builtin::BIceilf:
2310 case Builtin::BIceill:
2311 case Builtin::BI__builtin_ceil:
2312 case Builtin::BI__builtin_ceilf:
2313 case Builtin::BI__builtin_ceilf16:
2314 case Builtin::BI__builtin_ceill:
2315 case Builtin::BI__builtin_ceilf128:
2316 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2317 Intrinsic::ceil,
2318 Intrinsic::experimental_constrained_ceil));
2319
2320 case Builtin::BIcopysign:
2321 case Builtin::BIcopysignf:
2322 case Builtin::BIcopysignl:
2323 case Builtin::BI__builtin_copysign:
2324 case Builtin::BI__builtin_copysignf:
2325 case Builtin::BI__builtin_copysignf16:
2326 case Builtin::BI__builtin_copysignl:
2327 case Builtin::BI__builtin_copysignf128:
2328 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2329
2330 case Builtin::BIcos:
2331 case Builtin::BIcosf:
2332 case Builtin::BIcosl:
2333 case Builtin::BI__builtin_cos:
2334 case Builtin::BI__builtin_cosf:
2335 case Builtin::BI__builtin_cosf16:
2336 case Builtin::BI__builtin_cosl:
2337 case Builtin::BI__builtin_cosf128:
2338 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2339 Intrinsic::cos,
2340 Intrinsic::experimental_constrained_cos));
2341
2342 case Builtin::BIexp:
2343 case Builtin::BIexpf:
2344 case Builtin::BIexpl:
2345 case Builtin::BI__builtin_exp:
2346 case Builtin::BI__builtin_expf:
2347 case Builtin::BI__builtin_expf16:
2348 case Builtin::BI__builtin_expl:
2349 case Builtin::BI__builtin_expf128:
2350 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2351 Intrinsic::exp,
2352 Intrinsic::experimental_constrained_exp));
2353
2354 case Builtin::BIexp2:
2355 case Builtin::BIexp2f:
2356 case Builtin::BIexp2l:
2357 case Builtin::BI__builtin_exp2:
2358 case Builtin::BI__builtin_exp2f:
2359 case Builtin::BI__builtin_exp2f16:
2360 case Builtin::BI__builtin_exp2l:
2361 case Builtin::BI__builtin_exp2f128:
2362 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2363 Intrinsic::exp2,
2364 Intrinsic::experimental_constrained_exp2));
2365
2366 case Builtin::BIfabs:
2367 case Builtin::BIfabsf:
2368 case Builtin::BIfabsl:
2369 case Builtin::BI__builtin_fabs:
2370 case Builtin::BI__builtin_fabsf:
2371 case Builtin::BI__builtin_fabsf16:
2372 case Builtin::BI__builtin_fabsl:
2373 case Builtin::BI__builtin_fabsf128:
2374 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2375
2376 case Builtin::BIfloor:
2377 case Builtin::BIfloorf:
2378 case Builtin::BIfloorl:
2379 case Builtin::BI__builtin_floor:
2380 case Builtin::BI__builtin_floorf:
2381 case Builtin::BI__builtin_floorf16:
2382 case Builtin::BI__builtin_floorl:
2383 case Builtin::BI__builtin_floorf128:
2384 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2385 Intrinsic::floor,
2386 Intrinsic::experimental_constrained_floor));
2387
2388 case Builtin::BIfma:
2389 case Builtin::BIfmaf:
2390 case Builtin::BIfmal:
2391 case Builtin::BI__builtin_fma:
2392 case Builtin::BI__builtin_fmaf:
2393 case Builtin::BI__builtin_fmaf16:
2394 case Builtin::BI__builtin_fmal:
2395 case Builtin::BI__builtin_fmaf128:
2396 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2397 Intrinsic::fma,
2398 Intrinsic::experimental_constrained_fma));
2399
2400 case Builtin::BIfmax:
2401 case Builtin::BIfmaxf:
2402 case Builtin::BIfmaxl:
2403 case Builtin::BI__builtin_fmax:
2404 case Builtin::BI__builtin_fmaxf:
2405 case Builtin::BI__builtin_fmaxf16:
2406 case Builtin::BI__builtin_fmaxl:
2407 case Builtin::BI__builtin_fmaxf128:
2408 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2409 Intrinsic::maxnum,
2410 Intrinsic::experimental_constrained_maxnum));
2411
2412 case Builtin::BIfmin:
2413 case Builtin::BIfminf:
2414 case Builtin::BIfminl:
2415 case Builtin::BI__builtin_fmin:
2416 case Builtin::BI__builtin_fminf:
2417 case Builtin::BI__builtin_fminf16:
2418 case Builtin::BI__builtin_fminl:
2419 case Builtin::BI__builtin_fminf128:
2420 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2421 Intrinsic::minnum,
2422 Intrinsic::experimental_constrained_minnum));
2423
2424 // fmod() is a special-case. It maps to the frem instruction rather than an
2425 // LLVM intrinsic.
2426 case Builtin::BIfmod:
2427 case Builtin::BIfmodf:
2428 case Builtin::BIfmodl:
2429 case Builtin::BI__builtin_fmod:
2430 case Builtin::BI__builtin_fmodf:
2431 case Builtin::BI__builtin_fmodf16:
2432 case Builtin::BI__builtin_fmodl:
2433 case Builtin::BI__builtin_fmodf128: {
2434 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2435 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2436 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2437 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2438 }
2439
2440 case Builtin::BIlog:
2441 case Builtin::BIlogf:
2442 case Builtin::BIlogl:
2443 case Builtin::BI__builtin_log:
2444 case Builtin::BI__builtin_logf:
2445 case Builtin::BI__builtin_logf16:
2446 case Builtin::BI__builtin_logl:
2447 case Builtin::BI__builtin_logf128:
2448 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2449 Intrinsic::log,
2450 Intrinsic::experimental_constrained_log));
2451
2452 case Builtin::BIlog10:
2453 case Builtin::BIlog10f:
2454 case Builtin::BIlog10l:
2455 case Builtin::BI__builtin_log10:
2456 case Builtin::BI__builtin_log10f:
2457 case Builtin::BI__builtin_log10f16:
2458 case Builtin::BI__builtin_log10l:
2459 case Builtin::BI__builtin_log10f128:
2460 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2461 Intrinsic::log10,
2462 Intrinsic::experimental_constrained_log10));
2463
2464 case Builtin::BIlog2:
2465 case Builtin::BIlog2f:
2466 case Builtin::BIlog2l:
2467 case Builtin::BI__builtin_log2:
2468 case Builtin::BI__builtin_log2f:
2469 case Builtin::BI__builtin_log2f16:
2470 case Builtin::BI__builtin_log2l:
2471 case Builtin::BI__builtin_log2f128:
2472 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2473 Intrinsic::log2,
2474 Intrinsic::experimental_constrained_log2));
2475
2476 case Builtin::BInearbyint:
2477 case Builtin::BInearbyintf:
2478 case Builtin::BInearbyintl:
2479 case Builtin::BI__builtin_nearbyint:
2480 case Builtin::BI__builtin_nearbyintf:
2481 case Builtin::BI__builtin_nearbyintl:
2482 case Builtin::BI__builtin_nearbyintf128:
2483 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2484 Intrinsic::nearbyint,
2485 Intrinsic::experimental_constrained_nearbyint));
2486
2487 case Builtin::BIpow:
2488 case Builtin::BIpowf:
2489 case Builtin::BIpowl:
2490 case Builtin::BI__builtin_pow:
2491 case Builtin::BI__builtin_powf:
2492 case Builtin::BI__builtin_powf16:
2493 case Builtin::BI__builtin_powl:
2494 case Builtin::BI__builtin_powf128:
2495 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2496 Intrinsic::pow,
2497 Intrinsic::experimental_constrained_pow));
2498
2499 case Builtin::BIrint:
2500 case Builtin::BIrintf:
2501 case Builtin::BIrintl:
2502 case Builtin::BI__builtin_rint:
2503 case Builtin::BI__builtin_rintf:
2504 case Builtin::BI__builtin_rintf16:
2505 case Builtin::BI__builtin_rintl:
2506 case Builtin::BI__builtin_rintf128:
2507 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2508 Intrinsic::rint,
2509 Intrinsic::experimental_constrained_rint));
2510
2511 case Builtin::BIround:
2512 case Builtin::BIroundf:
2513 case Builtin::BIroundl:
2514 case Builtin::BI__builtin_round:
2515 case Builtin::BI__builtin_roundf:
2516 case Builtin::BI__builtin_roundf16:
2517 case Builtin::BI__builtin_roundl:
2518 case Builtin::BI__builtin_roundf128:
2519 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2520 Intrinsic::round,
2521 Intrinsic::experimental_constrained_round));
2522
2523 case Builtin::BIsin:
2524 case Builtin::BIsinf:
2525 case Builtin::BIsinl:
2526 case Builtin::BI__builtin_sin:
2527 case Builtin::BI__builtin_sinf:
2528 case Builtin::BI__builtin_sinf16:
2529 case Builtin::BI__builtin_sinl:
2530 case Builtin::BI__builtin_sinf128:
2531 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2532 Intrinsic::sin,
2533 Intrinsic::experimental_constrained_sin));
2534
2535 case Builtin::BIsqrt:
2536 case Builtin::BIsqrtf:
2537 case Builtin::BIsqrtl:
2538 case Builtin::BI__builtin_sqrt:
2539 case Builtin::BI__builtin_sqrtf:
2540 case Builtin::BI__builtin_sqrtf16:
2541 case Builtin::BI__builtin_sqrtl:
2542 case Builtin::BI__builtin_sqrtf128:
2543 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2544 Intrinsic::sqrt,
2545 Intrinsic::experimental_constrained_sqrt));
2546
2547 case Builtin::BItrunc:
2548 case Builtin::BItruncf:
2549 case Builtin::BItruncl:
2550 case Builtin::BI__builtin_trunc:
2551 case Builtin::BI__builtin_truncf:
2552 case Builtin::BI__builtin_truncf16:
2553 case Builtin::BI__builtin_truncl:
2554 case Builtin::BI__builtin_truncf128:
2555 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2556 Intrinsic::trunc,
2557 Intrinsic::experimental_constrained_trunc));
2558
2559 case Builtin::BIlround:
2560 case Builtin::BIlroundf:
2561 case Builtin::BIlroundl:
2562 case Builtin::BI__builtin_lround:
2563 case Builtin::BI__builtin_lroundf:
2564 case Builtin::BI__builtin_lroundl:
2565 case Builtin::BI__builtin_lroundf128:
2566 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2567 *this, E, Intrinsic::lround,
2568 Intrinsic::experimental_constrained_lround));
2569
2570 case Builtin::BIllround:
2571 case Builtin::BIllroundf:
2572 case Builtin::BIllroundl:
2573 case Builtin::BI__builtin_llround:
2574 case Builtin::BI__builtin_llroundf:
2575 case Builtin::BI__builtin_llroundl:
2576 case Builtin::BI__builtin_llroundf128:
2577 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2578 *this, E, Intrinsic::llround,
2579 Intrinsic::experimental_constrained_llround));
2580
2581 case Builtin::BIlrint:
2582 case Builtin::BIlrintf:
2583 case Builtin::BIlrintl:
2584 case Builtin::BI__builtin_lrint:
2585 case Builtin::BI__builtin_lrintf:
2586 case Builtin::BI__builtin_lrintl:
2587 case Builtin::BI__builtin_lrintf128:
2588 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2589 *this, E, Intrinsic::lrint,
2590 Intrinsic::experimental_constrained_lrint));
2591
2592 case Builtin::BIllrint:
2593 case Builtin::BIllrintf:
2594 case Builtin::BIllrintl:
2595 case Builtin::BI__builtin_llrint:
2596 case Builtin::BI__builtin_llrintf:
2597 case Builtin::BI__builtin_llrintl:
2598 case Builtin::BI__builtin_llrintf128:
2599 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2600 *this, E, Intrinsic::llrint,
2601 Intrinsic::experimental_constrained_llrint));
2602
2603 default:
2604 break;
2605 }
2606 }
2607
2608 switch (BuiltinIDIfNoAsmLabel) {
2609 default: break;
2610 case Builtin::BI__builtin___CFStringMakeConstantString:
2611 case Builtin::BI__builtin___NSStringMakeConstantString:
2612 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2613 case Builtin::BI__builtin_stdarg_start:
2614 case Builtin::BI__builtin_va_start:
2615 case Builtin::BI__va_start:
2616 case Builtin::BI__builtin_va_end:
2617 return RValue::get(
2618 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2619 ? EmitScalarExpr(E->getArg(0))
2620 : EmitVAListRef(E->getArg(0)).getPointer(),
2621 BuiltinID != Builtin::BI__builtin_va_end));
2622 case Builtin::BI__builtin_va_copy: {
2623 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2624 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2625
2626 llvm::Type *Type = Int8PtrTy;
2627
2628 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2629 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2630 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2631 {DstPtr, SrcPtr}));
2632 }
2633 case Builtin::BI__builtin_abs:
2634 case Builtin::BI__builtin_labs:
2635 case Builtin::BI__builtin_llabs: {
2636 // X < 0 ? -X : X
2637 // The negation has 'nsw' because abs of INT_MIN is undefined.
2638 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2639 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2640 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2641 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2642 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2643 return RValue::get(Result);
2644 }
2645 case Builtin::BI__builtin_complex: {
2646 Value *Real = EmitScalarExpr(E->getArg(0));
2647 Value *Imag = EmitScalarExpr(E->getArg(1));
2648 return RValue::getComplex({Real, Imag});
2649 }
2650 case Builtin::BI__builtin_conj:
2651 case Builtin::BI__builtin_conjf:
2652 case Builtin::BI__builtin_conjl:
2653 case Builtin::BIconj:
2654 case Builtin::BIconjf:
2655 case Builtin::BIconjl: {
2656 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2657 Value *Real = ComplexVal.first;
2658 Value *Imag = ComplexVal.second;
2659 Imag = Builder.CreateFNeg(Imag, "neg");
2660 return RValue::getComplex(std::make_pair(Real, Imag));
2661 }
2662 case Builtin::BI__builtin_creal:
2663 case Builtin::BI__builtin_crealf:
2664 case Builtin::BI__builtin_creall:
2665 case Builtin::BIcreal:
2666 case Builtin::BIcrealf:
2667 case Builtin::BIcreall: {
2668 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2669 return RValue::get(ComplexVal.first);
2670 }
2671
2672 case Builtin::BI__builtin_dump_struct: {
2673 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2674 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2675 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2676
2677 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2678 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2679
2680 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2681 QualType Arg0Type = Arg0->getType()->getPointeeType();
2682
2683 Value *RecordPtr = EmitScalarExpr(Arg0);
2684 LValue RecordLV = MakeAddrLValue(RecordPtr, Arg0Type, Arg0Align);
2685 Value *Res = dumpRecord(*this, Arg0Type, RecordLV, Arg0Align,
2686 {LLVMFuncType, Func}, 0);
2687 return RValue::get(Res);
2688 }
2689
2690 case Builtin::BI__builtin_preserve_access_index: {
2691 // Only enabled preserved access index region when debuginfo
2692 // is available as debuginfo is needed to preserve user-level
2693 // access pattern.
2694 if (!getDebugInfo()) {
2695 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2696 return RValue::get(EmitScalarExpr(E->getArg(0)));
2697 }
2698
2699 // Nested builtin_preserve_access_index() not supported
2700 if (IsInPreservedAIRegion) {
2701 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2702 return RValue::get(EmitScalarExpr(E->getArg(0)));
2703 }
2704
2705 IsInPreservedAIRegion = true;
2706 Value *Res = EmitScalarExpr(E->getArg(0));
2707 IsInPreservedAIRegion = false;
2708 return RValue::get(Res);
2709 }
2710
2711 case Builtin::BI__builtin_cimag:
2712 case Builtin::BI__builtin_cimagf:
2713 case Builtin::BI__builtin_cimagl:
2714 case Builtin::BIcimag:
2715 case Builtin::BIcimagf:
2716 case Builtin::BIcimagl: {
2717 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2718 return RValue::get(ComplexVal.second);
2719 }
2720
2721 case Builtin::BI__builtin_clrsb:
2722 case Builtin::BI__builtin_clrsbl:
2723 case Builtin::BI__builtin_clrsbll: {
2724 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2725 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2726
2727 llvm::Type *ArgType = ArgValue->getType();
2728 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2729
2730 llvm::Type *ResultType = ConvertType(E->getType());
2731 Value *Zero = llvm::Constant::getNullValue(ArgType);
2732 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2733 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2734 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2735 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2736 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2737 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2738 "cast");
2739 return RValue::get(Result);
2740 }
2741 case Builtin::BI__builtin_ctzs:
2742 case Builtin::BI__builtin_ctz:
2743 case Builtin::BI__builtin_ctzl:
2744 case Builtin::BI__builtin_ctzll: {
2745 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2746
2747 llvm::Type *ArgType = ArgValue->getType();
2748 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2749
2750 llvm::Type *ResultType = ConvertType(E->getType());
2751 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2752 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2753 if (Result->getType() != ResultType)
2754 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2755 "cast");
2756 return RValue::get(Result);
2757 }
2758 case Builtin::BI__builtin_clzs:
2759 case Builtin::BI__builtin_clz:
2760 case Builtin::BI__builtin_clzl:
2761 case Builtin::BI__builtin_clzll: {
2762 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2763
2764 llvm::Type *ArgType = ArgValue->getType();
2765 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2766
2767 llvm::Type *ResultType = ConvertType(E->getType());
2768 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2769 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2770 if (Result->getType() != ResultType)
2771 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2772 "cast");
2773 return RValue::get(Result);
2774 }
2775 case Builtin::BI__builtin_ffs:
2776 case Builtin::BI__builtin_ffsl:
2777 case Builtin::BI__builtin_ffsll: {
2778 // ffs(x) -> x ? cttz(x) + 1 : 0
2779 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2780
2781 llvm::Type *ArgType = ArgValue->getType();
2782 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2783
2784 llvm::Type *ResultType = ConvertType(E->getType());
2785 Value *Tmp =
2786 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2787 llvm::ConstantInt::get(ArgType, 1));
2788 Value *Zero = llvm::Constant::getNullValue(ArgType);
2789 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2790 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2791 if (Result->getType() != ResultType)
2792 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2793 "cast");
2794 return RValue::get(Result);
2795 }
2796 case Builtin::BI__builtin_parity:
2797 case Builtin::BI__builtin_parityl:
2798 case Builtin::BI__builtin_parityll: {
2799 // parity(x) -> ctpop(x) & 1
2800 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2801
2802 llvm::Type *ArgType = ArgValue->getType();
2803 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2804
2805 llvm::Type *ResultType = ConvertType(E->getType());
2806 Value *Tmp = Builder.CreateCall(F, ArgValue);
2807 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2808 if (Result->getType() != ResultType)
2809 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2810 "cast");
2811 return RValue::get(Result);
2812 }
2813 case Builtin::BI__lzcnt16:
2814 case Builtin::BI__lzcnt:
2815 case Builtin::BI__lzcnt64: {
2816 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2817
2818 llvm::Type *ArgType = ArgValue->getType();
2819 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2820
2821 llvm::Type *ResultType = ConvertType(E->getType());
2822 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2823 if (Result->getType() != ResultType)
2824 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2825 "cast");
2826 return RValue::get(Result);
2827 }
2828 case Builtin::BI__popcnt16:
2829 case Builtin::BI__popcnt:
2830 case Builtin::BI__popcnt64:
2831 case Builtin::BI__builtin_popcount:
2832 case Builtin::BI__builtin_popcountl:
2833 case Builtin::BI__builtin_popcountll: {
2834 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2835
2836 llvm::Type *ArgType = ArgValue->getType();
2837 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2838
2839 llvm::Type *ResultType = ConvertType(E->getType());
2840 Value *Result = Builder.CreateCall(F, ArgValue);
2841 if (Result->getType() != ResultType)
2842 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2843 "cast");
2844 return RValue::get(Result);
2845 }
2846 case Builtin::BI__builtin_unpredictable: {
2847 // Always return the argument of __builtin_unpredictable. LLVM does not
2848 // handle this builtin. Metadata for this builtin should be added directly
2849 // to instructions such as branches or switches that use it.
2850 return RValue::get(EmitScalarExpr(E->getArg(0)));
2851 }
2852 case Builtin::BI__builtin_expect: {
2853 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2854 llvm::Type *ArgType = ArgValue->getType();
2855
2856 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2857 // Don't generate llvm.expect on -O0 as the backend won't use it for
2858 // anything.
2859 // Note, we still IRGen ExpectedValue because it could have side-effects.
2860 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2861 return RValue::get(ArgValue);
2862
2863 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2864 Value *Result =
2865 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2866 return RValue::get(Result);
2867 }
2868 case Builtin::BI__builtin_expect_with_probability: {
2869 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2870 llvm::Type *ArgType = ArgValue->getType();
2871
2872 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2873 llvm::APFloat Probability(0.0);
2874 const Expr *ProbArg = E->getArg(2);
2875 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2876 assert(EvalSucceed && "probability should be able to evaluate as float")(static_cast <bool> (EvalSucceed && "probability should be able to evaluate as float"
) ? void (0) : __assert_fail ("EvalSucceed && \"probability should be able to evaluate as float\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2876, __extension__ __PRETTY_FUNCTION__
))
;
2877 (void)EvalSucceed;
2878 bool LoseInfo = false;
2879 Probability.convert(llvm::APFloat::IEEEdouble(),
2880 llvm::RoundingMode::Dynamic, &LoseInfo);
2881 llvm::Type *Ty = ConvertType(ProbArg->getType());
2882 Constant *Confidence = ConstantFP::get(Ty, Probability);
2883 // Don't generate llvm.expect.with.probability on -O0 as the backend
2884 // won't use it for anything.
2885 // Note, we still IRGen ExpectedValue because it could have side-effects.
2886 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2887 return RValue::get(ArgValue);
2888
2889 Function *FnExpect =
2890 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2891 Value *Result = Builder.CreateCall(
2892 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2893 return RValue::get(Result);
2894 }
2895 case Builtin::BI__builtin_assume_aligned: {
2896 const Expr *Ptr = E->getArg(0);
2897 Value *PtrValue = EmitScalarExpr(Ptr);
2898 Value *OffsetValue =
2899 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2900
2901 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2902 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2903 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2904 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2905 llvm::Value::MaximumAlignment);
2906
2907 emitAlignmentAssumption(PtrValue, Ptr,
2908 /*The expr loc is sufficient.*/ SourceLocation(),
2909 AlignmentCI, OffsetValue);
2910 return RValue::get(PtrValue);
2911 }
2912 case Builtin::BI__assume:
2913 case Builtin::BI__builtin_assume: {
2914 if (E->getArg(0)->HasSideEffects(getContext()))
2915 return RValue::get(nullptr);
2916
2917 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2918 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2919 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2920 }
2921 case Builtin::BI__arithmetic_fence: {
2922 // Create the builtin call if FastMath is selected, and the target
2923 // supports the builtin, otherwise just return the argument.
2924 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2925 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2926 bool isArithmeticFenceEnabled =
2927 FMF.allowReassoc() &&
2928 getContext().getTargetInfo().checkArithmeticFenceSupported();
2929 QualType ArgType = E->getArg(0)->getType();
2930 if (ArgType->isComplexType()) {
2931 if (isArithmeticFenceEnabled) {
2932 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2933 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2934 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2935 ConvertType(ElementType));
2936 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2937 ConvertType(ElementType));
2938 return RValue::getComplex(std::make_pair(Real, Imag));
2939 }
2940 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2941 Value *Real = ComplexVal.first;
2942 Value *Imag = ComplexVal.second;
2943 return RValue::getComplex(std::make_pair(Real, Imag));
2944 }
2945 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2946 if (isArithmeticFenceEnabled)
2947 return RValue::get(
2948 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2949 return RValue::get(ArgValue);
2950 }
2951 case Builtin::BI__builtin_bswap16:
2952 case Builtin::BI__builtin_bswap32:
2953 case Builtin::BI__builtin_bswap64:
2954 case Builtin::BI_byteswap_ushort:
2955 case Builtin::BI_byteswap_ulong:
2956 case Builtin::BI_byteswap_uint64: {
2957 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2958 }
2959 case Builtin::BI__builtin_bitreverse8:
2960 case Builtin::BI__builtin_bitreverse16:
2961 case Builtin::BI__builtin_bitreverse32:
2962 case Builtin::BI__builtin_bitreverse64: {
2963 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2964 }
2965 case Builtin::BI__builtin_rotateleft8:
2966 case Builtin::BI__builtin_rotateleft16:
2967 case Builtin::BI__builtin_rotateleft32:
2968 case Builtin::BI__builtin_rotateleft64:
2969 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2970 case Builtin::BI_rotl16:
2971 case Builtin::BI_rotl:
2972 case Builtin::BI_lrotl:
2973 case Builtin::BI_rotl64:
2974 return emitRotate(E, false);
2975
2976 case Builtin::BI__builtin_rotateright8:
2977 case Builtin::BI__builtin_rotateright16:
2978 case Builtin::BI__builtin_rotateright32:
2979 case Builtin::BI__builtin_rotateright64:
2980 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2981 case Builtin::BI_rotr16:
2982 case Builtin::BI_rotr:
2983 case Builtin::BI_lrotr:
2984 case Builtin::BI_rotr64:
2985 return emitRotate(E, true);
2986
2987 case Builtin::BI__builtin_constant_p: {
2988 llvm::Type *ResultType = ConvertType(E->getType());
2989
2990 const Expr *Arg = E->getArg(0);
2991 QualType ArgType = Arg->getType();
2992 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2993 // and likely a mistake.
2994 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2995 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2996 // Per the GCC documentation, only numeric constants are recognized after
2997 // inlining.
2998 return RValue::get(ConstantInt::get(ResultType, 0));
2999
3000 if (Arg->HasSideEffects(getContext()))
3001 // The argument is unevaluated, so be conservative if it might have
3002 // side-effects.
3003 return RValue::get(ConstantInt::get(ResultType, 0));
3004
3005 Value *ArgValue = EmitScalarExpr(Arg);
3006 if (ArgType->isObjCObjectPointerType()) {
3007 // Convert Objective-C objects to id because we cannot distinguish between
3008 // LLVM types for Obj-C classes as they are opaque.
3009 ArgType = CGM.getContext().getObjCIdType();
3010 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
3011 }
3012 Function *F =
3013 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
3014 Value *Result = Builder.CreateCall(F, ArgValue);
3015 if (Result->getType() != ResultType)
3016 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
3017 return RValue::get(Result);
3018 }
3019 case Builtin::BI__builtin_dynamic_object_size:
3020 case Builtin::BI__builtin_object_size: {
3021 unsigned Type =
3022 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3023 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3024
3025 // We pass this builtin onto the optimizer so that it can figure out the
3026 // object size in more complex cases.
3027 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3028 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3029 /*EmittedE=*/nullptr, IsDynamic));
3030 }
3031 case Builtin::BI__builtin_prefetch: {
3032 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3033 // FIXME: Technically these constants should of type 'int', yes?
3034 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3035 llvm::ConstantInt::get(Int32Ty, 0);
3036 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3037 llvm::ConstantInt::get(Int32Ty, 3);
3038 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3039 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3040 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
3041 }
3042 case Builtin::BI__builtin_readcyclecounter: {
3043 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3044 return RValue::get(Builder.CreateCall(F));
3045 }
3046 case Builtin::BI__builtin___clear_cache: {
3047 Value *Begin = EmitScalarExpr(E->getArg(0));
3048 Value *End = EmitScalarExpr(E->getArg(1));
3049 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3050 return RValue::get(Builder.CreateCall(F, {Begin, End}));
3051 }
3052 case Builtin::BI__builtin_trap:
3053 return RValue::get(EmitTrapCall(Intrinsic::trap));
3054 case Builtin::BI__debugbreak:
3055 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
3056 case Builtin::BI__builtin_unreachable: {
3057 EmitUnreachable(E->getExprLoc());
3058
3059 // We do need to preserve an insertion point.
3060 EmitBlock(createBasicBlock("unreachable.cont"));
3061
3062 return RValue::get(nullptr);
3063 }
3064
3065 case Builtin::BI__builtin_powi:
3066 case Builtin::BI__builtin_powif:
3067 case Builtin::BI__builtin_powil: {
3068 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3069 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3070
3071 if (Builder.getIsFPConstrained()) {
3072 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3073 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3074 Src0->getType());
3075 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3076 }
3077
3078 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3079 { Src0->getType(), Src1->getType() });
3080 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3081 }
3082 case Builtin::BI__builtin_isgreater:
3083 case Builtin::BI__builtin_isgreaterequal:
3084 case Builtin::BI__builtin_isless:
3085 case Builtin::BI__builtin_islessequal:
3086 case Builtin::BI__builtin_islessgreater:
3087 case Builtin::BI__builtin_isunordered: {
3088 // Ordered comparisons: we know the arguments to these are matching scalar
3089 // floating point values.
3090 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3091 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3092 Value *LHS = EmitScalarExpr(E->getArg(0));
3093 Value *RHS = EmitScalarExpr(E->getArg(1));
3094
3095 switch (BuiltinID) {
3096 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3096)
;
3097 case Builtin::BI__builtin_isgreater:
3098 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3099 break;
3100 case Builtin::BI__builtin_isgreaterequal:
3101 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3102 break;
3103 case Builtin::BI__builtin_isless:
3104 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3105 break;
3106 case Builtin::BI__builtin_islessequal:
3107 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3108 break;
3109 case Builtin::BI__builtin_islessgreater:
3110 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3111 break;
3112 case Builtin::BI__builtin_isunordered:
3113 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3114 break;
3115 }
3116 // ZExt bool to int type.
3117 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3118 }
3119 case Builtin::BI__builtin_isnan: {
3120 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3121 Value *V = EmitScalarExpr(E->getArg(0));
3122 llvm::Type *Ty = V->getType();
3123 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3124 if (!Builder.getIsFPConstrained() ||
3125 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3126 !Ty->isIEEE()) {
3127 V = Builder.CreateFCmpUNO(V, V, "cmp");
3128 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3129 }
3130
3131 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3132 return RValue::get(Result);
3133
3134 // NaN has all exp bits set and a non zero significand. Therefore:
3135 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3136 unsigned bitsize = Ty->getScalarSizeInBits();
3137 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3138 Value *IntV = Builder.CreateBitCast(V, IntTy);
3139 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3140 Value *AbsV =
3141 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3142 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3143 Value *Sub =
3144 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3145 // V = sign bit (Sub) <=> V = (Sub < 0)
3146 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3147 if (bitsize > 32)
3148 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3149 return RValue::get(V);
3150 }
3151
3152 case Builtin::BI__builtin_elementwise_abs: {
3153 Value *Result;
3154 QualType QT = E->getArg(0)->getType();
3155
3156 if (auto *VecTy = QT->getAs<VectorType>())
3157 QT = VecTy->getElementType();
3158 if (QT->isIntegerType())
3159 Result = Builder.CreateBinaryIntrinsic(
3160 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3161 Builder.getFalse(), nullptr, "elt.abs");
3162 else
3163 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3164
3165 return RValue::get(Result);
3166 }
3167
3168 case Builtin::BI__builtin_elementwise_ceil:
3169 return RValue::get(
3170 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3171 case Builtin::BI__builtin_elementwise_floor:
3172 return RValue::get(
3173 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3174 case Builtin::BI__builtin_elementwise_roundeven:
3175 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3176 "elt.roundeven"));
3177 case Builtin::BI__builtin_elementwise_trunc:
3178 return RValue::get(
3179 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3180
3181 case Builtin::BI__builtin_elementwise_add_sat:
3182 case Builtin::BI__builtin_elementwise_sub_sat: {
3183 Value *Op0 = EmitScalarExpr(E->getArg(0));
3184 Value *Op1 = EmitScalarExpr(E->getArg(1));
3185 Value *Result;
3186 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected")(static_cast <bool> (Op0->getType()->isIntOrIntVectorTy
() && "integer type expected") ? void (0) : __assert_fail
("Op0->getType()->isIntOrIntVectorTy() && \"integer type expected\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3186, __extension__ __PRETTY_FUNCTION__
))
;
3187 QualType Ty = E->getArg(0)->getType();
3188 if (auto *VecTy = Ty->getAs<VectorType>())
3189 Ty = VecTy->getElementType();
3190 bool IsSigned = Ty->isSignedIntegerType();
3191 unsigned Opc;
3192 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3193 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3194 else
3195 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3196 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3197 return RValue::get(Result);
3198 }
3199
3200 case Builtin::BI__builtin_elementwise_max: {
3201 Value *Op0 = EmitScalarExpr(E->getArg(0));
3202 Value *Op1 = EmitScalarExpr(E->getArg(1));
3203 Value *Result;
3204 if (Op0->getType()->isIntOrIntVectorTy()) {
3205 QualType Ty = E->getArg(0)->getType();
3206 if (auto *VecTy = Ty->getAs<VectorType>())
3207 Ty = VecTy->getElementType();
3208 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3209 ? llvm::Intrinsic::smax
3210 : llvm::Intrinsic::umax,
3211 Op0, Op1, nullptr, "elt.max");
3212 } else
3213 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3214 return RValue::get(Result);
3215 }
3216 case Builtin::BI__builtin_elementwise_min: {
3217 Value *Op0 = EmitScalarExpr(E->getArg(0));
3218 Value *Op1 = EmitScalarExpr(E->getArg(1));
3219 Value *Result;
3220 if (Op0->getType()->isIntOrIntVectorTy()) {
3221 QualType Ty = E->getArg(0)->getType();
3222 if (auto *VecTy = Ty->getAs<VectorType>())
3223 Ty = VecTy->getElementType();
3224 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3225 ? llvm::Intrinsic::smin
3226 : llvm::Intrinsic::umin,
3227 Op0, Op1, nullptr, "elt.min");
3228 } else
3229 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3230 return RValue::get(Result);
3231 }
3232
3233 case Builtin::BI__builtin_reduce_max: {
3234 auto GetIntrinsicID = [](QualType QT) {
3235 if (auto *VecTy = QT->getAs<VectorType>())
3236 QT = VecTy->getElementType();
3237 if (QT->isSignedIntegerType())
3238 return llvm::Intrinsic::vector_reduce_smax;
3239 if (QT->isUnsignedIntegerType())
3240 return llvm::Intrinsic::vector_reduce_umax;
3241 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3241, __extension__ __PRETTY_FUNCTION__
))
;
3242 return llvm::Intrinsic::vector_reduce_fmax;
3243 };
3244 return RValue::get(emitUnaryBuiltin(
3245 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3246 }
3247
3248 case Builtin::BI__builtin_reduce_min: {
3249 auto GetIntrinsicID = [](QualType QT) {
3250 if (auto *VecTy = QT->getAs<VectorType>())
3251 QT = VecTy->getElementType();
3252 if (QT->isSignedIntegerType())
3253 return llvm::Intrinsic::vector_reduce_smin;
3254 if (QT->isUnsignedIntegerType())
3255 return llvm::Intrinsic::vector_reduce_umin;
3256 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3256, __extension__ __PRETTY_FUNCTION__
))
;
3257 return llvm::Intrinsic::vector_reduce_fmin;
3258 };
3259
3260 return RValue::get(emitUnaryBuiltin(
3261 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3262 }
3263
3264 case Builtin::BI__builtin_reduce_xor:
3265 return RValue::get(emitUnaryBuiltin(
3266 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3267 case Builtin::BI__builtin_reduce_or:
3268 return RValue::get(emitUnaryBuiltin(
3269 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3270 case Builtin::BI__builtin_reduce_and:
3271 return RValue::get(emitUnaryBuiltin(
3272 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3273
3274 case Builtin::BI__builtin_matrix_transpose: {
3275 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3276 Value *MatValue = EmitScalarExpr(E->getArg(0));
3277 MatrixBuilder MB(Builder);
3278 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3279 MatrixTy->getNumColumns());
3280 return RValue::get(Result);
3281 }
3282
3283 case Builtin::BI__builtin_matrix_column_major_load: {
3284 MatrixBuilder MB(Builder);
3285 // Emit everything that isn't dependent on the first parameter type
3286 Value *Stride = EmitScalarExpr(E->getArg(3));
3287 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3288 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3289 assert(PtrTy && "arg0 must be of pointer type")(static_cast <bool> (PtrTy && "arg0 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg0 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3289, __extension__ __PRETTY_FUNCTION__
))
;
3290 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3291
3292 Address Src = EmitPointerWithAlignment(E->getArg(0));
3293 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3294 E->getArg(0)->getExprLoc(), FD, 0);
3295 Value *Result = MB.CreateColumnMajorLoad(
3296 Src.getElementType(), Src.getPointer(),
3297 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3298 ResultTy->getNumRows(), ResultTy->getNumColumns(),
3299 "matrix");
3300 return RValue::get(Result);
3301 }
3302
3303 case Builtin::BI__builtin_matrix_column_major_store: {
3304 MatrixBuilder MB(Builder);
3305 Value *Matrix = EmitScalarExpr(E->getArg(0));
3306 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3307 Value *Stride = EmitScalarExpr(E->getArg(2));
3308
3309 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3310 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3311 assert(PtrTy && "arg1 must be of pointer type")(static_cast <bool> (PtrTy && "arg1 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg1 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3311, __extension__ __PRETTY_FUNCTION__
))
;
3312 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3313
3314 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3315 E->getArg(1)->getExprLoc(), FD, 0);
3316 Value *Result = MB.CreateColumnMajorStore(
3317 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3318 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3319 return RValue::get(Result);
3320 }
3321
3322 case Builtin::BIfinite:
3323 case Builtin::BI__finite:
3324 case Builtin::BIfinitef:
3325 case Builtin::BI__finitef:
3326 case Builtin::BIfinitel:
3327 case Builtin::BI__finitel:
3328 case Builtin::BI__builtin_isinf:
3329 case Builtin::BI__builtin_isfinite: {
3330 // isinf(x) --> fabs(x) == infinity
3331 // isfinite(x) --> fabs(x) != infinity
3332 // x != NaN via the ordered compare in either case.
3333 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3334 Value *V = EmitScalarExpr(E->getArg(0));
3335 llvm::Type *Ty = V->getType();
3336 if (!Builder.getIsFPConstrained() ||
3337 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3338 !Ty->isIEEE()) {
3339 Value *Fabs = EmitFAbs(*this, V);
3340 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3341 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3342 ? CmpInst::FCMP_OEQ
3343 : CmpInst::FCMP_ONE;
3344 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3345 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3346 }
3347
3348 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3349 return RValue::get(Result);
3350
3351 // Inf values have all exp bits set and a zero significand. Therefore:
3352 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3353 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3354 unsigned bitsize = Ty->getScalarSizeInBits();
3355 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3356 Value *IntV = Builder.CreateBitCast(V, IntTy);
3357 Value *Shl1 = Builder.CreateShl(IntV, 1);
3358 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3359 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3360 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3361 if (BuiltinID == Builtin::BI__builtin_isinf)
3362 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3363 else
3364 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3365 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3366 }
3367
3368 case Builtin::BI__builtin_isinf_sign: {
3369 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3370 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3371 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3372 Value *Arg = EmitScalarExpr(E->getArg(0));
3373 Value *AbsArg = EmitFAbs(*this, Arg);
3374 Value *IsInf = Builder.CreateFCmpOEQ(
3375 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3376 Value *IsNeg = EmitSignBit(*this, Arg);
3377
3378 llvm::Type *IntTy = ConvertType(E->getType());
3379 Value *Zero = Constant::getNullValue(IntTy);
3380 Value *One = ConstantInt::get(IntTy, 1);
3381 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3382 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3383 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3384 return RValue::get(Result);
3385 }
3386
3387 case Builtin::BI__builtin_isnormal: {
3388 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3389 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3390 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3391 Value *V = EmitScalarExpr(E->getArg(0));
3392 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3393
3394 Value *Abs = EmitFAbs(*this, V);
3395 Value *IsLessThanInf =
3396 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3397 APFloat Smallest = APFloat::getSmallestNormalized(
3398 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3399 Value *IsNormal =
3400 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3401 "isnormal");
3402 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3403 V = Builder.CreateAnd(V, IsNormal, "and");
3404 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3405 }
3406
3407 case Builtin::BI__builtin_flt_rounds: {
3408 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3409
3410 llvm::Type *ResultType = ConvertType(E->getType());
3411 Value *Result = Builder.CreateCall(F);
3412 if (Result->getType() != ResultType)
3413 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3414 "cast");
3415 return RValue::get(Result);
3416 }
3417
3418 case Builtin::BI__builtin_fpclassify: {
3419 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3420 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3421 Value *V = EmitScalarExpr(E->getArg(5));
3422 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3423
3424 // Create Result
3425 BasicBlock *Begin = Builder.GetInsertBlock();
3426 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3427 Builder.SetInsertPoint(End);
3428 PHINode *Result =
3429 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3430 "fpclassify_result");
3431
3432 // if (V==0) return FP_ZERO
3433 Builder.SetInsertPoint(Begin);
3434 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3435 "iszero");
3436 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3437 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3438 Builder.CreateCondBr(IsZero, End, NotZero);
3439 Result->addIncoming(ZeroLiteral, Begin);
3440
3441 // if (V != V) return FP_NAN
3442 Builder.SetInsertPoint(NotZero);
3443 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3444 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3445 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3446 Builder.CreateCondBr(IsNan, End, NotNan);
3447 Result->addIncoming(NanLiteral, NotZero);
3448
3449 // if (fabs(V) == infinity) return FP_INFINITY
3450 Builder.SetInsertPoint(NotNan);
3451 Value *VAbs = EmitFAbs(*this, V);
3452 Value *IsInf =
3453 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3454 "isinf");
3455 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3456 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3457 Builder.CreateCondBr(IsInf, End, NotInf);
3458 Result->addIncoming(InfLiteral, NotNan);
3459
3460 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3461 Builder.SetInsertPoint(NotInf);
3462 APFloat Smallest = APFloat::getSmallestNormalized(
3463 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3464 Value *IsNormal =
3465 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3466 "isnormal");
3467 Value *NormalResult =
3468 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3469 EmitScalarExpr(E->getArg(3)));
3470 Builder.CreateBr(End);
3471 Result->addIncoming(NormalResult, NotInf);
3472
3473 // return Result
3474 Builder.SetInsertPoint(End);
3475 return RValue::get(Result);
3476 }
3477
3478 case Builtin::BIalloca:
3479 case Builtin::BI_alloca:
3480 case Builtin::BI__builtin_alloca_uninitialized:
3481 case Builtin::BI__builtin_alloca: {
3482 Value *Size = EmitScalarExpr(E->getArg(0));
3483 const TargetInfo &TI = getContext().getTargetInfo();
3484 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3485 const Align SuitableAlignmentInBytes =
3486 CGM.getContext()
3487 .toCharUnitsFromBits(TI.getSuitableAlign())
3488 .getAsAlign();
3489 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3490 AI->setAlignment(SuitableAlignmentInBytes);
3491 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3492 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3493 return RValue::get(AI);
3494 }
3495
3496 case Builtin::BI__builtin_alloca_with_align_uninitialized:
3497 case Builtin::BI__builtin_alloca_with_align: {
3498 Value *Size = EmitScalarExpr(E->getArg(0));
3499 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3500 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3501 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3502 const Align AlignmentInBytes =
3503 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3504 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3505 AI->setAlignment(AlignmentInBytes);
3506 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3507 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3508 return RValue::get(AI);
3509 }
3510
3511 case Builtin::BIbzero:
3512 case Builtin::BI__builtin_bzero: {
3513 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3514 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3515 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3516 E->getArg(0)->getExprLoc(), FD, 0);
3517 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3518 return RValue::get(nullptr);
3519 }
3520 case Builtin::BImemcpy:
3521 case Builtin::BI__builtin_memcpy:
3522 case Builtin::BImempcpy:
3523 case Builtin::BI__builtin_mempcpy: {
3524 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3525 Address Src = EmitPointerWithAlignment(E->getArg(1));
3526 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3527 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3528 E->getArg(0)->getExprLoc(), FD, 0);
3529 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3530 E->getArg(1)->getExprLoc(), FD, 1);
3531 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3532 if (BuiltinID == Builtin::BImempcpy ||
3533 BuiltinID == Builtin::BI__builtin_mempcpy)
3534 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3535 Dest.getPointer(), SizeVal));
3536 else
3537 return RValue::get(Dest.getPointer());
3538 }
3539
3540 case Builtin::BI__builtin_memcpy_inline: {
3541 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3542 Address Src = EmitPointerWithAlignment(E->getArg(1));
3543 uint64_t Size =
3544 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3545 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3546 E->getArg(0)->getExprLoc(), FD, 0);
3547 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3548 E->getArg(1)->getExprLoc(), FD, 1);
3549 Builder.CreateMemCpyInline(Dest, Src, Size);
3550 return RValue::get(nullptr);
3551 }
3552
3553 case Builtin::BI__builtin_char_memchr:
3554 BuiltinID = Builtin::BI__builtin_memchr;
3555 break;
3556
3557 case Builtin::BI__builtin___memcpy_chk: {
3558 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3559 Expr::EvalResult SizeResult, DstSizeResult;
3560 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3561 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3562 break;
3563 llvm::APSInt Size = SizeResult.Val.getInt();
3564 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3565 if (Size.ugt(DstSize))
3566 break;
3567 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3568 Address Src = EmitPointerWithAlignment(E->getArg(1));
3569 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3570 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3571 return RValue::get(Dest.getPointer());
3572 }
3573
3574 case Builtin::BI__builtin_objc_memmove_collectable: {
3575 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3576 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3577 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3578 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3579 DestAddr, SrcAddr, SizeVal);
3580 return RValue::get(DestAddr.getPointer());
3581 }
3582
3583 case Builtin::BI__builtin___memmove_chk: {
3584 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3585 Expr::EvalResult SizeResult, DstSizeResult;
3586 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3587 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3588 break;
3589 llvm::APSInt Size = SizeResult.Val.getInt();
3590 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3591 if (Size.ugt(DstSize))
3592 break;
3593 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3594 Address Src = EmitPointerWithAlignment(E->getArg(1));
3595 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3596 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3597 return RValue::get(Dest.getPointer());
3598 }
3599
3600 case Builtin::BImemmove:
3601 case Builtin::BI__builtin_memmove: {
3602 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3603 Address Src = EmitPointerWithAlignment(E->getArg(1));
3604 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3605 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3606 E->getArg(0)->getExprLoc(), FD, 0);
3607 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3608 E->getArg(1)->getExprLoc(), FD, 1);
3609 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3610 return RValue::get(Dest.getPointer());
3611 }
3612 case Builtin::BImemset:
3613 case Builtin::BI__builtin_memset: {
3614 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3615 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3616 Builder.getInt8Ty());
3617 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3618 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3619 E->getArg(0)->getExprLoc(), FD, 0);
3620 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3621 return RValue::get(Dest.getPointer());
3622 }
3623 case Builtin::BI__builtin___memset_chk: {
3624 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3625 Expr::EvalResult SizeResult, DstSizeResult;
3626 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3627 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3628 break;
3629 llvm::APSInt Size = SizeResult.Val.getInt();
3630 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3631 if (Size.ugt(DstSize))
3632 break;
3633 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3634 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3635 Builder.getInt8Ty());
3636 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3637 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3638 return RValue::get(Dest.getPointer());
3639 }
3640 case Builtin::BI__builtin_wmemchr: {
3641 // The MSVC runtime library does not provide a definition of wmemchr, so we
3642 // need an inline implementation.
3643 if (!getTarget().getTriple().isOSMSVCRT())
3644 break;
3645
3646 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3647 Value *Str = EmitScalarExpr(E->getArg(0));
3648 Value *Chr = EmitScalarExpr(E->getArg(1));
3649 Value *Size = EmitScalarExpr(E->getArg(2));
3650
3651 BasicBlock *Entry = Builder.GetInsertBlock();
3652 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3653 BasicBlock *Next = createBasicBlock("wmemchr.next");
3654 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3655 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3656 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3657
3658 EmitBlock(CmpEq);
3659 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3660 StrPhi->addIncoming(Str, Entry);
3661 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3662 SizePhi->addIncoming(Size, Entry);
3663 CharUnits WCharAlign =
3664 getContext().getTypeAlignInChars(getContext().WCharTy);
3665 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3666 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3667 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3668 Builder.CreateCondBr(StrEqChr, Exit, Next);
3669
3670 EmitBlock(Next);
3671 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3672 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3673 Value *NextSizeEq0 =
3674 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3675 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3676 StrPhi->addIncoming(NextStr, Next);
3677 SizePhi->addIncoming(NextSize, Next);
3678
3679 EmitBlock(Exit);
3680 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3681 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3682 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3683 Ret->addIncoming(FoundChr, CmpEq);
3684 return RValue::get(Ret);
3685 }
3686 case Builtin::BI__builtin_wmemcmp: {
3687 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3688 // need an inline implementation.
3689 if (!getTarget().getTriple().isOSMSVCRT())
3690 break;
3691
3692 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3693
3694 Value *Dst = EmitScalarExpr(E->getArg(0));
3695 Value *Src = EmitScalarExpr(E->getArg(1));
3696 Value *Size = EmitScalarExpr(E->getArg(2));
3697
3698 BasicBlock *Entry = Builder.GetInsertBlock();
3699 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3700 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3701 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3702 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3703 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3704 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3705
3706 EmitBlock(CmpGT);
3707 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3708 DstPhi->addIncoming(Dst, Entry);
3709 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3710 SrcPhi->addIncoming(Src, Entry);
3711 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3712 SizePhi->addIncoming(Size, Entry);
3713 CharUnits WCharAlign =
3714 getContext().getTypeAlignInChars(getContext().WCharTy);
3715 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3716 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3717 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3718 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3719
3720 EmitBlock(CmpLT);
3721 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3722 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3723
3724 EmitBlock(Next);
3725 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3726 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3727 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3728 Value *NextSizeEq0 =
3729 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3730 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3731 DstPhi->addIncoming(NextDst, Next);
3732 SrcPhi->addIncoming(NextSrc, Next);
3733 SizePhi->addIncoming(NextSize, Next);
3734
3735 EmitBlock(Exit);
3736 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3737 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3738 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3739 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3740 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3741 return RValue::get(Ret);
3742 }
3743 case Builtin::BI__builtin_dwarf_cfa: {
3744 // The offset in bytes from the first argument to the CFA.
3745 //
3746 // Why on earth is this in the frontend? Is there any reason at
3747 // all that the backend can't reasonably determine this while
3748 // lowering llvm.eh.dwarf.cfa()?
3749 //
3750 // TODO: If there's a satisfactory reason, add a target hook for
3751 // this instead of hard-coding 0, which is correct for most targets.
3752 int32_t Offset = 0;
3753
3754 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3755 return RValue::get(Builder.CreateCall(F,
3756 llvm::ConstantInt::get(Int32Ty, Offset)));
3757 }
3758 case Builtin::BI__builtin_return_address: {
3759 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3760 getContext().UnsignedIntTy);
3761 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3762 return RValue::get(Builder.CreateCall(F, Depth));
3763 }
3764 case Builtin::BI_ReturnAddress: {
3765 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3766 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3767 }
3768 case Builtin::BI__builtin_frame_address: {
3769 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3770 getContext().UnsignedIntTy);
3771 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3772 return RValue::get(Builder.CreateCall(F, Depth));
3773 }
3774 case Builtin::BI__builtin_extract_return_addr: {
3775 Value *Address = EmitScalarExpr(E->getArg(0));
3776 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3777 return RValue::get(Result);
3778 }
3779 case Builtin::BI__builtin_frob_return_addr: {
3780 Value *Address = EmitScalarExpr(E->getArg(0));
3781 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3782 return RValue::get(Result);
3783 }
3784 case Builtin::BI__builtin_dwarf_sp_column: {
3785 llvm::IntegerType *Ty
3786 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3787 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3788 if (Column == -1) {
3789 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3790 return RValue::get(llvm::UndefValue::get(Ty));
3791 }
3792 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3793 }
3794 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3795 Value *Address = EmitScalarExpr(E->getArg(0));
3796 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3797 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3798 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3799 }
3800 case Builtin::BI__builtin_eh_return: {
3801 Value *Int = EmitScalarExpr(E->getArg(0));
3802 Value *Ptr = EmitScalarExpr(E->getArg(1));
3803
3804 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3805 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3806, __extension__ __PRETTY_FUNCTION__
))
3806 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3806, __extension__ __PRETTY_FUNCTION__
))
;
3807 Function *F =
3808 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3809 : Intrinsic::eh_return_i64);
3810 Builder.CreateCall(F, {Int, Ptr});
3811 Builder.CreateUnreachable();
3812
3813 // We do need to preserve an insertion point.
3814 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3815
3816 return RValue::get(nullptr);
3817 }
3818 case Builtin::BI__builtin_unwind_init: {
3819 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3820 return RValue::get(Builder.CreateCall(F));
3821 }
3822 case Builtin::BI__builtin_extend_pointer: {
3823 // Extends a pointer to the size of an _Unwind_Word, which is
3824 // uint64_t on all platforms. Generally this gets poked into a
3825 // register and eventually used as an address, so if the
3826 // addressing registers are wider than pointers and the platform
3827 // doesn't implicitly ignore high-order bits when doing
3828 // addressing, we need to make sure we zext / sext based on
3829 // the platform's expectations.
3830 //
3831 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3832
3833 // Cast the pointer to intptr_t.
3834 Value *Ptr = EmitScalarExpr(E->getArg(0));
3835 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3836
3837 // If that's 64 bits, we're done.
3838 if (IntPtrTy->getBitWidth() == 64)
3839 return RValue::get(Result);
3840
3841 // Otherwise, ask the codegen data what to do.
3842 if (getTargetHooks().extendPointerWithSExt())
3843 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3844 else
3845 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3846 }
3847 case Builtin::BI__builtin_setjmp: {
3848 // Buffer is a void**.
3849 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3850
3851 // Store the frame pointer to the setjmp buffer.
3852 Value *FrameAddr = Builder.CreateCall(
3853 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3854 ConstantInt::get(Int32Ty, 0));
3855 Builder.CreateStore(FrameAddr, Buf);
3856
3857 // Store the stack pointer to the setjmp buffer.
3858 Value *StackAddr =
3859 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3860 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3861 Builder.CreateStore(StackAddr, StackSaveSlot);
3862
3863 // Call LLVM's EH setjmp, which is lightweight.
3864 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3865 Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3866 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3867 }
3868 case Builtin::BI__builtin_longjmp: {
3869 Value *Buf = EmitScalarExpr(E->getArg(0));
3870 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3871
3872 // Call LLVM's EH longjmp, which is lightweight.
3873 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3874
3875 // longjmp doesn't return; mark this as unreachable.
3876 Builder.CreateUnreachable();
3877
3878 // We do need to preserve an insertion point.
3879 EmitBlock(createBasicBlock("longjmp.cont"));
3880
3881 return RValue::get(nullptr);
3882 }
3883 case Builtin::BI__builtin_launder: {
3884 const Expr *Arg = E->getArg(0);
3885 QualType ArgTy = Arg->getType()->getPointeeType();
3886 Value *Ptr = EmitScalarExpr(Arg);
3887 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3888 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3889
3890 return RValue::get(Ptr);
3891 }
3892 case Builtin::BI__sync_fetch_and_add:
3893 case Builtin::BI__sync_fetch_and_sub:
3894 case Builtin::BI__sync_fetch_and_or:
3895 case Builtin::BI__sync_fetch_and_and:
3896 case Builtin::BI__sync_fetch_and_xor:
3897 case Builtin::BI__sync_fetch_and_nand:
3898 case Builtin::BI__sync_add_and_fetch:
3899 case Builtin::BI__sync_sub_and_fetch:
3900 case Builtin::BI__sync_and_and_fetch:
3901 case Builtin::BI__sync_or_and_fetch:
3902 case Builtin::BI__sync_xor_and_fetch:
3903 case Builtin::BI__sync_nand_and_fetch:
3904 case Builtin::BI__sync_val_compare_and_swap:
3905 case Builtin::BI__sync_bool_compare_and_swap:
3906 case Builtin::BI__sync_lock_test_and_set:
3907 case Builtin::BI__sync_lock_release:
3908 case Builtin::BI__sync_swap:
3909 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3909)
;
3910 case Builtin::BI__sync_fetch_and_add_1:
3911 case Builtin::BI__sync_fetch_and_add_2:
3912 case Builtin::BI__sync_fetch_and_add_4:
3913 case Builtin::BI__sync_fetch_and_add_8:
3914 case Builtin::BI__sync_fetch_and_add_16:
3915 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3916 case Builtin::BI__sync_fetch_and_sub_1:
3917 case Builtin::BI__sync_fetch_and_sub_2:
3918 case Builtin::BI__sync_fetch_and_sub_4:
3919 case Builtin::BI__sync_fetch_and_sub_8:
3920 case Builtin::BI__sync_fetch_and_sub_16:
3921 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3922 case Builtin::BI__sync_fetch_and_or_1:
3923 case Builtin::BI__sync_fetch_and_or_2:
3924 case Builtin::BI__sync_fetch_and_or_4:
3925 case Builtin::BI__sync_fetch_and_or_8:
3926 case Builtin::BI__sync_fetch_and_or_16:
3927 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3928 case Builtin::BI__sync_fetch_and_and_1:
3929 case Builtin::BI__sync_fetch_and_and_2:
3930 case Builtin::BI__sync_fetch_and_and_4:
3931 case Builtin::BI__sync_fetch_and_and_8:
3932 case Builtin::BI__sync_fetch_and_and_16:
3933 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3934 case Builtin::BI__sync_fetch_and_xor_1:
3935 case Builtin::BI__sync_fetch_and_xor_2:
3936 case Builtin::BI__sync_fetch_and_xor_4:
3937 case Builtin::BI__sync_fetch_and_xor_8:
3938 case Builtin::BI__sync_fetch_and_xor_16:
3939 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3940 case Builtin::BI__sync_fetch_and_nand_1:
3941 case Builtin::BI__sync_fetch_and_nand_2:
3942 case Builtin::BI__sync_fetch_and_nand_4:
3943 case Builtin::BI__sync_fetch_and_nand_8:
3944 case Builtin::BI__sync_fetch_and_nand_16:
3945 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3946
3947 // Clang extensions: not overloaded yet.
3948 case Builtin::BI__sync_fetch_and_min:
3949 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3950 case Builtin::BI__sync_fetch_and_max:
3951 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3952 case Builtin::BI__sync_fetch_and_umin:
3953 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3954 case Builtin::BI__sync_fetch_and_umax:
3955 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3956
3957 case Builtin::BI__sync_add_and_fetch_1:
3958 case Builtin::BI__sync_add_and_fetch_2:
3959 case Builtin::BI__sync_add_and_fetch_4:
3960 case Builtin::BI__sync_add_and_fetch_8:
3961 case Builtin::BI__sync_add_and_fetch_16:
3962 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3963 llvm::Instruction::Add);
3964 case Builtin::BI__sync_sub_and_fetch_1:
3965 case Builtin::BI__sync_sub_and_fetch_2:
3966 case Builtin::BI__sync_sub_and_fetch_4:
3967 case Builtin::BI__sync_sub_and_fetch_8:
3968 case Builtin::BI__sync_sub_and_fetch_16:
3969 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3970 llvm::Instruction::Sub);
3971 case Builtin::BI__sync_and_and_fetch_1:
3972 case Builtin::BI__sync_and_and_fetch_2:
3973 case Builtin::BI__sync_and_and_fetch_4:
3974 case Builtin::BI__sync_and_and_fetch_8:
3975 case Builtin::BI__sync_and_and_fetch_16:
3976 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3977 llvm::Instruction::And);
3978 case Builtin::BI__sync_or_and_fetch_1:
3979 case Builtin::BI__sync_or_and_fetch_2:
3980 case Builtin::BI__sync_or_and_fetch_4:
3981 case Builtin::BI__sync_or_and_fetch_8:
3982 case Builtin::BI__sync_or_and_fetch_16:
3983 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3984 llvm::Instruction::Or);
3985 case Builtin::BI__sync_xor_and_fetch_1:
3986 case Builtin::BI__sync_xor_and_fetch_2:
3987 case Builtin::BI__sync_xor_and_fetch_4:
3988 case Builtin::BI__sync_xor_and_fetch_8:
3989 case Builtin::BI__sync_xor_and_fetch_16:
3990 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3991 llvm::Instruction::Xor);
3992 case Builtin::BI__sync_nand_and_fetch_1:
3993 case Builtin::BI__sync_nand_and_fetch_2:
3994 case Builtin::BI__sync_nand_and_fetch_4:
3995 case Builtin::BI__sync_nand_and_fetch_8:
3996 case Builtin::BI__sync_nand_and_fetch_16:
3997 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3998 llvm::Instruction::And, true);
3999
4000 case Builtin::BI__sync_val_compare_and_swap_1:
4001 case Builtin::BI__sync_val_compare_and_swap_2:
4002 case Builtin::BI__sync_val_compare_and_swap_4:
4003 case Builtin::BI__sync_val_compare_and_swap_8:
4004 case Builtin::BI__sync_val_compare_and_swap_16:
4005 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4006
4007 case Builtin::BI__sync_bool_compare_and_swap_1:
4008 case Builtin::BI__sync_bool_compare_and_swap_2:
4009 case Builtin::BI__sync_bool_compare_and_swap_4:
4010 case Builtin::BI__sync_bool_compare_and_swap_8:
4011 case Builtin::BI__sync_bool_compare_and_swap_16:
4012 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4013
4014 case Builtin::BI__sync_swap_1:
4015 case Builtin::BI__sync_swap_2:
4016 case Builtin::BI__sync_swap_4:
4017 case Builtin::BI__sync_swap_8:
4018 case Builtin::BI__sync_swap_16:
4019 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4020
4021 case Builtin::BI__sync_lock_test_and_set_1:
4022 case Builtin::BI__sync_lock_test_and_set_2:
4023 case Builtin::BI__sync_lock_test_and_set_4:
4024 case Builtin::BI__sync_lock_test_and_set_8:
4025 case Builtin::BI__sync_lock_test_and_set_16:
4026 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4027
4028 case Builtin::BI__sync_lock_release_1:
4029 case Builtin::BI__sync_lock_release_2:
4030 case Builtin::BI__sync_lock_release_4:
4031 case Builtin::BI__sync_lock_release_8:
4032 case Builtin::BI__sync_lock_release_16: {
4033 Value *Ptr = EmitScalarExpr(E->getArg(0));
4034 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4035 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
4036 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4037 StoreSize.getQuantity() * 8);
4038 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
4039 llvm::StoreInst *Store =
4040 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
4041 StoreSize);
4042 Store->setAtomic(llvm::AtomicOrdering::Release);
4043 return RValue::get(nullptr);
4044 }
4045
4046 case Builtin::BI__sync_synchronize: {
4047 // We assume this is supposed to correspond to a C++0x-style
4048 // sequentially-consistent fence (i.e. this is only usable for
4049 // synchronization, not device I/O or anything like that). This intrinsic
4050 // is really badly designed in the sense that in theory, there isn't
4051 // any way to safely use it... but in practice, it mostly works
4052 // to use it with non-atomic loads and stores to get acquire/release
4053 // semantics.
4054 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4055 return RValue::get(nullptr);
4056 }
4057
4058 case Builtin::BI__builtin_nontemporal_load:
4059 return RValue::get(EmitNontemporalLoad(*this, E));
4060 case Builtin::BI__builtin_nontemporal_store:
4061 return RValue::get(EmitNontemporalStore(*this, E));
4062 case Builtin::BI__c11_atomic_is_lock_free:
4063 case Builtin::BI__atomic_is_lock_free: {
4064 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4065 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4066 // _Atomic(T) is always properly-aligned.
4067 const char *LibCallName = "__atomic_is_lock_free";
4068 CallArgList Args;
4069 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4070 getContext().getSizeType());
4071 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4072 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4073 getContext().VoidPtrTy);
4074 else
4075 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4076 getContext().VoidPtrTy);
4077 const CGFunctionInfo &FuncInfo =
4078 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4079 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4080 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4081 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4082 ReturnValueSlot(), Args);
4083 }
4084
4085 case Builtin::BI__atomic_test_and_set: {
4086 // Look at the argument type to determine whether this is a volatile
4087 // operation. The parameter type is always volatile.
4088 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4089 bool Volatile =
4090 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4091
4092 Value *Ptr = EmitScalarExpr(E->getArg(0));
4093 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4094 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4095 Value *NewVal = Builder.getInt8(1);
4096 Value *Order = EmitScalarExpr(E->getArg(1));
4097 if (isa<llvm::ConstantInt>(Order)) {
4098 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4099 AtomicRMWInst *Result = nullptr;
4100 switch (ord) {
4101 case 0: // memory_order_relaxed
4102 default: // invalid order
4103 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4104 llvm::AtomicOrdering::Monotonic);
4105 break;
4106 case 1: // memory_order_consume
4107 case 2: // memory_order_acquire
4108 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4109 llvm::AtomicOrdering::Acquire);
4110 break;
4111 case 3: // memory_order_release
4112 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4113 llvm::AtomicOrdering::Release);
4114 break;
4115 case 4: // memory_order_acq_rel
4116
4117 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4118 llvm::AtomicOrdering::AcquireRelease);
4119 break;
4120 case 5: // memory_order_seq_cst
4121 Result = Builder.CreateAtomicRMW(
4122 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4123 llvm::AtomicOrdering::SequentiallyConsistent);
4124 break;
4125 }
4126 Result->setVolatile(Volatile);
4127 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4128 }
4129
4130 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4131
4132 llvm::BasicBlock *BBs[5] = {
4133 createBasicBlock("monotonic", CurFn),
4134 createBasicBlock("acquire", CurFn),
4135 createBasicBlock("release", CurFn),
4136 createBasicBlock("acqrel", CurFn),
4137 createBasicBlock("seqcst", CurFn)
4138 };
4139 llvm::AtomicOrdering Orders[5] = {
4140 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4141 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4142 llvm::AtomicOrdering::SequentiallyConsistent};
4143
4144 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4145 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4146
4147 Builder.SetInsertPoint(ContBB);
4148 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4149
4150 for (unsigned i = 0; i < 5; ++i) {
4151 Builder.SetInsertPoint(BBs[i]);
4152 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4153 Ptr, NewVal, Orders[i]);
4154 RMW->setVolatile(Volatile);
4155 Result->addIncoming(RMW, BBs[i]);
4156 Builder.CreateBr(ContBB);
4157 }
4158
4159 SI->addCase(Builder.getInt32(0), BBs[0]);
4160 SI->addCase(Builder.getInt32(1), BBs[1]);
4161 SI->addCase(Builder.getInt32(2), BBs[1]);
4162 SI->addCase(Builder.getInt32(3), BBs[2]);
4163 SI->addCase(Builder.getInt32(4), BBs[3]);
4164 SI->addCase(Builder.getInt32(5), BBs[4]);
4165
4166 Builder.SetInsertPoint(ContBB);
4167 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4168 }
4169
4170 case Builtin::BI__atomic_clear: {
4171 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4172 bool Volatile =
4173 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4174
4175 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4176 Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4177 Value *NewVal = Builder.getInt8(0);
4178 Value *Order = EmitScalarExpr(E->getArg(1));
4179 if (isa<llvm::ConstantInt>(Order)) {
4180 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4181 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4182 switch (ord) {
4183 case 0: // memory_order_relaxed
4184 default: // invalid order
4185 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4186 break;
4187 case 3: // memory_order_release
4188 Store->setOrdering(llvm::AtomicOrdering::Release);
4189 break;
4190 case 5: // memory_order_seq_cst
4191 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4192 break;
4193 }
4194 return RValue::get(nullptr);
4195 }
4196
4197 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4198
4199 llvm::BasicBlock *BBs[3] = {
4200 createBasicBlock("monotonic", CurFn),
4201 createBasicBlock("release", CurFn),
4202 createBasicBlock("seqcst", CurFn)
4203 };
4204 llvm::AtomicOrdering Orders[3] = {
4205 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4206 llvm::AtomicOrdering::SequentiallyConsistent};
4207
4208 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4209 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4210
4211 for (unsigned i = 0; i < 3; ++i) {
4212 Builder.SetInsertPoint(BBs[i]);
4213 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4214 Store->setOrdering(Orders[i]);
4215 Builder.CreateBr(ContBB);
4216 }
4217
4218 SI->addCase(Builder.getInt32(0), BBs[0]);
4219 SI->addCase(Builder.getInt32(3), BBs[1]);
4220 SI->addCase(Builder.getInt32(5), BBs[2]);
4221
4222 Builder.SetInsertPoint(ContBB);
4223 return RValue::get(nullptr);
4224 }
4225
4226 case Builtin::BI__atomic_thread_fence:
4227 case Builtin::BI__atomic_signal_fence:
4228 case Builtin::BI__c11_atomic_thread_fence:
4229 case Builtin::BI__c11_atomic_signal_fence: {
4230 llvm::SyncScope::ID SSID;
4231 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4232 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4233 SSID = llvm::SyncScope::SingleThread;
4234 else
4235 SSID = llvm::SyncScope::System;
4236 Value *Order = EmitScalarExpr(E->getArg(0));
4237 if (isa<llvm::ConstantInt>(Order)) {
4238 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4239 switch (ord) {
4240 case 0: // memory_order_relaxed
4241 default: // invalid order
4242 break;
4243 case 1: // memory_order_consume
4244 case 2: // memory_order_acquire
4245 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4246 break;
4247 case 3: // memory_order_release
4248 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4249 break;
4250 case 4: // memory_order_acq_rel
4251 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4252 break;
4253 case 5: // memory_order_seq_cst
4254 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4255 break;
4256 }
4257 return RValue::get(nullptr);
4258 }
4259
4260 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4261 AcquireBB = createBasicBlock("acquire", CurFn);
4262 ReleaseBB = createBasicBlock("release", CurFn);
4263 AcqRelBB = createBasicBlock("acqrel", CurFn);
4264 SeqCstBB = createBasicBlock("seqcst", CurFn);
4265 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4266
4267 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4268 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4269
4270 Builder.SetInsertPoint(AcquireBB);
4271 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4272 Builder.CreateBr(ContBB);
4273 SI->addCase(Builder.getInt32(1), AcquireBB);
4274 SI->addCase(Builder.getInt32(2), AcquireBB);
4275
4276 Builder.SetInsertPoint(ReleaseBB);
4277 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4278 Builder.CreateBr(ContBB);
4279 SI->addCase(Builder.getInt32(3), ReleaseBB);
4280
4281 Builder.SetInsertPoint(AcqRelBB);
4282 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4283 Builder.CreateBr(ContBB);
4284 SI->addCase(Builder.getInt32(4), AcqRelBB);
4285
4286 Builder.SetInsertPoint(SeqCstBB);
4287 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4288 Builder.CreateBr(ContBB);
4289 SI->addCase(Builder.getInt32(5), SeqCstBB);
4290
4291 Builder.SetInsertPoint(ContBB);
4292 return RValue::get(nullptr);
4293 }
4294
4295 case Builtin::BI__builtin_signbit:
4296 case Builtin::BI__builtin_signbitf:
4297 case Builtin::BI__builtin_signbitl: {
4298 return RValue::get(
4299 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4300 ConvertType(E->getType())));
4301 }
4302 case Builtin::BI__warn_memset_zero_len:
4303 return RValue::getIgnored();
4304 case Builtin::BI__annotation: {
4305 // Re-encode each wide string to UTF8 and make an MDString.
4306 SmallVector<Metadata *, 1> Strings;
4307 for (const Expr *Arg : E->arguments()) {
4308 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4309 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"clang/lib/CodeGen/CGBuiltin.cpp", 4309, __extension__ __PRETTY_FUNCTION__
))
;
4310 StringRef WideBytes = Str->getBytes();
4311 std::string StrUtf8;
4312 if (!convertUTF16ToUTF8String(
4313 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4314 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4315 continue;
4316 }
4317 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4318 }
4319
4320 // Build and MDTuple of MDStrings and emit the intrinsic call.
4321 llvm::Function *F =
4322 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4323 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4324 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4325 return RValue::getIgnored();
4326 }
4327 case Builtin::BI__builtin_annotation: {
4328 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4329 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4330 AnnVal->getType());
4331
4332 // Get the annotation string, go through casts. Sema requires this to be a
4333 // non-wide string literal, potentially casted, so the cast<> is safe.
4334 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4335 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4336 return RValue::get(
4337 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4338 }
4339 case Builtin::BI__builtin_addcb:
4340 case Builtin::BI__builtin_addcs:
4341 case Builtin::BI__builtin_addc:
4342 case Builtin::BI__builtin_addcl:
4343 case Builtin::BI__builtin_addcll:
4344 case Builtin::BI__builtin_subcb:
4345 case Builtin::BI__builtin_subcs:
4346 case Builtin::BI__builtin_subc:
4347 case Builtin::BI__builtin_subcl:
4348 case Builtin::BI__builtin_subcll: {
4349
4350 // We translate all of these builtins from expressions of the form:
4351 // int x = ..., y = ..., carryin = ..., carryout, result;
4352 // result = __builtin_addc(x, y, carryin, &carryout);
4353 //
4354 // to LLVM IR of the form:
4355 //
4356 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4357 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4358 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4359 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4360 // i32 %carryin)
4361 // %result = extractvalue {i32, i1} %tmp2, 0
4362 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4363 // %tmp3 = or i1 %carry1, %carry2
4364 // %tmp4 = zext i1 %tmp3 to i32
4365 // store i32 %tmp4, i32* %carryout
4366
4367 // Scalarize our inputs.
