Bug Summary

File:build/source/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 12649, column 22
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/source/clang/lib/CodeGen -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/clang/lib/CodeGen/CGBuiltin.cpp
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfo.h"
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenCLRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/Decl.h"
27#include "clang/AST/OSLog.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/CodeGen/CGFunctionInfo.h"
31#include "clang/Frontend/FrontendDiagnostic.h"
32#include "llvm/ADT/APFloat.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/IntrinsicsAArch64.h"
41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsARM.h"
43#include "llvm/IR/IntrinsicsBPF.h"
44#include "llvm/IR/IntrinsicsHexagon.h"
45#include "llvm/IR/IntrinsicsLoongArch.h"
46#include "llvm/IR/IntrinsicsNVPTX.h"
47#include "llvm/IR/IntrinsicsPowerPC.h"
48#include "llvm/IR/IntrinsicsR600.h"
49#include "llvm/IR/IntrinsicsRISCV.h"
50#include "llvm/IR/IntrinsicsS390.h"
51#include "llvm/IR/IntrinsicsVE.h"
52#include "llvm/IR/IntrinsicsWebAssembly.h"
53#include "llvm/IR/IntrinsicsX86.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/MatrixBuilder.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ScopedPrinter.h"
58#include "llvm/TargetParser/AArch64TargetParser.h"
59#include "llvm/TargetParser/X86TargetParser.h"
60#include <optional>
61#include <sstream>
62
63using namespace clang;
64using namespace CodeGen;
65using namespace llvm;
66
67static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
68 Align AlignmentInBytes) {
69 ConstantInt *Byte;
70 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
71 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
72 // Nothing to initialize.
73 return;
74 case LangOptions::TrivialAutoVarInitKind::Zero:
75 Byte = CGF.Builder.getInt8(0x00);
76 break;
77 case LangOptions::TrivialAutoVarInitKind::Pattern: {
78 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
79 Byte = llvm::dyn_cast<llvm::ConstantInt>(
80 initializationPatternFor(CGF.CGM, Int8));
81 break;
82 }
83 }
84 if (CGF.CGM.stopAutoInit())
85 return;
86 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
87 I->addAnnotationMetadata("auto-init");
88}
89
90/// getBuiltinLibFunction - Given a builtin id for a function like
91/// "__builtin_fabsf", return a Function* for "fabsf".
92llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
93 unsigned BuiltinID) {
94 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 94, __extension__ __PRETTY_FUNCTION__
))
;
95
96 // Get the name, skip over the __builtin_ prefix (if necessary).
97 StringRef Name;
98 GlobalDecl D(FD);
99
100 // TODO: This list should be expanded or refactored after all GCC-compatible
101 // std libcall builtins are implemented.
102 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
103 {Builtin::BI__builtin_printf, "__printfieee128"},
104 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
105 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
106 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
107 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
108 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
109 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
110 };
111
112 // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
113 // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
114 // if it is 64-bit 'long double' mode.
115 static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
116 {Builtin::BI__builtin_frexpl, "frexp"},
117 {Builtin::BI__builtin_ldexpl, "ldexp"},
118 {Builtin::BI__builtin_modfl, "modf"},
119 };
120
121 // If the builtin has been declared explicitly with an assembler label,
122 // use the mangled name. This differs from the plain label on platforms
123 // that prefix labels.
124 if (FD->hasAttr<AsmLabelAttr>())
125 Name = getMangledName(D);
126 else {
127 // TODO: This mutation should also be applied to other targets other than
128 // PPC, after backend supports IEEE 128-bit style libcalls.
129 if (getTriple().isPPC64() &&
130 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
131 F128Builtins.find(BuiltinID) != F128Builtins.end())
132 Name = F128Builtins[BuiltinID];
133 else if (getTriple().isOSAIX() &&
134 &getTarget().getLongDoubleFormat() ==
135 &llvm::APFloat::IEEEdouble() &&
136 AIXLongDouble64Builtins.find(BuiltinID) !=
137 AIXLongDouble64Builtins.end())
138 Name = AIXLongDouble64Builtins[BuiltinID];
139 else
140 Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
141 }
142
143 llvm::FunctionType *Ty =
144 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
145
146 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
147}
148
149/// Emit the conversions required to turn the given value into an
150/// integer of the given size.
151static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
152 QualType T, llvm::IntegerType *IntType) {
153 V = CGF.EmitToMemory(V, T);
154
155 if (V->getType()->isPointerTy())
156 return CGF.Builder.CreatePtrToInt(V, IntType);
157
158 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 158, __extension__ __PRETTY_FUNCTION__))
;
159 return V;
160}
161
162static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
163 QualType T, llvm::Type *ResultType) {
164 V = CGF.EmitFromMemory(V, T);
165
166 if (ResultType->isPointerTy())
167 return CGF.Builder.CreateIntToPtr(V, ResultType);
168
169 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 169, __extension__ __PRETTY_FUNCTION__))
;
170 return V;
171}
172
173/// Utility to insert an atomic instruction based on Intrinsic::ID
174/// and the expression node.
175static Value *MakeBinaryAtomicValue(
176 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
177 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
178
179 QualType T = E->getType();
180 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 180, __extension__ __PRETTY_FUNCTION__
))
;
181 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 182, __extension__ __PRETTY_FUNCTION__
))
182 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 182, __extension__ __PRETTY_FUNCTION__
))
;
183 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 183, __extension__ __PRETTY_FUNCTION__
))
;
184
185 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
186 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
187
188 llvm::IntegerType *IntType =
189 llvm::IntegerType::get(CGF.getLLVMContext(),
190 CGF.getContext().getTypeSize(T));
191 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
192
193 llvm::Value *Args[2];
194 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
195 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
196 llvm::Type *ValueType = Args[1]->getType();
197 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
198
199 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
200 Kind, Args[0], Args[1], Ordering);
201 return EmitFromInt(CGF, Result, T, ValueType);
202}
203
204static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
205 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
206 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
207
208 // Convert the type of the pointer to a pointer to the stored type.
209 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
210 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
211 Value *BC = CGF.Builder.CreateBitCast(
212 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
213 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
214 LV.setNontemporal(true);
215 CGF.EmitStoreOfScalar(Val, LV, false);
216 return nullptr;
217}
218
219static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
220 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
221
222 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
223 LV.setNontemporal(true);
224 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
225}
226
227static void CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) {
228 ASTContext &Ctx = CGF.getContext();
229 Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
230 unsigned Bytes = Ptr.getElementType()->isPointerTy()
231 ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
232 : Ptr.getElementType()->getScalarSizeInBits() / 8;
233 unsigned Align = Ptr.getAlignment().getQuantity();
234 if (Align % Bytes != 0) {
235 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
236 Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
237 }
238}
239
240static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
241 llvm::AtomicRMWInst::BinOp Kind,
242 const CallExpr *E) {
243 CheckAtomicAlignment(CGF, E);
244 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
245}
246
247/// Utility to insert an atomic instruction based Intrinsic::ID and
248/// the expression node, where the return value is the result of the
249/// operation.
250static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
251 llvm::AtomicRMWInst::BinOp Kind,
252 const CallExpr *E,
253 Instruction::BinaryOps Op,
254 bool Invert = false) {
255 CheckAtomicAlignment(CGF, E);
256 QualType T = E->getType();
257 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 257, __extension__ __PRETTY_FUNCTION__
))
;
258 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 259, __extension__ __PRETTY_FUNCTION__
))
259 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 259, __extension__ __PRETTY_FUNCTION__
))
;
260 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 260, __extension__ __PRETTY_FUNCTION__
))
;
261
262 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
263 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
264
265 llvm::IntegerType *IntType =
266 llvm::IntegerType::get(CGF.getLLVMContext(),
267 CGF.getContext().getTypeSize(T));
268 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
269
270 llvm::Value *Args[2];
271 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
272 llvm::Type *ValueType = Args[1]->getType();
273 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
274 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
275
276 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
277 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
278 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
279 if (Invert)
280 Result =
281 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
282 llvm::ConstantInt::getAllOnesValue(IntType));
283 Result = EmitFromInt(CGF, Result, T, ValueType);
284 return RValue::get(Result);
285}
286
287/// Utility to insert an atomic cmpxchg instruction.
288///
289/// @param CGF The current codegen function.
290/// @param E Builtin call expression to convert to cmpxchg.
291/// arg0 - address to operate on
292/// arg1 - value to compare with
293/// arg2 - new value
294/// @param ReturnBool Specifies whether to return success flag of
295/// cmpxchg result or the old value.
296///
297/// @returns result of cmpxchg, according to ReturnBool
298///
299/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
300/// invoke the function EmitAtomicCmpXchgForMSIntrin.
301static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
302 bool ReturnBool) {
303 CheckAtomicAlignment(CGF, E);
304 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
305 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
306 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
307
308 llvm::IntegerType *IntType = llvm::IntegerType::get(
309 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
310 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
311
312 Value *Args[3];
313 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
314 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
315 llvm::Type *ValueType = Args[1]->getType();
316 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
317 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
318
319 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
320 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
321 llvm::AtomicOrdering::SequentiallyConsistent);
322 if (ReturnBool)
323 // Extract boolean success flag and zext it to int.
324 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
325 CGF.ConvertType(E->getType()));
326 else
327 // Extract old value and emit it using the same type as compare value.
328 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
329 ValueType);
330}
331
332/// This function should be invoked to emit atomic cmpxchg for Microsoft's
333/// _InterlockedCompareExchange* intrinsics which have the following signature:
334/// T _InterlockedCompareExchange(T volatile *Destination,
335/// T Exchange,
336/// T Comparand);
337///
338/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
339/// cmpxchg *Destination, Comparand, Exchange.
340/// So we need to swap Comparand and Exchange when invoking
341/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
342/// function MakeAtomicCmpXchgValue since it expects the arguments to be
343/// already swapped.
344
345static
346Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
347 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
348 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 348, __extension__ __PRETTY_FUNCTION__
))
;
349 assert(CGF.getContext().hasSameUnqualifiedType((static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
350 E->getType(), E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
;
351 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 352, __extension__ __PRETTY_FUNCTION__
))
352 E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 352, __extension__ __PRETTY_FUNCTION__
))
;
353 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 354, __extension__ __PRETTY_FUNCTION__
))
354 E->getArg(2)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 354, __extension__ __PRETTY_FUNCTION__
))
;
355
356 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
357 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
358 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
359
360 // For Release ordering, the failure ordering should be Monotonic.
361 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
362 AtomicOrdering::Monotonic :
363 SuccessOrdering;
364
365 // The atomic instruction is marked volatile for consistency with MSVC. This
366 // blocks the few atomics optimizations that LLVM has. If we want to optimize
367 // _Interlocked* operations in the future, we will have to remove the volatile
368 // marker.
369 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
370 Destination, Comparand, Exchange,
371 SuccessOrdering, FailureOrdering);
372 Result->setVolatile(true);
373 return CGF.Builder.CreateExtractValue(Result, 0);
374}
375
376// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
377// prototyped like this:
378//
379// unsigned char _InterlockedCompareExchange128...(
380// __int64 volatile * _Destination,
381// __int64 _ExchangeHigh,
382// __int64 _ExchangeLow,
383// __int64 * _ComparandResult);
384static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
385 const CallExpr *E,
386 AtomicOrdering SuccessOrdering) {
387 assert(E->getNumArgs() == 4)(static_cast <bool> (E->getNumArgs() == 4) ? void (0
) : __assert_fail ("E->getNumArgs() == 4", "clang/lib/CodeGen/CGBuiltin.cpp"
, 387, __extension__ __PRETTY_FUNCTION__))
;
388 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
389 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
390 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
391 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
392
393 assert(Destination->getType()->isPointerTy())(static_cast <bool> (Destination->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Destination->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 393, __extension__ __PRETTY_FUNCTION__
))
;
394 assert(!ExchangeHigh->getType()->isPointerTy())(static_cast <bool> (!ExchangeHigh->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeHigh->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 394, __extension__ __PRETTY_FUNCTION__
))
;
395 assert(!ExchangeLow->getType()->isPointerTy())(static_cast <bool> (!ExchangeLow->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeLow->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 395, __extension__ __PRETTY_FUNCTION__
))
;
396 assert(ComparandPtr->getType()->isPointerTy())(static_cast <bool> (ComparandPtr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("ComparandPtr->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 396, __extension__ __PRETTY_FUNCTION__
))
;
397
398 // For Release ordering, the failure ordering should be Monotonic.
399 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
400 ? AtomicOrdering::Monotonic
401 : SuccessOrdering;
402
403 // Convert to i128 pointers and values.
404 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
405 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
406 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
407 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
408 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
409
410 // (((i128)hi) << 64) | ((i128)lo)
411 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
412 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
413 ExchangeHigh =
414 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
415 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
416
417 // Load the comparand for the instruction.