4368 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4369 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4370 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4371 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4372
4373 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4374 llvm::Intrinsic::ID IntrinsicId;
4375 switch (BuiltinID) {
4376 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4376)
;
4377 case Builtin::BI__builtin_addcb:
4378 case Builtin::BI__builtin_addcs:
4379 case Builtin::BI__builtin_addc:
4380 case Builtin::BI__builtin_addcl:
4381 case Builtin::BI__builtin_addcll:
4382 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4383 break;
4384 case Builtin::BI__builtin_subcb:
4385 case Builtin::BI__builtin_subcs:
4386 case Builtin::BI__builtin_subc:
4387 case Builtin::BI__builtin_subcl:
4388 case Builtin::BI__builtin_subcll:
4389 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4390 break;
4391 }
4392
4393 // Construct our resulting LLVM IR expression.
4394 llvm::Value *Carry1;
4395 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4396 X, Y, Carry1);
4397 llvm::Value *Carry2;
4398 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4399 Sum1, Carryin, Carry2);
4400 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4401 X->getType());
4402 Builder.CreateStore(CarryOut, CarryOutPtr);
4403 return RValue::get(Sum2);
4404 }
4405
4406 case Builtin::BI__builtin_add_overflow:
4407 case Builtin::BI__builtin_sub_overflow:
4408 case Builtin::BI__builtin_mul_overflow: {
4409 const clang::Expr *LeftArg = E->getArg(0);
4410 const clang::Expr *RightArg = E->getArg(1);
4411 const clang::Expr *ResultArg = E->getArg(2);
4412
4413 clang::QualType ResultQTy =
4414 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4415
4416 WidthAndSignedness LeftInfo =
4417 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4418 WidthAndSignedness RightInfo =
4419 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4420 WidthAndSignedness ResultInfo =
4421 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4422
4423 // Handle mixed-sign multiplication as a special case, because adding
4424 // runtime or backend support for our generic irgen would be too expensive.
4425 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4426 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4427 RightInfo, ResultArg, ResultQTy,
4428 ResultInfo);
4429
4430 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4431 ResultInfo))
4432 return EmitCheckedUnsignedMultiplySignedResult(
4433 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4434 ResultInfo);
4435
4436 WidthAndSignedness EncompassingInfo =
4437 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4438
4439 llvm::Type *EncompassingLLVMTy =
4440 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4441
4442 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4443
4444 llvm::Intrinsic::ID IntrinsicId;
4445 switch (BuiltinID) {
4446 default:
4447 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4447)
;
4448 case Builtin::BI__builtin_add_overflow:
4449 IntrinsicId = EncompassingInfo.Signed
4450 ? llvm::Intrinsic::sadd_with_overflow
4451 : llvm::Intrinsic::uadd_with_overflow;
4452 break;
4453 case Builtin::BI__builtin_sub_overflow:
4454 IntrinsicId = EncompassingInfo.Signed
4455 ? llvm::Intrinsic::ssub_with_overflow
4456 : llvm::Intrinsic::usub_with_overflow;
4457 break;
4458 case Builtin::BI__builtin_mul_overflow:
4459 IntrinsicId = EncompassingInfo.Signed
4460 ? llvm::Intrinsic::smul_with_overflow
4461 : llvm::Intrinsic::umul_with_overflow;
4462 break;
4463 }
4464
4465 llvm::Value *Left = EmitScalarExpr(LeftArg);
4466 llvm::Value *Right = EmitScalarExpr(RightArg);
4467 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4468
4469 // Extend each operand to the encompassing type.
4470 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4471 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4472
4473 // Perform the operation on the extended values.
4474 llvm::Value *Overflow, *Result;
4475 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4476
4477 if (EncompassingInfo.Width > ResultInfo.Width) {
4478 // The encompassing type is wider than the result type, so we need to
4479 // truncate it.
4480 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4481
4482 // To see if the truncation caused an overflow, we will extend
4483 // the result and then compare it to the original result.
4484 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4485 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4486 llvm::Value *TruncationOverflow =
4487 Builder.CreateICmpNE(Result, ResultTruncExt);
4488
4489 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4490 Result = ResultTrunc;
4491 }
4492
4493 // Finally, store the result using the pointer.
4494 bool isVolatile =
4495 ResultArg->getType()->getPointeeType().isVolatileQualified();
4496 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4497
4498 return RValue::get(Overflow);
4499 }
4500
4501 case Builtin::BI__builtin_uadd_overflow:
4502 case Builtin::BI__builtin_uaddl_overflow:
4503 case Builtin::BI__builtin_uaddll_overflow:
4504 case Builtin::BI__builtin_usub_overflow:
4505 case Builtin::BI__builtin_usubl_overflow:
4506 case Builtin::BI__builtin_usubll_overflow:
4507 case Builtin::BI__builtin_umul_overflow:
4508 case Builtin::BI__builtin_umull_overflow:
4509 case Builtin::BI__builtin_umulll_overflow:
4510 case Builtin::BI__builtin_sadd_overflow:
4511 case Builtin::BI__builtin_saddl_overflow:
4512 case Builtin::BI__builtin_saddll_overflow:
4513 case Builtin::BI__builtin_ssub_overflow:
4514 case Builtin::BI__builtin_ssubl_overflow:
4515 case Builtin::BI__builtin_ssubll_overflow:
4516 case Builtin::BI__builtin_smul_overflow:
4517 case Builtin::BI__builtin_smull_overflow:
4518 case Builtin::BI__builtin_smulll_overflow: {
4519
4520 // We translate all of these builtins directly to the relevant llvm IR node.
4521
4522 // Scalarize our inputs.
4523 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4524 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4525 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4526
4527 // Decide which of the overflow intrinsics we are lowering to:
4528 llvm::Intrinsic::ID IntrinsicId;
4529 switch (BuiltinID) {
4530 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4530)
;
4531 case Builtin::BI__builtin_uadd_overflow:
4532 case Builtin::BI__builtin_uaddl_overflow:
4533 case Builtin::BI__builtin_uaddll_overflow:
4534 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4535 break;
4536 case Builtin::BI__builtin_usub_overflow:
4537 case Builtin::BI__builtin_usubl_overflow:
4538 case Builtin::BI__builtin_usubll_overflow:
4539 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4540 break;
4541 case Builtin::BI__builtin_umul_overflow:
4542 case Builtin::BI__builtin_umull_overflow:
4543 case Builtin::BI__builtin_umulll_overflow:
4544 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4545 break;
4546 case Builtin::BI__builtin_sadd_overflow:
4547 case Builtin::BI__builtin_saddl_overflow:
4548 case Builtin::BI__builtin_saddll_overflow:
4549 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4550 break;
4551 case Builtin::BI__builtin_ssub_overflow:
4552 case Builtin::BI__builtin_ssubl_overflow:
4553 case Builtin::BI__builtin_ssubll_overflow:
4554 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4555 break;
4556 case Builtin::BI__builtin_smul_overflow:
4557 case Builtin::BI__builtin_smull_overflow:
4558 case Builtin::BI__builtin_smulll_overflow:
4559 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4560 break;
4561 }
4562
4563
4564 llvm::Value *Carry;
4565 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4566 Builder.CreateStore(Sum, SumOutPtr);
4567
4568 return RValue::get(Carry);
4569 }
4570 case Builtin::BIaddressof:
4571 case Builtin::BI__addressof:
4572 case Builtin::BI__builtin_addressof:
4573 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4574 case Builtin::BI__builtin_function_start:
4575 return RValue::get(CGM.GetFunctionStart(
4576 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4577 case Builtin::BI__builtin_operator_new:
4578 return EmitBuiltinNewDeleteCall(
4579 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4580 case Builtin::BI__builtin_operator_delete:
4581 return EmitBuiltinNewDeleteCall(
4582 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4583
4584 case Builtin::BI__builtin_is_aligned:
4585 return EmitBuiltinIsAligned(E);
4586 case Builtin::BI__builtin_align_up:
4587 return EmitBuiltinAlignTo(E, true);
4588 case Builtin::BI__builtin_align_down:
4589 return EmitBuiltinAlignTo(E, false);
4590
4591 case Builtin::BI__noop:
4592 // __noop always evaluates to an integer literal zero.
4593 return RValue::get(ConstantInt::get(IntTy, 0));
4594 case Builtin::BI__builtin_call_with_static_chain: {
4595 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4596 const Expr *Chain = E->getArg(1);
4597 return EmitCall(Call->getCallee()->getType(),
4598 EmitCallee(Call->getCallee()), Call, ReturnValue,
4599 EmitScalarExpr(Chain));
4600 }
4601 case Builtin::BI_InterlockedExchange8:
4602 case Builtin::BI_InterlockedExchange16:
4603 case Builtin::BI_InterlockedExchange:
4604 case Builtin::BI_InterlockedExchangePointer:
4605 return RValue::get(
4606 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4607 case Builtin::BI_InterlockedCompareExchangePointer:
4608 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4609 llvm::Type *RTy;
4610 llvm::IntegerType *IntType =
4611 IntegerType::get(getLLVMContext(),
4612 getContext().getTypeSize(E->getType()));
4613 llvm::Type *IntPtrType = IntType->getPointerTo();
4614
4615 llvm::Value *Destination =
4616 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4617
4618 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4619 RTy = Exchange->getType();
4620 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4621
4622 llvm::Value *Comparand =
4623 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4624
4625 auto Ordering =
4626 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4627 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4628
4629 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4630 Ordering, Ordering);
4631 Result->setVolatile(true);
4632
4633 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4634 0),
4635 RTy));
4636 }
4637 case Builtin::BI_InterlockedCompareExchange8:
4638 case Builtin::BI_InterlockedCompareExchange16:
4639 case Builtin::BI_InterlockedCompareExchange:
4640 case Builtin::BI_InterlockedCompareExchange64:
4641 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4642 case Builtin::BI_InterlockedIncrement16:
4643 case Builtin::BI_InterlockedIncrement:
4644 return RValue::get(
4645 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4646 case Builtin::BI_InterlockedDecrement16:
4647 case Builtin::BI_InterlockedDecrement:
4648 return RValue::get(
4649 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4650 case Builtin::BI_InterlockedAnd8:
4651 case Builtin::BI_InterlockedAnd16:
4652 case Builtin::BI_InterlockedAnd:
4653 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4654 case Builtin::BI_InterlockedExchangeAdd8:
4655 case Builtin::BI_InterlockedExchangeAdd16:
4656 case Builtin::BI_InterlockedExchangeAdd:
4657 return RValue::get(
4658 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4659 case Builtin::BI_InterlockedExchangeSub8:
4660 case Builtin::BI_InterlockedExchangeSub16:
4661 case Builtin::BI_InterlockedExchangeSub:
4662 return RValue::get(
4663 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4664 case Builtin::BI_InterlockedOr8:
4665 case Builtin::BI_InterlockedOr16:
4666 case Builtin::BI_InterlockedOr:
4667 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4668 case Builtin::BI_InterlockedXor8:
4669 case Builtin::BI_InterlockedXor16:
4670 case Builtin::BI_InterlockedXor:
4671 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4672
4673 case Builtin::BI_bittest64:
4674 case Builtin::BI_bittest:
4675 case Builtin::BI_bittestandcomplement64:
4676 case Builtin::BI_bittestandcomplement:
4677 case Builtin::BI_bittestandreset64:
4678 case Builtin::BI_bittestandreset:
4679 case Builtin::BI_bittestandset64:
4680 case Builtin::BI_bittestandset:
4681 case Builtin::BI_interlockedbittestandreset:
4682 case Builtin::BI_interlockedbittestandreset64:
4683 case Builtin::BI_interlockedbittestandset64:
4684 case Builtin::BI_interlockedbittestandset:
4685 case Builtin::BI_interlockedbittestandset_acq:
4686 case Builtin::BI_interlockedbittestandset_rel:
4687 case Builtin::BI_interlockedbittestandset_nf:
4688 case Builtin::BI_interlockedbittestandreset_acq:
4689 case Builtin::BI_interlockedbittestandreset_rel:
4690 case Builtin::BI_interlockedbittestandreset_nf:
4691 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4692
4693 // These builtins exist to emit regular volatile loads and stores not
4694 // affected by the -fms-volatile setting.
4695 case Builtin::BI__iso_volatile_load8:
4696 case Builtin::BI__iso_volatile_load16:
4697 case Builtin::BI__iso_volatile_load32:
4698 case Builtin::BI__iso_volatile_load64:
4699 return RValue::get(EmitISOVolatileLoad(*this, E));
4700 case Builtin::BI__iso_volatile_store8:
4701 case Builtin::BI__iso_volatile_store16:
4702 case Builtin::BI__iso_volatile_store32:
4703 case Builtin::BI__iso_volatile_store64:
4704 return RValue::get(EmitISOVolatileStore(*this, E));
4705
4706 case Builtin::BI__exception_code:
4707 case Builtin::BI_exception_code:
4708 return RValue::get(EmitSEHExceptionCode());
4709 case Builtin::BI__exception_info:
4710 case Builtin::BI_exception_info:
4711 return RValue::get(EmitSEHExceptionInfo());
4712 case Builtin::BI__abnormal_termination:
4713 case Builtin::BI_abnormal_termination:
4714 return RValue::get(EmitSEHAbnormalTermination());
4715 case Builtin::BI_setjmpex:
4716 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4717 E->getArg(0)->getType()->isPointerType())
4718 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4719 break;
4720 case Builtin::BI_setjmp:
4721 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4722 E->getArg(0)->getType()->isPointerType()) {
4723 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4724 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4725 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4726 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4727 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4728 }
4729 break;
4730
4731 // C++ std:: builtins.
4732 case Builtin::BImove:
4733 case Builtin::BImove_if_noexcept:
4734 case Builtin::BIforward:
4735 case Builtin::BIas_const:
4736 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4737 case Builtin::BI__GetExceptionInfo: {
4738 if (llvm::GlobalVariable *GV =
4739 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4740 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4741 break;
4742 }
4743
4744 case Builtin::BI__fastfail:
4745 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4746
4747 case Builtin::BI__builtin_coro_size: {
4748 auto & Context = getContext();
4749 auto SizeTy = Context.getSizeType();
4750 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4751 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4752 return RValue::get(Builder.CreateCall(F));
4753 }
4754
4755 case Builtin::BI__builtin_coro_id:
4756 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4757 case Builtin::BI__builtin_coro_promise:
4758 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4759 case Builtin::BI__builtin_coro_resume:
4760 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4761 case Builtin::BI__builtin_coro_frame:
4762 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4763 case Builtin::BI__builtin_coro_noop:
4764 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4765 case Builtin::BI__builtin_coro_free:
4766 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4767 case Builtin::BI__builtin_coro_destroy:
4768 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4769 case Builtin::BI__builtin_coro_done:
4770 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4771 case Builtin::BI__builtin_coro_alloc:
4772 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4773 case Builtin::BI__builtin_coro_begin:
4774 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4775 case Builtin::BI__builtin_coro_end:
4776 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4777 case Builtin::BI__builtin_coro_suspend:
4778 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4779
4780 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4781 case Builtin::BIread_pipe:
4782 case Builtin::BIwrite_pipe: {
4783 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4784 *Arg1 = EmitScalarExpr(E->getArg(1));
4785 CGOpenCLRuntime OpenCLRT(CGM);
4786 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4787 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4788
4789 // Type of the generic packet parameter.
4790 unsigned GenericAS =
4791 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4792 llvm::Type *I8PTy = llvm::PointerType::get(
4793 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4794
4795 // Testing which overloaded version we should generate the call for.
4796 if (2U == E->getNumArgs()) {
4797 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4798 : "__write_pipe_2";
4799 // Creating a generic function type to be able to call with any builtin or
4800 // user defined type.
4801 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4802 llvm::FunctionType *FTy = llvm::FunctionType::get(
4803 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4804 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4805 return RValue::get(
4806 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4807 {Arg0, BCast, PacketSize, PacketAlign}));
4808 } else {
4809 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4810, __extension__ __PRETTY_FUNCTION__
))
4810 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4810, __extension__ __PRETTY_FUNCTION__
))
;
4811 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4812 : "__write_pipe_4";
4813
4814 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4815 Int32Ty, Int32Ty};
4816 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4817 *Arg3 = EmitScalarExpr(E->getArg(3));
4818 llvm::FunctionType *FTy = llvm::FunctionType::get(
4819 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4820 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4821 // We know the third argument is an integer type, but we may need to cast
4822 // it to i32.
4823 if (Arg2->getType() != Int32Ty)
4824 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4825 return RValue::get(
4826 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4827 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4828 }
4829 }
4830 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4831 // functions
4832 case Builtin::BIreserve_read_pipe:
4833 case Builtin::BIreserve_write_pipe:
4834 case Builtin::BIwork_group_reserve_read_pipe:
4835 case Builtin::BIwork_group_reserve_write_pipe:
4836 case Builtin::BIsub_group_reserve_read_pipe:
4837 case Builtin::BIsub_group_reserve_write_pipe: {
4838 // Composing the mangled name for the function.
4839 const char *Name;
4840 if (BuiltinID == Builtin::BIreserve_read_pipe)
4841 Name = "__reserve_read_pipe";
4842 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4843 Name = "__reserve_write_pipe";
4844 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4845 Name = "__work_group_reserve_read_pipe";
4846 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4847 Name = "__work_group_reserve_write_pipe";
4848 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4849 Name = "__sub_group_reserve_read_pipe";
4850 else
4851 Name = "__sub_group_reserve_write_pipe";
4852
4853 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4854 *Arg1 = EmitScalarExpr(E->getArg(1));
4855 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4856 CGOpenCLRuntime OpenCLRT(CGM);
4857 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4858 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4859
4860 // Building the generic function prototype.
4861 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4862 llvm::FunctionType *FTy = llvm::FunctionType::get(
4863 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4864 // We know the second argument is an integer type, but we may need to cast
4865 // it to i32.
4866 if (Arg1->getType() != Int32Ty)
4867 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4868 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4869 {Arg0, Arg1, PacketSize, PacketAlign}));
4870 }
4871 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4872 // functions
4873 case Builtin::BIcommit_read_pipe:
4874 case Builtin::BIcommit_write_pipe:
4875 case Builtin::BIwork_group_commit_read_pipe:
4876 case Builtin::BIwork_group_commit_write_pipe:
4877 case Builtin::BIsub_group_commit_read_pipe:
4878 case Builtin::BIsub_group_commit_write_pipe: {
4879 const char *Name;
4880 if (BuiltinID == Builtin::BIcommit_read_pipe)
4881 Name = "__commit_read_pipe";
4882 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4883 Name = "__commit_write_pipe";
4884 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4885 Name = "__work_group_commit_read_pipe";
4886 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4887 Name = "__work_group_commit_write_pipe";
4888 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4889 Name = "__sub_group_commit_read_pipe";
4890 else
4891 Name = "__sub_group_commit_write_pipe";
4892
4893 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4894 *Arg1 = EmitScalarExpr(E->getArg(1));
4895 CGOpenCLRuntime OpenCLRT(CGM);
4896 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4897 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4898
4899 // Building the generic function prototype.
4900 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4901 llvm::FunctionType *FTy =
4902 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4903 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4904
4905 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4906 {Arg0, Arg1, PacketSize, PacketAlign}));
4907 }
4908 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4909 case Builtin::BIget_pipe_num_packets:
4910 case Builtin::BIget_pipe_max_packets: {
4911 const char *BaseName;
4912 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4913 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4914 BaseName = "__get_pipe_num_packets";
4915 else
4916 BaseName = "__get_pipe_max_packets";
4917 std::string Name = std::string(BaseName) +
4918 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4919
4920 // Building the generic function prototype.
4921 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4922 CGOpenCLRuntime OpenCLRT(CGM);
4923 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4924 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4925 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4926 llvm::FunctionType *FTy = llvm::FunctionType::get(
4927 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4928
4929 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4930 {Arg0, PacketSize, PacketAlign}));
4931 }
4932
4933 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4934 case Builtin::BIto_global:
4935 case Builtin::BIto_local:
4936 case Builtin::BIto_private: {
4937 auto Arg0 = EmitScalarExpr(E->getArg(0));
4938 auto NewArgT = llvm::PointerType::get(Int8Ty,
4939 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4940 auto NewRetT = llvm::PointerType::get(Int8Ty,
4941 CGM.getContext().getTargetAddressSpace(
4942 E->getType()->getPointeeType().getAddressSpace()));
4943 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4944 llvm::Value *NewArg;
4945 if (Arg0->getType()->getPointerAddressSpace() !=
4946 NewArgT->getPointerAddressSpace())
4947 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4948 else
4949 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4950 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4951 auto NewCall =
4952 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4953 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4954 ConvertType(E->getType())));
4955 }
4956
4957 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4958 // It contains four different overload formats specified in Table 6.13.17.1.
4959 case Builtin::BIenqueue_kernel: {
4960 StringRef Name; // Generated function call name
4961 unsigned NumArgs = E->getNumArgs();
4962
4963 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4964 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4965 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4966
4967 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4968 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4969 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4970 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4971 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4972
4973 if (NumArgs == 4) {
4974 // The most basic form of the call with parameters:
4975 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4976 Name = "__enqueue_kernel_basic";
4977 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4978 GenericVoidPtrTy};
4979 llvm::FunctionType *FTy = llvm::FunctionType::get(
4980 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4981
4982 auto Info =
4983 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4984 llvm::Value *Kernel =
4985 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4986 llvm::Value *Block =
4987 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4988
4989 AttrBuilder B(Builder.getContext());
4990 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4991 llvm::AttributeList ByValAttrSet =
4992 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4993
4994 auto RTCall =
4995 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4996 {Queue, Flags, Range, Kernel, Block});
4997 RTCall->setAttributes(ByValAttrSet);
4998 return RValue::get(RTCall);
4999 }
5000 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5000, __extension__ __PRETTY_FUNCTION__
))
;
5001
5002 // Create a temporary array to hold the sizes of local pointer arguments
5003 // for the block. \p First is the position of the first size argument.
5004 auto CreateArrayForSizeVar = [=](unsigned First)
5005 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5006 llvm::APInt ArraySize(32, NumArgs - First);
5007 QualType SizeArrayTy = getContext().getConstantArrayType(
5008 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
5009 /*IndexTypeQuals=*/0);
5010 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5011 llvm::Value *TmpPtr = Tmp.getPointer();
5012 llvm::Value *TmpSize = EmitLifetimeStart(
5013 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5014 llvm::Value *ElemPtr;
5015 // Each of the following arguments specifies the size of the corresponding
5016 // argument passed to the enqueued block.
5017 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5018 for (unsigned I = First; I < NumArgs; ++I) {
5019 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5020 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5021 {Zero, Index});
5022 if (I == First)
5023 ElemPtr = GEP;
5024 auto *V =
5025 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5026 Builder.CreateAlignedStore(
5027 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5028 }
5029 return std::tie(ElemPtr, TmpSize, TmpPtr);
5030 };
5031
5032 // Could have events and/or varargs.
5033 if (E->getArg(3)->getType()->isBlockPointerType()) {
5034 // No events passed, but has variadic arguments.
5035 Name = "__enqueue_kernel_varargs";
5036 auto Info =
5037 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5038 llvm::Value *Kernel =
5039 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5040 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5041 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5042 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5043
5044 // Create a vector of the arguments, as well as a constant value to
5045 // express to the runtime the number of variadic arguments.
5046 llvm::Value *const Args[] = {Queue, Flags,
5047 Range, Kernel,
5048 Block, ConstantInt::get(IntTy, NumArgs - 4),
5049 ElemPtr};
5050 llvm::Type *const ArgTys[] = {
5051 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5052 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5053
5054 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5055 auto Call = RValue::get(
5056 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5057 if (TmpSize)
5058 EmitLifetimeEnd(TmpSize, TmpPtr);
5059 return Call;
5060 }
5061 // Any calls now have event arguments passed.
5062 if (NumArgs >= 7) {
5063 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
5064 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
5065 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5066
5067 llvm::Value *NumEvents =
5068 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5069
5070 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5071 // to be a null pointer constant (including `0` literal), we can take it
5072 // into account and emit null pointer directly.
5073 llvm::Value *EventWaitList = nullptr;
5074 if (E->getArg(4)->isNullPointerConstant(
5075 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5076 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
5077 } else {
5078 EventWaitList = E->getArg(4)->getType()->isArrayType()
5079 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5080 : EmitScalarExpr(E->getArg(4));
5081 // Convert to generic address space.
5082 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
5083 }
5084 llvm::Value *EventRet = nullptr;
5085 if (E->getArg(5)->isNullPointerConstant(
5086 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5087 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
5088 } else {
5089 EventRet =
5090 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
5091 }
5092
5093 auto Info =
5094 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5095 llvm::Value *Kernel =
5096 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5097 llvm::Value *Block =
5098 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5099
5100 std::vector<llvm::Type *> ArgTys = {
5101 QueueTy, Int32Ty, RangeTy, Int32Ty,
5102 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5103
5104 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5105 NumEvents, EventWaitList, EventRet,
5106 Kernel, Block};
5107
5108 if (NumArgs == 7) {
5109 // Has events but no variadics.
5110 Name = "__enqueue_kernel_basic_events";
5111 llvm::FunctionType *FTy = llvm::FunctionType::get(
5112 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5113 return RValue::get(
5114 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5115 llvm::ArrayRef<llvm::Value *>(Args)));
5116 }
5117 // Has event info and variadics
5118 // Pass the number of variadics to the runtime function too.
5119 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5120 ArgTys.push_back(Int32Ty);
5121 Name = "__enqueue_kernel_events_varargs";
5122
5123 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5124 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5125 Args.push_back(ElemPtr);
5126 ArgTys.push_back(ElemPtr->getType());
5127
5128 llvm::FunctionType *FTy = llvm::FunctionType::get(
5129 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5130 auto Call =
5131 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5132 llvm::ArrayRef<llvm::Value *>(Args)));
5133 if (TmpSize)
5134 EmitLifetimeEnd(TmpSize, TmpPtr);
5135 return Call;
5136 }
5137 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5138 }
5139 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5140 // parameter.
5141 case Builtin::BIget_kernel_work_group_size: {
5142 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5143 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5144 auto Info =
5145 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5146 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5147 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5148 return RValue::get(EmitRuntimeCall(
5149 CGM.CreateRuntimeFunction(
5150 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5151 false),
5152 "__get_kernel_work_group_size_impl"),
5153 {Kernel, Arg}));
5154 }
5155 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5156 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5157 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5158 auto Info =
5159 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5160 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5161 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5162 return RValue::get(EmitRuntimeCall(
5163 CGM.CreateRuntimeFunction(
5164 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5165 false),
5166 "__get_kernel_preferred_work_group_size_multiple_impl"),
5167 {Kernel, Arg}));
5168 }
5169 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5170 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5171 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5172 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5173 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5174 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5175 auto Info =
5176 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5177 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5178 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5179 const char *Name =
5180 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5181 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5182 : "__get_kernel_sub_group_count_for_ndrange_impl";
5183 return RValue::get(EmitRuntimeCall(
5184 CGM.CreateRuntimeFunction(
5185 llvm::FunctionType::get(
5186 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5187 false),
5188 Name),
5189 {NDRange, Kernel, Block}));
5190 }
5191
5192 case Builtin::BI__builtin_store_half:
5193 case Builtin::BI__builtin_store_halff: {
5194 Value *Val = EmitScalarExpr(E->getArg(0));
5195 Address Address = EmitPointerWithAlignment(E->getArg(1));
5196 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5197 return RValue::get(Builder.CreateStore(HalfVal, Address));
5198 }
5199 case Builtin::BI__builtin_load_half: {
5200 Address Address = EmitPointerWithAlignment(E->getArg(0));
5201 Value *HalfVal = Builder.CreateLoad(Address);
5202 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5203 }
5204 case Builtin::BI__builtin_load_halff: {
5205 Address Address = EmitPointerWithAlignment(E->getArg(0));
5206 Value *HalfVal = Builder.CreateLoad(Address);
5207 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5208 }
5209 case Builtin::BIprintf:
5210 if (getTarget().getTriple().isNVPTX() ||
5211 getTarget().getTriple().isAMDGCN()) {
5212 if (getLangOpts().OpenMPIsDevice)
5213 return EmitOpenMPDevicePrintfCallExpr(E);
5214 if (getTarget().getTriple().isNVPTX())
5215 return EmitNVPTXDevicePrintfCallExpr(E);
5216 if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5217 return EmitAMDGPUDevicePrintfCallExpr(E);
5218 }
5219
5220 break;
5221 case Builtin::BI__builtin_canonicalize:
5222 case Builtin::BI__builtin_canonicalizef:
5223 case Builtin::BI__builtin_canonicalizef16:
5224 case Builtin::BI__builtin_canonicalizel:
5225 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5226
5227 case Builtin::BI__builtin_thread_pointer: {
5228 if (!getContext().getTargetInfo().isTLSSupported())
5229 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5230 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
5231 break;
5232 }
5233 case Builtin::BI__builtin_os_log_format:
5234 return emitBuiltinOSLogFormat(*E);
5235
5236 case Builtin::BI__xray_customevent: {
5237 if (!ShouldXRayInstrumentFunction())
5238 return RValue::getIgnored();
5239
5240 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5241 XRayInstrKind::Custom))
5242 return RValue::getIgnored();
5243
5244 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5245 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5246 return RValue::getIgnored();
5247
5248 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5249 auto FTy = F->getFunctionType();
5250 auto Arg0 = E->getArg(0);
5251 auto Arg0Val = EmitScalarExpr(Arg0);
5252 auto Arg0Ty = Arg0->getType();
5253 auto PTy0 = FTy->getParamType(0);
5254 if (PTy0 != Arg0Val->getType()) {
5255 if (Arg0Ty->isArrayType())
5256 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5257 else
5258 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5259 }
5260 auto Arg1 = EmitScalarExpr(E->getArg(1));
5261 auto PTy1 = FTy->getParamType(1);
5262 if (PTy1 != Arg1->getType())
5263 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5264 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5265 }
5266
5267 case Builtin::BI__xray_typedevent: {
5268 // TODO: There should be a way to always emit events even if the current
5269 // function is not instrumented. Losing events in a stream can cripple
5270 // a trace.
5271 if (!ShouldXRayInstrumentFunction())
5272 return RValue::getIgnored();
5273
5274 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5275 XRayInstrKind::Typed))
5276 return RValue::getIgnored();
5277
5278 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5279 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5280 return RValue::getIgnored();
5281
5282 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5283 auto FTy = F->getFunctionType();
5284 auto Arg0 = EmitScalarExpr(E->getArg(0));
5285 auto PTy0 = FTy->getParamType(0);
5286 if (PTy0 != Arg0->getType())
5287 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5288 auto Arg1 = E->getArg(1);
5289 auto Arg1Val = EmitScalarExpr(Arg1);
5290 auto Arg1Ty = Arg1->getType();
5291 auto PTy1 = FTy->getParamType(1);
5292 if (PTy1 != Arg1Val->getType()) {
5293 if (Arg1Ty->isArrayType())
5294 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5295 else
5296 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5297 }
5298 auto Arg2 = EmitScalarExpr(E->getArg(2));
5299 auto PTy2 = FTy->getParamType(2);
5300 if (PTy2 != Arg2->getType())
5301 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5302 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5303 }
5304
5305 case Builtin::BI__builtin_ms_va_start:
5306 case Builtin::BI__builtin_ms_va_end:
5307 return RValue::get(
5308 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5309 BuiltinID == Builtin::BI__builtin_ms_va_start));
5310
5311 case Builtin::BI__builtin_ms_va_copy: {
5312 // Lower this manually. We can't reliably determine whether or not any
5313 // given va_copy() is for a Win64 va_list from the calling convention
5314 // alone, because it's legal to do this from a System V ABI function.
5315 // With opaque pointer types, we won't have enough information in LLVM
5316 // IR to determine this from the argument types, either. Best to do it
5317 // now, while we have enough information.
5318 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5319 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5320
5321 llvm::Type *BPP = Int8PtrPtrTy;
5322
5323 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5324 Int8PtrTy, DestAddr.getAlignment());
5325 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5326 Int8PtrTy, SrcAddr.getAlignment());
5327
5328 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5329 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5330 }
5331
5332 case Builtin::BI__builtin_get_device_side_mangled_name: {
5333 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5334 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5335 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5336 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5337 llvm::ConstantInt::get(SizeTy, 0)};
5338 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5339 Str.getPointer(), Zeros);
5340 return RValue::get(Ptr);
5341 }
5342 }
5343
5344 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5345 // the call using the normal call path, but using the unmangled
5346 // version of the function name.
5347 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5348 return emitLibraryCall(*this, FD, E,
5349 CGM.getBuiltinLibFunction(FD, BuiltinID));
5350
5351 // If this is a predefined lib function (e.g. malloc), emit the call
5352 // using exactly the normal call path.
5353 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5354 return emitLibraryCall(*this, FD, E,
5355 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5356
5357 // Check that a call to a target specific builtin has the correct target
5358 // features.
5359 // This is down here to avoid non-target specific builtins, however, if
5360 // generic builtins start to require generic target features then we
5361 // can move this up to the beginning of the function.
5362 checkTargetFeatures(E, FD);
5363
5364 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5365 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5366
5367 // See if we have a target specific intrinsic.
5368 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5369 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5370 StringRef Prefix =
5371 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5372 if (!Prefix.empty()) {
5373 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5374 // NOTE we don't need to perform a compatibility flag check here since the
5375 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5376 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5377 if (IntrinsicID == Intrinsic::not_intrinsic)
5378 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5379 }
5380
5381 if (IntrinsicID != Intrinsic::not_intrinsic) {
5382 SmallVector<Value*, 16> Args;
5383
5384 // Find out if any arguments are required to be integer constant
5385 // expressions.
5386 unsigned ICEArguments = 0;
5387 ASTContext::GetBuiltinTypeError Error;
5388 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5389 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5389, __extension__ __PRETTY_FUNCTION__
))
;
5390
5391 Function *F = CGM.getIntrinsic(IntrinsicID);
5392 llvm::FunctionType *FTy = F->getFunctionType();
5393
5394 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5395 Value *ArgValue;
5396 // If this is a normal argument, just emit it as a scalar.
5397 if ((ICEArguments & (1 << i)) == 0) {
5398 ArgValue = EmitScalarExpr(E->getArg(i));
5399 } else {
5400 // If this is required to be a constant, constant fold it so that we
5401 // know that the generated intrinsic gets a ConstantInt.
5402 ArgValue = llvm::ConstantInt::get(
5403 getLLVMContext(),
5404 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5405 }
5406
5407 // If the intrinsic arg type is different from the builtin arg type
5408 // we need to do a bit cast.
5409 llvm::Type *PTy = FTy->getParamType(i);
5410 if (PTy != ArgValue->getType()) {
5411 // XXX - vector of pointers?
5412 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5413 if (PtrTy->getAddressSpace() !=
5414 ArgValue->getType()->getPointerAddressSpace()) {
5415 ArgValue = Builder.CreateAddrSpaceCast(
5416 ArgValue,
5417 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5418 }
5419 }
5420
5421 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5422, __extension__ __PRETTY_FUNCTION__
))
5422 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5422, __extension__ __PRETTY_FUNCTION__
))
;
5423 // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5424 // in amx intrinsics.
5425 if (PTy->isX86_AMXTy())
5426 ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5427 {ArgValue->getType()}, {ArgValue});
5428 else
5429 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5430 }
5431
5432 Args.push_back(ArgValue);
5433 }
5434
5435 Value *V = Builder.CreateCall(F, Args);
5436 QualType BuiltinRetType = E->getType();
5437
5438 llvm::Type *RetTy = VoidTy;
5439 if (!BuiltinRetType->isVoidType())
5440 RetTy = ConvertType(BuiltinRetType);
5441
5442 if (RetTy != V->getType()) {
5443 // XXX - vector of pointers?
5444 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5445 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5446 V = Builder.CreateAddrSpaceCast(
5447 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5448 }
5449 }
5450
5451 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5452, __extension__ __PRETTY_FUNCTION__
))
5452 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5452, __extension__ __PRETTY_FUNCTION__
))
;
5453 // Cast x86_amx to vector type (e.g., v256i32), this only happen
5454 // in amx intrinsics.
5455 if (V->getType()->isX86_AMXTy())
5456 V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5457 {V});
5458 else
5459 V = Builder.CreateBitCast(V, RetTy);
5460 }
5461
5462 return RValue::get(V);
5463 }
5464
5465 // Some target-specific builtins can have aggregate return values, e.g.
5466 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5467 // ReturnValue to be non-null, so that the target-specific emission code can
5468 // always just emit into it.
5469 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5470 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5471 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5472 ReturnValue = ReturnValueSlot(DestPtr, false);
5473 }
5474
5475 // Now see if we can emit a target-specific builtin.
5476 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5477 switch (EvalKind) {
5478 case TEK_Scalar:
5479 return RValue::get(V);
5480 case TEK_Aggregate:
5481 return RValue::getAggregate(ReturnValue.getValue(),
5482 ReturnValue.isVolatile());
5483 case TEK_Complex:
5484 llvm_unreachable("No current target builtin returns complex")::llvm::llvm_unreachable_internal("No current target builtin returns complex"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5484)
;
5485 }
5486 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")::llvm::llvm_unreachable_internal("Bad evaluation kind in EmitBuiltinExpr"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5486)
;
5487 }
5488
5489 ErrorUnsupported(E, "builtin function");
5490
5491 // Unknown builtin, for now just dump it out and return undef.
5492 return GetUndefRValue(E->getType());
5493}
5494
5495static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5496 unsigned BuiltinID, const CallExpr *E,
5497 ReturnValueSlot ReturnValue,
5498 llvm::Triple::ArchType Arch) {
5499 switch (Arch) {
5500 case llvm::Triple::arm:
5501 case llvm::Triple::armeb:
5502 case llvm::Triple::thumb:
5503 case llvm::Triple::thumbeb:
5504 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5505 case llvm::Triple::aarch64:
5506 case llvm::Triple::aarch64_32:
5507 case llvm::Triple::aarch64_be:
5508 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5509 case llvm::Triple::bpfeb:
5510 case llvm::Triple::bpfel:
5511 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5512 case llvm::Triple::x86:
5513 case llvm::Triple::x86_64:
5514 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5515 case llvm::Triple::ppc:
5516 case llvm::Triple::ppcle:
5517 case llvm::Triple::ppc64:
5518 case llvm::Triple::ppc64le:
5519 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5520 case llvm::Triple::r600:
5521 case llvm::Triple::amdgcn:
5522 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5523 case llvm::Triple::systemz:
5524 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5525 case llvm::Triple::nvptx:
5526 case llvm::Triple::nvptx64:
5527 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5528 case llvm::Triple::wasm32:
5529 case llvm::Triple::wasm64:
5530 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5531 case llvm::Triple::hexagon:
5532 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5533 case llvm::Triple::riscv32:
5534 case llvm::Triple::riscv64:
5535 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5536 default:
5537 return nullptr;
5538 }
5539}
5540
5541Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5542 const CallExpr *E,
5543 ReturnValueSlot ReturnValue) {
5544 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5545 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5545, __extension__ __PRETTY_FUNCTION__
))
;
5546 return EmitTargetArchBuiltinExpr(
5547 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5548 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5549 }
5550
5551 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5552 getTarget().getTriple().getArch());
5553}
5554
5555static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5556 NeonTypeFlags TypeFlags,
5557 bool HasLegalHalfType = true,
5558 bool V1Ty = false,
5559 bool AllowBFloatArgsAndRet = true) {
5560 int IsQuad = TypeFlags.isQuad();
5561 switch (TypeFlags.getEltType()) {
5562 case NeonTypeFlags::Int8:
5563 case NeonTypeFlags::Poly8:
5564 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5565 case NeonTypeFlags::Int16:
5566 case NeonTypeFlags::Poly16:
5567 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5568 case NeonTypeFlags::BFloat16:
5569 if (AllowBFloatArgsAndRet)
5570 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5571 else
5572 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5573 case NeonTypeFlags::Float16:
5574 if (HasLegalHalfType)
5575 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5576 else
5577 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5578 case NeonTypeFlags::Int32:
5579 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5580 case NeonTypeFlags::Int64:
5581 case NeonTypeFlags::Poly64:
5582 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5583 case NeonTypeFlags::Poly128:
5584 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5585 // There is a lot of i128 and f128 API missing.
5586 // so we use v16i8 to represent poly128 and get pattern matched.
5587 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5588 case NeonTypeFlags::Float32:
5589 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5590 case NeonTypeFlags::Float64:
5591 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5592 }
5593 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5593)
;
5594}
5595
5596static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5597 NeonTypeFlags IntTypeFlags) {
5598 int IsQuad = IntTypeFlags.isQuad();
5599 switch (IntTypeFlags.getEltType()) {
5600 case NeonTypeFlags::Int16:
5601 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5602 case NeonTypeFlags::Int32:
5603 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5604 case NeonTypeFlags::Int64:
5605 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5606 default:
5607 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5607)
;
5608 }
5609}
5610
5611Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5612 const ElementCount &Count) {
5613 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5614 return Builder.CreateShuffleVector(V, V, SV, "lane");
5615}
5616
5617Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5618 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5619 return EmitNeonSplat(V, C, EC);
5620}
5621
5622Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5623 const char *name,
5624 unsigned shift, bool rightshift) {
5625 unsigned j = 0;
5626 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5627 ai != ae; ++ai, ++j) {
5628 if (F->isConstrainedFPIntrinsic())
5629 if (ai->getType()->isMetadataTy())
5630 continue;
5631 if (shift > 0 && shift == j)
5632 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5633 else
5634 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5635 }
5636
5637 if (F->isConstrainedFPIntrinsic())
5638 return Builder.CreateConstrainedFPCall(F, Ops, name);
5639 else
5640 return Builder.CreateCall(F, Ops, name);
5641}
5642
5643Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5644 bool neg) {
5645 int SV = cast<ConstantInt>(V)->getSExtValue();
5646 return ConstantInt::get(Ty, neg ? -SV : SV);
5647}
5648
5649// Right-shift a vector by a constant.
5650Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5651 llvm::Type *Ty, bool usgn,
5652 const char *name) {
5653 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5654
5655 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5656 int EltSize = VTy->getScalarSizeInBits();
5657
5658 Vec = Builder.CreateBitCast(Vec, Ty);
5659
5660 // lshr/ashr are undefined when the shift amount is equal to the vector
5661 // element size.
5662 if (ShiftAmt == EltSize) {
5663 if (usgn) {
5664 // Right-shifting an unsigned value by its size yields 0.
5665 return llvm::ConstantAggregateZero::get(VTy);
5666 } else {
5667 // Right-shifting a signed value by its size is equivalent
5668 // to a shift of size-1.
5669 --ShiftAmt;
5670 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5671 }
5672 }
5673
5674 Shift = EmitNeonShiftVector(Shift, Ty, false);
5675 if (usgn)
5676 return Builder.CreateLShr(Vec, Shift, name);
5677 else
5678 return Builder.CreateAShr(Vec, Shift, name);
5679}
5680
5681enum {
5682 AddRetType = (1 << 0),
5683 Add1ArgType = (1 << 1),
5684 Add2ArgTypes = (1 << 2),
5685
5686 VectorizeRetType = (1 << 3),
5687 VectorizeArgTypes = (1 << 4),
5688
5689 InventFloatType = (1 << 5),
5690 UnsignedAlts = (1 << 6),
5691
5692 Use64BitVectors = (1 << 7),
5693 Use128BitVectors = (1 << 8),
5694
5695 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5696 VectorRet = AddRetType | VectorizeRetType,
5697 VectorRetGetArgs01 =
5698 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5699 FpCmpzModifiers =
5700 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5701};
5702
5703namespace {
5704struct ARMVectorIntrinsicInfo {
5705 const char *NameHint;
5706 unsigned BuiltinID;
5707 unsigned LLVMIntrinsic;
5708 unsigned AltLLVMIntrinsic;
5709 uint64_t TypeModifier;
5710
5711 bool operator<(unsigned RHSBuiltinID) const {
5712 return BuiltinID < RHSBuiltinID;
5713 }
5714 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5715 return BuiltinID < TE.BuiltinID;
5716 }
5717};
5718} // end anonymous namespace
5719
5720#define NEONMAP0(NameBase) \
5721 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5722
5723#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5724 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5725 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5726
5727#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5728 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5729 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5730 TypeModifier }
5731
5732static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5733 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5734 NEONMAP0(splat_lane_v),
5735 NEONMAP0(splat_laneq_v),
5736 NEONMAP0(splatq_lane_v),
5737 NEONMAP0(splatq_laneq_v),
5738 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5739 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5740 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5741 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5742 NEONMAP0(vadd_v),
5743 NEONMAP0(vaddhn_v),
5744 NEONMAP0(vaddq_v),
5745 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5746 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5747 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5748 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5749 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5750 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5751 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5752 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5753 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5754 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5755 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5756 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5757 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5758 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5759 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5760 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5761 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5762 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5763 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5764 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5765 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5766 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5767 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5768 NEONMAP0(vceqz_v),
5769 NEONMAP0(vceqzq_v),
5770 NEONMAP0(vcgez_v),
5771 NEONMAP0(vcgezq_v),
5772 NEONMAP0(vcgtz_v),
5773 NEONMAP0(vcgtzq_v),
5774 NEONMAP0(vclez_v),
5775 NEONMAP0(vclezq_v),
5776 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5777 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5778 NEONMAP0(vcltz_v),
5779 NEONMAP0(vcltzq_v),
5780 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5781 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5782 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5783 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5784 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5785 NEONMAP0(vcvt_f16_v),
5786 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5787 NEONMAP0(vcvt_f32_v),
5788 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5789 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5790 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5791 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5792 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5793 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5794 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5795 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5796 NEONMAP0(vcvt_s16_v),
5797 NEONMAP0(vcvt_s32_v),
5798 NEONMAP0(vcvt_s64_v),
5799 NEONMAP0(vcvt_u16_v),
5800 NEONMAP0(vcvt_u32_v),
5801 NEONMAP0(vcvt_u64_v),
5802 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5803 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5804 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5805 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5806 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5807 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5808 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5809 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5810 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5811 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5812 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5813 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5814 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5815 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5816 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5817 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5818 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5819 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5820 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5821 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5822 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5823 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5824 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5825 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5826 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5827 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5828 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5829 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5830 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5831 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5832 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5833 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5834 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5835 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5836 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5837 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5838 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5839 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5840 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5841 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5842 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5843 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5844 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5845 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5846 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5847 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5848 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5849 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5850 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5851 NEONMAP0(vcvtq_f16_v),
5852 NEONMAP0(vcvtq_f32_v),
5853 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5854 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5855 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5856 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5857 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5858 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5859 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5860 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5861 NEONMAP0(vcvtq_s16_v),
5862 NEONMAP0(vcvtq_s32_v),
5863 NEONMAP0(vcvtq_s64_v),
5864 NEONMAP0(vcvtq_u16_v),
5865 NEONMAP0(vcvtq_u32_v),
5866 NEONMAP0(vcvtq_u64_v),
5867 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5868 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5869 NEONMAP0(vext_v),
5870 NEONMAP0(vextq_v),
5871 NEONMAP0(vfma_v),
5872 NEONMAP0(vfmaq_v),
5873 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5874 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5875 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5876 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5877 NEONMAP0(vld1_dup_v),
5878 NEONMAP1(vld1_v, arm_neon_vld1, 0),
5879 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5880 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5881 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5882 NEONMAP0(vld1q_dup_v),
5883 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5884 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5885 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5886 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5887 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5888 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5889 NEONMAP1(vld2_v, arm_neon_vld2, 0),
5890 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5891 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5892 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5893 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5894 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5895 NEONMAP1(vld3_v, arm_neon_vld3, 0),
5896 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5897 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5898 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5899 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5900 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5901 NEONMAP1(vld4_v, arm_neon_vld4, 0),
5902 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5903 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5904 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5905 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5906 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5907 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5908 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5909 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5910 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5911 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5912 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5913 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5914 NEONMAP0(vmovl_v),
5915 NEONMAP0(vmovn_v),
5916 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5917 NEONMAP0(vmull_v),
5918 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5919 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5920 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5921 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5922 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5923 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5924 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5925 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5926 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5927 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5928 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5929 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5930 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5931 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5932 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5933 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5934 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5935 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5936 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5937 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5938 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5939 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5940 NEONMAP1(vqrdmlah_v, arm_neon_vqrdmlah, Add1ArgType),
5941 NEONMAP1(vqrdmlahq_v, arm_neon_vqrdmlah, Add1ArgType),
5942 NEONMAP1(vqrdmlsh_v, arm_neon_vqrdmlsh, Add1ArgType),
5943 NEONMAP1(vqrdmlshq_v, arm_neon_vqrdmlsh, Add1ArgType),
5944 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5945 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5946 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5947 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5948 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5949 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5950 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5951 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5952 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5953 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5954 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5955 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5956 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5957 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5958 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5959 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5960 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5961 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5962 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5963 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5964 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5965 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5966 NEONMAP0(vrndi_v),
5967 NEONMAP0(vrndiq_v),
5968 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5969 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5970 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5971 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5972 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5973 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5974 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5975 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5976 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5977 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5978 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5979 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5980 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5981 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5982 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5983 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5984 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5985 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5986 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5987 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5988 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5989 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5990 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5991 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5992 NEONMAP0(vshl_n_v),
5993 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5994 NEONMAP0(vshll_n_v),
5995 NEONMAP0(vshlq_n_v),
5996 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5997 NEONMAP0(vshr_n_v),
5998 NEONMAP0(vshrn_n_v),
5999 NEONMAP0(vshrq_n_v),
6000 NEONMAP1(vst1_v, arm_neon_vst1, 0),
6001 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
6002 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
6003 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
6004 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
6005 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
6006 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
6007 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
6008 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6009 NEONMAP1(vst2_v, arm_neon_vst2, 0),
6010 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6011 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6012 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6013 NEONMAP1(vst3_v, arm_neon_vst3, 0),
6014 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6015 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6016 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6017 NEONMAP1(vst4_v, arm_neon_vst4, 0),
6018 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6019 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6020 NEONMAP0(vsubhn_v),
6021 NEONMAP0(vtrn_v),
6022 NEONMAP0(vtrnq_v),
6023 NEONMAP0(vtst_v),
6024 NEONMAP0(vtstq_v),
6025 NEONMAP1(vusdot_v, arm_neon_usdot, 0),
6026 NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
6027 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
6028 NEONMAP0(vuzp_v),
6029 NEONMAP0(vuzpq_v),
6030 NEONMAP0(vzip_v),
6031 NEONMAP0(vzipq_v)
6032};
6033
6034static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6035 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
6036 NEONMAP0(splat_lane_v),
6037 NEONMAP0(splat_laneq_v),
6038 NEONMAP0(splatq_lane_v),
6039 NEONMAP0(splatq_laneq_v),
6040 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6041 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6042 NEONMAP0(vadd_v),
6043 NEONMAP0(vaddhn_v),
6044 NEONMAP0(vaddq_p128),
6045 NEONMAP0(vaddq_v),
6046 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
6047 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
6048 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
6049 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
6050 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6051 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
6052 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
6053 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
6054 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
6055 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
6056 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
6057 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
6058 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
6059 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
6060 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6061 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6062 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6063 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6064 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6065 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6066 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6067 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6068 NEONMAP0(vceqz_v),
6069 NEONMAP0(vceqzq_v),
6070 NEONMAP0(vcgez_v),
6071 NEONMAP0(vcgezq_v),
6072 NEONMAP0(vcgtz_v),
6073 NEONMAP0(vcgtzq_v),
6074 NEONMAP0(vclez_v),
6075 NEONMAP0(vclezq_v),
6076 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6077 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6078 NEONMAP0(vcltz_v),
6079 NEONMAP0(vcltzq_v),
6080 NEONMAP1(vclz_v, ctlz, Add1ArgType),
6081 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6082 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
6083 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
6084 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
6085 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
6086 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
6087 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
6088 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
6089 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
6090 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6091 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6092 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6093 NEONMAP0(vcvt_f16_v),
6094 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6095 NEONMAP0(vcvt_f32_v),
6096 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6097 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6098 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6099 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6100 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6101 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6102 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6103 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6104 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6105 NEONMAP0(vcvtq_f16_v),
6106 NEONMAP0(vcvtq_f32_v),
6107 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
6108 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6109 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6110 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6111 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6112 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6113 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6114 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6115 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6116 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6117 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6118 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6119 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6120 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6121 NEONMAP0(vext_v),
6122 NEONMAP0(vextq_v),
6123 NEONMAP0(vfma_v),
6124 NEONMAP0(vfmaq_v),
6125 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
6126 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
6127 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
6128 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
6129 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
6130 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
6131 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
6132 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
6133 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6134 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6135 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6136 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6137 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6138 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6139 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6140 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6141 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6142 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6143 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
6144 NEONMAP0(vmovl_v),
6145 NEONMAP0(vmovn_v),
6146 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6147 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6148 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6149 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6150 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6151 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6152 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6153 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6154 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6155 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6156 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6157 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6158 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6159 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6160 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6161 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6162 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6163 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6164 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6165 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6166 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6167 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6168 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6169 NEONMAP1(vqrdmlah_v, aarch64_neon_sqrdmlah, Add1ArgType),
6170 NEONMAP1(vqrdmlahq_v, aarch64_neon_sqrdmlah, Add1ArgType),
6171 NEONMAP1(vqrdmlsh_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6172 NEONMAP1(vqrdmlshq_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6173 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6174 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6175 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6176 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6177 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6178 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6179 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6180 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6181 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6182 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6183 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6184 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6185 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6186 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6187 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6188 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6189 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6190 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
6191 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6192 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6193 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6194 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6195 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6196 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6197 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
6198 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
6199 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
6200 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
6201 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
6202 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
6203 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
6204 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
6205 NEONMAP0(vrndi_v),
6206 NEONMAP0(vrndiq_v),
6207 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6208 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6209 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6210 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6211 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6212 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6213 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6214 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6215 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6216 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
6217 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
6218 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
6219 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
6220 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
6221 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
6222 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
6223 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
6224 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
6225 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
6226 NEONMAP0(vshl_n_v),
6227 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6228 NEONMAP0(vshll_n_v),
6229 NEONMAP0(vshlq_n_v),
6230 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6231 NEONMAP0(vshr_n_v),
6232 NEONMAP0(vshrn_n_v),
6233 NEONMAP0(vshrq_n_v),
6234 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
6235 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
6236 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
6237 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
6238 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
6239 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
6240 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
6241 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
6242 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
6243 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6244 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6245 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6246 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6247 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6248 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6249 NEONMAP0(vsubhn_v),
6250 NEONMAP0(vtst_v),
6251 NEONMAP0(vtstq_v),
6252 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
6253 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
6254 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
6255 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
6256};
6257
6258static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6259 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6260 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6261 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6262 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6263 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6264 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6265 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6266 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6267 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6268 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6269 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6270 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6271 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6272 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6273 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6274 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6275 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6276 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6277 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6278 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6279 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6280 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6281 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6282 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6283 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6284 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6285 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6286 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6287 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6288 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6289 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6290 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6291 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6292 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6293 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6294 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6295 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6296 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6297 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6298 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6299 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6300 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6301 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6302 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6303 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6304 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6305 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6306 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6307 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6308 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6309 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6310 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6311 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6312 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6313 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6314 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6315 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6316 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6317 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6318 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6319 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6320 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6321 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6322 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6323 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6324 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6325 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6326 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6327 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6328 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6329 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6330 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6331 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6332 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6333 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6334 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6335 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6336 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6337 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6338 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6339 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6340 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6341 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6342 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6343 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6344 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6345 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6346 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6347 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6348 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6349 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6350 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6351 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6352 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6353 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6354 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6355 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6356 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6357 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6358 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6359 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6360 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6361 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6362 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6363 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6364 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6365 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6366 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6367 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6368 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6369 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6370 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6371 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6372 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6373 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6374 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6375 NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6376 NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6377 NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6378 NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6379 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6380 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6381 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6382 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6383 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6384 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6385 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6386 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6387 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6388 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6389 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6390 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6391 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6392 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6393 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6394 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6395 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6396 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6397 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6398 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6399 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6400 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6401 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6402 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6403 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6404 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6405 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6406 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6407 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6408 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6409 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6410 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6411 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6412 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6413 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6414 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6415 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6416 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6417 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6418 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6419 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6420 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6421 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6422 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6423 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6424 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6425 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6426 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6427 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6428 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6429 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6430 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6431 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6432 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6433 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6434 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6435 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6436 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6437 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6438 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6439 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6440 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6441 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6442 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6443 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6444 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6445 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6446 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6447 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6448 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6449 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6450 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6451 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6452 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6453 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6454 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6455 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6456 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6457 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6458 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6459 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6460 // FP16 scalar intrinisics go here.
6461 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6462 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6463 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6464 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6465 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6466 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6467 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6468 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6469 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6470 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6471 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6472 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6473 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6474 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6475 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6476 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6477 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6478 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6479 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6480 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6481 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6482 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6483 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6484 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6485 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6486 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6487 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6488 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6489 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6490 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6491 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6492 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6493 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6494 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6495};
6496
6497#undef NEONMAP0
6498#undef NEONMAP1
6499#undef NEONMAP2
6500
6501#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6502 { \
6503 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
6504 TypeModifier \
6505 }
6506
6507#define SVEMAP2(NameBase, TypeModifier) \
6508 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6509static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6510#define GET_SVE_LLVM_INTRINSIC_MAP
6511#include "clang/Basic/arm_sve_builtin_cg.inc"
6512#include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
6513#undef GET_SVE_LLVM_INTRINSIC_MAP
6514};
6515
6516#undef SVEMAP1
6517#undef SVEMAP2
6518
6519static bool NEONSIMDIntrinsicsProvenSorted = false;
6520
6521static bool AArch64SIMDIntrinsicsProvenSorted = false;
6522static bool AArch64SISDIntrinsicsProvenSorted = false;
6523static bool AArch64SVEIntrinsicsProvenSorted = false;
6524
6525static const ARMVectorIntrinsicInfo *
6526findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6527 unsigned BuiltinID, bool &MapProvenSorted) {
6528
6529#ifndef NDEBUG
6530 if (!MapProvenSorted) {
6531 assert(llvm::is_sorted(IntrinsicMap))(static_cast <bool> (llvm::is_sorted(IntrinsicMap)) ? void
(0) : __assert_fail ("llvm::is_sorted(IntrinsicMap)", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6531, __extension__ __PRETTY_FUNCTION__))
;
6532 MapProvenSorted = true;
6533 }
6534#endif
6535
6536 const ARMVectorIntrinsicInfo *Builtin =
6537 llvm::lower_bound(IntrinsicMap, BuiltinID);
6538
6539 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6540 return Builtin;
6541
6542 return nullptr;
6543}
6544
6545Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6546 unsigned Modifier,
6547 llvm::Type *ArgType,
6548 const CallExpr *E) {
6549 int VectorSize = 0;
6550 if (Modifier & Use64BitVectors)
6551 VectorSize = 64;
6552 else if (Modifier & Use128BitVectors)
6553 VectorSize = 128;
6554
6555 // Return type.
6556 SmallVector<llvm::Type *, 3> Tys;
6557 if (Modifier & AddRetType) {
6558 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6559 if (Modifier & VectorizeRetType)
6560 Ty = llvm::FixedVectorType::get(
6561 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6562
6563 Tys.push_back(Ty);
6564 }
6565
6566 // Arguments.
6567 if (Modifier & VectorizeArgTypes) {
6568 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6569 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6570 }
6571
6572 if (Modifier & (Add1ArgType | Add2ArgTypes))
6573 Tys.push_back(ArgType);
6574
6575 if (Modifier & Add2ArgTypes)
6576 Tys.push_back(ArgType);
6577
6578 if (Modifier & InventFloatType)
6579 Tys.push_back(FloatTy);
6580
6581 return CGM.getIntrinsic(IntrinsicID, Tys);
6582}
6583
6584static Value *EmitCommonNeonSISDBuiltinExpr(
6585 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6586 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6587 unsigned BuiltinID = SISDInfo.BuiltinID;
6588 unsigned int Int = SISDInfo.LLVMIntrinsic;
6589 unsigned Modifier = SISDInfo.TypeModifier;
6590 const char *s = SISDInfo.NameHint;
6591
6592 switch (BuiltinID) {
6593 case NEON::BI__builtin_neon_vcled_s64:
6594 case NEON::BI__builtin_neon_vcled_u64:
6595 case NEON::BI__builtin_neon_vcles_f32:
6596 case NEON::BI__builtin_neon_vcled_f64:
6597 case NEON::BI__builtin_neon_vcltd_s64:
6598 case NEON::BI__builtin_neon_vcltd_u64:
6599 case NEON::BI__builtin_neon_vclts_f32:
6600 case NEON::BI__builtin_neon_vcltd_f64:
6601 case NEON::BI__builtin_neon_vcales_f32:
6602 case NEON::BI__builtin_neon_vcaled_f64:
6603 case NEON::BI__builtin_neon_vcalts_f32:
6604 case NEON::BI__builtin_neon_vcaltd_f64:
6605 // Only one direction of comparisons actually exist, cmle is actually a cmge
6606 // with swapped operands. The table gives us the right intrinsic but we
6607 // still need to do the swap.
6608 std::swap(Ops[0], Ops[1]);
6609 break;
6610 }
6611
6612 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 6612, __extension__ __PRETTY_FUNCTION__
))
;
6613
6614 // Determine the type(s) of this overloaded AArch64 intrinsic.
6615 const Expr *Arg = E->getArg(0);
6616 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6617 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6618
6619 int j = 0;
6620 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6621 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6622 ai != ae; ++ai, ++j) {
6623 llvm::Type *ArgTy = ai->getType();
6624 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6625 ArgTy->getPrimitiveSizeInBits())
6626 continue;
6627
6628 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 6628, __extension__ __PRETTY_FUNCTION__
))
;
6629 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6630 // it before inserting.
6631 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6632 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6633 Ops[j] =
6634 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6635 }
6636
6637 Value *Result = CGF.EmitNeonCall(F, Ops, s);
6638 llvm::Type *ResultType = CGF.ConvertType(E->getType());
6639 if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6640 Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6641 return CGF.Builder.CreateExtractElement(Result, C0);
6642
6643 return CGF.Builder.CreateBitCast(Result, ResultType, s);
6644}
6645
6646Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6647 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6648 const char *NameHint, unsigned Modifier, const CallExpr *E,
6649 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6650 llvm::Triple::ArchType Arch) {
6651 // Get the last argument, which specifies the vector type.
6652 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6653 Optional<llvm::APSInt> NeonTypeConst =
6654 Arg->getIntegerConstantExpr(getContext());
6655 if (!NeonTypeConst)
6656 return nullptr;
6657
6658 // Determine the type of this overloaded NEON intrinsic.
6659 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6660 bool Usgn = Type.isUnsigned();
6661 bool Quad = Type.isQuad();
6662 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6663 const bool AllowBFloatArgsAndRet =
6664 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6665
6666 llvm::FixedVectorType *VTy =
6667 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6668 llvm::Type *Ty = VTy;
6669 if (!Ty)
6670 return nullptr;
6671
6672 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6673 return Builder.getInt32(addr.getAlignment().getQuantity());
6674 };
6675
6676 unsigned Int = LLVMIntrinsic;
6677 if ((Modifier & UnsignedAlts) && !Usgn)
6678 Int = AltLLVMIntrinsic;
6679
6680 switch (BuiltinID) {
6681 default: break;
6682 case NEON::BI__builtin_neon_splat_lane_v:
6683 case NEON::BI__builtin_neon_splat_laneq_v:
6684 case NEON::BI__builtin_neon_splatq_lane_v:
6685 case NEON::BI__builtin_neon_splatq_laneq_v: {
6686 auto NumElements = VTy->getElementCount();
6687 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6688 NumElements = NumElements * 2;
6689 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6690 NumElements = NumElements.divideCoefficientBy(2);
6691
6692 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6693 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6694 }
6695 case NEON::BI__builtin_neon_vpadd_v:
6696 case NEON::BI__builtin_neon_vpaddq_v:
6697 // We don't allow fp/int overloading of intrinsics.
6698 if (VTy->getElementType()->isFloatingPointTy() &&
6699 Int == Intrinsic::aarch64_neon_addp)
6700 Int = Intrinsic::aarch64_neon_faddp;
6701 break;
6702 case NEON::BI__builtin_neon_vabs_v:
6703 case NEON::BI__builtin_neon_vabsq_v:
6704 if (VTy->getElementType()->isFloatingPointTy())
6705 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6706 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6707 case NEON::BI__builtin_neon_vadd_v:
6708 case NEON::BI__builtin_neon_vaddq_v: {
6709 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6710 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6711 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6712 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
6713 return Builder.CreateBitCast(Ops[0], Ty);
6714 }
6715 case NEON::BI__builtin_neon_vaddhn_v: {
6716 llvm::FixedVectorType *SrcTy =
6717 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6718
6719 // %sum = add <4 x i32> %lhs, %rhs
6720 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6721 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6722 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6723
6724 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6725 Constant *ShiftAmt =
6726 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6727 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6728
6729 // %res = trunc <4 x i32> %high to <4 x i16>
6730 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6731 }
6732 case NEON::BI__builtin_neon_vcale_v:
6733 case NEON::BI__builtin_neon_vcaleq_v:
6734 case NEON::BI__builtin_neon_vcalt_v:
6735 case NEON::BI__builtin_neon_vcaltq_v:
6736 std::swap(Ops[0], Ops[1]);
6737 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6738 case NEON::BI__builtin_neon_vcage_v:
6739 case NEON::BI__builtin_neon_vcageq_v:
6740 case NEON::BI__builtin_neon_vcagt_v:
6741 case NEON::BI__builtin_neon_vcagtq_v: {
6742 llvm::Type *Ty;
6743 switch (VTy->getScalarSizeInBits()) {
6744 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6744)
;
6745 case 32:
6746 Ty = FloatTy;
6747 break;
6748 case 64:
6749 Ty = DoubleTy;
6750 break;
6751 case 16:
6752 Ty = HalfTy;
6753 break;
6754 }
6755 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6756 llvm::Type *Tys[] = { VTy, VecFlt };
6757 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6758 return EmitNeonCall(F, Ops, NameHint);
6759 }
6760 case NEON::BI__builtin_neon_vceqz_v:
6761 case NEON::BI__builtin_neon_vceqzq_v:
6762 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6763 ICmpInst::ICMP_EQ, "vceqz");
6764 case NEON::BI__builtin_neon_vcgez_v:
6765 case NEON::BI__builtin_neon_vcgezq_v:
6766 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6767 ICmpInst::ICMP_SGE, "vcgez");
6768 case NEON::BI__builtin_neon_vclez_v:
6769 case NEON::BI__builtin_neon_vclezq_v:
6770 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6771 ICmpInst::ICMP_SLE, "vclez");
6772 case NEON::BI__builtin_neon_vcgtz_v:
6773 case NEON::BI__builtin_neon_vcgtzq_v:
6774 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6775 ICmpInst::ICMP_SGT, "vcgtz");
6776 case NEON::BI__builtin_neon_vcltz_v:
6777 case NEON::BI__builtin_neon_vcltzq_v:
6778 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6779 ICmpInst::ICMP_SLT, "vcltz");
6780 case NEON::BI__builtin_neon_vclz_v:
6781 case NEON::BI__builtin_neon_vclzq_v:
6782 // We generate target-independent intrinsic, which needs a second argument
6783 // for whether or not clz of zero is undefined; on ARM it isn't.
6784 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6785 break;
6786 case NEON::BI__builtin_neon_vcvt_f32_v:
6787 case NEON::BI__builtin_neon_vcvtq_f32_v:
6788 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6789 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6790 HasLegalHalfType);
6791 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6792 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6793 case NEON::BI__builtin_neon_vcvt_f16_v:
6794 case NEON::BI__builtin_neon_vcvtq_f16_v:
6795 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6796 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6797 HasLegalHalfType);
6798 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6799 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6800 case NEON::BI__builtin_neon_vcvt_n_f16_v:
6801 case NEON::BI__builtin_neon_vcvt_n_f32_v:
6802 case NEON::BI__builtin_neon_vcvt_n_f64_v:
6803 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6804 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6805 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6806 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6807 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6808 Function *F = CGM.getIntrinsic(Int, Tys);
6809 return EmitNeonCall(F, Ops, "vcvt_n");
6810 }
6811 case NEON::BI__builtin_neon_vcvt_n_s16_v:
6812 case NEON::BI__builtin_neon_vcvt_n_s32_v:
6813 case NEON::BI__builtin_neon_vcvt_n_u16_v:
6814 case NEON::BI__builtin_neon_vcvt_n_u32_v:
6815 case NEON::BI__builtin_neon_vcvt_n_s64_v:
6816 case NEON::BI__builtin_neon_vcvt_n_u64_v:
6817 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6818 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6819 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6820 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6821 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6822 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6823 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6824 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6825 return EmitNeonCall(F, Ops, "vcvt_n");
6826 }
6827 case NEON::BI__builtin_neon_vcvt_s32_v:
6828 case NEON::BI__builtin_neon_vcvt_u32_v:
6829 case NEON::BI__builtin_neon_vcvt_s64_v:
6830 case NEON::BI__builtin_neon_vcvt_u64_v:
6831 case NEON::BI__builtin_neon_vcvt_s16_v:
6832 case NEON::BI__builtin_neon_vcvt_u16_v:
6833 case NEON::BI__builtin_neon_vcvtq_s32_v:
6834 case NEON::BI__builtin_neon_vcvtq_u32_v:
6835 case NEON::BI__builtin_neon_vcvtq_s64_v:
6836 case NEON::BI__builtin_neon_vcvtq_u64_v:
6837 case NEON::BI__builtin_neon_vcvtq_s16_v:
6838 case NEON::BI__builtin_neon_vcvtq_u16_v: {
6839 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6840 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6841 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6842 }
6843 case NEON::BI__builtin_neon_vcvta_s16_v:
6844 case NEON::BI__builtin_neon_vcvta_s32_v:
6845 case NEON::BI__builtin_neon_vcvta_s64_v:
6846 case NEON::BI__builtin_neon_vcvta_u16_v:
6847 case NEON::BI__builtin_neon_vcvta_u32_v:
6848 case NEON::BI__builtin_neon_vcvta_u64_v:
6849 case NEON::BI__builtin_neon_vcvtaq_s16_v:
6850 case NEON::BI__builtin_neon_vcvtaq_s32_v:
6851 case NEON::BI__builtin_neon_vcvtaq_s64_v:
6852 case NEON::BI__builtin_neon_vcvtaq_u16_v:
6853 case NEON::BI__builtin_neon_vcvtaq_u32_v:
6854 case NEON::BI__builtin_neon_vcvtaq_u64_v:
6855 case NEON::BI__builtin_neon_vcvtn_s16_v:
6856 case NEON::BI__builtin_neon_vcvtn_s32_v:
6857 case NEON::BI__builtin_neon_vcvtn_s64_v:
6858 case NEON::BI__builtin_neon_vcvtn_u16_v:
6859 case NEON::BI__builtin_neon_vcvtn_u32_v:
6860 case NEON::BI__builtin_neon_vcvtn_u64_v:
6861 case NEON::BI__builtin_neon_vcvtnq_s16_v:
6862 case NEON::BI__builtin_neon_vcvtnq_s32_v:
6863 case NEON::BI__builtin_neon_vcvtnq_s64_v:
6864 case NEON::BI__builtin_neon_vcvtnq_u16_v:
6865 case NEON::BI__builtin_neon_vcvtnq_u32_v:
6866 case NEON::BI__builtin_neon_vcvtnq_u64_v:
6867 case NEON::BI__builtin_neon_vcvtp_s16_v:
6868 case NEON::BI__builtin_neon_vcvtp_s32_v:
6869 case NEON::BI__builtin_neon_vcvtp_s64_v:
6870 case NEON::BI__builtin_neon_vcvtp_u16_v:
6871 case NEON::BI__builtin_neon_vcvtp_u32_v:
6872 case NEON::BI__builtin_neon_vcvtp_u64_v:
6873 case NEON::BI__builtin_neon_vcvtpq_s16_v:
6874 case NEON::BI__builtin_neon_vcvtpq_s32_v:
6875 case NEON::BI__builtin_neon_vcvtpq_s64_v:
6876 case NEON::BI__builtin_neon_vcvtpq_u16_v:
6877 case NEON::BI__builtin_neon_vcvtpq_u32_v:
6878 case NEON::BI__builtin_neon_vcvtpq_u64_v:
6879 case NEON::BI__builtin_neon_vcvtm_s16_v:
6880 case NEON::BI__builtin_neon_vcvtm_s32_v:
6881 case NEON::BI__builtin_neon_vcvtm_s64_v:
6882 case NEON::BI__builtin_neon_vcvtm_u16_v:
6883 case NEON::BI__builtin_neon_vcvtm_u32_v:
6884 case NEON::BI__builtin_neon_vcvtm_u64_v:
6885 case NEON::BI__builtin_neon_vcvtmq_s16_v:
6886 case NEON::BI__builtin_neon_vcvtmq_s32_v:
6887 case NEON::BI__builtin_neon_vcvtmq_s64_v:
6888 case NEON::BI__builtin_neon_vcvtmq_u16_v:
6889 case NEON::BI__builtin_neon_vcvtmq_u32_v:
6890 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6891 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6892 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6893 }
6894 case NEON::BI__builtin_neon_vcvtx_f32_v: {
6895 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6896 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6897
6898 }
6899 case NEON::BI__builtin_neon_vext_v:
6900 case NEON::BI__builtin_neon_vextq_v: {
6901 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6902 SmallVector<int, 16> Indices;
6903 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6904 Indices.push_back(i+CV);
6905
6906 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6907 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6908 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6909 }
6910 case NEON::BI__builtin_neon_vfma_v:
6911 case NEON::BI__builtin_neon_vfmaq_v: {
6912 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6913 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6914 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6915
6916 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6917 return emitCallMaybeConstrainedFPBuiltin(
6918 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6919 {Ops[1], Ops[2], Ops[0]});
6920 }
6921 case NEON::BI__builtin_neon_vld1_v:
6922 case NEON::BI__builtin_neon_vld1q_v: {
6923 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6924 Ops.push_back(getAlignmentValue32(PtrOp0));
6925 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6926 }
6927 case NEON::BI__builtin_neon_vld1_x2_v:
6928 case NEON::BI__builtin_neon_vld1q_x2_v:
6929 case NEON::BI__builtin_neon_vld1_x3_v:
6930 case NEON::BI__builtin_neon_vld1q_x3_v:
6931 case NEON::BI__builtin_neon_vld1_x4_v:
6932 case NEON::BI__builtin_neon_vld1q_x4_v: {
6933 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6934 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6935 llvm::Type *Tys[2] = { VTy, PTy };
6936 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6937 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6938 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6939 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6940 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6941 }
6942 case NEON::BI__builtin_neon_vld2_v:
6943 case NEON::BI__builtin_neon_vld2q_v:
6944 case NEON::BI__builtin_neon_vld3_v:
6945 case NEON::BI__builtin_neon_vld3q_v:
6946 case NEON::BI__builtin_neon_vld4_v:
6947 case NEON::BI__builtin_neon_vld4q_v:
6948 case NEON::BI__builtin_neon_vld2_dup_v:
6949 case NEON::BI__builtin_neon_vld2q_dup_v:
6950 case NEON::BI__builtin_neon_vld3_dup_v:
6951 case NEON::BI__builtin_neon_vld3q_dup_v:
6952 case NEON::BI__builtin_neon_vld4_dup_v:
6953 case NEON::BI__builtin_neon_vld4q_dup_v: {
6954 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6955 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6956 Value *Align = getAlignmentValue32(PtrOp1);
6957 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6958 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6959 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6960 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6961 }
6962 case NEON::BI__builtin_neon_vld1_dup_v:
6963 case NEON::BI__builtin_neon_vld1q_dup_v: {
6964 Value *V = UndefValue::get(Ty);
6965 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6966 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6967 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6968 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6969 return EmitNeonSplat(Ops[0], CI);
6970 }
6971 case NEON::BI__builtin_neon_vld2_lane_v:
6972 case NEON::BI__builtin_neon_vld2q_lane_v:
6973 case NEON::BI__builtin_neon_vld3_lane_v:
6974 case NEON::BI__builtin_neon_vld3q_lane_v:
6975 case NEON::BI__builtin_neon_vld4_lane_v:
6976 case NEON::BI__builtin_neon_vld4q_lane_v: {
6977 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6978 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6979 for (unsigned I = 2; I < Ops.size() - 1; ++I)
6980 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6981 Ops.push_back(getAlignmentValue32(PtrOp1));
6982 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6983 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6984 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6985 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6986 }
6987 case NEON::BI__builtin_neon_vmovl_v: {
6988 llvm::FixedVectorType *DTy =
6989 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6990 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6991 if (Usgn)
6992 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6993 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6994 }
6995 case NEON::BI__builtin_neon_vmovn_v: {
6996 llvm::FixedVectorType *QTy =
6997 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6998 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6999 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
7000 }
7001 case NEON::BI__builtin_neon_vmull_v:
7002 // FIXME: the integer vmull operations could be emitted in terms of pure
7003 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
7004 // hoisting the exts outside loops. Until global ISel comes along that can
7005 // see through such movement this leads to bad CodeGen. So we need an
7006 // intrinsic for now.
7007 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
7008 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
7009 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
7010 case NEON::BI__builtin_neon_vpadal_v:
7011 case NEON::BI__builtin_neon_vpadalq_v: {
7012 // The source operand type has twice as many elements of half the size.
7013 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7014 llvm::Type *EltTy =
7015 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7016 auto *NarrowTy =
7017 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7018 llvm::Type *Tys[2] = { Ty, NarrowTy };
7019 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7020 }
7021 case NEON::BI__builtin_neon_vpaddl_v:
7022 case NEON::BI__builtin_neon_vpaddlq_v: {
7023 // The source operand type has twice as many elements of half the size.
7024 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7025 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7026 auto *NarrowTy =
7027 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7028 llvm::Type *Tys[2] = { Ty, NarrowTy };
7029 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
7030 }
7031 case NEON::BI__builtin_neon_vqdmlal_v:
7032 case NEON::BI__builtin_neon_vqdmlsl_v: {
7033 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
7034 Ops[1] =
7035 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
7036 Ops.resize(2);
7037 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
7038 }
7039 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
7040 case NEON::BI__builtin_neon_vqdmulh_lane_v:
7041 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
7042 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
7043 auto *RTy = cast<llvm::FixedVectorType>(Ty);
7044 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
7045 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
7046 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
7047 RTy->getNumElements() * 2);
7048 llvm::Type *Tys[2] = {
7049 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7050 /*isQuad*/ false))};
7051 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7052 }
7053 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
7054 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
7055 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
7056 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
7057 llvm::Type *Tys[2] = {
7058 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7059 /*isQuad*/ true))};
7060 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7061 }
7062 case NEON::BI__builtin_neon_vqshl_n_v:
7063 case NEON::BI__builtin_neon_vqshlq_n_v:
7064 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
7065 1, false);
7066 case NEON::BI__builtin_neon_vqshlu_n_v:
7067 case NEON::BI__builtin_neon_vqshluq_n_v:
7068 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
7069 1, false);
7070 case NEON::BI__builtin_neon_vrecpe_v:
7071 case NEON::BI__builtin_neon_vrecpeq_v:
7072 case NEON::BI__builtin_neon_vrsqrte_v:
7073 case NEON::BI__builtin_neon_vrsqrteq_v:
7074 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
7075 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7076 case NEON::BI__builtin_neon_vrndi_v:
7077 case NEON::BI__builtin_neon_vrndiq_v:
7078 Int = Builder.getIsFPConstrained()
7079 ? Intrinsic::experimental_constrained_nearbyint
7080 : Intrinsic::nearbyint;
7081 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7082 case NEON::BI__builtin_neon_vrshr_n_v:
7083 case NEON::BI__builtin_neon_vrshrq_n_v:
7084 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
7085 1, true);
7086 case NEON::BI__builtin_neon_vsha512hq_v:
7087 case NEON::BI__builtin_neon_vsha512h2q_v:
7088 case NEON::BI__builtin_neon_vsha512su0q_v:
7089 case NEON::BI__builtin_neon_vsha512su1q_v: {
7090 Function *F = CGM.getIntrinsic(Int);
7091 return EmitNeonCall(F, Ops, "");
7092 }
7093 case NEON::BI__builtin_neon_vshl_n_v:
7094 case NEON::BI__builtin_neon_vshlq_n_v:
7095 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
7096 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
7097 "vshl_n");
7098 case NEON::BI__builtin_neon_vshll_n_v: {
7099 llvm::FixedVectorType *SrcTy =
7100 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7101 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7102 if (Usgn)
7103 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7104 else
7105 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7106 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7107 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7108 }
7109 case NEON::BI__builtin_neon_vshrn_n_v: {
7110 llvm::FixedVectorType *SrcTy =
7111 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7112 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7113 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7114 if (Usgn)
7115 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7116 else
7117 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7118 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7119 }
7120 case NEON::BI__builtin_neon_vshr_n_v:
7121 case NEON::BI__builtin_neon_vshrq_n_v:
7122 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7123 case NEON::BI__builtin_neon_vst1_v:
7124 case NEON::BI__builtin_neon_vst1q_v:
7125 case NEON::BI__builtin_neon_vst2_v:
7126 case NEON::BI__builtin_neon_vst2q_v:
7127 case NEON::BI__builtin_neon_vst3_v:
7128 case NEON::BI__builtin_neon_vst3q_v:
7129 case NEON::BI__builtin_neon_vst4_v:
7130 case NEON::BI__builtin_neon_vst4q_v:
7131 case NEON::BI__builtin_neon_vst2_lane_v:
7132 case NEON::BI__builtin_neon_vst2q_lane_v:
7133 case NEON::BI__builtin_neon_vst3_lane_v:
7134 case NEON::BI__builtin_neon_vst3q_lane_v:
7135 case NEON::BI__builtin_neon_vst4_lane_v:
7136 case NEON::BI__builtin_neon_vst4q_lane_v: {
7137 llvm::Type *Tys[] = {Int8PtrTy, Ty};
7138 Ops.push_back(getAlignmentValue32(PtrOp0));
7139 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7140 }
7141 case NEON::BI__builtin_neon_vsm3partw1q_v:
7142 case NEON::BI__builtin_neon_vsm3partw2q_v:
7143 case NEON::BI__builtin_neon_vsm3ss1q_v:
7144 case NEON::BI__builtin_neon_vsm4ekeyq_v:
7145 case NEON::BI__builtin_neon_vsm4eq_v: {
7146 Function *F = CGM.getIntrinsic(Int);
7147 return EmitNeonCall(F, Ops, "");
7148 }
7149 case NEON::BI__builtin_neon_vsm3tt1aq_v:
7150 case NEON::BI__builtin_neon_vsm3tt1bq_v:
7151 case NEON::BI__builtin_neon_vsm3tt2aq_v:
7152 case NEON::BI__builtin_neon_vsm3tt2bq_v: {
7153 Function *F = CGM.getIntrinsic(Int);
7154 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7155 return EmitNeonCall(F, Ops, "");
7156 }
7157 case NEON::BI__builtin_neon_vst1_x2_v:
7158 case NEON::BI__builtin_neon_vst1q_x2_v:
7159 case NEON::BI__builtin_neon_vst1_x3_v:
7160 case NEON::BI__builtin_neon_vst1q_x3_v:
7161 case NEON::BI__builtin_neon_vst1_x4_v:
7162 case NEON::BI__builtin_neon_vst1q_x4_v: {
7163 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7164 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7165 // in AArch64 it comes last. We may want to stick to one or another.
7166 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7167 Arch == llvm::Triple::aarch64_32) {
7168 llvm::Type *Tys[2] = { VTy, PTy };
7169 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7170 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7171 }
7172 llvm::Type *Tys[2] = { PTy, VTy };
7173 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7174 }
7175 case NEON::BI__builtin_neon_vsubhn_v: {
7176 llvm::FixedVectorType *SrcTy =
7177 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7178
7179 // %sum = add <4 x i32> %lhs, %rhs
7180 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7181 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7182 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7183
7184 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7185 Constant *ShiftAmt =
7186 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7187 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7188
7189 // %res = trunc <4 x i32> %high to <4 x i16>
7190 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7191 }
7192 case NEON::BI__builtin_neon_vtrn_v:
7193 case NEON::BI__builtin_neon_vtrnq_v: {
7194 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7195 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7196 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7197 Value *SV = nullptr;
7198
7199 for (unsigned vi = 0; vi != 2; ++vi) {
7200 SmallVector<int, 16> Indices;
7201 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7202 Indices.push_back(i+vi);
7203 Indices.push_back(i+e+vi);
7204 }
7205 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7206 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7207 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7208 }
7209 return SV;
7210 }
7211 case NEON::BI__builtin_neon_vtst_v:
7212 case NEON::BI__builtin_neon_vtstq_v: {
7213 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7214 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7215 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7216 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7217 ConstantAggregateZero::get(Ty));
7218 return Builder.CreateSExt(Ops[0], Ty, "vtst");
7219 }
7220 case NEON::BI__builtin_neon_vuzp_v:
7221 case NEON::BI__builtin_neon_vuzpq_v: {
7222 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7223 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7224 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7225 Value *SV = nullptr;
7226
7227 for (unsigned vi = 0; vi != 2; ++vi) {
7228 SmallVector<int, 16> Indices;
7229 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7230 Indices.push_back(2*i+vi);
7231
7232 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7233 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7234 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7235 }
7236 return SV;
7237 }
7238 case NEON::BI__builtin_neon_vxarq_v: {
7239 Function *F = CGM.getIntrinsic(Int);
7240 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7241 return EmitNeonCall(F, Ops, "");
7242 }
7243 case NEON::BI__builtin_neon_vzip_v:
7244 case NEON::BI__builtin_neon_vzipq_v: {
7245 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7246 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7247 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7248 Value *SV = nullptr;
7249
7250 for (unsigned vi = 0; vi != 2; ++vi) {
7251 SmallVector<int, 16> Indices;
7252 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7253 Indices.push_back((i + vi*e) >> 1);
7254 Indices.push_back(((i + vi*e) >> 1)+e);
7255 }
7256 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7257 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7258 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7259 }
7260 return SV;
7261 }
7262 case NEON::BI__builtin_neon_vdot_v:
7263 case NEON::BI__builtin_neon_vdotq_v: {
7264 auto *InputTy =
7265 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7266 llvm::Type *Tys[2] = { Ty, InputTy };
7267 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7268 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7269 }
7270 case NEON::BI__builtin_neon_vfmlal_low_v:
7271 case NEON::BI__builtin_neon_vfmlalq_low_v: {
7272 auto *InputTy =
7273 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7274 llvm::Type *Tys[2] = { Ty, InputTy };
7275 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7276 }
7277 case NEON::BI__builtin_neon_vfmlsl_low_v:
7278 case NEON::BI__builtin_neon_vfmlslq_low_v: {
7279 auto *InputTy =
7280 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7281 llvm::Type *Tys[2] = { Ty, InputTy };
7282 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7283 }
7284 case NEON::BI__builtin_neon_vfmlal_high_v:
7285 case NEON::BI__builtin_neon_vfmlalq_high_v: {
7286 auto *InputTy =
7287 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7288 llvm::Type *Tys[2] = { Ty, InputTy };
7289 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7290 }
7291 case NEON::BI__builtin_neon_vfmlsl_high_v:
7292 case NEON::BI__builtin_neon_vfmlslq_high_v: {
7293 auto *InputTy =
7294 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7295 llvm::Type *Tys[2] = { Ty, InputTy };
7296 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7297 }
7298 case NEON::BI__builtin_neon_vmmlaq_v: {
7299 auto *InputTy =
7300 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7301 llvm::Type *Tys[2] = { Ty, InputTy };
7302 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7303 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7304 }
7305 case NEON::BI__builtin_neon_vusmmlaq_v: {
7306 auto *InputTy =
7307 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7308 llvm::Type *Tys[2] = { Ty, InputTy };
7309 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7310 }
7311 case NEON::BI__builtin_neon_vusdot_v:
7312 case NEON::BI__builtin_neon_vusdotq_v: {
7313 auto *InputTy =
7314 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7315 llvm::Type *Tys[2] = { Ty, InputTy };
7316 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7317 }
7318 case NEON::BI__builtin_neon_vbfdot_v:
7319 case NEON::BI__builtin_neon_vbfdotq_v: {
7320 llvm::Type *InputTy =
7321 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7322 llvm::Type *Tys[2] = { Ty, InputTy };
7323 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7324 }
7325 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7326 llvm::Type *Tys[1] = { Ty };
7327 Function *F = CGM.getIntrinsic(Int, Tys);
7328 return EmitNeonCall(F, Ops, "vcvtfp2bf");
7329 }
7330
7331 }
7332
7333 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7333, __extension__ __PRETTY_FUNCTION__
))
;
7334
7335 // Determine the type(s) of this overloaded AArch64 intrinsic.
7336 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7337
7338 Value *Result = EmitNeonCall(F, Ops, NameHint);
7339 llvm::Type *ResultType = ConvertType(E->getType());
7340 // AArch64 intrinsic one-element vector type cast to
7341 // scalar type expected by the builtin
7342 return Builder.CreateBitCast(Result, ResultType, NameHint);
7343}
7344
7345Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7346 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7347 const CmpInst::Predicate Ip, const Twine &Name) {
7348 llvm::Type *OTy = Op->getType();
7349
7350 // FIXME: this is utterly horrific. We should not be looking at previous
7351 // codegen context to find out what needs doing. Unfortunately TableGen
7352 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7353 // (etc).
7354 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7355 OTy = BI->getOperand(0)->getType();
7356
7357 Op = Builder.CreateBitCast(Op, OTy);
7358 if (OTy->getScalarType()->isFloatingPointTy()) {
7359 if (Fp == CmpInst::FCMP_OEQ)
7360 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7361 else
7362 Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
7363 } else {
7364 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7365 }
7366 return Builder.CreateSExt(Op, Ty, Name);
7367}
7368
7369static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7370 Value *ExtOp, Value *IndexOp,
7371 llvm::Type *ResTy, unsigned IntID,
7372 const char *Name) {
7373 SmallVector<Value *, 2> TblOps;
7374 if (ExtOp)
7375 TblOps.push_back(ExtOp);
7376
7377 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7378 SmallVector<int, 16> Indices;
7379 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7380 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7381 Indices.push_back(2*i);
7382 Indices.push_back(2*i+1);
7383 }
7384
7385 int PairPos = 0, End = Ops.size() - 1;
7386 while (PairPos < End) {
7387 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7388 Ops[PairPos+1], Indices,
7389 Name));
7390 PairPos += 2;
7391 }
7392
7393 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7394 // of the 128-bit lookup table with zero.
7395 if (PairPos == End) {
7396 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7397 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7398 ZeroTbl, Indices, Name));
7399 }
7400
7401 Function *TblF;
7402 TblOps.push_back(IndexOp);
7403 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7404
7405 return CGF.EmitNeonCall(TblF, TblOps, Name);
7406}
7407
7408Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7409 unsigned Value;
7410 switch (BuiltinID) {
7411 default:
7412 return nullptr;
7413 case ARM::BI__builtin_arm_nop:
7414 Value = 0;
7415 break;
7416 case ARM::BI__builtin_arm_yield:
7417 case ARM::BI__yield:
7418 Value = 1;
7419 break;
7420 case ARM::BI__builtin_arm_wfe:
7421 case ARM::BI__wfe:
7422 Value = 2;
7423 break;
7424 case ARM::BI__builtin_arm_wfi:
7425 case ARM::BI__wfi:
7426 Value = 3;
7427 break;
7428 case ARM::BI__builtin_arm_sev:
7429 case ARM::BI__sev:
7430 Value = 4;
7431 break;
7432 case ARM::BI__builtin_arm_sevl:
7433 case ARM::BI__sevl:
7434 Value = 5;
7435 break;
7436 }
7437
7438 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7439 llvm::ConstantInt::get(Int32Ty, Value));
7440}
7441
7442enum SpecialRegisterAccessKind {
7443 NormalRead,
7444 VolatileRead,
7445 Write,
7446};
7447
7448// Generates the IR for the read/write special register builtin,
7449// ValueType is the type of the value that is to be written or read,
7450// RegisterType is the type of the register being written to or read from.
7451static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7452 const CallExpr *E,
7453 llvm::Type *RegisterType,
7454 llvm::Type *ValueType,
7455 SpecialRegisterAccessKind AccessKind,
7456 StringRef SysReg = "") {
7457 // write and register intrinsics only support 32 and 64 bit operations.
7458 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7459, __extension__ __PRETTY_FUNCTION__
))
7459 && "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7459, __extension__ __PRETTY_FUNCTION__
))
;
7460
7461 CodeGen::CGBuilderTy &Builder = CGF.Builder;
7462 CodeGen::CodeGenModule &CGM = CGF.CGM;
7463 LLVMContext &Context = CGM.getLLVMContext();
7464
7465 if (SysReg.empty()) {
7466 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7467 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7468 }
7469
7470 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7471 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7472 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7473
7474 llvm::Type *Types[] = { RegisterType };
7475
7476 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7477 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7478, __extension__ __PRETTY_FUNCTION__
))
7478 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7478, __extension__ __PRETTY_FUNCTION__
))
;
7479
7480 if (AccessKind != Write) {
7481 assert(AccessKind == NormalRead || AccessKind == VolatileRead)(static_cast <bool> (AccessKind == NormalRead || AccessKind
== VolatileRead) ? void (0) : __assert_fail ("AccessKind == NormalRead || AccessKind == VolatileRead"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7481, __extension__ __PRETTY_FUNCTION__
))
;
7482 llvm::Function *F = CGM.getIntrinsic(
7483 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7484 : llvm::Intrinsic::read_register,
7485 Types);
7486 llvm::Value *Call = Builder.CreateCall(F, Metadata);
7487
7488 if (MixedTypes)
7489 // Read into 64 bit register and then truncate result to 32 bit.
7490 return Builder.CreateTrunc(Call, ValueType);
7491
7492 if (ValueType->isPointerTy())
7493 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7494 return Builder.CreateIntToPtr(Call, ValueType);
7495
7496 return Call;
7497 }
7498
7499 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7500 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7501 if (MixedTypes) {
7502 // Extend 32 bit write value to 64 bit to pass to write.
7503 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7504 return Builder.CreateCall(F, { Metadata, ArgValue });
7505 }
7506
7507 if (ValueType->isPointerTy()) {
7508 // Have VoidPtrTy ArgValue but want to return an i32/i64.
7509 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7510 return Builder.CreateCall(F, { Metadata, ArgValue });
7511 }
7512
7513 return Builder.CreateCall(F, { Metadata, ArgValue });
7514}
7515
7516/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7517/// argument that specifies the vector type.
7518static bool HasExtraNeonArgument(unsigned BuiltinID) {
7519 switch (BuiltinID) {
7520 default: break;
7521 case NEON::BI__builtin_neon_vget_lane_i8:
7522 case NEON::BI__builtin_neon_vget_lane_i16:
7523 case NEON::BI__builtin_neon_vget_lane_bf16:
7524 case NEON::BI__builtin_neon_vget_lane_i32:
7525 case NEON::BI__builtin_neon_vget_lane_i64:
7526 case NEON::BI__builtin_neon_vget_lane_f32:
7527 case NEON::BI__builtin_neon_vgetq_lane_i8:
7528 case NEON::BI__builtin_neon_vgetq_lane_i16:
7529 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7530 case NEON::BI__builtin_neon_vgetq_lane_i32:
7531 case NEON::BI__builtin_neon_vgetq_lane_i64:
7532 case NEON::BI__builtin_neon_vgetq_lane_f32:
7533 case NEON::BI__builtin_neon_vduph_lane_bf16:
7534 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7535 case NEON::BI__builtin_neon_vset_lane_i8:
7536 case NEON::BI__builtin_neon_vset_lane_i16:
7537 case NEON::BI__builtin_neon_vset_lane_bf16:
7538 case NEON::BI__builtin_neon_vset_lane_i32:
7539 case NEON::BI__builtin_neon_vset_lane_i64:
7540 case NEON::BI__builtin_neon_vset_lane_f32:
7541 case NEON::BI__builtin_neon_vsetq_lane_i8:
7542 case NEON::BI__builtin_neon_vsetq_lane_i16:
7543 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7544 case NEON::BI__builtin_neon_vsetq_lane_i32:
7545 case NEON::BI__builtin_neon_vsetq_lane_i64:
7546 case NEON::BI__builtin_neon_vsetq_lane_f32:
7547 case NEON::BI__builtin_neon_vsha1h_u32:
7548 case NEON::BI__builtin_neon_vsha1cq_u32:
7549 case NEON::BI__builtin_neon_vsha1pq_u32:
7550 case NEON::BI__builtin_neon_vsha1mq_u32:
7551 case NEON::BI__builtin_neon_vcvth_bf16_f32:
7552 case clang::ARM::BI_MoveToCoprocessor:
7553 case clang::ARM::BI_MoveToCoprocessor2:
7554 return false;
7555 }
7556 return true;
7557}
7558
7559Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7560 const CallExpr *E,
7561 ReturnValueSlot ReturnValue,
7562 llvm::Triple::ArchType Arch) {
7563 if (auto Hint = GetValueForARMHint(BuiltinID))
7564 return Hint;
7565
7566 if (BuiltinID == ARM::BI__emit) {
7567 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7568 llvm::FunctionType *FTy =
7569 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7570
7571 Expr::EvalResult Result;
7572 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7573 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7573)
;
7574
7575 llvm::APSInt Value = Result.Val.getInt();
7576 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7577
7578 llvm::InlineAsm *Emit =
7579 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7580 /*hasSideEffects=*/true)
7581 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7582 /*hasSideEffects=*/true);
7583
7584 return Builder.CreateCall(Emit);
7585 }
7586
7587 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7588 Value *Option = EmitScalarExpr(E->getArg(0));
7589 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7590 }
7591
7592 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7593 Value *Address = EmitScalarExpr(E->getArg(0));
7594 Value *RW = EmitScalarExpr(E->getArg(1));
7595 Value *IsData = EmitScalarExpr(E->getArg(2));
7596
7597 // Locality is not supported on ARM target
7598 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7599
7600 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7601 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7602 }
7603
7604 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7605 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7606 return Builder.CreateCall(
7607 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7608 }
7609
7610 if (BuiltinID == ARM::BI__builtin_arm_cls) {
7611 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7612 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7613 }
7614 if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7615 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7616 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7617 "cls");
7618 }
7619
7620 if (BuiltinID == ARM::BI__clear_cache) {
7621 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7621, __extension__ __PRETTY_FUNCTION__
))
;
7622 const FunctionDecl *FD = E->getDirectCallee();
7623 Value *Ops[2];
7624 for (unsigned i = 0; i < 2; i++)
7625 Ops[i] = EmitScalarExpr(E->getArg(i));
7626 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7627 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7628 StringRef Name = FD->getName();
7629 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7630 }
7631
7632 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7633 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7634 Function *F;
7635
7636 switch (BuiltinID) {
7637 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7637)
;
7638 case ARM::BI__builtin_arm_mcrr:
7639 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7640 break;
7641 case ARM::BI__builtin_arm_mcrr2:
7642 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7643 break;
7644 }
7645
7646 // MCRR{2} instruction has 5 operands but
7647 // the intrinsic has 4 because Rt and Rt2
7648 // are represented as a single unsigned 64
7649 // bit integer in the intrinsic definition
7650 // but internally it's represented as 2 32
7651 // bit integers.
7652
7653 Value *Coproc = EmitScalarExpr(E->getArg(0));
7654 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7655 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7656 Value *CRm = EmitScalarExpr(E->getArg(3));
7657
7658 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7659 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7660 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7661 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7662
7663 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7664 }
7665
7666 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7667 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7668 Function *F;
7669
7670 switch (BuiltinID) {
7671 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7671)
;
7672 case ARM::BI__builtin_arm_mrrc:
7673 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7674 break;
7675 case ARM::BI__builtin_arm_mrrc2:
7676 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7677 break;
7678 }
7679
7680 Value *Coproc = EmitScalarExpr(E->getArg(0));
7681 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7682 Value *CRm = EmitScalarExpr(E->getArg(2));
7683 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7684
7685 // Returns an unsigned 64 bit integer, represented
7686 // as two 32 bit integers.
7687
7688 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7689 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7690 Rt = Builder.CreateZExt(Rt, Int64Ty);
7691 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7692
7693 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7694 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7695 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7696
7697 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7698 }
7699
7700 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7701 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7702 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7703 getContext().getTypeSize(E->getType()) == 64) ||
7704 BuiltinID == ARM::BI__ldrexd) {
7705 Function *F;
7706
7707 switch (BuiltinID) {
7708 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7708)
;
7709 case ARM::BI__builtin_arm_ldaex:
7710 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7711 break;
7712 case ARM::BI__builtin_arm_ldrexd:
7713 case ARM::BI__builtin_arm_ldrex:
7714 case ARM::BI__ldrexd:
7715 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7716 break;
7717 }
7718
7719 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7720 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7721 "ldrexd");
7722
7723 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7724 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7725 Val0 = Builder.CreateZExt(Val0, Int64Ty);
7726 Val1 = Builder.CreateZExt(Val1, Int64Ty);
7727
7728 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7729 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7730 Val = Builder.CreateOr(Val, Val1);
7731 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7732 }
7733
7734 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7735 BuiltinID == ARM::BI__builtin_arm_ldaex) {
7736 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7737
7738 QualType Ty = E->getType();
7739 llvm::Type *RealResTy = ConvertType(Ty);
7740 llvm::Type *IntTy =
7741 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
7742 llvm::Type *PtrTy = IntTy->getPointerTo();
7743 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7744
7745 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7746 ? Intrinsic::arm_ldaex
7747 : Intrinsic::arm_ldrex,
7748 PtrTy);
7749 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7750 Val->addParamAttr(
7751 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
7752
7753 if (RealResTy->isPointerTy())
7754 return Builder.CreateIntToPtr(Val, RealResTy);
7755 else {
7756 llvm::Type *IntResTy = llvm::IntegerType::get(
7757 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7758 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
7759 RealResTy);
7760 }
7761 }
7762
7763 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7764 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7765 BuiltinID == ARM::BI__builtin_arm_strex) &&
7766 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7767 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7768 ? Intrinsic::arm_stlexd
7769 : Intrinsic::arm_strexd);
7770 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7771
7772 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7773 Value *Val = EmitScalarExpr(E->getArg(0));
7774 Builder.CreateStore(Val, Tmp);
7775
7776 Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
7777 Val = Builder.CreateLoad(LdPtr);
7778
7779 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7780 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7781 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7782 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7783 }
7784
7785 if (BuiltinID == ARM::BI__builtin_arm_strex ||
7786 BuiltinID == ARM::BI__builtin_arm_stlex) {
7787 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7788 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7789
7790 QualType Ty = E->getArg(0)->getType();
7791 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7792 getContext().getTypeSize(Ty));
7793 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7794
7795 if (StoreVal->getType()->isPointerTy())
7796 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7797 else {
7798 llvm::Type *IntTy = llvm::IntegerType::get(
7799 getLLVMContext(),
7800 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7801 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7802 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7803 }
7804
7805 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7806 ? Intrinsic::arm_stlex
7807 : Intrinsic::arm_strex,
7808 StoreAddr->getType());
7809
7810 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7811 CI->addParamAttr(
7812 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
7813 return CI;
7814 }
7815
7816 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7817 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7818 return Builder.CreateCall(F);
7819 }
7820
7821 // CRC32
7822 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7823 switch (BuiltinID) {
7824 case ARM::BI__builtin_arm_crc32b:
7825 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7826 case ARM::BI__builtin_arm_crc32cb:
7827 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7828 case ARM::BI__builtin_arm_crc32h:
7829 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7830 case ARM::BI__builtin_arm_crc32ch:
7831 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7832 case ARM::BI__builtin_arm_crc32w:
7833 case ARM::BI__builtin_arm_crc32d:
7834 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7835 case ARM::BI__builtin_arm_crc32cw:
7836 case ARM::BI__builtin_arm_crc32cd:
7837 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7838 }
7839
7840 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7841 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7842 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7843
7844 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7845 // intrinsics, hence we need different codegen for these cases.
7846 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7847 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7848 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7849 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7850 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7851 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7852
7853 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7854 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7855 return Builder.CreateCall(F, {Res, Arg1b});
7856 } else {
7857 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7858
7859 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7860 return Builder.CreateCall(F, {Arg0, Arg1});
7861 }
7862 }
7863
7864 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7865 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7866 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7867 BuiltinID == ARM::BI__builtin_arm_wsr ||
7868 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7869 BuiltinID == ARM::BI__builtin_arm_wsrp) {
7870
7871 SpecialRegisterAccessKind AccessKind = Write;
7872 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7873 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7874 BuiltinID == ARM::BI__builtin_arm_rsrp)
7875 AccessKind = VolatileRead;
7876
7877 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7878 BuiltinID == ARM::BI__builtin_arm_wsrp;
7879
7880 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7881 BuiltinID == ARM::BI__builtin_arm_wsr64;
7882
7883 llvm::Type *ValueType;
7884 llvm::Type *RegisterType;
7885 if (IsPointerBuiltin) {
7886 ValueType = VoidPtrTy;
7887 RegisterType = Int32Ty;
7888 } else if (Is64Bit) {
7889 ValueType = RegisterType = Int64Ty;
7890 } else {
7891 ValueType = RegisterType = Int32Ty;
7892 }
7893
7894 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7895 AccessKind);
7896 }
7897
7898 // Handle MSVC intrinsics before argument evaluation to prevent double
7899 // evaluation.
7900 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7901 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7902
7903 // Deal with MVE builtins
7904 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7905 return Result;
7906 // Handle CDE builtins
7907 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7908 return Result;
7909
7910 // Find out if any arguments are required to be integer constant
7911 // expressions.
7912 unsigned ICEArguments = 0;
7913 ASTContext::GetBuiltinTypeError Error;
7914 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7915 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7915, __extension__ __PRETTY_FUNCTION__
))
;
7916
7917 auto getAlignmentValue32 = [&](Address addr) -> Value* {
7918 return Builder.getInt32(addr.getAlignment().getQuantity());
7919 };
7920
7921 Address PtrOp0 = Address::invalid();
7922 Address PtrOp1 = Address::invalid();
7923 SmallVector<Value*, 4> Ops;
7924 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7925 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7926 for (unsigned i = 0, e = NumArgs; i != e; i++) {
7927 if (i == 0) {
7928 switch (BuiltinID) {
7929 case NEON::BI__builtin_neon_vld1_v:
7930 case NEON::BI__builtin_neon_vld1q_v:
7931 case NEON::BI__builtin_neon_vld1q_lane_v:
7932 case NEON::BI__builtin_neon_vld1_lane_v:
7933 case NEON::BI__builtin_neon_vld1_dup_v:
7934 case NEON::BI__builtin_neon_vld1q_dup_v:
7935 case NEON::BI__builtin_neon_vst1_v:
7936 case NEON::BI__builtin_neon_vst1q_v:
7937 case NEON::BI__builtin_neon_vst1q_lane_v:
7938 case NEON::BI__builtin_neon_vst1_lane_v:
7939 case NEON::BI__builtin_neon_vst2_v:
7940 case NEON::BI__builtin_neon_vst2q_v:
7941 case NEON::BI__builtin_neon_vst2_lane_v:
7942 case NEON::BI__builtin_neon_vst2q_lane_v:
7943 case NEON::BI__builtin_neon_vst3_v:
7944 case NEON::BI__builtin_neon_vst3q_v:
7945 case NEON::BI__builtin_neon_vst3_lane_v:
7946 case NEON::BI__builtin_neon_vst3q_lane_v:
7947 case NEON::BI__builtin_neon_vst4_v:
7948 case NEON::BI__builtin_neon_vst4q_v:
7949 case NEON::BI__builtin_neon_vst4_lane_v:
7950 case NEON::BI__builtin_neon_vst4q_lane_v:
7951 // Get the alignment for the argument in addition to the value;
7952 // we'll use it later.
7953 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7954 Ops.push_back(PtrOp0.getPointer());
7955 continue;
7956 }
7957 }
7958 if (i == 1) {
7959 switch (BuiltinID) {
7960 case NEON::BI__builtin_neon_vld2_v:
7961 case NEON::BI__builtin_neon_vld2q_v:
7962 case NEON::BI__builtin_neon_vld3_v:
7963 case NEON::BI__builtin_neon_vld3q_v:
7964 case NEON::BI__builtin_neon_vld4_v:
7965 case NEON::BI__builtin_neon_vld4q_v:
7966 case NEON::BI__builtin_neon_vld2_lane_v:
7967 case NEON::BI__builtin_neon_vld2q_lane_v:
7968 case NEON::BI__builtin_neon_vld3_lane_v:
7969 case NEON::BI__builtin_neon_vld3q_lane_v:
7970 case NEON::BI__builtin_neon_vld4_lane_v:
7971 case NEON::BI__builtin_neon_vld4q_lane_v:
7972 case NEON::BI__builtin_neon_vld2_dup_v:
7973 case NEON::BI__builtin_neon_vld2q_dup_v:
7974 case NEON::BI__builtin_neon_vld3_dup_v:
7975 case NEON::BI__builtin_neon_vld3q_dup_v:
7976 case NEON::BI__builtin_neon_vld4_dup_v:
7977 case NEON::BI__builtin_neon_vld4q_dup_v:
7978 // Get the alignment for the argument in addition to the value;
7979 // we'll use it later.
7980 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7981 Ops.push_back(PtrOp1.getPointer());
7982 continue;
7983 }
7984 }
7985
7986 if ((ICEArguments & (1 << i)) == 0) {
7987 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7988 } else {
7989 // If this is required to be a constant, constant fold it so that we know
7990 // that the generated intrinsic gets a ConstantInt.
7991 Ops.push_back(llvm::ConstantInt::get(
7992 getLLVMContext(),
7993 *E->getArg(i)->getIntegerConstantExpr(getContext())));
7994 }
7995 }
7996
7997 switch (BuiltinID) {
7998 default: break;
7999
8000 case NEON::BI__builtin_neon_vget_lane_i8:
8001 case NEON::BI__builtin_neon_vget_lane_i16:
8002 case NEON::BI__builtin_neon_vget_lane_i32:
8003 case NEON::BI__builtin_neon_vget_lane_i64:
8004 case NEON::BI__builtin_neon_vget_lane_bf16:
8005 case NEON::BI__builtin_neon_vget_lane_f32:
8006 case NEON::BI__builtin_neon_vgetq_lane_i8:
8007 case NEON::BI__builtin_neon_vgetq_lane_i16:
8008 case NEON::BI__builtin_neon_vgetq_lane_i32:
8009 case NEON::BI__builtin_neon_vgetq_lane_i64:
8010 case NEON::BI__builtin_neon_vgetq_lane_bf16:
8011 case NEON::BI__builtin_neon_vgetq_lane_f32:
8012 case NEON::BI__builtin_neon_vduph_lane_bf16:
8013 case NEON::BI__builtin_neon_vduph_laneq_bf16:
8014 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
8015
8016 case NEON::BI__builtin_neon_vrndns_f32: {
8017 Value *Arg = EmitScalarExpr(E->getArg(0));
8018 llvm::Type *Tys[] = {Arg->getType()};
8019 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
8020 return Builder.CreateCall(F, {Arg}, "vrndn"); }
8021
8022 case NEON::BI__builtin_neon_vset_lane_i8:
8023 case NEON::BI__builtin_neon_vset_lane_i16:
8024 case NEON::BI__builtin_neon_vset_lane_i32:
8025 case NEON::BI__builtin_neon_vset_lane_i64:
8026 case NEON::BI__builtin_neon_vset_lane_bf16:
8027 case NEON::BI__builtin_neon_vset_lane_f32:
8028 case NEON::BI__builtin_neon_vsetq_lane_i8:
8029 case NEON::BI__builtin_neon_vsetq_lane_i16:
8030 case NEON::BI__builtin_neon_vsetq_lane_i32:
8031 case NEON::BI__builtin_neon_vsetq_lane_i64:
8032 case NEON::BI__builtin_neon_vsetq_lane_bf16:
8033 case NEON::BI__builtin_neon_vsetq_lane_f32:
8034 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8035
8036 case NEON::BI__builtin_neon_vsha1h_u32:
8037 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
8038 "vsha1h");
8039 case NEON::BI__builtin_neon_vsha1cq_u32:
8040 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
8041 "vsha1h");
8042 case NEON::BI__builtin_neon_vsha1pq_u32:
8043 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
8044 "vsha1h");
8045 case NEON::BI__builtin_neon_vsha1mq_u32:
8046 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
8047 "vsha1h");
8048
8049 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
8050 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
8051 "vcvtbfp2bf");
8052 }
8053
8054 // The ARM _MoveToCoprocessor builtins put the input register value as
8055 // the first argument, but the LLVM intrinsic expects it as the third one.
8056 case ARM::BI_MoveToCoprocessor:
8057 case ARM::BI_MoveToCoprocessor2: {
8058 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
8059 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
8060 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
8061 Ops[3], Ops[4], Ops[5]});
8062 }
8063 }
8064
8065 // Get the last argument, which specifies the vector type.
8066 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "clang/lib/CodeGen/CGBuiltin.cpp", 8066, __extension__
__PRETTY_FUNCTION__))
;
8067 const Expr *Arg = E->getArg(E->getNumArgs()-1);
8068 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
8069 if (!Result)
8070 return nullptr;
8071
8072 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
8073 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
8074 // Determine the overloaded type of this builtin.
8075 llvm::Type *Ty;
8076 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
8077 Ty = FloatTy;
8078 else
8079 Ty = DoubleTy;
8080
8081 // Determine whether this is an unsigned conversion or not.
8082 bool usgn = Result->getZExtValue() == 1;
8083 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
8084
8085 // Call the appropriate intrinsic.
8086 Function *F = CGM.getIntrinsic(Int, Ty);
8087 return Builder.CreateCall(F, Ops, "vcvtr");
8088 }
8089
8090 // Determine the type of this overloaded NEON intrinsic.
8091 NeonTypeFlags Type = Result->getZExtValue();
8092 bool usgn = Type.isUnsigned();
8093 bool rightShift = false;
8094
8095 llvm::FixedVectorType *VTy =
8096 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8097 getTarget().hasBFloat16Type());
8098 llvm::Type *Ty = VTy;
8099 if (!Ty)
8100 return nullptr;
8101
8102 // Many NEON builtins have identical semantics and uses in ARM and
8103 // AArch64. Emit these in a single function.
8104 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
8105 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8106 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8107 if (Builtin)
8108 return EmitCommonNeonBuiltinExpr(
8109 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8110 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8111
8112 unsigned Int;
8113 switch (BuiltinID) {
8114 default: return nullptr;
8115 case NEON::BI__builtin_neon_vld1q_lane_v:
8116 // Handle 64-bit integer elements as a special case. Use shuffles of
8117 // one-element vectors to avoid poor code for i64 in the backend.
8118 if (VTy->getElementType()->isIntegerTy(64)) {
8119 // Extract the other lane.
8120 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8121 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8122 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8123 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8124 // Load the value as a one-element vector.
8125 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8126 llvm::Type *Tys[] = {Ty, Int8PtrTy};
8127 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8128 Value *Align = getAlignmentValue32(PtrOp0);
8129 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8130 // Combine them.
8131 int Indices[] = {1 - Lane, Lane};
8132 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8133 }
8134 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8135 case NEON::BI__builtin_neon_vld1_lane_v: {
8136 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8137 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
8138 Value *Ld = Builder.CreateLoad(PtrOp0);
8139 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8140 }
8141 case NEON::BI__builtin_neon_vqrshrn_n_v:
8142 Int =
8143 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8144 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8145 1, true);
8146 case NEON::BI__builtin_neon_vqrshrun_n_v:
8147 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8148 Ops, "vqrshrun_n", 1, true);
8149 case NEON::BI__builtin_neon_vqshrn_n_v:
8150 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8151 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8152 1, true);
8153 case NEON::BI__builtin_neon_vqshrun_n_v:
8154 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8155 Ops, "vqshrun_n", 1, true);
8156 case NEON::BI__builtin_neon_vrecpe_v:
8157 case NEON::BI__builtin_neon_vrecpeq_v:
8158 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8159 Ops, "vrecpe");
8160 case NEON::BI__builtin_neon_vrshrn_n_v:
8161 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8162 Ops, "vrshrn_n", 1, true);
8163 case NEON::BI__builtin_neon_vrsra_n_v:
8164 case NEON::BI__builtin_neon_vrsraq_n_v:
8165 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8166 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8167 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8168 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8169 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8170 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8171 case NEON::BI__builtin_neon_vsri_n_v:
8172 case NEON::BI__builtin_neon_vsriq_n_v:
8173 rightShift = true;
8174 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8175 case NEON::BI__builtin_neon_vsli_n_v:
8176 case NEON::BI__builtin_neon_vsliq_n_v:
8177 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8178 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8179 Ops, "vsli_n");
8180 case NEON::BI__builtin_neon_vsra_n_v:
8181 case NEON::BI__builtin_neon_vsraq_n_v:
8182 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8183 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8184 return Builder.CreateAdd(Ops[0], Ops[1]);
8185 case NEON::BI__builtin_neon_vst1q_lane_v:
8186 // Handle 64-bit integer elements as a special case. Use a shuffle to get
8187 // a one-element vector and avoid poor code for i64 in the backend.
8188 if (VTy->getElementType()->isIntegerTy(64)) {
8189 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8190 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8191 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8192 Ops[2] = getAlignmentValue32(PtrOp0);
8193 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8194 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8195 Tys), Ops);
8196 }
8197 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8198 case NEON::BI__builtin_neon_vst1_lane_v: {
8199 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8200 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8201 auto St = Builder.CreateStore(
8202 Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
8203 return St;
8204 }
8205 case NEON::BI__builtin_neon_vtbl1_v:
8206 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8207 Ops, "vtbl1");
8208 case NEON::BI__builtin_neon_vtbl2_v:
8209 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8210 Ops, "vtbl2");
8211 case NEON::BI__builtin_neon_vtbl3_v:
8212 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8213 Ops, "vtbl3");
8214 case NEON::BI__builtin_neon_vtbl4_v:
8215 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8216 Ops, "vtbl4");
8217 case NEON::BI__builtin_neon_vtbx1_v:
8218 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
8219 Ops, "vtbx1");
8220 case NEON::BI__builtin_neon_vtbx2_v:
8221 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8222 Ops, "vtbx2");
8223 case NEON::BI__builtin_neon_vtbx3_v:
8224 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8225 Ops, "vtbx3");
8226 case NEON::BI__builtin_neon_vtbx4_v:
8227 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8228 Ops, "vtbx4");
8229 }
8230}
8231
8232template<typename Integer>
8233static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8234 return E->getIntegerConstantExpr(Context)->getExtValue();
8235}
8236
8237static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8238 llvm::Type *T, bool Unsigned) {
8239 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8240 // which finds it convenient to specify signed/unsigned as a boolean flag.
8241 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8242}
8243
8244static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8245 uint32_t Shift, bool Unsigned) {
8246 // MVE helper function for integer shift right. This must handle signed vs
8247 // unsigned, and also deal specially with the case where the shift count is
8248 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8249 // undefined behavior, but in MVE it's legal, so we must convert it to code
8250 // that is not undefined in IR.
8251 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8252 ->getElementType()
8253 ->getPrimitiveSizeInBits();
8254 if (Shift == LaneBits) {
8255 // An unsigned shift of the full lane size always generates zero, so we can
8256 // simply emit a zero vector. A signed shift of the full lane size does the
8257 // same thing as shifting by one bit fewer.
8258 if (Unsigned)
8259 return llvm::Constant::getNullValue(V->getType());
8260 else
8261 --Shift;
8262 }
8263 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8264}
8265
8266static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8267 // MVE-specific helper function for a vector splat, which infers the element
8268 // count of the output vector by knowing that MVE vectors are all 128 bits
8269 // wide.
8270 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8271 return Builder.CreateVectorSplat(Elements, V);
8272}
8273
8274static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8275 CodeGenFunction *CGF,
8276 llvm::Value *V,
8277 llvm::Type *DestType) {
8278 // Convert one MVE vector type into another by reinterpreting its in-register
8279 // format.
8280 //
8281 // Little-endian, this is identical to a bitcast (which reinterprets the
8282 // memory format). But big-endian, they're not necessarily the same, because
8283 // the register and memory formats map to each other differently depending on
8284 // the lane size.
8285 //
8286 // We generate a bitcast whenever we can (if we're little-endian, or if the
8287 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8288 // that performs the different kind of reinterpretation.
8289 if (CGF->getTarget().isBigEndian() &&
8290 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8291 return Builder.CreateCall(
8292 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8293 {DestType, V->getType()}),
8294 V);
8295 } else {
8296 return Builder.CreateBitCast(V, DestType);
8297 }
8298}
8299
8300static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8301 // Make a shufflevector that extracts every other element of a vector (evens
8302 // or odds, as desired).
8303 SmallVector<int, 16> Indices;
8304 unsigned InputElements =
8305 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8306 for (unsigned i = 0; i < InputElements; i += 2)
8307 Indices.push_back(i + Odd);
8308 return Builder.CreateShuffleVector(V, Indices);
8309}
8310
8311static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8312 llvm::Value *V1) {
8313 // Make a shufflevector that interleaves two vectors element by element.
8314 assert(V0->getType() == V1->getType() && "Can't zip different vector types")(static_cast <bool> (V0->getType() == V1->getType
() && "Can't zip different vector types") ? void (0) :
__assert_fail ("V0->getType() == V1->getType() && \"Can't zip different vector types\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8314, __extension__ __PRETTY_FUNCTION__
))
;
8315 SmallVector<int, 16> Indices;
8316 unsigned InputElements =
8317 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8318 for (unsigned i = 0; i < InputElements; i++) {
8319 Indices.push_back(i);
8320 Indices.push_back(i + InputElements);
8321 }
8322 return Builder.CreateShuffleVector(V0, V1, Indices);
8323}
8324
8325template<unsigned HighBit, unsigned OtherBits>
8326static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8327 // MVE-specific helper function to make a vector splat of a constant such as
8328 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8329 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8330 unsigned LaneBits = T->getPrimitiveSizeInBits();
8331 uint32_t Value = HighBit << (LaneBits - 1);
8332 if (OtherBits)
8333 Value |= (1UL << (LaneBits - 1)) - 1;
8334 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8335 return ARMMVEVectorSplat(Builder, Lane);
8336}
8337
8338static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8339 llvm::Value *V,
8340 unsigned ReverseWidth) {
8341 // MVE-specific helper function which reverses the elements of a
8342 // vector within every (ReverseWidth)-bit collection of lanes.
8343 SmallVector<int, 16> Indices;
8344 unsigned LaneSize = V->getType()->getScalarSizeInBits();
8345 unsigned Elements = 128 / LaneSize;
8346 unsigned Mask = ReverseWidth / LaneSize - 1;
8347 for (unsigned i = 0; i < Elements; i++)
8348 Indices.push_back(i ^ Mask);
8349 return Builder.CreateShuffleVector(V, Indices);
8350}
8351
8352Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8353 const CallExpr *E,
8354 ReturnValueSlot ReturnValue,
8355 llvm::Triple::ArchType Arch) {
8356 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8357 Intrinsic::ID IRIntr;
8358 unsigned NumVectors;
8359
8360 // Code autogenerated by Tablegen will handle all the simple builtins.
8361 switch (BuiltinID) {
8362 #include "clang/Basic/arm_mve_builtin_cg.inc"
8363
8364 // If we didn't match an MVE builtin id at all, go back to the
8365 // main EmitARMBuiltinExpr.
8366 default:
8367 return nullptr;
8368 }
8369
8370 // Anything that breaks from that switch is an MVE builtin that
8371 // needs handwritten code to generate.
8372
8373 switch (CustomCodeGenType) {
8374
8375 case CustomCodeGen::VLD24: {
8376 llvm::SmallVector<Value *, 4> Ops;
8377 llvm::SmallVector<llvm::Type *, 4> Tys;
8378
8379 auto MvecCType = E->getType();
8380 auto MvecLType = ConvertType(MvecCType);
8381 assert(MvecLType->isStructTy() &&(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8382, __extension__ __PRETTY_FUNCTION__
))
8382 "Return type for vld[24]q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8382, __extension__ __PRETTY_FUNCTION__
))
;
8383 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8384, __extension__ __PRETTY_FUNCTION__
))
8384 "Return-type struct for vld[24]q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8384, __extension__ __PRETTY_FUNCTION__
))
;
8385 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8386 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8387, __extension__ __PRETTY_FUNCTION__
))
8387 "Return-type struct for vld[24]q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8387, __extension__ __PRETTY_FUNCTION__
))
;
8388 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8389, __extension__ __PRETTY_FUNCTION__
))
8389 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8389, __extension__ __PRETTY_FUNCTION__
))
;
8390 auto VecLType = MvecLTypeInner->getArrayElementType();
8391
8392 Tys.push_back(VecLType);
8393
8394 auto Addr = E->getArg(0);
8395 Ops.push_back(EmitScalarExpr(Addr));
8396 Tys.push_back(ConvertType(Addr->getType()));
8397
8398 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8399 Value *LoadResult = Builder.CreateCall(F, Ops);
8400 Value *MvecOut = UndefValue::get(MvecLType);
8401 for (unsigned i = 0; i < NumVectors; ++i) {
8402 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8403 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8404 }
8405
8406 if (ReturnValue.isNull())
8407 return MvecOut;
8408 else
8409 return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8410 }
8411
8412 case CustomCodeGen::VST24: {
8413 llvm::SmallVector<Value *, 4> Ops;
8414 llvm::SmallVector<llvm::Type *, 4> Tys;
8415
8416 auto Addr = E->getArg(0);
8417 Ops.push_back(EmitScalarExpr(Addr));
8418 Tys.push_back(ConvertType(Addr->getType()));
8419
8420 auto MvecCType = E->getArg(1)->getType();
8421 auto MvecLType = ConvertType(MvecCType);
8422 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Data type for vst2q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Data type for vst2q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8422, __extension__ __PRETTY_FUNCTION__
))
;
8423 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8424, __extension__ __PRETTY_FUNCTION__
))
8424 "Data-type struct for vst2q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8424, __extension__ __PRETTY_FUNCTION__
))
;
8425 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8426 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8427, __extension__ __PRETTY_FUNCTION__
))
8427 "Data-type struct for vst2q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8427, __extension__ __PRETTY_FUNCTION__
))
;
8428 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8429, __extension__ __PRETTY_FUNCTION__
))
8429 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8429, __extension__ __PRETTY_FUNCTION__
))
;
8430 auto VecLType = MvecLTypeInner->getArrayElementType();
8431
8432 Tys.push_back(VecLType);
8433
8434 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8435 EmitAggExpr(E->getArg(1), MvecSlot);
8436 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8437 for (unsigned i = 0; i < NumVectors; i++)
8438 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8439
8440 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8441 Value *ToReturn = nullptr;
8442 for (unsigned i = 0; i < NumVectors; i++) {
8443 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8444 ToReturn = Builder.CreateCall(F, Ops);
8445 Ops.pop_back();
8446 }
8447 return ToReturn;
8448 }
8449 }
8450 llvm_unreachable("unknown custom codegen type.")::llvm::llvm_unreachable_internal("unknown custom codegen type."
, "clang/lib/CodeGen/CGBuiltin.cpp", 8450)
;
8451}
8452
8453Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8454 const CallExpr *E,
8455 ReturnValueSlot ReturnValue,
8456 llvm::Triple::ArchType Arch) {
8457 switch (BuiltinID) {
8458 default:
8459 return nullptr;
8460#include "clang/Basic/arm_cde_builtin_cg.inc"
8461 }
8462}
8463
8464static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8465 const CallExpr *E,
8466 SmallVectorImpl<Value *> &Ops,
8467 llvm::Triple::ArchType Arch) {
8468 unsigned int Int = 0;
8469 const char *s = nullptr;
8470
8471 switch (BuiltinID) {
8472 default:
8473 return nullptr;
8474 case NEON::BI__builtin_neon_vtbl1_v:
8475 case NEON::BI__builtin_neon_vqtbl1_v:
8476 case NEON::BI__builtin_neon_vqtbl1q_v:
8477 case NEON::BI__builtin_neon_vtbl2_v:
8478 case NEON::BI__builtin_neon_vqtbl2_v:
8479 case NEON::BI__builtin_neon_vqtbl2q_v:
8480 case NEON::BI__builtin_neon_vtbl3_v:
8481 case NEON::BI__builtin_neon_vqtbl3_v:
8482 case NEON::BI__builtin_neon_vqtbl3q_v:
8483 case NEON::BI__builtin_neon_vtbl4_v:
8484 case NEON::BI__builtin_neon_vqtbl4_v:
8485 case NEON::BI__builtin_neon_vqtbl4q_v:
8486 break;
8487 case NEON::BI__builtin_neon_vtbx1_v:
8488 case NEON::BI__builtin_neon_vqtbx1_v:
8489 case NEON::BI__builtin_neon_vqtbx1q_v:
8490 case NEON::BI__builtin_neon_vtbx2_v:
8491 case NEON::BI__builtin_neon_vqtbx2_v:
8492 case NEON::BI__builtin_neon_vqtbx2q_v:
8493 case NEON::BI__builtin_neon_vtbx3_v:
8494 case NEON::BI__builtin_neon_vqtbx3_v:
8495 case NEON::BI__builtin_neon_vqtbx3q_v:
8496 case NEON::BI__builtin_neon_vtbx4_v:
8497 case NEON::BI__builtin_neon_vqtbx4_v:
8498 case NEON::BI__builtin_neon_vqtbx4q_v:
8499 break;
8500 }
8501
8502 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8502, __extension__ __PRETTY_FUNCTION__))
;
8503
8504 // Get the last argument, which specifies the vector type.
8505 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8506 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8507 if (!Result)
8508 return nullptr;
8509
8510 // Determine the type of this overloaded NEON intrinsic.
8511 NeonTypeFlags Type = Result->getZExtValue();
8512 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8513 if (!Ty)
8514 return nullptr;
8515
8516 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8517
8518 // AArch64 scalar builtins are not overloaded, they do not have an extra
8519 // argument that specifies the vector type, need to handle each case.
8520 switch (BuiltinID) {
8521 case NEON::BI__builtin_neon_vtbl1_v: {
8522 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8523 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8524 "vtbl1");
8525 }
8526 case NEON::BI__builtin_neon_vtbl2_v: {
8527 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8528 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8529 "vtbl1");
8530 }
8531 case NEON::BI__builtin_neon_vtbl3_v: {
8532 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8533 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8534 "vtbl2");
8535 }
8536 case NEON::BI__builtin_neon_vtbl4_v: {
8537 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8538 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8539 "vtbl2");
8540 }
8541 case NEON::BI__builtin_neon_vtbx1_v: {
8542 Value *TblRes =
8543 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8544 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8545
8546 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8547 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8548 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8549
8550 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8551 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8552 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8553 }
8554 case NEON::BI__builtin_neon_vtbx2_v: {
8555 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8556 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8557 "vtbx1");
8558 }
8559 case NEON::BI__builtin_neon_vtbx3_v: {
8560 Value *TblRes =
8561 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8562 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8563
8564 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8565 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8566 TwentyFourV);
8567 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8568
8569 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8570 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8571 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8572 }
8573 case NEON::BI__builtin_neon_vtbx4_v: {
8574 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8575 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8576 "vtbx2");
8577 }
8578 case NEON::BI__builtin_neon_vqtbl1_v:
8579 case NEON::BI__builtin_neon_vqtbl1q_v:
8580 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8581 case NEON::BI__builtin_neon_vqtbl2_v:
8582 case NEON::BI__builtin_neon_vqtbl2q_v: {
8583 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8584 case NEON::BI__builtin_neon_vqtbl3_v:
8585 case NEON::BI__builtin_neon_vqtbl3q_v:
8586 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8587 case NEON::BI__builtin_neon_vqtbl4_v:
8588 case NEON::BI__builtin_neon_vqtbl4q_v:
8589 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8590 case NEON::BI__builtin_neon_vqtbx1_v:
8591 case NEON::BI__builtin_neon_vqtbx1q_v:
8592 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8593 case NEON::BI__builtin_neon_vqtbx2_v:
8594 case NEON::BI__builtin_neon_vqtbx2q_v:
8595 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8596 case NEON::BI__builtin_neon_vqtbx3_v:
8597 case NEON::BI__builtin_neon_vqtbx3q_v:
8598 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8599 case NEON::BI__builtin_neon_vqtbx4_v:
8600 case NEON::BI__builtin_neon_vqtbx4q_v:
8601 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8602 }
8603 }
8604
8605 if (!Int)
8606 return nullptr;
8607
8608 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8609 return CGF.EmitNeonCall(F, Ops, s);
8610}
8611
8612Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8613 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8614 Op = Builder.CreateBitCast(Op, Int16Ty);
8615 Value *V = UndefValue::get(VTy);
8616 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8617 Op = Builder.CreateInsertElement(V, Op, CI);
8618 return Op;
8619}
8620
8621/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8622/// access builtin. Only required if it can't be inferred from the base pointer
8623/// operand.
8624llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8625 switch (TypeFlags.getMemEltType()) {
8626 case SVETypeFlags::MemEltTyDefault:
8627 return getEltType(TypeFlags);
8628 case SVETypeFlags::MemEltTyInt8:
8629 return Builder.getInt8Ty();
8630 case SVETypeFlags::MemEltTyInt16:
8631 return Builder.getInt16Ty();
8632 case SVETypeFlags::MemEltTyInt32:
8633 return Builder.getInt32Ty();
8634 case SVETypeFlags::MemEltTyInt64:
8635 return Builder.getInt64Ty();
8636 }
8637 llvm_unreachable("Unknown MemEltType")::llvm::llvm_unreachable_internal("Unknown MemEltType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8637)
;
8638}
8639
8640llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8641 switch (TypeFlags.getEltType()) {
8642 default:
8643 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8643)
;
8644
8645 case SVETypeFlags::EltTyInt8:
8646 return Builder.getInt8Ty();
8647 case SVETypeFlags::EltTyInt16:
8648 return Builder.getInt16Ty();
8649 case SVETypeFlags::EltTyInt32:
8650 return Builder.getInt32Ty();
8651 case SVETypeFlags::EltTyInt64:
8652 return Builder.getInt64Ty();
8653
8654 case SVETypeFlags::EltTyFloat16:
8655 return Builder.getHalfTy();
8656 case SVETypeFlags::EltTyFloat32:
8657 return Builder.getFloatTy();
8658 case SVETypeFlags::EltTyFloat64:
8659 return Builder.getDoubleTy();
8660
8661 case SVETypeFlags::EltTyBFloat16:
8662 return Builder.getBFloatTy();
8663
8664 case SVETypeFlags::EltTyBool8:
8665 case SVETypeFlags::EltTyBool16:
8666 case SVETypeFlags::EltTyBool32:
8667 case SVETypeFlags::EltTyBool64:
8668 return Builder.getInt1Ty();
8669 }
8670}
8671
8672// Return the llvm predicate vector type corresponding to the specified element
8673// TypeFlags.
8674llvm::ScalableVectorType *
8675CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8676 switch (TypeFlags.getEltType()) {
8677 default: llvm_unreachable("Unhandled SVETypeFlag!")::llvm::llvm_unreachable_internal("Unhandled SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8677)
;
8678
8679 case SVETypeFlags::EltTyInt8:
8680 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8681 case SVETypeFlags::EltTyInt16:
8682 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8683 case SVETypeFlags::EltTyInt32:
8684 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8685 case SVETypeFlags::EltTyInt64:
8686 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8687
8688 case SVETypeFlags::EltTyBFloat16:
8689 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8690 case SVETypeFlags::EltTyFloat16:
8691 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8692 case SVETypeFlags::EltTyFloat32:
8693 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8694 case SVETypeFlags::EltTyFloat64:
8695 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8696
8697 case SVETypeFlags::EltTyBool8:
8698 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8699 case SVETypeFlags::EltTyBool16:
8700 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8701 case SVETypeFlags::EltTyBool32:
8702 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8703 case SVETypeFlags::EltTyBool64:
8704 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8705 }
8706}
8707
8708// Return the llvm vector type corresponding to the specified element TypeFlags.
8709llvm::ScalableVectorType *
8710CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8711 switch (TypeFlags.getEltType()) {
8712 default:
8713 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8713)
;
8714
8715 case SVETypeFlags::EltTyInt8:
8716 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8717 case SVETypeFlags::EltTyInt16:
8718 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8719 case SVETypeFlags::EltTyInt32:
8720 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8721 case SVETypeFlags::EltTyInt64:
8722 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8723
8724 case SVETypeFlags::EltTyFloat16:
8725 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8726 case SVETypeFlags::EltTyBFloat16:
8727 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8728 case SVETypeFlags::EltTyFloat32:
8729 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8730 case SVETypeFlags::EltTyFloat64:
8731 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8732
8733 case SVETypeFlags::EltTyBool8:
8734 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8735 case SVETypeFlags::EltTyBool16:
8736 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8737 case SVETypeFlags::EltTyBool32:
8738 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8739 case SVETypeFlags::EltTyBool64:
8740 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8741 }
8742}
8743
8744llvm::Value *
8745CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8746 Function *Ptrue =
8747 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8748 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8749}
8750
8751constexpr unsigned SVEBitsPerBlock = 128;
8752
8753static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8754 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8755 return llvm::ScalableVectorType::get(EltTy, NumElts);
8756}
8757
8758// Reinterpret the input predicate so that it can be used to correctly isolate
8759// the elements of the specified datatype.
8760Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8761 llvm::ScalableVectorType *VTy) {
8762 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8763 if (Pred->getType() == RTy)
8764 return Pred;
8765
8766 unsigned IntID;
8767 llvm::Type *IntrinsicTy;
8768 switch (VTy->getMinNumElements()) {
8769 default:
8770 llvm_unreachable("unsupported element count!")::llvm::llvm_unreachable_internal("unsupported element count!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 8770)
;
8771 case 2:
8772 case 4:
8773 case 8:
8774 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8775 IntrinsicTy = RTy;
8776 break;
8777 case 16:
8778 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8779 IntrinsicTy = Pred->getType();
8780 break;
8781 }
8782
8783 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8784 Value *C = Builder.CreateCall(F, Pred);
8785 assert(C->getType() == RTy && "Unexpected return type!")(static_cast <bool> (C->getType() == RTy && "Unexpected return type!"
) ? void (0) : __assert_fail ("C->getType() == RTy && \"Unexpected return type!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8785, __extension__ __PRETTY_FUNCTION__
))
;
8786 return C;
8787}
8788
8789Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
8790 SmallVectorImpl<Value *> &Ops,
8791 unsigned IntID) {
8792 auto *ResultTy = getSVEType(TypeFlags);
8793 auto *OverloadedTy =
8794 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8795
8796 // At the ACLE level there's only one predicate type, svbool_t, which is
8797 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8798 // actual type being loaded. For example, when loading doubles (i64) the
8799 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8800 // the predicate and the data being loaded must match. Cast accordingly.
8801 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8802
8803 Function *F = nullptr;
8804 if (Ops[1]->getType()->isVectorTy())
8805 // This is the "vector base, scalar offset" case. In order to uniquely
8806 // map this built-in to an LLVM IR intrinsic, we need both the return type
8807 // and the type of the vector base.
8808 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8809 else
8810 // This is the "scalar base, vector offset case". The type of the offset
8811 // is encoded in the name of the intrinsic. We only need to specify the
8812 // return type in order to uniquely map this built-in to an LLVM IR
8813 // intrinsic.
8814 F = CGM.getIntrinsic(IntID, OverloadedTy);
8815
8816 // Pass 0 when the offset is missing. This can only be applied when using
8817 // the "vector base" addressing mode for which ACLE allows no offset. The
8818 // corresponding LLVM IR always requires an offset.
8819 if (Ops.size() == 2) {
8820 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8820, __extension__ __PRETTY_FUNCTION__
))
;
8821 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8822 }
8823
8824 // For "vector base, scalar index" scale the index so that it becomes a
8825 // scalar offset.
8826 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8827 unsigned BytesPerElt =
8828 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8829 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8830 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8831 }
8832
8833 Value *Call = Builder.CreateCall(F, Ops);
8834
8835 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8836 // other cases it's folded into a nop.
8837 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8838 : Builder.CreateSExt(Call, ResultTy);
8839}
8840
8841Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
8842 SmallVectorImpl<Value *> &Ops,
8843 unsigned IntID) {
8844 auto *SrcDataTy = getSVEType(TypeFlags);
8845 auto *OverloadedTy =
8846 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8847
8848 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8849 // it's the first argument. Move it accordingly.
8850 Ops.insert(Ops.begin(), Ops.pop_back_val());
8851
8852 Function *F = nullptr;
8853 if (Ops[2]->getType()->isVectorTy())
8854 // This is the "vector base, scalar offset" case. In order to uniquely
8855 // map this built-in to an LLVM IR intrinsic, we need both the return type
8856 // and the type of the vector base.
8857 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8858 else
8859 // This is the "scalar base, vector offset case". The type of the offset
8860 // is encoded in the name of the intrinsic. We only need to specify the
8861 // return type in order to uniquely map this built-in to an LLVM IR
8862 // intrinsic.
8863 F = CGM.getIntrinsic(IntID, OverloadedTy);
8864
8865 // Pass 0 when the offset is missing. This can only be applied when using
8866 // the "vector base" addressing mode for which ACLE allows no offset. The
8867 // corresponding LLVM IR always requires an offset.
8868 if (Ops.size() == 3) {
8869 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8869, __extension__ __PRETTY_FUNCTION__
))
;
8870 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8871 }
8872
8873 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8874 // folded into a nop.
8875 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8876
8877 // At the ACLE level there's only one predicate type, svbool_t, which is
8878 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8879 // actual type being stored. For example, when storing doubles (i64) the
8880 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8881 // the predicate and the data being stored must match. Cast accordingly.
8882 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8883
8884 // For "vector base, scalar index" scale the index so that it becomes a
8885 // scalar offset.
8886 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8887 unsigned BytesPerElt =
8888 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8889 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8890 Ops[3] = Builder.CreateMul(Ops[3], Scale);
8891 }
8892
8893 return Builder.CreateCall(F, Ops);
8894}
8895
8896Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
8897 SmallVectorImpl<Value *> &Ops,
8898 unsigned IntID) {
8899 // The gather prefetches are overloaded on the vector input - this can either
8900 // be the vector of base addresses or vector of offsets.
8901 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8902 if (!OverloadedTy)
8903 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8904
8905 // Cast the predicate from svbool_t to the right number of elements.
8906 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8907
8908 // vector + imm addressing modes
8909 if (Ops[1]->getType()->isVectorTy()) {
8910 if (Ops.size() == 3) {
8911 // Pass 0 for 'vector+imm' when the index is omitted.
8912 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8913
8914 // The sv_prfop is the last operand in the builtin and IR intrinsic.
8915 std::swap(Ops[2], Ops[3]);
8916 } else {
8917 // Index needs to be passed as scaled offset.
8918 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8919 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8920 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8921 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8922 }
8923 }
8924
8925 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8926 return Builder.CreateCall(F, Ops);
8927}
8928
8929Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
8930 SmallVectorImpl<Value*> &Ops,
8931 unsigned IntID) {
8932 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8933 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8934 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8935
8936 unsigned N;
8937 switch (IntID) {
8938 case Intrinsic::aarch64_sve_ld2:
8939 N = 2;
8940 break;
8941 case Intrinsic::aarch64_sve_ld3:
8942 N = 3;
8943 break;
8944 case Intrinsic::aarch64_sve_ld4:
8945 N = 4;
8946 break;
8947 default:
8948 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8948)
;
8949 }
8950 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8951 VTy->getElementCount() * N);
8952
8953 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8954 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8955 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8956 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8957 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8958
8959 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8960 return Builder.CreateCall(F, { Predicate, BasePtr });
8961}
8962
8963Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
8964 SmallVectorImpl<Value*> &Ops,
8965 unsigned IntID) {
8966 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8967 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8968 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8969
8970 unsigned N;
8971 switch (IntID) {
8972 case Intrinsic::aarch64_sve_st2:
8973 N = 2;
8974 break;
8975 case Intrinsic::aarch64_sve_st3:
8976 N = 3;
8977 break;
8978 case Intrinsic::aarch64_sve_st4:
8979 N = 4;
8980 break;
8981 default:
8982 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8982)
;
8983 }
8984 auto TupleTy =
8985 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8986
8987 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8988 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8989 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8990 Value *Val = Ops.back();
8991 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8992 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8993
8994 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8995 // need to break up the tuple vector.
8996 SmallVector<llvm::Value*, 5> Operands;
8997 Function *FExtr =
8998 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8999 for (unsigned I = 0; I < N; ++I)
9000 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
9001 Operands.append({Predicate, BasePtr});
9002
9003 Function *F = CGM.getIntrinsic(IntID, { VTy });
9004 return Builder.CreateCall(F, Operands);
9005}
9006
9007// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
9008// svpmullt_pair intrinsics, with the exception that their results are bitcast
9009// to a wider type.
9010Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
9011 SmallVectorImpl<Value *> &Ops,
9012 unsigned BuiltinID) {
9013 // Splat scalar operand to vector (intrinsics with _n infix)
9014 if (TypeFlags.hasSplatOperand()) {
9015 unsigned OpNo = TypeFlags.getSplatOperand();
9016 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9017 }
9018
9019 // The pair-wise function has a narrower overloaded type.
9020 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
9021 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
9022
9023 // Now bitcast to the wider result type.
9024 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
9025 return EmitSVEReinterpret(Call, Ty);
9026}
9027
9028Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
9029 ArrayRef<Value *> Ops, unsigned BuiltinID) {
9030 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
9031 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
9032 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
9033}
9034
9035Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
9036 SmallVectorImpl<Value *> &Ops,
9037 unsigned BuiltinID) {
9038 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9039 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
9040 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9041
9042 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9043 Value *BasePtr = Ops[1];
9044
9045 // Implement the index operand if not omitted.
9046 if (Ops.size() > 3) {
9047 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
9048 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9049 }
9050
9051 // Prefetch intriniscs always expect an i8*
9052 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
9053 Value *PrfOp = Ops.back();
9054
9055 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
9056 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
9057}
9058
9059Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
9060 llvm::Type *ReturnTy,
9061 SmallVectorImpl<Value *> &Ops,
9062 unsigned BuiltinID,
9063 bool IsZExtReturn) {
9064 QualType LangPTy = E->getArg(1)->getType();
9065 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9066 LangPTy->castAs<PointerType>()->getPointeeType());
9067
9068 // The vector type that is returned may be different from the
9069 // eventual type loaded from memory.
9070 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
9071 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9072
9073 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9074 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9075 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
9076 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9077
9078 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9079 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9080 auto *Load =
9081 cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
9082 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9083 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
9084
9085 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
9086 : Builder.CreateSExt(Load, VectorTy);
9087}
9088
9089Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
9090 SmallVectorImpl<Value *> &Ops,
9091 unsigned BuiltinID) {
9092 QualType LangPTy = E->getArg(1)->getType();
9093 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9094 LangPTy->castAs<PointerType>()->getPointeeType());
9095
9096 // The vector type that is stored may be different from the
9097 // eventual type stored to memory.
9098 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9099 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9100
9101 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9102 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9103 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
9104 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9105
9106 // Last value is always the data
9107 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
9108
9109 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9110 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9111 auto *Store =
9112 cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9113 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9114 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9115 return Store;
9116}
9117
9118// Limit the usage of scalable llvm IR generated by the ACLE by using the
9119// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
9120Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
9121 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
9122 return Builder.CreateCall(F, Scalar);
9123}
9124
9125Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
9126 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
9127}
9128
9129Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
9130 // FIXME: For big endian this needs an additional REV, or needs a separate
9131 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
9132 // instruction is defined as 'bitwise' equivalent from memory point of
9133 // view (when storing/reloading), whereas the svreinterpret builtin
9134 // implements bitwise equivalent cast from register point of view.