418 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
419
420 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
421 SuccessOrdering, FailureOrdering);
422
423 // The atomic instruction is marked volatile for consistency with MSVC. This
424 // blocks the few atomics optimizations that LLVM has. If we want to optimize
425 // _Interlocked* operations in the future, we will have to remove the volatile
426 // marker.
427 CXI->setVolatile(true);
428
429 // Store the result as an outparameter.
430 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
431 ComparandResult);
432
433 // Get the success boolean and zero extend it to i8.
434 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
435 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
436}
437
438static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
439 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
440 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 440, __extension__ __PRETTY_FUNCTION__
))
;
441
442 auto *IntTy = CGF.ConvertType(E->getType());
443 auto *Result = CGF.Builder.CreateAtomicRMW(
444 AtomicRMWInst::Add,
445 CGF.EmitScalarExpr(E->getArg(0)),
446 ConstantInt::get(IntTy, 1),
447 Ordering);
448 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
449}
450
451static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
452 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
453 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 453, __extension__ __PRETTY_FUNCTION__
))
;
454
455 auto *IntTy = CGF.ConvertType(E->getType());
456 auto *Result = CGF.Builder.CreateAtomicRMW(
457 AtomicRMWInst::Sub,
458 CGF.EmitScalarExpr(E->getArg(0)),
459 ConstantInt::get(IntTy, 1),
460 Ordering);
461 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
462}
463
464// Build a plain volatile load.
465static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
466 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
467 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
468 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
469 llvm::Type *ITy =
470 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
471 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
472 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
473 Load->setVolatile(true);
474 return Load;
475}
476
477// Build a plain volatile store.
478static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
479 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
480 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
481 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
482 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
483 llvm::Type *ITy =
484 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
485 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
486 llvm::StoreInst *Store =
487 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
488 Store->setVolatile(true);
489 return Store;
490}
491
492// Emit a simple mangled intrinsic that has 1 argument and a return type
493// matching the argument type. Depending on mode, this may be a constrained
494// floating-point intrinsic.
495static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496 const CallExpr *E, unsigned IntrinsicID,
497 unsigned ConstrainedIntrinsicID) {
498 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
499
500 if (CGF.Builder.getIsFPConstrained()) {
501 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
502 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
503 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
504 } else {
505 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
506 return CGF.Builder.CreateCall(F, Src0);
507 }
508}
509
510// Emit an intrinsic that has 2 operands of the same type as its result.
511// Depending on mode, this may be a constrained floating-point intrinsic.
512static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
513 const CallExpr *E, unsigned IntrinsicID,
514 unsigned ConstrainedIntrinsicID) {
515 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
516 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
517
518 if (CGF.Builder.getIsFPConstrained()) {
519 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
520 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
521 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
522 } else {
523 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
524 return CGF.Builder.CreateCall(F, { Src0, Src1 });
525 }
526}
527
528// Emit an intrinsic that has 3 operands of the same type as its result.
529// Depending on mode, this may be a constrained floating-point intrinsic.
530static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
531 const CallExpr *E, unsigned IntrinsicID,
532 unsigned ConstrainedIntrinsicID) {
533 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
534 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
535 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
536
537 if (CGF.Builder.getIsFPConstrained()) {
538 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
539 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
540 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
541 } else {
542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544 }
545}
546
547// Emit an intrinsic where all operands are of the same type as the result.
548// Depending on mode, this may be a constrained floating-point intrinsic.
549static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
550 unsigned IntrinsicID,
551 unsigned ConstrainedIntrinsicID,
552 llvm::Type *Ty,
553 ArrayRef<Value *> Args) {
554 Function *F;
555 if (CGF.Builder.getIsFPConstrained())
556 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
557 else
558 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
559
560 if (CGF.Builder.getIsFPConstrained())
561 return CGF.Builder.CreateConstrainedFPCall(F, Args);
562 else
563 return CGF.Builder.CreateCall(F, Args);
564}
565
566// Emit a simple mangled intrinsic that has 1 argument and a return type
567// matching the argument type.
568static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
569 unsigned IntrinsicID,
570 llvm::StringRef Name = "") {
571 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
572
573 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
574 return CGF.Builder.CreateCall(F, Src0, Name);
575}
576
577// Emit an intrinsic that has 2 operands of the same type as its result.
578static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
579 const CallExpr *E,
580 unsigned IntrinsicID) {
581 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
582 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
583
584 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
585 return CGF.Builder.CreateCall(F, { Src0, Src1 });
586}
587
588// Emit an intrinsic that has 3 operands of the same type as its result.
589static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
590 const CallExpr *E,
591 unsigned IntrinsicID) {
592 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
593 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
594 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
595
596 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
597 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
598}
599
600// Emit an intrinsic that has 1 float or double operand, and 1 integer.
601static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
602 const CallExpr *E,
603 unsigned IntrinsicID) {
604 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
605 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
606
607 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
608 return CGF.Builder.CreateCall(F, {Src0, Src1});
609}
610
611// Emit an intrinsic that has overloaded integer result and fp operand.
612static Value *
613emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
614 unsigned IntrinsicID,
615 unsigned ConstrainedIntrinsicID) {
616 llvm::Type *ResultType = CGF.ConvertType(E->getType());
617 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
618
619 if (CGF.Builder.getIsFPConstrained()) {
620 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
621 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
622 {ResultType, Src0->getType()});
623 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
624 } else {
625 Function *F =
626 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
627 return CGF.Builder.CreateCall(F, Src0);
628 }
629}
630
631/// EmitFAbs - Emit a call to @llvm.fabs().
632static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
633 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
634 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
635 Call->setDoesNotAccessMemory();
636 return Call;
637}
638
639/// Emit the computation of the sign bit for a floating point value. Returns
640/// the i1 sign bit value.
641static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
642 LLVMContext &C = CGF.CGM.getLLVMContext();
643
644 llvm::Type *Ty = V->getType();
645 int Width = Ty->getPrimitiveSizeInBits();
646 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
647 V = CGF.Builder.CreateBitCast(V, IntTy);
648 if (Ty->isPPC_FP128Ty()) {
649 // We want the sign bit of the higher-order double. The bitcast we just
650 // did works as if the double-double was stored to memory and then
651 // read as an i128. The "store" will put the higher-order double in the
652 // lower address in both little- and big-Endian modes, but the "load"
653 // will treat those bits as a different part of the i128: the low bits in
654 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
655 // we need to shift the high bits down to the low before truncating.
656 Width >>= 1;
657 if (CGF.getTarget().isBigEndian()) {
658 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
659 V = CGF.Builder.CreateLShr(V, ShiftCst);
660 }
661 // We are truncating value in order to extract the higher-order
662 // double, which we will be using to extract the sign from.
663 IntTy = llvm::IntegerType::get(C, Width);
664 V = CGF.Builder.CreateTrunc(V, IntTy);
665 }
666 Value *Zero = llvm::Constant::getNullValue(IntTy);
667 return CGF.Builder.CreateICmpSLT(V, Zero);
668}
669
670static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
671 const CallExpr *E, llvm::Constant *calleeValue) {
672 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
673 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
674}
675
676/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
677/// depending on IntrinsicID.
678///
679/// \arg CGF The current codegen function.
680/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
681/// \arg X The first argument to the llvm.*.with.overflow.*.
682/// \arg Y The second argument to the llvm.*.with.overflow.*.
683/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
684/// \returns The result (i.e. sum/product) returned by the intrinsic.
685static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
686 const llvm::Intrinsic::ID IntrinsicID,
687 llvm::Value *X, llvm::Value *Y,
688 llvm::Value *&Carry) {
689 // Make sure we have integers of the same width.
690 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 692, __extension__ __PRETTY_FUNCTION__
))
691 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 692, __extension__ __PRETTY_FUNCTION__
))
692 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 692, __extension__ __PRETTY_FUNCTION__
))
;
693
694 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
695 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
696 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
697 return CGF.Builder.CreateExtractValue(Tmp, 0);
698}
699
700static Value *emitRangedBuiltin(CodeGenFunction &CGF,
701 unsigned IntrinsicID,
702 int low, int high) {
703 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
704 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
705 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
706 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
707 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
708 Call->setMetadata(llvm::LLVMContext::MD_noundef,
709 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
710 return Call;
711}
712
713namespace {
714 struct WidthAndSignedness {
715 unsigned Width;
716 bool Signed;
717 };
718}
719
720static WidthAndSignedness
721getIntegerWidthAndSignedness(const clang::ASTContext &context,
722 const clang::QualType Type) {
723 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 723, __extension__ __PRETTY_FUNCTION__
))
;
724 unsigned Width = Type->isBooleanType() ? 1
725 : Type->isBitIntType() ? context.getIntWidth(Type)
726 : context.getTypeInfo(Type).Width;
727 bool Signed = Type->isSignedIntegerType();
728 return {Width, Signed};
729}
730
731// Given one or more integer types, this function produces an integer type that
732// encompasses them: any value in one of the given types could be expressed in
733// the encompassing type.
734static struct WidthAndSignedness
735EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
736 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 736, __extension__ __PRETTY_FUNCTION__
))
;
737
738 // If any of the given types is signed, we must return a signed type.
739 bool Signed = false;
740 for (const auto &Type : Types) {
741 Signed |= Type.Signed;
742 }
743
744 // The encompassing type must have a width greater than or equal to the width
745 // of the specified types. Additionally, if the encompassing type is signed,
746 // its width must be strictly greater than the width of any unsigned types
747 // given.
748 unsigned Width = 0;
749 for (const auto &Type : Types) {
750 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
751 if (Width < MinWidth) {
752 Width = MinWidth;
753 }
754 }
755
756 return {Width, Signed};
757}
758
759Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
760 llvm::Type *DestType = Int8PtrTy;
761 if (ArgValue->getType() != DestType)
762 ArgValue =
763 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
764
765 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
766 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
767}
768
769/// Checks if using the result of __builtin_object_size(p, @p From) in place of
770/// __builtin_object_size(p, @p To) is correct
771static bool areBOSTypesCompatible(int From, int To) {
772 // Note: Our __builtin_object_size implementation currently treats Type=0 and
773 // Type=2 identically. Encoding this implementation detail here may make
774 // improving __builtin_object_size difficult in the future, so it's omitted.
775 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
776}
777
778static llvm::Value *
779getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
780 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
781}
782
783llvm::Value *
784CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
785 llvm::IntegerType *ResType,
786 llvm::Value *EmittedE,
787 bool IsDynamic) {
788 uint64_t ObjectSize;
789 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
790 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
791 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
792}
793
794/// Returns a Value corresponding to the size of the given expression.
795/// This Value may be either of the following:
796/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
797/// it)
798/// - A call to the @llvm.objectsize intrinsic
799///
800/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
801/// and we wouldn't otherwise try to reference a pass_object_size parameter,
802/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
803llvm::Value *
804CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
805 llvm::IntegerType *ResType,
806 llvm::Value *EmittedE, bool IsDynamic) {
807 // We need to reference an argument if the pointer is a parameter with the
808 // pass_object_size attribute.
809 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
810 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
811 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
812 if (Param != nullptr && PS != nullptr &&
813 areBOSTypesCompatible(PS->getType(), Type)) {
814 auto Iter = SizeArguments.find(Param);
815 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 815, __extension__ __PRETTY_FUNCTION__))
;
816
817 const ImplicitParamDecl *D = Iter->second;
818 auto DIter = LocalDeclMap.find(D);
819 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 819, __extension__ __PRETTY_FUNCTION__))
;
820
821 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
822 getContext().getSizeType(), E->getBeginLoc());
823 }
824 }
825
826 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
827 // evaluate E for side-effects. In either case, we shouldn't lower to
828 // @llvm.objectsize.
829 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
830 return getDefaultBuiltinObjectSizeResult(Type, ResType);
831
832 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
833 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 834, __extension__ __PRETTY_FUNCTION__
))
834 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 834, __extension__ __PRETTY_FUNCTION__
))
;
835
836 Function *F =
837 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
838
839 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
840 Value *Min = Builder.getInt1((Type & 2) != 0);
841 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
842 Value *NullIsUnknown = Builder.getTrue();
843 Value *Dynamic = Builder.getInt1(IsDynamic);
844 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
845}
846
847namespace {
848/// A struct to generically describe a bit test intrinsic.
849struct BitTest {
850 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
851 enum InterlockingKind : uint8_t {
852 Unlocked,
853 Sequential,
854 Acquire,
855 Release,
856 NoFence
857 };
858
859 ActionKind Action;
860 InterlockingKind Interlocking;
861 bool Is64Bit;
862
863 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
864};
865} // namespace
866
867BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
868 switch (BuiltinID) {
869 // Main portable variants.
870 case Builtin::BI_bittest:
871 return {TestOnly, Unlocked, false};
872 case Builtin::BI_bittestandcomplement:
873 return {Complement, Unlocked, false};
874 case Builtin::BI_bittestandreset:
875 return {Reset, Unlocked, false};
876 case Builtin::BI_bittestandset:
877 return {Set, Unlocked, false};
878 case Builtin::BI_interlockedbittestandreset:
879 return {Reset, Sequential, false};
880 case Builtin::BI_interlockedbittestandset:
881 return {Set, Sequential, false};
882
883 // X86-specific 64-bit variants.