9135 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
9136 return Builder.CreateBitCast(Val, Ty);
9137}
9138
9139static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9140 SmallVectorImpl<Value *> &Ops) {
9141 auto *SplatZero = Constant::getNullValue(Ty);
9142 Ops.insert(Ops.begin(), SplatZero);
9143}
9144
9145static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9146 SmallVectorImpl<Value *> &Ops) {
9147 auto *SplatUndef = UndefValue::get(Ty);
9148 Ops.insert(Ops.begin(), SplatUndef);
9149}
9150
9151SmallVector<llvm::Type *, 2>
9152CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
9153 llvm::Type *ResultType,
9154 ArrayRef<Value *> Ops) {
9155 if (TypeFlags.isOverloadNone())
9156 return {};
9157
9158 llvm::Type *DefaultType = getSVEType(TypeFlags);
9159
9160 if (TypeFlags.isOverloadWhile())
9161 return {DefaultType, Ops[1]->getType()};
9162
9163 if (TypeFlags.isOverloadWhileRW())
9164 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
9165
9166 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
9167 return {Ops[0]->getType(), Ops.back()->getType()};
9168
9169 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
9170 return {ResultType, Ops[0]->getType()};
9171
9172 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads")(static_cast <bool> (TypeFlags.isOverloadDefault() &&
"Unexpected value for overloads") ? void (0) : __assert_fail
("TypeFlags.isOverloadDefault() && \"Unexpected value for overloads\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9172, __extension__ __PRETTY_FUNCTION__
))
;
9173 return {DefaultType};
9174}
9175
9176Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
9177 const CallExpr *E) {
9178 // Find out if any arguments are required to be integer constant expressions.
9179 unsigned ICEArguments = 0;
9180 ASTContext::GetBuiltinTypeError Error;
9181 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9182 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9182, __extension__ __PRETTY_FUNCTION__
))
;
9183
9184 llvm::Type *Ty = ConvertType(E->getType());
9185 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
9186 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
9187 Value *Val = EmitScalarExpr(E->getArg(0));
9188 return EmitSVEReinterpret(Val, Ty);
9189 }
9190
9191 llvm::SmallVector<Value *, 4> Ops;
9192 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9193 if ((ICEArguments & (1 << i)) == 0)
9194 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9195 else {
9196 // If this is required to be a constant, constant fold it so that we know
9197 // that the generated intrinsic gets a ConstantInt.
9198 Optional<llvm::APSInt> Result =
9199 E->getArg(i)->getIntegerConstantExpr(getContext());
9200 assert(Result && "Expected argument to be a constant")(static_cast <bool> (Result && "Expected argument to be a constant"
) ? void (0) : __assert_fail ("Result && \"Expected argument to be a constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9200, __extension__ __PRETTY_FUNCTION__
))
;
9201
9202 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
9203 // truncate because the immediate has been range checked and no valid
9204 // immediate requires more than a handful of bits.
9205 *Result = Result->extOrTrunc(32);
9206 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
9207 }
9208 }
9209
9210 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
9211 AArch64SVEIntrinsicsProvenSorted);
9212 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9213 if (TypeFlags.isLoad())
9214 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
9215 TypeFlags.isZExtReturn());
9216 else if (TypeFlags.isStore())
9217 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
9218 else if (TypeFlags.isGatherLoad())
9219 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9220 else if (TypeFlags.isScatterStore())
9221 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9222 else if (TypeFlags.isPrefetch())
9223 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9224 else if (TypeFlags.isGatherPrefetch())
9225 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9226 else if (TypeFlags.isStructLoad())
9227 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9228 else if (TypeFlags.isStructStore())
9229 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9230 else if (TypeFlags.isUndef())
9231 return UndefValue::get(Ty);
9232 else if (Builtin->LLVMIntrinsic != 0) {
9233 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9234 InsertExplicitZeroOperand(Builder, Ty, Ops);
9235
9236 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9237 InsertExplicitUndefOperand(Builder, Ty, Ops);
9238
9239 // Some ACLE builtins leave out the argument to specify the predicate
9240 // pattern, which is expected to be expanded to an SV_ALL pattern.
9241 if (TypeFlags.isAppendSVALL())
9242 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9243 if (TypeFlags.isInsertOp1SVALL())
9244 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9245
9246 // Predicates must match the main datatype.
9247 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9248 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9249 if (PredTy->getElementType()->isIntegerTy(1))
9250 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9251
9252 // Splat scalar operand to vector (intrinsics with _n infix)
9253 if (TypeFlags.hasSplatOperand()) {
9254 unsigned OpNo = TypeFlags.getSplatOperand();
9255 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9256 }
9257
9258 if (TypeFlags.isReverseCompare())
9259 std::swap(Ops[1], Ops[2]);
9260
9261 if (TypeFlags.isReverseUSDOT())
9262 std::swap(Ops[1], Ops[2]);
9263
9264 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9265 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9266 llvm::Type *OpndTy = Ops[1]->getType();
9267 auto *SplatZero = Constant::getNullValue(OpndTy);
9268 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
9269 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
9270 }
9271
9272 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9273 getSVEOverloadTypes(TypeFlags, Ty, Ops));
9274 Value *Call = Builder.CreateCall(F, Ops);
9275
9276 // Predicate results must be converted to svbool_t.
9277 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9278 if (PredTy->getScalarType()->isIntegerTy(1))
9279 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9280
9281 return Call;
9282 }
9283
9284 switch (BuiltinID) {
9285 default:
9286 return nullptr;
9287
9288 case SVE::BI__builtin_sve_svmov_b_z: {
9289 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9290 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9291 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9292 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9293 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9294 }
9295
9296 case SVE::BI__builtin_sve_svnot_b_z: {
9297 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9298 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9299 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9300 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9301 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9302 }
9303
9304 case SVE::BI__builtin_sve_svmovlb_u16:
9305 case SVE::BI__builtin_sve_svmovlb_u32:
9306 case SVE::BI__builtin_sve_svmovlb_u64:
9307 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9308
9309 case SVE::BI__builtin_sve_svmovlb_s16:
9310 case SVE::BI__builtin_sve_svmovlb_s32:
9311 case SVE::BI__builtin_sve_svmovlb_s64:
9312 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9313
9314 case SVE::BI__builtin_sve_svmovlt_u16:
9315 case SVE::BI__builtin_sve_svmovlt_u32:
9316 case SVE::BI__builtin_sve_svmovlt_u64:
9317 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9318
9319 case SVE::BI__builtin_sve_svmovlt_s16:
9320 case SVE::BI__builtin_sve_svmovlt_s32:
9321 case SVE::BI__builtin_sve_svmovlt_s64:
9322 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9323
9324 case SVE::BI__builtin_sve_svpmullt_u16:
9325 case SVE::BI__builtin_sve_svpmullt_u64:
9326 case SVE::BI__builtin_sve_svpmullt_n_u16:
9327 case SVE::BI__builtin_sve_svpmullt_n_u64:
9328 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9329
9330 case SVE::BI__builtin_sve_svpmullb_u16:
9331 case SVE::BI__builtin_sve_svpmullb_u64:
9332 case SVE::BI__builtin_sve_svpmullb_n_u16:
9333 case SVE::BI__builtin_sve_svpmullb_n_u64:
9334 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9335
9336 case SVE::BI__builtin_sve_svdup_n_b8:
9337 case SVE::BI__builtin_sve_svdup_n_b16:
9338 case SVE::BI__builtin_sve_svdup_n_b32:
9339 case SVE::BI__builtin_sve_svdup_n_b64: {
9340 Value *CmpNE =
9341 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9342 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9343 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9344 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9345 }
9346
9347 case SVE::BI__builtin_sve_svdupq_n_b8:
9348 case SVE::BI__builtin_sve_svdupq_n_b16:
9349 case SVE::BI__builtin_sve_svdupq_n_b32:
9350 case SVE::BI__builtin_sve_svdupq_n_b64:
9351 case SVE::BI__builtin_sve_svdupq_n_u8:
9352 case SVE::BI__builtin_sve_svdupq_n_s8:
9353 case SVE::BI__builtin_sve_svdupq_n_u64:
9354 case SVE::BI__builtin_sve_svdupq_n_f64:
9355 case SVE::BI__builtin_sve_svdupq_n_s64:
9356 case SVE::BI__builtin_sve_svdupq_n_u16:
9357 case SVE::BI__builtin_sve_svdupq_n_f16:
9358 case SVE::BI__builtin_sve_svdupq_n_bf16:
9359 case SVE::BI__builtin_sve_svdupq_n_s16:
9360 case SVE::BI__builtin_sve_svdupq_n_u32:
9361 case SVE::BI__builtin_sve_svdupq_n_f32:
9362 case SVE::BI__builtin_sve_svdupq_n_s32: {
9363 // These builtins are implemented by storing each element to an array and using
9364 // ld1rq to materialize a vector.
9365 unsigned NumOpnds = Ops.size();
9366
9367 bool IsBoolTy =
9368 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9369
9370 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9371 // so that the compare can use the width that is natural for the expected
9372 // number of predicate lanes.
9373 llvm::Type *EltTy = Ops[0]->getType();
9374 if (IsBoolTy)
9375 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9376
9377 SmallVector<llvm::Value *, 16> VecOps;
9378 for (unsigned I = 0; I < NumOpnds; ++I)
9379 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9380 Value *Vec = BuildVector(VecOps);
9381
9382 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9383 Value *Pred = EmitSVEAllTruePred(TypeFlags);
9384
9385 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9386 Value *InsertSubVec = Builder.CreateInsertVector(
9387 OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9388
9389 Function *F =
9390 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9391 Value *DupQLane =
9392 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9393
9394 if (!IsBoolTy)
9395 return DupQLane;
9396
9397 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9398 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9399 : Intrinsic::aarch64_sve_cmpne_wide,
9400 OverloadedTy);
9401 Value *Call = Builder.CreateCall(
9402 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9403 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9404 }
9405
9406 case SVE::BI__builtin_sve_svpfalse_b:
9407 return ConstantInt::getFalse(Ty);
9408
9409 case SVE::BI__builtin_sve_svlen_bf16:
9410 case SVE::BI__builtin_sve_svlen_f16:
9411 case SVE::BI__builtin_sve_svlen_f32:
9412 case SVE::BI__builtin_sve_svlen_f64:
9413 case SVE::BI__builtin_sve_svlen_s8:
9414 case SVE::BI__builtin_sve_svlen_s16:
9415 case SVE::BI__builtin_sve_svlen_s32:
9416 case SVE::BI__builtin_sve_svlen_s64:
9417 case SVE::BI__builtin_sve_svlen_u8:
9418 case SVE::BI__builtin_sve_svlen_u16:
9419 case SVE::BI__builtin_sve_svlen_u32:
9420 case SVE::BI__builtin_sve_svlen_u64: {
9421 SVETypeFlags TF(Builtin->TypeModifier);
9422 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9423 auto *NumEls =
9424 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9425
9426 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9427 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9428 }
9429
9430 case SVE::BI__builtin_sve_svtbl2_u8:
9431 case SVE::BI__builtin_sve_svtbl2_s8:
9432 case SVE::BI__builtin_sve_svtbl2_u16:
9433 case SVE::BI__builtin_sve_svtbl2_s16:
9434 case SVE::BI__builtin_sve_svtbl2_u32:
9435 case SVE::BI__builtin_sve_svtbl2_s32:
9436 case SVE::BI__builtin_sve_svtbl2_u64:
9437 case SVE::BI__builtin_sve_svtbl2_s64:
9438 case SVE::BI__builtin_sve_svtbl2_f16:
9439 case SVE::BI__builtin_sve_svtbl2_bf16:
9440 case SVE::BI__builtin_sve_svtbl2_f32:
9441 case SVE::BI__builtin_sve_svtbl2_f64: {
9442 SVETypeFlags TF(Builtin->TypeModifier);
9443 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9444 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9445 Function *FExtr =
9446 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9447 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9448 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9449 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9450 return Builder.CreateCall(F, {V0, V1, Ops[1]});
9451 }
9452
9453 case SVE::BI__builtin_sve_svset_neonq_s8:
9454 case SVE::BI__builtin_sve_svset_neonq_s16:
9455 case SVE::BI__builtin_sve_svset_neonq_s32:
9456 case SVE::BI__builtin_sve_svset_neonq_s64:
9457 case SVE::BI__builtin_sve_svset_neonq_u8:
9458 case SVE::BI__builtin_sve_svset_neonq_u16:
9459 case SVE::BI__builtin_sve_svset_neonq_u32:
9460 case SVE::BI__builtin_sve_svset_neonq_u64:
9461 case SVE::BI__builtin_sve_svset_neonq_f16:
9462 case SVE::BI__builtin_sve_svset_neonq_f32:
9463 case SVE::BI__builtin_sve_svset_neonq_f64:
9464 case SVE::BI__builtin_sve_svset_neonq_bf16: {
9465 return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
9466 }
9467
9468 case SVE::BI__builtin_sve_svget_neonq_s8:
9469 case SVE::BI__builtin_sve_svget_neonq_s16:
9470 case SVE::BI__builtin_sve_svget_neonq_s32:
9471 case SVE::BI__builtin_sve_svget_neonq_s64:
9472 case SVE::BI__builtin_sve_svget_neonq_u8:
9473 case SVE::BI__builtin_sve_svget_neonq_u16:
9474 case SVE::BI__builtin_sve_svget_neonq_u32:
9475 case SVE::BI__builtin_sve_svget_neonq_u64:
9476 case SVE::BI__builtin_sve_svget_neonq_f16:
9477 case SVE::BI__builtin_sve_svget_neonq_f32:
9478 case SVE::BI__builtin_sve_svget_neonq_f64:
9479 case SVE::BI__builtin_sve_svget_neonq_bf16: {
9480 return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
9481 }
9482
9483 case SVE::BI__builtin_sve_svdup_neonq_s8:
9484 case SVE::BI__builtin_sve_svdup_neonq_s16:
9485 case SVE::BI__builtin_sve_svdup_neonq_s32:
9486 case SVE::BI__builtin_sve_svdup_neonq_s64:
9487 case SVE::BI__builtin_sve_svdup_neonq_u8:
9488 case SVE::BI__builtin_sve_svdup_neonq_u16:
9489 case SVE::BI__builtin_sve_svdup_neonq_u32:
9490 case SVE::BI__builtin_sve_svdup_neonq_u64:
9491 case SVE::BI__builtin_sve_svdup_neonq_f16:
9492 case SVE::BI__builtin_sve_svdup_neonq_f32:
9493 case SVE::BI__builtin_sve_svdup_neonq_f64:
9494 case SVE::BI__builtin_sve_svdup_neonq_bf16: {
9495 Value *Insert = Builder.CreateInsertVector(Ty, UndefValue::get(Ty), Ops[0],
9496 Builder.getInt64(0));
9497 return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
9498 {Insert, Builder.getInt64(0)});
9499 }
9500 }
9501
9502 /// Should not happen
9503 return nullptr;
9504}
9505
9506Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9507 const CallExpr *E,
9508 llvm::Triple::ArchType Arch) {
9509 if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9510 BuiltinID <= AArch64::LastSVEBuiltin)
9511 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9512
9513 unsigned HintID = static_cast<unsigned>(-1);
9514 switch (BuiltinID) {
9515 default: break;
9516 case AArch64::BI__builtin_arm_nop:
9517 HintID = 0;
9518 break;
9519 case AArch64::BI__builtin_arm_yield:
9520 case AArch64::BI__yield:
9521 HintID = 1;
9522 break;
9523 case AArch64::BI__builtin_arm_wfe:
9524 case AArch64::BI__wfe:
9525 HintID = 2;
9526 break;
9527 case AArch64::BI__builtin_arm_wfi:
9528 case AArch64::BI__wfi:
9529 HintID = 3;
9530 break;
9531 case AArch64::BI__builtin_arm_sev:
9532 case AArch64::BI__sev:
9533 HintID = 4;
9534 break;
9535 case AArch64::BI__builtin_arm_sevl:
9536 case AArch64::BI__sevl:
9537 HintID = 5;
9538 break;
9539 }
9540
9541 if (HintID != static_cast<unsigned>(-1)) {
9542 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9543 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9544 }
9545
9546 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9547 Value *Address = EmitScalarExpr(E->getArg(0));
9548 Value *RW = EmitScalarExpr(E->getArg(1));
9549 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
9550 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9551 Value *IsData = EmitScalarExpr(E->getArg(4));
9552
9553 Value *Locality = nullptr;
9554 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9555 // Temporal fetch, needs to convert cache level to locality.
9556 Locality = llvm::ConstantInt::get(Int32Ty,
9557 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9558 } else {
9559 // Streaming fetch.
9560 Locality = llvm::ConstantInt::get(Int32Ty, 0);
9561 }
9562
9563 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9564 // PLDL3STRM or PLDL2STRM.
9565 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9566 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9567 }
9568
9569 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9570 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9571, __extension__ __PRETTY_FUNCTION__
))
9571 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9571, __extension__ __PRETTY_FUNCTION__
))
;
9572 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9573 return Builder.CreateCall(
9574 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9575 }
9576 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9577 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9578, __extension__ __PRETTY_FUNCTION__
))
9578 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9578, __extension__ __PRETTY_FUNCTION__
))
;
9579 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9580 return Builder.CreateCall(
9581 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9582 }
9583
9584 if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9585 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9586 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9587 "cls");
9588 }
9589 if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9590 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9591 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9592 "cls");
9593 }
9594
9595 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9596 BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9597 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9598 llvm::Type *Ty = Arg->getType();
9599 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9600 Arg, "frint32z");
9601 }
9602
9603 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9604 BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9605 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9606 llvm::Type *Ty = Arg->getType();
9607 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9608 Arg, "frint64z");
9609 }
9610
9611 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9612 BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9613 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9614 llvm::Type *Ty = Arg->getType();
9615 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9616 Arg, "frint32x");
9617 }
9618
9619 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9620 BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9621 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9622 llvm::Type *Ty = Arg->getType();
9623 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9624 Arg, "frint64x");
9625 }
9626
9627 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9628 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9629, __extension__ __PRETTY_FUNCTION__
))
9629 "__jcvt of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9629, __extension__ __PRETTY_FUNCTION__
))
;
9630 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9631 return Builder.CreateCall(
9632 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9633 }
9634
9635 if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9636 BuiltinID == AArch64::BI__builtin_arm_st64b ||
9637 BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9638 BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9639 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9640 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9641
9642 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9643 // Load from the address via an LLVM intrinsic, receiving a
9644 // tuple of 8 i64 words, and store each one to ValPtr.
9645 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9646 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9647 llvm::Value *ToRet;
9648 for (size_t i = 0; i < 8; i++) {
9649 llvm::Value *ValOffsetPtr =
9650 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9651 Address Addr =
9652 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9653 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9654 }
9655 return ToRet;
9656 } else {
9657 // Load 8 i64 words from ValPtr, and store them to the address
9658 // via an LLVM intrinsic.
9659 SmallVector<llvm::Value *, 9> Args;
9660 Args.push_back(MemAddr);
9661 for (size_t i = 0; i < 8; i++) {
9662 llvm::Value *ValOffsetPtr =
9663 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9664 Address Addr =
9665 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9666 Args.push_back(Builder.CreateLoad(Addr));
9667 }
9668
9669 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9670 ? Intrinsic::aarch64_st64b
9671 : BuiltinID == AArch64::BI__builtin_arm_st64bv
9672 ? Intrinsic::aarch64_st64bv
9673 : Intrinsic::aarch64_st64bv0);
9674 Function *F = CGM.getIntrinsic(Intr);
9675 return Builder.CreateCall(F, Args);
9676 }
9677 }
9678
9679 if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9680 BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9681
9682 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9683 ? Intrinsic::aarch64_rndr
9684 : Intrinsic::aarch64_rndrrs);
9685 Function *F = CGM.getIntrinsic(Intr);
9686 llvm::Value *Val = Builder.CreateCall(F);
9687 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9688 Value *Status = Builder.CreateExtractValue(Val, 1);
9689
9690 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9691 Builder.CreateStore(RandomValue, MemAddress);
9692 Status = Builder.CreateZExt(Status, Int32Ty);
9693 return Status;
9694 }
9695
9696 if (BuiltinID == AArch64::BI__clear_cache) {
9697 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9697, __extension__ __PRETTY_FUNCTION__
))
;
9698 const FunctionDecl *FD = E->getDirectCallee();
9699 Value *Ops[2];
9700 for (unsigned i = 0; i < 2; i++)
9701 Ops[i] = EmitScalarExpr(E->getArg(i));
9702 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9703 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9704 StringRef Name = FD->getName();
9705 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9706 }
9707
9708 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9709 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9710 getContext().getTypeSize(E->getType()) == 128) {
9711 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9712 ? Intrinsic::aarch64_ldaxp
9713 : Intrinsic::aarch64_ldxp);
9714
9715 Value *LdPtr = EmitScalarExpr(E->getArg(0));
9716 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9717 "ldxp");
9718
9719 Value *Val0 = Builder.CreateExtractValue(Val, 1);
9720 Value *Val1 = Builder.CreateExtractValue(Val, 0);
9721 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9722 Val0 = Builder.CreateZExt(Val0, Int128Ty);
9723 Val1 = Builder.CreateZExt(Val1, Int128Ty);
9724
9725 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9726 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9727 Val = Builder.CreateOr(Val, Val1);
9728 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9729 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9730 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9731 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9732
9733 QualType Ty = E->getType();
9734 llvm::Type *RealResTy = ConvertType(Ty);
9735 llvm::Type *IntTy =
9736 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
9737 llvm::Type *PtrTy = IntTy->getPointerTo();
9738 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9739
9740 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9741 ? Intrinsic::aarch64_ldaxr
9742 : Intrinsic::aarch64_ldxr,
9743 PtrTy);
9744 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9745 Val->addParamAttr(
9746 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
9747
9748 if (RealResTy->isPointerTy())
9749 return Builder.CreateIntToPtr(Val, RealResTy);
9750
9751 llvm::Type *IntResTy = llvm::IntegerType::get(
9752 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9753 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
9754 RealResTy);
9755 }
9756
9757 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9758 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9759 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9760 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9761 ? Intrinsic::aarch64_stlxp
9762 : Intrinsic::aarch64_stxp);
9763 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9764
9765 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9766 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9767
9768 Tmp = Builder.CreateElementBitCast(Tmp, STy);
9769 llvm::Value *Val = Builder.CreateLoad(Tmp);
9770
9771 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9772 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9773 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9774 Int8PtrTy);
9775 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9776 }
9777
9778 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9779 BuiltinID == AArch64::BI__builtin_arm_stlex) {
9780 Value *StoreVal = EmitScalarExpr(E->getArg(0));
9781 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9782
9783 QualType Ty = E->getArg(0)->getType();
9784 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9785 getContext().getTypeSize(Ty));
9786 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9787
9788 if (StoreVal->getType()->isPointerTy())
9789 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9790 else {
9791 llvm::Type *IntTy = llvm::IntegerType::get(
9792 getLLVMContext(),
9793 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9794 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9795 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9796 }
9797
9798 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9799 ? Intrinsic::aarch64_stlxr
9800 : Intrinsic::aarch64_stxr,
9801 StoreAddr->getType());
9802 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9803 CI->addParamAttr(
9804 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
9805 return CI;
9806 }
9807
9808 if (BuiltinID == AArch64::BI__getReg) {
9809 Expr::EvalResult Result;
9810 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9811 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 9811)
;
9812
9813 llvm::APSInt Value = Result.Val.getInt();
9814 LLVMContext &Context = CGM.getLLVMContext();
9815 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9816
9817 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9818 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9819 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9820
9821 llvm::Function *F =
9822 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9823 return Builder.CreateCall(F, Metadata);
9824 }
9825
9826 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9827 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9828 return Builder.CreateCall(F);
9829 }
9830
9831 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9832 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9833 llvm::SyncScope::SingleThread);
9834
9835 // CRC32
9836 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9837 switch (BuiltinID) {
9838 case AArch64::BI__builtin_arm_crc32b:
9839 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9840 case AArch64::BI__builtin_arm_crc32cb:
9841 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9842 case AArch64::BI__builtin_arm_crc32h:
9843 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9844 case AArch64::BI__builtin_arm_crc32ch:
9845 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9846 case AArch64::BI__builtin_arm_crc32w:
9847 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9848 case AArch64::BI__builtin_arm_crc32cw:
9849 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9850 case AArch64::BI__builtin_arm_crc32d:
9851 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9852 case AArch64::BI__builtin_arm_crc32cd:
9853 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9854 }
9855
9856 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9857 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9858 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9859 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9860
9861 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9862 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9863
9864 return Builder.CreateCall(F, {Arg0, Arg1});
9865 }
9866
9867 // Memory Operations (MOPS)
9868 if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
9869 Value *Dst = EmitScalarExpr(E->getArg(0));
9870 Value *Val = EmitScalarExpr(E->getArg(1));
9871 Value *Size = EmitScalarExpr(E->getArg(2));
9872 Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
9873 Val = Builder.CreateTrunc(Val, Int8Ty);
9874 Size = Builder.CreateIntCast(Size, Int64Ty, false);
9875 return Builder.CreateCall(
9876 CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
9877 }
9878
9879 // Memory Tagging Extensions (MTE) Intrinsics
9880 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9881 switch (BuiltinID) {
9882 case AArch64::BI__builtin_arm_irg:
9883 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9884 case AArch64::BI__builtin_arm_addg:
9885 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9886 case AArch64::BI__builtin_arm_gmi:
9887 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9888 case AArch64::BI__builtin_arm_ldg:
9889 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9890 case AArch64::BI__builtin_arm_stg:
9891 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9892 case AArch64::BI__builtin_arm_subp:
9893 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9894 }
9895
9896 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9897 llvm::Type *T = ConvertType(E->getType());
9898
9899 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9900 Value *Pointer = EmitScalarExpr(E->getArg(0));
9901 Value *Mask = EmitScalarExpr(E->getArg(1));
9902
9903 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9904 Mask = Builder.CreateZExt(Mask, Int64Ty);
9905 Value *RV = Builder.CreateCall(
9906 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9907 return Builder.CreatePointerCast(RV, T);
9908 }
9909 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9910 Value *Pointer = EmitScalarExpr(E->getArg(0));
9911 Value *TagOffset = EmitScalarExpr(E->getArg(1));
9912
9913 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9914 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9915 Value *RV = Builder.CreateCall(
9916 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9917 return Builder.CreatePointerCast(RV, T);
9918 }
9919 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9920 Value *Pointer = EmitScalarExpr(E->getArg(0));
9921 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9922
9923 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9924 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9925 return Builder.CreateCall(
9926 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9927 }
9928 // Although it is possible to supply a different return
9929 // address (first arg) to this intrinsic, for now we set
9930 // return address same as input address.
9931 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9932 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9933 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9934 Value *RV = Builder.CreateCall(
9935 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9936 return Builder.CreatePointerCast(RV, T);
9937 }
9938 // Although it is possible to supply a different tag (to set)
9939 // to this intrinsic (as first arg), for now we supply
9940 // the tag that is in input address arg (common use case).
9941 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9942 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9943 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9944 return Builder.CreateCall(
9945 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9946 }
9947 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9948 Value *PointerA = EmitScalarExpr(E->getArg(0));
9949 Value *PointerB = EmitScalarExpr(E->getArg(1));
9950 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9951 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9952 return Builder.CreateCall(
9953 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9954 }
9955 }
9956
9957 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9958 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9959 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9960 BuiltinID == AArch64::BI__builtin_arm_wsr ||
9961 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9962 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9963
9964 SpecialRegisterAccessKind AccessKind = Write;
9965 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9966 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9967 BuiltinID == AArch64::BI__builtin_arm_rsrp)
9968 AccessKind = VolatileRead;
9969
9970 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9971 BuiltinID == AArch64::BI__builtin_arm_wsrp;
9972
9973 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9974 BuiltinID != AArch64::BI__builtin_arm_wsr;
9975
9976 llvm::Type *ValueType;
9977 llvm::Type *RegisterType = Int64Ty;
9978 if (IsPointerBuiltin) {
9979 ValueType = VoidPtrTy;
9980 } else if (Is64Bit) {
9981 ValueType = Int64Ty;
9982 } else {
9983 ValueType = Int32Ty;
9984 }
9985
9986 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9987 AccessKind);
9988 }
9989
9990 if (BuiltinID == AArch64::BI_ReadStatusReg ||
9991 BuiltinID == AArch64::BI_WriteStatusReg) {
9992 LLVMContext &Context = CGM.getLLVMContext();
9993
9994 unsigned SysReg =
9995 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9996
9997 std::string SysRegStr;
9998 llvm::raw_string_ostream(SysRegStr) <<
9999 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
10000 ((SysReg >> 11) & 7) << ":" <<
10001 ((SysReg >> 7) & 15) << ":" <<
10002 ((SysReg >> 3) & 15) << ":" <<
10003 ( SysReg & 7);
10004
10005 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
10006 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10007 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10008
10009 llvm::Type *RegisterType = Int64Ty;
10010 llvm::Type *Types[] = { RegisterType };
10011
10012 if (BuiltinID == AArch64::BI_ReadStatusReg) {
10013 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
10014
10015 return Builder.CreateCall(F, Metadata);
10016 }
10017
10018 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
10019 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
10020
10021 return Builder.CreateCall(F, { Metadata, ArgValue });
10022 }
10023
10024 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
10025 llvm::Function *F =
10026 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
10027 return Builder.CreateCall(F);
10028 }
10029
10030 if (BuiltinID == AArch64::BI__builtin_sponentry) {
10031 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
10032 return Builder.CreateCall(F);
10033 }
10034
10035 if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) {
10036 llvm::Type *ResType = ConvertType(E->getType());
10037 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
10038
10039 bool IsSigned = BuiltinID == AArch64::BI__mulh;
10040 Value *LHS =
10041 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
10042 Value *RHS =
10043 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
10044
10045 Value *MulResult, *HigherBits;
10046 if (IsSigned) {
10047 MulResult = Builder.CreateNSWMul(LHS, RHS);
10048 HigherBits = Builder.CreateAShr(MulResult, 64);
10049 } else {
10050 MulResult = Builder.CreateNUWMul(LHS, RHS);
10051 HigherBits = Builder.CreateLShr(MulResult, 64);
10052 }
10053 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
10054
10055 return HigherBits;
10056 }
10057
10058 // Handle MSVC intrinsics before argument evaluation to prevent double
10059 // evaluation.
10060 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
10061 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
10062
10063 // Find out if any arguments are required to be integer constant
10064 // expressions.
10065 unsigned ICEArguments = 0;
10066 ASTContext::GetBuiltinTypeError Error;
10067 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10068 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10068, __extension__ __PRETTY_FUNCTION__
))
;
10069
10070 llvm::SmallVector<Value*, 4> Ops;
10071 Address PtrOp0 = Address::invalid();
10072 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
10073 if (i == 0) {
10074 switch (BuiltinID) {
10075 case NEON::BI__builtin_neon_vld1_v:
10076 case NEON::BI__builtin_neon_vld1q_v:
10077 case NEON::BI__builtin_neon_vld1_dup_v:
10078 case NEON::BI__builtin_neon_vld1q_dup_v:
10079 case NEON::BI__builtin_neon_vld1_lane_v:
10080 case NEON::BI__builtin_neon_vld1q_lane_v:
10081 case NEON::BI__builtin_neon_vst1_v:
10082 case NEON::BI__builtin_neon_vst1q_v:
10083 case NEON::BI__builtin_neon_vst1_lane_v:
10084 case NEON::BI__builtin_neon_vst1q_lane_v:
10085 // Get the alignment for the argument in addition to the value;
10086 // we'll use it later.
10087 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
10088 Ops.push_back(PtrOp0.getPointer());
10089 continue;
10090 }
10091 }
10092 if ((ICEArguments & (1 << i)) == 0) {
10093 Ops.push_back(EmitScalarExpr(E->getArg(i)));
10094 } else {
10095 // If this is required to be a constant, constant fold it so that we know
10096 // that the generated intrinsic gets a ConstantInt.
10097 Ops.push_back(llvm::ConstantInt::get(
10098 getLLVMContext(),
10099 *E->getArg(i)->getIntegerConstantExpr(getContext())));
10100 }
10101 }
10102
10103 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
10104 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
10105 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
10106
10107 if (Builtin) {
10108 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
10109 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
10110 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10110, __extension__ __PRETTY_FUNCTION__
))
;
10111 return Result;
10112 }
10113
10114 const Expr *Arg = E->getArg(E->getNumArgs()-1);
10115 NeonTypeFlags Type(0);
10116 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
10117 // Determine the type of this overloaded NEON intrinsic.
10118 Type = NeonTypeFlags(Result->getZExtValue());
10119
10120 bool usgn = Type.isUnsigned();
10121 bool quad = Type.isQuad();
10122
10123 // Handle non-overloaded intrinsics first.
10124 switch (BuiltinID) {
10125 default: break;
10126 case NEON::BI__builtin_neon_vabsh_f16:
10127 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10128 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
10129 case NEON::BI__builtin_neon_vaddq_p128: {
10130 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
10131 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10132 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10133 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10134 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
10135 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10136 return Builder.CreateBitCast(Ops[0], Int128Ty);
10137 }
10138 case NEON::BI__builtin_neon_vldrq_p128: {
10139 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10140 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
10141 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
10142 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
10143 CharUnits::fromQuantity(16));
10144 }
10145 case NEON::BI__builtin_neon_vstrq_p128: {
10146 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
10147 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
10148 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
10149 }
10150 case NEON::BI__builtin_neon_vcvts_f32_u32:
10151 case NEON::BI__builtin_neon_vcvtd_f64_u64:
10152 usgn = true;
10153 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10154 case NEON::BI__builtin_neon_vcvts_f32_s32:
10155 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
10156 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10157 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
10158 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
10159 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
10160 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10161 if (usgn)
10162 return Builder.CreateUIToFP(Ops[0], FTy);
10163 return Builder.CreateSIToFP(Ops[0], FTy);
10164 }
10165 case NEON::BI__builtin_neon_vcvth_f16_u16:
10166 case NEON::BI__builtin_neon_vcvth_f16_u32:
10167 case NEON::BI__builtin_neon_vcvth_f16_u64:
10168 usgn = true;
10169 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10170 case NEON::BI__builtin_neon_vcvth_f16_s16:
10171 case NEON::BI__builtin_neon_vcvth_f16_s32:
10172 case NEON::BI__builtin_neon_vcvth_f16_s64: {
10173 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10174 llvm::Type *FTy = HalfTy;
10175 llvm::Type *InTy;
10176 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
10177 InTy = Int64Ty;
10178 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
10179 InTy = Int32Ty;
10180 else
10181 InTy = Int16Ty;
10182 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10183 if (usgn)
10184 return Builder.CreateUIToFP(Ops[0], FTy);
10185 return Builder.CreateSIToFP(Ops[0], FTy);
10186 }
10187 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10188 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10189 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10190 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10191 case NEON::BI__builtin_neon_vcvth_u16_f16:
10192 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10193 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10194 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10195 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10196 case NEON::BI__builtin_neon_vcvth_s16_f16: {
10197 unsigned Int;
10198 llvm::Type* InTy = Int32Ty;
10199 llvm::Type* FTy = HalfTy;
10200 llvm::Type *Tys[2] = {InTy, FTy};
10201 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10202 switch (BuiltinID) {
10203 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10203)
;
10204 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10205 Int = Intrinsic::aarch64_neon_fcvtau; break;
10206 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10207 Int = Intrinsic::aarch64_neon_fcvtmu; break;
10208 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10209 Int = Intrinsic::aarch64_neon_fcvtnu; break;
10210 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10211 Int = Intrinsic::aarch64_neon_fcvtpu; break;
10212 case NEON::BI__builtin_neon_vcvth_u16_f16:
10213 Int = Intrinsic::aarch64_neon_fcvtzu; break;
10214 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10215 Int = Intrinsic::aarch64_neon_fcvtas; break;
10216 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10217 Int = Intrinsic::aarch64_neon_fcvtms; break;
10218 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10219 Int = Intrinsic::aarch64_neon_fcvtns; break;
10220 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10221 Int = Intrinsic::aarch64_neon_fcvtps; break;
10222 case NEON::BI__builtin_neon_vcvth_s16_f16:
10223 Int = Intrinsic::aarch64_neon_fcvtzs; break;
10224 }
10225 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
10226 return Builder.CreateTrunc(Ops[0], Int16Ty);
10227 }
10228 case NEON::BI__builtin_neon_vcaleh_f16:
10229 case NEON::BI__builtin_neon_vcalth_f16:
10230 case NEON::BI__builtin_neon_vcageh_f16:
10231 case NEON::BI__builtin_neon_vcagth_f16: {
10232 unsigned Int;
10233 llvm::Type* InTy = Int32Ty;
10234 llvm::Type* FTy = HalfTy;
10235 llvm::Type *Tys[2] = {InTy, FTy};
10236 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10237 switch (BuiltinID) {
10238 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10238)
;
10239 case NEON::BI__builtin_neon_vcageh_f16:
10240 Int = Intrinsic::aarch64_neon_facge; break;
10241 case NEON::BI__builtin_neon_vcagth_f16:
10242 Int = Intrinsic::aarch64_neon_facgt; break;
10243 case NEON::BI__builtin_neon_vcaleh_f16:
10244 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
10245 case NEON::BI__builtin_neon_vcalth_f16:
10246 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
10247 }
10248 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
10249 return Builder.CreateTrunc(Ops[0], Int16Ty);
10250 }
10251 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10252 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
10253 unsigned Int;
10254 llvm::Type* InTy = Int32Ty;
10255 llvm::Type* FTy = HalfTy;
10256 llvm::Type *Tys[2] = {InTy, FTy};
10257 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10258 switch (BuiltinID) {
10259 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10259)
;
10260 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10261 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
10262 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
10263 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
10264 }
10265 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10266 return Builder.CreateTrunc(Ops[0], Int16Ty);
10267 }
10268 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10269 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
10270 unsigned Int;
10271 llvm::Type* FTy = HalfTy;
10272 llvm::Type* InTy = Int32Ty;
10273 llvm::Type *Tys[2] = {FTy, InTy};
10274 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10275 switch (BuiltinID) {
10276 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10276)
;
10277 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10278 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
10279 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
10280 break;
10281 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
10282 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
10283 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
10284 break;
10285 }
10286 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10287 }
10288 case NEON::BI__builtin_neon_vpaddd_s64: {
10289 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
10290 Value *Vec = EmitScalarExpr(E->getArg(0));
10291 // The vector is v2f64, so make sure it's bitcast to that.
10292 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
10293 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10294 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10295 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10296 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10297 // Pairwise addition of a v2f64 into a scalar f64.
10298 return Builder.CreateAdd(Op0, Op1, "vpaddd");
10299 }
10300 case NEON::BI__builtin_neon_vpaddd_f64: {
10301 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10302 Value *Vec = EmitScalarExpr(E->getArg(0));
10303 // The vector is v2f64, so make sure it's bitcast to that.
10304 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10305 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10306 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10307 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10308 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10309 // Pairwise addition of a v2f64 into a scalar f64.
10310 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10311 }
10312 case NEON::BI__builtin_neon_vpadds_f32: {
10313 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10314 Value *Vec = EmitScalarExpr(E->getArg(0));
10315 // The vector is v2f32, so make sure it's bitcast to that.
10316 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10317 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10318 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10319 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10320 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10321 // Pairwise addition of a v2f32 into a scalar f32.
10322 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10323 }
10324 case NEON::BI__builtin_neon_vceqzd_s64:
10325 case NEON::BI__builtin_neon_vceqzd_f64:
10326 case NEON::BI__builtin_neon_vceqzs_f32:
10327 case NEON::BI__builtin_neon_vceqzh_f16:
10328 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10329 return EmitAArch64CompareBuiltinExpr(
10330 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10331 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10332 case NEON::BI__builtin_neon_vcgezd_s64:
10333 case NEON::BI__builtin_neon_vcgezd_f64:
10334 case NEON::BI__builtin_neon_vcgezs_f32:
10335 case NEON::BI__builtin_neon_vcgezh_f16:
10336 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10337 return EmitAArch64CompareBuiltinExpr(
10338 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10339 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10340 case NEON::BI__builtin_neon_vclezd_s64:
10341 case NEON::BI__builtin_neon_vclezd_f64:
10342 case NEON::BI__builtin_neon_vclezs_f32:
10343 case NEON::BI__builtin_neon_vclezh_f16:
10344 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10345 return EmitAArch64CompareBuiltinExpr(
10346 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10347 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10348 case NEON::BI__builtin_neon_vcgtzd_s64:
10349 case NEON::BI__builtin_neon_vcgtzd_f64:
10350 case NEON::BI__builtin_neon_vcgtzs_f32:
10351 case NEON::BI__builtin_neon_vcgtzh_f16:
10352 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10353 return EmitAArch64CompareBuiltinExpr(
10354 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10355 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10356 case NEON::BI__builtin_neon_vcltzd_s64:
10357 case NEON::BI__builtin_neon_vcltzd_f64:
10358 case NEON::BI__builtin_neon_vcltzs_f32:
10359 case NEON::BI__builtin_neon_vcltzh_f16:
10360 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10361 return EmitAArch64CompareBuiltinExpr(
10362 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10363 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10364
10365 case NEON::BI__builtin_neon_vceqzd_u64: {
10366 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10367 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10368 Ops[0] =
10369 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10370 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10371 }
10372 case NEON::BI__builtin_neon_vceqd_f64:
10373 case NEON::BI__builtin_neon_vcled_f64:
10374 case NEON::BI__builtin_neon_vcltd_f64:
10375 case NEON::BI__builtin_neon_vcged_f64:
10376 case NEON::BI__builtin_neon_vcgtd_f64: {
10377 llvm::CmpInst::Predicate P;
10378 switch (BuiltinID) {
10379 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10379)
;
10380 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10381 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10382 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10383 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10384 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10385 }
10386 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10387 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10388 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10389 if (P == llvm::FCmpInst::FCMP_OEQ)
10390 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10391 else
10392 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10393 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10394 }
10395 case NEON::BI__builtin_neon_vceqs_f32:
10396 case NEON::BI__builtin_neon_vcles_f32:
10397 case NEON::BI__builtin_neon_vclts_f32:
10398 case NEON::BI__builtin_neon_vcges_f32:
10399 case NEON::BI__builtin_neon_vcgts_f32: {
10400 llvm::CmpInst::Predicate P;
10401 switch (BuiltinID) {
10402 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10402)
;
10403 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10404 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10405 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10406 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10407 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10408 }
10409 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10410 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10411 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10412 if (P == llvm::FCmpInst::FCMP_OEQ)
10413 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10414 else
10415 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10416 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10417 }
10418 case NEON::BI__builtin_neon_vceqh_f16:
10419 case NEON::BI__builtin_neon_vcleh_f16:
10420 case NEON::BI__builtin_neon_vclth_f16:
10421 case NEON::BI__builtin_neon_vcgeh_f16:
10422 case NEON::BI__builtin_neon_vcgth_f16: {
10423 llvm::CmpInst::Predicate P;
10424 switch (BuiltinID) {
10425 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10425)
;
10426 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10427 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10428 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10429 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10430 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10431 }
10432 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10433 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10434 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10435 if (P == llvm::FCmpInst::FCMP_OEQ)
10436 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10437 else
10438 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10439 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10440 }
10441 case NEON::BI__builtin_neon_vceqd_s64:
10442 case NEON::BI__builtin_neon_vceqd_u64:
10443 case NEON::BI__builtin_neon_vcgtd_s64:
10444 case NEON::BI__builtin_neon_vcgtd_u64:
10445 case NEON::BI__builtin_neon_vcltd_s64:
10446 case NEON::BI__builtin_neon_vcltd_u64:
10447 case NEON::BI__builtin_neon_vcged_u64:
10448 case NEON::BI__builtin_neon_vcged_s64:
10449 case NEON::BI__builtin_neon_vcled_u64:
10450 case NEON::BI__builtin_neon_vcled_s64: {
10451 llvm::CmpInst::Predicate P;
10452 switch (BuiltinID) {
10453 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10453)
;
10454 case NEON::BI__builtin_neon_vceqd_s64:
10455 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10456 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10457 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10458 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10459 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10460 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10461 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10462 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10463 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10464 }
10465 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10466 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10467 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10468 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10469 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10470 }
10471 case NEON::BI__builtin_neon_vtstd_s64:
10472 case NEON::BI__builtin_neon_vtstd_u64: {
10473 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10474 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10475 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10476 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10477 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10478 llvm::Constant::getNullValue(Int64Ty));
10479 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10480 }
10481 case NEON::BI__builtin_neon_vset_lane_i8:
10482 case NEON::BI__builtin_neon_vset_lane_i16:
10483 case NEON::BI__builtin_neon_vset_lane_i32:
10484 case NEON::BI__builtin_neon_vset_lane_i64:
10485 case NEON::BI__builtin_neon_vset_lane_bf16:
10486 case NEON::BI__builtin_neon_vset_lane_f32:
10487 case NEON::BI__builtin_neon_vsetq_lane_i8:
10488 case NEON::BI__builtin_neon_vsetq_lane_i16:
10489 case NEON::BI__builtin_neon_vsetq_lane_i32:
10490 case NEON::BI__builtin_neon_vsetq_lane_i64:
10491 case NEON::BI__builtin_neon_vsetq_lane_bf16:
10492 case NEON::BI__builtin_neon_vsetq_lane_f32:
10493 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10494 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10495 case NEON::BI__builtin_neon_vset_lane_f64:
10496 // The vector type needs a cast for the v1f64 variant.
10497 Ops[1] =
10498 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10499 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10500 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10501 case NEON::BI__builtin_neon_vsetq_lane_f64:
10502 // The vector type needs a cast for the v2f64 variant.
10503 Ops[1] =
10504 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10505 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10506 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10507
10508 case NEON::BI__builtin_neon_vget_lane_i8:
10509 case NEON::BI__builtin_neon_vdupb_lane_i8:
10510 Ops[0] =
10511 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10512 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10513 "vget_lane");
10514 case NEON::BI__builtin_neon_vgetq_lane_i8:
10515 case NEON::BI__builtin_neon_vdupb_laneq_i8:
10516 Ops[0] =
10517 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10518 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10519 "vgetq_lane");
10520 case NEON::BI__builtin_neon_vget_lane_i16:
10521 case NEON::BI__builtin_neon_vduph_lane_i16:
10522 Ops[0] =
10523 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10524 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10525 "vget_lane");
10526 case NEON::BI__builtin_neon_vgetq_lane_i16:
10527 case NEON::BI__builtin_neon_vduph_laneq_i16:
10528 Ops[0] =
10529 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10530 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10531 "vgetq_lane");
10532 case NEON::BI__builtin_neon_vget_lane_i32:
10533 case NEON::BI__builtin_neon_vdups_lane_i32:
10534 Ops[0] =
10535 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10536 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10537 "vget_lane");
10538 case NEON::BI__builtin_neon_vdups_lane_f32:
10539 Ops[0] =
10540 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10541 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10542 "vdups_lane");
10543 case NEON::BI__builtin_neon_vgetq_lane_i32:
10544 case NEON::BI__builtin_neon_vdups_laneq_i32:
10545 Ops[0] =
10546 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10547 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10548 "vgetq_lane");
10549 case NEON::BI__builtin_neon_vget_lane_i64:
10550 case NEON::BI__builtin_neon_vdupd_lane_i64:
10551 Ops[0] =
10552 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10553 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10554 "vget_lane");
10555 case NEON::BI__builtin_neon_vdupd_lane_f64:
10556 Ops[0] =
10557 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10558 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10559 "vdupd_lane");
10560 case NEON::BI__builtin_neon_vgetq_lane_i64:
10561 case NEON::BI__builtin_neon_vdupd_laneq_i64:
10562 Ops[0] =
10563 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10564 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10565 "vgetq_lane");
10566 case NEON::BI__builtin_neon_vget_lane_f32:
10567 Ops[0] =
10568 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10569 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10570 "vget_lane");
10571 case NEON::BI__builtin_neon_vget_lane_f64:
10572 Ops[0] =
10573 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10574 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10575 "vget_lane");
10576 case NEON::BI__builtin_neon_vgetq_lane_f32:
10577 case NEON::BI__builtin_neon_vdups_laneq_f32:
10578 Ops[0] =
10579 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10580 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10581 "vgetq_lane");
10582 case NEON::BI__builtin_neon_vgetq_lane_f64:
10583 case NEON::BI__builtin_neon_vdupd_laneq_f64:
10584 Ops[0] =
10585 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10586 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10587 "vgetq_lane");
10588 case NEON::BI__builtin_neon_vaddh_f16:
10589 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10590 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10591 case NEON::BI__builtin_neon_vsubh_f16:
10592 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10593 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10594 case NEON::BI__builtin_neon_vmulh_f16:
10595 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10596 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10597 case NEON::BI__builtin_neon_vdivh_f16:
10598 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10599 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10600 case NEON::BI__builtin_neon_vfmah_f16:
10601 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10602 return emitCallMaybeConstrainedFPBuiltin(
10603 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10604 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10605 case NEON::BI__builtin_neon_vfmsh_f16: {
10606 // FIXME: This should be an fneg instruction:
10607 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10608 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10609
10610 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10611 return emitCallMaybeConstrainedFPBuiltin(
10612 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10613 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10614 }
10615 case NEON::BI__builtin_neon_vaddd_s64:
10616 case NEON::BI__builtin_neon_vaddd_u64:
10617 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10618 case NEON::BI__builtin_neon_vsubd_s64:
10619 case NEON::BI__builtin_neon_vsubd_u64:
10620 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10621 case NEON::BI__builtin_neon_vqdmlalh_s16:
10622 case NEON::BI__builtin_neon_vqdmlslh_s16: {
10623 SmallVector<Value *, 2> ProductOps;
10624 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10625 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10626 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10627 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10628 ProductOps, "vqdmlXl");
10629 Constant *CI = ConstantInt::get(SizeTy, 0);
10630 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10631
10632 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10633 ? Intrinsic::aarch64_neon_sqadd
10634 : Intrinsic::aarch64_neon_sqsub;
10635 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10636 }
10637 case NEON::BI__builtin_neon_vqshlud_n_s64: {
10638 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10639 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10640 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10641 Ops, "vqshlu_n");
10642 }
10643 case NEON::BI__builtin_neon_vqshld_n_u64:
10644 case NEON::BI__builtin_neon_vqshld_n_s64: {
10645 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10646 ? Intrinsic::aarch64_neon_uqshl
10647 : Intrinsic::aarch64_neon_sqshl;
10648 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10649 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10650 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10651 }
10652 case NEON::BI__builtin_neon_vrshrd_n_u64:
10653 case NEON::BI__builtin_neon_vrshrd_n_s64: {
10654 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10655 ? Intrinsic::aarch64_neon_urshl
10656 : Intrinsic::aarch64_neon_srshl;
10657 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10658 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10659 Ops[1] = ConstantInt::get(Int64Ty, -SV);
10660 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10661 }
10662 case NEON::BI__builtin_neon_vrsrad_n_u64:
10663 case NEON::BI__builtin_neon_vrsrad_n_s64: {
10664 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10665 ? Intrinsic::aarch64_neon_urshl
10666 : Intrinsic::aarch64_neon_srshl;
10667 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10668 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10669 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10670 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10671 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10672 }
10673 case NEON::BI__builtin_neon_vshld_n_s64:
10674 case NEON::BI__builtin_neon_vshld_n_u64: {
10675 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10676 return Builder.CreateShl(
10677 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10678 }
10679 case NEON::BI__builtin_neon_vshrd_n_s64: {
10680 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10681 return Builder.CreateAShr(
10682 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10683 Amt->getZExtValue())),
10684 "shrd_n");
10685 }
10686 case NEON::BI__builtin_neon_vshrd_n_u64: {
10687 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10688 uint64_t ShiftAmt = Amt->getZExtValue();
10689 // Right-shifting an unsigned value by its size yields 0.
10690 if (ShiftAmt == 64)
10691 return ConstantInt::get(Int64Ty, 0);
10692 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10693 "shrd_n");
10694 }
10695 case NEON::BI__builtin_neon_vsrad_n_s64: {
10696 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10697 Ops[1] = Builder.CreateAShr(
10698 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10699 Amt->getZExtValue())),
10700 "shrd_n");
10701 return Builder.CreateAdd(Ops[0], Ops[1]);
10702 }
10703 case NEON::BI__builtin_neon_vsrad_n_u64: {
10704 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10705 uint64_t ShiftAmt = Amt->getZExtValue();
10706 // Right-shifting an unsigned value by its size yields 0.
10707 // As Op + 0 = Op, return Ops[0] directly.
10708 if (ShiftAmt == 64)
10709 return Ops[0];
10710 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10711 "shrd_n");
10712 return Builder.CreateAdd(Ops[0], Ops[1]);
10713 }
10714 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10715 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10716 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10717 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10718 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10719 "lane");
10720 SmallVector<Value *, 2> ProductOps;
10721 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10722 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10723 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10724 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10725 ProductOps, "vqdmlXl");
10726 Constant *CI = ConstantInt::get(SizeTy, 0);
10727 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10728 Ops.pop_back();
10729
10730 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10731 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10732 ? Intrinsic::aarch64_neon_sqadd
10733 : Intrinsic::aarch64_neon_sqsub;
10734 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10735 }
10736 case NEON::BI__builtin_neon_vqdmlals_s32:
10737 case NEON::BI__builtin_neon_vqdmlsls_s32: {
10738 SmallVector<Value *, 2> ProductOps;
10739 ProductOps.push_back(Ops[1]);
10740 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10741 Ops[1] =
10742 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10743 ProductOps, "vqdmlXl");
10744
10745 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10746 ? Intrinsic::aarch64_neon_sqadd
10747 : Intrinsic::aarch64_neon_sqsub;
10748 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10749 }
10750 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10751 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10752 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10753 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10754 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10755 "lane");
10756 SmallVector<Value *, 2> ProductOps;
10757 ProductOps.push_back(Ops[1]);
10758 ProductOps.push_back(Ops[2]);
10759 Ops[1] =
10760 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10761 ProductOps, "vqdmlXl");
10762 Ops.pop_back();
10763
10764 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10765 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10766 ? Intrinsic::aarch64_neon_sqadd
10767 : Intrinsic::aarch64_neon_sqsub;
10768 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10769 }
10770 case NEON::BI__builtin_neon_vget_lane_bf16:
10771 case NEON::BI__builtin_neon_vduph_lane_bf16:
10772 case NEON::BI__builtin_neon_vduph_lane_f16: {
10773 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10774 "vget_lane");
10775 }
10776 case NEON::BI__builtin_neon_vgetq_lane_bf16:
10777 case NEON::BI__builtin_neon_vduph_laneq_bf16:
10778 case NEON::BI__builtin_neon_vduph_laneq_f16: {
10779 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10780 "vgetq_lane");
10781 }
10782
10783 case AArch64::BI_InterlockedAdd: {
10784 Value *Arg0 = EmitScalarExpr(E->getArg(0));
10785 Value *Arg1 = EmitScalarExpr(E->getArg(1));
10786 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10787 AtomicRMWInst::Add, Arg0, Arg1,
10788 llvm::AtomicOrdering::SequentiallyConsistent);
10789 return Builder.CreateAdd(RMWI, Arg1);
10790 }
10791 }
10792
10793 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10794 llvm::Type *Ty = VTy;
10795 if (!Ty)
10796 return nullptr;
10797
10798 // Not all intrinsics handled by the common case work for AArch64 yet, so only
10799 // defer to common code if it's been added to our special map.
10800 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10801 AArch64SIMDIntrinsicsProvenSorted);
10802
10803 if (Builtin)
10804 return EmitCommonNeonBuiltinExpr(
10805 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10806 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10807 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10808
10809 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10810 return V;
10811
10812 unsigned Int;
10813 switch (BuiltinID) {
10814 default: return nullptr;
10815 case NEON::BI__builtin_neon_vbsl_v:
10816 case NEON::BI__builtin_neon_vbslq_v: {
10817 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10818 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10819 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10820 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10821
10822 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10823 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10824 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10825 return Builder.CreateBitCast(Ops[0], Ty);
10826 }
10827 case NEON::BI__builtin_neon_vfma_lane_v:
10828 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10829 // The ARM builtins (and instructions) have the addend as the first
10830 // operand, but the 'fma' intrinsics have it last. Swap it around here.
10831 Value *Addend = Ops[0];
10832 Value *Multiplicand = Ops[1];
10833 Value *LaneSource = Ops[2];
10834 Ops[0] = Multiplicand;
10835 Ops[1] = LaneSource;
10836 Ops[2] = Addend;
10837
10838 // Now adjust things to handle the lane access.
10839 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10840 ? llvm::FixedVectorType::get(VTy->getElementType(),
10841 VTy->getNumElements() / 2)
10842 : VTy;
10843 llvm::Constant *cst = cast<Constant>(Ops[3]);
10844 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10845 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10846 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10847
10848 Ops.pop_back();
10849 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10850 : Intrinsic::fma;
10851 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10852 }
10853 case NEON::BI__builtin_neon_vfma_laneq_v: {
10854 auto *VTy = cast<llvm::FixedVectorType>(Ty);
10855 // v1f64 fma should be mapped to Neon scalar f64 fma
10856 if (VTy && VTy->getElementType() == DoubleTy) {
10857 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10858 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10859 llvm::FixedVectorType *VTy =
10860 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10861 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10862 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10863 Value *Result;
10864 Result = emitCallMaybeConstrainedFPBuiltin(
10865 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10866 DoubleTy, {Ops[1], Ops[2], Ops[0]});
10867 return Builder.CreateBitCast(Result, Ty);
10868 }
10869 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10870 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10871
10872 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10873 VTy->getNumElements() * 2);
10874 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10875 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10876 cast<ConstantInt>(Ops[3]));
10877 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10878
10879 return emitCallMaybeConstrainedFPBuiltin(
10880 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10881 {Ops[2], Ops[1], Ops[0]});
10882 }
10883 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10884 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10885 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10886
10887 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10888 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10889 return emitCallMaybeConstrainedFPBuiltin(
10890 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10891 {Ops[2], Ops[1], Ops[0]});
10892 }
10893 case NEON::BI__builtin_neon_vfmah_lane_f16:
10894 case NEON::BI__builtin_neon_vfmas_lane_f32:
10895 case NEON::BI__builtin_neon_vfmah_laneq_f16:
10896 case NEON::BI__builtin_neon_vfmas_laneq_f32:
10897 case NEON::BI__builtin_neon_vfmad_lane_f64:
10898 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10899 Ops.push_back(EmitScalarExpr(E->getArg(3)));
10900 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10901 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10902 return emitCallMaybeConstrainedFPBuiltin(
10903 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10904 {Ops[1], Ops[2], Ops[0]});
10905 }
10906 case NEON::BI__builtin_neon_vmull_v:
10907 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10908 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10909 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10910 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10911 case NEON::BI__builtin_neon_vmax_v:
10912 case NEON::BI__builtin_neon_vmaxq_v:
10913 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10914 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10915 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10916 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10917 case NEON::BI__builtin_neon_vmaxh_f16: {
10918 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10919 Int = Intrinsic::aarch64_neon_fmax;
10920 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10921 }
10922 case NEON::BI__builtin_neon_vmin_v:
10923 case NEON::BI__builtin_neon_vminq_v:
10924 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10925 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10926 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10927 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10928 case NEON::BI__builtin_neon_vminh_f16: {
10929 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10930 Int = Intrinsic::aarch64_neon_fmin;
10931 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10932 }
10933 case NEON::BI__builtin_neon_vabd_v:
10934 case NEON::BI__builtin_neon_vabdq_v:
10935 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10936 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10937 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10938 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10939 case NEON::BI__builtin_neon_vpadal_v:
10940 case NEON::BI__builtin_neon_vpadalq_v: {
10941 unsigned ArgElts = VTy->getNumElements();
10942 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10943 unsigned BitWidth = EltTy->getBitWidth();
10944 auto *ArgTy = llvm::FixedVectorType::get(
10945 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10946 llvm::Type* Tys[2] = { VTy, ArgTy };
10947 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10948 SmallVector<llvm::Value*, 1> TmpOps;
10949 TmpOps.push_back(Ops[1]);
10950 Function *F = CGM.getIntrinsic(Int, Tys);
10951 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10952 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10953 return Builder.CreateAdd(tmp, addend);
10954 }
10955 case NEON::BI__builtin_neon_vpmin_v:
10956 case NEON::BI__builtin_neon_vpminq_v:
10957 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10958 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10959 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10960 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10961 case NEON::BI__builtin_neon_vpmax_v:
10962 case NEON::BI__builtin_neon_vpmaxq_v:
10963 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10964 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10965 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10966 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10967 case NEON::BI__builtin_neon_vminnm_v:
10968 case NEON::BI__builtin_neon_vminnmq_v:
10969 Int = Intrinsic::aarch64_neon_fminnm;
10970 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10971 case NEON::BI__builtin_neon_vminnmh_f16:
10972 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10973 Int = Intrinsic::aarch64_neon_fminnm;
10974 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10975 case NEON::BI__builtin_neon_vmaxnm_v:
10976 case NEON::BI__builtin_neon_vmaxnmq_v:
10977 Int = Intrinsic::aarch64_neon_fmaxnm;
10978 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10979 case NEON::BI__builtin_neon_vmaxnmh_f16:
10980 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10981 Int = Intrinsic::aarch64_neon_fmaxnm;
10982 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10983 case NEON::BI__builtin_neon_vrecpss_f32: {
10984 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10985 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10986 Ops, "vrecps");
10987 }
10988 case NEON::BI__builtin_neon_vrecpsd_f64:
10989 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10990 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10991 Ops, "vrecps");
10992 case NEON::BI__builtin_neon_vrecpsh_f16:
10993 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10994 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10995 Ops, "vrecps");
10996 case NEON::BI__builtin_neon_vqshrun_n_v:
10997 Int = Intrinsic::aarch64_neon_sqshrun;
10998 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10999 case NEON::BI__builtin_neon_vqrshrun_n_v:
11000 Int = Intrinsic::aarch64_neon_sqrshrun;
11001 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
11002 case NEON::BI__builtin_neon_vqshrn_n_v:
11003 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
11004 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
11005 case NEON::BI__builtin_neon_vrshrn_n_v:
11006 Int = Intrinsic::aarch64_neon_rshrn;
11007 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
11008 case NEON::BI__builtin_neon_vqrshrn_n_v:
11009 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
11010 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
11011 case NEON::BI__builtin_neon_vrndah_f16: {
11012 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11013 Int = Builder.getIsFPConstrained()
11014 ? Intrinsic::experimental_constrained_round
11015 : Intrinsic::round;
11016 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
11017 }
11018 case NEON::BI__builtin_neon_vrnda_v:
11019 case NEON::BI__builtin_neon_vrndaq_v: {
11020 Int = Builder.getIsFPConstrained()
11021 ? Intrinsic::experimental_constrained_round
11022 : Intrinsic::round;
11023 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
11024 }
11025 case NEON::BI__builtin_neon_vrndih_f16: {
11026 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11027 Int = Builder.getIsFPConstrained()
11028 ? Intrinsic::experimental_constrained_nearbyint
11029 : Intrinsic::nearbyint;
11030 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
11031 }
11032 case NEON::BI__builtin_neon_vrndmh_f16: {
11033 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11034 Int = Builder.getIsFPConstrained()
11035 ? Intrinsic::experimental_constrained_floor
11036 : Intrinsic::floor;
11037 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
11038 }
11039 case NEON::BI__builtin_neon_vrndm_v:
11040 case NEON::BI__builtin_neon_vrndmq_v: {
11041 Int = Builder.getIsFPConstrained()
11042 ? Intrinsic::experimental_constrained_floor
11043 : Intrinsic::floor;
11044 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
11045 }
11046 case NEON::BI__builtin_neon_vrndnh_f16: {
11047 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11048 Int = Builder.getIsFPConstrained()
11049 ? Intrinsic::experimental_constrained_roundeven
11050 : Intrinsic::roundeven;
11051 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
11052 }
11053 case NEON::BI__builtin_neon_vrndn_v:
11054 case NEON::BI__builtin_neon_vrndnq_v: {
11055 Int = Builder.getIsFPConstrained()
11056 ? Intrinsic::experimental_constrained_roundeven
11057 : Intrinsic::roundeven;
11058 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
11059 }
11060 case NEON::BI__builtin_neon_vrndns_f32: {
11061 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11062 Int = Builder.getIsFPConstrained()
11063 ? Intrinsic::experimental_constrained_roundeven
11064 : Intrinsic::roundeven;
11065 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
11066 }
11067 case NEON::BI__builtin_neon_vrndph_f16: {
11068 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11069 Int = Builder.getIsFPConstrained()
11070 ? Intrinsic::experimental_constrained_ceil
11071 : Intrinsic::ceil;
11072 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
11073 }
11074 case NEON::BI__builtin_neon_vrndp_v:
11075 case NEON::BI__builtin_neon_vrndpq_v: {
11076 Int = Builder.getIsFPConstrained()
11077 ? Intrinsic::experimental_constrained_ceil
11078 : Intrinsic::ceil;
11079 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
11080 }
11081 case NEON::BI__builtin_neon_vrndxh_f16: {
11082 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11083 Int = Builder.getIsFPConstrained()
11084 ? Intrinsic::experimental_constrained_rint
11085 : Intrinsic::rint;
11086 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
11087 }
11088 case NEON::BI__builtin_neon_vrndx_v:
11089 case NEON::BI__builtin_neon_vrndxq_v: {
11090 Int = Builder.getIsFPConstrained()
11091 ? Intrinsic::experimental_constrained_rint
11092 : Intrinsic::rint;
11093 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
11094 }
11095 case NEON::BI__builtin_neon_vrndh_f16: {
11096 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11097 Int = Builder.getIsFPConstrained()
11098 ? Intrinsic::experimental_constrained_trunc
11099 : Intrinsic::trunc;
11100 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
11101 }
11102 case NEON::BI__builtin_neon_vrnd32x_v:
11103 case NEON::BI__builtin_neon_vrnd32xq_v: {
11104 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11105 Int = Intrinsic::aarch64_neon_frint32x;
11106 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
11107 }
11108 case NEON::BI__builtin_neon_vrnd32z_v:
11109 case NEON::BI__builtin_neon_vrnd32zq_v: {
11110 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11111 Int = Intrinsic::aarch64_neon_frint32z;
11112 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
11113 }
11114 case NEON::BI__builtin_neon_vrnd64x_v:
11115 case NEON::BI__builtin_neon_vrnd64xq_v: {
11116 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11117 Int = Intrinsic::aarch64_neon_frint64x;
11118 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
11119 }
11120 case NEON::BI__builtin_neon_vrnd64z_v:
11121 case NEON::BI__builtin_neon_vrnd64zq_v: {
11122 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11123 Int = Intrinsic::aarch64_neon_frint64z;
11124 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
11125 }
11126 case NEON::BI__builtin_neon_vrnd_v:
11127 case NEON::BI__builtin_neon_vrndq_v: {
11128 Int = Builder.getIsFPConstrained()
11129 ? Intrinsic::experimental_constrained_trunc
11130 : Intrinsic::trunc;
11131 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
11132 }
11133 case NEON::BI__builtin_neon_vcvt_f64_v:
11134 case NEON::BI__builtin_neon_vcvtq_f64_v:
11135 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11136 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
11137 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
11138 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
11139 case NEON::BI__builtin_neon_vcvt_f64_f32: {
11140 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11141, __extension__ __PRETTY_FUNCTION__
))
11141 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11141, __extension__ __PRETTY_FUNCTION__
))
;
11142 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
11143 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11144
11145 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
11146 }
11147 case NEON::BI__builtin_neon_vcvt_f32_f64: {
11148 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11149, __extension__ __PRETTY_FUNCTION__
))
11149 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11149, __extension__ __PRETTY_FUNCTION__
))
;
11150 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
11151 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11152
11153 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
11154 }
11155 case NEON::BI__builtin_neon_vcvt_s32_v:
11156 case NEON::BI__builtin_neon_vcvt_u32_v:
11157 case NEON::BI__builtin_neon_vcvt_s64_v:
11158 case NEON::BI__builtin_neon_vcvt_u64_v:
11159 case NEON::BI__builtin_neon_vcvt_s16_v:
11160 case NEON::BI__builtin_neon_vcvt_u16_v:
11161 case NEON::BI__builtin_neon_vcvtq_s32_v:
11162 case NEON::BI__builtin_neon_vcvtq_u32_v:
11163 case NEON::BI__builtin_neon_vcvtq_s64_v:
11164 case NEON::BI__builtin_neon_vcvtq_u64_v:
11165 case NEON::BI__builtin_neon_vcvtq_s16_v:
11166 case NEON::BI__builtin_neon_vcvtq_u16_v: {
11167 Int =
11168 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
11169 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
11170 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
11171 }
11172 case NEON::BI__builtin_neon_vcvta_s16_v:
11173 case NEON::BI__builtin_neon_vcvta_u16_v:
11174 case NEON::BI__builtin_neon_vcvta_s32_v:
11175 case NEON::BI__builtin_neon_vcvtaq_s16_v:
11176 case NEON::BI__builtin_neon_vcvtaq_s32_v:
11177 case NEON::BI__builtin_neon_vcvta_u32_v:
11178 case NEON::BI__builtin_neon_vcvtaq_u16_v:
11179 case NEON::BI__builtin_neon_vcvtaq_u32_v:
11180 case NEON::BI__builtin_neon_vcvta_s64_v:
11181 case NEON::BI__builtin_neon_vcvtaq_s64_v:
11182 case NEON::BI__builtin_neon_vcvta_u64_v:
11183 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
11184 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
11185 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11186 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
11187 }
11188 case NEON::BI__builtin_neon_vcvtm_s16_v:
11189 case NEON::BI__builtin_neon_vcvtm_s32_v:
11190 case NEON::BI__builtin_neon_vcvtmq_s16_v:
11191 case NEON::BI__builtin_neon_vcvtmq_s32_v:
11192 case NEON::BI__builtin_neon_vcvtm_u16_v:
11193 case NEON::BI__builtin_neon_vcvtm_u32_v:
11194 case NEON::BI__builtin_neon_vcvtmq_u16_v:
11195 case NEON::BI__builtin_neon_vcvtmq_u32_v:
11196 case NEON::BI__builtin_neon_vcvtm_s64_v:
11197 case NEON::BI__builtin_neon_vcvtmq_s64_v:
11198 case NEON::BI__builtin_neon_vcvtm_u64_v:
11199 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
11200 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
11201 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11202 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
11203 }
11204 case NEON::BI__builtin_neon_vcvtn_s16_v:
11205 case NEON::BI__builtin_neon_vcvtn_s32_v:
11206 case NEON::BI__builtin_neon_vcvtnq_s16_v:
11207 case NEON::BI__builtin_neon_vcvtnq_s32_v:
11208 case NEON::BI__builtin_neon_vcvtn_u16_v:
11209 case NEON::BI__builtin_neon_vcvtn_u32_v:
11210 case NEON::BI__builtin_neon_vcvtnq_u16_v:
11211 case NEON::BI__builtin_neon_vcvtnq_u32_v:
11212 case NEON::BI__builtin_neon_vcvtn_s64_v:
11213 case NEON::BI__builtin_neon_vcvtnq_s64_v:
11214 case NEON::BI__builtin_neon_vcvtn_u64_v:
11215 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
11216 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
11217 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11218 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
11219 }
11220 case NEON::BI__builtin_neon_vcvtp_s16_v:
11221 case NEON::BI__builtin_neon_vcvtp_s32_v:
11222 case NEON::BI__builtin_neon_vcvtpq_s16_v:
11223 case NEON::BI__builtin_neon_vcvtpq_s32_v:
11224 case NEON::BI__builtin_neon_vcvtp_u16_v:
11225 case NEON::BI__builtin_neon_vcvtp_u32_v:
11226 case NEON::BI__builtin_neon_vcvtpq_u16_v:
11227 case NEON::BI__builtin_neon_vcvtpq_u32_v:
11228 case NEON::BI__builtin_neon_vcvtp_s64_v:
11229 case NEON::BI__builtin_neon_vcvtpq_s64_v:
11230 case NEON::BI__builtin_neon_vcvtp_u64_v:
11231 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
11232 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
11233 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11234 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
11235 }
11236 case NEON::BI__builtin_neon_vmulx_v:
11237 case NEON::BI__builtin_neon_vmulxq_v: {
11238 Int = Intrinsic::aarch64_neon_fmulx;
11239 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
11240 }
11241 case NEON::BI__builtin_neon_vmulxh_lane_f16:
11242 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
11243 // vmulx_lane should be mapped to Neon scalar mulx after
11244 // extracting the scalar element
11245 Ops.push_back(EmitScalarExpr(E->getArg(2)));
11246 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11247 Ops.pop_back();
11248 Int = Intrinsic::aarch64_neon_fmulx;
11249 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
11250 }
11251 case NEON::BI__builtin_neon_vmul_lane_v:
11252 case NEON::BI__builtin_neon_vmul_laneq_v: {
11253 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
11254 bool Quad = false;
11255 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
11256 Quad = true;
11257 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11258 llvm::FixedVectorType *VTy =
11259 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
11260 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11261 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11262 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
11263 return Builder.CreateBitCast(Result, Ty);
11264 }
11265 case NEON::BI__builtin_neon_vnegd_s64:
11266 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
11267 case NEON::BI__builtin_neon_vnegh_f16:
11268 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
11269 case NEON::BI__builtin_neon_vpmaxnm_v:
11270 case NEON::BI__builtin_neon_vpmaxnmq_v: {
11271 Int = Intrinsic::aarch64_neon_fmaxnmp;
11272 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
11273 }
11274 case NEON::BI__builtin_neon_vpminnm_v:
11275 case NEON::BI__builtin_neon_vpminnmq_v: {
11276 Int = Intrinsic::aarch64_neon_fminnmp;
11277 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
11278 }
11279 case NEON::BI__builtin_neon_vsqrth_f16: {
11280 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11281 Int = Builder.getIsFPConstrained()
11282 ? Intrinsic::experimental_constrained_sqrt
11283 : Intrinsic::sqrt;
11284 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
11285 }
11286 case NEON::BI__builtin_neon_vsqrt_v:
11287 case NEON::BI__builtin_neon_vsqrtq_v: {
11288 Int = Builder.getIsFPConstrained()
11289 ? Intrinsic::experimental_constrained_sqrt
11290 : Intrinsic::sqrt;
11291 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11292 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
11293 }
11294 case NEON::BI__builtin_neon_vrbit_v:
11295 case NEON::BI__builtin_neon_vrbitq_v: {
11296 Int = Intrinsic::bitreverse;
11297 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
11298 }
11299 case NEON::BI__builtin_neon_vaddv_u8:
11300 // FIXME: These are handled by the AArch64 scalar code.