884 case Builtin::BI_bittest64:
885 return {TestOnly, Unlocked, true};
886 case Builtin::BI_bittestandcomplement64:
887 return {Complement, Unlocked, true};
888 case Builtin::BI_bittestandreset64:
889 return {Reset, Unlocked, true};
890 case Builtin::BI_bittestandset64:
891 return {Set, Unlocked, true};
892 case Builtin::BI_interlockedbittestandreset64:
893 return {Reset, Sequential, true};
894 case Builtin::BI_interlockedbittestandset64:
895 return {Set, Sequential, true};
896
897 // ARM/AArch64-specific ordering variants.
898 case Builtin::BI_interlockedbittestandset_acq:
899 return {Set, Acquire, false};
900 case Builtin::BI_interlockedbittestandset_rel:
901 return {Set, Release, false};
902 case Builtin::BI_interlockedbittestandset_nf:
903 return {Set, NoFence, false};
904 case Builtin::BI_interlockedbittestandreset_acq:
905 return {Reset, Acquire, false};
906 case Builtin::BI_interlockedbittestandreset_rel:
907 return {Reset, Release, false};
908 case Builtin::BI_interlockedbittestandreset_nf:
909 return {Reset, NoFence, false};
910 }
911 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 911)
;
912}
913
914static char bitActionToX86BTCode(BitTest::ActionKind A) {
915 switch (A) {
916 case BitTest::TestOnly: return '\0';
917 case BitTest::Complement: return 'c';
918 case BitTest::Reset: return 'r';
919 case BitTest::Set: return 's';
920 }
921 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "clang/lib/CodeGen/CGBuiltin.cpp"
, 921)
;
922}
923
924static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
925 BitTest BT,
926 const CallExpr *E, Value *BitBase,
927 Value *BitPos) {
928 char Action = bitActionToX86BTCode(BT.Action);
929 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
930
931 // Build the assembly.
932 SmallString<64> Asm;
933 raw_svector_ostream AsmOS(Asm);
934 if (BT.Interlocking != BitTest::Unlocked)
935 AsmOS << "lock ";
936 AsmOS << "bt";
937 if (Action)
938 AsmOS << Action;
939 AsmOS << SizeSuffix << " $2, ($1)";
940
941 // Build the constraints. FIXME: We should support immediates when possible.
942 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
943 std::string MachineClobbers = CGF.getTarget().getClobbers();
944 if (!MachineClobbers.empty()) {
945 Constraints += ',';
946 Constraints += MachineClobbers;
947 }
948 llvm::IntegerType *IntType = llvm::IntegerType::get(
949 CGF.getLLVMContext(),
950 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
951 llvm::Type *IntPtrType = IntType->getPointerTo();
952 llvm::FunctionType *FTy =
953 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
954
955 llvm::InlineAsm *IA =
956 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
957 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
958}
959
960static llvm::AtomicOrdering
961getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
962 switch (I) {
963 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
964 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
965 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
966 case BitTest::Release: return llvm::AtomicOrdering::Release;
967 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
968 }
969 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "clang/lib/CodeGen/CGBuiltin.cpp"
, 969)
;
970}
971
972/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
973/// bits and a bit position and read and optionally modify the bit at that
974/// position. The position index can be arbitrarily large, i.e. it can be larger
975/// than 31 or 63, so we need an indexed load in the general case.
976static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
977 unsigned BuiltinID,
978 const CallExpr *E) {
979 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
980 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
981
982 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
983
984 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
985 // indexing operation internally. Use them if possible.
986 if (CGF.getTarget().getTriple().isX86())
987 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
988
989 // Otherwise, use generic code to load one byte and test the bit. Use all but
990 // the bottom three bits as the array index, and the bottom three bits to form
991 // a mask.
992 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
993 Value *ByteIndex = CGF.Builder.CreateAShr(
994 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
995 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
996 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
997 ByteIndex, "bittest.byteaddr"),
998 CGF.Int8Ty, CharUnits::One());
999 Value *PosLow =
1000 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1001 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1002
1003 // The updating instructions will need a mask.
1004 Value *Mask = nullptr;
1005 if (BT.Action != BitTest::TestOnly) {
1006 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1007 "bittest.mask");
1008 }
1009
1010 // Check the action and ordering of the interlocked intrinsics.
1011 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1012
1013 Value *OldByte = nullptr;
1014 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1015 // Emit a combined atomicrmw load/store operation for the interlocked
1016 // intrinsics.
1017 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1018 if (BT.Action == BitTest::Reset) {
1019 Mask = CGF.Builder.CreateNot(Mask);
1020 RMWOp = llvm::AtomicRMWInst::And;
1021 }
1022 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
1023 Ordering);
1024 } else {
1025 // Emit a plain load for the non-interlocked intrinsics.
1026 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1027 Value *NewByte = nullptr;
1028 switch (BT.Action) {
1029 case BitTest::TestOnly:
1030 // Don't store anything.
1031 break;
1032 case BitTest::Complement:
1033 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1034 break;
1035 case BitTest::Reset:
1036 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1037 break;
1038 case BitTest::Set:
1039 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1040 break;
1041 }
1042 if (NewByte)
1043 CGF.Builder.CreateStore(NewByte, ByteAddr);
1044 }
1045
1046 // However we loaded the old byte, either by plain load or atomicrmw, shift
1047 // the bit into the low position and mask it to 0 or 1.
1048 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1049 return CGF.Builder.CreateAnd(
1050 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1051}
1052
1053static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1054 unsigned BuiltinID,
1055 const CallExpr *E) {
1056 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1057
1058 SmallString<64> Asm;
1059 raw_svector_ostream AsmOS(Asm);
1060 llvm::IntegerType *RetType = CGF.Int32Ty;
1061
1062 switch (BuiltinID) {
1063 case clang::PPC::BI__builtin_ppc_ldarx:
1064 AsmOS << "ldarx ";
1065 RetType = CGF.Int64Ty;
1066 break;
1067 case clang::PPC::BI__builtin_ppc_lwarx:
1068 AsmOS << "lwarx ";
1069 RetType = CGF.Int32Ty;
1070 break;
1071 case clang::PPC::BI__builtin_ppc_lharx:
1072 AsmOS << "lharx ";
1073 RetType = CGF.Int16Ty;
1074 break;
1075 case clang::PPC::BI__builtin_ppc_lbarx:
1076 AsmOS << "lbarx ";
1077 RetType = CGF.Int8Ty;
1078 break;
1079 default:
1080 llvm_unreachable("Expected only PowerPC load reserve intrinsics")::llvm::llvm_unreachable_internal("Expected only PowerPC load reserve intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1080)
;
1081 }
1082
1083 AsmOS << "$0, ${1:y}";
1084
1085 std::string Constraints = "=r,*Z,~{memory}";
1086 std::string MachineClobbers = CGF.getTarget().getClobbers();
1087 if (!MachineClobbers.empty()) {
1088 Constraints += ',';
1089 Constraints += MachineClobbers;
1090 }
1091
1092 llvm::Type *IntPtrType = RetType->getPointerTo();
1093 llvm::FunctionType *FTy =
1094 llvm::FunctionType::get(RetType, {IntPtrType}, false);
1095
1096 llvm::InlineAsm *IA =
1097 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1098 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1099 CI->addParamAttr(
1100 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1101 return CI;
1102}
1103
1104namespace {
1105enum class MSVCSetJmpKind {
1106 _setjmpex,
1107 _setjmp3,
1108 _setjmp
1109};
1110}
1111
1112/// MSVC handles setjmp a bit differently on different platforms. On every
1113/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1114/// parameters can be passed as variadic arguments, but we always pass none.
1115static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1116 const CallExpr *E) {
1117 llvm::Value *Arg1 = nullptr;
1118 llvm::Type *Arg1Ty = nullptr;
1119 StringRef Name;
1120 bool IsVarArg = false;
1121 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1122 Name = "_setjmp3";
1123 Arg1Ty = CGF.Int32Ty;
1124 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1125 IsVarArg = true;
1126 } else {
1127 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1128 Arg1Ty = CGF.Int8PtrTy;
1129 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1130 Arg1 = CGF.Builder.CreateCall(
1131 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1132 } else
1133 Arg1 = CGF.Builder.CreateCall(
1134 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1135 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1136 }
1137
1138 // Mark the call site and declaration with ReturnsTwice.
1139 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1140 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1141 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1142 llvm::Attribute::ReturnsTwice);
1143 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1144 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1145 ReturnsTwiceAttr, /*Local=*/true);
1146
1147 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1148 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1149 llvm::Value *Args[] = {Buf, Arg1};
1150 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1151 CB->setAttributes(ReturnsTwiceAttr);
1152 return RValue::get(CB);
1153}
1154
1155// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1156// we handle them here.
1157enum class CodeGenFunction::MSVCIntrin {
1158 _BitScanForward,
1159 _BitScanReverse,
1160 _InterlockedAnd,
1161 _InterlockedDecrement,
1162 _InterlockedExchange,
1163 _InterlockedExchangeAdd,
1164 _InterlockedExchangeSub,
1165 _InterlockedIncrement,
1166 _InterlockedOr,
1167 _InterlockedXor,
1168 _InterlockedExchangeAdd_acq,
1169 _InterlockedExchangeAdd_rel,
1170 _InterlockedExchangeAdd_nf,
1171 _InterlockedExchange_acq,
1172 _InterlockedExchange_rel,
1173 _InterlockedExchange_nf,
1174 _InterlockedCompareExchange_acq,
1175 _InterlockedCompareExchange_rel,
1176 _InterlockedCompareExchange_nf,
1177 _InterlockedCompareExchange128,
1178 _InterlockedCompareExchange128_acq,
1179 _InterlockedCompareExchange128_rel,
1180 _InterlockedCompareExchange128_nf,
1181 _InterlockedOr_acq,
1182 _InterlockedOr_rel,
1183 _InterlockedOr_nf,
1184 _InterlockedXor_acq,
1185 _InterlockedXor_rel,
1186 _InterlockedXor_nf,
1187 _InterlockedAnd_acq,
1188 _InterlockedAnd_rel,
1189 _InterlockedAnd_nf,
1190 _InterlockedIncrement_acq,
1191 _InterlockedIncrement_rel,
1192 _InterlockedIncrement_nf,
1193 _InterlockedDecrement_acq,
1194 _InterlockedDecrement_rel,
1195 _InterlockedDecrement_nf,
1196 __fastfail,
1197};
1198
1199static std::optional<CodeGenFunction::MSVCIntrin>
1200translateArmToMsvcIntrin(unsigned BuiltinID) {
1201 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1202 switch (BuiltinID) {
1203 default:
1204 return std::nullopt;
1205 case clang::ARM::BI_BitScanForward:
1206 case clang::ARM::BI_BitScanForward64:
1207 return MSVCIntrin::_BitScanForward;
1208 case clang::ARM::BI_BitScanReverse:
1209 case clang::ARM::BI_BitScanReverse64:
1210 return MSVCIntrin::_BitScanReverse;
1211 case clang::ARM::BI_InterlockedAnd64:
1212 return MSVCIntrin::_InterlockedAnd;
1213 case clang::ARM::BI_InterlockedExchange64:
1214 return MSVCIntrin::_InterlockedExchange;
1215 case clang::ARM::BI_InterlockedExchangeAdd64:
1216 return MSVCIntrin::_InterlockedExchangeAdd;
1217 case clang::ARM::BI_InterlockedExchangeSub64:
1218 return MSVCIntrin::_InterlockedExchangeSub;
1219 case clang::ARM::BI_InterlockedOr64:
1220 return MSVCIntrin::_InterlockedOr;
1221 case clang::ARM::BI_InterlockedXor64:
1222 return MSVCIntrin::_InterlockedXor;
1223 case clang::ARM::BI_InterlockedDecrement64:
1224 return MSVCIntrin::_InterlockedDecrement;
1225 case clang::ARM::BI_InterlockedIncrement64:
1226 return MSVCIntrin::_InterlockedIncrement;
1227 case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1228 case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1229 case clang::ARM::BI_InterlockedExchangeAdd_acq:
1230 case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1231 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1232 case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1233 case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1234 case clang::ARM::BI_InterlockedExchangeAdd_rel:
1235 case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1236 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1237 case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1238 case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1239 case clang::ARM::BI_InterlockedExchangeAdd_nf:
1240 case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1241 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1242 case clang::ARM::BI_InterlockedExchange8_acq:
1243 case clang::ARM::BI_InterlockedExchange16_acq:
1244 case clang::ARM::BI_InterlockedExchange_acq:
1245 case clang::ARM::BI_InterlockedExchange64_acq:
1246 return MSVCIntrin::_InterlockedExchange_acq;
1247 case clang::ARM::BI_InterlockedExchange8_rel:
1248 case clang::ARM::BI_InterlockedExchange16_rel:
1249 case clang::ARM::BI_InterlockedExchange_rel:
1250 case clang::ARM::BI_InterlockedExchange64_rel:
1251 return MSVCIntrin::_InterlockedExchange_rel;
1252 case clang::ARM::BI_InterlockedExchange8_nf:
1253 case clang::ARM::BI_InterlockedExchange16_nf:
1254 case clang::ARM::BI_InterlockedExchange_nf:
1255 case clang::ARM::BI_InterlockedExchange64_nf:
1256 return MSVCIntrin::_InterlockedExchange_nf;
1257 case clang::ARM::BI_InterlockedCompareExchange8_acq:
1258 case clang::ARM::BI_InterlockedCompareExchange16_acq:
1259 case clang::ARM::BI_InterlockedCompareExchange_acq:
1260 case clang::ARM::BI_InterlockedCompareExchange64_acq:
1261 return MSVCIntrin::_InterlockedCompareExchange_acq;
1262 case clang::ARM::BI_InterlockedCompareExchange8_rel:
1263 case clang::ARM::BI_InterlockedCompareExchange16_rel:
1264 case clang::ARM::BI_InterlockedCompareExchange_rel:
1265 case clang::ARM::BI_InterlockedCompareExchange64_rel:
1266 return MSVCIntrin::_InterlockedCompareExchange_rel;
1267 case clang::ARM::BI_InterlockedCompareExchange8_nf:
1268 case clang::ARM::BI_InterlockedCompareExchange16_nf:
1269 case clang::ARM::BI_InterlockedCompareExchange_nf:
1270 case clang::ARM::BI_InterlockedCompareExchange64_nf:
1271 return MSVCIntrin::_InterlockedCompareExchange_nf;
1272 case clang::ARM::BI_InterlockedOr8_acq:
1273 case clang::ARM::BI_InterlockedOr16_acq:
1274 case clang::ARM::BI_InterlockedOr_acq:
1275 case clang::ARM::BI_InterlockedOr64_acq:
1276 return MSVCIntrin::_InterlockedOr_acq;
1277 case clang::ARM::BI_InterlockedOr8_rel:
1278 case clang::ARM::BI_InterlockedOr16_rel:
1279 case clang::ARM::BI_InterlockedOr_rel:
1280 case clang::ARM::BI_InterlockedOr64_rel:
1281 return MSVCIntrin::_InterlockedOr_rel;
1282 case clang::ARM::BI_InterlockedOr8_nf:
1283 case clang::ARM::BI_InterlockedOr16_nf:
1284 case clang::ARM::BI_InterlockedOr_nf:
1285 case clang::ARM::BI_InterlockedOr64_nf:
1286 return MSVCIntrin::_InterlockedOr_nf;
1287 case clang::ARM::BI_InterlockedXor8_acq:
1288 case clang::ARM::BI_InterlockedXor16_acq:
1289 case clang::ARM::BI_InterlockedXor_acq:
1290 case clang::ARM::BI_InterlockedXor64_acq:
1291 return MSVCIntrin::_InterlockedXor_acq;
1292 case clang::ARM::BI_InterlockedXor8_rel:
1293 case clang::ARM::BI_InterlockedXor16_rel:
1294 case clang::ARM::BI_InterlockedXor_rel:
1295 case clang::ARM::BI_InterlockedXor64_rel:
1296 return MSVCIntrin::_InterlockedXor_rel;
1297 case clang::ARM::BI_InterlockedXor8_nf:
1298 case clang::ARM::BI_InterlockedXor16_nf:
1299 case clang::ARM::BI_InterlockedXor_nf:
1300 case clang::ARM::BI_InterlockedXor64_nf:
1301 return MSVCIntrin::_InterlockedXor_nf;
1302 case clang::ARM::BI_InterlockedAnd8_acq:
1303 case clang::ARM::BI_InterlockedAnd16_acq:
1304 case clang::ARM::BI_InterlockedAnd_acq:
1305 case clang::ARM::BI_InterlockedAnd64_acq:
1306 return MSVCIntrin::_InterlockedAnd_acq;
1307 case clang::ARM::BI_InterlockedAnd8_rel:
1308 case clang::ARM::BI_InterlockedAnd16_rel:
1309 case clang::ARM::BI_InterlockedAnd_rel:
1310 case clang::ARM::BI_InterlockedAnd64_rel:
1311 return MSVCIntrin::_InterlockedAnd_rel;
1312 case clang::ARM::BI_InterlockedAnd8_nf:
1313 case clang::ARM::BI_InterlockedAnd16_nf:
1314 case clang::ARM::BI_InterlockedAnd_nf:
1315 case clang::ARM::BI_InterlockedAnd64_nf:
1316 return MSVCIntrin::_InterlockedAnd_nf;
1317 case clang::ARM::BI_InterlockedIncrement16_acq:
1318 case clang::ARM::BI_InterlockedIncrement_acq:
1319 case clang::ARM::BI_InterlockedIncrement64_acq:
1320 return MSVCIntrin::_InterlockedIncrement_acq;
1321 case clang::ARM::BI_InterlockedIncrement16_rel:
1322 case clang::ARM::BI_InterlockedIncrement_rel:
1323 case clang::ARM::BI_InterlockedIncrement64_rel:
1324 return MSVCIntrin::_InterlockedIncrement_rel;
1325 case clang::ARM::BI_InterlockedIncrement16_nf:
1326 case clang::ARM::BI_InterlockedIncrement_nf:
1327 case clang::ARM::BI_InterlockedIncrement64_nf:
1328 return MSVCIntrin::_InterlockedIncrement_nf;
1329 case clang::ARM::BI_InterlockedDecrement16_acq:
1330 case clang::ARM::BI_InterlockedDecrement_acq:
1331 case clang::ARM::BI_InterlockedDecrement64_acq:
1332 return MSVCIntrin::_InterlockedDecrement_acq;
1333 case clang::ARM::BI_InterlockedDecrement16_rel:
1334 case clang::ARM::BI_InterlockedDecrement_rel:
1335 case clang::ARM::BI_InterlockedDecrement64_rel:
1336 return MSVCIntrin::_InterlockedDecrement_rel;
1337 case clang::ARM::BI_InterlockedDecrement16_nf:
1338 case clang::ARM::BI_InterlockedDecrement_nf:
1339 case clang::ARM::BI_InterlockedDecrement64_nf:
1340 return MSVCIntrin::_InterlockedDecrement_nf;
1341 }
1342 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1342)
;
1343}
1344
1345static std::optional<CodeGenFunction::MSVCIntrin>
1346translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1347 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1348 switch (BuiltinID) {
1349 default:
1350 return std::nullopt;
1351 case clang::AArch64::BI_BitScanForward:
1352 case clang::AArch64::BI_BitScanForward64:
1353 return MSVCIntrin::_BitScanForward;
1354 case clang::AArch64::BI_BitScanReverse:
1355 case clang::AArch64::BI_BitScanReverse64:
1356 return MSVCIntrin::_BitScanReverse;
1357 case clang::AArch64::BI_InterlockedAnd64:
1358 return MSVCIntrin::_InterlockedAnd;
1359 case clang::AArch64::BI_InterlockedExchange64:
1360 return MSVCIntrin::_InterlockedExchange;
1361 case clang::AArch64::BI_InterlockedExchangeAdd64:
1362 return MSVCIntrin::_InterlockedExchangeAdd;
1363 case clang::AArch64::BI_InterlockedExchangeSub64:
1364 return MSVCIntrin::_InterlockedExchangeSub;
1365 case clang::AArch64::BI_InterlockedOr64:
1366 return MSVCIntrin::_InterlockedOr;
1367 case clang::AArch64::BI_InterlockedXor64:
1368 return MSVCIntrin::_InterlockedXor;
1369 case clang::AArch64::BI_InterlockedDecrement64:
1370 return MSVCIntrin::_InterlockedDecrement;
1371 case clang::AArch64::BI_InterlockedIncrement64:
1372 return MSVCIntrin::_InterlockedIncrement;
1373 case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1374 case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1375 case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1376 case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1377 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1378 case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1379 case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1380 case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1381 case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1382 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1383 case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1384 case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1385 case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1386 case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1387 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1388 case clang::AArch64::BI_InterlockedExchange8_acq:
1389 case clang::AArch64::BI_InterlockedExchange16_acq:
1390 case clang::AArch64::BI_InterlockedExchange_acq:
1391 case clang::AArch64::BI_InterlockedExchange64_acq:
1392 return MSVCIntrin::_InterlockedExchange_acq;
1393 case clang::AArch64::BI_InterlockedExchange8_rel:
1394 case clang::AArch64::BI_InterlockedExchange16_rel:
1395 case clang::AArch64::BI_InterlockedExchange_rel:
1396 case clang::AArch64::BI_InterlockedExchange64_rel:
1397 return MSVCIntrin::_InterlockedExchange_rel;
1398 case clang::AArch64::BI_InterlockedExchange8_nf:
1399 case clang::AArch64::BI_InterlockedExchange16_nf:
1400 case clang::AArch64::BI_InterlockedExchange_nf:
1401 case clang::AArch64::BI_InterlockedExchange64_nf:
1402 return MSVCIntrin::_InterlockedExchange_nf;
1403 case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1404 case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1405 case clang::AArch64::BI_InterlockedCompareExchange_acq:
1406 case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1407 return MSVCIntrin::_InterlockedCompareExchange_acq;
1408 case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1409 case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1410 case clang::AArch64::BI_InterlockedCompareExchange_rel:
1411 case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1412 return MSVCIntrin::_InterlockedCompareExchange_rel;
1413 case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1414 case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1415 case clang::AArch64::BI_InterlockedCompareExchange_nf:
1416 case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1417 return MSVCIntrin::_InterlockedCompareExchange_nf;
1418 case clang::AArch64::BI_InterlockedCompareExchange128:
1419 return MSVCIntrin::_InterlockedCompareExchange128;
1420 case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1421 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1422 case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1423 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1424 case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1425 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1426 case clang::AArch64::BI_InterlockedOr8_acq:
1427 case clang::AArch64::BI_InterlockedOr16_acq:
1428 case clang::AArch64::BI_InterlockedOr_acq:
1429 case clang::AArch64::BI_InterlockedOr64_acq:
1430 return MSVCIntrin::_InterlockedOr_acq;
1431 case clang::AArch64::BI_InterlockedOr8_rel:
1432 case clang::AArch64::BI_InterlockedOr16_rel:
1433 case clang::AArch64::BI_InterlockedOr_rel:
1434 case clang::AArch64::BI_InterlockedOr64_rel:
1435 return MSVCIntrin::_InterlockedOr_rel;
1436 case clang::AArch64::BI_InterlockedOr8_nf:
1437 case clang::AArch64::BI_InterlockedOr16_nf:
1438 case clang::AArch64::BI_InterlockedOr_nf:
1439 case clang::AArch64::BI_InterlockedOr64_nf:
1440 return MSVCIntrin::_InterlockedOr_nf;
1441 case clang::AArch64::BI_InterlockedXor8_acq:
1442 case clang::AArch64::BI_InterlockedXor16_acq:
1443 case clang::AArch64::BI_InterlockedXor_acq:
1444 case clang::AArch64::BI_InterlockedXor64_acq:
1445 return MSVCIntrin::_InterlockedXor_acq;
1446 case clang::AArch64::BI_InterlockedXor8_rel:
1447 case clang::AArch64::BI_InterlockedXor16_rel:
1448 case clang::AArch64::BI_InterlockedXor_rel:
1449 case clang::AArch64::BI_InterlockedXor64_rel:
1450 return MSVCIntrin::_InterlockedXor_rel;
1451 case clang::AArch64::BI_InterlockedXor8_nf:
1452 case clang::AArch64::BI_InterlockedXor16_nf:
1453 case clang::AArch64::BI_InterlockedXor_nf:
1454 case clang::AArch64::BI_InterlockedXor64_nf:
1455 return MSVCIntrin::_InterlockedXor_nf;
1456 case clang::AArch64::BI_InterlockedAnd8_acq:
1457 case clang::AArch64::BI_InterlockedAnd16_acq:
1458 case clang::AArch64::BI_InterlockedAnd_acq:
1459 case clang::AArch64::BI_InterlockedAnd64_acq:
1460 return MSVCIntrin::_InterlockedAnd_acq;
1461 case clang::AArch64::BI_InterlockedAnd8_rel:
1462 case clang::AArch64::BI_InterlockedAnd16_rel:
1463 case clang::AArch64::BI_InterlockedAnd_rel:
1464 case clang::AArch64::BI_InterlockedAnd64_rel:
1465 return MSVCIntrin::_InterlockedAnd_rel;
1466 case clang::AArch64::BI_InterlockedAnd8_nf:
1467 case clang::AArch64::BI_InterlockedAnd16_nf:
1468 case clang::AArch64::BI_InterlockedAnd_nf:
1469 case clang::AArch64::BI_InterlockedAnd64_nf:
1470 return MSVCIntrin::_InterlockedAnd_nf;
1471 case clang::AArch64::BI_InterlockedIncrement16_acq:
1472 case clang::AArch64::BI_InterlockedIncrement_acq:
1473 case clang::AArch64::BI_InterlockedIncrement64_acq:
1474 return MSVCIntrin::_InterlockedIncrement_acq;
1475 case clang::AArch64::BI_InterlockedIncrement16_rel:
1476 case clang::AArch64::BI_InterlockedIncrement_rel:
1477 case clang::AArch64::BI_InterlockedIncrement64_rel:
1478 return MSVCIntrin::_InterlockedIncrement_rel;
1479 case clang::AArch64::BI_InterlockedIncrement16_nf:
1480 case clang::AArch64::BI_InterlockedIncrement_nf:
1481 case clang::AArch64::BI_InterlockedIncrement64_nf:
1482 return MSVCIntrin::_InterlockedIncrement_nf;
1483 case clang::AArch64::BI_InterlockedDecrement16_acq:
1484 case clang::AArch64::BI_InterlockedDecrement_acq:
1485 case clang::AArch64::BI_InterlockedDecrement64_acq:
1486 return MSVCIntrin::_InterlockedDecrement_acq;
1487 case clang::AArch64::BI_InterlockedDecrement16_rel:
1488 case clang::AArch64::BI_InterlockedDecrement_rel:
1489 case clang::AArch64::BI_InterlockedDecrement64_rel:
1490 return MSVCIntrin::_InterlockedDecrement_rel;
1491 case clang::AArch64::BI_InterlockedDecrement16_nf:
1492 case clang::AArch64::BI_InterlockedDecrement_nf:
1493 case clang::AArch64::BI_InterlockedDecrement64_nf:
1494 return MSVCIntrin::_InterlockedDecrement_nf;
1495 }
1496 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1496)
;
1497}
1498
1499static std::optional<CodeGenFunction::MSVCIntrin>
1500translateX86ToMsvcIntrin(unsigned BuiltinID) {
1501 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1502 switch (BuiltinID) {
1503 default:
1504 return std::nullopt;
1505 case clang::X86::BI_BitScanForward:
1506 case clang::X86::BI_BitScanForward64:
1507 return MSVCIntrin::_BitScanForward;
1508 case clang::X86::BI_BitScanReverse:
1509 case clang::X86::BI_BitScanReverse64:
1510 return MSVCIntrin::_BitScanReverse;
1511 case clang::X86::BI_InterlockedAnd64:
1512 return MSVCIntrin::_InterlockedAnd;
1513 case clang::X86::BI_InterlockedCompareExchange128:
1514 return MSVCIntrin::_InterlockedCompareExchange128;
1515 case clang::X86::BI_InterlockedExchange64:
1516 return MSVCIntrin::_InterlockedExchange;
1517 case clang::X86::BI_InterlockedExchangeAdd64:
1518 return MSVCIntrin::_InterlockedExchangeAdd;
1519 case clang::X86::BI_InterlockedExchangeSub64:
1520 return MSVCIntrin::_InterlockedExchangeSub;
1521 case clang::X86::BI_InterlockedOr64:
1522 return MSVCIntrin::_InterlockedOr;
1523 case clang::X86::BI_InterlockedXor64:
1524 return MSVCIntrin::_InterlockedXor;
1525 case clang::X86::BI_InterlockedDecrement64:
1526 return MSVCIntrin::_InterlockedDecrement;
1527 case clang::X86::BI_InterlockedIncrement64:
1528 return MSVCIntrin::_InterlockedIncrement;
1529 }
1530 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1530)
;
1531}
1532
1533// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1534Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1535 const CallExpr *E) {
1536 switch (BuiltinID) {
1537 case MSVCIntrin::_BitScanForward:
1538 case MSVCIntrin::_BitScanReverse: {
1539 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1540 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1541
1542 llvm::Type *ArgType = ArgValue->getType();
1543 llvm::Type *IndexType = IndexAddress.getElementType();
1544 llvm::Type *ResultType = ConvertType(E->getType());
1545
1546 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1547 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1548 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1549
1550 BasicBlock *Begin = Builder.GetInsertBlock();
1551 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1552 Builder.SetInsertPoint(End);
1553 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1554
1555 Builder.SetInsertPoint(Begin);
1556 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1557 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1558 Builder.CreateCondBr(IsZero, End, NotZero);
1559 Result->addIncoming(ResZero, Begin);
1560
1561 Builder.SetInsertPoint(NotZero);
1562
1563 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1564 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1565 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1566 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1567 Builder.CreateStore(ZeroCount, IndexAddress, false);
1568 } else {
1569 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1570 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1571
1572 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1573 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1574 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1575 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1576 Builder.CreateStore(Index, IndexAddress, false);
1577 }
1578 Builder.CreateBr(End);
1579 Result->addIncoming(ResOne, NotZero);
1580
1581 Builder.SetInsertPoint(End);
1582 return Result;
1583 }
1584 case MSVCIntrin::_InterlockedAnd:
1585 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1586 case MSVCIntrin::_InterlockedExchange:
1587 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1588 case MSVCIntrin::_InterlockedExchangeAdd:
1589 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1590 case MSVCIntrin::_InterlockedExchangeSub:
1591 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1592 case MSVCIntrin::_InterlockedOr:
1593 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1594 case MSVCIntrin::_InterlockedXor:
1595 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1596 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1597 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1598 AtomicOrdering::Acquire);
1599 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1600 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1601 AtomicOrdering::Release);
1602 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1603 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1604 AtomicOrdering::Monotonic);
1605 case MSVCIntrin::_InterlockedExchange_acq:
1606 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1607 AtomicOrdering::Acquire);
1608 case MSVCIntrin::_InterlockedExchange_rel:
1609 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1610 AtomicOrdering::Release);
1611 case MSVCIntrin::_InterlockedExchange_nf:
1612 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1613 AtomicOrdering::Monotonic);
1614 case MSVCIntrin::_InterlockedCompareExchange_acq:
1615 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1616 case MSVCIntrin::_InterlockedCompareExchange_rel:
1617 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1618 case MSVCIntrin::_InterlockedCompareExchange_nf:
1619 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1620 case MSVCIntrin::_InterlockedCompareExchange128:
1621 return EmitAtomicCmpXchg128ForMSIntrin(
1622 *this, E, AtomicOrdering::SequentiallyConsistent);
1623 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1624 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1625 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1626 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1627 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1628 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1629 case MSVCIntrin::_InterlockedOr_acq:
1630 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1631 AtomicOrdering::Acquire);
1632 case MSVCIntrin::_InterlockedOr_rel:
1633 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1634 AtomicOrdering::Release);
1635 case MSVCIntrin::_InterlockedOr_nf:
1636 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1637 AtomicOrdering::Monotonic);
1638 case MSVCIntrin::_InterlockedXor_acq:
1639 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1640 AtomicOrdering::Acquire);
1641 case MSVCIntrin::_InterlockedXor_rel:
1642 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1643 AtomicOrdering::Release);
1644 case MSVCIntrin::_InterlockedXor_nf:
1645 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1646 AtomicOrdering::Monotonic);
1647 case MSVCIntrin::_InterlockedAnd_acq:
1648 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1649 AtomicOrdering::Acquire);
1650 case MSVCIntrin::_InterlockedAnd_rel:
1651 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1652 AtomicOrdering::Release);
1653 case MSVCIntrin::_InterlockedAnd_nf:
1654 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1655 AtomicOrdering::Monotonic);
1656 case MSVCIntrin::_InterlockedIncrement_acq:
1657 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1658 case MSVCIntrin::_InterlockedIncrement_rel:
1659 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1660 case MSVCIntrin::_InterlockedIncrement_nf:
1661 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1662 case MSVCIntrin::_InterlockedDecrement_acq:
1663 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1664 case MSVCIntrin::_InterlockedDecrement_rel:
1665 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1666 case MSVCIntrin::_InterlockedDecrement_nf:
1667 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1668
1669 case MSVCIntrin::_InterlockedDecrement:
1670 return EmitAtomicDecrementValue(*this, E);
1671 case MSVCIntrin::_InterlockedIncrement:
1672 return EmitAtomicIncrementValue(*this, E);
1673
1674 case MSVCIntrin::__fastfail: {
1675 // Request immediate process termination from the kernel. The instruction
1676 // sequences to do this are documented on MSDN:
1677 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1678 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1679 StringRef Asm, Constraints;
1680 switch (ISA) {
1681 default:
1682 ErrorUnsupported(E, "__fastfail call for this architecture");
1683 break;
1684 case llvm::Triple::x86:
1685 case llvm::Triple::x86_64:
1686 Asm = "int $$0x29";
1687 Constraints = "{cx}";
1688 break;
1689 case llvm::Triple::thumb:
1690 Asm = "udf #251";
1691 Constraints = "{r0}";
1692 break;
1693 case llvm::Triple::aarch64:
1694 Asm = "brk #0xF003";
1695 Constraints = "{w0}";
1696 }
1697 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1698 llvm::InlineAsm *IA =
1699 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1700 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1701 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1702 llvm::Attribute::NoReturn);
1703 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1704 CI->setAttributes(NoReturnAttr);
1705 return CI;
1706 }
1707 }
1708 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1708)
;
1709}
1710
1711namespace {
1712// ARC cleanup for __builtin_os_log_format
1713struct CallObjCArcUse final : EHScopeStack::Cleanup {
1714 CallObjCArcUse(llvm::Value *object) : object(object) {}
1715 llvm::Value *object;
1716
1717 void Emit(CodeGenFunction &CGF, Flags flags) override {
1718 CGF.EmitARCIntrinsicUse(object);
1719 }
1720};
1721}
1722
1723Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1724 BuiltinCheckKind Kind) {
1725 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1726, __extension__ __PRETTY_FUNCTION__
))
1726 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1726, __extension__ __PRETTY_FUNCTION__
))
;
1727
1728 Value *ArgValue = EmitScalarExpr(E);
1729 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1730 return ArgValue;
1731
1732 SanitizerScope SanScope(this);
1733 Value *Cond = Builder.CreateICmpNE(
1734 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1735 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1736 SanitizerHandler::InvalidBuiltin,
1737 {EmitCheckSourceLocation(E->getExprLoc()),
1738 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1739 std::nullopt);
1740 return ArgValue;
1741}
1742
1743/// Get the argument type for arguments to os_log_helper.
1744static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1745 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1746 return C.getCanonicalType(UnsignedTy);
1747}
1748
1749llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1750 const analyze_os_log::OSLogBufferLayout &Layout,
1751 CharUnits BufferAlignment) {
1752 ASTContext &Ctx = getContext();
1753
1754 llvm::SmallString<64> Name;
1755 {
1756 raw_svector_ostream OS(Name);
1757 OS << "__os_log_helper";
1758 OS << "_" << BufferAlignment.getQuantity();
1759 OS << "_" << int(Layout.getSummaryByte());
1760 OS << "_" << int(Layout.getNumArgsByte());
1761 for (const auto &Item : Layout.Items)
1762 OS << "_" << int(Item.getSizeByte()) << "_"
1763 << int(Item.getDescriptorByte());
1764 }
1765
1766 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1767 return F;
1768
1769 llvm::SmallVector<QualType, 4> ArgTys;
1770 FunctionArgList Args;
1771 Args.push_back(ImplicitParamDecl::Create(
1772 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1773 ImplicitParamDecl::Other));
1774 ArgTys.emplace_back(Ctx.VoidPtrTy);
1775
1776 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1777 char Size = Layout.Items[I].getSizeByte();
1778 if (!Size)
1779 continue;
1780
1781 QualType ArgTy = getOSLogArgType(Ctx, Size);
1782 Args.push_back(ImplicitParamDecl::Create(
1783 Ctx, nullptr, SourceLocation(),
1784 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1785 ImplicitParamDecl::Other));
1786 ArgTys.emplace_back(ArgTy);
1787 }
1788
1789 QualType ReturnTy = Ctx.VoidTy;
1790
1791 // The helper function has linkonce_odr linkage to enable the linker to merge
1792 // identical functions. To ensure the merging always happens, 'noinline' is
1793 // attached to the function when compiling with -Oz.
1794 const CGFunctionInfo &FI =
1795 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1796 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1797 llvm::Function *Fn = llvm::Function::Create(
1798 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1799 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1800 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1801 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1802 Fn->setDoesNotThrow();
1803
1804 // Attach 'noinline' at -Oz.
1805 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1806 Fn->addFnAttr(llvm::Attribute::NoInline);
1807
1808 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1809 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1810
1811 // Create a scope with an artificial location for the body of this function.
1812 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1813
1814 CharUnits Offset;
1815 Address BufAddr =
1816 Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1817 BufferAlignment);
1818 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1819 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1820 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1821 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1822
1823 unsigned I = 1;
1824 for (const auto &Item : Layout.Items) {
1825 Builder.CreateStore(
1826 Builder.getInt8(Item.getDescriptorByte()),
1827 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1828 Builder.CreateStore(
1829 Builder.getInt8(Item.getSizeByte()),
1830 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1831
1832 CharUnits Size = Item.size();
1833 if (!Size.getQuantity())
1834 continue;
1835
1836 Address Arg = GetAddrOfLocalVar(Args[I]);
1837 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1838 Addr =
1839 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1840 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1841 Offset += Size;
1842 ++I;
1843 }
1844
1845 FinishFunction();
1846
1847 return Fn;
1848}
1849
1850RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1851 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1852, __extension__ __PRETTY_FUNCTION__
))
1852 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1852, __extension__ __PRETTY_FUNCTION__
))
;
1853 ASTContext &Ctx = getContext();
1854 analyze_os_log::OSLogBufferLayout Layout;
1855 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1856 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1857 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1858
1859 // Ignore argument 1, the format string. It is not currently used.
1860 CallArgList Args;
1861 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1862
1863 for (const auto &Item : Layout.Items) {
1864 int Size = Item.getSizeByte();
1865 if (!Size)
1866 continue;
1867
1868 llvm::Value *ArgVal;
1869
1870 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1871 uint64_t Val = 0;
1872 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1873 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1874 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1875 } else if (const Expr *TheExpr = Item.getExpr()) {
1876 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1877
1878 // If a temporary object that requires destruction after the full
1879 // expression is passed, push a lifetime-extended cleanup to extend its
1880 // lifetime to the end of the enclosing block scope.
1881 auto LifetimeExtendObject = [&](const Expr *E) {
1882 E = E->IgnoreParenCasts();
1883 // Extend lifetimes of objects returned by function calls and message
1884 // sends.
1885
1886 // FIXME: We should do this in other cases in which temporaries are
1887 // created including arguments of non-ARC types (e.g., C++
1888 // temporaries).
1889 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1890 return true;
1891 return false;
1892 };
1893
1894 if (TheExpr->getType()->isObjCRetainableType() &&
1895 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1896 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1897, __extension__ __PRETTY_FUNCTION__
))
1897 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1897, __extension__ __PRETTY_FUNCTION__
))
;
1898 if (!isa<Constant>(ArgVal)) {
1899 CleanupKind Cleanup = getARCCleanupKind();
1900 QualType Ty = TheExpr->getType();
1901 Address Alloca = Address::invalid();
1902 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1903 ArgVal = EmitARCRetain(Ty, ArgVal);
1904 Builder.CreateStore(ArgVal, Addr);
1905 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1906 CodeGenFunction::destroyARCStrongPrecise,
1907 Cleanup & EHCleanup);
1908
1909 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1910 // argument has to be alive.
1911 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1912 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1913 }
1914 }
1915 } else {
1916 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1917 }
1918
1919 unsigned ArgValSize =
1920 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1921 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1922 ArgValSize);
1923 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1924 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1925 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1926 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1927 Args.add(RValue::get(ArgVal), ArgTy);
1928 }
1929
1930 const CGFunctionInfo &FI =
1931 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1932 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1933 Layout, BufAddr.getAlignment());
1934 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1935 return RValue::get(BufAddr.getPointer());
1936}
1937
1938static bool isSpecialUnsignedMultiplySignedResult(
1939 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1940 WidthAndSignedness ResultInfo) {
1941 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1942 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1943 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1944}
1945
1946static RValue EmitCheckedUnsignedMultiplySignedResult(
1947 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1948 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1949 const clang::Expr *ResultArg, QualType ResultQTy,
1950 WidthAndSignedness ResultInfo) {
1951 assert(isSpecialUnsignedMultiplySignedResult((static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1953, __extension__ __PRETTY_FUNCTION__
))
1952 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1953, __extension__ __PRETTY_FUNCTION__
))
1953 "Cannot specialize this multiply")(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1953, __extension__ __PRETTY_FUNCTION__
))
;
1954
1955 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1956 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1957
1958 llvm::Value *HasOverflow;
1959 llvm::Value *Result = EmitOverflowIntrinsic(
1960 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1961
1962 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1963 // however, since the original builtin had a signed result, we need to report
1964 // an overflow when the result is greater than INT_MAX.
1965 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1966 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1967
1968 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1969 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1970
1971 bool isVolatile =
1972 ResultArg->getType()->getPointeeType().isVolatileQualified();
1973 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1974 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1975 isVolatile);
1976 return RValue::get(HasOverflow);
1977}
1978
1979/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1980static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1981 WidthAndSignedness Op1Info,
1982 WidthAndSignedness Op2Info,
1983 WidthAndSignedness ResultInfo) {
1984 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1985 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1986 Op1Info.Signed != Op2Info.Signed;
1987}
1988
1989/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1990/// the generic checked-binop irgen.
1991static RValue
1992EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1993 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1994 WidthAndSignedness Op2Info,
1995 const clang::Expr *ResultArg, QualType ResultQTy,
1996 WidthAndSignedness ResultInfo) {
1997 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1999, __extension__ __PRETTY_FUNCTION__
))
1998 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1999, __extension__ __PRETTY_FUNCTION__
))
1999 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1999, __extension__ __PRETTY_FUNCTION__
))
;
2000
2001 // Emit the signed and unsigned operands.
2002 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2003 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2004 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2005 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2006 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2007 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2008
2009 // One of the operands may be smaller than the other. If so, [s|z]ext it.
2010 if (SignedOpWidth < UnsignedOpWidth)
2011 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2012 if (UnsignedOpWidth < SignedOpWidth)
2013 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2014
2015 llvm::Type *OpTy = Signed->getType();
2016 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2017 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2018 llvm::Type *ResTy = ResultPtr.getElementType();
2019 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2020
2021 // Take the absolute value of the signed operand.
2022 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2023 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2024 llvm::Value *AbsSigned =
2025 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2026
2027 // Perform a checked unsigned multiplication.
2028 llvm::Value *UnsignedOverflow;
2029 llvm::Value *UnsignedResult =
2030 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2031 Unsigned, UnsignedOverflow);
2032
2033 llvm::Value *Overflow, *Result;
2034 if (ResultInfo.Signed) {
2035 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2036 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2037 auto IntMax =
2038 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2039 llvm::Value *MaxResult =
2040 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2041 CGF.Builder.CreateZExt(IsNegative, OpTy));
2042 llvm::Value *SignedOverflow =
2043 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2044 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2045
2046 // Prepare the signed result (possibly by negating it).
2047 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2048 llvm::Value *SignedResult =
2049 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2050 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2051 } else {
2052 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2053 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2054 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2055 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2056 if (ResultInfo.Width < OpWidth) {
2057 auto IntMax =
2058 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2059 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2060 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2061 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2062 }
2063
2064 // Negate the product if it would be negative in infinite precision.
2065 Result = CGF.Builder.CreateSelect(
2066 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2067
2068 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2069 }
2070 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2070, __extension__ __PRETTY_FUNCTION__
))
;
2071
2072 bool isVolatile =
2073 ResultArg->getType()->getPointeeType().isVolatileQualified();
2074 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2075 isVolatile);
2076 return RValue::get(Overflow);
2077}
2078
2079static bool
2080TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2081 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2082 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2083 Ty = Ctx.getBaseElementType(Arr);
2084
2085 const auto *Record = Ty->getAsCXXRecordDecl();
2086 if (!Record)
2087 return false;
2088
2089 // We've already checked this type, or are in the process of checking it.
2090 if (!Seen.insert(Record).second)
2091 return false;
2092
2093 assert(Record->hasDefinition() &&(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2094, __extension__ __PRETTY_FUNCTION__
))
2094 "Incomplete types should already be diagnosed")(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2094, __extension__ __PRETTY_FUNCTION__
))
;
2095
2096 if (Record->isDynamicClass())
2097 return true;
2098
2099 for (FieldDecl *F : Record->fields()) {
2100 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2101 return true;
2102 }
2103 return false;
2104}
2105
2106/// Determine if the specified type requires laundering by checking if it is a
2107/// dynamic class type or contains a subobject which is a dynamic class type.
2108static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2109 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2110 return false;
2111 llvm::SmallPtrSet<const Decl *, 16> Seen;
2112 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2113}
2114
2115RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2116 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2117 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2118
2119 // The builtin's shift arg may have a different type than the source arg and
2120 // result, but the LLVM intrinsic uses the same type for all values.
2121 llvm::Type *Ty = Src->getType();
2122 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2123
2124 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2125 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2126 Function *F = CGM.getIntrinsic(IID, Ty);
2127 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2128}
2129
2130// Map math builtins for long-double to f128 version.
2131static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2132 switch (BuiltinID) {
2133#define MUTATE_LDBL(func) \
2134 case Builtin::BI__builtin_##func##l: \
2135 return Builtin::BI__builtin_##func##f128;
2136 MUTATE_LDBL(sqrt)
2137 MUTATE_LDBL(cbrt)
2138 MUTATE_LDBL(fabs)
2139 MUTATE_LDBL(log)
2140 MUTATE_LDBL(log2)
2141 MUTATE_LDBL(log10)
2142 MUTATE_LDBL(log1p)
2143 MUTATE_LDBL(logb)
2144 MUTATE_LDBL(exp)
2145 MUTATE_LDBL(exp2)
2146 MUTATE_LDBL(expm1)
2147 MUTATE_LDBL(fdim)
2148 MUTATE_LDBL(hypot)
2149 MUTATE_LDBL(ilogb)
2150 MUTATE_LDBL(pow)
2151 MUTATE_LDBL(fmin)
2152 MUTATE_LDBL(fmax)
2153 MUTATE_LDBL(ceil)
2154 MUTATE_LDBL(trunc)
2155 MUTATE_LDBL(rint)
2156 MUTATE_LDBL(nearbyint)
2157 MUTATE_LDBL(round)
2158 MUTATE_LDBL(floor)
2159 MUTATE_LDBL(lround)
2160 MUTATE_LDBL(llround)
2161 MUTATE_LDBL(lrint)
2162 MUTATE_LDBL(llrint)
2163 MUTATE_LDBL(fmod)
2164 MUTATE_LDBL(modf)
2165 MUTATE_LDBL(nan)
2166 MUTATE_LDBL(nans)
2167 MUTATE_LDBL(inf)
2168 MUTATE_LDBL(fma)
2169 MUTATE_LDBL(sin)
2170 MUTATE_LDBL(cos)
2171 MUTATE_LDBL(tan)
2172 MUTATE_LDBL(sinh)
2173 MUTATE_LDBL(cosh)
2174 MUTATE_LDBL(tanh)
2175 MUTATE_LDBL(asin)
2176 MUTATE_LDBL(acos)
2177 MUTATE_LDBL(atan)
2178 MUTATE_LDBL(asinh)
2179 MUTATE_LDBL(acosh)
2180 MUTATE_LDBL(atanh)
2181 MUTATE_LDBL(atan2)
2182 MUTATE_LDBL(erf)
2183 MUTATE_LDBL(erfc)
2184 MUTATE_LDBL(ldexp)
2185 MUTATE_LDBL(frexp)
2186 MUTATE_LDBL(huge_val)
2187 MUTATE_LDBL(copysign)
2188 MUTATE_LDBL(nextafter)
2189 MUTATE_LDBL(nexttoward)
2190 MUTATE_LDBL(remainder)
2191 MUTATE_LDBL(remquo)
2192 MUTATE_LDBL(scalbln)
2193 MUTATE_LDBL(scalbn)
2194 MUTATE_LDBL(tgamma)
2195 MUTATE_LDBL(lgamma)
2196#undef MUTATE_LDBL
2197 default:
2198 return BuiltinID;
2199 }
2200}
2201
2202RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2203 const CallExpr *E,
2204 ReturnValueSlot ReturnValue) {
2205 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2206 // See if we can constant fold this builtin. If so, don't emit it at all.
2207 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2208 Expr::EvalResult Result;
2209 if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2210 !Result.hasSideEffects()) {
2211 if (Result.Val.isInt())
2212 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2213 Result.Val.getInt()));
2214 if (Result.Val.isFloat())
2215 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2216 Result.Val.getFloat()));
2217 }
2218
2219 // If current long-double semantics is IEEE 128-bit, replace math builtins
2220 // of long-double with f128 equivalent.
2221 // TODO: This mutation should also be applied to other targets other than PPC,
2222 // after backend supports IEEE 128-bit style libcalls.
2223 if (getTarget().getTriple().isPPC64() &&
2224 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2225 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2226
2227 // If the builtin has been declared explicitly with an assembler label,
2228 // disable the specialized emitting below. Ideally we should communicate the
2229 // rename in IR, or at least avoid generating the intrinsic calls that are
2230 // likely to get lowered to the renamed library functions.