11301 usgn = true;
11302 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11303 case NEON::BI__builtin_neon_vaddv_s8: {
11304 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11305 Ty = Int32Ty;
11306 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11307 llvm::Type *Tys[2] = { Ty, VTy };
11308 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11309 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11310 return Builder.CreateTrunc(Ops[0], Int8Ty);
11311 }
11312 case NEON::BI__builtin_neon_vaddv_u16:
11313 usgn = true;
11314 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11315 case NEON::BI__builtin_neon_vaddv_s16: {
11316 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11317 Ty = Int32Ty;
11318 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11319 llvm::Type *Tys[2] = { Ty, VTy };
11320 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11321 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11322 return Builder.CreateTrunc(Ops[0], Int16Ty);
11323 }
11324 case NEON::BI__builtin_neon_vaddvq_u8:
11325 usgn = true;
11326 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11327 case NEON::BI__builtin_neon_vaddvq_s8: {
11328 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11329 Ty = Int32Ty;
11330 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11331 llvm::Type *Tys[2] = { Ty, VTy };
11332 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11333 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11334 return Builder.CreateTrunc(Ops[0], Int8Ty);
11335 }
11336 case NEON::BI__builtin_neon_vaddvq_u16:
11337 usgn = true;
11338 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11339 case NEON::BI__builtin_neon_vaddvq_s16: {
11340 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11341 Ty = Int32Ty;
11342 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11343 llvm::Type *Tys[2] = { Ty, VTy };
11344 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11345 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11346 return Builder.CreateTrunc(Ops[0], Int16Ty);
11347 }
11348 case NEON::BI__builtin_neon_vmaxv_u8: {
11349 Int = Intrinsic::aarch64_neon_umaxv;
11350 Ty = Int32Ty;
11351 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11352 llvm::Type *Tys[2] = { Ty, VTy };
11353 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11354 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11355 return Builder.CreateTrunc(Ops[0], Int8Ty);
11356 }
11357 case NEON::BI__builtin_neon_vmaxv_u16: {
11358 Int = Intrinsic::aarch64_neon_umaxv;
11359 Ty = Int32Ty;
11360 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11361 llvm::Type *Tys[2] = { Ty, VTy };
11362 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11363 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11364 return Builder.CreateTrunc(Ops[0], Int16Ty);
11365 }
11366 case NEON::BI__builtin_neon_vmaxvq_u8: {
11367 Int = Intrinsic::aarch64_neon_umaxv;
11368 Ty = Int32Ty;
11369 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11370 llvm::Type *Tys[2] = { Ty, VTy };
11371 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11372 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11373 return Builder.CreateTrunc(Ops[0], Int8Ty);
11374 }
11375 case NEON::BI__builtin_neon_vmaxvq_u16: {
11376 Int = Intrinsic::aarch64_neon_umaxv;
11377 Ty = Int32Ty;
11378 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11379 llvm::Type *Tys[2] = { Ty, VTy };
11380 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11381 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11382 return Builder.CreateTrunc(Ops[0], Int16Ty);
11383 }
11384 case NEON::BI__builtin_neon_vmaxv_s8: {
11385 Int = Intrinsic::aarch64_neon_smaxv;
11386 Ty = Int32Ty;
11387 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11388 llvm::Type *Tys[2] = { Ty, VTy };
11389 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11390 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11391 return Builder.CreateTrunc(Ops[0], Int8Ty);
11392 }
11393 case NEON::BI__builtin_neon_vmaxv_s16: {
11394 Int = Intrinsic::aarch64_neon_smaxv;
11395 Ty = Int32Ty;
11396 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11397 llvm::Type *Tys[2] = { Ty, VTy };
11398 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11399 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11400 return Builder.CreateTrunc(Ops[0], Int16Ty);
11401 }
11402 case NEON::BI__builtin_neon_vmaxvq_s8: {
11403 Int = Intrinsic::aarch64_neon_smaxv;
11404 Ty = Int32Ty;
11405 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11406 llvm::Type *Tys[2] = { Ty, VTy };
11407 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11408 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11409 return Builder.CreateTrunc(Ops[0], Int8Ty);
11410 }
11411 case NEON::BI__builtin_neon_vmaxvq_s16: {
11412 Int = Intrinsic::aarch64_neon_smaxv;
11413 Ty = Int32Ty;
11414 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11415 llvm::Type *Tys[2] = { Ty, VTy };
11416 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11417 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11418 return Builder.CreateTrunc(Ops[0], Int16Ty);
11419 }
11420 case NEON::BI__builtin_neon_vmaxv_f16: {
11421 Int = Intrinsic::aarch64_neon_fmaxv;
11422 Ty = HalfTy;
11423 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11424 llvm::Type *Tys[2] = { Ty, VTy };
11425 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11426 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11427 return Builder.CreateTrunc(Ops[0], HalfTy);
11428 }
11429 case NEON::BI__builtin_neon_vmaxvq_f16: {
11430 Int = Intrinsic::aarch64_neon_fmaxv;
11431 Ty = HalfTy;
11432 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11433 llvm::Type *Tys[2] = { Ty, VTy };
11434 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11435 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11436 return Builder.CreateTrunc(Ops[0], HalfTy);
11437 }
11438 case NEON::BI__builtin_neon_vminv_u8: {
11439 Int = Intrinsic::aarch64_neon_uminv;
11440 Ty = Int32Ty;
11441 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11442 llvm::Type *Tys[2] = { Ty, VTy };
11443 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11444 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11445 return Builder.CreateTrunc(Ops[0], Int8Ty);
11446 }
11447 case NEON::BI__builtin_neon_vminv_u16: {
11448 Int = Intrinsic::aarch64_neon_uminv;
11449 Ty = Int32Ty;
11450 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11451 llvm::Type *Tys[2] = { Ty, VTy };
11452 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11453 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11454 return Builder.CreateTrunc(Ops[0], Int16Ty);
11455 }
11456 case NEON::BI__builtin_neon_vminvq_u8: {
11457 Int = Intrinsic::aarch64_neon_uminv;
11458 Ty = Int32Ty;
11459 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11460 llvm::Type *Tys[2] = { Ty, VTy };
11461 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11462 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11463 return Builder.CreateTrunc(Ops[0], Int8Ty);
11464 }
11465 case NEON::BI__builtin_neon_vminvq_u16: {
11466 Int = Intrinsic::aarch64_neon_uminv;
11467 Ty = Int32Ty;
11468 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11469 llvm::Type *Tys[2] = { Ty, VTy };
11470 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11471 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11472 return Builder.CreateTrunc(Ops[0], Int16Ty);
11473 }
11474 case NEON::BI__builtin_neon_vminv_s8: {
11475 Int = Intrinsic::aarch64_neon_sminv;
11476 Ty = Int32Ty;
11477 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11478 llvm::Type *Tys[2] = { Ty, VTy };
11479 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11480 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11481 return Builder.CreateTrunc(Ops[0], Int8Ty);
11482 }
11483 case NEON::BI__builtin_neon_vminv_s16: {
11484 Int = Intrinsic::aarch64_neon_sminv;
11485 Ty = Int32Ty;
11486 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11487 llvm::Type *Tys[2] = { Ty, VTy };
11488 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11489 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11490 return Builder.CreateTrunc(Ops[0], Int16Ty);
11491 }
11492 case NEON::BI__builtin_neon_vminvq_s8: {
11493 Int = Intrinsic::aarch64_neon_sminv;
11494 Ty = Int32Ty;
11495 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11496 llvm::Type *Tys[2] = { Ty, VTy };
11497 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11498 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11499 return Builder.CreateTrunc(Ops[0], Int8Ty);
11500 }
11501 case NEON::BI__builtin_neon_vminvq_s16: {
11502 Int = Intrinsic::aarch64_neon_sminv;
11503 Ty = Int32Ty;
11504 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11505 llvm::Type *Tys[2] = { Ty, VTy };
11506 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11507 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11508 return Builder.CreateTrunc(Ops[0], Int16Ty);
11509 }
11510 case NEON::BI__builtin_neon_vminv_f16: {
11511 Int = Intrinsic::aarch64_neon_fminv;
11512 Ty = HalfTy;
11513 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11514 llvm::Type *Tys[2] = { Ty, VTy };
11515 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11516 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11517 return Builder.CreateTrunc(Ops[0], HalfTy);
11518 }
11519 case NEON::BI__builtin_neon_vminvq_f16: {
11520 Int = Intrinsic::aarch64_neon_fminv;
11521 Ty = HalfTy;
11522 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11523 llvm::Type *Tys[2] = { Ty, VTy };
11524 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11525 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11526 return Builder.CreateTrunc(Ops[0], HalfTy);
11527 }
11528 case NEON::BI__builtin_neon_vmaxnmv_f16: {
11529 Int = Intrinsic::aarch64_neon_fmaxnmv;
11530 Ty = HalfTy;
11531 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11532 llvm::Type *Tys[2] = { Ty, VTy };
11533 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11534 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11535 return Builder.CreateTrunc(Ops[0], HalfTy);
11536 }
11537 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11538 Int = Intrinsic::aarch64_neon_fmaxnmv;
11539 Ty = HalfTy;
11540 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11541 llvm::Type *Tys[2] = { Ty, VTy };
11542 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11543 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11544 return Builder.CreateTrunc(Ops[0], HalfTy);
11545 }
11546 case NEON::BI__builtin_neon_vminnmv_f16: {
11547 Int = Intrinsic::aarch64_neon_fminnmv;
11548 Ty = HalfTy;
11549 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11550 llvm::Type *Tys[2] = { Ty, VTy };
11551 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11552 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11553 return Builder.CreateTrunc(Ops[0], HalfTy);
11554 }
11555 case NEON::BI__builtin_neon_vminnmvq_f16: {
11556 Int = Intrinsic::aarch64_neon_fminnmv;
11557 Ty = HalfTy;
11558 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11559 llvm::Type *Tys[2] = { Ty, VTy };
11560 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11561 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11562 return Builder.CreateTrunc(Ops[0], HalfTy);
11563 }
11564 case NEON::BI__builtin_neon_vmul_n_f64: {
11565 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11566 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11567 return Builder.CreateFMul(Ops[0], RHS);
11568 }
11569 case NEON::BI__builtin_neon_vaddlv_u8: {
11570 Int = Intrinsic::aarch64_neon_uaddlv;
11571 Ty = Int32Ty;
11572 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11573 llvm::Type *Tys[2] = { Ty, VTy };
11574 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11575 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11576 return Builder.CreateTrunc(Ops[0], Int16Ty);
11577 }
11578 case NEON::BI__builtin_neon_vaddlv_u16: {
11579 Int = Intrinsic::aarch64_neon_uaddlv;
11580 Ty = Int32Ty;
11581 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11582 llvm::Type *Tys[2] = { Ty, VTy };
11583 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11584 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11585 }
11586 case NEON::BI__builtin_neon_vaddlvq_u8: {
11587 Int = Intrinsic::aarch64_neon_uaddlv;
11588 Ty = Int32Ty;
11589 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11590 llvm::Type *Tys[2] = { Ty, VTy };
11591 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11592 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11593 return Builder.CreateTrunc(Ops[0], Int16Ty);
11594 }
11595 case NEON::BI__builtin_neon_vaddlvq_u16: {
11596 Int = Intrinsic::aarch64_neon_uaddlv;
11597 Ty = Int32Ty;
11598 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11599 llvm::Type *Tys[2] = { Ty, VTy };
11600 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11601 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11602 }
11603 case NEON::BI__builtin_neon_vaddlv_s8: {
11604 Int = Intrinsic::aarch64_neon_saddlv;
11605 Ty = Int32Ty;
11606 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11607 llvm::Type *Tys[2] = { Ty, VTy };
11608 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11609 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11610 return Builder.CreateTrunc(Ops[0], Int16Ty);
11611 }
11612 case NEON::BI__builtin_neon_vaddlv_s16: {
11613 Int = Intrinsic::aarch64_neon_saddlv;
11614 Ty = Int32Ty;
11615 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11616 llvm::Type *Tys[2] = { Ty, VTy };
11617 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11618 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11619 }
11620 case NEON::BI__builtin_neon_vaddlvq_s8: {
11621 Int = Intrinsic::aarch64_neon_saddlv;
11622 Ty = Int32Ty;
11623 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11624 llvm::Type *Tys[2] = { Ty, VTy };
11625 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11626 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11627 return Builder.CreateTrunc(Ops[0], Int16Ty);
11628 }
11629 case NEON::BI__builtin_neon_vaddlvq_s16: {
11630 Int = Intrinsic::aarch64_neon_saddlv;
11631 Ty = Int32Ty;
11632 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11633 llvm::Type *Tys[2] = { Ty, VTy };
11634 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11635 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11636 }
11637 case NEON::BI__builtin_neon_vsri_n_v:
11638 case NEON::BI__builtin_neon_vsriq_n_v: {
11639 Int = Intrinsic::aarch64_neon_vsri;
11640 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11641 return EmitNeonCall(Intrin, Ops, "vsri_n");
11642 }
11643 case NEON::BI__builtin_neon_vsli_n_v:
11644 case NEON::BI__builtin_neon_vsliq_n_v: {
11645 Int = Intrinsic::aarch64_neon_vsli;
11646 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11647 return EmitNeonCall(Intrin, Ops, "vsli_n");
11648 }
11649 case NEON::BI__builtin_neon_vsra_n_v:
11650 case NEON::BI__builtin_neon_vsraq_n_v:
11651 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11652 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11653 return Builder.CreateAdd(Ops[0], Ops[1]);
11654 case NEON::BI__builtin_neon_vrsra_n_v:
11655 case NEON::BI__builtin_neon_vrsraq_n_v: {
11656 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11657 SmallVector<llvm::Value*,2> TmpOps;
11658 TmpOps.push_back(Ops[1]);
11659 TmpOps.push_back(Ops[2]);
11660 Function* F = CGM.getIntrinsic(Int, Ty);
11661 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11662 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11663 return Builder.CreateAdd(Ops[0], tmp);
11664 }
11665 case NEON::BI__builtin_neon_vld1_v:
11666 case NEON::BI__builtin_neon_vld1q_v: {
11667 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11668 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11669 }
11670 case NEON::BI__builtin_neon_vst1_v:
11671 case NEON::BI__builtin_neon_vst1q_v:
11672 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11673 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11674 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11675 case NEON::BI__builtin_neon_vld1_lane_v:
11676 case NEON::BI__builtin_neon_vld1q_lane_v: {
11677 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11678 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11679 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11680 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11681 PtrOp0.getAlignment());
11682 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11683 }
11684 case NEON::BI__builtin_neon_vld1_dup_v:
11685 case NEON::BI__builtin_neon_vld1q_dup_v: {
11686 Value *V = UndefValue::get(Ty);
11687 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11688 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11689 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11690 PtrOp0.getAlignment());
11691 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11692 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11693 return EmitNeonSplat(Ops[0], CI);
11694 }
11695 case NEON::BI__builtin_neon_vst1_lane_v:
11696 case NEON::BI__builtin_neon_vst1q_lane_v:
11697 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11698 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11699 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11700 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11701 PtrOp0.getAlignment());
11702 case NEON::BI__builtin_neon_vld2_v:
11703 case NEON::BI__builtin_neon_vld2q_v: {
11704 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11705 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11706 llvm::Type *Tys[2] = { VTy, PTy };
11707 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11708 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11709 Ops[0] = Builder.CreateBitCast(Ops[0],
11710 llvm::PointerType::getUnqual(Ops[1]->getType()));
11711 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11712 }
11713 case NEON::BI__builtin_neon_vld3_v:
11714 case NEON::BI__builtin_neon_vld3q_v: {
11715 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11716 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11717 llvm::Type *Tys[2] = { VTy, PTy };
11718 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11719 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11720 Ops[0] = Builder.CreateBitCast(Ops[0],
11721 llvm::PointerType::getUnqual(Ops[1]->getType()));
11722 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11723 }
11724 case NEON::BI__builtin_neon_vld4_v:
11725 case NEON::BI__builtin_neon_vld4q_v: {
11726 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11727 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11728 llvm::Type *Tys[2] = { VTy, PTy };
11729 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11730 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11731 Ops[0] = Builder.CreateBitCast(Ops[0],
11732 llvm::PointerType::getUnqual(Ops[1]->getType()));
11733 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11734 }
11735 case NEON::BI__builtin_neon_vld2_dup_v:
11736 case NEON::BI__builtin_neon_vld2q_dup_v: {
11737 llvm::Type *PTy =
11738 llvm::PointerType::getUnqual(VTy->getElementType());
11739 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11740 llvm::Type *Tys[2] = { VTy, PTy };
11741 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11742 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11743 Ops[0] = Builder.CreateBitCast(Ops[0],
11744 llvm::PointerType::getUnqual(Ops[1]->getType()));
11745 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11746 }
11747 case NEON::BI__builtin_neon_vld3_dup_v:
11748 case NEON::BI__builtin_neon_vld3q_dup_v: {
11749 llvm::Type *PTy =
11750 llvm::PointerType::getUnqual(VTy->getElementType());
11751 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11752 llvm::Type *Tys[2] = { VTy, PTy };
11753 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11754 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11755 Ops[0] = Builder.CreateBitCast(Ops[0],
11756 llvm::PointerType::getUnqual(Ops[1]->getType()));
11757 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11758 }
11759 case NEON::BI__builtin_neon_vld4_dup_v:
11760 case NEON::BI__builtin_neon_vld4q_dup_v: {
11761 llvm::Type *PTy =
11762 llvm::PointerType::getUnqual(VTy->getElementType());
11763 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11764 llvm::Type *Tys[2] = { VTy, PTy };
11765 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11766 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11767 Ops[0] = Builder.CreateBitCast(Ops[0],
11768 llvm::PointerType::getUnqual(Ops[1]->getType()));
11769 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11770 }
11771 case NEON::BI__builtin_neon_vld2_lane_v:
11772 case NEON::BI__builtin_neon_vld2q_lane_v: {
11773 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11774 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11775 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11776 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11777 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11778 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11779 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11780 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11781 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11782 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11783 }
11784 case NEON::BI__builtin_neon_vld3_lane_v:
11785 case NEON::BI__builtin_neon_vld3q_lane_v: {
11786 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11787 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11788 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11789 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11790 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11791 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11792 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11793 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11794 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11795 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11796 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11797 }
11798 case NEON::BI__builtin_neon_vld4_lane_v:
11799 case NEON::BI__builtin_neon_vld4q_lane_v: {
11800 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11801 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11802 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11803 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11804 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11805 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11806 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11807 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11808 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11809 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11810 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11811 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11812 }
11813 case NEON::BI__builtin_neon_vst2_v:
11814 case NEON::BI__builtin_neon_vst2q_v: {
11815 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11816 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11817 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11818 Ops, "");
11819 }
11820 case NEON::BI__builtin_neon_vst2_lane_v:
11821 case NEON::BI__builtin_neon_vst2q_lane_v: {
11822 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11823 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11824 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11825 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11826 Ops, "");
11827 }
11828 case NEON::BI__builtin_neon_vst3_v:
11829 case NEON::BI__builtin_neon_vst3q_v: {
11830 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11831 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11832 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11833 Ops, "");
11834 }
11835 case NEON::BI__builtin_neon_vst3_lane_v:
11836 case NEON::BI__builtin_neon_vst3q_lane_v: {
11837 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11838 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11839 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11840 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11841 Ops, "");
11842 }
11843 case NEON::BI__builtin_neon_vst4_v:
11844 case NEON::BI__builtin_neon_vst4q_v: {
11845 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11846 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11847 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11848 Ops, "");
11849 }
11850 case NEON::BI__builtin_neon_vst4_lane_v:
11851 case NEON::BI__builtin_neon_vst4q_lane_v: {
11852 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11853 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11854 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11855 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11856 Ops, "");
11857 }
11858 case NEON::BI__builtin_neon_vtrn_v:
11859 case NEON::BI__builtin_neon_vtrnq_v: {
11860 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11861 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11862 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11863 Value *SV = nullptr;
11864
11865 for (unsigned vi = 0; vi != 2; ++vi) {
11866 SmallVector<int, 16> Indices;
11867 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11868 Indices.push_back(i+vi);
11869 Indices.push_back(i+e+vi);
11870 }
11871 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11872 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11873 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11874 }
11875 return SV;
11876 }
11877 case NEON::BI__builtin_neon_vuzp_v:
11878 case NEON::BI__builtin_neon_vuzpq_v: {
11879 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11880 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11881 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11882 Value *SV = nullptr;
11883
11884 for (unsigned vi = 0; vi != 2; ++vi) {
11885 SmallVector<int, 16> Indices;
11886 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11887 Indices.push_back(2*i+vi);
11888
11889 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11890 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11891 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11892 }
11893 return SV;
11894 }
11895 case NEON::BI__builtin_neon_vzip_v:
11896 case NEON::BI__builtin_neon_vzipq_v: {
11897 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11898 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11899 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11900 Value *SV = nullptr;
11901
11902 for (unsigned vi = 0; vi != 2; ++vi) {
11903 SmallVector<int, 16> Indices;
11904 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11905 Indices.push_back((i + vi*e) >> 1);
11906 Indices.push_back(((i + vi*e) >> 1)+e);
11907 }
11908 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11909 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11910 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11911 }
11912 return SV;
11913 }
11914 case NEON::BI__builtin_neon_vqtbl1q_v: {
11915 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11916 Ops, "vtbl1");
11917 }
11918 case NEON::BI__builtin_neon_vqtbl2q_v: {
11919 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11920 Ops, "vtbl2");
11921 }
11922 case NEON::BI__builtin_neon_vqtbl3q_v: {
11923 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11924 Ops, "vtbl3");
11925 }
11926 case NEON::BI__builtin_neon_vqtbl4q_v: {
11927 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11928 Ops, "vtbl4");
11929 }
11930 case NEON::BI__builtin_neon_vqtbx1q_v: {
11931 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11932 Ops, "vtbx1");
11933 }
11934 case NEON::BI__builtin_neon_vqtbx2q_v: {
11935 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11936 Ops, "vtbx2");
11937 }
11938 case NEON::BI__builtin_neon_vqtbx3q_v: {
11939 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11940 Ops, "vtbx3");
11941 }
11942 case NEON::BI__builtin_neon_vqtbx4q_v: {
11943 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11944 Ops, "vtbx4");
11945 }
11946 case NEON::BI__builtin_neon_vsqadd_v:
11947 case NEON::BI__builtin_neon_vsqaddq_v: {
11948 Int = Intrinsic::aarch64_neon_usqadd;
11949 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11950 }
11951 case NEON::BI__builtin_neon_vuqadd_v:
11952 case NEON::BI__builtin_neon_vuqaddq_v: {
11953 Int = Intrinsic::aarch64_neon_suqadd;
11954 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11955 }
11956 }
11957}
11958
11959Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11960 const CallExpr *E) {
11961 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11965, __extension__ __PRETTY_FUNCTION__
))
11962 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11965, __extension__ __PRETTY_FUNCTION__
))
11963 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11965, __extension__ __PRETTY_FUNCTION__
))
11964 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11965, __extension__ __PRETTY_FUNCTION__
))
11965 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11965, __extension__ __PRETTY_FUNCTION__
))
;
11966
11967 // A sequence number, injected into IR builtin functions, to
11968 // prevent CSE given the only difference of the funciton
11969 // may just be the debuginfo metadata.
11970 static uint32_t BuiltinSeqNum;
11971
11972 switch (BuiltinID) {
11973 default:
11974 llvm_unreachable("Unexpected BPF builtin")::llvm::llvm_unreachable_internal("Unexpected BPF builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 11974)
;
11975 case BPF::BI__builtin_preserve_field_info: {
11976 const Expr *Arg = E->getArg(0);
11977 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11978
11979 if (!getDebugInfo()) {
11980 CGM.Error(E->getExprLoc(),
11981 "using __builtin_preserve_field_info() without -g");
11982 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11983 : EmitLValue(Arg).getPointer(*this);
11984 }
11985
11986 // Enable underlying preserve_*_access_index() generation.
11987 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11988 IsInPreservedAIRegion = true;
11989 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11990 : EmitLValue(Arg).getPointer(*this);
11991 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11992
11993 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11994 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11995
11996 // Built the IR for the preserve_field_info intrinsic.
11997 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11998 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11999 {FieldAddr->getType()});
12000 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
12001 }
12002 case BPF::BI__builtin_btf_type_id:
12003 case BPF::BI__builtin_preserve_type_info: {
12004 if (!getDebugInfo()) {
12005 CGM.Error(E->getExprLoc(), "using builtin function without -g");
12006 return nullptr;
12007 }
12008
12009 const Expr *Arg0 = E->getArg(0);
12010 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12011 Arg0->getType(), Arg0->getExprLoc());
12012
12013 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12014 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12015 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12016
12017 llvm::Function *FnDecl;
12018 if (BuiltinID == BPF::BI__builtin_btf_type_id)
12019 FnDecl = llvm::Intrinsic::getDeclaration(
12020 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
12021 else
12022 FnDecl = llvm::Intrinsic::getDeclaration(
12023 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
12024 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
12025 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12026 return Fn;
12027 }
12028 case BPF::BI__builtin_preserve_enum_value: {
12029 if (!getDebugInfo()) {
12030 CGM.Error(E->getExprLoc(), "using builtin function without -g");
12031 return nullptr;
12032 }
12033
12034 const Expr *Arg0 = E->getArg(0);
12035 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12036 Arg0->getType(), Arg0->getExprLoc());
12037
12038 // Find enumerator
12039 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
12040 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
12041 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
12042 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
12043
12044 auto &InitVal = Enumerator->getInitVal();
12045 std::string InitValStr;
12046 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX(9223372036854775807L)))
12047 InitValStr = std::to_string(InitVal.getSExtValue());
12048 else
12049 InitValStr = std::to_string(InitVal.getZExtValue());
12050 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
12051 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
12052
12053 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12054 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12055 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12056
12057 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
12058 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
12059 CallInst *Fn =
12060 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
12061 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12062 return Fn;
12063 }
12064 }
12065}
12066
12067llvm::Value *CodeGenFunction::
12068BuildVector(ArrayRef<llvm::Value*> Ops) {
12069 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12070, __extension__ __PRETTY_FUNCTION__
))
12070 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12070, __extension__ __PRETTY_FUNCTION__
))
;
12071 bool AllConstants = true;
12072 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
12073 AllConstants &= isa<Constant>(Ops[i]);
12074
12075 // If this is a constant vector, create a ConstantVector.
12076 if (AllConstants) {
12077 SmallVector<llvm::Constant*, 16> CstOps;
12078 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12079 CstOps.push_back(cast<Constant>(Ops[i]));
12080 return llvm::ConstantVector::get(CstOps);
12081 }
12082
12083 // Otherwise, insertelement the values to build the vector.
12084 Value *Result = llvm::UndefValue::get(
12085 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
12086
12087 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12088 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
12089
12090 return Result;
12091}
12092
12093// Convert the mask from an integer type to a vector of i1.
12094static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
12095 unsigned NumElts) {
12096
12097 auto *MaskTy = llvm::FixedVectorType::get(
12098 CGF.Builder.getInt1Ty(),
12099 cast<IntegerType>(Mask->getType())->getBitWidth());
12100 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
12101
12102 // If we have less than 8 elements, then the starting mask was an i8 and
12103 // we need to extract down to the right number of elements.
12104 if (NumElts < 8) {
12105 int Indices[4];
12106 for (unsigned i = 0; i != NumElts; ++i)
12107 Indices[i] = i;
12108 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
12109 makeArrayRef(Indices, NumElts),
12110 "extract");
12111 }
12112 return MaskVec;
12113}
12114
12115static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12116 Align Alignment) {
12117 // Cast the pointer to right type.
12118 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12119 llvm::PointerType::getUnqual(Ops[1]->getType()));
12120
12121 Value *MaskVec = getMaskVecValue(
12122 CGF, Ops[2],
12123 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
12124
12125 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
12126}
12127
12128static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12129 Align Alignment) {
12130 // Cast the pointer to right type.
12131 llvm::Type *Ty = Ops[1]->getType();
12132 Value *Ptr =
12133 CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12134
12135 Value *MaskVec = getMaskVecValue(
12136 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
12137
12138 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
12139}
12140
12141static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
12142 ArrayRef<Value *> Ops) {
12143 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
12144 llvm::Type *PtrTy = ResultTy->getElementType();
12145
12146 // Cast the pointer to element type.
12147 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12148 llvm::PointerType::getUnqual(PtrTy));
12149
12150 Value *MaskVec = getMaskVecValue(
12151 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
12152
12153 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
12154 ResultTy);
12155 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
12156}
12157
12158static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
12159 ArrayRef<Value *> Ops,
12160 bool IsCompress) {
12161 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12162
12163 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12164
12165 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
12166 : Intrinsic::x86_avx512_mask_expand;
12167 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
12168 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
12169}
12170
12171static Value *EmitX86CompressStore(CodeGenFunction &CGF,
12172 ArrayRef<Value *> Ops) {
12173 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12174 llvm::Type *PtrTy = ResultTy->getElementType();
12175
12176 // Cast the pointer to element type.
12177 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12178 llvm::PointerType::getUnqual(PtrTy));
12179
12180 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12181
12182 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
12183 ResultTy);
12184 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
12185}
12186
12187static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
12188 ArrayRef<Value *> Ops,
12189 bool InvertLHS = false) {
12190 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12191 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
12192 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
12193
12194 if (InvertLHS)
12195 LHS = CGF.Builder.CreateNot(LHS);
12196
12197 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
12198 Ops[0]->getType());
12199}
12200
12201static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
12202 Value *Amt, bool IsRight) {
12203 llvm::Type *Ty = Op0->getType();
12204
12205 // Amount may be scalar immediate, in which case create a splat vector.
12206 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
12207 // we only care about the lowest log2 bits anyway.
12208 if (Amt->getType() != Ty) {
12209 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
12210 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
12211 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
12212 }
12213
12214 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
12215 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
12216 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
12217}
12218
12219static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12220 bool IsSigned) {
12221 Value *Op0 = Ops[0];
12222 Value *Op1 = Ops[1];
12223 llvm::Type *Ty = Op0->getType();
12224 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
12225
12226 CmpInst::Predicate Pred;
12227 switch (Imm) {
12228 case 0x0:
12229 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12230 break;
12231 case 0x1:
12232 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
12233 break;
12234 case 0x2:
12235 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12236 break;
12237 case 0x3:
12238 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12239 break;
12240 case 0x4:
12241 Pred = ICmpInst::ICMP_EQ;
12242 break;
12243 case 0x5:
12244 Pred = ICmpInst::ICMP_NE;
12245 break;
12246 case 0x6:
12247 return llvm::Constant::getNullValue(Ty); // FALSE
12248 case 0x7:
12249 return llvm::Constant::getAllOnesValue(Ty); // TRUE
12250 default:
12251 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "clang/lib/CodeGen/CGBuiltin.cpp", 12251)
;
12252 }
12253
12254 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
12255 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
12256 return Res;
12257}
12258
12259static Value *EmitX86Select(CodeGenFunction &CGF,
12260 Value *Mask, Value *Op0, Value *Op1) {
12261
12262 // If the mask is all ones just return first argument.
12263 if (const auto *C = dyn_cast<Constant>(Mask))
12264 if (C->isAllOnesValue())
12265 return Op0;
12266
12267 Mask = getMaskVecValue(
12268 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
12269
12270 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12271}
12272
12273static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
12274 Value *Mask, Value *Op0, Value *Op1) {
12275 // If the mask is all ones just return first argument.
12276 if (const auto *C = dyn_cast<Constant>(Mask))
12277 if (C->isAllOnesValue())
12278 return Op0;
12279
12280 auto *MaskTy = llvm::FixedVectorType::get(
12281 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
12282 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
12283 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
12284 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12285}
12286
12287static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
12288 unsigned NumElts, Value *MaskIn) {
12289 if (MaskIn
28.1
'MaskIn' is null
) {
29
Taking false branch
12290 const auto *C = dyn_cast<Constant>(MaskIn);
12291 if (!C || !C->isAllOnesValue())
12292 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
12293 }
12294
12295 if (NumElts < 8) {
30
Assuming 'NumElts' is < 8
31
Taking true branch
12296 int Indices[8];
12297 for (unsigned i = 0; i != NumElts; ++i)
32
Assuming 'i' is equal to 'NumElts'
33
Loop condition is false. Execution continues on line 12299
12298 Indices[i] = i;
12299 for (unsigned i = NumElts; i != 8; ++i)
34
Loop condition is true. Entering loop body
12300 Indices[i] = i % NumElts + NumElts;
35
Division by zero
12301 Cmp = CGF.Builder.CreateShuffleVector(
12302 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
12303 }
12304
12305 return CGF.Builder.CreateBitCast(Cmp,
12306 IntegerType::get(CGF.getLLVMContext(),
12307 std::max(NumElts, 8U)));
12308}
12309
12310static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12311 bool Signed, ArrayRef<Value *> Ops) {
12312 assert((Ops.size() == 2 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12313, __extension__ __PRETTY_FUNCTION__
))
15
Assuming the condition is false
16
Assuming the condition is true
17
'?' condition is true
12313 "Unexpected number of arguments")(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12313, __extension__ __PRETTY_FUNCTION__
))
;
12314 unsigned NumElts =
19
'NumElts' initialized here
12315 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
18
The object is a 'FixedVectorType'
12316 Value *Cmp;
12317
12318 if (CC
19.1
'CC' is not equal to 3
== 3) {
20
Taking false branch
12319 Cmp = Constant::getNullValue(
12320 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12321 } else if (CC
20.1
'CC' is not equal to 7
== 7) {
21
Taking false branch
12322 Cmp = Constant::getAllOnesValue(
12323 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12324 } else {
12325 ICmpInst::Predicate Pred;
12326 switch (CC) {
22
Control jumps to 'case 1:' at line 12329
12327 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12327)
;
12328 case 0: Pred = ICmpInst::ICMP_EQ; break;
12329 case 1: Pred = Signed
22.1
'Signed' is true
? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
23
'?' condition is true
24
Execution continues on line 12335
12330 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12331 case 4: Pred = ICmpInst::ICMP_NE; break;
12332 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12333 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12334 }
12335 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12336 }
12337
12338 Value *MaskIn = nullptr;
12339 if (Ops.size() == 4)
25
Assuming the condition is false
26
Taking false branch
12340 MaskIn = Ops[3];
12341
12342 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
27
Passing value via 3rd parameter 'NumElts'
28
Calling 'EmitX86MaskedCompareResult'
12343}
12344
12345static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12346 Value *Zero = Constant::getNullValue(In->getType());
12347 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
14
Calling 'EmitX86MaskedCompare'
12348}
12349
12350static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12351 ArrayRef<Value *> Ops, bool IsSigned) {
12352 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12353 llvm::Type *Ty = Ops[1]->getType();
12354
12355 Value *Res;
12356 if (Rnd != 4) {
12357 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12358 : Intrinsic::x86_avx512_uitofp_round;
12359 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12360 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12361 } else {
12362 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12363 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12364 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12365 }
12366
12367 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12368}
12369
12370// Lowers X86 FMA intrinsics to IR.
12371static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12372 ArrayRef<Value *> Ops, unsigned BuiltinID,
12373 bool IsAddSub) {
12374
12375 bool Subtract = false;
12376 Intrinsic::ID IID = Intrinsic::not_intrinsic;
12377 switch (BuiltinID) {
12378 default: break;
12379 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12380 Subtract = true;
12381 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12382 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12383 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12384 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12385 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12386 break;
12387 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12388 Subtract = true;
12389 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12390 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12391 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12392 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12393 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12394 break;
12395 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12396 Subtract = true;
12397 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12398 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12399 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12400 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12401 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12402 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12403 Subtract = true;
12404 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12405 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12406 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12407 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12408 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12409 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12410 Subtract = true;
12411 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12412 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12413 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12414 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12415 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12416 break;
12417 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12418 Subtract = true;
12419 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12420 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12421 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12422 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12423 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12424 break;
12425 }
12426
12427 Value *A = Ops[0];
12428 Value *B = Ops[1];
12429 Value *C = Ops[2];
12430
12431 if (Subtract)
12432 C = CGF.Builder.CreateFNeg(C);
12433
12434 Value *Res;
12435
12436 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12437 if (IID != Intrinsic::not_intrinsic &&
12438 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12439 IsAddSub)) {
12440 Function *Intr = CGF.CGM.getIntrinsic(IID);
12441 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12442 } else {
12443 llvm::Type *Ty = A->getType();
12444 Function *FMA;
12445 if (CGF.Builder.getIsFPConstrained()) {
12446 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12447 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12448 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12449 } else {
12450 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12451 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12452 }
12453 }
12454
12455 // Handle any required masking.
12456 Value *MaskFalseVal = nullptr;
12457 switch (BuiltinID) {
12458 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12459 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12460 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12461 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12462 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12463 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12464 MaskFalseVal = Ops[0];
12465 break;
12466 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12467 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12468 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12469 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12470 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12471 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12472 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12473 break;
12474 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12475 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12476 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12477 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12478 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12479 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12480 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12481 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12482 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12483 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12484 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12485 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12486 MaskFalseVal = Ops[2];
12487 break;
12488 }
12489
12490 if (MaskFalseVal)
12491 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12492
12493 return Res;
12494}
12495
12496static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12497 MutableArrayRef<Value *> Ops, Value *Upper,
12498 bool ZeroMask = false, unsigned PTIdx = 0,
12499 bool NegAcc = false) {
12500 unsigned Rnd = 4;
12501 if (Ops.size() > 4)
12502 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12503
12504 if (NegAcc)
12505 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12506
12507 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12508 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12509 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12510 Value *Res;
12511 if (Rnd != 4) {
12512 Intrinsic::ID IID;
12513
12514 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12515 case 16:
12516 IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12517 break;
12518 case 32:
12519 IID = Intrinsic::x86_avx512_vfmadd_f32;
12520 break;
12521 case 64:
12522 IID = Intrinsic::x86_avx512_vfmadd_f64;
12523 break;
12524 default:
12525 llvm_unreachable("Unexpected size")::llvm::llvm_unreachable_internal("Unexpected size", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12525)
;
12526 }
12527 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12528 {Ops[0], Ops[1], Ops[2], Ops[4]});
12529 } else if (CGF.Builder.getIsFPConstrained()) {
12530 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12531 Function *FMA = CGF.CGM.getIntrinsic(
12532 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12533 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12534 } else {
12535 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12536 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12537 }
12538 // If we have more than 3 arguments, we need to do masking.
12539 if (Ops.size() > 3) {
12540 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12541 : Ops[PTIdx];
12542
12543 // If we negated the accumulator and the its the PassThru value we need to
12544 // bypass the negate. Conveniently Upper should be the same thing in this
12545 // case.
12546 if (NegAcc && PTIdx == 2)
12547 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12548
12549 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12550 }
12551 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12552}
12553
12554static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12555 ArrayRef<Value *> Ops) {
12556 llvm::Type *Ty = Ops[0]->getType();
12557 // Arguments have a vXi32 type so cast to vXi64.
12558 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12559 Ty->getPrimitiveSizeInBits() / 64);
12560 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12561 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12562
12563 if (IsSigned) {
12564 // Shift left then arithmetic shift right.
12565 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12566 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12567 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12568 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12569 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12570 } else {
12571 // Clear the upper bits.
12572 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12573 LHS = CGF.Builder.CreateAnd(LHS, Mask);
12574 RHS = CGF.Builder.CreateAnd(RHS, Mask);
12575 }
12576
12577 return CGF.Builder.CreateMul(LHS, RHS);
12578}
12579
12580// Emit a masked pternlog intrinsic. This only exists because the header has to
12581// use a macro and we aren't able to pass the input argument to a pternlog
12582// builtin and a select builtin without evaluating it twice.
12583static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12584 ArrayRef<Value *> Ops) {
12585 llvm::Type *Ty = Ops[0]->getType();
12586
12587 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12588 unsigned EltWidth = Ty->getScalarSizeInBits();
12589 Intrinsic::ID IID;
12590 if (VecWidth == 128 && EltWidth == 32)
12591 IID = Intrinsic::x86_avx512_pternlog_d_128;
12592 else if (VecWidth == 256 && EltWidth == 32)
12593 IID = Intrinsic::x86_avx512_pternlog_d_256;
12594 else if (VecWidth == 512 && EltWidth == 32)
12595 IID = Intrinsic::x86_avx512_pternlog_d_512;
12596 else if (VecWidth == 128 && EltWidth == 64)
12597 IID = Intrinsic::x86_avx512_pternlog_q_128;
12598 else if (VecWidth == 256 && EltWidth == 64)
12599 IID = Intrinsic::x86_avx512_pternlog_q_256;
12600 else if (VecWidth == 512 && EltWidth == 64)
12601 IID = Intrinsic::x86_avx512_pternlog_q_512;
12602 else
12603 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12603)
;
12604
12605 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12606 Ops.drop_back());
12607 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12608 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12609}
12610
12611static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12612 llvm::Type *DstTy) {
12613 unsigned NumberOfElements =
12614 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12615 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12616 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12617}
12618
12619Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12620 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12621 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12622 return EmitX86CpuIs(CPUStr);
12623}
12624
12625// Convert F16 halfs to floats.
12626static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12627 ArrayRef<Value *> Ops,
12628 llvm::Type *DstTy) {
12629 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12630, __extension__ __PRETTY_FUNCTION__
))
12630 "Unknown cvtph2ps intrinsic")(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12630, __extension__ __PRETTY_FUNCTION__
))
;
12631
12632 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12633 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12634 Function *F =
12635 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12636 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12637 }
12638
12639 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12640 Value *Src = Ops[0];
12641
12642 // Extract the subvector.
12643 if (NumDstElts !=
12644 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12645 assert(NumDstElts == 4 && "Unexpected vector size")(static_cast <bool> (NumDstElts == 4 && "Unexpected vector size"
) ? void (0) : __assert_fail ("NumDstElts == 4 && \"Unexpected vector size\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12645, __extension__ __PRETTY_FUNCTION__
))
;
12646 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12647 }
12648
12649 // Bitcast from vXi16 to vXf16.
12650 auto *HalfTy = llvm::FixedVectorType::get(
12651 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12652 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12653
12654 // Perform the fp-extension.
12655 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12656
12657 if (Ops.size() >= 3)
12658 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12659 return Res;
12660}
12661
12662// Convert a BF16 to a float.
12663static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12664 const CallExpr *E,
12665 ArrayRef<Value *> Ops) {
12666 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12667 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12668 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12669 llvm::Type *ResultType = CGF.ConvertType(E->getType());
12670 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12671 return BitCast;
12672}
12673
12674Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12675
12676 llvm::Type *Int32Ty = Builder.getInt32Ty();
12677
12678 // Matching the struct layout from the compiler-rt/libgcc structure that is
12679 // filled in:
12680 // unsigned int __cpu_vendor;
12681 // unsigned int __cpu_type;
12682 // unsigned int __cpu_subtype;
12683 // unsigned int __cpu_features[1];
12684 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12685 llvm::ArrayType::get(Int32Ty, 1));
12686
12687 // Grab the global __cpu_model.
12688 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12689 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12690
12691 // Calculate the index needed to access the correct field based on the
12692 // range. Also adjust the expected value.
12693 unsigned Index;
12694 unsigned Value;
12695 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12696#define X86_VENDOR(ENUM, STRING) \
12697 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12698#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
12699 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12700#define X86_CPU_TYPE(ENUM, STR) \
12701 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12702#define X86_CPU_SUBTYPE(ENUM, STR) \
12703 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12704#include "llvm/Support/X86TargetParser.def"
12705 .Default({0, 0});
12706 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12706, __extension__ __PRETTY_FUNCTION__
))
;
12707
12708 // Grab the appropriate field from __cpu_model.
12709 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12710 ConstantInt::get(Int32Ty, Index)};
12711 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12712 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12713 CharUnits::fromQuantity(4));
12714
12715 // Check the value of the field against the requested value.
12716 return Builder.CreateICmpEQ(CpuValue,
12717 llvm::ConstantInt::get(Int32Ty, Value));
12718}
12719
12720Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12721 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12722 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12723 return EmitX86CpuSupports(FeatureStr);
12724}
12725
12726Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12727 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
12728}
12729
12730llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12731 uint32_t Features1 = Lo_32(FeaturesMask);
12732 uint32_t Features2 = Hi_32(FeaturesMask);
12733
12734 Value *Result = Builder.getTrue();
12735
12736 if (Features1 != 0) {
12737 // Matching the struct layout from the compiler-rt/libgcc structure that is
12738 // filled in:
12739 // unsigned int __cpu_vendor;
12740 // unsigned int __cpu_type;
12741 // unsigned int __cpu_subtype;
12742 // unsigned int __cpu_features[1];
12743 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12744 llvm::ArrayType::get(Int32Ty, 1));
12745
12746 // Grab the global __cpu_model.
12747 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12748 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12749
12750 // Grab the first (0th) element from the field __cpu_features off of the
12751 // global in the struct STy.
12752 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12753 Builder.getInt32(0)};
12754 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12755 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12756 CharUnits::fromQuantity(4));
12757
12758 // Check the value of the bit corresponding to the feature requested.
12759 Value *Mask = Builder.getInt32(Features1);
12760 Value *Bitset = Builder.CreateAnd(Features, Mask);
12761 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12762 Result = Builder.CreateAnd(Result, Cmp);
12763 }
12764
12765 if (Features2 != 0) {
12766 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12767 "__cpu_features2");
12768 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12769
12770 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12771 CharUnits::fromQuantity(4));
12772
12773 // Check the value of the bit corresponding to the feature requested.
12774 Value *Mask = Builder.getInt32(Features2);
12775 Value *Bitset = Builder.CreateAnd(Features, Mask);
12776 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12777 Result = Builder.CreateAnd(Result, Cmp);
12778 }
12779
12780 return Result;
12781}
12782
12783Value *CodeGenFunction::EmitX86CpuInit() {
12784 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12785 /*Variadic*/ false);
12786 llvm::FunctionCallee Func =
12787 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12788 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12789 cast<llvm::GlobalValue>(Func.getCallee())
12790 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12791 return Builder.CreateCall(Func);
12792}
12793
12794Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12795 const CallExpr *E) {
12796 if (BuiltinID == X86::BI__builtin_cpu_is)
1
Assuming 'BuiltinID' is not equal to BI__builtin_cpu_is
2
Taking false branch
12797 return EmitX86CpuIs(E);
12798 if (BuiltinID == X86::BI__builtin_cpu_supports)
3
Assuming 'BuiltinID' is not equal to BI__builtin_cpu_supports
4
Taking false branch
12799 return EmitX86CpuSupports(E);
12800 if (BuiltinID == X86::BI__builtin_cpu_init)
5
Assuming 'BuiltinID' is not equal to BI__builtin_cpu_init
6
Taking false branch
12801 return EmitX86CpuInit();
12802
12803 // Handle MSVC intrinsics before argument evaluation to prevent double
12804 // evaluation.
12805 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
7
Taking false branch
12806 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12807
12808 SmallVector<Value*, 4> Ops;
12809 bool IsMaskFCmp = false;
12810 bool IsConjFMA = false;
12811
12812 // Find out if any arguments are required to be integer constant expressions.
12813 unsigned ICEArguments = 0;
12814 ASTContext::GetBuiltinTypeError Error;
12815 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12816 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12816, __extension__ __PRETTY_FUNCTION__
))
;
8
Assuming 'Error' is equal to GE_None
9
'?' condition is true
12817
12818 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10
Assuming 'i' is equal to 'e'
11
Loop condition is false. Execution continues on line 12837
12819 // If this is a normal argument, just emit it as a scalar.
12820 if ((ICEArguments & (1 << i)) == 0) {
12821 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12822 continue;
12823 }
12824
12825 // If this is required to be a constant, constant fold it so that we know
12826 // that the generated intrinsic gets a ConstantInt.
12827 Ops.push_back(llvm::ConstantInt::get(
12828 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12829 }
12830
12831 // These exist so that the builtin that takes an immediate can be bounds
12832 // checked by clang to avoid passing bad immediates to the backend. Since
12833 // AVX has a larger immediate than SSE we would need separate builtins to
12834 // do the different bounds checking. Rather than create a clang specific
12835 // SSE only builtin, this implements eight separate builtins to match gcc
12836 // implementation.
12837 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12838 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12839 llvm::Function *F = CGM.getIntrinsic(ID);
12840 return Builder.CreateCall(F, Ops);
12841 };
12842
12843 // For the vector forms of FP comparisons, translate the builtins directly to
12844 // IR.
12845 // TODO: The builtins could be removed if the SSE header files used vector
12846 // extension comparisons directly (vector ordered/unordered may need
12847 // additional support via __builtin_isnan()).
12848 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12849 bool IsSignaling) {
12850 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12851 Value *Cmp;
12852 if (IsSignaling)
12853 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12854 else
12855 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12856 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12857 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12858 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12859 return Builder.CreateBitCast(Sext, FPVecTy);
12860 };
12861
12862 switch (BuiltinID) {
12
Control jumps to 'case BI__builtin_ia32_cvtq2mask512:' at line 13087
12863 default: return nullptr;
12864 case X86::BI_mm_prefetch: {
12865 Value *Address = Ops[0];
12866 ConstantInt *C = cast<ConstantInt>(Ops[1]);
12867 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12868 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12869 Value *Data = ConstantInt::get(Int32Ty, 1);
12870 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12871 return Builder.CreateCall(F, {Address, RW, Locality, Data});
12872 }
12873 case X86::BI_mm_clflush: {
12874 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12875 Ops[0]);
12876 }
12877 case X86::BI_mm_lfence: {
12878 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12879 }
12880 case X86::BI_mm_mfence: {
12881 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12882 }
12883 case X86::BI_mm_sfence: {
12884 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12885 }
12886 case X86::BI_mm_pause: {
12887 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12888 }
12889 case X86::BI__rdtsc: {
12890 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12891 }
12892 case X86::BI__builtin_ia32_rdtscp: {
12893 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12894 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12895 Ops[0]);
12896 return Builder.CreateExtractValue(Call, 0);
12897 }
12898 case X86::BI__builtin_ia32_lzcnt_u16:
12899 case X86::BI__builtin_ia32_lzcnt_u32:
12900 case X86::BI__builtin_ia32_lzcnt_u64: {
12901 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12902 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12903 }
12904 case X86::BI__builtin_ia32_tzcnt_u16:
12905 case X86::BI__builtin_ia32_tzcnt_u32:
12906 case X86::BI__builtin_ia32_tzcnt_u64: {
12907 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12908 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12909 }
12910 case X86::BI__builtin_ia32_undef128:
12911 case X86::BI__builtin_ia32_undef256:
12912 case X86::BI__builtin_ia32_undef512:
12913 // The x86 definition of "undef" is not the same as the LLVM definition
12914 // (PR32176). We leave optimizing away an unnecessary zero constant to the
12915 // IR optimizer and backend.
12916 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12917 // value, we should use that here instead of a zero.
12918 return llvm::Constant::getNullValue(ConvertType(E->getType()));
12919 case X86::BI__builtin_ia32_vec_init_v8qi:
12920 case X86::BI__builtin_ia32_vec_init_v4hi:
12921 case X86::BI__builtin_ia32_vec_init_v2si:
12922 return Builder.CreateBitCast(BuildVector(Ops),
12923 llvm::Type::getX86_MMXTy(getLLVMContext()));
12924 case X86::BI__builtin_ia32_vec_ext_v2si:
12925 case X86::BI__builtin_ia32_vec_ext_v16qi:
12926 case X86::BI__builtin_ia32_vec_ext_v8hi:
12927 case X86::BI__builtin_ia32_vec_ext_v4si:
12928 case X86::BI__builtin_ia32_vec_ext_v4sf:
12929 case X86::BI__builtin_ia32_vec_ext_v2di:
12930 case X86::BI__builtin_ia32_vec_ext_v32qi:
12931 case X86::BI__builtin_ia32_vec_ext_v16hi:
12932 case X86::BI__builtin_ia32_vec_ext_v8si:
12933 case X86::BI__builtin_ia32_vec_ext_v4di: {
12934 unsigned NumElts =
12935 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12936 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12937 Index &= NumElts - 1;
12938 // These builtins exist so we can ensure the index is an ICE and in range.
12939 // Otherwise we could just do this in the header file.
12940 return Builder.CreateExtractElement(Ops[0], Index);
12941 }
12942 case X86::BI__builtin_ia32_vec_set_v16qi:
12943 case X86::BI__builtin_ia32_vec_set_v8hi:
12944 case X86::BI__builtin_ia32_vec_set_v4si:
12945 case X86::BI__builtin_ia32_vec_set_v2di:
12946 case X86::BI__builtin_ia32_vec_set_v32qi:
12947 case X86::BI__builtin_ia32_vec_set_v16hi:
12948 case X86::BI__builtin_ia32_vec_set_v8si:
12949 case X86::BI__builtin_ia32_vec_set_v4di: {
12950 unsigned NumElts =
12951 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12952 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12953 Index &= NumElts - 1;
12954 // These builtins exist so we can ensure the index is an ICE and in range.
12955 // Otherwise we could just do this in the header file.
12956 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12957 }
12958 case X86::BI_mm_setcsr:
12959 case X86::BI__builtin_ia32_ldmxcsr: {
12960 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12961 Builder.CreateStore(Ops[0], Tmp);
12962 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12963 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12964 }
12965 case X86::BI_mm_getcsr:
12966 case X86::BI__builtin_ia32_stmxcsr: {
12967 Address Tmp = CreateMemTemp(E->getType());
12968 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12969 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12970 return Builder.CreateLoad(Tmp, "stmxcsr");
12971 }
12972 case X86::BI__builtin_ia32_xsave:
12973 case X86::BI__builtin_ia32_xsave64:
12974 case X86::BI__builtin_ia32_xrstor:
12975 case X86::BI__builtin_ia32_xrstor64:
12976 case X86::BI__builtin_ia32_xsaveopt:
12977 case X86::BI__builtin_ia32_xsaveopt64:
12978 case X86::BI__builtin_ia32_xrstors:
12979 case X86::BI__builtin_ia32_xrstors64:
12980 case X86::BI__builtin_ia32_xsavec:
12981 case X86::BI__builtin_ia32_xsavec64:
12982 case X86::BI__builtin_ia32_xsaves:
12983 case X86::BI__builtin_ia32_xsaves64:
12984 case X86::BI__builtin_ia32_xsetbv:
12985 case X86::BI_xsetbv: {
12986 Intrinsic::ID ID;
12987#define INTRINSIC_X86_XSAVE_ID(NAME) \
12988 case X86::BI__builtin_ia32_##NAME: \
12989 ID = Intrinsic::x86_##NAME; \
12990 break
12991 switch (BuiltinID) {
12992 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12992)
;
12993 INTRINSIC_X86_XSAVE_ID(xsave);
12994 INTRINSIC_X86_XSAVE_ID(xsave64);
12995 INTRINSIC_X86_XSAVE_ID(xrstor);
12996 INTRINSIC_X86_XSAVE_ID(xrstor64);
12997 INTRINSIC_X86_XSAVE_ID(xsaveopt);
12998 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12999 INTRINSIC_X86_XSAVE_ID(xrstors);
13000 INTRINSIC_X86_XSAVE_ID(xrstors64);
13001 INTRINSIC_X86_XSAVE_ID(xsavec);
13002 INTRINSIC_X86_XSAVE_ID(xsavec64);
13003 INTRINSIC_X86_XSAVE_ID(xsaves);
13004 INTRINSIC_X86_XSAVE_ID(xsaves64);
13005 INTRINSIC_X86_XSAVE_ID(xsetbv);
13006 case X86::BI_xsetbv:
13007 ID = Intrinsic::x86_xsetbv;
13008 break;
13009 }
13010#undef INTRINSIC_X86_XSAVE_ID
13011 Value *Mhi = Builder.CreateTrunc(
13012 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
13013 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
13014 Ops[1] = Mhi;
13015 Ops.push_back(Mlo);
13016 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13017 }
13018 case X86::BI__builtin_ia32_xgetbv:
13019 case X86::BI_xgetbv:
13020 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
13021 case X86::BI__builtin_ia32_storedqudi128_mask:
13022 case X86::BI__builtin_ia32_storedqusi128_mask:
13023 case X86::BI__builtin_ia32_storedquhi128_mask:
13024 case X86::BI__builtin_ia32_storedquqi128_mask:
13025 case X86::BI__builtin_ia32_storeupd128_mask:
13026 case X86::BI__builtin_ia32_storeups128_mask:
13027 case X86::BI__builtin_ia32_storedqudi256_mask:
13028 case X86::BI__builtin_ia32_storedqusi256_mask:
13029 case X86::BI__builtin_ia32_storedquhi256_mask:
13030 case X86::BI__builtin_ia32_storedquqi256_mask:
13031 case X86::BI__builtin_ia32_storeupd256_mask:
13032 case X86::BI__builtin_ia32_storeups256_mask:
13033 case X86::BI__builtin_ia32_storedqudi512_mask:
13034 case X86::BI__builtin_ia32_storedqusi512_mask:
13035 case X86::BI__builtin_ia32_storedquhi512_mask:
13036 case X86::BI__builtin_ia32_storedquqi512_mask:
13037 case X86::BI__builtin_ia32_storeupd512_mask:
13038 case X86::BI__builtin_ia32_storeups512_mask:
13039 return EmitX86MaskedStore(*this, Ops, Align(1));
13040
13041 case X86::BI__builtin_ia32_storesh128_mask:
13042 case X86::BI__builtin_ia32_storess128_mask:
13043 case X86::BI__builtin_ia32_storesd128_mask:
13044 return EmitX86MaskedStore(*this, Ops, Align(1));
13045
13046 case X86::BI__builtin_ia32_vpopcntb_128:
13047 case X86::BI__builtin_ia32_vpopcntd_128:
13048 case X86::BI__builtin_ia32_vpopcntq_128:
13049 case X86::BI__builtin_ia32_vpopcntw_128:
13050 case X86::BI__builtin_ia32_vpopcntb_256:
13051 case X86::BI__builtin_ia32_vpopcntd_256:
13052 case X86::BI__builtin_ia32_vpopcntq_256:
13053 case X86::BI__builtin_ia32_vpopcntw_256:
13054 case X86::BI__builtin_ia32_vpopcntb_512:
13055 case X86::BI__builtin_ia32_vpopcntd_512:
13056 case X86::BI__builtin_ia32_vpopcntq_512:
13057 case X86::BI__builtin_ia32_vpopcntw_512: {
13058 llvm::Type *ResultType = ConvertType(E->getType());
13059 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13060 return Builder.CreateCall(F, Ops);
13061 }
13062 case X86::BI__builtin_ia32_cvtmask2b128:
13063 case X86::BI__builtin_ia32_cvtmask2b256:
13064 case X86::BI__builtin_ia32_cvtmask2b512:
13065 case X86::BI__builtin_ia32_cvtmask2w128:
13066 case X86::BI__builtin_ia32_cvtmask2w256:
13067 case X86::BI__builtin_ia32_cvtmask2w512:
13068 case X86::BI__builtin_ia32_cvtmask2d128:
13069 case X86::BI__builtin_ia32_cvtmask2d256:
13070 case X86::BI__builtin_ia32_cvtmask2d512:
13071 case X86::BI__builtin_ia32_cvtmask2q128:
13072 case X86::BI__builtin_ia32_cvtmask2q256:
13073 case X86::BI__builtin_ia32_cvtmask2q512:
13074 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
13075
13076 case X86::BI__builtin_ia32_cvtb2mask128:
13077 case X86::BI__builtin_ia32_cvtb2mask256:
13078 case X86::BI__builtin_ia32_cvtb2mask512:
13079 case X86::BI__builtin_ia32_cvtw2mask128:
13080 case X86::BI__builtin_ia32_cvtw2mask256:
13081 case X86::BI__builtin_ia32_cvtw2mask512:
13082 case X86::BI__builtin_ia32_cvtd2mask128:
13083 case X86::BI__builtin_ia32_cvtd2mask256:
13084 case X86::BI__builtin_ia32_cvtd2mask512:
13085 case X86::BI__builtin_ia32_cvtq2mask128:
13086 case X86::BI__builtin_ia32_cvtq2mask256:
13087 case X86::BI__builtin_ia32_cvtq2mask512:
13088 return EmitX86ConvertToMask(*this, Ops[0]);
13
Calling 'EmitX86ConvertToMask'
13089
13090 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
13091 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
13092 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
13093 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
13094 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
13095 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
13096 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
13097 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
13098 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
13099 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
13100 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
13101 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
13102 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
13103 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
13104
13105 case X86::BI__builtin_ia32_vfmaddss3:
13106 case X86::BI__builtin_ia32_vfmaddsd3:
13107 case X86::BI__builtin_ia32_vfmaddsh3_mask:
13108 case X86::BI__builtin_ia32_vfmaddss3_mask:
13109 case X86::BI__builtin_ia32_vfmaddsd3_mask:
13110 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
13111 case X86::BI__builtin_ia32_vfmaddss:
13112 case X86::BI__builtin_ia32_vfmaddsd:
13113 return EmitScalarFMAExpr(*this, E, Ops,
13114 Constant::getNullValue(Ops[0]->getType()));
13115 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
13116 case X86::BI__builtin_ia32_vfmaddss3_maskz:
13117 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
13118 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
13119 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
13120 case X86::BI__builtin_ia32_vfmaddss3_mask3:
13121 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
13122 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
13123 case X86::BI__builtin_ia32_vfmsubsh3_mask3:
13124 case X86::BI__builtin_ia32_vfmsubss3_mask3:
13125 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
13126 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
13127 /*NegAcc*/ true);
13128 case X86::BI__builtin_ia32_vfmaddph:
13129 case X86::BI__builtin_ia32_vfmaddps:
13130 case X86::BI__builtin_ia32_vfmaddpd:
13131 case X86::BI__builtin_ia32_vfmaddph256:
13132 case X86::BI__builtin_ia32_vfmaddps256:
13133 case X86::BI__builtin_ia32_vfmaddpd256:
13134 case X86::BI__builtin_ia32_vfmaddph512_mask:
13135 case X86::BI__builtin_ia32_vfmaddph512_maskz:
13136 case X86::BI__builtin_ia32_vfmaddph512_mask3:
13137 case X86::BI__builtin_ia32_vfmaddps512_mask:
13138 case X86::BI__builtin_ia32_vfmaddps512_maskz:
13139 case X86::BI__builtin_ia32_vfmaddps512_mask3:
13140 case X86::BI__builtin_ia32_vfmsubps512_mask3:
13141 case X86::BI__builtin_ia32_vfmaddpd512_mask:
13142 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
13143 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
13144 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
13145 case X86::BI__builtin_ia32_vfmsubph512_mask3:
13146 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
13147 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
13148 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13149 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13150 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13151 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
13152 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13153 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13154 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13155 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13156 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13157 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13158 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13159 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
13160
13161 case X86::BI__builtin_ia32_movdqa32store128_mask:
13162 case X86::BI__builtin_ia32_movdqa64store128_mask:
13163 case X86::BI__builtin_ia32_storeaps128_mask:
13164 case X86::BI__builtin_ia32_storeapd128_mask:
13165 case X86::BI__builtin_ia32_movdqa32store256_mask:
13166 case X86::BI__builtin_ia32_movdqa64store256_mask:
13167 case X86::BI__builtin_ia32_storeaps256_mask:
13168 case X86::BI__builtin_ia32_storeapd256_mask:
13169 case X86::BI__builtin_ia32_movdqa32store512_mask:
13170 case X86::BI__builtin_ia32_movdqa64store512_mask:
13171 case X86::BI__builtin_ia32_storeaps512_mask:
13172 case X86::BI__builtin_ia32_storeapd512_mask:
13173 return EmitX86MaskedStore(
13174 *this, Ops,
13175 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13176
13177 case X86::BI__builtin_ia32_loadups128_mask:
13178 case X86::BI__builtin_ia32_loadups256_mask:
13179 case X86::BI__builtin_ia32_loadups512_mask:
13180 case X86::BI__builtin_ia32_loadupd128_mask:
13181 case X86::BI__builtin_ia32_loadupd256_mask:
13182 case X86::BI__builtin_ia32_loadupd512_mask:
13183 case X86::BI__builtin_ia32_loaddquqi128_mask:
13184 case X86::BI__builtin_ia32_loaddquqi256_mask:
13185 case X86::BI__builtin_ia32_loaddquqi512_mask:
13186 case X86::BI__builtin_ia32_loaddquhi128_mask:
13187 case X86::BI__builtin_ia32_loaddquhi256_mask:
13188 case X86::BI__builtin_ia32_loaddquhi512_mask:
13189 case X86::BI__builtin_ia32_loaddqusi128_mask:
13190 case X86::BI__builtin_ia32_loaddqusi256_mask:
13191 case X86::BI__builtin_ia32_loaddqusi512_mask:
13192 case X86::BI__builtin_ia32_loaddqudi128_mask:
13193 case X86::BI__builtin_ia32_loaddqudi256_mask:
13194 case X86::BI__builtin_ia32_loaddqudi512_mask:
13195 return EmitX86MaskedLoad(*this, Ops, Align(1));
13196
13197 case X86::BI__builtin_ia32_loadsh128_mask:
13198 case X86::BI__builtin_ia32_loadss128_mask:
13199 case X86::BI__builtin_ia32_loadsd128_mask:
13200 return EmitX86MaskedLoad(*this, Ops, Align(1));
13201
13202 case X86::BI__builtin_ia32_loadaps128_mask:
13203 case X86::BI__builtin_ia32_loadaps256_mask:
13204 case X86::BI__builtin_ia32_loadaps512_mask:
13205 case X86::BI__builtin_ia32_loadapd128_mask:
13206 case X86::BI__builtin_ia32_loadapd256_mask:
13207 case X86::BI__builtin_ia32_loadapd512_mask:
13208 case X86::BI__builtin_ia32_movdqa32load128_mask:
13209 case X86::BI__builtin_ia32_movdqa32load256_mask:
13210 case X86::BI__builtin_ia32_movdqa32load512_mask:
13211 case X86::BI__builtin_ia32_movdqa64load128_mask:
13212 case X86::BI__builtin_ia32_movdqa64load256_mask:
13213 case X86::BI__builtin_ia32_movdqa64load512_mask:
13214 return EmitX86MaskedLoad(
13215 *this, Ops,
13216 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13217
13218 case X86::BI__builtin_ia32_expandloaddf128_mask:
13219 case X86::BI__builtin_ia32_expandloaddf256_mask:
13220 case X86::BI__builtin_ia32_expandloaddf512_mask:
13221 case X86::BI__builtin_ia32_expandloadsf128_mask:
13222 case X86::BI__builtin_ia32_expandloadsf256_mask:
13223 case X86::BI__builtin_ia32_expandloadsf512_mask:
13224 case X86::BI__builtin_ia32_expandloaddi128_mask:
13225 case X86::BI__builtin_ia32_expandloaddi256_mask:
13226 case X86::BI__builtin_ia32_expandloaddi512_mask:
13227 case X86::BI__builtin_ia32_expandloadsi128_mask:
13228 case X86::BI__builtin_ia32_expandloadsi256_mask:
13229 case X86::BI__builtin_ia32_expandloadsi512_mask:
13230 case X86::BI__builtin_ia32_expandloadhi128_mask:
13231 case X86::BI__builtin_ia32_expandloadhi256_mask:
13232 case X86::BI__builtin_ia32_expandloadhi512_mask:
13233 case X86::BI__builtin_ia32_expandloadqi128_mask:
13234 case X86::BI__builtin_ia32_expandloadqi256_mask:
13235 case X86::BI__builtin_ia32_expandloadqi512_mask:
13236 return EmitX86ExpandLoad(*this, Ops);
13237
13238 case X86::BI__builtin_ia32_compressstoredf128_mask:
13239 case X86::BI__builtin_ia32_compressstoredf256_mask:
13240 case X86::BI__builtin_ia32_compressstoredf512_mask:
13241 case X86::BI__builtin_ia32_compressstoresf128_mask:
13242 case X86::BI__builtin_ia32_compressstoresf256_mask:
13243 case X86::BI__builtin_ia32_compressstoresf512_mask:
13244 case X86::BI__builtin_ia32_compressstoredi128_mask:
13245 case X86::BI__builtin_ia32_compressstoredi256_mask:
13246 case X86::BI__builtin_ia32_compressstoredi512_mask:
13247 case X86::BI__builtin_ia32_compressstoresi128_mask:
13248 case X86::BI__builtin_ia32_compressstoresi256_mask:
13249 case X86::BI__builtin_ia32_compressstoresi512_mask:
13250 case X86::BI__builtin_ia32_compressstorehi128_mask:
13251 case X86::BI__builtin_ia32_compressstorehi256_mask:
13252 case X86::BI__builtin_ia32_compressstorehi512_mask:
13253 case X86::BI__builtin_ia32_compressstoreqi128_mask:
13254 case X86::BI__builtin_ia32_compressstoreqi256_mask:
13255 case X86::BI__builtin_ia32_compressstoreqi512_mask:
13256 return EmitX86CompressStore(*this, Ops);
13257
13258 case X86::BI__builtin_ia32_expanddf128_mask:
13259 case X86::BI__builtin_ia32_expanddf256_mask:
13260 case X86::BI__builtin_ia32_expanddf512_mask:
13261 case X86::BI__builtin_ia32_expandsf128_mask:
13262 case X86::BI__builtin_ia32_expandsf256_mask:
13263 case X86::BI__builtin_ia32_expandsf512_mask:
13264 case X86::BI__builtin_ia32_expanddi128_mask:
13265 case X86::BI__builtin_ia32_expanddi256_mask:
13266 case X86::BI__builtin_ia32_expanddi512_mask:
13267 case X86::BI__builtin_ia32_expandsi128_mask:
13268 case X86::BI__builtin_ia32_expandsi256_mask:
13269 case X86::BI__builtin_ia32_expandsi512_mask:
13270 case X86::BI__builtin_ia32_expandhi128_mask:
13271 case X86::BI__builtin_ia32_expandhi256_mask:
13272 case X86::BI__builtin_ia32_expandhi512_mask:
13273 case X86::BI__builtin_ia32_expandqi128_mask:
13274 case X86::BI__builtin_ia32_expandqi256_mask:
13275 case X86::BI__builtin_ia32_expandqi512_mask:
13276 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
13277
13278 case X86::BI__builtin_ia32_compressdf128_mask:
13279 case X86::BI__builtin_ia32_compressdf256_mask:
13280 case X86::BI__builtin_ia32_compressdf512_mask:
13281 case X86::BI__builtin_ia32_compresssf128_mask:
13282 case X86::BI__builtin_ia32_compresssf256_mask:
13283 case X86::BI__builtin_ia32_compresssf512_mask:
13284 case X86::BI__builtin_ia32_compressdi128_mask:
13285 case X86::BI__builtin_ia32_compressdi256_mask:
13286 case X86::BI__builtin_ia32_compressdi512_mask:
13287 case X86::BI__builtin_ia32_compresssi128_mask:
13288 case X86::BI__builtin_ia32_compresssi256_mask:
13289 case X86::BI__builtin_ia32_compresssi512_mask:
13290 case X86::BI__builtin_ia32_compresshi128_mask:
13291 case X86::BI__builtin_ia32_compresshi256_mask:
13292 case X86::BI__builtin_ia32_compresshi512_mask:
13293 case X86::BI__builtin_ia32_compressqi128_mask:
13294 case X86::BI__builtin_ia32_compressqi256_mask:
13295 case X86::BI__builtin_ia32_compressqi512_mask:
13296 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
13297
13298 case X86::BI__builtin_ia32_gather3div2df:
13299 case X86::BI__builtin_ia32_gather3div2di:
13300 case X86::BI__builtin_ia32_gather3div4df:
13301 case X86::BI__builtin_ia32_gather3div4di:
13302 case X86::BI__builtin_ia32_gather3div4sf:
13303 case X86::BI__builtin_ia32_gather3div4si:
13304 case X86::BI__builtin_ia32_gather3div8sf:
13305 case X86::BI__builtin_ia32_gather3div8si:
13306 case X86::BI__builtin_ia32_gather3siv2df:
13307 case X86::BI__builtin_ia32_gather3siv2di:
13308 case X86::BI__builtin_ia32_gather3siv4df:
13309 case X86::BI__builtin_ia32_gather3siv4di:
13310 case X86::BI__builtin_ia32_gather3siv4sf:
13311 case X86::BI__builtin_ia32_gather3siv4si:
13312 case X86::BI__builtin_ia32_gather3siv8sf:
13313 case X86::BI__builtin_ia32_gather3siv8si:
13314 case X86::BI__builtin_ia32_gathersiv8df:
13315 case X86::BI__builtin_ia32_gathersiv16sf:
13316 case X86::BI__builtin_ia32_gatherdiv8df:
13317 case X86::BI__builtin_ia32_gatherdiv16sf:
13318 case X86::BI__builtin_ia32_gathersiv8di:
13319 case X86::BI__builtin_ia32_gathersiv16si:
13320 case X86::BI__builtin_ia32_gatherdiv8di:
13321 case X86::BI__builtin_ia32_gatherdiv16si: {
13322 Intrinsic::ID IID;
13323 switch (BuiltinID) {
13324 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13324)
;
13325 case X86::BI__builtin_ia32_gather3div2df:
13326 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13327 break;
13328 case X86::BI__builtin_ia32_gather3div2di:
13329 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13330 break;
13331 case X86::BI__builtin_ia32_gather3div4df:
13332 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13333 break;
13334 case X86::BI__builtin_ia32_gather3div4di:
13335 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13336 break;
13337 case X86::BI__builtin_ia32_gather3div4sf:
13338 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13339 break;
13340 case X86::BI__builtin_ia32_gather3div4si:
13341 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13342 break;
13343 case X86::BI__builtin_ia32_gather3div8sf:
13344 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13345 break;
13346 case X86::BI__builtin_ia32_gather3div8si:
13347 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13348 break;
13349 case X86::BI__builtin_ia32_gather3siv2df:
13350 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13351 break;
13352 case X86::BI__builtin_ia32_gather3siv2di:
13353 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13354 break;
13355 case X86::BI__builtin_ia32_gather3siv4df:
13356 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13357 break;
13358 case X86::BI__builtin_ia32_gather3siv4di:
13359 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13360 break;
13361 case X86::BI__builtin_ia32_gather3siv4sf:
13362 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13363 break;
13364 case X86::BI__builtin_ia32_gather3siv4si:
13365 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13366 break;
13367 case X86::BI__builtin_ia32_gather3siv8sf:
13368 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13369 break;
13370 case X86::BI__builtin_ia32_gather3siv8si:
13371 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13372 break;
13373 case X86::BI__builtin_ia32_gathersiv8df:
13374 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13375 break;
13376 case X86::BI__builtin_ia32_gathersiv16sf:
13377 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13378 break;
13379 case X86::BI__builtin_ia32_gatherdiv8df:
13380 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13381 break;
13382 case X86::BI__builtin_ia32_gatherdiv16sf:
13383 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13384 break;
13385 case X86::BI__builtin_ia32_gathersiv8di:
13386 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13387 break;
13388 case X86::BI__builtin_ia32_gathersiv16si:
13389 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13390 break;
13391 case X86::BI__builtin_ia32_gatherdiv8di:
13392 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13393 break;
13394 case X86::BI__builtin_ia32_gatherdiv16si:
13395 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13396 break;
13397 }
13398
13399 unsigned MinElts = std::min(
13400 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13401 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13402 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13403 Function *Intr = CGM.getIntrinsic(IID);
13404 return Builder.CreateCall(Intr, Ops);
13405 }
13406
13407 case X86::BI__builtin_ia32_scattersiv8df:
13408 case X86::BI__builtin_ia32_scattersiv16sf:
13409 case X86::BI__builtin_ia32_scatterdiv8df:
13410 case X86::BI__builtin_ia32_scatterdiv16sf:
13411 case X86::BI__builtin_ia32_scattersiv8di:
13412 case X86::BI__builtin_ia32_scattersiv16si:
13413 case X86::BI__builtin_ia32_scatterdiv8di:
13414 case X86::BI__builtin_ia32_scatterdiv16si:
13415 case X86::BI__builtin_ia32_scatterdiv2df:
13416 case X86::BI__builtin_ia32_scatterdiv2di:
13417 case X86::BI__builtin_ia32_scatterdiv4df:
13418 case X86::BI__builtin_ia32_scatterdiv4di:
13419 case X86::BI__builtin_ia32_scatterdiv4sf:
13420 case X86::BI__builtin_ia32_scatterdiv4si:
13421 case X86::BI__builtin_ia32_scatterdiv8sf:
13422 case X86::BI__builtin_ia32_scatterdiv8si:
13423 case X86::BI__builtin_ia32_scattersiv2df:
13424 case X86::BI__builtin_ia32_scattersiv2di:
13425 case X86::BI__builtin_ia32_scattersiv4df:
13426 case X86::BI__builtin_ia32_scattersiv4di:
13427 case X86::BI__builtin_ia32_scattersiv4sf:
13428 case X86::BI__builtin_ia32_scattersiv4si:
13429 case X86::BI__builtin_ia32_scattersiv8sf:
13430 case X86::BI__builtin_ia32_scattersiv8si: {
13431 Intrinsic::ID IID;
13432 switch (BuiltinID) {
13433 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13433)
;
13434 case X86::BI__builtin_ia32_scattersiv8df:
13435 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13436 break;
13437 case X86::BI__builtin_ia32_scattersiv16sf:
13438 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13439 break;
13440 case X86::BI__builtin_ia32_scatterdiv8df:
13441 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13442 break;
13443 case X86::BI__builtin_ia32_scatterdiv16sf:
13444 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13445 break;
13446 case X86::BI__builtin_ia32_scattersiv8di:
13447 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13448 break;
13449 case X86::BI__builtin_ia32_scattersiv16si:
13450 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13451 break;
13452 case X86::BI__builtin_ia32_scatterdiv8di:
13453 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13454 break;
13455 case X86::BI__builtin_ia32_scatterdiv16si:
13456 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13457 break;
13458 case X86::BI__builtin_ia32_scatterdiv2df:
13459 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13460 break;
13461 case X86::BI__builtin_ia32_scatterdiv2di:
13462 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13463 break;
13464 case X86::BI__builtin_ia32_scatterdiv4df:
13465 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13466 break;
13467 case X86::BI__builtin_ia32_scatterdiv4di:
13468 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13469 break;
13470 case X86::BI__builtin_ia32_scatterdiv4sf:
13471 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13472 break;
13473 case X86::BI__builtin_ia32_scatterdiv4si:
13474 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13475 break;
13476 case X86::BI__builtin_ia32_scatterdiv8sf:
13477 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13478 break;
13479 case X86::BI__builtin_ia32_scatterdiv8si:
13480 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13481 break;
13482 case X86::BI__builtin_ia32_scattersiv2df:
13483 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13484 break;
13485 case X86::BI__builtin_ia32_scattersiv2di:
13486 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13487 break;
13488 case X86::BI__builtin_ia32_scattersiv4df:
13489 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13490 break;
13491 case X86::BI__builtin_ia32_scattersiv4di:
13492 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13493 break;
13494 case X86::BI__builtin_ia32_scattersiv4sf:
13495 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13496 break;
13497 case X86::BI__builtin_ia32_scattersiv4si:
13498 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13499 break;
13500 case X86::BI__builtin_ia32_scattersiv8sf:
13501 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13502 break;
13503 case X86::BI__builtin_ia32_scattersiv8si:
13504 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13505 break;
13506 }
13507
13508 unsigned MinElts = std::min(
13509 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13510 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13511 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13512 Function *Intr = CGM.getIntrinsic(IID);
13513 return Builder.CreateCall(Intr, Ops);
13514 }
13515
13516 case X86::BI__builtin_ia32_vextractf128_pd256:
13517 case X86::BI__builtin_ia32_vextractf128_ps256:
13518 case X86::BI__builtin_ia32_vextractf128_si256:
13519 case X86::BI__builtin_ia32_extract128i256:
13520 case X86::BI__builtin_ia32_extractf64x4_mask:
13521 case X86::BI__builtin_ia32_extractf32x4_mask:
13522 case X86::BI__builtin_ia32_extracti64x4_mask:
13523 case X86::BI__builtin_ia32_extracti32x4_mask:
13524 case X86::BI__builtin_ia32_extractf32x8_mask:
13525 case X86::BI__builtin_ia32_extracti32x8_mask:
13526 case X86::BI__builtin_ia32_extractf32x4_256_mask:
13527 case X86::BI__builtin_ia32_extracti32x4_256_mask:
13528 case X86::BI__builtin_ia32_extractf64x2_256_mask:
13529 case X86::BI__builtin_ia32_extracti64x2_256_mask:
13530 case X86::BI__builtin_ia32_extractf64x2_512_mask:
13531 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13532 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13533 unsigned NumElts = DstTy->getNumElements();
13534 unsigned SrcNumElts =
13535 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13536 unsigned SubVectors = SrcNumElts / NumElts;
13537 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13538 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13538, __extension__ __PRETTY_FUNCTION__
))
;