2231 const unsigned BuiltinIDIfNoAsmLabel =
2232 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2233
2234 // There are LLVM math intrinsics/instructions corresponding to math library
2235 // functions except the LLVM op will never set errno while the math library
2236 // might. Also, math builtins have the same semantics as their math library
2237 // twins. Thus, we can transform math library and builtin calls to their
2238 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2239 // In case FP exceptions are enabled, the experimental versions of the
2240 // intrinsics model those.
2241 bool ConstWithoutErrnoAndExceptions =
2242 getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2243 bool ConstWithoutExceptions =
2244 getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2245 if (FD->hasAttr<ConstAttr>() ||
2246 ((ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
2247 (!ConstWithoutErrnoAndExceptions || (!getLangOpts().MathErrno)))) {
2248 switch (BuiltinIDIfNoAsmLabel) {
2249 case Builtin::BIceil:
2250 case Builtin::BIceilf:
2251 case Builtin::BIceill:
2252 case Builtin::BI__builtin_ceil:
2253 case Builtin::BI__builtin_ceilf:
2254 case Builtin::BI__builtin_ceilf16:
2255 case Builtin::BI__builtin_ceill:
2256 case Builtin::BI__builtin_ceilf128:
2257 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2258 Intrinsic::ceil,
2259 Intrinsic::experimental_constrained_ceil));
2260
2261 case Builtin::BIcopysign:
2262 case Builtin::BIcopysignf:
2263 case Builtin::BIcopysignl:
2264 case Builtin::BI__builtin_copysign:
2265 case Builtin::BI__builtin_copysignf:
2266 case Builtin::BI__builtin_copysignf16:
2267 case Builtin::BI__builtin_copysignl:
2268 case Builtin::BI__builtin_copysignf128:
2269 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2270
2271 case Builtin::BIcos:
2272 case Builtin::BIcosf:
2273 case Builtin::BIcosl:
2274 case Builtin::BI__builtin_cos:
2275 case Builtin::BI__builtin_cosf:
2276 case Builtin::BI__builtin_cosf16:
2277 case Builtin::BI__builtin_cosl:
2278 case Builtin::BI__builtin_cosf128:
2279 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2280 Intrinsic::cos,
2281 Intrinsic::experimental_constrained_cos));
2282
2283 case Builtin::BIexp:
2284 case Builtin::BIexpf:
2285 case Builtin::BIexpl:
2286 case Builtin::BI__builtin_exp:
2287 case Builtin::BI__builtin_expf:
2288 case Builtin::BI__builtin_expf16:
2289 case Builtin::BI__builtin_expl:
2290 case Builtin::BI__builtin_expf128:
2291 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2292 Intrinsic::exp,
2293 Intrinsic::experimental_constrained_exp));
2294
2295 case Builtin::BIexp2:
2296 case Builtin::BIexp2f:
2297 case Builtin::BIexp2l:
2298 case Builtin::BI__builtin_exp2:
2299 case Builtin::BI__builtin_exp2f:
2300 case Builtin::BI__builtin_exp2f16:
2301 case Builtin::BI__builtin_exp2l:
2302 case Builtin::BI__builtin_exp2f128:
2303 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2304 Intrinsic::exp2,
2305 Intrinsic::experimental_constrained_exp2));
2306
2307 case Builtin::BIfabs:
2308 case Builtin::BIfabsf:
2309 case Builtin::BIfabsl:
2310 case Builtin::BI__builtin_fabs:
2311 case Builtin::BI__builtin_fabsf:
2312 case Builtin::BI__builtin_fabsf16:
2313 case Builtin::BI__builtin_fabsl:
2314 case Builtin::BI__builtin_fabsf128:
2315 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2316
2317 case Builtin::BIfloor:
2318 case Builtin::BIfloorf:
2319 case Builtin::BIfloorl:
2320 case Builtin::BI__builtin_floor:
2321 case Builtin::BI__builtin_floorf:
2322 case Builtin::BI__builtin_floorf16:
2323 case Builtin::BI__builtin_floorl:
2324 case Builtin::BI__builtin_floorf128:
2325 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2326 Intrinsic::floor,
2327 Intrinsic::experimental_constrained_floor));
2328
2329 case Builtin::BIfma:
2330 case Builtin::BIfmaf:
2331 case Builtin::BIfmal:
2332 case Builtin::BI__builtin_fma:
2333 case Builtin::BI__builtin_fmaf:
2334 case Builtin::BI__builtin_fmaf16:
2335 case Builtin::BI__builtin_fmal:
2336 case Builtin::BI__builtin_fmaf128:
2337 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2338 Intrinsic::fma,
2339 Intrinsic::experimental_constrained_fma));
2340
2341 case Builtin::BIfmax:
2342 case Builtin::BIfmaxf:
2343 case Builtin::BIfmaxl:
2344 case Builtin::BI__builtin_fmax:
2345 case Builtin::BI__builtin_fmaxf:
2346 case Builtin::BI__builtin_fmaxf16:
2347 case Builtin::BI__builtin_fmaxl:
2348 case Builtin::BI__builtin_fmaxf128:
2349 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2350 Intrinsic::maxnum,
2351 Intrinsic::experimental_constrained_maxnum));
2352
2353 case Builtin::BIfmin:
2354 case Builtin::BIfminf:
2355 case Builtin::BIfminl:
2356 case Builtin::BI__builtin_fmin:
2357 case Builtin::BI__builtin_fminf:
2358 case Builtin::BI__builtin_fminf16:
2359 case Builtin::BI__builtin_fminl:
2360 case Builtin::BI__builtin_fminf128:
2361 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2362 Intrinsic::minnum,
2363 Intrinsic::experimental_constrained_minnum));
2364
2365 // fmod() is a special-case. It maps to the frem instruction rather than an
2366 // LLVM intrinsic.
2367 case Builtin::BIfmod:
2368 case Builtin::BIfmodf:
2369 case Builtin::BIfmodl:
2370 case Builtin::BI__builtin_fmod:
2371 case Builtin::BI__builtin_fmodf:
2372 case Builtin::BI__builtin_fmodf16:
2373 case Builtin::BI__builtin_fmodl:
2374 case Builtin::BI__builtin_fmodf128: {
2375 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2376 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2377 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2378 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2379 }
2380
2381 case Builtin::BIlog:
2382 case Builtin::BIlogf:
2383 case Builtin::BIlogl:
2384 case Builtin::BI__builtin_log:
2385 case Builtin::BI__builtin_logf:
2386 case Builtin::BI__builtin_logf16:
2387 case Builtin::BI__builtin_logl:
2388 case Builtin::BI__builtin_logf128:
2389 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2390 Intrinsic::log,
2391 Intrinsic::experimental_constrained_log));
2392
2393 case Builtin::BIlog10:
2394 case Builtin::BIlog10f:
2395 case Builtin::BIlog10l:
2396 case Builtin::BI__builtin_log10:
2397 case Builtin::BI__builtin_log10f:
2398 case Builtin::BI__builtin_log10f16:
2399 case Builtin::BI__builtin_log10l:
2400 case Builtin::BI__builtin_log10f128:
2401 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2402 Intrinsic::log10,
2403 Intrinsic::experimental_constrained_log10));
2404
2405 case Builtin::BIlog2:
2406 case Builtin::BIlog2f:
2407 case Builtin::BIlog2l:
2408 case Builtin::BI__builtin_log2:
2409 case Builtin::BI__builtin_log2f:
2410 case Builtin::BI__builtin_log2f16:
2411 case Builtin::BI__builtin_log2l:
2412 case Builtin::BI__builtin_log2f128:
2413 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2414 Intrinsic::log2,
2415 Intrinsic::experimental_constrained_log2));
2416
2417 case Builtin::BInearbyint:
2418 case Builtin::BInearbyintf:
2419 case Builtin::BInearbyintl:
2420 case Builtin::BI__builtin_nearbyint:
2421 case Builtin::BI__builtin_nearbyintf:
2422 case Builtin::BI__builtin_nearbyintl:
2423 case Builtin::BI__builtin_nearbyintf128:
2424 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2425 Intrinsic::nearbyint,
2426 Intrinsic::experimental_constrained_nearbyint));
2427
2428 case Builtin::BIpow:
2429 case Builtin::BIpowf:
2430 case Builtin::BIpowl:
2431 case Builtin::BI__builtin_pow:
2432 case Builtin::BI__builtin_powf:
2433 case Builtin::BI__builtin_powf16:
2434 case Builtin::BI__builtin_powl:
2435 case Builtin::BI__builtin_powf128:
2436 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2437 Intrinsic::pow,
2438 Intrinsic::experimental_constrained_pow));
2439
2440 case Builtin::BIrint:
2441 case Builtin::BIrintf:
2442 case Builtin::BIrintl:
2443 case Builtin::BI__builtin_rint:
2444 case Builtin::BI__builtin_rintf:
2445 case Builtin::BI__builtin_rintf16:
2446 case Builtin::BI__builtin_rintl:
2447 case Builtin::BI__builtin_rintf128:
2448 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2449 Intrinsic::rint,
2450 Intrinsic::experimental_constrained_rint));
2451
2452 case Builtin::BIround:
2453 case Builtin::BIroundf:
2454 case Builtin::BIroundl:
2455 case Builtin::BI__builtin_round:
2456 case Builtin::BI__builtin_roundf:
2457 case Builtin::BI__builtin_roundf16:
2458 case Builtin::BI__builtin_roundl:
2459 case Builtin::BI__builtin_roundf128:
2460 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2461 Intrinsic::round,
2462 Intrinsic::experimental_constrained_round));
2463
2464 case Builtin::BIroundeven:
2465 case Builtin::BIroundevenf:
2466 case Builtin::BIroundevenl:
2467 case Builtin::BI__builtin_roundeven:
2468 case Builtin::BI__builtin_roundevenf:
2469 case Builtin::BI__builtin_roundevenf16:
2470 case Builtin::BI__builtin_roundevenl:
2471 case Builtin::BI__builtin_roundevenf128:
2472 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2473 Intrinsic::roundeven,
2474 Intrinsic::experimental_constrained_roundeven));
2475
2476 case Builtin::BIsin:
2477 case Builtin::BIsinf:
2478 case Builtin::BIsinl:
2479 case Builtin::BI__builtin_sin:
2480 case Builtin::BI__builtin_sinf:
2481 case Builtin::BI__builtin_sinf16:
2482 case Builtin::BI__builtin_sinl:
2483 case Builtin::BI__builtin_sinf128:
2484 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2485 Intrinsic::sin,
2486 Intrinsic::experimental_constrained_sin));
2487
2488 case Builtin::BIsqrt:
2489 case Builtin::BIsqrtf:
2490 case Builtin::BIsqrtl:
2491 case Builtin::BI__builtin_sqrt:
2492 case Builtin::BI__builtin_sqrtf:
2493 case Builtin::BI__builtin_sqrtf16:
2494 case Builtin::BI__builtin_sqrtl:
2495 case Builtin::BI__builtin_sqrtf128:
2496 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2497 Intrinsic::sqrt,
2498 Intrinsic::experimental_constrained_sqrt));
2499
2500 case Builtin::BItrunc:
2501 case Builtin::BItruncf:
2502 case Builtin::BItruncl:
2503 case Builtin::BI__builtin_trunc:
2504 case Builtin::BI__builtin_truncf:
2505 case Builtin::BI__builtin_truncf16:
2506 case Builtin::BI__builtin_truncl:
2507 case Builtin::BI__builtin_truncf128:
2508 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2509 Intrinsic::trunc,
2510 Intrinsic::experimental_constrained_trunc));
2511
2512 case Builtin::BIlround:
2513 case Builtin::BIlroundf:
2514 case Builtin::BIlroundl:
2515 case Builtin::BI__builtin_lround:
2516 case Builtin::BI__builtin_lroundf:
2517 case Builtin::BI__builtin_lroundl:
2518 case Builtin::BI__builtin_lroundf128:
2519 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2520 *this, E, Intrinsic::lround,
2521 Intrinsic::experimental_constrained_lround));
2522
2523 case Builtin::BIllround:
2524 case Builtin::BIllroundf:
2525 case Builtin::BIllroundl:
2526 case Builtin::BI__builtin_llround:
2527 case Builtin::BI__builtin_llroundf:
2528 case Builtin::BI__builtin_llroundl:
2529 case Builtin::BI__builtin_llroundf128:
2530 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2531 *this, E, Intrinsic::llround,
2532 Intrinsic::experimental_constrained_llround));
2533
2534 case Builtin::BIlrint:
2535 case Builtin::BIlrintf:
2536 case Builtin::BIlrintl:
2537 case Builtin::BI__builtin_lrint:
2538 case Builtin::BI__builtin_lrintf:
2539 case Builtin::BI__builtin_lrintl:
2540 case Builtin::BI__builtin_lrintf128:
2541 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2542 *this, E, Intrinsic::lrint,
2543 Intrinsic::experimental_constrained_lrint));
2544
2545 case Builtin::BIllrint:
2546 case Builtin::BIllrintf:
2547 case Builtin::BIllrintl:
2548 case Builtin::BI__builtin_llrint:
2549 case Builtin::BI__builtin_llrintf:
2550 case Builtin::BI__builtin_llrintl:
2551 case Builtin::BI__builtin_llrintf128:
2552 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2553 *this, E, Intrinsic::llrint,
2554 Intrinsic::experimental_constrained_llrint));
2555
2556 default:
2557 break;
2558 }
2559 }
2560
2561 switch (BuiltinIDIfNoAsmLabel) {
2562 default: break;
2563 case Builtin::BI__builtin___CFStringMakeConstantString:
2564 case Builtin::BI__builtin___NSStringMakeConstantString:
2565 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2566 case Builtin::BI__builtin_stdarg_start:
2567 case Builtin::BI__builtin_va_start:
2568 case Builtin::BI__va_start:
2569 case Builtin::BI__builtin_va_end:
2570 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2571 ? EmitScalarExpr(E->getArg(0))
2572 : EmitVAListRef(E->getArg(0)).getPointer(),
2573 BuiltinID != Builtin::BI__builtin_va_end);
2574 return RValue::get(nullptr);
2575 case Builtin::BI__builtin_va_copy: {
2576 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2577 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2578
2579 llvm::Type *Type = Int8PtrTy;
2580
2581 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2582 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2583 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr});
2584 return RValue::get(nullptr);
2585 }
2586 case Builtin::BI__builtin_abs:
2587 case Builtin::BI__builtin_labs:
2588 case Builtin::BI__builtin_llabs: {
2589 // X < 0 ? -X : X
2590 // The negation has 'nsw' because abs of INT_MIN is undefined.