13539 Index &= SubVectors - 1; // Remove any extra bits.
13540 Index *= NumElts;
13541
13542 int Indices[16];
13543 for (unsigned i = 0; i != NumElts; ++i)
13544 Indices[i] = i + Index;
13545
13546 Value *Res = Builder.CreateShuffleVector(Ops[0],
13547 makeArrayRef(Indices, NumElts),
13548 "extract");
13549
13550 if (Ops.size() == 4)
13551 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13552
13553 return Res;
13554 }
13555 case X86::BI__builtin_ia32_vinsertf128_pd256:
13556 case X86::BI__builtin_ia32_vinsertf128_ps256:
13557 case X86::BI__builtin_ia32_vinsertf128_si256:
13558 case X86::BI__builtin_ia32_insert128i256:
13559 case X86::BI__builtin_ia32_insertf64x4:
13560 case X86::BI__builtin_ia32_insertf32x4:
13561 case X86::BI__builtin_ia32_inserti64x4:
13562 case X86::BI__builtin_ia32_inserti32x4:
13563 case X86::BI__builtin_ia32_insertf32x8:
13564 case X86::BI__builtin_ia32_inserti32x8:
13565 case X86::BI__builtin_ia32_insertf32x4_256:
13566 case X86::BI__builtin_ia32_inserti32x4_256:
13567 case X86::BI__builtin_ia32_insertf64x2_256:
13568 case X86::BI__builtin_ia32_inserti64x2_256:
13569 case X86::BI__builtin_ia32_insertf64x2_512:
13570 case X86::BI__builtin_ia32_inserti64x2_512: {
13571 unsigned DstNumElts =
13572 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13573 unsigned SrcNumElts =
13574 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13575 unsigned SubVectors = DstNumElts / SrcNumElts;
13576 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13577 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13577, __extension__ __PRETTY_FUNCTION__
))
;
13578 Index &= SubVectors - 1; // Remove any extra bits.
13579 Index *= SrcNumElts;
13580
13581 int Indices[16];
13582 for (unsigned i = 0; i != DstNumElts; ++i)
13583 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13584
13585 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13586 makeArrayRef(Indices, DstNumElts),
13587 "widen");
13588
13589 for (unsigned i = 0; i != DstNumElts; ++i) {
13590 if (i >= Index && i < (Index + SrcNumElts))
13591 Indices[i] = (i - Index) + DstNumElts;
13592 else
13593 Indices[i] = i;
13594 }
13595
13596 return Builder.CreateShuffleVector(Ops[0], Op1,
13597 makeArrayRef(Indices, DstNumElts),
13598 "insert");
13599 }
13600 case X86::BI__builtin_ia32_pmovqd512_mask:
13601 case X86::BI__builtin_ia32_pmovwb512_mask: {
13602 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13603 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13604 }
13605 case X86::BI__builtin_ia32_pmovdb512_mask:
13606 case X86::BI__builtin_ia32_pmovdw512_mask:
13607 case X86::BI__builtin_ia32_pmovqw512_mask: {
13608 if (const auto *C = dyn_cast<Constant>(Ops[2]))
13609 if (C->isAllOnesValue())
13610 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13611
13612 Intrinsic::ID IID;
13613 switch (BuiltinID) {
13614 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13614)
;
13615 case X86::BI__builtin_ia32_pmovdb512_mask:
13616 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13617 break;
13618 case X86::BI__builtin_ia32_pmovdw512_mask:
13619 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13620 break;
13621 case X86::BI__builtin_ia32_pmovqw512_mask:
13622 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13623 break;
13624 }
13625
13626 Function *Intr = CGM.getIntrinsic(IID);
13627 return Builder.CreateCall(Intr, Ops);
13628 }
13629 case X86::BI__builtin_ia32_pblendw128:
13630 case X86::BI__builtin_ia32_blendpd:
13631 case X86::BI__builtin_ia32_blendps:
13632 case X86::BI__builtin_ia32_blendpd256:
13633 case X86::BI__builtin_ia32_blendps256:
13634 case X86::BI__builtin_ia32_pblendw256:
13635 case X86::BI__builtin_ia32_pblendd128:
13636 case X86::BI__builtin_ia32_pblendd256: {
13637 unsigned NumElts =
13638 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13639 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13640
13641 int Indices[16];
13642 // If there are more than 8 elements, the immediate is used twice so make
13643 // sure we handle that.
13644 for (unsigned i = 0; i != NumElts; ++i)
13645 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13646
13647 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13648 makeArrayRef(Indices, NumElts),
13649 "blend");
13650 }
13651 case X86::BI__builtin_ia32_pshuflw:
13652 case X86::BI__builtin_ia32_pshuflw256:
13653 case X86::BI__builtin_ia32_pshuflw512: {
13654 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13655 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13656 unsigned NumElts = Ty->getNumElements();
13657
13658 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13659 Imm = (Imm & 0xff) * 0x01010101;
13660
13661 int Indices[32];
13662 for (unsigned l = 0; l != NumElts; l += 8) {
13663 for (unsigned i = 0; i != 4; ++i) {
13664 Indices[l + i] = l + (Imm & 3);
13665 Imm >>= 2;
13666 }
13667 for (unsigned i = 4; i != 8; ++i)
13668 Indices[l + i] = l + i;
13669 }
13670
13671 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13672 "pshuflw");
13673 }
13674 case X86::BI__builtin_ia32_pshufhw:
13675 case X86::BI__builtin_ia32_pshufhw256:
13676 case X86::BI__builtin_ia32_pshufhw512: {
13677 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13678 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13679 unsigned NumElts = Ty->getNumElements();
13680
13681 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13682 Imm = (Imm & 0xff) * 0x01010101;
13683
13684 int Indices[32];
13685 for (unsigned l = 0; l != NumElts; l += 8) {
13686 for (unsigned i = 0; i != 4; ++i)
13687 Indices[l + i] = l + i;
13688 for (unsigned i = 4; i != 8; ++i) {
13689 Indices[l + i] = l + 4 + (Imm & 3);
13690 Imm >>= 2;
13691 }
13692 }
13693
13694 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13695 "pshufhw");
13696 }
13697 case X86::BI__builtin_ia32_pshufd:
13698 case X86::BI__builtin_ia32_pshufd256:
13699 case X86::BI__builtin_ia32_pshufd512:
13700 case X86::BI__builtin_ia32_vpermilpd:
13701 case X86::BI__builtin_ia32_vpermilps:
13702 case X86::BI__builtin_ia32_vpermilpd256:
13703 case X86::BI__builtin_ia32_vpermilps256:
13704 case X86::BI__builtin_ia32_vpermilpd512:
13705 case X86::BI__builtin_ia32_vpermilps512: {
13706 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13707 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13708 unsigned NumElts = Ty->getNumElements();
13709 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13710 unsigned NumLaneElts = NumElts / NumLanes;
13711
13712 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13713 Imm = (Imm & 0xff) * 0x01010101;
13714
13715 int Indices[16];
13716 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13717 for (unsigned i = 0; i != NumLaneElts; ++i) {
13718 Indices[i + l] = (Imm % NumLaneElts) + l;
13719 Imm /= NumLaneElts;
13720 }
13721 }
13722
13723 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13724 "permil");
13725 }
13726 case X86::BI__builtin_ia32_shufpd:
13727 case X86::BI__builtin_ia32_shufpd256:
13728 case X86::BI__builtin_ia32_shufpd512:
13729 case X86::BI__builtin_ia32_shufps:
13730 case X86::BI__builtin_ia32_shufps256:
13731 case X86::BI__builtin_ia32_shufps512: {
13732 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13733 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13734 unsigned NumElts = Ty->getNumElements();
13735 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13736 unsigned NumLaneElts = NumElts / NumLanes;
13737
13738 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13739 Imm = (Imm & 0xff) * 0x01010101;
13740
13741 int Indices[16];
13742 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13743 for (unsigned i = 0; i != NumLaneElts; ++i) {
13744 unsigned Index = Imm % NumLaneElts;
13745 Imm /= NumLaneElts;
13746 if (i >= (NumLaneElts / 2))
13747 Index += NumElts;
13748 Indices[l + i] = l + Index;
13749 }
13750 }
13751
13752 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13753 makeArrayRef(Indices, NumElts),
13754 "shufp");
13755 }
13756 case X86::BI__builtin_ia32_permdi256:
13757 case X86::BI__builtin_ia32_permdf256:
13758 case X86::BI__builtin_ia32_permdi512:
13759 case X86::BI__builtin_ia32_permdf512: {
13760 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13761 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13762 unsigned NumElts = Ty->getNumElements();
13763
13764 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13765 int Indices[8];
13766 for (unsigned l = 0; l != NumElts; l += 4)
13767 for (unsigned i = 0; i != 4; ++i)
13768 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13769
13770 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13771 "perm");
13772 }
13773 case X86::BI__builtin_ia32_palignr128:
13774 case X86::BI__builtin_ia32_palignr256:
13775 case X86::BI__builtin_ia32_palignr512: {
13776 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13777
13778 unsigned NumElts =
13779 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13780 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "clang/lib/CodeGen/CGBuiltin.cpp", 13780
, __extension__ __PRETTY_FUNCTION__))
;
13781
13782 // If palignr is shifting the pair of vectors more than the size of two
13783 // lanes, emit zero.
13784 if (ShiftVal >= 32)
13785 return llvm::Constant::getNullValue(ConvertType(E->getType()));
13786
13787 // If palignr is shifting the pair of input vectors more than one lane,
13788 // but less than two lanes, convert to shifting in zeroes.
13789 if (ShiftVal > 16) {
13790 ShiftVal -= 16;
13791 Ops[1] = Ops[0];
13792 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13793 }
13794
13795 int Indices[64];
13796 // 256-bit palignr operates on 128-bit lanes so we need to handle that
13797 for (unsigned l = 0; l != NumElts; l += 16) {
13798 for (unsigned i = 0; i != 16; ++i) {
13799 unsigned Idx = ShiftVal + i;
13800 if (Idx >= 16)
13801 Idx += NumElts - 16; // End of lane, switch operand.
13802 Indices[l + i] = Idx + l;
13803 }
13804 }
13805
13806 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13807 makeArrayRef(Indices, NumElts),
13808 "palignr");
13809 }
13810 case X86::BI__builtin_ia32_alignd128:
13811 case X86::BI__builtin_ia32_alignd256:
13812 case X86::BI__builtin_ia32_alignd512:
13813 case X86::BI__builtin_ia32_alignq128:
13814 case X86::BI__builtin_ia32_alignq256:
13815 case X86::BI__builtin_ia32_alignq512: {
13816 unsigned NumElts =
13817 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13818 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13819
13820 // Mask the shift amount to width of a vector.
13821 ShiftVal &= NumElts - 1;
13822
13823 int Indices[16];
13824 for (unsigned i = 0; i != NumElts; ++i)
13825 Indices[i] = i + ShiftVal;
13826
13827 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13828 makeArrayRef(Indices, NumElts),
13829 "valign");
13830 }
13831 case X86::BI__builtin_ia32_shuf_f32x4_256:
13832 case X86::BI__builtin_ia32_shuf_f64x2_256:
13833 case X86::BI__builtin_ia32_shuf_i32x4_256:
13834 case X86::BI__builtin_ia32_shuf_i64x2_256:
13835 case X86::BI__builtin_ia32_shuf_f32x4:
13836 case X86::BI__builtin_ia32_shuf_f64x2:
13837 case X86::BI__builtin_ia32_shuf_i32x4:
13838 case X86::BI__builtin_ia32_shuf_i64x2: {
13839 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13840 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13841 unsigned NumElts = Ty->getNumElements();
13842 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13843 unsigned NumLaneElts = NumElts / NumLanes;
13844
13845 int Indices[16];
13846 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13847 unsigned Index = (Imm % NumLanes) * NumLaneElts;
13848 Imm /= NumLanes; // Discard the bits we just used.
13849 if (l >= (NumElts / 2))
13850 Index += NumElts; // Switch to other source.
13851 for (unsigned i = 0; i != NumLaneElts; ++i) {
13852 Indices[l + i] = Index + i;
13853 }
13854 }
13855
13856 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13857 makeArrayRef(Indices, NumElts),
13858 "shuf");
13859 }
13860
13861 case X86::BI__builtin_ia32_vperm2f128_pd256:
13862 case X86::BI__builtin_ia32_vperm2f128_ps256:
13863 case X86::BI__builtin_ia32_vperm2f128_si256:
13864 case X86::BI__builtin_ia32_permti256: {
13865 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13866 unsigned NumElts =
13867 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13868
13869 // This takes a very simple approach since there are two lanes and a
13870 // shuffle can have 2 inputs. So we reserve the first input for the first
13871 // lane and the second input for the second lane. This may result in
13872 // duplicate sources, but this can be dealt with in the backend.
13873
13874 Value *OutOps[2];
13875 int Indices[8];
13876 for (unsigned l = 0; l != 2; ++l) {
13877 // Determine the source for this lane.
13878 if (Imm & (1 << ((l * 4) + 3)))
13879 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13880 else if (Imm & (1 << ((l * 4) + 1)))
13881 OutOps[l] = Ops[1];
13882 else
13883 OutOps[l] = Ops[0];
13884
13885 for (unsigned i = 0; i != NumElts/2; ++i) {
13886 // Start with ith element of the source for this lane.
13887 unsigned Idx = (l * NumElts) + i;
13888 // If bit 0 of the immediate half is set, switch to the high half of
13889 // the source.
13890 if (Imm & (1 << (l * 4)))
13891 Idx += NumElts/2;
13892 Indices[(l * (NumElts/2)) + i] = Idx;
13893 }
13894 }
13895
13896 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13897 makeArrayRef(Indices, NumElts),
13898 "vperm");
13899 }
13900
13901 case X86::BI__builtin_ia32_pslldqi128_byteshift:
13902 case X86::BI__builtin_ia32_pslldqi256_byteshift:
13903 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13904 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13905 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13906 // Builtin type is vXi64 so multiply by 8 to get bytes.
13907 unsigned NumElts = ResultType->getNumElements() * 8;
13908
13909 // If pslldq is shifting the vector more than 15 bytes, emit zero.
13910 if (ShiftVal >= 16)
13911 return llvm::Constant::getNullValue(ResultType);
13912
13913 int Indices[64];
13914 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13915 for (unsigned l = 0; l != NumElts; l += 16) {
13916 for (unsigned i = 0; i != 16; ++i) {
13917 unsigned Idx = NumElts + i - ShiftVal;
13918 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13919 Indices[l + i] = Idx + l;
13920 }
13921 }
13922
13923 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13924 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13925 Value *Zero = llvm::Constant::getNullValue(VecTy);
13926 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13927 makeArrayRef(Indices, NumElts),
13928 "pslldq");
13929 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13930 }
13931 case X86::BI__builtin_ia32_psrldqi128_byteshift:
13932 case X86::BI__builtin_ia32_psrldqi256_byteshift:
13933 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13934 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13935 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13936 // Builtin type is vXi64 so multiply by 8 to get bytes.
13937 unsigned NumElts = ResultType->getNumElements() * 8;
13938
13939 // If psrldq is shifting the vector more than 15 bytes, emit zero.
13940 if (ShiftVal >= 16)
13941 return llvm::Constant::getNullValue(ResultType);
13942
13943 int Indices[64];
13944 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13945 for (unsigned l = 0; l != NumElts; l += 16) {
13946 for (unsigned i = 0; i != 16; ++i) {
13947 unsigned Idx = i + ShiftVal;
13948 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13949 Indices[l + i] = Idx + l;
13950 }
13951 }
13952
13953 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13954 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13955 Value *Zero = llvm::Constant::getNullValue(VecTy);
13956 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13957 makeArrayRef(Indices, NumElts),
13958 "psrldq");
13959 return Builder.CreateBitCast(SV, ResultType, "cast");
13960 }
13961 case X86::BI__builtin_ia32_kshiftliqi:
13962 case X86::BI__builtin_ia32_kshiftlihi:
13963 case X86::BI__builtin_ia32_kshiftlisi:
13964 case X86::BI__builtin_ia32_kshiftlidi: {
13965 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13966 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13967
13968 if (ShiftVal >= NumElts)
13969 return llvm::Constant::getNullValue(Ops[0]->getType());
13970
13971 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13972
13973 int Indices[64];
13974 for (unsigned i = 0; i != NumElts; ++i)
13975 Indices[i] = NumElts + i - ShiftVal;
13976
13977 Value *Zero = llvm::Constant::getNullValue(In->getType());
13978 Value *SV = Builder.CreateShuffleVector(Zero, In,
13979 makeArrayRef(Indices, NumElts),
13980 "kshiftl");
13981 return Builder.CreateBitCast(SV, Ops[0]->getType());
13982 }
13983 case X86::BI__builtin_ia32_kshiftriqi:
13984 case X86::BI__builtin_ia32_kshiftrihi:
13985 case X86::BI__builtin_ia32_kshiftrisi:
13986 case X86::BI__builtin_ia32_kshiftridi: {
13987 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13988 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13989
13990 if (ShiftVal >= NumElts)
13991 return llvm::Constant::getNullValue(Ops[0]->getType());
13992
13993 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13994
13995 int Indices[64];
13996 for (unsigned i = 0; i != NumElts; ++i)
13997 Indices[i] = i + ShiftVal;
13998
13999 Value *Zero = llvm::Constant::getNullValue(In->getType());
14000 Value *SV = Builder.CreateShuffleVector(In, Zero,
14001 makeArrayRef(Indices, NumElts),
14002 "kshiftr");
14003 return Builder.CreateBitCast(SV, Ops[0]->getType());
14004 }
14005 case X86::BI__builtin_ia32_movnti:
14006 case X86::BI__builtin_ia32_movnti64:
14007 case X86::BI__builtin_ia32_movntsd:
14008 case X86::BI__builtin_ia32_movntss: {
14009 llvm::MDNode *Node = llvm::MDNode::get(
14010 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
14011
14012 Value *Ptr = Ops[0];
14013 Value *Src = Ops[1];
14014
14015 // Extract the 0'th element of the source vector.
14016 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
14017 BuiltinID == X86::BI__builtin_ia32_movntss)
14018 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
14019
14020 // Convert the type of the pointer to a pointer to the stored type.
14021 Value *BC = Builder.CreateBitCast(
14022 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
14023
14024 // Unaligned nontemporal store of the scalar value.
14025 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
14026 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
14027 SI->setAlignment(llvm::Align(1));
14028 return SI;
14029 }
14030 // Rotate is a special case of funnel shift - 1st 2 args are the same.
14031 case X86::BI__builtin_ia32_vprotb:
14032 case X86::BI__builtin_ia32_vprotw:
14033 case X86::BI__builtin_ia32_vprotd:
14034 case X86::BI__builtin_ia32_vprotq:
14035 case X86::BI__builtin_ia32_vprotbi:
14036 case X86::BI__builtin_ia32_vprotwi:
14037 case X86::BI__builtin_ia32_vprotdi:
14038 case X86::BI__builtin_ia32_vprotqi:
14039 case X86::BI__builtin_ia32_prold128:
14040 case X86::BI__builtin_ia32_prold256:
14041 case X86::BI__builtin_ia32_prold512:
14042 case X86::BI__builtin_ia32_prolq128:
14043 case X86::BI__builtin_ia32_prolq256:
14044 case X86::BI__builtin_ia32_prolq512:
14045 case X86::BI__builtin_ia32_prolvd128:
14046 case X86::BI__builtin_ia32_prolvd256:
14047 case X86::BI__builtin_ia32_prolvd512:
14048 case X86::BI__builtin_ia32_prolvq128:
14049 case X86::BI__builtin_ia32_prolvq256:
14050 case X86::BI__builtin_ia32_prolvq512:
14051 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
14052 case X86::BI__builtin_ia32_prord128:
14053 case X86::BI__builtin_ia32_prord256:
14054 case X86::BI__builtin_ia32_prord512:
14055 case X86::BI__builtin_ia32_prorq128:
14056 case X86::BI__builtin_ia32_prorq256:
14057 case X86::BI__builtin_ia32_prorq512:
14058 case X86::BI__builtin_ia32_prorvd128:
14059 case X86::BI__builtin_ia32_prorvd256:
14060 case X86::BI__builtin_ia32_prorvd512:
14061 case X86::BI__builtin_ia32_prorvq128:
14062 case X86::BI__builtin_ia32_prorvq256:
14063 case X86::BI__builtin_ia32_prorvq512:
14064 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
14065 case X86::BI__builtin_ia32_selectb_128:
14066 case X86::BI__builtin_ia32_selectb_256:
14067 case X86::BI__builtin_ia32_selectb_512:
14068 case X86::BI__builtin_ia32_selectw_128:
14069 case X86::BI__builtin_ia32_selectw_256:
14070 case X86::BI__builtin_ia32_selectw_512:
14071 case X86::BI__builtin_ia32_selectd_128:
14072 case X86::BI__builtin_ia32_selectd_256:
14073 case X86::BI__builtin_ia32_selectd_512:
14074 case X86::BI__builtin_ia32_selectq_128:
14075 case X86::BI__builtin_ia32_selectq_256:
14076 case X86::BI__builtin_ia32_selectq_512:
14077 case X86::BI__builtin_ia32_selectph_128:
14078 case X86::BI__builtin_ia32_selectph_256:
14079 case X86::BI__builtin_ia32_selectph_512:
14080 case X86::BI__builtin_ia32_selectps_128:
14081 case X86::BI__builtin_ia32_selectps_256:
14082 case X86::BI__builtin_ia32_selectps_512:
14083 case X86::BI__builtin_ia32_selectpd_128:
14084 case X86::BI__builtin_ia32_selectpd_256:
14085 case X86::BI__builtin_ia32_selectpd_512:
14086 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
14087 case X86::BI__builtin_ia32_selectsh_128:
14088 case X86::BI__builtin_ia32_selectss_128:
14089 case X86::BI__builtin_ia32_selectsd_128: {
14090 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14091 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14092 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
14093 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
14094 }
14095 case X86::BI__builtin_ia32_cmpb128_mask:
14096 case X86::BI__builtin_ia32_cmpb256_mask:
14097 case X86::BI__builtin_ia32_cmpb512_mask:
14098 case X86::BI__builtin_ia32_cmpw128_mask:
14099 case X86::BI__builtin_ia32_cmpw256_mask:
14100 case X86::BI__builtin_ia32_cmpw512_mask:
14101 case X86::BI__builtin_ia32_cmpd128_mask:
14102 case X86::BI__builtin_ia32_cmpd256_mask:
14103 case X86::BI__builtin_ia32_cmpd512_mask:
14104 case X86::BI__builtin_ia32_cmpq128_mask:
14105 case X86::BI__builtin_ia32_cmpq256_mask:
14106 case X86::BI__builtin_ia32_cmpq512_mask: {
14107 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14108 return EmitX86MaskedCompare(*this, CC, true, Ops);
14109 }
14110 case X86::BI__builtin_ia32_ucmpb128_mask:
14111 case X86::BI__builtin_ia32_ucmpb256_mask:
14112 case X86::BI__builtin_ia32_ucmpb512_mask:
14113 case X86::BI__builtin_ia32_ucmpw128_mask:
14114 case X86::BI__builtin_ia32_ucmpw256_mask:
14115 case X86::BI__builtin_ia32_ucmpw512_mask:
14116 case X86::BI__builtin_ia32_ucmpd128_mask:
14117 case X86::BI__builtin_ia32_ucmpd256_mask:
14118 case X86::BI__builtin_ia32_ucmpd512_mask:
14119 case X86::BI__builtin_ia32_ucmpq128_mask:
14120 case X86::BI__builtin_ia32_ucmpq256_mask:
14121 case X86::BI__builtin_ia32_ucmpq512_mask: {
14122 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14123 return EmitX86MaskedCompare(*this, CC, false, Ops);
14124 }
14125 case X86::BI__builtin_ia32_vpcomb:
14126 case X86::BI__builtin_ia32_vpcomw:
14127 case X86::BI__builtin_ia32_vpcomd:
14128 case X86::BI__builtin_ia32_vpcomq:
14129 return EmitX86vpcom(*this, Ops, true);
14130 case X86::BI__builtin_ia32_vpcomub:
14131 case X86::BI__builtin_ia32_vpcomuw:
14132 case X86::BI__builtin_ia32_vpcomud:
14133 case X86::BI__builtin_ia32_vpcomuq:
14134 return EmitX86vpcom(*this, Ops, false);
14135
14136 case X86::BI__builtin_ia32_kortestcqi:
14137 case X86::BI__builtin_ia32_kortestchi:
14138 case X86::BI__builtin_ia32_kortestcsi:
14139 case X86::BI__builtin_ia32_kortestcdi: {
14140 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14141 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
14142 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14143 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14144 }
14145 case X86::BI__builtin_ia32_kortestzqi:
14146 case X86::BI__builtin_ia32_kortestzhi:
14147 case X86::BI__builtin_ia32_kortestzsi:
14148 case X86::BI__builtin_ia32_kortestzdi: {
14149 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14150 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
14151 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14152 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14153 }
14154
14155 case X86::BI__builtin_ia32_ktestcqi:
14156 case X86::BI__builtin_ia32_ktestzqi:
14157 case X86::BI__builtin_ia32_ktestchi:
14158 case X86::BI__builtin_ia32_ktestzhi:
14159 case X86::BI__builtin_ia32_ktestcsi:
14160 case X86::BI__builtin_ia32_ktestzsi:
14161 case X86::BI__builtin_ia32_ktestcdi:
14162 case X86::BI__builtin_ia32_ktestzdi: {
14163 Intrinsic::ID IID;
14164 switch (BuiltinID) {
14165 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14165)
;
14166 case X86::BI__builtin_ia32_ktestcqi:
14167 IID = Intrinsic::x86_avx512_ktestc_b;
14168 break;
14169 case X86::BI__builtin_ia32_ktestzqi:
14170 IID = Intrinsic::x86_avx512_ktestz_b;
14171 break;
14172 case X86::BI__builtin_ia32_ktestchi:
14173 IID = Intrinsic::x86_avx512_ktestc_w;
14174 break;
14175 case X86::BI__builtin_ia32_ktestzhi:
14176 IID = Intrinsic::x86_avx512_ktestz_w;
14177 break;
14178 case X86::BI__builtin_ia32_ktestcsi:
14179 IID = Intrinsic::x86_avx512_ktestc_d;
14180 break;
14181 case X86::BI__builtin_ia32_ktestzsi:
14182 IID = Intrinsic::x86_avx512_ktestz_d;
14183 break;
14184 case X86::BI__builtin_ia32_ktestcdi:
14185 IID = Intrinsic::x86_avx512_ktestc_q;
14186 break;
14187 case X86::BI__builtin_ia32_ktestzdi:
14188 IID = Intrinsic::x86_avx512_ktestz_q;
14189 break;
14190 }
14191
14192 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14193 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14194 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14195 Function *Intr = CGM.getIntrinsic(IID);
14196 return Builder.CreateCall(Intr, {LHS, RHS});
14197 }
14198
14199 case X86::BI__builtin_ia32_kaddqi:
14200 case X86::BI__builtin_ia32_kaddhi:
14201 case X86::BI__builtin_ia32_kaddsi:
14202 case X86::BI__builtin_ia32_kadddi: {
14203 Intrinsic::ID IID;
14204 switch (BuiltinID) {
14205 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14205)
;
14206 case X86::BI__builtin_ia32_kaddqi:
14207 IID = Intrinsic::x86_avx512_kadd_b;
14208 break;
14209 case X86::BI__builtin_ia32_kaddhi:
14210 IID = Intrinsic::x86_avx512_kadd_w;
14211 break;
14212 case X86::BI__builtin_ia32_kaddsi:
14213 IID = Intrinsic::x86_avx512_kadd_d;
14214 break;
14215 case X86::BI__builtin_ia32_kadddi:
14216 IID = Intrinsic::x86_avx512_kadd_q;
14217 break;
14218 }
14219
14220 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14221 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14222 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14223 Function *Intr = CGM.getIntrinsic(IID);
14224 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
14225 return Builder.CreateBitCast(Res, Ops[0]->getType());
14226 }
14227 case X86::BI__builtin_ia32_kandqi:
14228 case X86::BI__builtin_ia32_kandhi:
14229 case X86::BI__builtin_ia32_kandsi:
14230 case X86::BI__builtin_ia32_kanddi:
14231 return EmitX86MaskLogic(*this, Instruction::And, Ops);
14232 case X86::BI__builtin_ia32_kandnqi:
14233 case X86::BI__builtin_ia32_kandnhi:
14234 case X86::BI__builtin_ia32_kandnsi:
14235 case X86::BI__builtin_ia32_kandndi:
14236 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
14237 case X86::BI__builtin_ia32_korqi:
14238 case X86::BI__builtin_ia32_korhi:
14239 case X86::BI__builtin_ia32_korsi:
14240 case X86::BI__builtin_ia32_kordi:
14241 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
14242 case X86::BI__builtin_ia32_kxnorqi:
14243 case X86::BI__builtin_ia32_kxnorhi:
14244 case X86::BI__builtin_ia32_kxnorsi:
14245 case X86::BI__builtin_ia32_kxnordi:
14246 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
14247 case X86::BI__builtin_ia32_kxorqi:
14248 case X86::BI__builtin_ia32_kxorhi:
14249 case X86::BI__builtin_ia32_kxorsi:
14250 case X86::BI__builtin_ia32_kxordi:
14251 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
14252 case X86::BI__builtin_ia32_knotqi:
14253 case X86::BI__builtin_ia32_knothi:
14254 case X86::BI__builtin_ia32_knotsi:
14255 case X86::BI__builtin_ia32_knotdi: {
14256 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14257 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14258 return Builder.CreateBitCast(Builder.CreateNot(Res),
14259 Ops[0]->getType());
14260 }
14261 case X86::BI__builtin_ia32_kmovb:
14262 case X86::BI__builtin_ia32_kmovw:
14263 case X86::BI__builtin_ia32_kmovd:
14264 case X86::BI__builtin_ia32_kmovq: {
14265 // Bitcast to vXi1 type and then back to integer. This gets the mask
14266 // register type into the IR, but might be optimized out depending on
14267 // what's around it.
14268 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14269 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14270 return Builder.CreateBitCast(Res, Ops[0]->getType());
14271 }
14272
14273 case X86::BI__builtin_ia32_kunpckdi:
14274 case X86::BI__builtin_ia32_kunpcksi:
14275 case X86::BI__builtin_ia32_kunpckhi: {
14276 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14277 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14278 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14279 int Indices[64];
14280 for (unsigned i = 0; i != NumElts; ++i)
14281 Indices[i] = i;
14282
14283 // First extract half of each vector. This gives better codegen than
14284 // doing it in a single shuffle.
14285 LHS = Builder.CreateShuffleVector(LHS, LHS,
14286 makeArrayRef(Indices, NumElts / 2));
14287 RHS = Builder.CreateShuffleVector(RHS, RHS,
14288 makeArrayRef(Indices, NumElts / 2));
14289 // Concat the vectors.
14290 // NOTE: Operands are swapped to match the intrinsic definition.
14291 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
14292 makeArrayRef(Indices, NumElts));
14293 return Builder.CreateBitCast(Res, Ops[0]->getType());
14294 }
14295
14296 case X86::BI__builtin_ia32_vplzcntd_128:
14297 case X86::BI__builtin_ia32_vplzcntd_256:
14298 case X86::BI__builtin_ia32_vplzcntd_512:
14299 case X86::BI__builtin_ia32_vplzcntq_128:
14300 case X86::BI__builtin_ia32_vplzcntq_256:
14301 case X86::BI__builtin_ia32_vplzcntq_512: {
14302 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14303 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14304 }
14305 case X86::BI__builtin_ia32_sqrtss:
14306 case X86::BI__builtin_ia32_sqrtsd: {
14307 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14308 Function *F;
14309 if (Builder.getIsFPConstrained()) {
14310 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14311 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14312 A->getType());
14313 A = Builder.CreateConstrainedFPCall(F, {A});
14314 } else {
14315 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14316 A = Builder.CreateCall(F, {A});
14317 }
14318 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14319 }
14320 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14321 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14322 case X86::BI__builtin_ia32_sqrtss_round_mask: {
14323 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14324 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14325 // otherwise keep the intrinsic.
14326 if (CC != 4) {
14327 Intrinsic::ID IID;
14328
14329 switch (BuiltinID) {
14330 default:
14331 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14331)
;
14332 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14333 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14334 break;
14335 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14336 IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14337 break;
14338 case X86::BI__builtin_ia32_sqrtss_round_mask:
14339 IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14340 break;
14341 }
14342 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14343 }
14344 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14345 Function *F;
14346 if (Builder.getIsFPConstrained()) {
14347 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14348 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14349 A->getType());
14350 A = Builder.CreateConstrainedFPCall(F, A);
14351 } else {
14352 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14353 A = Builder.CreateCall(F, A);
14354 }
14355 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14356 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14357 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14358 }
14359 case X86::BI__builtin_ia32_sqrtpd256:
14360 case X86::BI__builtin_ia32_sqrtpd:
14361 case X86::BI__builtin_ia32_sqrtps256:
14362 case X86::BI__builtin_ia32_sqrtps:
14363 case X86::BI__builtin_ia32_sqrtph256:
14364 case X86::BI__builtin_ia32_sqrtph:
14365 case X86::BI__builtin_ia32_sqrtph512:
14366 case X86::BI__builtin_ia32_sqrtps512:
14367 case X86::BI__builtin_ia32_sqrtpd512: {
14368 if (Ops.size() == 2) {
14369 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14370 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14371 // otherwise keep the intrinsic.
14372 if (CC != 4) {
14373 Intrinsic::ID IID;
14374
14375 switch (BuiltinID) {
14376 default:
14377 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14377)
;
14378 case X86::BI__builtin_ia32_sqrtph512:
14379 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14380 break;
14381 case X86::BI__builtin_ia32_sqrtps512:
14382 IID = Intrinsic::x86_avx512_sqrt_ps_512;
14383 break;
14384 case X86::BI__builtin_ia32_sqrtpd512:
14385 IID = Intrinsic::x86_avx512_sqrt_pd_512;
14386 break;
14387 }
14388 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14389 }
14390 }
14391 if (Builder.getIsFPConstrained()) {
14392 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14393 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14394 Ops[0]->getType());
14395 return Builder.CreateConstrainedFPCall(F, Ops[0]);
14396 } else {
14397 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14398 return Builder.CreateCall(F, Ops[0]);
14399 }
14400 }
14401
14402 case X86::BI__builtin_ia32_pmuludq128:
14403 case X86::BI__builtin_ia32_pmuludq256:
14404 case X86::BI__builtin_ia32_pmuludq512:
14405 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14406
14407 case X86::BI__builtin_ia32_pmuldq128:
14408 case X86::BI__builtin_ia32_pmuldq256:
14409 case X86::BI__builtin_ia32_pmuldq512:
14410 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14411
14412 case X86::BI__builtin_ia32_pternlogd512_mask:
14413 case X86::BI__builtin_ia32_pternlogq512_mask:
14414 case X86::BI__builtin_ia32_pternlogd128_mask:
14415 case X86::BI__builtin_ia32_pternlogd256_mask:
14416 case X86::BI__builtin_ia32_pternlogq128_mask:
14417 case X86::BI__builtin_ia32_pternlogq256_mask:
14418 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14419
14420 case X86::BI__builtin_ia32_pternlogd512_maskz:
14421 case X86::BI__builtin_ia32_pternlogq512_maskz:
14422 case X86::BI__builtin_ia32_pternlogd128_maskz:
14423 case X86::BI__builtin_ia32_pternlogd256_maskz:
14424 case X86::BI__builtin_ia32_pternlogq128_maskz:
14425 case X86::BI__builtin_ia32_pternlogq256_maskz:
14426 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14427
14428 case X86::BI__builtin_ia32_vpshldd128:
14429 case X86::BI__builtin_ia32_vpshldd256:
14430 case X86::BI__builtin_ia32_vpshldd512:
14431 case X86::BI__builtin_ia32_vpshldq128:
14432 case X86::BI__builtin_ia32_vpshldq256:
14433 case X86::BI__builtin_ia32_vpshldq512:
14434 case X86::BI__builtin_ia32_vpshldw128:
14435 case X86::BI__builtin_ia32_vpshldw256:
14436 case X86::BI__builtin_ia32_vpshldw512:
14437 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14438
14439 case X86::BI__builtin_ia32_vpshrdd128:
14440 case X86::BI__builtin_ia32_vpshrdd256:
14441 case X86::BI__builtin_ia32_vpshrdd512:
14442 case X86::BI__builtin_ia32_vpshrdq128:
14443 case X86::BI__builtin_ia32_vpshrdq256:
14444 case X86::BI__builtin_ia32_vpshrdq512:
14445 case X86::BI__builtin_ia32_vpshrdw128:
14446 case X86::BI__builtin_ia32_vpshrdw256:
14447 case X86::BI__builtin_ia32_vpshrdw512:
14448 // Ops 0 and 1 are swapped.
14449 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14450
14451 case X86::BI__builtin_ia32_vpshldvd128:
14452 case X86::BI__builtin_ia32_vpshldvd256:
14453 case X86::BI__builtin_ia32_vpshldvd512:
14454 case X86::BI__builtin_ia32_vpshldvq128:
14455 case X86::BI__builtin_ia32_vpshldvq256:
14456 case X86::BI__builtin_ia32_vpshldvq512:
14457 case X86::BI__builtin_ia32_vpshldvw128:
14458 case X86::BI__builtin_ia32_vpshldvw256:
14459 case X86::BI__builtin_ia32_vpshldvw512:
14460 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14461
14462 case X86::BI__builtin_ia32_vpshrdvd128:
14463 case X86::BI__builtin_ia32_vpshrdvd256:
14464 case X86::BI__builtin_ia32_vpshrdvd512:
14465 case X86::BI__builtin_ia32_vpshrdvq128:
14466 case X86::BI__builtin_ia32_vpshrdvq256:
14467 case X86::BI__builtin_ia32_vpshrdvq512:
14468 case X86::BI__builtin_ia32_vpshrdvw128:
14469 case X86::BI__builtin_ia32_vpshrdvw256:
14470 case X86::BI__builtin_ia32_vpshrdvw512:
14471 // Ops 0 and 1 are swapped.
14472 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14473
14474 // Reductions
14475 case X86::BI__builtin_ia32_reduce_add_d512:
14476 case X86::BI__builtin_ia32_reduce_add_q512: {
14477 Function *F =
14478 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14479 return Builder.CreateCall(F, {Ops[0]});
14480 }
14481 case X86::BI__builtin_ia32_reduce_fadd_pd512:
14482 case X86::BI__builtin_ia32_reduce_fadd_ps512:
14483 case X86::BI__builtin_ia32_reduce_fadd_ph512:
14484 case X86::BI__builtin_ia32_reduce_fadd_ph256:
14485 case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14486 Function *F =
14487 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14488 Builder.getFastMathFlags().setAllowReassoc();
14489 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14490 }
14491 case X86::BI__builtin_ia32_reduce_fmul_pd512:
14492 case X86::BI__builtin_ia32_reduce_fmul_ps512:
14493 case X86::BI__builtin_ia32_reduce_fmul_ph512:
14494 case X86::BI__builtin_ia32_reduce_fmul_ph256:
14495 case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14496 Function *F =
14497 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14498 Builder.getFastMathFlags().setAllowReassoc();
14499 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14500 }
14501 case X86::BI__builtin_ia32_reduce_fmax_pd512:
14502 case X86::BI__builtin_ia32_reduce_fmax_ps512:
14503 case X86::BI__builtin_ia32_reduce_fmax_ph512:
14504 case X86::BI__builtin_ia32_reduce_fmax_ph256:
14505 case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14506 Function *F =
14507 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14508 Builder.getFastMathFlags().setNoNaNs();
14509 return Builder.CreateCall(F, {Ops[0]});
14510 }
14511 case X86::BI__builtin_ia32_reduce_fmin_pd512:
14512 case X86::BI__builtin_ia32_reduce_fmin_ps512:
14513 case X86::BI__builtin_ia32_reduce_fmin_ph512:
14514 case X86::BI__builtin_ia32_reduce_fmin_ph256:
14515 case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14516 Function *F =
14517 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14518 Builder.getFastMathFlags().setNoNaNs();
14519 return Builder.CreateCall(F, {Ops[0]});
14520 }
14521 case X86::BI__builtin_ia32_reduce_mul_d512:
14522 case X86::BI__builtin_ia32_reduce_mul_q512: {
14523 Function *F =
14524 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14525 return Builder.CreateCall(F, {Ops[0]});
14526 }
14527
14528 // 3DNow!
14529 case X86::BI__builtin_ia32_pswapdsf:
14530 case X86::BI__builtin_ia32_pswapdsi: {
14531 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14532 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14533 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14534 return Builder.CreateCall(F, Ops, "pswapd");
14535 }
14536 case X86::BI__builtin_ia32_rdrand16_step:
14537 case X86::BI__builtin_ia32_rdrand32_step:
14538 case X86::BI__builtin_ia32_rdrand64_step:
14539 case X86::BI__builtin_ia32_rdseed16_step:
14540 case X86::BI__builtin_ia32_rdseed32_step:
14541 case X86::BI__builtin_ia32_rdseed64_step: {
14542 Intrinsic::ID ID;
14543 switch (BuiltinID) {
14544 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14544)
;
14545 case X86::BI__builtin_ia32_rdrand16_step:
14546 ID = Intrinsic::x86_rdrand_16;
14547 break;
14548 case X86::BI__builtin_ia32_rdrand32_step:
14549 ID = Intrinsic::x86_rdrand_32;
14550 break;
14551 case X86::BI__builtin_ia32_rdrand64_step:
14552 ID = Intrinsic::x86_rdrand_64;
14553 break;
14554 case X86::BI__builtin_ia32_rdseed16_step:
14555 ID = Intrinsic::x86_rdseed_16;
14556 break;
14557 case X86::BI__builtin_ia32_rdseed32_step:
14558 ID = Intrinsic::x86_rdseed_32;
14559 break;
14560 case X86::BI__builtin_ia32_rdseed64_step:
14561 ID = Intrinsic::x86_rdseed_64;
14562 break;
14563 }
14564
14565 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14566 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14567 Ops[0]);
14568 return Builder.CreateExtractValue(Call, 1);
14569 }
14570 case X86::BI__builtin_ia32_addcarryx_u32:
14571 case X86::BI__builtin_ia32_addcarryx_u64:
14572 case X86::BI__builtin_ia32_subborrow_u32:
14573 case X86::BI__builtin_ia32_subborrow_u64: {
14574 Intrinsic::ID IID;
14575 switch (BuiltinID) {
14576 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14576)
;
14577 case X86::BI__builtin_ia32_addcarryx_u32:
14578 IID = Intrinsic::x86_addcarry_32;
14579 break;
14580 case X86::BI__builtin_ia32_addcarryx_u64:
14581 IID = Intrinsic::x86_addcarry_64;
14582 break;
14583 case X86::BI__builtin_ia32_subborrow_u32:
14584 IID = Intrinsic::x86_subborrow_32;
14585 break;
14586 case X86::BI__builtin_ia32_subborrow_u64:
14587 IID = Intrinsic::x86_subborrow_64;
14588 break;
14589 }
14590
14591 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14592 { Ops[0], Ops[1], Ops[2] });
14593 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14594 Ops[3]);
14595 return Builder.CreateExtractValue(Call, 0);
14596 }
14597
14598 case X86::BI__builtin_ia32_fpclassps128_mask:
14599 case X86::BI__builtin_ia32_fpclassps256_mask:
14600 case X86::BI__builtin_ia32_fpclassps512_mask:
14601 case X86::BI__builtin_ia32_fpclassph128_mask:
14602 case X86::BI__builtin_ia32_fpclassph256_mask:
14603 case X86::BI__builtin_ia32_fpclassph512_mask:
14604 case X86::BI__builtin_ia32_fpclasspd128_mask:
14605 case X86::BI__builtin_ia32_fpclasspd256_mask:
14606 case X86::BI__builtin_ia32_fpclasspd512_mask: {
14607 unsigned NumElts =
14608 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14609 Value *MaskIn = Ops[2];
14610 Ops.erase(&Ops[2]);
14611
14612 Intrinsic::ID ID;
14613 switch (BuiltinID) {
14614 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14614)
;
14615 case X86::BI__builtin_ia32_fpclassph128_mask:
14616 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14617 break;
14618 case X86::BI__builtin_ia32_fpclassph256_mask:
14619 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14620 break;
14621 case X86::BI__builtin_ia32_fpclassph512_mask:
14622 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14623 break;
14624 case X86::BI__builtin_ia32_fpclassps128_mask:
14625 ID = Intrinsic::x86_avx512_fpclass_ps_128;
14626 break;
14627 case X86::BI__builtin_ia32_fpclassps256_mask:
14628 ID = Intrinsic::x86_avx512_fpclass_ps_256;
14629 break;
14630 case X86::BI__builtin_ia32_fpclassps512_mask:
14631 ID = Intrinsic::x86_avx512_fpclass_ps_512;
14632 break;
14633 case X86::BI__builtin_ia32_fpclasspd128_mask:
14634 ID = Intrinsic::x86_avx512_fpclass_pd_128;
14635 break;
14636 case X86::BI__builtin_ia32_fpclasspd256_mask:
14637 ID = Intrinsic::x86_avx512_fpclass_pd_256;
14638 break;
14639 case X86::BI__builtin_ia32_fpclasspd512_mask:
14640 ID = Intrinsic::x86_avx512_fpclass_pd_512;
14641 break;
14642 }
14643
14644 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14645 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14646 }
14647
14648 case X86::BI__builtin_ia32_vp2intersect_q_512:
14649 case X86::BI__builtin_ia32_vp2intersect_q_256:
14650 case X86::BI__builtin_ia32_vp2intersect_q_128:
14651 case X86::BI__builtin_ia32_vp2intersect_d_512:
14652 case X86::BI__builtin_ia32_vp2intersect_d_256:
14653 case X86::BI__builtin_ia32_vp2intersect_d_128: {
14654 unsigned NumElts =
14655 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14656 Intrinsic::ID ID;
14657
14658 switch (BuiltinID) {
14659 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14659)
;
14660 case X86::BI__builtin_ia32_vp2intersect_q_512:
14661 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14662 break;
14663 case X86::BI__builtin_ia32_vp2intersect_q_256:
14664 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14665 break;
14666 case X86::BI__builtin_ia32_vp2intersect_q_128:
14667 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14668 break;
14669 case X86::BI__builtin_ia32_vp2intersect_d_512:
14670 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14671 break;
14672 case X86::BI__builtin_ia32_vp2intersect_d_256:
14673 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14674 break;
14675 case X86::BI__builtin_ia32_vp2intersect_d_128:
14676 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14677 break;
14678 }
14679
14680 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14681 Value *Result = Builder.CreateExtractValue(Call, 0);
14682 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14683 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14684
14685 Result = Builder.CreateExtractValue(Call, 1);
14686 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14687 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14688 }
14689
14690 case X86::BI__builtin_ia32_vpmultishiftqb128:
14691 case X86::BI__builtin_ia32_vpmultishiftqb256:
14692 case X86::BI__builtin_ia32_vpmultishiftqb512: {
14693 Intrinsic::ID ID;
14694 switch (BuiltinID) {
14695 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14695)
;
14696 case X86::BI__builtin_ia32_vpmultishiftqb128:
14697 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14698 break;
14699 case X86::BI__builtin_ia32_vpmultishiftqb256:
14700 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14701 break;
14702 case X86::BI__builtin_ia32_vpmultishiftqb512:
14703 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14704 break;
14705 }
14706
14707 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14708 }
14709
14710 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14711 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14712 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14713 unsigned NumElts =
14714 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14715 Value *MaskIn = Ops[2];
14716 Ops.erase(&Ops[2]);
14717
14718 Intrinsic::ID ID;
14719 switch (BuiltinID) {
14720 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14720)
;
14721 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14722 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14723 break;
14724 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14725 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14726 break;
14727 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14728 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14729 break;
14730 }
14731
14732 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14733 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14734 }
14735
14736 // packed comparison intrinsics
14737 case X86::BI__builtin_ia32_cmpeqps:
14738 case X86::BI__builtin_ia32_cmpeqpd:
14739 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14740 case X86::BI__builtin_ia32_cmpltps:
14741 case X86::BI__builtin_ia32_cmpltpd:
14742 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14743 case X86::BI__builtin_ia32_cmpleps:
14744 case X86::BI__builtin_ia32_cmplepd:
14745 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14746 case X86::BI__builtin_ia32_cmpunordps:
14747 case X86::BI__builtin_ia32_cmpunordpd:
14748 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14749 case X86::BI__builtin_ia32_cmpneqps:
14750 case X86::BI__builtin_ia32_cmpneqpd:
14751 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14752 case X86::BI__builtin_ia32_cmpnltps:
14753 case X86::BI__builtin_ia32_cmpnltpd:
14754 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14755 case X86::BI__builtin_ia32_cmpnleps:
14756 case X86::BI__builtin_ia32_cmpnlepd:
14757 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14758 case X86::BI__builtin_ia32_cmpordps:
14759 case X86::BI__builtin_ia32_cmpordpd:
14760 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14761 case X86::BI__builtin_ia32_cmpph128_mask:
14762 case X86::BI__builtin_ia32_cmpph256_mask:
14763 case X86::BI__builtin_ia32_cmpph512_mask:
14764 case X86::BI__builtin_ia32_cmpps128_mask:
14765 case X86::BI__builtin_ia32_cmpps256_mask:
14766 case X86::BI__builtin_ia32_cmpps512_mask:
14767 case X86::BI__builtin_ia32_cmppd128_mask:
14768 case X86::BI__builtin_ia32_cmppd256_mask:
14769 case X86::BI__builtin_ia32_cmppd512_mask:
14770 IsMaskFCmp = true;
14771 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14772 case X86::BI__builtin_ia32_cmpps:
14773 case X86::BI__builtin_ia32_cmpps256:
14774 case X86::BI__builtin_ia32_cmppd:
14775 case X86::BI__builtin_ia32_cmppd256: {
14776 // Lowering vector comparisons to fcmp instructions, while
14777 // ignoring signalling behaviour requested
14778 // ignoring rounding mode requested
14779 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14780
14781 // The third argument is the comparison condition, and integer in the
14782 // range [0, 31]
14783 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14784
14785 // Lowering to IR fcmp instruction.
14786 // Ignoring requested signaling behaviour,
14787 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14788 FCmpInst::Predicate Pred;
14789 bool IsSignaling;
14790 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14791 // behavior is inverted. We'll handle that after the switch.
14792 switch (CC & 0xf) {
14793 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
14794 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
14795 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
14796 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
14797 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
14798 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
14799 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
14800 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
14801 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
14802 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
14803 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
14804 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14805 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
14806 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
14807 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
14808 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
14809 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14809)
;
14810 }
14811
14812 // Invert the signalling behavior for 16-31.
14813 if (CC & 0x10)
14814 IsSignaling = !IsSignaling;
14815
14816 // If the predicate is true or false and we're using constrained intrinsics,
14817 // we don't have a compare intrinsic we can use. Just use the legacy X86
14818 // specific intrinsic.
14819 // If the intrinsic is mask enabled and we're using constrained intrinsics,
14820 // use the legacy X86 specific intrinsic.
14821 if (Builder.getIsFPConstrained() &&
14822 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14823 IsMaskFCmp)) {
14824
14825 Intrinsic::ID IID;
14826 switch (BuiltinID) {
14827 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14827)
;
14828 case X86::BI__builtin_ia32_cmpps:
14829 IID = Intrinsic::x86_sse_cmp_ps;
14830 break;
14831 case X86::BI__builtin_ia32_cmpps256:
14832 IID = Intrinsic::x86_avx_cmp_ps_256;
14833 break;
14834 case X86::BI__builtin_ia32_cmppd:
14835 IID = Intrinsic::x86_sse2_cmp_pd;
14836 break;
14837 case X86::BI__builtin_ia32_cmppd256:
14838 IID = Intrinsic::x86_avx_cmp_pd_256;
14839 break;
14840 case X86::BI__builtin_ia32_cmpps512_mask:
14841 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14842 break;
14843 case X86::BI__builtin_ia32_cmppd512_mask:
14844 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14845 break;
14846 case X86::BI__builtin_ia32_cmpps128_mask:
14847 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14848 break;
14849 case X86::BI__builtin_ia32_cmpps256_mask:
14850 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14851 break;
14852 case X86::BI__builtin_ia32_cmppd128_mask:
14853 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14854 break;
14855 case X86::BI__builtin_ia32_cmppd256_mask:
14856 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14857 break;
14858 }
14859
14860 Function *Intr = CGM.getIntrinsic(IID);
14861 if (IsMaskFCmp) {
14862 unsigned NumElts =
14863 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14864 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14865 Value *Cmp = Builder.CreateCall(Intr, Ops);
14866 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14867 }
14868
14869 return Builder.CreateCall(Intr, Ops);
14870 }
14871
14872 // Builtins without the _mask suffix return a vector of integers
14873 // of the same width as the input vectors
14874 if (IsMaskFCmp) {
14875 // We ignore SAE if strict FP is disabled. We only keep precise
14876 // exception behavior under strict FP.
14877 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14878 // object will be required.
14879 unsigned NumElts =
14880 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14881 Value *Cmp;
14882 if (IsSignaling)
14883 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14884 else
14885 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14886 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14887 }
14888
14889 return getVectorFCmpIR(Pred, IsSignaling);
14890 }
14891
14892 // SSE scalar comparison intrinsics
14893 case X86::BI__builtin_ia32_cmpeqss:
14894 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14895 case X86::BI__builtin_ia32_cmpltss:
14896 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14897 case X86::BI__builtin_ia32_cmpless:
14898 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14899 case X86::BI__builtin_ia32_cmpunordss:
14900 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14901 case X86::BI__builtin_ia32_cmpneqss:
14902 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14903 case X86::BI__builtin_ia32_cmpnltss:
14904 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14905 case X86::BI__builtin_ia32_cmpnless:
14906 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14907 case X86::BI__builtin_ia32_cmpordss:
14908 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14909 case X86::BI__builtin_ia32_cmpeqsd:
14910 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14911 case X86::BI__builtin_ia32_cmpltsd:
14912 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14913 case X86::BI__builtin_ia32_cmplesd:
14914 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14915 case X86::BI__builtin_ia32_cmpunordsd:
14916 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14917 case X86::BI__builtin_ia32_cmpneqsd:
14918 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14919 case X86::BI__builtin_ia32_cmpnltsd:
14920 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14921 case X86::BI__builtin_ia32_cmpnlesd:
14922 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14923 case X86::BI__builtin_ia32_cmpordsd:
14924 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14925
14926 // f16c half2float intrinsics
14927 case X86::BI__builtin_ia32_vcvtph2ps:
14928 case X86::BI__builtin_ia32_vcvtph2ps256:
14929 case X86::BI__builtin_ia32_vcvtph2ps_mask:
14930 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14931 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14932 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14933 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14934 }
14935
14936// AVX512 bf16 intrinsics
14937 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14938 Ops[2] = getMaskVecValue(
14939 *this, Ops[2],
14940 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14941 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14942 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14943 }
14944 case X86::BI__builtin_ia32_cvtsbf162ss_32:
14945 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14946
14947 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14948 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14949 Intrinsic::ID IID;
14950 switch (BuiltinID) {
14951 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14951)
;
14952 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14953 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14954 break;
14955 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14956 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14957 break;
14958 }
14959 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14960 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14961 }
14962
14963 case X86::BI__cpuid:
14964 case X86::BI__cpuidex: {
14965 Value *FuncId = EmitScalarExpr(E->getArg(1));
14966 Value *SubFuncId = BuiltinID == X86::BI__cpuidex
14967 ? EmitScalarExpr(E->getArg(2))
14968 : llvm::ConstantInt::get(Int32Ty, 0);
14969
14970 llvm::StructType *CpuidRetTy =
14971 llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
14972 llvm::FunctionType *FTy =
14973 llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
14974
14975 StringRef Asm, Constraints;
14976 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
14977 Asm = "cpuid";
14978 Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
14979 } else {
14980 // x86-64 uses %rbx as the base register, so preserve it.
14981 Asm = "xchgq %rbx, ${1:q}\n"
14982 "cpuid\n"
14983 "xchgq %rbx, ${1:q}";
14984 Constraints = "={ax},=r,={cx},={dx},0,2";
14985 }
14986
14987 llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
14988 /*hasSideEffects=*/false);
14989 Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
14990 Value *BasePtr = EmitScalarExpr(E->getArg(0));
14991 Value *Store = nullptr;
14992 for (unsigned i = 0; i < 4; i++) {
14993 Value *Extracted = Builder.CreateExtractValue(IACall, i);
14994 Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
14995 Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
14996 }
14997
14998 // Return the last store instruction to signal that we have emitted the
14999 // the intrinsic.
15000 return Store;
15001 }
15002
15003 case X86::BI__emul:
15004 case X86::BI__emulu: {
15005 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
15006 bool isSigned = (BuiltinID == X86::BI__emul);
15007 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
15008 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
15009 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
15010 }
15011 case X86::BI__mulh:
15012 case X86::BI__umulh:
15013 case X86::BI_mul128:
15014 case X86::BI_umul128: {
15015 llvm::Type *ResType = ConvertType(E->getType());
15016 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15017
15018 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
15019 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
15020 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
15021
15022 Value *MulResult, *HigherBits;
15023 if (IsSigned) {
15024 MulResult = Builder.CreateNSWMul(LHS, RHS);
15025 HigherBits = Builder.CreateAShr(MulResult, 64);
15026 } else {
15027 MulResult = Builder.CreateNUWMul(LHS, RHS);
15028 HigherBits = Builder.CreateLShr(MulResult, 64);
15029 }
15030 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
15031
15032 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
15033 return HigherBits;
15034
15035 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
15036 Builder.CreateStore(HigherBits, HighBitsAddress);
15037 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
15038 }
15039
15040 case X86::BI__faststorefence: {
15041 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15042 llvm::SyncScope::System);
15043 }
15044 case X86::BI__shiftleft128:
15045 case X86::BI__shiftright128: {
15046 llvm::Function *F = CGM.getIntrinsic(
15047 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
15048 Int64Ty);
15049 // Flip low/high ops and zero-extend amount to matching type.
15050 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
15051 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
15052 std::swap(Ops[0], Ops[1]);
15053 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15054 return Builder.CreateCall(F, Ops);
15055 }
15056 case X86::BI_ReadWriteBarrier:
15057 case X86::BI_ReadBarrier:
15058 case X86::BI_WriteBarrier: {
15059 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15060 llvm::SyncScope::SingleThread);
15061 }
15062
15063 case X86::BI_AddressOfReturnAddress: {
15064 Function *F =
15065 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
15066 return Builder.CreateCall(F);
15067 }
15068 case X86::BI__stosb: {
15069 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
15070 // instruction, but it will create a memset that won't be optimized away.
15071 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
15072 }
15073 case X86::BI__ud2:
15074 // llvm.trap makes a ud2a instruction on x86.
15075 return EmitTrapCall(Intrinsic::trap);
15076 case X86::BI__int2c: {
15077 // This syscall signals a driver assertion failure in x86 NT kernels.
15078 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
15079 llvm::InlineAsm *IA =
15080 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
15081 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
15082 getLLVMContext(), llvm::AttributeList::FunctionIndex,
15083 llvm::Attribute::NoReturn);
15084 llvm::CallInst *CI = Builder.CreateCall(IA);
15085 CI->setAttributes(NoReturnAttr);
15086 return CI;
15087 }
15088 case X86::BI__readfsbyte:
15089 case X86::BI__readfsword:
15090 case X86::BI__readfsdword:
15091 case X86::BI__readfsqword: {
15092 llvm::Type *IntTy = ConvertType(E->getType());
15093 Value *Ptr =
15094 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
15095 LoadInst *Load = Builder.CreateAlignedLoad(
15096 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15097 Load->setVolatile(true);
15098 return Load;
15099 }
15100 case X86::BI__readgsbyte:
15101 case X86::BI__readgsword:
15102 case X86::BI__readgsdword:
15103 case X86::BI__readgsqword: {
15104 llvm::Type *IntTy = ConvertType(E->getType());
15105 Value *Ptr =
15106 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
15107 LoadInst *Load = Builder.CreateAlignedLoad(
15108 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15109 Load->setVolatile(true);
15110 return Load;
15111 }
15112 case X86::BI__builtin_ia32_encodekey128_u32: {
15113 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
15114
15115 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
15116
15117 for (int i = 0; i < 3; ++i) {
15118 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15119 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
15120 Ptr = Builder.CreateBitCast(
15121 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15122 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15123 }
15124
15125 return Builder.CreateExtractValue(Call, 0);
15126 }
15127 case X86::BI__builtin_ia32_encodekey256_u32: {
15128 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
15129
15130 Value *Call =
15131 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
15132
15133 for (int i = 0; i < 4; ++i) {
15134 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15135 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
15136 Ptr = Builder.CreateBitCast(
15137 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15138 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15139 }
15140
15141 return Builder.CreateExtractValue(Call, 0);
15142 }
15143 case X86::BI__builtin_ia32_aesenc128kl_u8:
15144 case X86::BI__builtin_ia32_aesdec128kl_u8:
15145 case X86::BI__builtin_ia32_aesenc256kl_u8:
15146 case X86::BI__builtin_ia32_aesdec256kl_u8: {
15147 Intrinsic::ID IID;
15148 StringRef BlockName;
15149 switch (BuiltinID) {
15150 default:
15151 llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15151)
;
15152 case X86::BI__builtin_ia32_aesenc128kl_u8:
15153 IID = Intrinsic::x86_aesenc128kl;
15154 BlockName = "aesenc128kl";
15155 break;
15156 case X86::BI__builtin_ia32_aesdec128kl_u8:
15157 IID = Intrinsic::x86_aesdec128kl;
15158 BlockName = "aesdec128kl";
15159 break;
15160 case X86::BI__builtin_ia32_aesenc256kl_u8:
15161 IID = Intrinsic::x86_aesenc256kl;
15162 BlockName = "aesenc256kl";
15163 break;
15164 case X86::BI__builtin_ia32_aesdec256kl_u8:
15165 IID = Intrinsic::x86_aesdec256kl;
15166 BlockName = "aesdec256kl";
15167 break;
15168 }
15169
15170 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
15171
15172 BasicBlock *NoError =
15173 createBasicBlock(BlockName + "_no_error", this->CurFn);
15174 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15175 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15176
15177 Value *Ret = Builder.CreateExtractValue(Call, 0);
15178 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15179 Value *Out = Builder.CreateExtractValue(Call, 1);
15180 Builder.CreateCondBr(Succ, NoError, Error);
15181
15182 Builder.SetInsertPoint(NoError);
15183 Builder.CreateDefaultAlignedStore(Out, Ops[0]);
15184 Builder.CreateBr(End);
15185
15186 Builder.SetInsertPoint(Error);
15187 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15188 Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
15189 Builder.CreateBr(End);
15190
15191 Builder.SetInsertPoint(End);
15192 return Builder.CreateExtractValue(Call, 0);
15193 }
15194 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15195 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15196 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15197 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
15198 Intrinsic::ID IID;
15199 StringRef BlockName;
15200 switch (BuiltinID) {
15201 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15202 IID = Intrinsic::x86_aesencwide128kl;
15203 BlockName = "aesencwide128kl";
15204 break;
15205 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15206 IID = Intrinsic::x86_aesdecwide128kl;
15207 BlockName = "aesdecwide128kl";
15208 break;
15209 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15210 IID = Intrinsic::x86_aesencwide256kl;
15211 BlockName = "aesencwide256kl";
15212 break;
15213 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15214 IID = Intrinsic::x86_aesdecwide256kl;
15215 BlockName = "aesdecwide256kl";
15216 break;
15217 }
15218
15219 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15220 Value *InOps[9];
15221 InOps[0] = Ops[2];
15222 for (int i = 0; i != 8; ++i) {
15223 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15224 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15225 }
15226
15227 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15228
15229 BasicBlock *NoError =
15230 createBasicBlock(BlockName + "_no_error", this->CurFn);
15231 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15232 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15233
15234 Value *Ret = Builder.CreateExtractValue(Call, 0);
15235 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15236 Builder.CreateCondBr(Succ, NoError, Error);
15237
15238 Builder.SetInsertPoint(NoError);
15239 for (int i = 0; i != 8; ++i) {
15240 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15241 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15242 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15243 }
15244 Builder.CreateBr(End);
15245
15246 Builder.SetInsertPoint(Error);
15247 for (int i = 0; i != 8; ++i) {
15248 Value *Out = Builder.CreateExtractValue(Call, i + 1);
15249 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15250 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15251 Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15252 }
15253 Builder.CreateBr(End);
15254
15255 Builder.SetInsertPoint(End);
15256 return Builder.CreateExtractValue(Call, 0);
15257 }
15258 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
15259 IsConjFMA = true;
15260 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15261 case X86::BI__builtin_ia32_vfmaddcph512_mask: {
15262 Intrinsic::ID IID = IsConjFMA
15263 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
15264 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
15265 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15266 return EmitX86Select(*this, Ops[3], Call, Ops[0]);
15267 }
15268 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
15269 IsConjFMA = true;
15270 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15271 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
15272 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15273 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15274 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15275 Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
15276 return EmitX86Select(*this, And, Call, Ops[0]);
15277 }
15278 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
15279 IsConjFMA = true;
15280 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15281 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
15282 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15283 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15284 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15285 static constexpr int Mask[] = {0, 5, 6, 7};
15286 return Builder.CreateShuffleVector(Call, Ops[2], Mask);
15287 }
15288 }
15289}
15290
15291Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15292 const CallExpr *E) {
15293 // Do not emit the builtin arguments in the arguments of a function call,
15294 // because the evaluation order of function arguments is not specified in C++.
15295 // This is important when testing to ensure the arguments are emitted in the
15296 // same order every time. Eg:
15297 // Instead of:
15298 // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
15299 // EmitScalarExpr(E->getArg(1)), "swdiv");
15300 // Use:
15301 // Value *Op0 = EmitScalarExpr(E->getArg(0));
15302 // Value *Op1 = EmitScalarExpr(E->getArg(1));
15303 // return Builder.CreateFDiv(Op0, Op1, "swdiv")
15304
15305 Intrinsic::ID ID = Intrinsic::not_intrinsic;
15306
15307 switch (BuiltinID) {
15308 default: return nullptr;
15309
15310 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15311 // call __builtin_readcyclecounter.
15312 case PPC::BI__builtin_ppc_get_timebase:
15313 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15314
15315 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15316 case PPC::BI__builtin_altivec_lvx:
15317 case PPC::BI__builtin_altivec_lvxl:
15318 case PPC::BI__builtin_altivec_lvebx:
15319 case PPC::BI__builtin_altivec_lvehx:
15320 case PPC::BI__builtin_altivec_lvewx:
15321 case PPC::BI__builtin_altivec_lvsl:
15322 case PPC::BI__builtin_altivec_lvsr:
15323 case PPC::BI__builtin_vsx_lxvd2x:
15324 case PPC::BI__builtin_vsx_lxvw4x:
15325 case PPC::BI__builtin_vsx_lxvd2x_be:
15326 case PPC::BI__builtin_vsx_lxvw4x_be:
15327 case PPC::BI__builtin_vsx_lxvl:
15328 case PPC::BI__builtin_vsx_lxvll:
15329 {
15330 SmallVector<Value *, 2> Ops;
15331 Ops.push_back(EmitScalarExpr(E->getArg(0)));
15332 Ops.push_back(EmitScalarExpr(E->getArg(1)));
15333 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15334 BuiltinID == PPC::BI__builtin_vsx_lxvll){
15335 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15336 }else {
15337 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15338 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15339 Ops.pop_back();
15340 }
15341
15342 switch (BuiltinID) {
15343 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15343)
;
15344 case PPC::BI__builtin_altivec_lvx:
15345 ID = Intrinsic::ppc_altivec_lvx;
15346 break;
15347 case PPC::BI__builtin_altivec_lvxl:
15348 ID = Intrinsic::ppc_altivec_lvxl;
15349 break;
15350 case PPC::BI__builtin_altivec_lvebx:
15351 ID = Intrinsic::ppc_altivec_lvebx;
15352 break;
15353 case PPC::BI__builtin_altivec_lvehx:
15354 ID = Intrinsic::ppc_altivec_lvehx;
15355 break;
15356 case PPC::BI__builtin_altivec_lvewx:
15357 ID = Intrinsic::ppc_altivec_lvewx;
15358 break;
15359 case PPC::BI__builtin_altivec_lvsl:
15360 ID = Intrinsic::ppc_altivec_lvsl;
15361 break;
15362 case PPC::BI__builtin_altivec_lvsr:
15363 ID = Intrinsic::ppc_altivec_lvsr;
15364 break;
15365 case PPC::BI__builtin_vsx_lxvd2x:
15366 ID = Intrinsic::ppc_vsx_lxvd2x;
15367 break;
15368 case PPC::BI__builtin_vsx_lxvw4x:
15369 ID = Intrinsic::ppc_vsx_lxvw4x;
15370 break;
15371 case PPC::BI__builtin_vsx_lxvd2x_be:
15372 ID = Intrinsic::ppc_vsx_lxvd2x_be;
15373 break;
15374 case PPC::BI__builtin_vsx_lxvw4x_be:
15375 ID = Intrinsic::ppc_vsx_lxvw4x_be;
15376 break;
15377 case PPC::BI__builtin_vsx_lxvl:
15378 ID = Intrinsic::ppc_vsx_lxvl;
15379 break;
15380 case PPC::BI__builtin_vsx_lxvll:
15381 ID = Intrinsic::ppc_vsx_lxvll;
15382 break;
15383 }
15384 llvm::Function *F = CGM.getIntrinsic(ID);
15385 return Builder.CreateCall(F, Ops, "");
15386 }
15387
15388 // vec_st, vec_xst_be
15389 case PPC::BI__builtin_altivec_stvx:
15390 case PPC::BI__builtin_altivec_stvxl:
15391 case PPC::BI__builtin_altivec_stvebx:
15392 case PPC::BI__builtin_altivec_stvehx:
15393 case PPC::BI__builtin_altivec_stvewx:
15394 case PPC::BI__builtin_vsx_stxvd2x:
15395 case PPC::BI__builtin_vsx_stxvw4x:
15396 case PPC::BI__builtin_vsx_stxvd2x_be:
15397 case PPC::BI__builtin_vsx_stxvw4x_be:
15398 case PPC::BI__builtin_vsx_stxvl:
15399 case PPC::BI__builtin_vsx_stxvll:
15400 {
15401 SmallVector<Value *, 3> Ops;
15402 Ops.push_back(EmitScalarExpr(E->getArg(0)));
15403 Ops.push_back(EmitScalarExpr(E->getArg(1)));
15404 Ops.push_back(EmitScalarExpr(E->getArg(2)));
15405 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15406 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15407 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15408 }else {
15409 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15410 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15411 Ops.pop_back();
15412 }
15413
15414 switch (BuiltinID) {
15415 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15415)
;
15416 case PPC::BI__builtin_altivec_stvx:
15417 ID = Intrinsic::ppc_altivec_stvx;
15418 break;
15419 case PPC::BI__builtin_altivec_stvxl:
15420 ID = Intrinsic::ppc_altivec_stvxl;
15421 break;
15422 case PPC::BI__builtin_altivec_stvebx:
15423 ID = Intrinsic::ppc_altivec_stvebx;
15424 break;
15425 case PPC::BI__builtin_altivec_stvehx:
15426 ID = Intrinsic::ppc_altivec_stvehx;
15427 break;
15428 case PPC::BI__builtin_altivec_stvewx:
15429 ID = Intrinsic::ppc_altivec_stvewx;
15430 break;
15431 case PPC::BI__builtin_vsx_stxvd2x:
15432 ID = Intrinsic::ppc_vsx_stxvd2x;
15433 break;
15434 case PPC::BI__builtin_vsx_stxvw4x:
15435 ID = Intrinsic::ppc_vsx_stxvw4x;
15436 break;
15437 case PPC::BI__builtin_vsx_stxvd2x_be:
15438 ID = Intrinsic::ppc_vsx_stxvd2x_be;
15439 break;
15440 case PPC::BI__builtin_vsx_stxvw4x_be:
15441 ID = Intrinsic::ppc_vsx_stxvw4x_be;
15442 break;
15443 case PPC::BI__builtin_vsx_stxvl:
15444 ID = Intrinsic::ppc_vsx_stxvl;
15445 break;
15446 case PPC::BI__builtin_vsx_stxvll:
15447 ID = Intrinsic::ppc_vsx_stxvll;
15448 break;
15449 }
15450 llvm::Function *F = CGM.getIntrinsic(ID);
15451 return Builder.CreateCall(F, Ops, "");
15452 }
15453 case PPC::BI__builtin_vsx_ldrmb: {
15454 // Essentially boils down to performing an unaligned VMX load sequence so
15455 // as to avoid crossing a page boundary and then shuffling the elements
15456 // into the right side of the vector register.
15457 Value *Op0 = EmitScalarExpr(E->getArg(0));
15458 Value *Op1 = EmitScalarExpr(E->getArg(1));
15459 int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15460 llvm::Type *ResTy = ConvertType(E->getType());
15461 bool IsLE = getTarget().isLittleEndian();
15462
15463 // If the user wants the entire vector, just load the entire vector.
15464 if (NumBytes == 16) {
15465 Value *BC = Builder.CreateBitCast(Op0, ResTy->getPointerTo());
15466 Value *LD =
15467 Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
15468 if (!IsLE)
15469 return LD;
15470
15471 // Reverse the bytes on LE.
15472 SmallVector<int, 16> RevMask;
15473 for (int Idx = 0; Idx < 16; Idx++)
15474 RevMask.push_back(15 - Idx);
15475 return Builder.CreateShuffleVector(LD, LD, RevMask);
15476 }
15477
15478 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15479 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15480 : Intrinsic::ppc_altivec_lvsl);
15481 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15482 Value *HiMem = Builder.CreateGEP(
15483 Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
15484 Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
15485 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15486 Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
15487
15488 Op0 = IsLE ? HiLd : LoLd;
15489 Op1 = IsLE ? LoLd : HiLd;
15490 Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
15491 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15492
15493 if (IsLE) {
15494 SmallVector<int, 16> Consts;
15495 for (int Idx = 0; Idx < 16; Idx++) {
15496 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15497 : 16 - (NumBytes - Idx);
15498 Consts.push_back(Val);
15499 }
15500 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15501 Zero, Consts);
15502 }
15503 SmallVector<Constant *, 16> Consts;
15504 for (int Idx = 0; Idx < 16; Idx++)
15505 Consts.push_back(Builder.getInt8(NumBytes + Idx));
15506 Value *Mask2 = ConstantVector::get(Consts);
15507 return Builder.CreateBitCast(
15508 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15509 }
15510 case PPC::BI__builtin_vsx_strmb: {
15511 Value *Op0 = EmitScalarExpr(E->getArg(0));
15512 Value *Op1 = EmitScalarExpr(E->getArg(1));
15513 Value *Op2 = EmitScalarExpr(E->getArg(2));
15514 int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15515 bool IsLE = getTarget().isLittleEndian();
15516 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15517 // Storing the whole vector, simply store it on BE and reverse bytes and
15518 // store on LE.
15519 if (Width == 16) {
15520 Value *BC = Builder.CreateBitCast(Op0, Op2->getType()->getPointerTo());
15521 Value *StVec = Op2;
15522 if (IsLE) {
15523 SmallVector<int, 16> RevMask;
15524 for (int Idx = 0; Idx < 16; Idx++)
15525 RevMask.push_back(15 - Idx);
15526 StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
15527 }
15528 return Builder.CreateStore(
15529 StVec, Address(BC, Op2->getType(), CharUnits::fromQuantity(1)));
15530 }
15531 auto *ConvTy = Int64Ty;
15532 unsigned NumElts = 0;
15533 switch (Width) {
15534 default:
15535 llvm_unreachable("width for stores must be a power of 2")::llvm::llvm_unreachable_internal("width for stores must be a power of 2"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15535)
;
15536 case 8:
15537 ConvTy = Int64Ty;
15538 NumElts = 2;
15539 break;
15540 case 4:
15541 ConvTy = Int32Ty;
15542 NumElts = 4;
15543 break;
15544 case 2:
15545 ConvTy = Int16Ty;
15546 NumElts = 8;
15547 break;
15548 case 1:
15549 ConvTy = Int8Ty;
15550 NumElts = 16;
15551 break;
15552 }
15553 Value *Vec = Builder.CreateBitCast(
15554 Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
15555 Value *Ptr =
15556 Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
15557 Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15558 Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15559 if (IsLE && Width > 1) {
15560 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15561 Elt = Builder.CreateCall(F, Elt);
15562 }
15563 return Builder.CreateStore(
15564 Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
15565 };
15566 unsigned Stored = 0;
15567 unsigned RemainingBytes = NumBytes;
15568 Value *Result;
15569 if (NumBytes == 16)
15570 return StoreSubVec(16, 0, 0);
15571 if (NumBytes >= 8) {
15572 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15573 RemainingBytes -= 8;
15574 Stored += 8;
15575 }
15576 if (RemainingBytes >= 4) {
15577 Result = StoreSubVec(4, NumBytes - Stored - 4,
15578 IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15579 RemainingBytes -= 4;
15580 Stored += 4;
15581 }
15582 if (RemainingBytes >= 2) {
15583 Result = StoreSubVec(2, NumBytes - Stored - 2,
15584 IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15585 RemainingBytes -= 2;
15586 Stored += 2;
15587 }
15588 if (RemainingBytes)
15589 Result =
15590 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15591 return Result;
15592 }
15593 // Square root
15594 case PPC::BI__builtin_vsx_xvsqrtsp:
15595 case PPC::BI__builtin_vsx_xvsqrtdp: {
15596 llvm::Type *ResultType = ConvertType(E->getType());
15597 Value *X = EmitScalarExpr(E->getArg(0));
15598 if (Builder.getIsFPConstrained()) {
15599 llvm::Function *F = CGM.getIntrinsic(
15600 Intrinsic::experimental_constrained_sqrt, ResultType);
15601 return Builder.CreateConstrainedFPCall(F, X);
15602 } else {
15603 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15604 return Builder.CreateCall(F, X);
15605 }
15606 }
15607 // Count leading zeros
15608 case PPC::BI__builtin_altivec_vclzb:
15609 case PPC::BI__builtin_altivec_vclzh:
15610 case PPC::BI__builtin_altivec_vclzw:
15611 case PPC::BI__builtin_altivec_vclzd: {
15612 llvm::Type *ResultType = ConvertType(E->getType());
15613 Value *X = EmitScalarExpr(E->getArg(0));
15614 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15615 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15616 return Builder.CreateCall(F, {X, Undef});
15617 }
15618 case PPC::BI__builtin_altivec_vctzb:
15619 case PPC::BI__builtin_altivec_vctzh:
15620 case PPC::BI__builtin_altivec_vctzw:
15621 case PPC::BI__builtin_altivec_vctzd: {
15622 llvm::Type *ResultType = ConvertType(E->getType());
15623 Value *X = EmitScalarExpr(E->getArg(0));
15624 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15625 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15626 return Builder.CreateCall(F, {X, Undef});
15627 }
15628 case PPC::BI__builtin_altivec_vec_replace_elt:
15629 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
15630 Value *Op0 = EmitScalarExpr(E->getArg(0));
15631 Value *Op1 = EmitScalarExpr(E->getArg(1));
15632 Value *Op2 = EmitScalarExpr(E->getArg(2));
15633 // The third argument of vec_replace_elt and vec_replace_unaligned must
15634 // be a compile time constant and will be emitted either to the vinsw
15635 // or vinsd instruction.
15636 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
15637 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15638, __extension__ __PRETTY_FUNCTION__
))
15638 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15638, __extension__ __PRETTY_FUNCTION__
))
;
15639 llvm::Type *ResultType = ConvertType(E->getType());
15640 llvm::Function *F = nullptr;
15641 Value *Call = nullptr;
15642 int64_t ConstArg = ArgCI->getSExtValue();
15643 unsigned ArgWidth = Op1->getType()->getPrimitiveSizeInBits();
15644 bool Is32Bit = false;
15645 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width")(static_cast <bool> ((ArgWidth == 32 || ArgWidth == 64)
&& "Invalid argument width") ? void (0) : __assert_fail
("(ArgWidth == 32 || ArgWidth == 64) && \"Invalid argument width\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15645, __extension__ __PRETTY_FUNCTION__
))
;
15646 // The input to vec_replace_elt is an element index, not a byte index.
15647 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
15648 ConstArg *= ArgWidth / 8;
15649 if (ArgWidth == 32) {
15650 Is32Bit = true;
15651 // When the second argument is 32 bits, it can either be an integer or
15652 // a float. The vinsw intrinsic is used in this case.
15653 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
15654 // Fix the constant according to endianess.
15655 if (getTarget().isLittleEndian())
15656 ConstArg = 12 - ConstArg;
15657 } else {
15658 // When the second argument is 64 bits, it can either be a long long or
15659 // a double. The vinsd intrinsic is used in this case.
15660 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15661 // Fix the constant for little endian.
15662 if (getTarget().isLittleEndian())
15663 ConstArg = 8 - ConstArg;
15664 }
15665 Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
15666 // Depending on ArgWidth, the input vector could be a float or a double.
15667 // If the input vector is a float type, bitcast the inputs to integers. Or,
15668 // if the input vector is a double, bitcast the inputs to 64-bit integers.
15669 if (!Op1->getType()->isIntegerTy(ArgWidth)) {
15670 Op0 = Builder.CreateBitCast(
15671 Op0, Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15672 : llvm::FixedVectorType::get(Int64Ty, 2));
15673 Op1 = Builder.CreateBitCast(Op1, Is32Bit ? Int32Ty : Int64Ty);
15674 }
15675 // Emit the call to vinsw or vinsd.
15676 Call = Builder.CreateCall(F, {Op0, Op1, Op2});
15677 // Depending on the builtin, bitcast to the approriate result type.
15678 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15679 !Op1->getType()->isIntegerTy())
15680 return Builder.CreateBitCast(Call, ResultType);
15681 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15682 Op1->getType()->isIntegerTy())
15683 return Call;
15684 else
15685 return Builder.CreateBitCast(Call,
15686 llvm::FixedVectorType::get(Int8Ty, 16));
15687 }
15688 case PPC::BI__builtin_altivec_vpopcntb:
15689 case PPC::BI__builtin_altivec_vpopcnth:
15690 case PPC::BI__builtin_altivec_vpopcntw:
15691 case PPC::BI__builtin_altivec_vpopcntd: {
15692 llvm::Type *ResultType = ConvertType(E->getType());
15693 Value *X = EmitScalarExpr(E->getArg(0));
15694 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15695 return Builder.CreateCall(F, X);
15696 }
15697 case PPC::BI__builtin_altivec_vadduqm:
15698 case PPC::BI__builtin_altivec_vsubuqm: {
15699 Value *Op0 = EmitScalarExpr(E->getArg(0));
15700 Value *Op1 = EmitScalarExpr(E->getArg(1));
15701 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15702 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
15703 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
15704 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15705 return Builder.CreateAdd(Op0, Op1, "vadduqm");
15706 else
15707 return Builder.CreateSub(Op0, Op1, "vsubuqm");
15708 }
15709 // Rotate and insert under mask operation.
15710 // __rldimi(rs, is, shift, mask)
15711 // (rotl64(rs, shift) & mask) | (is & ~mask)
15712 // __rlwimi(rs, is, shift, mask)
15713 // (rotl(rs, shift) & mask) | (is & ~mask)
15714 case PPC::BI__builtin_ppc_rldimi:
15715 case PPC::BI__builtin_ppc_rlwimi: {
15716 Value *Op0 = EmitScalarExpr(E->getArg(0));
15717 Value *Op1 = EmitScalarExpr(E->getArg(1));
15718 Value *Op2 = EmitScalarExpr(E->getArg(2));
15719 Value *Op3 = EmitScalarExpr(E->getArg(3));
15720 llvm::Type *Ty = Op0->getType();
15721 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15722 if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
15723 Op2 = Builder.CreateZExt(Op2, Int64Ty);
15724 Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
15725 Value *X = Builder.CreateAnd(Shift, Op3);
15726 Value *Y = Builder.CreateAnd(Op1, Builder.CreateNot(Op3));
15727 return Builder.CreateOr(X, Y);
15728 }
15729 // Rotate and insert under mask operation.
15730 // __rlwnm(rs, shift, mask)
15731 // rotl(rs, shift) & mask
15732 case PPC::BI__builtin_ppc_rlwnm: {
15733 Value *Op0 = EmitScalarExpr(E->getArg(0));
15734 Value *Op1 = EmitScalarExpr(E->getArg(1));
15735 Value *Op2 = EmitScalarExpr(E->getArg(2));
15736 llvm::Type *Ty = Op0->getType();
15737 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15738 Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op1});
15739 return Builder.CreateAnd(Shift, Op2);
15740 }
15741 case PPC::BI__builtin_ppc_poppar4:
15742 case PPC::BI__builtin_ppc_poppar8: {
15743 Value *Op0 = EmitScalarExpr(E->getArg(0));
15744 llvm::Type *ArgType = Op0->getType();
15745 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
15746 Value *Tmp = Builder.CreateCall(F, Op0);
15747
15748 llvm::Type *ResultType = ConvertType(E->getType());
15749 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
15750 if (Result->getType() != ResultType)
15751 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
15752 "cast");
15753 return Result;
15754 }
15755 case PPC::BI__builtin_ppc_cmpb: {
15756 Value *Op0 = EmitScalarExpr(E->getArg(0));
15757 Value *Op1 = EmitScalarExpr(E->getArg(1));
15758 if (getTarget().getTriple().isPPC64()) {
15759 Function *F =
15760 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
15761 return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
15762 }
15763 // For 32 bit, emit the code as below:
15764 // %conv = trunc i64 %a to i32
15765 // %conv1 = trunc i64 %b to i32
15766 // %shr = lshr i64 %a, 32
15767 // %conv2 = trunc i64 %shr to i32
15768 // %shr3 = lshr i64 %b, 32
15769 // %conv4 = trunc i64 %shr3 to i32
15770 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
15771 // %conv5 = zext i32 %0 to i64
15772 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
15773 // %conv614 = zext i32 %1 to i64
15774 // %shl = shl nuw i64 %conv614, 32
15775 // %or = or i64 %shl, %conv5
15776 // ret i64 %or
15777 Function *F =
15778 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
15779 Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
15780 Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
15781 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
15782 Value *ArgOneHi =
15783 Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
15784 Value *ArgTwoHi =
15785 Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
15786 Value *ResLo = Builder.CreateZExt(
15787 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
15788 Value *ResHiShift = Builder.CreateZExt(
15789 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
15790 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
15791 return Builder.CreateOr(ResLo, ResHi);
15792 }
15793 // Copy sign
15794 case PPC::BI__builtin_vsx_xvcpsgnsp:
15795 case PPC::BI__builtin_vsx_xvcpsgndp: {
15796 llvm::Type *ResultType = ConvertType(E->getType());
15797 Value *X = EmitScalarExpr(E->getArg(0));
15798 Value *Y = EmitScalarExpr(E->getArg(1));
15799 ID = Intrinsic::copysign;
15800 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15801 return Builder.CreateCall(F, {X, Y});
15802 }
15803 // Rounding/truncation
15804 case PPC::BI__builtin_vsx_xvrspip:
15805 case PPC::BI__builtin_vsx_xvrdpip:
15806 case PPC::BI__builtin_vsx_xvrdpim:
15807 case PPC::BI__builtin_vsx_xvrspim:
15808 case PPC::BI__builtin_vsx_xvrdpi:
15809 case PPC::BI__builtin_vsx_xvrspi:
15810 case PPC::BI__builtin_vsx_xvrdpic:
15811 case PPC::BI__builtin_vsx_xvrspic:
15812 case PPC::BI__builtin_vsx_xvrdpiz:
15813 case PPC::BI__builtin_vsx_xvrspiz: {
15814 llvm::Type *ResultType = ConvertType(E->getType());
15815 Value *X = EmitScalarExpr(E->getArg(0));
15816 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15817 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15818 ID = Builder.getIsFPConstrained()
15819 ? Intrinsic::experimental_constrained_floor
15820 : Intrinsic::floor;
15821 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15822 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15823 ID = Builder.getIsFPConstrained()
15824 ? Intrinsic::experimental_constrained_round
15825 : Intrinsic::round;
15826 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15827 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15828 ID = Builder.getIsFPConstrained()
15829 ? Intrinsic::experimental_constrained_rint
15830 : Intrinsic::rint;
15831 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15832 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15833 ID = Builder.getIsFPConstrained()
15834 ? Intrinsic::experimental_constrained_ceil
15835 : Intrinsic::ceil;
15836 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15837 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15838 ID = Builder.getIsFPConstrained()
15839 ? Intrinsic::experimental_constrained_trunc
15840 : Intrinsic::trunc;
15841 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15842 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15843 : Builder.CreateCall(F, X);
15844 }
15845
15846 // Absolute value
15847 case PPC::BI__builtin_vsx_xvabsdp:
15848 case PPC::BI__builtin_vsx_xvabssp: {
15849 llvm::Type *ResultType = ConvertType(E->getType());
15850 Value *X = EmitScalarExpr(E->getArg(0));
15851 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15852 return Builder.CreateCall(F, X);
15853 }
15854
15855 // Fastmath by default
15856 case PPC::BI__builtin_ppc_recipdivf:
15857 case PPC::BI__builtin_ppc_recipdivd:
15858 case PPC::BI__builtin_ppc_rsqrtf:
15859 case PPC::BI__builtin_ppc_rsqrtd: {
15860 FastMathFlags FMF = Builder.getFastMathFlags();
15861 Builder.getFastMathFlags().setFast();
15862 llvm::Type *ResultType = ConvertType(E->getType());
15863 Value *X = EmitScalarExpr(E->getArg(0));
15864
15865 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15866 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15867 Value *Y = EmitScalarExpr(E->getArg(1));
15868 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
15869 Builder.getFastMathFlags() &= (FMF);
15870 return FDiv;
15871 }
15872 auto *One = ConstantFP::get(ResultType, 1.0);
15873 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15874 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15875 Builder.getFastMathFlags() &= (FMF);
15876 return FDiv;
15877 }
15878 case PPC::BI__builtin_ppc_alignx: {
15879 Value *Op0 = EmitScalarExpr(E->getArg(0));
15880 Value *Op1 = EmitScalarExpr(E->getArg(1));
15881 ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
15882 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
15883 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
15884 llvm::Value::MaximumAlignment);
15885
15886 emitAlignmentAssumption(Op1, E->getArg(1),
15887 /*The expr loc is sufficient.*/ SourceLocation(),
15888 AlignmentCI, nullptr);
15889 return Op1;
15890 }
15891 case PPC::BI__builtin_ppc_rdlam: {
15892 Value *Op0 = EmitScalarExpr(E->getArg(0));
15893 Value *Op1 = EmitScalarExpr(E->getArg(1));
15894 Value *Op2 = EmitScalarExpr(E->getArg(2));
15895 llvm::Type *Ty = Op0->getType();
15896 Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
15897 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15898 Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
15899 return Builder.CreateAnd(Rotate, Op2);
15900 }
15901 case PPC::BI__builtin_ppc_load2r: {
15902 Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
15903 Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
15904 Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
15905 return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
15906 }
15907 // FMA variations
15908 case PPC::BI__builtin_ppc_fnmsub:
15909 case PPC::BI__builtin_ppc_fnmsubs:
15910 case PPC::BI__builtin_vsx_xvmaddadp:
15911 case PPC::BI__builtin_vsx_xvmaddasp:
15912 case PPC::BI__builtin_vsx_xvnmaddadp:
15913 case PPC::BI__builtin_vsx_xvnmaddasp:
15914 case PPC::BI__builtin_vsx_xvmsubadp:
15915 case PPC::BI__builtin_vsx_xvmsubasp:
15916 case PPC::BI__builtin_vsx_xvnmsubadp:
15917 case PPC::BI__builtin_vsx_xvnmsubasp: {
15918 llvm::Type *ResultType = ConvertType(E->getType());
15919 Value *X = EmitScalarExpr(E->getArg(0));
15920 Value *Y = EmitScalarExpr(E->getArg(1));
15921 Value *Z = EmitScalarExpr(E->getArg(2));
15922 llvm::Function *F;
15923 if (Builder.getIsFPConstrained())
15924 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15925 else
15926 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15927 switch (BuiltinID) {
15928 case PPC::BI__builtin_vsx_xvmaddadp:
15929 case PPC::BI__builtin_vsx_xvmaddasp:
15930 if (Builder.getIsFPConstrained())
15931 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15932 else
15933 return Builder.CreateCall(F, {X, Y, Z});
15934 case PPC::BI__builtin_vsx_xvnmaddadp:
15935 case PPC::BI__builtin_vsx_xvnmaddasp:
15936 if (Builder.getIsFPConstrained())
15937 return Builder.CreateFNeg(
15938 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15939 else
15940 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15941 case PPC::BI__builtin_vsx_xvmsubadp:
15942 case PPC::BI__builtin_vsx_xvmsubasp:
15943 if (Builder.getIsFPConstrained())
15944 return Builder.CreateConstrainedFPCall(
15945 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15946 else
15947 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15948 case PPC::BI__builtin_ppc_fnmsub:
15949 case PPC::BI__builtin_ppc_fnmsubs:
15950 case PPC::BI__builtin_vsx_xvnmsubadp:
15951 case PPC::BI__builtin_vsx_xvnmsubasp:
15952 if (Builder.getIsFPConstrained())
15953 return Builder.CreateFNeg(
15954 Builder.CreateConstrainedFPCall(
15955 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15956 "neg");
15957 else
15958 return Builder.CreateCall(
15959 CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
15960 }
15961 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15961)
;
15962 return nullptr; // Suppress no-return warning
15963 }
15964
15965 case PPC::BI__builtin_vsx_insertword: {
15966 Value *Op0 = EmitScalarExpr(E->getArg(0));
15967 Value *Op1 = EmitScalarExpr(E->getArg(1));
15968 Value *Op2 = EmitScalarExpr(E->getArg(2));
15969 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15970
15971 // Third argument is a compile time constant int. It must be clamped to
15972 // to the range [0, 12].
15973 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
15974 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15975, __extension__ __PRETTY_FUNCTION__
))
15975 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15975, __extension__ __PRETTY_FUNCTION__
))
;
15976 const int64_t MaxIndex = 12;
15977 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15978
15979 // The builtin semantics don't exactly match the xxinsertw instructions
15980 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15981 // word from the first argument, and inserts it in the second argument. The
15982 // instruction extracts the word from its second input register and inserts
15983 // it into its first input register, so swap the first and second arguments.
15984 std::swap(Op0, Op1);
15985
15986 // Need to cast the second argument from a vector of unsigned int to a
15987 // vector of long long.
15988 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
15989
15990 if (getTarget().isLittleEndian()) {
15991 // Reverse the double words in the vector we will extract from.
15992 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
15993 Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
15994
15995 // Reverse the index.
15996 Index = MaxIndex - Index;
15997 }
15998
15999 // Intrinsic expects the first arg to be a vector of int.
16000 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16001 Op2 = ConstantInt::getSigned(Int32Ty, Index);
16002 return Builder.CreateCall(F, {Op0, Op1, Op2});
16003 }
16004
16005 case PPC::BI__builtin_vsx_extractuword: {
16006 Value *Op0 = EmitScalarExpr(E->getArg(0));
16007 Value *Op1 = EmitScalarExpr(E->getArg(1));
16008 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
16009
16010 // Intrinsic expects the first argument to be a vector of doublewords.
16011 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16012
16013 // The second argument is a compile time constant int that needs to
16014 // be clamped to the range [0, 12].
16015 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
16016 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16017, __extension__ __PRETTY_FUNCTION__
))
16017 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16017, __extension__ __PRETTY_FUNCTION__
))
;
16018 const int64_t MaxIndex = 12;
16019 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
16020
16021 if (getTarget().isLittleEndian()) {
16022 // Reverse the index.
16023 Index = MaxIndex - Index;
16024 Op1 = ConstantInt::getSigned(Int32Ty, Index);
16025
16026 // Emit the call, then reverse the double words of the results vector.
16027 Value *Call = Builder.CreateCall(F, {Op0, Op1});
16028
16029 Value *ShuffleCall =
16030 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
16031 return ShuffleCall;
16032 } else {
16033 Op1 = ConstantInt::getSigned(Int32Ty, Index);
16034 return Builder.CreateCall(F, {Op0, Op1});
16035 }
16036 }
16037
16038 case PPC::BI__builtin_vsx_xxpermdi: {
16039 Value *Op0 = EmitScalarExpr(E->getArg(0));
16040 Value *Op1 = EmitScalarExpr(E->getArg(1));
16041 Value *Op2 = EmitScalarExpr(E->getArg(2));
16042 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16043 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16043, __extension__ __PRETTY_FUNCTION__
))
;
16044
16045 unsigned Index = ArgCI->getZExtValue();
16046 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16047 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
16048
16049 // Account for endianness by treating this as just a shuffle. So we use the
16050 // same indices for both LE and BE in order to produce expected results in
16051 // both cases.
16052 int ElemIdx0 = (Index & 2) >> 1;
16053 int ElemIdx1 = 2 + (Index & 1);
16054
16055 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
16056 Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16057 QualType BIRetType = E->getType();
16058 auto RetTy = ConvertType(BIRetType);
16059 return Builder.CreateBitCast(ShuffleCall, RetTy);
16060 }
16061
16062 case PPC::BI__builtin_vsx_xxsldwi: {
16063 Value *Op0 = EmitScalarExpr(E->getArg(0));
16064 Value *Op1 = EmitScalarExpr(E->getArg(1));
16065 Value *Op2 = EmitScalarExpr(E->getArg(2));
16066 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16067 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16067, __extension__ __PRETTY_FUNCTION__
))
;
16068 unsigned Index = ArgCI->getZExtValue() & 0x3;
16069 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16070 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
16071
16072 // Create a shuffle mask
16073 int ElemIdx0;
16074 int ElemIdx1;
16075 int ElemIdx2;
16076 int ElemIdx3;
16077 if (getTarget().isLittleEndian()) {
16078 // Little endian element N comes from element 8+N-Index of the
16079 // concatenated wide vector (of course, using modulo arithmetic on
16080 // the total number of elements).
16081 ElemIdx0 = (8 - Index) % 8;
16082 ElemIdx1 = (9 - Index) % 8;
16083 ElemIdx2 = (10 - Index) % 8;
16084 ElemIdx3 = (11 - Index) % 8;
16085 } else {
16086 // Big endian ElemIdx<N> = Index + N
16087 ElemIdx0 = Index;
16088 ElemIdx1 = Index + 1;
16089 ElemIdx2 = Index + 2;
16090 ElemIdx3 = Index + 3;
16091 }
16092
16093 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
16094 Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16095 QualType BIRetType = E->getType();
16096 auto RetTy = ConvertType(BIRetType);
16097 return Builder.CreateBitCast(ShuffleCall, RetTy);
16098 }
16099
16100 case PPC::BI__builtin_pack_vector_int128: {
16101 Value *Op0 = EmitScalarExpr(E->getArg(0));
16102 Value *Op1 = EmitScalarExpr(E->getArg(1));
16103 bool isLittleEndian = getTarget().isLittleEndian();
16104 Value *UndefValue =
16105 llvm::UndefValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
16106 Value *Res = Builder.CreateInsertElement(
16107 UndefValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
16108 Res = Builder.CreateInsertElement(Res, Op1,
16109 (uint64_t)(isLittleEndian ? 0 : 1));
16110 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
16111 }
16112
16113 case PPC::BI__builtin_unpack_vector_int128: {
16114 Value *Op0 = EmitScalarExpr(E->getArg(0));
16115 Value *Op1 = EmitScalarExpr(E->getArg(1));
16116 ConstantInt *Index = cast<ConstantInt>(Op1);
16117 Value *Unpacked = Builder.CreateBitCast(
16118 Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
16119
16120 if (getTarget().isLittleEndian())
16121 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
16122
16123 return Builder.CreateExtractElement(Unpacked, Index);
16124 }
16125
16126 case PPC::BI__builtin_ppc_sthcx: {
16127 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
16128 Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16129 Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
16130 return Builder.CreateCall(F, {Op0, Op1});
16131 }
16132
16133 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
16134 // Some of the MMA instructions accumulate their result into an existing
16135 // accumulator whereas the others generate a new accumulator. So we need to
16136 // use custom code generation to expand a builtin call with a pointer to a
16137 // load (if the corresponding instruction accumulates its result) followed by
16138 // the call to the intrinsic and a store of the result.
16139#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
16140 case PPC::BI__builtin_##Name:
16141#include "clang/Basic/BuiltinsPPC.def"
16142 {
16143 SmallVector<Value *, 4> Ops;
16144 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
16145 if (E->getArg(i)->getType()->isArrayType())
16146 Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
16147 else
16148 Ops.push_back(EmitScalarExpr(E->getArg(i)));
16149 // The first argument of these two builtins is a pointer used to store their
16150 // result. However, the llvm intrinsics return their result in multiple
16151 // return values. So, here we emit code extracting these values from the
16152 // intrinsic results and storing them using that pointer.
16153 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
16154 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
16155 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
16156 unsigned NumVecs = 2;
16157 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
16158 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
16159 NumVecs = 4;
16160 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
16161 }
16162 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
16163 Address Addr = EmitPointerWithAlignment(E->getArg(1));
16164 Value *Vec = Builder.CreateLoad(Addr);
16165 Value *Call = Builder.CreateCall(F, {Vec});
16166 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
16167 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
16168 for (unsigned i=0; i<NumVecs; i++) {
16169 Value *Vec = Builder.CreateExtractValue(Call, i);
16170 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
16171 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
16172 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
16173 }
16174 return Call;
16175 }
16176 if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
16177 BuiltinID == PPC::BI__builtin_mma_build_acc) {
16178 // Reverse the order of the operands for LE, so the
16179 // same builtin call can be used on both LE and BE
16180 // without the need for the programmer to swap operands.
16181 // The operands are reversed starting from the second argument,
16182 // the first operand is the pointer to the pair/accumulator
16183 // that is being built.
16184 if (getTarget().isLittleEndian())
16185 std::reverse(Ops.begin() + 1, Ops.end());
16186 }
16187 bool Accumulate;
16188 switch (BuiltinID) {
16189 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
16190 case PPC::BI__builtin_##Name: \
16191 ID = Intrinsic::ppc_##Intr; \
16192 Accumulate = Acc; \
16193 break;
16194 #include "clang/Basic/BuiltinsPPC.def"
16195 }
16196 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16197 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
16198 BuiltinID == PPC::BI__builtin_mma_lxvp ||
16199 BuiltinID == PPC::BI__builtin_mma_stxvp) {
16200 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16201 BuiltinID == PPC::BI__builtin_mma_lxvp) {
16202 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
16203 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16204 } else {
16205 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
16206 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16207 }
16208 Ops.pop_back();
16209 llvm::Function *F = CGM.getIntrinsic(ID);
16210 return Builder.CreateCall(F, Ops, "");
16211 }
16212 SmallVector<Value*, 4> CallOps;
16213 if (Accumulate) {
16214 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16215 Value *Acc = Builder.CreateLoad(Addr);
16216 CallOps.push_back(Acc);
16217 }
16218 for (unsigned i=1; i<Ops.size(); i++)
16219 CallOps.push_back(Ops[i]);
16220 llvm::Function *F = CGM.getIntrinsic(ID);
16221 Value *Call = Builder.CreateCall(F, CallOps);
16222 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
16223 }
16224
16225 case PPC::BI__builtin_ppc_compare_and_swap:
16226 case PPC::BI__builtin_ppc_compare_and_swaplp: {
16227 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16228 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
16229 Value *OldVal = Builder.CreateLoad(OldValAddr);
16230 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
16231 LValue LV = MakeAddrLValue(Addr, AtomicTy);
16232 Value *Op2 = EmitScalarExpr(E->getArg(2));
16233 auto Pair = EmitAtomicCompareExchange(
16234 LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
16235 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
16236 // Unlike c11's atomic_compare_exchange, accroding to
16237 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
16238 // > In either case, the contents of the memory location specified by addr
16239 // > are copied into the memory location specified by old_val_addr.
16240 // But it hasn't specified storing to OldValAddr is atomic or not and
16241 // which order to use. Now following XL's codegen, treat it as a normal
16242 // store.
16243 Value *LoadedVal = Pair.first.getScalarVal();
16244 Builder.CreateStore(LoadedVal, OldValAddr);
16245 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
16246 }
16247 case PPC::BI__builtin_ppc_fetch_and_add:
16248 case PPC::BI__builtin_ppc_fetch_and_addlp: {
16249 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
16250 llvm::AtomicOrdering::Monotonic);
16251 }
16252 case PPC::BI__builtin_ppc_fetch_and_and:
16253 case PPC::BI__builtin_ppc_fetch_and_andlp: {
16254 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
16255 llvm::AtomicOrdering::Monotonic);
16256 }
16257
16258 case PPC::BI__builtin_ppc_fetch_and_or:
16259 case PPC::BI__builtin_ppc_fetch_and_orlp: {
16260 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
16261 llvm::AtomicOrdering::Monotonic);
16262 }
16263 case PPC::BI__builtin_ppc_fetch_and_swap:
16264 case PPC::BI__builtin_ppc_fetch_and_swaplp: {
16265 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
16266 llvm::AtomicOrdering::Monotonic);
16267 }
16268 case PPC::BI__builtin_ppc_ldarx:
16269 case PPC::BI__builtin_ppc_lwarx:
16270 case PPC::BI__builtin_ppc_lharx:
16271 case PPC::BI__builtin_ppc_lbarx:
16272 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
16273 case PPC::BI__builtin_ppc_mfspr: {
16274 Value *Op0 = EmitScalarExpr(E->getArg(0));
16275 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16276 ? Int32Ty
16277 : Int64Ty;
16278 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
16279 return Builder.CreateCall(F, {Op0});
16280 }
16281 case PPC::BI__builtin_ppc_mtspr: {
16282 Value *Op0 = EmitScalarExpr(E->getArg(0));
16283 Value *Op1 = EmitScalarExpr(E->getArg(1));
16284 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16285 ? Int32Ty
16286 : Int64Ty;
16287 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
16288 return Builder.CreateCall(F, {Op0, Op1});
16289 }
16290 case PPC::BI__builtin_ppc_popcntb: {
16291 Value *ArgValue = EmitScalarExpr(E->getArg(0));
16292 llvm::Type *ArgType = ArgValue->getType();
16293 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
16294 return Builder.CreateCall(F, {ArgValue}, "popcntb");
16295 }
16296 case PPC::BI__builtin_ppc_mtfsf: {
16297 // The builtin takes a uint32 that needs to be cast to an
16298 // f64 to be passed to the intrinsic.
16299 Value *Op0 = EmitScalarExpr(E->getArg(0));
16300 Value *Op1 = EmitScalarExpr(E->getArg(1));
16301 Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
16302 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
16303 return Builder.CreateCall(F, {Op0, Cast}, "");
16304 }
16305
16306 case PPC::BI__builtin_ppc_swdiv_nochk:
16307 case PPC::BI__builtin_ppc_swdivs_nochk: {
16308 Value *Op0 = EmitScalarExpr(E->getArg(0));
16309 Value *Op1 = EmitScalarExpr(E->getArg(1));
16310 FastMathFlags FMF = Builder.getFastMathFlags();
16311 Builder.getFastMathFlags().setFast();
16312 Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
16313 Builder.getFastMathFlags() &= (FMF);
16314 return FDiv;
16315 }
16316 case PPC::BI__builtin_ppc_fric:
16317 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16318 *this, E, Intrinsic::rint,
16319 Intrinsic::experimental_constrained_rint))
16320 .getScalarVal();
16321 case PPC::BI__builtin_ppc_frim:
16322 case PPC::BI__builtin_ppc_frims:
16323 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16324 *this, E, Intrinsic::floor,
16325 Intrinsic::experimental_constrained_floor))
16326 .getScalarVal();
16327 case PPC::BI__builtin_ppc_frin:
16328 case PPC::BI__builtin_ppc_frins:
16329 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16330 *this, E, Intrinsic::round,
16331 Intrinsic::experimental_constrained_round))
16332 .getScalarVal();
16333 case PPC::BI__builtin_ppc_frip:
16334 case PPC::BI__builtin_ppc_frips:
16335 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16336 *this, E, Intrinsic::ceil,
16337 Intrinsic::experimental_constrained_ceil))
16338 .getScalarVal();
16339 case PPC::BI__builtin_ppc_friz:
16340 case PPC::BI__builtin_ppc_frizs:
16341 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16342 *this, E, Intrinsic::trunc,
16343 Intrinsic::experimental_constrained_trunc))
16344 .getScalarVal();
16345 case PPC::BI__builtin_ppc_fsqrt:
16346 case PPC::BI__builtin_ppc_fsqrts:
16347 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16348 *this, E, Intrinsic::sqrt,
16349 Intrinsic::experimental_constrained_sqrt))
16350 .getScalarVal();
16351 case PPC::BI__builtin_ppc_test_data_class: {
16352 Value *Op0 = EmitScalarExpr(E->getArg(0));
16353 Value *Op1 = EmitScalarExpr(E->getArg(1));
16354 llvm::Type *ArgType = Op0->getType();
16355 unsigned IntrinsicID;
16356 if (ArgType->isDoubleTy())
16357 IntrinsicID = Intrinsic::ppc_test_data_class_d;
16358 else if (ArgType->isFloatTy())
16359 IntrinsicID = Intrinsic::ppc_test_data_class_f;
16360 else
16361 llvm_unreachable("Invalid Argument Type")::llvm::llvm_unreachable_internal("Invalid Argument Type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16361)
;
16362 return Builder.CreateCall(CGM.getIntrinsic(IntrinsicID), {Op0, Op1},
16363 "test_data_class");
16364 }
16365 case PPC::BI__builtin_ppc_maxfe: {
16366 Value *Op0 = EmitScalarExpr(E->getArg(0));
16367 Value *Op1 = EmitScalarExpr(E->getArg(1));
16368 Value *Op2 = EmitScalarExpr(E->getArg(2));
16369 Value *Op3 = EmitScalarExpr(E->getArg(3));
16370 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
16371 {Op0, Op1, Op2, Op3});
16372 }
16373 case PPC::BI__builtin_ppc_maxfl: {
16374 Value *Op0 = EmitScalarExpr(E->getArg(0));
16375 Value *Op1 = EmitScalarExpr(E->getArg(1));
16376 Value *Op2 = EmitScalarExpr(E->getArg(2));
16377 Value *Op3 = EmitScalarExpr(E->getArg(3));
16378 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
16379 {Op0, Op1, Op2, Op3});
16380 }
16381 case PPC::BI__builtin_ppc_maxfs: {
16382 Value *Op0 = EmitScalarExpr(E->getArg(0));
16383 Value *Op1 = EmitScalarExpr(E->getArg(1));
16384 Value *Op2 = EmitScalarExpr(E->getArg(2));
16385 Value *Op3 = EmitScalarExpr(E->getArg(3));
16386 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
16387 {Op0, Op1, Op2, Op3});
16388 }
16389 case PPC::BI__builtin_ppc_minfe: {
16390 Value *Op0 = EmitScalarExpr(E->getArg(0));
16391 Value *Op1 = EmitScalarExpr(E->getArg(1));
16392 Value *Op2 = EmitScalarExpr(E->getArg(2));
16393 Value *Op3 = EmitScalarExpr(E->getArg(3));
16394 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
16395 {Op0, Op1, Op2, Op3});
16396 }
16397 case PPC::BI__builtin_ppc_minfl: {
16398 Value *Op0 = EmitScalarExpr(E->getArg(0));
16399 Value *Op1 = EmitScalarExpr(E->getArg(1));
16400 Value *Op2 = EmitScalarExpr(E->getArg(2));
16401 Value *Op3 = EmitScalarExpr(E->getArg(3));
16402 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
16403 {Op0, Op1, Op2, Op3});
16404 }
16405 case PPC::BI__builtin_ppc_minfs: {
16406 Value *Op0 = EmitScalarExpr(E->getArg(0));
16407 Value *Op1 = EmitScalarExpr(E->getArg(1));
16408 Value *Op2 = EmitScalarExpr(E->getArg(2));
16409 Value *Op3 = EmitScalarExpr(E->getArg(3));
16410 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
16411 {Op0, Op1, Op2, Op3});
16412 }
16413 case PPC::BI__builtin_ppc_swdiv:
16414 case PPC::BI__builtin_ppc_swdivs: {
16415 Value *Op0 = EmitScalarExpr(E->getArg(0));
16416 Value *Op1 = EmitScalarExpr(E->getArg(1));
16417 return Builder.CreateFDiv(Op0, Op1, "swdiv");
16418 }
16419 }
16420}
16421
16422namespace {
16423// If \p E is not null pointer, insert address space cast to match return
16424// type of \p E if necessary.
16425Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16426 const CallExpr *E = nullptr) {
16427 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16428 auto *Call = CGF.Builder.CreateCall(F);
16429 Call->addRetAttr(
16430 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16431 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16432 if (!E)
16433 return Call;
16434 QualType BuiltinRetType = E->getType();
16435 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16436 if (RetTy == Call->getType())
16437 return Call;
16438 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16439}
16440
16441Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
16442 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
16443 auto *Call = CGF.Builder.CreateCall(F);
16444 Call->addRetAttr(
16445 Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
16446 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
16447 return Call;
16448}
16449
16450// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16451Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16452 bool IsCOV_5 = CGF.getTarget().getTargetOpts().CodeObjectVersion ==
16453 clang::TargetOptions::COV_5;
16454 Constant *Offset;
16455 Value *DP;
16456 if (IsCOV_5) {
16457 // Indexing the implicit kernarg segment.
16458 Offset = llvm::ConstantInt::get(CGF.Int32Ty, 12 + Index * 2);
16459 DP = EmitAMDGPUImplicitArgPtr(CGF);
16460 } else {
16461 // Indexing the HSA kernel_dispatch_packet struct.
16462 Offset = llvm::ConstantInt::get(CGF.Int32Ty, 4 + Index * 2);
16463 DP = EmitAMDGPUDispatchPtr(CGF);
16464 }
16465
16466 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16467 auto *DstTy =
16468 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16469 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16470 auto *LD = CGF.Builder.CreateLoad(
16471 Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
16472 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16473 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16474 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16475 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16476 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16477 llvm::MDNode::get(CGF.getLLVMContext(), None));
16478 return LD;
16479}
16480
16481// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16482Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16483 const unsigned XOffset = 12;
16484 auto *DP = EmitAMDGPUDispatchPtr(CGF);
16485 // Indexing the HSA kernel_dispatch_packet struct.
16486 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16487 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16488 auto *DstTy =
16489 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16490 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16491 auto *LD = CGF.Builder.CreateLoad(
16492 Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
16493 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16494 llvm::MDNode::get(CGF.getLLVMContext(), None));
16495 return LD;
16496}
16497} // namespace
16498
16499// For processing memory ordering and memory scope arguments of various
16500// amdgcn builtins.
16501// \p Order takes a C++11 comptabile memory-ordering specifier and converts
16502// it into LLVM's memory ordering specifier using atomic C ABI, and writes
16503// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16504// specific SyncScopeID and writes it to \p SSID.
16505bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16506 llvm::AtomicOrdering &AO,
16507 llvm::SyncScope::ID &SSID) {
16508 if (isa<llvm::ConstantInt>(Order)) {
16509 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16510
16511 // Map C11/C++11 memory ordering to LLVM memory ordering
16512 assert(llvm::isValidAtomicOrderingCABI(ord))(static_cast <bool> (llvm::isValidAtomicOrderingCABI(ord
)) ? void (0) : __assert_fail ("llvm::isValidAtomicOrderingCABI(ord)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16512, __extension__ __PRETTY_FUNCTION__
))
;
16513 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16514 case llvm::AtomicOrderingCABI::acquire:
16515 case llvm::AtomicOrderingCABI::consume:
16516 AO = llvm::AtomicOrdering::Acquire;
16517 break;
16518 case llvm::AtomicOrderingCABI::release:
16519 AO = llvm::AtomicOrdering::Release;
16520 break;
16521 case llvm::AtomicOrderingCABI::acq_rel:
16522 AO = llvm::AtomicOrdering::AcquireRelease;
16523 break;
16524 case llvm::AtomicOrderingCABI::seq_cst:
16525 AO = llvm::AtomicOrdering::SequentiallyConsistent;
16526 break;
16527 case llvm::AtomicOrderingCABI::relaxed:
16528 AO = llvm::AtomicOrdering::Monotonic;
16529 break;
16530 }
16531
16532 StringRef scp;
16533 llvm::getConstantStringInfo(Scope, scp);
16534 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16535 return true;
16536 }
16537 return false;
16538}
16539
16540Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16541 const CallExpr *E) {
16542 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16543 llvm::SyncScope::ID SSID;
16544 switch (BuiltinID) {
16545 case AMDGPU::BI__builtin_amdgcn_div_scale:
16546 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16547 // Translate from the intrinsics's struct return to the builtin's out
16548 // argument.
16549
16550 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16551
16552 llvm::Value *X = EmitScalarExpr(E->getArg(0));
16553 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16554 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16555
16556 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16557 X->getType());
16558
16559 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16560
16561 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16562 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16563
16564 llvm::Type *RealFlagType = FlagOutPtr.getElementType();
16565
16566 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16567 Builder.CreateStore(FlagExt, FlagOutPtr);
16568 return Result;
16569 }
16570 case AMDGPU::BI__builtin_amdgcn_div_fmas:
16571 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16572 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16573 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16574 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16575 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16576
16577 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16578 Src0->getType());
16579 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16580 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16581 }
16582
16583 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16584 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16585 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16586 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16587 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16588 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16589 llvm::SmallVector<llvm::Value *, 6> Args;
16590 for (unsigned I = 0; I != E->getNumArgs(); ++I)
16591 Args.push_back(EmitScalarExpr(E->getArg(I)));
16592 assert(Args.size() == 5 || Args.size() == 6)(static_cast <bool> (Args.size() == 5 || Args.size() ==
6) ? void (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16592, __extension__ __PRETTY_FUNCTION__
))
;
16593 if (Args.size() == 5)
16594 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
16595 Function *F =
16596 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16597 return Builder.CreateCall(F, Args);
16598 }
16599 case AMDGPU::BI__builtin_amdgcn_div_fixup:
16600 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16601 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16602 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16603 case AMDGPU::BI__builtin_amdgcn_trig_preop:
16604 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16605 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16606 case AMDGPU::BI__builtin_amdgcn_rcp:
16607 case AMDGPU::BI__builtin_amdgcn_rcpf:
16608 case AMDGPU::BI__builtin_amdgcn_rcph:
16609 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16610 case AMDGPU::BI__builtin_amdgcn_sqrt:
16611 case AMDGPU::BI__builtin_amdgcn_sqrtf:
16612 case AMDGPU::BI__builtin_amdgcn_sqrth:
16613 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16614 case AMDGPU::BI__builtin_amdgcn_rsq:
16615 case AMDGPU::BI__builtin_amdgcn_rsqf:
16616 case AMDGPU::BI__builtin_amdgcn_rsqh:
16617 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16618 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16619 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16620 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16621 case AMDGPU::BI__builtin_amdgcn_sinf:
16622 case AMDGPU::BI__builtin_amdgcn_sinh:
16623 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16624 case AMDGPU::BI__builtin_amdgcn_cosf:
16625 case AMDGPU::BI__builtin_amdgcn_cosh:
16626 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16627 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16628 return EmitAMDGPUDispatchPtr(*this, E);
16629 case AMDGPU::BI__builtin_amdgcn_log_clampf:
16630 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16631 case AMDGPU::BI__builtin_amdgcn_ldexp:
16632 case AMDGPU::BI__builtin_amdgcn_ldexpf:
16633 case AMDGPU::BI__builtin_amdgcn_ldexph:
16634 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16635 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16636 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16637 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16638 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16639 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16640 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16641 Value *Src0 = EmitScalarExpr(E->getArg(0));
16642 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16643 { Builder.getInt32Ty(), Src0->getType() });
16644 return Builder.CreateCall(F, Src0);
16645 }
16646 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16647 Value *Src0 = EmitScalarExpr(E->getArg(0));
16648 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16649 { Builder.getInt16Ty(), Src0->getType() });
16650 return Builder.CreateCall(F, Src0);
16651 }
16652 case AMDGPU::BI__builtin_amdgcn_fract:
16653 case AMDGPU::BI__builtin_amdgcn_fractf:
16654 case AMDGPU::BI__builtin_amdgcn_fracth:
16655 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16656 case AMDGPU::BI__builtin_amdgcn_lerp:
16657 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16658 case AMDGPU::BI__builtin_amdgcn_ubfe:
16659 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16660 case AMDGPU::BI__builtin_amdgcn_sbfe:
16661 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16662 case AMDGPU::BI__builtin_amdgcn_uicmp:
16663 case AMDGPU::BI__builtin_amdgcn_uicmpl:
16664 case AMDGPU::BI__builtin_amdgcn_sicmp:
16665 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16666 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16667 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16668 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16669
16670 // FIXME-GFX10: How should 32 bit mask be handled?
16671 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
16672 { Builder.getInt64Ty(), Src0->getType() });
16673 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16674 }
16675 case AMDGPU::BI__builtin_amdgcn_fcmp:
16676 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
16677 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16678 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16679 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16680
16681 // FIXME-GFX10: How should 32 bit mask be handled?
16682 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
16683 { Builder.getInt64Ty(), Src0->getType() });
16684 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16685 }
16686 case AMDGPU::BI__builtin_amdgcn_class:
16687 case AMDGPU::BI__builtin_amdgcn_classf:
16688 case AMDGPU::BI__builtin_amdgcn_classh:
16689 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
16690 case AMDGPU::BI__builtin_amdgcn_fmed3f:
16691 case AMDGPU::BI__builtin_amdgcn_fmed3h:
16692 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
16693 case AMDGPU::BI__builtin_amdgcn_ds_append:
16694 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
16695 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
16696 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
16697 Value *Src0 = EmitScalarExpr(E->getArg(0));
16698 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
16699 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
16700 }
16701 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16702 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16703 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
16704 Intrinsic::ID Intrin;
16705 switch (BuiltinID) {
16706 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16707 Intrin = Intrinsic::amdgcn_ds_fadd;
16708 break;
16709 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16710 Intrin = Intrinsic::amdgcn_ds_fmin;
16711 break;
16712 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
16713 Intrin = Intrinsic::amdgcn_ds_fmax;
16714 break;
16715 }
16716 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16717 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16718 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16719 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16720 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
16721 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
16722 llvm::FunctionType *FTy = F->getFunctionType();
16723 llvm::Type *PTy = FTy->getParamType(0);
16724 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
16725 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
16726 }
16727 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16728 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16729 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16730 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16731 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16732 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16733 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16734 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16735 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
16736 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
16737 Intrinsic::ID IID;
16738 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16739 switch (BuiltinID) {
16740 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16741 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16742 IID = Intrinsic::amdgcn_global_atomic_fadd;
16743 break;
16744 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16745 ArgTy = llvm::FixedVectorType::get(
16746 llvm::Type::getHalfTy(getLLVMContext()), 2);
16747 IID = Intrinsic::amdgcn_global_atomic_fadd;
16748 break;
16749 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16750 IID = Intrinsic::amdgcn_global_atomic_fadd;
16751 break;
16752 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16753 IID = Intrinsic::amdgcn_global_atomic_fmin;
16754 break;
16755 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16756 IID = Intrinsic::amdgcn_global_atomic_fmax;
16757 break;
16758 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16759 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16760 break;
16761 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16762 IID = Intrinsic::amdgcn_flat_atomic_fmin;
16763 break;
16764 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16765 IID = Intrinsic::amdgcn_flat_atomic_fmax;
16766 break;
16767 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
16768 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16769 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16770 break;
16771 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
16772 ArgTy = llvm::FixedVectorType::get(
16773 llvm::Type::getHalfTy(getLLVMContext()), 2);
16774 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16775 break;
16776 }
16777 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16778 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16779 llvm::Function *F =
16780 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
16781 return Builder.CreateCall(F, {Addr, Val});
16782 }
16783 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
16784 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
16785 Intrinsic::ID IID;
16786 switch (BuiltinID) {
16787 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
16788 IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
16789 break;
16790 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
16791 IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
16792 break;
16793 }
16794 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16795 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16796 llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
16797 return Builder.CreateCall(F, {Addr, Val});
16798 }
16799 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16800 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
16801 Intrinsic::ID IID;
16802 llvm::Type *ArgTy;
16803 switch (BuiltinID) {
16804 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
16805 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16806 IID = Intrinsic::amdgcn_ds_fadd;
16807 break;
16808 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16809 ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16810 IID = Intrinsic::amdgcn_ds_fadd;
16811 break;
16812 }
16813 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16814 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16815 llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
16816 llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
16817 llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
16818 llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
16819 llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
16820 return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
16821 }
16822 case AMDGPU::BI__builtin_amdgcn_read_exec: {
16823 CallInst *CI = cast<CallInst>(
16824 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
16825 CI->setConvergent();
16826 return CI;
16827 }
16828 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
16829 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
16830 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
16831 "exec_lo" : "exec_hi";
16832 CallInst *CI = cast<CallInst>(
16833 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
16834 CI->setConvergent();
16835 return CI;
16836 }
16837 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
16838 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
16839 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
16840 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
16841 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
16842 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
16843 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
16844 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
16845 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
16846 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
16847
16848 // The builtins take these arguments as vec4 where the last element is
16849 // ignored. The intrinsic takes them as vec3.
16850 RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
16851 ArrayRef<int>{0, 1, 2});
16852 RayDir =
16853 Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
16854 RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
16855 ArrayRef<int>{0, 1, 2});
16856
16857 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
16858 {NodePtr->getType(), RayDir->getType()});
16859 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
16860 RayInverseDir, TextureDescr});
16861 }
16862
16863 // amdgcn workitem
16864 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
16865 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
16866 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
16867 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
16868 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
16869 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
16870
16871 // amdgcn workgroup size
16872 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
16873 return EmitAMDGPUWorkGroupSize(*this, 0);
16874 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
16875 return EmitAMDGPUWorkGroupSize(*this, 1);
16876 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
16877 return EmitAMDGPUWorkGroupSize(*this, 2);
16878
16879 // amdgcn grid size
16880 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
16881 return EmitAMDGPUGridSize(*this, 0);
16882 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
16883 return EmitAMDGPUGridSize(*this, 1);
16884 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
16885 return EmitAMDGPUGridSize(*this, 2);
16886
16887 // r600 intrinsics
16888 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
16889 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
16890 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
16891 case AMDGPU::BI__builtin_r600_read_tidig_x:
16892 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
16893 case AMDGPU::BI__builtin_r600_read_tidig_y:
16894 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
16895 case AMDGPU::BI__builtin_r600_read_tidig_z:
16896 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
16897 case AMDGPU::BI__builtin_amdgcn_alignbit: {
16898 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16899 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16900 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16901 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
16902 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16903 }
16904
16905 case AMDGPU::BI__builtin_amdgcn_fence: {
16906 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
16907 EmitScalarExpr(E->getArg(1)), AO, SSID))
16908 return Builder.CreateFence(AO, SSID);
16909 LLVM_FALLTHROUGH[[gnu::fallthrough]];
16910 }
16911 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16912 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16913 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16914 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
16915 unsigned BuiltinAtomicOp;
16916 llvm::Type *ResultType = ConvertType(E->getType());
16917
16918 switch (BuiltinID) {
16919 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16920 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16921 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
16922 break;
16923 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16924 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
16925 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
16926 break;
16927 }
16928
16929 Value *Ptr = EmitScalarExpr(E->getArg(0));
16930 Value *Val = EmitScalarExpr(E->getArg(1));
16931
16932 llvm::Function *F =
16933 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
16934
16935 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
16936 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
16937
16938 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
16939 // scope as unsigned values
16940 Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
16941 Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
16942
16943 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
16944 bool Volatile =
16945 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
16946 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
16947
16948 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
16949 }
16950 LLVM_FALLTHROUGH[[gnu::fallthrough]];
16951 }
16952 default:
16953 return nullptr;
16954 }
16955}
16956
16957/// Handle a SystemZ function in which the final argument is a pointer
16958/// to an int that receives the post-instruction CC value. At the LLVM level
16959/// this is represented as a function that returns a {result, cc} pair.
16960static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
16961 unsigned IntrinsicID,
16962 const CallExpr *E) {
16963 unsigned NumArgs = E->getNumArgs() - 1;
16964 SmallVector<Value *, 8> Args(NumArgs);
16965 for (unsigned I = 0; I < NumArgs; ++I)
16966 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
16967 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
16968 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
16969 Value *Call = CGF.Builder.CreateCall(F, Args);
16970 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
16971 CGF.Builder.CreateStore(CC, CCPtr);
16972 return CGF.Builder.CreateExtractValue(Call, 0);
16973}
16974
16975Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
16976 const CallExpr *E) {
16977 switch (BuiltinID) {
16978 case SystemZ::BI__builtin_tbegin: {
16979 Value *TDB = EmitScalarExpr(E->getArg(0));
16980 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16981 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
16982 return Builder.CreateCall(F, {TDB, Control});
16983 }
16984 case SystemZ::BI__builtin_tbegin_nofloat: {
16985 Value *TDB = EmitScalarExpr(E->getArg(0));
16986 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16987 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
16988 return Builder.CreateCall(F, {TDB, Control});
16989 }
16990 case SystemZ::BI__builtin_tbeginc: {
16991 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
16992 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
16993 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
16994 return Builder.CreateCall(F, {TDB, Control});
16995 }
16996 case SystemZ::BI__builtin_tabort: {
16997 Value *Data = EmitScalarExpr(E->getArg(0));
16998 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
16999 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
17000 }
17001 case SystemZ::BI__builtin_non_tx_store: {
17002 Value *Address = EmitScalarExpr(E->getArg(0));
17003 Value *Data = EmitScalarExpr(E->getArg(1));
17004 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
17005 return Builder.CreateCall(F, {Data, Address});
17006 }
17007
17008 // Vector builtins. Note that most vector builtins are mapped automatically
17009 // to target-specific LLVM intrinsics. The ones handled specially here can
17010 // be represented via standard LLVM IR, which is preferable to enable common
17011 // LLVM optimizations.
17012
17013 case SystemZ::BI__builtin_s390_vpopctb:
17014 case SystemZ::BI__builtin_s390_vpopcth:
17015 case SystemZ::BI__builtin_s390_vpopctf:
17016 case SystemZ::BI__builtin_s390_vpopctg: {
17017 llvm::Type *ResultType = ConvertType(E->getType());
17018 Value *X = EmitScalarExpr(E->getArg(0));
17019 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17020 return Builder.CreateCall(F, X);
17021 }
17022
17023 case SystemZ::BI__builtin_s390_vclzb:
17024 case SystemZ::BI__builtin_s390_vclzh:
17025 case SystemZ::BI__builtin_s390_vclzf:
17026 case SystemZ::BI__builtin_s390_vclzg: {
17027 llvm::Type *ResultType = ConvertType(E->getType());
17028 Value *X = EmitScalarExpr(E->getArg(0));
17029 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17030 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17031 return Builder.CreateCall(F, {X, Undef});
17032 }
17033
17034 case SystemZ::BI__builtin_s390_vctzb:
17035 case SystemZ::BI__builtin_s390_vctzh:
17036 case SystemZ::BI__builtin_s390_vctzf:
17037 case SystemZ::BI__builtin_s390_vctzg: {
17038 llvm::Type *ResultType = ConvertType(E->getType());
17039 Value *X = EmitScalarExpr(E->getArg(0));
17040 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17041 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17042 return Builder.CreateCall(F, {X, Undef});
17043 }
17044
17045 case SystemZ::BI__builtin_s390_vfsqsb:
17046 case SystemZ::BI__builtin_s390_vfsqdb: {
17047 llvm::Type *ResultType = ConvertType(E->getType());
17048 Value *X = EmitScalarExpr(E->getArg(0));
17049 if (Builder.getIsFPConstrained()) {
17050 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
17051 return Builder.CreateConstrainedFPCall(F, { X });
17052 } else {
17053 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17054 return Builder.CreateCall(F, X);
17055 }
17056 }
17057 case SystemZ::BI__builtin_s390_vfmasb:
17058 case SystemZ::BI__builtin_s390_vfmadb: {
17059 llvm::Type *ResultType = ConvertType(E->getType());
17060 Value *X = EmitScalarExpr(E->getArg(0));
17061 Value *Y = EmitScalarExpr(E->getArg(1));
17062 Value *Z = EmitScalarExpr(E->getArg(2));
17063 if (Builder.getIsFPConstrained()) {
17064 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17065 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17066 } else {
17067 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17068 return Builder.CreateCall(F, {X, Y, Z});
17069 }
17070 }
17071 case SystemZ::BI__builtin_s390_vfmssb:
17072 case SystemZ::BI__builtin_s390_vfmsdb: {
17073 llvm::Type *ResultType = ConvertType(E->getType());
17074 Value *X = EmitScalarExpr(E->getArg(0));
17075 Value *Y = EmitScalarExpr(E->getArg(1));
17076 Value *Z = EmitScalarExpr(E->getArg(2));
17077 if (Builder.getIsFPConstrained()) {
17078 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17079 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17080 } else {
17081 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17082 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17083 }
17084 }
17085 case SystemZ::BI__builtin_s390_vfnmasb:
17086 case SystemZ::BI__builtin_s390_vfnmadb: {
17087 llvm::Type *ResultType = ConvertType(E->getType());
17088 Value *X = EmitScalarExpr(E->getArg(0));
17089 Value *Y = EmitScalarExpr(E->getArg(1));
17090 Value *Z = EmitScalarExpr(E->getArg(2));
17091 if (Builder.getIsFPConstrained()) {
17092 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17093 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
17094 } else {
17095 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17096 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17097 }
17098 }
17099 case SystemZ::BI__builtin_s390_vfnmssb:
17100 case SystemZ::BI__builtin_s390_vfnmsdb: {
17101 llvm::Type *ResultType = ConvertType(E->getType());
17102 Value *X = EmitScalarExpr(E->getArg(0));
17103 Value *Y = EmitScalarExpr(E->getArg(1));
17104 Value *Z = EmitScalarExpr(E->getArg(2));
17105 if (Builder.getIsFPConstrained()) {
17106 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17107 Value *NegZ = Builder.CreateFNeg(Z, "sub");
17108 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
17109 } else {
17110 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17111 Value *NegZ = Builder.CreateFNeg(Z, "neg");
17112 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
17113 }
17114 }
17115 case SystemZ::BI__builtin_s390_vflpsb:
17116 case SystemZ::BI__builtin_s390_vflpdb: {
17117 llvm::Type *ResultType = ConvertType(E->getType());
17118 Value *X = EmitScalarExpr(E->getArg(0));
17119 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17120 return Builder.CreateCall(F, X);
17121 }
17122 case SystemZ::BI__builtin_s390_vflnsb:
17123 case SystemZ::BI__builtin_s390_vflndb: {
17124 llvm::Type *ResultType = ConvertType(E->getType());
17125 Value *X = EmitScalarExpr(E->getArg(0));
17126 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17127 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
17128 }
17129 case SystemZ::BI__builtin_s390_vfisb:
17130 case SystemZ::BI__builtin_s390_vfidb: {
17131 llvm::Type *ResultType = ConvertType(E->getType());
17132 Value *X = EmitScalarExpr(E->getArg(0));
17133 // Constant-fold the M4 and M5 mask arguments.
17134 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
17135 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17136 // Check whether this instance can be represented via a LLVM standard
17137 // intrinsic. We only support some combinations of M4 and M5.
17138 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17139 Intrinsic::ID CI;
17140 switch (M4.getZExtValue()) {
17141 default: break;
17142 case 0: // IEEE-inexact exception allowed
17143 switch (M5.getZExtValue()) {
17144 default: break;
17145 case 0: ID = Intrinsic::rint;
17146 CI = Intrinsic::experimental_constrained_rint; break;
17147 }
17148 break;
17149 case 4: // IEEE-inexact exception suppressed
17150 switch (M5.getZExtValue()) {
17151 default: break;
17152 case 0: ID = Intrinsic::nearbyint;
17153 CI = Intrinsic::experimental_constrained_nearbyint; break;
17154 case 1: ID = Intrinsic::round;
17155 CI = Intrinsic::experimental_constrained_round; break;
17156 case 5: ID = Intrinsic::trunc;
17157 CI = Intrinsic::experimental_constrained_trunc; break;
17158 case 6: ID = Intrinsic::ceil;
17159 CI = Intrinsic::experimental_constrained_ceil; break;
17160 case 7: ID = Intrinsic::floor;
17161 CI = Intrinsic::experimental_constrained_floor; break;
17162 }
17163 break;
17164 }
17165 if (ID != Intrinsic::not_intrinsic) {
17166 if (Builder.getIsFPConstrained()) {
17167 Function *F = CGM.getIntrinsic(CI, ResultType);
17168 return Builder.CreateConstrainedFPCall(F, X);
17169 } else {
17170 Function *F = CGM.getIntrinsic(ID, ResultType);
17171 return Builder.CreateCall(F, X);
17172 }
17173 }
17174 switch (BuiltinID) { // FIXME: constrained version?
17175 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
17176 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
17177 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17177)
;
17178 }
17179 Function *F = CGM.getIntrinsic(ID);
17180 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17181 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
17182 return Builder.CreateCall(F, {X, M4Value, M5Value});
17183 }
17184 case SystemZ::BI__builtin_s390_vfmaxsb:
17185 case SystemZ::BI__builtin_s390_vfmaxdb: {
17186 llvm::Type *ResultType = ConvertType(E->getType());
17187 Value *X = EmitScalarExpr(E->getArg(0));
17188 Value *Y = EmitScalarExpr(E->getArg(1));
17189 // Constant-fold the M4 mask argument.
17190 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17191 // Check whether this instance can be represented via a LLVM standard
17192 // intrinsic. We only support some values of M4.
17193 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17194 Intrinsic::ID CI;
17195 switch (M4.getZExtValue()) {
17196 default: break;
17197 case 4: ID = Intrinsic::maxnum;
17198 CI = Intrinsic::experimental_constrained_maxnum; break;
17199 }
17200 if (ID != Intrinsic::not_intrinsic) {
17201 if (Builder.getIsFPConstrained()) {
17202 Function *F = CGM.getIntrinsic(CI, ResultType);
17203 return Builder.CreateConstrainedFPCall(F, {X, Y});
17204 } else {
17205 Function *F = CGM.getIntrinsic(ID, ResultType);
17206 return Builder.CreateCall(F, {X, Y});
17207 }
17208 }
17209 switch (BuiltinID) {
17210 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
17211 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
17212 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17212)
;
17213 }
17214 Function *F = CGM.getIntrinsic(ID);
17215 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17216 return Builder.CreateCall(F, {X, Y, M4Value});
17217 }
17218 case SystemZ::BI__builtin_s390_vfminsb:
17219 case SystemZ::BI__builtin_s390_vfmindb: {
17220 llvm::Type *ResultType = ConvertType(E->getType());
17221 Value *X = EmitScalarExpr(E->getArg(0));
17222 Value *Y = EmitScalarExpr(E->getArg(1));
17223 // Constant-fold the M4 mask argument.
17224 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17225 // Check whether this instance can be represented via a LLVM standard
17226 // intrinsic. We only support some values of M4.
17227 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17228 Intrinsic::ID CI;
17229 switch (M4.getZExtValue()) {
17230 default: break;
17231 case 4: ID = Intrinsic::minnum;
17232 CI = Intrinsic::experimental_constrained_minnum; break;
17233 }
17234 if (ID != Intrinsic::not_intrinsic) {
17235 if (Builder.getIsFPConstrained()) {
17236 Function *F = CGM.getIntrinsic(CI, ResultType);
17237 return Builder.CreateConstrainedFPCall(F, {X, Y});
17238 } else {
17239 Function *F = CGM.getIntrinsic(ID, ResultType);
17240 return Builder.CreateCall(F, {X, Y});
17241 }
17242 }
17243 switch (BuiltinID) {
17244 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
17245 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
17246 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17246)
;
17247 }
17248 Function *F = CGM.getIntrinsic(ID);
17249 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17250 return Builder.CreateCall(F, {X, Y, M4Value});
17251 }
17252
17253 case SystemZ::BI__builtin_s390_vlbrh:
17254 case SystemZ::BI__builtin_s390_vlbrf:
17255 case SystemZ::BI__builtin_s390_vlbrg: {
17256 llvm::Type *ResultType = ConvertType(E->getType());
17257 Value *X = EmitScalarExpr(E->getArg(0));
17258 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
17259 return Builder.CreateCall(F, X);
17260 }
17261
17262 // Vector intrinsics that output the post-instruction CC value.
17263
17264#define INTRINSIC_WITH_CC(NAME) \
17265 case SystemZ::BI__builtin_##NAME: \
17266 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
17267
17268 INTRINSIC_WITH_CC(s390_vpkshs);
17269 INTRINSIC_WITH_CC(s390_vpksfs);
17270 INTRINSIC_WITH_CC(s390_vpksgs);
17271
17272 INTRINSIC_WITH_CC(s390_vpklshs);
17273 INTRINSIC_WITH_CC(s390_vpklsfs);
17274 INTRINSIC_WITH_CC(s390_vpklsgs);
17275
17276 INTRINSIC_WITH_CC(s390_vceqbs);
17277 INTRINSIC_WITH_CC(s390_vceqhs);
17278 INTRINSIC_WITH_CC(s390_vceqfs);
17279 INTRINSIC_WITH_CC(s390_vceqgs);
17280
17281 INTRINSIC_WITH_CC(s390_vchbs);
17282 INTRINSIC_WITH_CC(s390_vchhs);
17283 INTRINSIC_WITH_CC(s390_vchfs);
17284 INTRINSIC_WITH_CC(s390_vchgs);
17285
17286 INTRINSIC_WITH_CC(s390_vchlbs);
17287 INTRINSIC_WITH_CC(s390_vchlhs);
17288 INTRINSIC_WITH_CC(s390_vchlfs);
17289 INTRINSIC_WITH_CC(s390_vchlgs);
17290
17291 INTRINSIC_WITH_CC(s390_vfaebs);
17292 INTRINSIC_WITH_CC(s390_vfaehs);
17293 INTRINSIC_WITH_CC(s390_vfaefs);
17294
17295 INTRINSIC_WITH_CC(s390_vfaezbs);
17296 INTRINSIC_WITH_CC(s390_vfaezhs);
17297 INTRINSIC_WITH_CC(s390_vfaezfs);
17298
17299 INTRINSIC_WITH_CC(s390_vfeebs);
17300 INTRINSIC_WITH_CC(s390_vfeehs);
17301 INTRINSIC_WITH_CC(s390_vfeefs);
17302
17303 INTRINSIC_WITH_CC(s390_vfeezbs);
17304 INTRINSIC_WITH_CC(s390_vfeezhs);
17305 INTRINSIC_WITH_CC(s390_vfeezfs);
17306
17307 INTRINSIC_WITH_CC(s390_vfenebs);
17308 INTRINSIC_WITH_CC(s390_vfenehs);
17309 INTRINSIC_WITH_CC(s390_vfenefs);
17310
17311 INTRINSIC_WITH_CC(s390_vfenezbs);
17312 INTRINSIC_WITH_CC(s390_vfenezhs);
17313 INTRINSIC_WITH_CC(s390_vfenezfs);
17314
17315 INTRINSIC_WITH_CC(s390_vistrbs);
17316 INTRINSIC_WITH_CC(s390_vistrhs);
17317 INTRINSIC_WITH_CC(s390_vistrfs);
17318
17319 INTRINSIC_WITH_CC(s390_vstrcbs);
17320 INTRINSIC_WITH_CC(s390_vstrchs);
17321 INTRINSIC_WITH_CC(s390_vstrcfs);
17322
17323 INTRINSIC_WITH_CC(s390_vstrczbs);
17324 INTRINSIC_WITH_CC(s390_vstrczhs);
17325 INTRINSIC_WITH_CC(s390_vstrczfs);
17326
17327 INTRINSIC_WITH_CC(s390_vfcesbs);
17328 INTRINSIC_WITH_CC(s390_vfcedbs);
17329 INTRINSIC_WITH_CC(s390_vfchsbs);
17330 INTRINSIC_WITH_CC(s390_vfchdbs);
17331 INTRINSIC_WITH_CC(s390_vfchesbs);
17332 INTRINSIC_WITH_CC(s390_vfchedbs);
17333
17334 INTRINSIC_WITH_CC(s390_vftcisb);
17335 INTRINSIC_WITH_CC(s390_vftcidb);
17336
17337 INTRINSIC_WITH_CC(s390_vstrsb);
17338 INTRINSIC_WITH_CC(s390_vstrsh);
17339 INTRINSIC_WITH_CC(s390_vstrsf);
17340
17341 INTRINSIC_WITH_CC(s390_vstrszb);
17342 INTRINSIC_WITH_CC(s390_vstrszh);
17343 INTRINSIC_WITH_CC(s390_vstrszf);
17344
17345#undef INTRINSIC_WITH_CC
17346
17347 default:
17348 return nullptr;
17349 }
17350}
17351
17352namespace {
17353// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
17354struct NVPTXMmaLdstInfo {
17355 unsigned NumResults; // Number of elements to load/store
17356 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
17357 unsigned IID_col;
17358 unsigned IID_row;
17359};
17360
17361#define MMA_INTR(geom_op_type, layout) \
17362 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
17363#define MMA_LDST(n, geom_op_type) \
17364 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
17365
17366static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
17367 switch (BuiltinID) {
17368 // FP MMA loads
17369 case NVPTX::BI__hmma_m16n16k16_ld_a:
17370 return MMA_LDST(8, m16n16k16_load_a_f16);
17371 case NVPTX::BI__hmma_m16n16k16_ld_b:
17372 return MMA_LDST(8, m16n16k16_load_b_f16);
17373 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17374 return MMA_LDST(4, m16n16k16_load_c_f16);
17375 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17376 return MMA_LDST(8, m16n16k16_load_c_f32);
17377 case NVPTX::BI__hmma_m32n8k16_ld_a:
17378 return MMA_LDST(8, m32n8k16_load_a_f16);
17379 case NVPTX::BI__hmma_m32n8k16_ld_b:
17380 return MMA_LDST(8, m32n8k16_load_b_f16);
17381 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17382 return MMA_LDST(4, m32n8k16_load_c_f16);
17383 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17384 return MMA_LDST(8, m32n8k16_load_c_f32);
17385 case NVPTX::BI__hmma_m8n32k16_ld_a:
17386 return MMA_LDST(8, m8n32k16_load_a_f16);
17387 case NVPTX::BI__hmma_m8n32k16_ld_b:
17388 return MMA_LDST(8, m8n32k16_load_b_f16);
17389 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17390 return MMA_LDST(4, m8n32k16_load_c_f16);
17391 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17392 return MMA_LDST(8, m8n32k16_load_c_f32);
17393
17394 // Integer MMA loads
17395 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17396 return MMA_LDST(2, m16n16k16_load_a_s8);
17397 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17398 return MMA_LDST(2, m16n16k16_load_a_u8);
17399 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17400 return MMA_LDST(2, m16n16k16_load_b_s8);
17401 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17402 return MMA_LDST(2, m16n16k16_load_b_u8);
17403 case NVPTX::BI__imma_m16n16k16_ld_c:
17404 return MMA_LDST(8, m16n16k16_load_c_s32);
17405 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17406 return MMA_LDST(4, m32n8k16_load_a_s8);
17407 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17408 return MMA_LDST(4, m32n8k16_load_a_u8);
17409 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17410 return MMA_LDST(1, m32n8k16_load_b_s8);
17411 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17412 return MMA_LDST(1, m32n8k16_load_b_u8);
17413 case NVPTX::BI__imma_m32n8k16_ld_c:
17414 return MMA_LDST(8, m32n8k16_load_c_s32);
17415 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17416 return MMA_LDST(1, m8n32k16_load_a_s8);
17417 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17418 return MMA_LDST(1, m8n32k16_load_a_u8);
17419 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17420 return MMA_LDST(4, m8n32k16_load_b_s8);
17421 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17422 return MMA_LDST(4, m8n32k16_load_b_u8);
17423 case NVPTX::BI__imma_m8n32k16_ld_c:
17424 return MMA_LDST(8, m8n32k16_load_c_s32);
17425
17426 // Sub-integer MMA loads.
17427 // Only row/col layout is supported by A/B fragments.
17428 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17429 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
17430 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17431 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
17432 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17433 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
17434 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17435 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
17436 case NVPTX::BI__imma_m8n8k32_ld_c:
17437 return MMA_LDST(2, m8n8k32_load_c_s32);
17438 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17439 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17440 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17441 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17442 case NVPTX::BI__bmma_m8n8k128_ld_c:
17443 return MMA_LDST(2, m8n8k128_load_c_s32);
17444
17445 // Double MMA loads
17446 case NVPTX::BI__dmma_m8n8k4_ld_a:
17447 return MMA_LDST(1, m8n8k4_load_a_f64);
17448 case NVPTX::BI__dmma_m8n8k4_ld_b:
17449 return MMA_LDST(1, m8n8k4_load_b_f64);
17450 case NVPTX::BI__dmma_m8n8k4_ld_c:
17451 return MMA_LDST(2, m8n8k4_load_c_f64);
17452
17453 // Alternate float MMA loads
17454 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17455 return MMA_LDST(4, m16n16k16_load_a_bf16);
17456 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17457 return MMA_LDST(4, m16n16k16_load_b_bf16);
17458 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17459 return MMA_LDST(2, m8n32k16_load_a_bf16);
17460 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17461 return MMA_LDST(8, m8n32k16_load_b_bf16);
17462 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17463 return MMA_LDST(8, m32n8k16_load_a_bf16);
17464 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17465 return MMA_LDST(2, m32n8k16_load_b_bf16);
17466 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17467 return MMA_LDST(4, m16n16k8_load_a_tf32);
17468 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17469 return MMA_LDST(4, m16n16k8_load_b_tf32);
17470 case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17471 return MMA_LDST(8, m16n16k8_load_c_f32);
17472
17473 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
17474 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17475 // use fragment C for both loads and stores.
17476 // FP MMA stores.
17477 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17478 return MMA_LDST(4, m16n16k16_store_d_f16);
17479 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17480 return MMA_LDST(8, m16n16k16_store_d_f32);
17481 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17482 return MMA_LDST(4, m32n8k16_store_d_f16);
17483 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17484 return MMA_LDST(8, m32n8k16_store_d_f32);
17485 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17486 return MMA_LDST(4, m8n32k16_store_d_f16);
17487 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17488 return MMA_LDST(8, m8n32k16_store_d_f32);
17489
17490 // Integer and sub-integer MMA stores.
17491 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17492 // name, integer loads/stores use LLVM's i32.
17493 case NVPTX::BI__imma_m16n16k16_st_c_i32:
17494 return MMA_LDST(8, m16n16k16_store_d_s32);
17495 case NVPTX::BI__imma_m32n8k16_st_c_i32:
17496 return MMA_LDST(8, m32n8k16_store_d_s32);
17497 case NVPTX::BI__imma_m8n32k16_st_c_i32:
17498 return MMA_LDST(8, m8n32k16_store_d_s32);
17499 case NVPTX::BI__imma_m8n8k32_st_c_i32:
17500 return MMA_LDST(2, m8n8k32_store_d_s32);
17501 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17502 return MMA_LDST(2, m8n8k128_store_d_s32);
17503
17504 // Double MMA store
17505 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17506 return MMA_LDST(2, m8n8k4_store_d_f64);
17507
17508 // Alternate float MMA store
17509 case NVPTX::BI__mma_m16n16k8_st_c_f32:
17510 return MMA_LDST(8, m16n16k8_store_d_f32);
17511
17512 default:
17513 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17513)
;
17514 }
17515}
17516#undef MMA_LDST
17517#undef MMA_INTR
17518
17519
17520struct NVPTXMmaInfo {
17521 unsigned NumEltsA;
17522 unsigned NumEltsB;
17523 unsigned NumEltsC;
17524 unsigned NumEltsD;
17525
17526 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
17527 // over 'col' for layout. The index of non-satf variants is expected to match
17528 // the undocumented layout constants used by CUDA's mma.hpp.
17529 std::array<unsigned, 8> Variants;
17530
17531 unsigned getMMAIntrinsic(int Layout, bool Satf) {
17532 unsigned Index = Layout + 4 * Satf;
17533 if (Index >= Variants.size())
17534 return 0;
17535 return Variants[Index];
17536 }
17537};
17538
17539 // Returns an intrinsic that matches Layout and Satf for valid combinations of
17540 // Layout and Satf, 0 otherwise.
17541static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
17542 // clang-format off
17543#define MMA_VARIANTS(geom, type) \
17544 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
17545 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
17546 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
17547 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
17548#define MMA_SATF_VARIANTS(geom, type) \
17549 MMA_VARIANTS(geom, type), \
17550 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
17551 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17552 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
17553 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
17554// Sub-integer MMA only supports row.col layout.
17555#define MMA_VARIANTS_I4(geom, type) \
17556 0, \
17557 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
17558 0, \
17559 0, \
17560 0, \
17561 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17562 0, \
17563 0
17564// b1 MMA does not support .satfinite.
17565#define MMA_VARIANTS_B1_XOR(geom, type) \
17566 0, \
17567 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
17568 0, \
17569 0, \
17570 0, \
17571 0, \
17572 0, \
17573 0
17574#define MMA_VARIANTS_B1_AND(geom, type) \
17575 0, \
17576 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
17577 0, \
17578 0, \
17579 0, \
17580 0, \
17581 0, \
17582 0
17583 // clang-format on
17584 switch (BuiltinID) {
17585 // FP MMA
17586 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
17587 // NumEltsN of return value are ordered as A,B,C,D.
17588 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17589 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
17590 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17591 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
17592 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17593 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
17594 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17595 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
17596 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17597 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
17598 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17599 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
17600 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17601 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
17602 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17603 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
17604 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17605 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
17606 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17607 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
17608 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17609 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
17610 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17611 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
17612
17613 // Integer MMA
17614 case NVPTX::BI__imma_m16n16k16_mma_s8:
17615 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
17616 case NVPTX::BI__imma_m16n16k16_mma_u8:
17617 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
17618 case NVPTX::BI__imma_m32n8k16_mma_s8:
17619 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
17620 case NVPTX::BI__imma_m32n8k16_mma_u8:
17621 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
17622 case NVPTX::BI__imma_m8n32k16_mma_s8:
17623 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
17624 case NVPTX::BI__imma_m8n32k16_mma_u8:
17625 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
17626
17627 // Sub-integer MMA
17628 case NVPTX::BI__imma_m8n8k32_mma_s4:
17629 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
17630 case NVPTX::BI__imma_m8n8k32_mma_u4:
17631 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
17632 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17633 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
17634 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17635 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
17636
17637 // Double MMA
17638 case NVPTX::BI__dmma_m8n8k4_mma_f64:
17639 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
17640
17641 // Alternate FP MMA
17642 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17643 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
17644 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17645 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
17646 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17647 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
17648 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
17649 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
17650 default:
17651 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17651)
;
17652 }
17653#undef MMA_VARIANTS
17654#undef MMA_SATF_VARIANTS
17655#undef MMA_VARIANTS_I4
17656#undef MMA_VARIANTS_B1_AND
17657#undef MMA_VARIANTS_B1_XOR
17658}
17659
17660} // namespace
17661
17662Value *
17663CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
17664 auto MakeLdg = [&](unsigned IntrinsicID) {
17665 Value *Ptr = EmitScalarExpr(E->getArg(0));
17666 QualType ArgType = E->getArg(0)->getType();
17667 clang::CharUnits Align = CGM.getNaturalPointeeTypeAlignment(ArgType);
17668 llvm::Type *ElemTy = ConvertTypeForMem(ArgType->getPointeeType());
17669 return Builder.CreateCall(
17670 CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
17671 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
17672 };
17673 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
17674 Value *Ptr = EmitScalarExpr(E->getArg(0));
17675 llvm::Type *ElemTy =
17676 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17677 return Builder.CreateCall(
17678 CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
17679 {Ptr, EmitScalarExpr(E->getArg(1))});
17680 };
17681 switch (BuiltinID) {
17682 case NVPTX::BI__nvvm_atom_add_gen_i:
17683 case NVPTX::BI__nvvm_atom_add_gen_l:
17684 case NVPTX::BI__nvvm_atom_add_gen_ll:
17685 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
17686
17687 case NVPTX::BI__nvvm_atom_sub_gen_i:
17688 case NVPTX::BI__nvvm_atom_sub_gen_l:
17689 case NVPTX::BI__nvvm_atom_sub_gen_ll:
17690 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
17691
17692 case NVPTX::BI__nvvm_atom_and_gen_i:
17693 case NVPTX::BI__nvvm_atom_and_gen_l:
17694 case NVPTX::BI__nvvm_atom_and_gen_ll:
17695 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
17696
17697 case NVPTX::BI__nvvm_atom_or_gen_i:
17698 case NVPTX::BI__nvvm_atom_or_gen_l:
17699 case NVPTX::BI__nvvm_atom_or_gen_ll:
17700 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
17701
17702 case NVPTX::BI__nvvm_atom_xor_gen_i:
17703 case NVPTX::BI__nvvm_atom_xor_gen_l:
17704 case NVPTX::BI__nvvm_atom_xor_gen_ll:
17705 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
17706
17707 case NVPTX::BI__nvvm_atom_xchg_gen_i:
17708 case NVPTX::BI__nvvm_atom_xchg_gen_l:
17709 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
17710 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
17711
17712 case NVPTX::BI__nvvm_atom_max_gen_i:
17713 case NVPTX::BI__nvvm_atom_max_gen_l:
17714 case NVPTX::BI__nvvm_atom_max_gen_ll:
17715 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
17716
17717 case NVPTX::BI__nvvm_atom_max_gen_ui:
17718 case NVPTX::BI__nvvm_atom_max_gen_ul:
17719 case NVPTX::BI__nvvm_atom_max_gen_ull:
17720 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
17721
17722 case NVPTX::BI__nvvm_atom_min_gen_i:
17723 case NVPTX::BI__nvvm_atom_min_gen_l:
17724 case NVPTX::BI__nvvm_atom_min_gen_ll:
17725 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
17726
17727 case NVPTX::BI__nvvm_atom_min_gen_ui:
17728 case NVPTX::BI__nvvm_atom_min_gen_ul:
17729 case NVPTX::BI__nvvm_atom_min_gen_ull:
17730 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
17731
17732 case NVPTX::BI__nvvm_atom_cas_gen_i:
17733 case NVPTX::BI__nvvm_atom_cas_gen_l:
17734 case NVPTX::BI__nvvm_atom_cas_gen_ll:
17735 // __nvvm_atom_cas_gen_* should return the old value rather than the
17736 // success flag.
17737 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
17738
17739 case NVPTX::BI__nvvm_atom_add_gen_f:
17740 case NVPTX::BI__nvvm_atom_add_gen_d: {
17741 Value *Ptr = EmitScalarExpr(E->getArg(0));
17742 Value *Val = EmitScalarExpr(E->getArg(1));
17743 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
17744 AtomicOrdering::SequentiallyConsistent);
17745 }
17746
17747 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
17748 Value *Ptr = EmitScalarExpr(E->getArg(0));
17749 Value *Val = EmitScalarExpr(E->getArg(1));
17750 Function *FnALI32 =
17751 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
17752 return Builder.CreateCall(FnALI32, {Ptr, Val});
17753 }
17754
17755 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
17756 Value *Ptr = EmitScalarExpr(E->getArg(0));
17757 Value *Val = EmitScalarExpr(E->getArg(1));
17758 Function *FnALD32 =
17759 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
17760 return Builder.CreateCall(FnALD32, {Ptr, Val});
17761 }
17762
17763 case NVPTX::BI__nvvm_ldg_c:
17764 case NVPTX::BI__nvvm_ldg_c2:
17765 case NVPTX::BI__nvvm_ldg_c4:
17766 case NVPTX::BI__nvvm_ldg_s:
17767 case NVPTX::BI__nvvm_ldg_s2:
17768 case NVPTX::BI__nvvm_ldg_s4:
17769 case NVPTX::BI__nvvm_ldg_i:
17770 case NVPTX::BI__nvvm_ldg_i2:
17771 case NVPTX::BI__nvvm_ldg_i4:
17772 case NVPTX::BI__nvvm_ldg_l:
17773 case NVPTX::BI__nvvm_ldg_ll:
17774 case NVPTX::BI__nvvm_ldg_ll2:
17775 case NVPTX::BI__nvvm_ldg_uc:
17776 case NVPTX::BI__nvvm_ldg_uc2:
17777 case NVPTX::BI__nvvm_ldg_uc4:
17778 case NVPTX::BI__nvvm_ldg_us:
17779 case NVPTX::BI__nvvm_ldg_us2:
17780 case NVPTX::BI__nvvm_ldg_us4:
17781 case NVPTX::BI__nvvm_ldg_ui:
17782 case NVPTX::BI__nvvm_ldg_ui2:
17783 case NVPTX::BI__nvvm_ldg_ui4:
17784 case NVPTX::BI__nvvm_ldg_ul:
17785 case NVPTX::BI__nvvm_ldg_ull:
17786 case NVPTX::BI__nvvm_ldg_ull2:
17787 // PTX Interoperability section 2.2: "For a vector with an even number of
17788 // elements, its alignment is set to number of elements times the alignment
17789 // of its member: n*alignof(t)."
17790 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
17791 case NVPTX::BI__nvvm_ldg_f:
17792 case NVPTX::BI__nvvm_ldg_f2:
17793 case NVPTX::BI__nvvm_ldg_f4:
17794 case NVPTX::BI__nvvm_ldg_d:
17795 case NVPTX::BI__nvvm_ldg_d2:
17796 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
17797
17798 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
17799 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
17800 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
17801 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
17802 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
17803 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
17804 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
17805 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
17806 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
17807 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
17808 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
17809 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
17810 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
17811 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
17812 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
17813 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
17814 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
17815 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
17816 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
17817 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
17818 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
17819 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
17820 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
17821 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
17822 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
17823 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
17824 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
17825 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
17826 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
17827 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
17828 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
17829 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
17830 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
17831 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
17832 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
17833 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
17834 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
17835 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
17836 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
17837 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
17838 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
17839 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
17840 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
17841 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
17842 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
17843 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
17844 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
17845 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
17846 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
17847 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
17848 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
17849 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
17850 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
17851 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
17852 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
17853 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
17854 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
17855 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
17856 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
17857 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
17858 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
17859 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
17860 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
17861 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
17862 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
17863 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
17864 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
17865 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
17866 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
17867 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
17868 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
17869 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
17870 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
17871 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
17872 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
17873 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
17874 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
17875 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
17876 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
17877 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
17878 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
17879 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
17880 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
17881 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
17882 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
17883 Value *Ptr = EmitScalarExpr(E->getArg(0));
17884 llvm::Type *ElemTy =
17885 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17886 return Builder.CreateCall(
17887 CGM.getIntrinsic(
17888 Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
17889 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17890 }
17891 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
17892 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
17893 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
17894 Value *Ptr = EmitScalarExpr(E->getArg(0));
17895 llvm::Type *ElemTy =
17896 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17897 return Builder.CreateCall(
17898 CGM.getIntrinsic(
17899 Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
17900 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17901 }
17902 case NVPTX::BI__nvvm_match_all_sync_i32p:
17903 case NVPTX::BI__nvvm_match_all_sync_i64p: {
17904 Value *Mask = EmitScalarExpr(E->getArg(0));
17905 Value *Val = EmitScalarExpr(E->getArg(1));
17906 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
17907 Value *ResultPair = Builder.CreateCall(
17908 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
17909 ? Intrinsic::nvvm_match_all_sync_i32p
17910 : Intrinsic::nvvm_match_all_sync_i64p),
17911 {Mask, Val});
17912 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
17913 PredOutPtr.getElementType());
17914 Builder.CreateStore(Pred, PredOutPtr);
17915 return Builder.CreateExtractValue(ResultPair, 0);
17916 }
17917
17918 // FP MMA loads
17919 case NVPTX::BI__hmma_m16n16k16_ld_a:
17920 case NVPTX::BI__hmma_m16n16k16_ld_b:
17921 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17922 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17923 case NVPTX::BI__hmma_m32n8k16_ld_a:
17924 case NVPTX::BI__hmma_m32n8k16_ld_b:
17925 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17926 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17927 case NVPTX::BI__hmma_m8n32k16_ld_a:
17928 case NVPTX::BI__hmma_m8n32k16_ld_b:
17929 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17930 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17931 // Integer MMA loads.
17932 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17933 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17934 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17935 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17936 case NVPTX::BI__imma_m16n16k16_ld_c:
17937 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17938 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17939 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17940 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17941 case NVPTX::BI__imma_m32n8k16_ld_c:
17942 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17943 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17944 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17945 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17946 case NVPTX::BI__imma_m8n32k16_ld_c:
17947 // Sub-integer MMA loads.
17948 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17949 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17950 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17951 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17952 case NVPTX::BI__imma_m8n8k32_ld_c:
17953 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17954 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17955 case NVPTX::BI__bmma_m8n8k128_ld_c:
17956 // Double MMA loads.
17957 case NVPTX::BI__dmma_m8n8k4_ld_a:
17958 case NVPTX::BI__dmma_m8n8k4_ld_b:
17959 case NVPTX::BI__dmma_m8n8k4_ld_c:
17960 // Alternate float MMA loads.
17961 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17962 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17963 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17964 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17965 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17966 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17967 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17968 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17969 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
17970 Address Dst = EmitPointerWithAlignment(E->getArg(0));
17971 Value *Src = EmitScalarExpr(E->getArg(1));
17972 Value *Ldm = EmitScalarExpr(E->getArg(2));
17973 Optional<llvm::APSInt> isColMajorArg =
17974 E->getArg(3)->getIntegerConstantExpr(getContext());
17975 if (!isColMajorArg)
17976 return nullptr;
17977 bool isColMajor = isColMajorArg->getSExtValue();
17978 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17979 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17980 if (IID == 0)
17981 return nullptr;
17982
17983 Value *Result =
17984 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
17985
17986 // Save returned values.
17987 assert(II.NumResults)(static_cast <bool> (II.NumResults) ? void (0) : __assert_fail
("II.NumResults", "clang/lib/CodeGen/CGBuiltin.cpp", 17987, __extension__
__PRETTY_FUNCTION__))
;
17988 if (II.NumResults == 1) {
17989 Builder.CreateAlignedStore(Result, Dst.getPointer(),
17990 CharUnits::fromQuantity(4));
17991 } else {
17992 for (unsigned i = 0; i < II.NumResults; ++i) {
17993 Builder.CreateAlignedStore(
17994 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
17995 Dst.getElementType()),
17996 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17997 llvm::ConstantInt::get(IntTy, i)),
17998 CharUnits::fromQuantity(4));
17999 }
18000 }
18001 return Result;
18002 }
18003
18004 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
18005 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
18006 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
18007 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
18008 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
18009 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
18010 case NVPTX::BI__imma_m16n16k16_st_c_i32:
18011 case NVPTX::BI__imma_m32n8k16_st_c_i32:
18012 case NVPTX::BI__imma_m8n32k16_st_c_i32:
18013 case NVPTX::BI__imma_m8n8k32_st_c_i32:
18014 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
18015 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
18016 case NVPTX::BI__mma_m16n16k8_st_c_f32: {
18017 Value *Dst = EmitScalarExpr(E->getArg(0));
18018 Address Src = EmitPointerWithAlignment(E->getArg(1));
18019 Value *Ldm = EmitScalarExpr(E->getArg(2));
18020 Optional<llvm::APSInt> isColMajorArg =
18021 E->getArg(3)->getIntegerConstantExpr(getContext());
18022 if (!isColMajorArg)
18023 return nullptr;
18024 bool isColMajor = isColMajorArg->getSExtValue();
18025 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18026 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18027 if (IID == 0)
18028 return nullptr;
18029 Function *Intrinsic =
18030 CGM.getIntrinsic(IID, Dst->getType());
18031 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
18032 SmallVector<Value *, 10> Values = {Dst};
18033 for (unsigned i = 0; i < II.NumResults; ++i) {
18034 Value *V = Builder.CreateAlignedLoad(
18035 Src.getElementType(),
18036 Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
18037 llvm::ConstantInt::get(IntTy, i)),
18038 CharUnits::fromQuantity(4));
18039 Values.push_back(Builder.CreateBitCast(V, ParamType));
18040 }
18041 Values.push_back(Ldm);
18042 Value *Result = Builder.CreateCall(Intrinsic, Values);
18043 return Result;
18044 }
18045
18046 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
18047 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
18048 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
18049 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
18050 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
18051 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
18052 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
18053 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
18054 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
18055 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
18056 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
18057 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
18058 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
18059 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
18060 case NVPTX::BI__imma_m16n16k16_mma_s8:
18061 case NVPTX::BI__imma_m16n16k16_mma_u8:
18062 case NVPTX::BI__imma_m32n8k16_mma_s8:
18063 case NVPTX::BI__imma_m32n8k16_mma_u8:
18064 case NVPTX::BI__imma_m8n32k16_mma_s8:
18065 case NVPTX::BI__imma_m8n32k16_mma_u8:
18066 case NVPTX::BI__imma_m8n8k32_mma_s4:
18067 case NVPTX::BI__imma_m8n8k32_mma_u4:
18068 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
18069 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
18070 case NVPTX::BI__dmma_m8n8k4_mma_f64:
18071 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
18072 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
18073 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
18074 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
18075 Address Dst = EmitPointerWithAlignment(E->getArg(0));
18076 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
18077 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
18078 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
18079 Optional<llvm::APSInt> LayoutArg =
18080 E->getArg(4)->getIntegerConstantExpr(getContext());
18081 if (!LayoutArg)
18082 return nullptr;
18083 int Layout = LayoutArg->getSExtValue();
18084 if (Layout < 0 || Layout > 3)
18085 return nullptr;
18086 llvm::APSInt SatfArg;
18087 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
18088 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
18089 SatfArg = 0; // .b1 does not have satf argument.
18090 else if (Optional<llvm::APSInt> OptSatfArg =
18091 E->getArg(5)->getIntegerConstantExpr(getContext()))
18092 SatfArg = *OptSatfArg;
18093 else
18094 return nullptr;
18095 bool Satf = SatfArg.getSExtValue();
18096 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
18097 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
18098 if (IID == 0) // Unsupported combination of Layout/Satf.
18099 return nullptr;
18100
18101 SmallVector<Value *, 24> Values;
18102 Function *Intrinsic = CGM.getIntrinsic(IID);
18103 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
18104 // Load A
18105 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
18106 Value *V = Builder.CreateAlignedLoad(
18107 SrcA.getElementType(),
18108 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
18109 llvm::ConstantInt::get(IntTy, i)),
18110 CharUnits::fromQuantity(4));
18111 Values.push_back(Builder.CreateBitCast(V, AType));
18112 }
18113 // Load B
18114 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
18115 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
18116 Value *V = Builder.CreateAlignedLoad(
18117 SrcB.getElementType(),
18118 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
18119 llvm::ConstantInt::get(IntTy, i)),
18120 CharUnits::fromQuantity(4));
18121 Values.push_back(Builder.CreateBitCast(V, BType));
18122 }
18123 // Load C
18124 llvm::Type *CType =
18125 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
18126 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
18127 Value *V = Builder.CreateAlignedLoad(
18128 SrcC.getElementType(),
18129 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
18130 llvm::ConstantInt::get(IntTy, i)),
18131 CharUnits::fromQuantity(4));
18132 Values.push_back(Builder.CreateBitCast(V, CType));
18133 }
18134 Value *Result = Builder.CreateCall(Intrinsic, Values);
18135 llvm::Type *DType = Dst.getElementType();
18136 for (unsigned i = 0; i < MI.NumEltsD; ++i)
18137 Builder.CreateAlignedStore(
18138 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
18139 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18140 llvm::ConstantInt::get(IntTy, i)),
18141 CharUnits::fromQuantity(4));
18142 return Result;
18143 }
18144 default:
18145 return nullptr;
18146 }
18147}
18148
18149namespace {
18150struct BuiltinAlignArgs {
18151 llvm::Value *Src = nullptr;
18152 llvm::Type *SrcType = nullptr;
18153 llvm::Value *Alignment = nullptr;
18154 llvm::Value *Mask = nullptr;
18155 llvm::IntegerType *IntType = nullptr;
18156
18157 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
18158 QualType AstType = E->getArg(0)->getType();
18159 if (AstType->isArrayType())
18160 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
18161 else
18162 Src = CGF.EmitScalarExpr(E->getArg(0));
18163 SrcType = Src->getType();
18164 if (SrcType->isPointerTy()) {
18165 IntType = IntegerType::get(
18166 CGF.getLLVMContext(),
18167 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
18168 } else {
18169 assert(SrcType->isIntegerTy())(static_cast <bool> (SrcType->isIntegerTy()) ? void (
0) : __assert_fail ("SrcType->isIntegerTy()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18169, __extension__ __PRETTY_FUNCTION__))
;
18170 IntType = cast<llvm::IntegerType>(SrcType);
18171 }
18172 Alignment = CGF.EmitScalarExpr(E->getArg(1));
18173 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
18174 auto *One = llvm::ConstantInt::get(IntType, 1);
18175 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
18176 }
18177};
18178} // namespace
18179
18180/// Generate (x & (y-1)) == 0.
18181RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
18182 BuiltinAlignArgs Args(E, *this);
18183 llvm::Value *SrcAddress = Args.Src;
18184 if (Args.SrcType->isPointerTy())
18185 SrcAddress =
18186 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
18187 return RValue::get(Builder.CreateICmpEQ(
18188 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
18189 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
18190}
18191
18192/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
18193/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
18194/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
18195/// TODO: actually use ptrmask once most optimization passes know about it.
18196RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
18197 BuiltinAlignArgs Args(E, *this);
18198 llvm::Value *SrcAddr = Args.Src;
18199 if (Args.Src->getType()->isPointerTy())
18200 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
18201 llvm::Value *SrcForMask = SrcAddr;
18202 if (AlignUp) {
18203 // When aligning up we have to first add the mask to ensure we go over the
18204 // next alignment value and then align down to the next valid multiple.
18205 // By adding the mask, we ensure that align_up on an already aligned
18206 // value will not change the value.
18207 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
18208 }
18209 // Invert the mask to only clear the lower bits.
18210 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
18211 llvm::Value *Result =
18212 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
18213 if (Args.Src->getType()->isPointerTy()) {
18214 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
18215 // Result = Builder.CreateIntrinsic(
18216 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
18217 // {SrcForMask, NegatedMask}, nullptr, "aligned_result");
18218 Result->setName("aligned_intptr");
18219 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
18220 // The result must point to the same underlying allocation. This means we
18221 // can use an inbounds GEP to enable better optimization.
18222 Value *Base = EmitCastToVoidPtr(Args.Src);
18223 if (getLangOpts().isSignedOverflowDefined())
18224 Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
18225 else
18226 Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
18227 /*SignedIndices=*/true,
18228 /*isSubtraction=*/!AlignUp,
18229 E->getExprLoc(), "aligned_result");
18230 Result = Builder.CreatePointerCast(Result, Args.SrcType);
18231 // Emit an alignment assumption to ensure that the new alignment is
18232 // propagated to loads/stores, etc.
18233 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
18234 }
18235 assert(Result->getType() == Args.SrcType)(static_cast <bool> (Result->getType() == Args.SrcType
) ? void (0) : __assert_fail ("Result->getType() == Args.SrcType"
, "clang/lib/CodeGen/CGBuiltin.cpp", 18235, __extension__ __PRETTY_FUNCTION__
))
;
18236 return RValue::get(Result);
18237}
18238
18239Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
18240 const CallExpr *E) {
18241 switch (BuiltinID) {
18242 case WebAssembly::BI__builtin_wasm_memory_size: {
18243 llvm::Type *ResultType = ConvertType(E->getType());
18244 Value *I = EmitScalarExpr(E->getArg(0));
18245 Function *Callee =
18246 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
18247 return Builder.CreateCall(Callee, I);
18248 }
18249 case WebAssembly::BI__builtin_wasm_memory_grow: {
18250 llvm::Type *ResultType = ConvertType(E->getType());
18251 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
18252 EmitScalarExpr(E->getArg(1))};
18253 Function *Callee =
18254 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
18255 return Builder.CreateCall(Callee, Args);
18256 }
18257 case WebAssembly::BI__builtin_wasm_tls_size: {
18258 llvm::Type *ResultType = ConvertType(E->getType());
18259 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
18260 return Builder.CreateCall(Callee);
18261 }
18262 case WebAssembly::BI__builtin_wasm_tls_align: {
18263 llvm::Type *ResultType = ConvertType(E->getType());
18264 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
18265 return Builder.CreateCall(Callee);
18266 }
18267 case WebAssembly::BI__builtin_wasm_tls_base: {
18268 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
18269 return Builder.CreateCall(Callee);
18270 }
18271 case WebAssembly::BI__builtin_wasm_throw: {
18272 Value *Tag = EmitScalarExpr(E->getArg(0));
18273 Value *Obj = EmitScalarExpr(E->getArg(1));
18274 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
18275 return Builder.CreateCall(Callee, {Tag, Obj});
18276 }
18277 case WebAssembly::BI__builtin_wasm_rethrow: {
18278 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
18279 return Builder.CreateCall(Callee);
18280 }
18281 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
18282 Value *Addr = EmitScalarExpr(E->getArg(0));
18283 Value *Expected = EmitScalarExpr(E->getArg(1));
18284 Value *Timeout = EmitScalarExpr(E->getArg(2));
18285 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
18286 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18287 }
18288 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
18289 Value *Addr = EmitScalarExpr(E->getArg(0));
18290 Value *Expected = EmitScalarExpr(E->getArg(1));
18291 Value *Timeout = EmitScalarExpr(E->getArg(2));
18292 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
18293 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18294 }
18295 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
18296 Value *Addr = EmitScalarExpr(E->getArg(0));
18297 Value *Count = EmitScalarExpr(E->getArg(1));
18298 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
18299 return Builder.CreateCall(Callee, {Addr, Count});
18300 }
18301 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
18302 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
18303 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
18304 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
18305 Value *Src = EmitScalarExpr(E->getArg(0));
18306 llvm::Type *ResT = ConvertType(E->getType());
18307 Function *Callee =
18308 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
18309 return Builder.CreateCall(Callee, {Src});
18310 }
18311 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
18312 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
18313 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
18314 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
18315 Value *Src = EmitScalarExpr(E->getArg(0));
18316 llvm::Type *ResT = ConvertType(E->getType());
18317 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
18318 {ResT, Src->getType()});
18319 return Builder.CreateCall(Callee, {Src});
18320 }
18321 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
18322 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
18323 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
18324 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
18325 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
18326 Value *Src = EmitScalarExpr(E->getArg(0));
18327 llvm::Type *ResT = ConvertType(E->getType());
18328 Function *Callee =
18329 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
18330 return Builder.CreateCall(Callee, {Src});
18331 }
18332 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
18333 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
18334 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
18335 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
18336 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
18337 Value *Src = EmitScalarExpr(E->getArg(0));
18338 llvm::Type *ResT = ConvertType(E->getType());
18339 Function *Callee =
18340 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
18341 return Builder.CreateCall(Callee, {Src});
18342 }
18343 case WebAssembly::BI__builtin_wasm_min_f32:
18344 case WebAssembly::BI__builtin_wasm_min_f64:
18345 case WebAssembly::BI__builtin_wasm_min_f32x4:
18346 case WebAssembly::BI__builtin_wasm_min_f64x2: {
18347 Value *LHS = EmitScalarExpr(E->getArg(0));
18348 Value *RHS = EmitScalarExpr(E->getArg(1));
18349 Function *Callee =
18350 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
18351 return Builder.CreateCall(Callee, {LHS, RHS});
18352 }
18353 case WebAssembly::BI__builtin_wasm_max_f32:
18354 case WebAssembly::BI__builtin_wasm_max_f64:
18355 case WebAssembly::BI__builtin_wasm_max_f32x4:
18356 case WebAssembly::BI__builtin_wasm_max_f64x2: {
18357 Value *LHS = EmitScalarExpr(E->getArg(0));
18358 Value *RHS = EmitScalarExpr(E->getArg(1));
18359 Function *Callee =
18360 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
18361 return Builder.CreateCall(Callee, {LHS, RHS});
18362 }
18363 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
18364 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
18365 Value *LHS = EmitScalarExpr(E->getArg(0));
18366 Value *RHS = EmitScalarExpr(E->getArg(1));
18367 Function *Callee =
18368 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
18369 return Builder.CreateCall(Callee, {LHS, RHS});
18370 }
18371 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
18372 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
18373 Value *LHS = EmitScalarExpr(E->getArg(0));
18374 Value *RHS = EmitScalarExpr(E->getArg(1));
18375 Function *Callee =
18376 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
18377 return Builder.CreateCall(Callee, {LHS, RHS});
18378 }
18379 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18380 case WebAssembly::BI__builtin_wasm_floor_f32x4:
18381 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18382 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18383 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18384 case WebAssembly::BI__builtin_wasm_floor_f64x2:
18385 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18386 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
18387 unsigned IntNo;
18388 switch (BuiltinID) {
18389 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18390 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18391 IntNo = Intrinsic::ceil;
18392 break;
18393 case WebAssembly::BI__builtin_wasm_floor_f32x4:
18394 case WebAssembly::BI__builtin_wasm_floor_f64x2:
18395 IntNo = Intrinsic::floor;
18396 break;
18397 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18398 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18399 IntNo = Intrinsic::trunc;
18400 break;
18401 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18402 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
18403 IntNo = Intrinsic::nearbyint;
18404 break;
18405 default:
18406 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18406)
;
18407 }
18408 Value *Value = EmitScalarExpr(E->getArg(0));
18409 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18410 return Builder.CreateCall(Callee, Value);
18411 }
18412 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
18413 Value *Src = EmitScalarExpr(E->getArg(0));
18414 Value *Indices = EmitScalarExpr(E->getArg(1));
18415 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
18416 return Builder.CreateCall(Callee, {Src, Indices});
18417 }
18418 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18419 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18420 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18421 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18422 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18423 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18424 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18425 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
18426 unsigned IntNo;
18427 switch (BuiltinID) {
18428 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18429 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18430 IntNo = Intrinsic::sadd_sat;
18431 break;
18432 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18433 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18434 IntNo = Intrinsic::uadd_sat;
18435 break;
18436 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18437 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18438 IntNo = Intrinsic::wasm_sub_sat_signed;
18439 break;
18440 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18441 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
18442 IntNo = Intrinsic::wasm_sub_sat_unsigned;
18443 break;
18444 default:
18445 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18445)
;
18446 }
18447 Value *LHS = EmitScalarExpr(E->getArg(0));
18448 Value *RHS = EmitScalarExpr(E->getArg(1));
18449 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18450 return Builder.CreateCall(Callee, {LHS, RHS});
18451 }
18452 case WebAssembly::BI__builtin_wasm_abs_i8x16:
18453 case WebAssembly::BI__builtin_wasm_abs_i16x8:
18454 case WebAssembly::BI__builtin_wasm_abs_i32x4:
18455 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
18456 Value *Vec = EmitScalarExpr(E->getArg(0));
18457 Value *Neg = Builder.CreateNeg(Vec, "neg");
18458 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
18459 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
18460 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
18461 }
18462 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18463 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18464 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18465 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18466 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18467 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18468 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18469 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18470 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18471 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18472 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18473 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
18474 Value *LHS = EmitScalarExpr(E->getArg(0));
18475 Value *RHS = EmitScalarExpr(E->getArg(1));
18476 Value *ICmp;
18477 switch (BuiltinID) {
18478 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18479 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18480 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18481 ICmp = Builder.CreateICmpSLT(LHS, RHS);
18482 break;
18483 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18484 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18485 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18486 ICmp = Builder.CreateICmpULT(LHS, RHS);
18487 break;
18488 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18489 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18490 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18491 ICmp = Builder.CreateICmpSGT(LHS, RHS);
18492 break;
18493 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18494 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18495 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
18496 ICmp = Builder.CreateICmpUGT(LHS, RHS);
18497 break;
18498 default:
18499 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18499)
;
18500 }
18501 return Builder.CreateSelect(ICmp, LHS, RHS);
18502 }
18503 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
18504 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
18505 Value *LHS = EmitScalarExpr(E->getArg(0));
18506 Value *RHS = EmitScalarExpr(E->getArg(1));
18507 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
18508 ConvertType(E->getType()));
18509 return Builder.CreateCall(Callee, {LHS, RHS});
18510 }
18511 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
18512 Value *LHS = EmitScalarExpr(E->getArg(0));
18513 Value *RHS = EmitScalarExpr(E->getArg(1));
18514 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
18515 return Builder.CreateCall(Callee, {LHS, RHS});
18516 }
18517 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18518 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18519 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18520 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
18521 Value *Vec = EmitScalarExpr(E->getArg(0));
18522 unsigned IntNo;
18523 switch (BuiltinID) {
18524 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18525 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18526 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
18527 break;
18528 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18529 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
18530 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
18531 break;
18532 default:
18533 llvm_unreachable("unexptected builtin ID")::llvm::llvm_unreachable_internal("unexptected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18533)
;
18534 }
18535
18536 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18537 return Builder.CreateCall(Callee, Vec);
18538 }
18539 case WebAssembly::BI__builtin_wasm_bitselect: {
18540 Value *V1 = EmitScalarExpr(E->getArg(0));
18541 Value *V2 = EmitScalarExpr(E->getArg(1));
18542 Value *C = EmitScalarExpr(E->getArg(2));
18543 Function *Callee =
18544 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
18545 return Builder.CreateCall(Callee, {V1, V2, C});
18546 }
18547 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
18548 Value *LHS = EmitScalarExpr(E->getArg(0));
18549 Value *RHS = EmitScalarExpr(E->getArg(1));
18550 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
18551 return Builder.CreateCall(Callee, {LHS, RHS});
18552 }
18553 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
18554 Value *Vec = EmitScalarExpr(E->getArg(0));
18555 Function *Callee =
18556 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
18557 return Builder.CreateCall(Callee, {Vec});
18558 }
18559 case WebAssembly::BI__builtin_wasm_any_true_v128:
18560 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18561 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18562 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18563 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
18564 unsigned IntNo;
18565 switch (BuiltinID) {
18566 case WebAssembly::BI__builtin_wasm_any_true_v128:
18567 IntNo = Intrinsic::wasm_anytrue;
18568 break;
18569 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18570 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18571 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18572 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
18573 IntNo = Intrinsic::wasm_alltrue;
18574 break;
18575 default:
18576 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18576)
;
18577 }
18578 Value *Vec = EmitScalarExpr(E->getArg(0));
18579 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
18580 return Builder.CreateCall(Callee, {Vec});
18581 }
18582 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
18583 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
18584 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
18585 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
18586 Value *Vec = EmitScalarExpr(E->getArg(0));
18587 Function *Callee =
18588 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
18589 return Builder.CreateCall(Callee, {Vec});
18590 }
18591 case WebAssembly::BI__builtin_wasm_abs_f32x4:
18592 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
18593 Value *Vec = EmitScalarExpr(E->getArg(0));
18594 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
18595 return Builder.CreateCall(Callee, {Vec});
18596 }
18597 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
18598 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
18599 Value *Vec = EmitScalarExpr(E->getArg(0));
18600 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
18601 return Builder.CreateCall(Callee, {Vec});
18602 }
18603 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18604 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18605 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18606 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
18607 Value *Low = EmitScalarExpr(E->getArg(0));
18608 Value *High = EmitScalarExpr(E->getArg(1));
18609 unsigned IntNo;
18610 switch (BuiltinID) {
18611 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18612 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18613 IntNo = Intrinsic::wasm_narrow_signed;
18614 break;
18615 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18616 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
18617 IntNo = Intrinsic::wasm_narrow_unsigned;
18618 break;
18619 default:
18620 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18620)
;
18621 }
18622 Function *Callee =
18623 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
18624 return Builder.CreateCall(Callee, {Low, High});
18625 }
18626 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
18627 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
18628 Value *Vec = EmitScalarExpr(E->getArg(0));
18629 unsigned IntNo;
18630 switch (BuiltinID) {
18631 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
18632 IntNo = Intrinsic::fptosi_sat;
18633 break;
18634 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
18635 IntNo = Intrinsic::fptoui_sat;
18636 break;
18637 default:
18638 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18638)
;
18639 }
18640 llvm::Type *SrcT = Vec->getType();
18641 llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
18642 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
18643 Value *Trunc = Builder.CreateCall(Callee, Vec);
18644 Value *Splat = Constant::getNullValue(TruncT);
18645 return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
18646 }
18647 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
18648 Value *Ops[18];
18649 size_t OpIdx = 0;
18650 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
18651 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
18652 while (OpIdx < 18) {
18653 Optional<llvm::APSInt> LaneConst =
18654 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
18655 assert(LaneConst && "Constant arg isn't actually constant?")(static_cast <bool> (LaneConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("LaneConst && \"Constant arg isn't actually constant?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 18655, __extension__ __PRETTY_FUNCTION__
))
;
18656 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
18657 }
18658 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
18659 return Builder.CreateCall(Callee, Ops);
18660 }
18661 case WebAssembly::BI__builtin_wasm_fma_f32x4:
18662 case WebAssembly::BI__builtin_wasm_fms_f32x4:
18663 case WebAssembly::BI__builtin_wasm_fma_f64x2:
18664 case WebAssembly::BI__builtin_wasm_fms_f64x2: {
18665 Value *A = EmitScalarExpr(E->getArg(0));
18666 Value *B = EmitScalarExpr(E->getArg(1));
18667 Value *C = EmitScalarExpr(E->getArg(2));
18668 unsigned IntNo;
18669 switch (BuiltinID) {
18670 case WebAssembly::BI__builtin_wasm_fma_f32x4:
18671 case WebAssembly::BI__builtin_wasm_fma_f64x2:
18672 IntNo = Intrinsic::wasm_fma;
18673 break;
18674 case WebAssembly::BI__builtin_wasm_fms_f32x4:
18675 case WebAssembly::BI__builtin_wasm_fms_f64x2:
18676 IntNo = Intrinsic::wasm_fms;
18677 break;
18678 default:
18679 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18679)
;
18680 }
18681 Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
18682 return Builder.CreateCall(Callee, {A, B, C});
18683 }
18684 case WebAssembly::BI__builtin_wasm_laneselect_i8x16:
18685 case WebAssembly::BI__builtin_wasm_laneselect_i16x8:
18686 case WebAssembly::BI__builtin_wasm_laneselect_i32x4:
18687 case WebAssembly::BI__builtin_wasm_laneselect_i64x2: {
18688 Value *A = EmitScalarExpr(E->getArg(0));
18689 Value *B = EmitScalarExpr(E->getArg(1));
18690 Value *C = EmitScalarExpr(E->getArg(2));
18691 Function *Callee =
18692 CGM.getIntrinsic(Intrinsic::wasm_laneselect, A->getType());
18693 return Builder.CreateCall(Callee, {A, B, C});
18694 }
18695 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
18696 Value *Src = EmitScalarExpr(E->getArg(0));
18697 Value *Indices = EmitScalarExpr(E->getArg(1));
18698 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
18699 return Builder.CreateCall(Callee, {Src, Indices});
18700 }
18701 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18702 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18703 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18704 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
18705 Value *LHS = EmitScalarExpr(E->getArg(0));
18706 Value *RHS = EmitScalarExpr(E->getArg(1));
18707 unsigned IntNo;
18708 switch (BuiltinID) {
18709 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18710 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18711 IntNo = Intrinsic::wasm_relaxed_min;
18712 break;
18713 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18714 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
18715 IntNo = Intrinsic::wasm_relaxed_max;
18716 break;
18717 default:
18718 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18718)
;
18719 }
18720 Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
18721 return Builder.CreateCall(Callee, {LHS, RHS});
18722 }
18723 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18724 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18725 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
18726 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
18727 Value *Vec = EmitScalarExpr(E->getArg(0));
18728 unsigned IntNo;
18729 switch (BuiltinID) {
18730 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18731 IntNo = Intrinsic::wasm_relaxed_trunc_signed;
18732 break;
18733 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18734 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
18735 break;
18736 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
18737 IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
18738 break;
18739 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
18740 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
18741 break;
18742 default:
18743 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18743)
;
18744 }
18745 Function *Callee = CGM.getIntrinsic(IntNo);
18746 return Builder.CreateCall(Callee, {Vec});
18747 }
18748 default:
18749 return nullptr;
18750 }
18751}
18752
18753static std::pair<Intrinsic::ID, unsigned>
18754getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
18755 struct Info {
18756 unsigned BuiltinID;
18757 Intrinsic::ID IntrinsicID;
18758 unsigned VecLen;
18759 };
18760 Info Infos[] = {
18761#define CUSTOM_BUILTIN_MAPPING(x,s) \
18762 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
18763 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
18764 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
18765 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
18766 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
18767 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
18768 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
18769 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
18770 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
18771 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
18772 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
18773 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
18774 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
18775 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
18776 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
18777 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
18778 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
18779 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
18780 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
18781 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
18782 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
18783 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
18784 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
18785 // Legacy builtins that take a vector in place of a vector predicate.
18786 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
18787 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
18788 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
18789 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
18790 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
18791 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
18792 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
18793 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
18794#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
18795#undef CUSTOM_BUILTIN_MAPPING
18796 };
18797
18798 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
18799 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
18800 (void)SortOnce;
18801
18802 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
18803 Info{BuiltinID, 0, 0}, CmpInfo);
18804 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
18805 return {Intrinsic::not_intrinsic, 0};
18806
18807 return {F->IntrinsicID, F->VecLen};
18808}
18809
18810Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
18811 const CallExpr *E) {
18812 Intrinsic::ID ID;
18813 unsigned VecLen;
18814 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
18815
18816 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
18817 // The base pointer is passed by address, so it needs to be loaded.
18818 Address A = EmitPointerWithAlignment(E->getArg(0));
18819 Address BP = Address(Builder.CreateBitCast(
18820 A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
18821 llvm::Value *Base = Builder.CreateLoad(BP);
18822 // The treatment of both loads and stores is the same: the arguments for
18823 // the builtin are the same as the arguments for the intrinsic.
18824 // Load:
18825 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
18826 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
18827 // Store:
18828 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
18829 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
18830 SmallVector<llvm::Value*,5> Ops = { Base };
18831 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
18832 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18833
18834 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
18835 // The load intrinsics generate two results (Value, NewBase), stores
18836 // generate one (NewBase). The new base address needs to be stored.
18837 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
18838 : Result;
18839 llvm::Value *LV = Builder.CreateBitCast(
18840 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
18841 Address Dest = EmitPointerWithAlignment(E->getArg(0));
18842 llvm::Value *RetVal =
18843 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
18844 if (IsLoad)
18845 RetVal = Builder.CreateExtractValue(Result, 0);
18846 return RetVal;
18847 };
18848
18849 // Handle the conversion of bit-reverse load intrinsics to bit code.
18850 // The intrinsic call after this function only reads from memory and the
18851 // write to memory is dealt by the store instruction.
18852 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
18853 // The intrinsic generates one result, which is the new value for the base
18854 // pointer. It needs to be returned. The result of the load instruction is
18855 // passed to intrinsic by address, so the value needs to be stored.
18856 llvm::Value *BaseAddress =
18857 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
18858
18859 // Expressions like &(*pt++) will be incremented per evaluation.
18860 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
18861 // per call.
18862 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
18863 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
18864 Int8Ty, DestAddr.getAlignment());
18865 llvm::Value *DestAddress = DestAddr.getPointer();
18866
18867 // Operands are Base, Dest, Modifier.
18868 // The intrinsic format in LLVM IR is defined as
18869 // { ValueType, i8* } (i8*, i32).
18870 llvm::Value *Result = Builder.CreateCall(
18871 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
18872
18873 // The value needs to be stored as the variable is passed by reference.
18874 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
18875
18876 // The store needs to be truncated to fit the destination type.
18877 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
18878 // to be handled with stores of respective destination type.
18879 DestVal = Builder.CreateTrunc(DestVal, DestTy);
18880
18881 llvm::Value *DestForStore =
18882 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
18883 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
18884 // The updated value of the base pointer is returned.
18885 return Builder.CreateExtractValue(Result, 1);
18886 };
18887
18888 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
18889 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
18890 : Intrinsic::hexagon_V6_vandvrt;
18891 return Builder.CreateCall(CGM.getIntrinsic(ID),
18892 {Vec, Builder.getInt32(-1)});
18893 };
18894 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
18895 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
18896 : Intrinsic::hexagon_V6_vandqrt;
18897 return Builder.CreateCall(CGM.getIntrinsic(ID),
18898 {Pred, Builder.getInt32(-1)});
18899 };
18900
18901 switch (BuiltinID) {
18902 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
18903 // and the corresponding C/C++ builtins use loads/stores to update
18904 // the predicate.
18905 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
18906 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
18907 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
18908 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
18909 // Get the type from the 0-th argument.
18910 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
18911 Address PredAddr = Builder.CreateElementBitCast(
18912 EmitPointerWithAlignment(E->getArg(2)), VecType);
18913 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
18914 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
18915 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
18916
18917 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
18918 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
18919 PredAddr.getAlignment());
18920 return Builder.CreateExtractValue(Result, 0);
18921 }
18922
18923 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
18924 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
18925 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
18926 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
18927 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
18928 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
18929 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
18930 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
18931 SmallVector<llvm::Value*,4> Ops;
18932 const Expr *PredOp = E->getArg(0);
18933 // There will be an implicit cast to a boolean vector. Strip it.
18934 if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
18935 if (Cast->getCastKind() == CK_BitCast)
18936 PredOp = Cast->getSubExpr();
18937 Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
18938 }
18939 for (int i = 1, e = E->getNumArgs(); i != e; ++i)
18940 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18941 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
18942 }
18943
18944 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
18945 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
18946 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
18947 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
18948 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
18949 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
18950 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
18951 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
18952 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
18953 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
18954 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
18955 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
18956 return MakeCircOp(ID, /*IsLoad=*/true);
18957 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
18958 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
18959 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
18960 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
18961 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
18962 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
18963 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
18964 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
18965 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
18966 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
18967 return MakeCircOp(ID, /*IsLoad=*/false);
18968 case Hexagon::BI__builtin_brev_ldub:
18969 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
18970 case Hexagon::BI__builtin_brev_ldb:
18971 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
18972 case Hexagon::BI__builtin_brev_lduh:
18973 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
18974 case Hexagon::BI__builtin_brev_ldh:
18975 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
18976 case Hexagon::BI__builtin_brev_ldw:
18977 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
18978 case Hexagon::BI__builtin_brev_ldd:
18979 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
18980 } // switch
18981
18982 return nullptr;
18983}
18984
18985Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
18986 const CallExpr *E,
18987 ReturnValueSlot ReturnValue) {
18988 SmallVector<Value *, 4> Ops;
18989 llvm::Type *ResultType = ConvertType(E->getType());
18990
18991 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
18992 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18993
18994 Intrinsic::ID ID = Intrinsic::not_intrinsic;
18995 unsigned NF = 1;
18996 constexpr unsigned TAIL_UNDISTURBED = 0;
18997
18998 // Required for overloaded intrinsics.
18999 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
19000 switch (BuiltinID) {
19001 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19001)
;
19002 case RISCV::BI__builtin_riscv_orc_b_32:
19003 case RISCV::BI__builtin_riscv_orc_b_64:
19004 case RISCV::BI__builtin_riscv_clz_32:
19005 case RISCV::BI__builtin_riscv_clz_64:
19006 case RISCV::BI__builtin_riscv_clmul:
19007 case RISCV::BI__builtin_riscv_clmulh:
19008 case RISCV::BI__builtin_riscv_clmulr:
19009 case RISCV::BI__builtin_riscv_bcompress_32:
19010 case RISCV::BI__builtin_riscv_bcompress_64:
19011 case RISCV::BI__builtin_riscv_bdecompress_32:
19012 case RISCV::BI__builtin_riscv_bdecompress_64:
19013 case RISCV::BI__builtin_riscv_bfp_32:
19014 case RISCV::BI__builtin_riscv_bfp_64:
19015 case RISCV::BI__builtin_riscv_grev_32:
19016 case RISCV::BI__builtin_riscv_grev_64:
19017 case RISCV::BI__builtin_riscv_gorc_32:
19018 case RISCV::BI__builtin_riscv_gorc_64:
19019 case RISCV::BI__builtin_riscv_shfl_32:
19020 case RISCV::BI__builtin_riscv_shfl_64:
19021 case RISCV::BI__builtin_riscv_unshfl_32:
19022 case RISCV::BI__builtin_riscv_unshfl_64:
19023 case RISCV::BI__builtin_riscv_xperm4:
19024 case RISCV::BI__builtin_riscv_xperm8:
19025 case RISCV::BI__builtin_riscv_xperm_n:
19026 case RISCV::BI__builtin_riscv_xperm_b:
19027 case RISCV::BI__builtin_riscv_xperm_h:
19028 case RISCV::BI__builtin_riscv_xperm_w:
19029 case RISCV::BI__builtin_riscv_crc32_b:
19030 case RISCV::BI__builtin_riscv_crc32_h:
19031 case RISCV::BI__builtin_riscv_crc32_w:
19032 case RISCV::BI__builtin_riscv_crc32_d:
19033 case RISCV::BI__builtin_riscv_crc32c_b:
19034 case RISCV::BI__builtin_riscv_crc32c_h:
19035 case RISCV::BI__builtin_riscv_crc32c_w:
19036 case RISCV::BI__builtin_riscv_crc32c_d:
19037 case RISCV::BI__builtin_riscv_fsl_32:
19038 case RISCV::BI__builtin_riscv_fsr_32:
19039 case RISCV::BI__builtin_riscv_fsl_64:
19040 case RISCV::BI__builtin_riscv_fsr_64:
19041 case RISCV::BI__builtin_riscv_brev8:
19042 case RISCV::BI__builtin_riscv_zip_32:
19043 case RISCV::BI__builtin_riscv_unzip_32: {
19044 switch (BuiltinID) {
19045 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19045)
;
19046 // Zbb
19047 case RISCV::BI__builtin_riscv_orc_b_32:
19048 case RISCV::BI__builtin_riscv_orc_b_64:
19049 ID = Intrinsic::riscv_orc_b;
19050 break;
19051 case RISCV::BI__builtin_riscv_clz_32:
19052 case RISCV::BI__builtin_riscv_clz_64: {
19053 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
19054 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19055 }
19056
19057 // Zbc
19058 case RISCV::BI__builtin_riscv_clmul:
19059 ID = Intrinsic::riscv_clmul;
19060 break;
19061 case RISCV::BI__builtin_riscv_clmulh:
19062 ID = Intrinsic::riscv_clmulh;
19063 break;
19064 case RISCV::BI__builtin_riscv_clmulr:
19065 ID = Intrinsic::riscv_clmulr;
19066 break;
19067
19068 // Zbe
19069 case RISCV::BI__builtin_riscv_bcompress_32:
19070 case RISCV::BI__builtin_riscv_bcompress_64:
19071 ID = Intrinsic::riscv_bcompress;
19072 break;
19073 case RISCV::BI__builtin_riscv_bdecompress_32:
19074 case RISCV::BI__builtin_riscv_bdecompress_64:
19075 ID = Intrinsic::riscv_bdecompress;
19076 break;
19077
19078 // Zbf
19079 case RISCV::BI__builtin_riscv_bfp_32:
19080 case RISCV::BI__builtin_riscv_bfp_64:
19081 ID = Intrinsic::riscv_bfp;
19082 break;
19083
19084 // Zbp
19085 case RISCV::BI__builtin_riscv_grev_32:
19086 case RISCV::BI__builtin_riscv_grev_64:
19087 ID = Intrinsic::riscv_grev;
19088 break;
19089 case RISCV::BI__builtin_riscv_gorc_32:
19090 case RISCV::BI__builtin_riscv_gorc_64:
19091 ID = Intrinsic::riscv_gorc;
19092 break;
19093 case RISCV::BI__builtin_riscv_shfl_32:
19094 case RISCV::BI__builtin_riscv_shfl_64:
19095 ID = Intrinsic::riscv_shfl;
19096 break;
19097 case RISCV::BI__builtin_riscv_unshfl_32:
19098 case RISCV::BI__builtin_riscv_unshfl_64:
19099 ID = Intrinsic::riscv_unshfl;
19100 break;
19101 case RISCV::BI__builtin_riscv_xperm_n:
19102 ID = Intrinsic::riscv_xperm_n;
19103 break;
19104 case RISCV::BI__builtin_riscv_xperm_b:
19105 ID = Intrinsic::riscv_xperm_b;
19106 break;
19107 case RISCV::BI__builtin_riscv_xperm_h:
19108 ID = Intrinsic::riscv_xperm_h;
19109 break;
19110 case RISCV::BI__builtin_riscv_xperm_w:
19111 ID = Intrinsic::riscv_xperm_w;
19112 break;
19113
19114 // Zbr
19115 case RISCV::BI__builtin_riscv_crc32_b:
19116 ID = Intrinsic::riscv_crc32_b;
19117 break;
19118 case RISCV::BI__builtin_riscv_crc32_h:
19119 ID = Intrinsic::riscv_crc32_h;
19120 break;
19121 case RISCV::BI__builtin_riscv_crc32_w:
19122 ID = Intrinsic::riscv_crc32_w;
19123 break;
19124 case RISCV::BI__builtin_riscv_crc32_d:
19125 ID = Intrinsic::riscv_crc32_d;
19126 break;
19127 case RISCV::BI__builtin_riscv_crc32c_b:
19128 ID = Intrinsic::riscv_crc32c_b;
19129 break;
19130 case RISCV::BI__builtin_riscv_crc32c_h:
19131 ID = Intrinsic::riscv_crc32c_h;
19132 break;
19133 case RISCV::BI__builtin_riscv_crc32c_w:
19134 ID = Intrinsic::riscv_crc32c_w;
19135 break;
19136 case RISCV::BI__builtin_riscv_crc32c_d:
19137 ID = Intrinsic::riscv_crc32c_d;
19138 break;
19139
19140 // Zbt
19141 case RISCV::BI__builtin_riscv_fsl_32:
19142 case RISCV::BI__builtin_riscv_fsl_64:
19143 ID = Intrinsic::riscv_fsl;
19144 break;
19145 case RISCV::BI__builtin_riscv_fsr_32:
19146 case RISCV::BI__builtin_riscv_fsr_64:
19147 ID = Intrinsic::riscv_fsr;
19148 break;
19149
19150 // Zbkx
19151 case RISCV::BI__builtin_riscv_xperm8:
19152 ID = Intrinsic::riscv_xperm8;
19153 break;
19154 case RISCV::BI__builtin_riscv_xperm4:
19155 ID = Intrinsic::riscv_xperm4;
19156 break;
19157
19158 // Zbkb
19159 case RISCV::BI__builtin_riscv_brev8:
19160 ID = Intrinsic::riscv_brev8;
19161 break;
19162 case RISCV::BI__builtin_riscv_zip_32:
19163 ID = Intrinsic::riscv_zip;
19164 break;
19165 case RISCV::BI__builtin_riscv_unzip_32:
19166 ID = Intrinsic::riscv_unzip;
19167 break;
19168 }
19169
19170 IntrinsicTypes = {ResultType};
19171 break;
19172 }
19173
19174 // Zk builtins
19175
19176 // Zknd
19177 case RISCV::BI__builtin_riscv_aes32dsi_32:
19178 ID = Intrinsic::riscv_aes32dsi;
19179 break;
19180 case RISCV::BI__builtin_riscv_aes32dsmi_32:
19181 ID = Intrinsic::riscv_aes32dsmi;
19182 break;
19183 case RISCV::BI__builtin_riscv_aes64ds_64:
19184 ID = Intrinsic::riscv_aes64ds;
19185 break;
19186 case RISCV::BI__builtin_riscv_aes64dsm_64:
19187 ID = Intrinsic::riscv_aes64dsm;
19188 break;
19189 case RISCV::BI__builtin_riscv_aes64im_64:
19190 ID = Intrinsic::riscv_aes64im;
19191 break;
19192
19193 // Zkne
19194 case RISCV::BI__builtin_riscv_aes32esi_32:
19195 ID = Intrinsic::riscv_aes32esi;
19196 break;
19197 case RISCV::BI__builtin_riscv_aes32esmi_32:
19198 ID = Intrinsic::riscv_aes32esmi;
19199 break;
19200 case RISCV::BI__builtin_riscv_aes64es_64:
19201 ID = Intrinsic::riscv_aes64es;
19202 break;
19203 case RISCV::BI__builtin_riscv_aes64esm_64:
19204 ID = Intrinsic::riscv_aes64esm;
19205 break;
19206
19207 // Zknd & Zkne
19208 case RISCV::BI__builtin_riscv_aes64ks1i_64:
19209 ID = Intrinsic::riscv_aes64ks1i;
19210 break;
19211 case RISCV::BI__builtin_riscv_aes64ks2_64:
19212 ID = Intrinsic::riscv_aes64ks2;
19213 break;
19214
19215 // Zknh
19216 case RISCV::BI__builtin_riscv_sha256sig0:
19217 ID = Intrinsic::riscv_sha256sig0;
19218 IntrinsicTypes = {ResultType};
19219 break;
19220 case RISCV::BI__builtin_riscv_sha256sig1:
19221 ID = Intrinsic::riscv_sha256sig1;
19222 IntrinsicTypes = {ResultType};
19223 break;
19224 case RISCV::BI__builtin_riscv_sha256sum0:
19225 ID = Intrinsic::riscv_sha256sum0;
19226 IntrinsicTypes = {ResultType};
19227 break;
19228 case RISCV::BI__builtin_riscv_sha256sum1:
19229 ID = Intrinsic::riscv_sha256sum1;
19230 IntrinsicTypes = {ResultType};
19231 break;
19232 case RISCV::BI__builtin_riscv_sha512sig0_64:
19233 ID = Intrinsic::riscv_sha512sig0;
19234 break;
19235 case RISCV::BI__builtin_riscv_sha512sig0h_32:
19236 ID = Intrinsic::riscv_sha512sig0h;
19237 break;
19238 case RISCV::BI__builtin_riscv_sha512sig0l_32:
19239 ID = Intrinsic::riscv_sha512sig0l;
19240 break;
19241 case RISCV::BI__builtin_riscv_sha512sig1_64:
19242 ID = Intrinsic::riscv_sha512sig1;
19243 break;
19244 case RISCV::BI__builtin_riscv_sha512sig1h_32:
19245 ID = Intrinsic::riscv_sha512sig1h;
19246 break;
19247 case RISCV::BI__builtin_riscv_sha512sig1l_32:
19248 ID = Intrinsic::riscv_sha512sig1l;
19249 break;
19250 case RISCV::BI__builtin_riscv_sha512sum0_64:
19251 ID = Intrinsic::riscv_sha512sum0;
19252 break;
19253 case RISCV::BI__builtin_riscv_sha512sum0r_32:
19254 ID = Intrinsic::riscv_sha512sum0r;
19255 break;
19256 case RISCV::BI__builtin_riscv_sha512sum1_64:
19257 ID = Intrinsic::riscv_sha512sum1;
19258 break;
19259 case RISCV::BI__builtin_riscv_sha512sum1r_32:
19260 ID = Intrinsic::riscv_sha512sum1r;
19261 break;
19262
19263 // Zksed
19264 case RISCV::BI__builtin_riscv_sm4ks:
19265 ID = Intrinsic::riscv_sm4ks;
19266 IntrinsicTypes = {ResultType};
19267 break;
19268 case RISCV::BI__builtin_riscv_sm4ed:
19269 ID = Intrinsic::riscv_sm4ed;
19270 IntrinsicTypes = {ResultType};
19271 break;
19272
19273 // Zksh
19274 case RISCV::BI__builtin_riscv_sm3p0:
19275 ID = Intrinsic::riscv_sm3p0;
19276 IntrinsicTypes = {ResultType};
19277 break;
19278 case RISCV::BI__builtin_riscv_sm3p1:
19279 ID = Intrinsic::riscv_sm3p1;
19280 IntrinsicTypes = {ResultType};
19281 break;
19282
19283 // Vector builtins are handled from here.
19284#include "clang/Basic/riscv_vector_builtin_cg.inc"
19285 }
19286
19287 assert(ID != Intrinsic::not_intrinsic)(static_cast <bool> (ID != Intrinsic::not_intrinsic) ? void
(0) : __assert_fail ("ID != Intrinsic::not_intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19287, __extension__ __PRETTY_FUNCTION__))
;
19288
19289 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
19290 return Builder.CreateCall(F, Ops, "");
19291}