2591 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2592 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2593 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2594 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2595 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2596 return RValue::get(Result);
2597 }
2598 case Builtin::BI__builtin_complex: {
2599 Value *Real = EmitScalarExpr(E->getArg(0));
2600 Value *Imag = EmitScalarExpr(E->getArg(1));
2601 return RValue::getComplex({Real, Imag});
2602 }
2603 case Builtin::BI__builtin_conj:
2604 case Builtin::BI__builtin_conjf:
2605 case Builtin::BI__builtin_conjl:
2606 case Builtin::BIconj:
2607 case Builtin::BIconjf:
2608 case Builtin::BIconjl: {
2609 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2610 Value *Real = ComplexVal.first;
2611 Value *Imag = ComplexVal.second;
2612 Imag = Builder.CreateFNeg(Imag, "neg");
2613 return RValue::getComplex(std::make_pair(Real, Imag));
2614 }
2615 case Builtin::BI__builtin_creal:
2616 case Builtin::BI__builtin_crealf:
2617 case Builtin::BI__builtin_creall:
2618 case Builtin::BIcreal:
2619 case Builtin::BIcrealf:
2620 case Builtin::BIcreall: {
2621 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2622 return RValue::get(ComplexVal.first);
2623 }
2624
2625 case Builtin::BI__builtin_preserve_access_index: {
2626 // Only enabled preserved access index region when debuginfo
2627 // is available as debuginfo is needed to preserve user-level
2628 // access pattern.
2629 if (!getDebugInfo()) {
2630 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2631 return RValue::get(EmitScalarExpr(E->getArg(0)));
2632 }
2633
2634 // Nested builtin_preserve_access_index() not supported
2635 if (IsInPreservedAIRegion) {
2636 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2637 return RValue::get(EmitScalarExpr(E->getArg(0)));
2638 }
2639
2640 IsInPreservedAIRegion = true;
2641 Value *Res = EmitScalarExpr(E->getArg(0));
2642 IsInPreservedAIRegion = false;
2643 return RValue::get(Res);
2644 }
2645
2646 case Builtin::BI__builtin_cimag:
2647 case Builtin::BI__builtin_cimagf:
2648 case Builtin::BI__builtin_cimagl:
2649 case Builtin::BIcimag:
2650 case Builtin::BIcimagf:
2651 case Builtin::BIcimagl: {
2652 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2653 return RValue::get(ComplexVal.second);
2654 }
2655
2656 case Builtin::BI__builtin_clrsb:
2657 case Builtin::BI__builtin_clrsbl:
2658 case Builtin::BI__builtin_clrsbll: {
2659 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2660 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2661
2662 llvm::Type *ArgType = ArgValue->getType();
2663 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2664
2665 llvm::Type *ResultType = ConvertType(E->getType());
2666 Value *Zero = llvm::Constant::getNullValue(ArgType);
2667 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2668 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2669 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2670 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2671 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2672 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2673 "cast");
2674 return RValue::get(Result);
2675 }
2676 case Builtin::BI__builtin_ctzs:
2677 case Builtin::BI__builtin_ctz:
2678 case Builtin::BI__builtin_ctzl:
2679 case Builtin::BI__builtin_ctzll: {
2680 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2681
2682 llvm::Type *ArgType = ArgValue->getType();
2683 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2684
2685 llvm::Type *ResultType = ConvertType(E->getType());
2686 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2687 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2688 if (Result->getType() != ResultType)
2689 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2690 "cast");
2691 return RValue::get(Result);
2692 }
2693 case Builtin::BI__builtin_clzs:
2694 case Builtin::BI__builtin_clz:
2695 case Builtin::BI__builtin_clzl:
2696 case Builtin::BI__builtin_clzll: {
2697 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2698
2699 llvm::Type *ArgType = ArgValue->getType();
2700 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2701
2702 llvm::Type *ResultType = ConvertType(E->getType());
2703 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2704 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2705 if (Result->getType() != ResultType)
2706 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2707 "cast");
2708 return RValue::get(Result);
2709 }
2710 case Builtin::BI__builtin_ffs:
2711 case Builtin::BI__builtin_ffsl:
2712 case Builtin::BI__builtin_ffsll: {
2713 // ffs(x) -> x ? cttz(x) + 1 : 0
2714 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2715
2716 llvm::Type *ArgType = ArgValue->getType();
2717 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2718
2719 llvm::Type *ResultType = ConvertType(E->getType());
2720 Value *Tmp =
2721 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2722 llvm::ConstantInt::get(ArgType, 1));
2723 Value *Zero = llvm::Constant::getNullValue(ArgType);
2724 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2725 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2726 if (Result->getType() != ResultType)
2727 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2728 "cast");
2729 return RValue::get(Result);
2730 }
2731 case Builtin::BI__builtin_parity:
2732 case Builtin::BI__builtin_parityl:
2733 case Builtin::BI__builtin_parityll: {
2734 // parity(x) -> ctpop(x) & 1
2735 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2736
2737 llvm::Type *ArgType = ArgValue->getType();
2738 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2739
2740 llvm::Type *ResultType = ConvertType(E->getType());
2741 Value *Tmp = Builder.CreateCall(F, ArgValue);
2742 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2743 if (Result->getType() != ResultType)
2744 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2745 "cast");
2746 return RValue::get(Result);
2747 }
2748 case Builtin::BI__lzcnt16:
2749 case Builtin::BI__lzcnt:
2750 case Builtin::BI__lzcnt64: {
2751 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2752
2753 llvm::Type *ArgType = ArgValue->getType();
2754 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2755
2756 llvm::Type *ResultType = ConvertType(E->getType());
2757 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2758 if (Result->getType() != ResultType)
2759 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2760 "cast");
2761 return RValue::get(Result);
2762 }
2763 case Builtin::BI__popcnt16:
2764 case Builtin::BI__popcnt:
2765 case Builtin::BI__popcnt64:
2766 case Builtin::BI__builtin_popcount:
2767 case Builtin::BI__builtin_popcountl:
2768 case Builtin::BI__builtin_popcountll: {
2769 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2770
2771 llvm::Type *ArgType = ArgValue->getType();
2772 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2773
2774 llvm::Type *ResultType = ConvertType(E->getType());
2775 Value *Result = Builder.CreateCall(F, ArgValue);
2776 if (Result->getType() != ResultType)
2777 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2778 "cast");
2779 return RValue::get(Result);
2780 }
2781 case Builtin::BI__builtin_unpredictable: {
2782 // Always return the argument of __builtin_unpredictable. LLVM does not
2783 // handle this builtin. Metadata for this builtin should be added directly
2784 // to instructions such as branches or switches that use it.
2785 return RValue::get(EmitScalarExpr(E->getArg(0)));
2786 }
2787 case Builtin::BI__builtin_expect: {
2788 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2789 llvm::Type *ArgType = ArgValue->getType();
2790
2791 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2792 // Don't generate llvm.expect on -O0 as the backend won't use it for
2793 // anything.
2794 // Note, we still IRGen ExpectedValue because it could have side-effects.
2795 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2796 return RValue::get(ArgValue);
2797
2798 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2799 Value *Result =
2800 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2801 return RValue::get(Result);
2802 }
2803 case Builtin::BI__builtin_expect_with_probability: {
2804 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2805 llvm::Type *ArgType = ArgValue->getType();
2806
2807 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2808 llvm::APFloat Probability(0.0);
2809 const Expr *ProbArg = E->getArg(2);
2810 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2811 assert(EvalSucceed && "probability should be able to evaluate as float")(static_cast <bool> (EvalSucceed && "probability should be able to evaluate as float"
) ? void (0) : __assert_fail ("EvalSucceed && \"probability should be able to evaluate as float\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2811, __extension__ __PRETTY_FUNCTION__
))
;
2812 (void)EvalSucceed;
2813 bool LoseInfo = false;
2814 Probability.convert(llvm::APFloat::IEEEdouble(),
2815 llvm::RoundingMode::Dynamic, &LoseInfo);
2816 llvm::Type *Ty = ConvertType(ProbArg->getType());
2817 Constant *Confidence = ConstantFP::get(Ty, Probability);
2818 // Don't generate llvm.expect.with.probability on -O0 as the backend
2819 // won't use it for anything.
2820 // Note, we still IRGen ExpectedValue because it could have side-effects.
2821 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2822 return RValue::get(ArgValue);
2823
2824 Function *FnExpect =
2825 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2826 Value *Result = Builder.CreateCall(
2827 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2828 return RValue::get(Result);
2829 }
2830 case Builtin::BI__builtin_assume_aligned: {
2831 const Expr *Ptr = E->getArg(0);
2832 Value *PtrValue = EmitScalarExpr(Ptr);
2833 if (PtrValue->getType() != VoidPtrTy)
2834 PtrValue = EmitCastToVoidPtr(PtrValue);
2835 Value *OffsetValue =
2836 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2837
2838 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2839 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2840 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2841 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2842 llvm::Value::MaximumAlignment);
2843
2844 emitAlignmentAssumption(PtrValue, Ptr,
2845 /*The expr loc is sufficient.*/ SourceLocation(),
2846 AlignmentCI, OffsetValue);
2847 return RValue::get(PtrValue);
2848 }
2849 case Builtin::BI__assume:
2850 case Builtin::BI__builtin_assume: {
2851 if (E->getArg(0)->HasSideEffects(getContext()))
2852 return RValue::get(nullptr);
2853
2854 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2855 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2856 Builder.CreateCall(FnAssume, ArgValue);
2857 return RValue::get(nullptr);
2858 }
2859 case Builtin::BI__arithmetic_fence: {
2860 // Create the builtin call if FastMath is selected, and the target
2861 // supports the builtin, otherwise just return the argument.
2862 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2863 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2864 bool isArithmeticFenceEnabled =
2865 FMF.allowReassoc() &&
2866 getContext().getTargetInfo().checkArithmeticFenceSupported();
2867 QualType ArgType = E->getArg(0)->getType();
2868 if (ArgType->isComplexType()) {
2869 if (isArithmeticFenceEnabled) {
2870 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2871 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2872 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2873 ConvertType(ElementType));
2874 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2875 ConvertType(ElementType));
2876 return RValue::getComplex(std::make_pair(Real, Imag));
2877 }
2878 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2879 Value *Real = ComplexVal.first;
2880 Value *Imag = ComplexVal.second;
2881 return RValue::getComplex(std::make_pair(Real, Imag));
2882 }
2883 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2884 if (isArithmeticFenceEnabled)
2885 return RValue::get(
2886 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2887 return RValue::get(ArgValue);
2888 }
2889 case Builtin::BI__builtin_bswap16:
2890 case Builtin::BI__builtin_bswap32:
2891 case Builtin::BI__builtin_bswap64:
2892 case Builtin::BI_byteswap_ushort:
2893 case Builtin::BI_byteswap_ulong:
2894 case Builtin::BI_byteswap_uint64: {
2895 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2896 }
2897 case Builtin::BI__builtin_bitreverse8:
2898 case Builtin::BI__builtin_bitreverse16:
2899 case Builtin::BI__builtin_bitreverse32:
2900 case Builtin::BI__builtin_bitreverse64: {
2901 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2902 }
2903 case Builtin::BI__builtin_rotateleft8:
2904 case Builtin::BI__builtin_rotateleft16:
2905 case Builtin::BI__builtin_rotateleft32:
2906 case Builtin::BI__builtin_rotateleft64:
2907 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2908 case Builtin::BI_rotl16:
2909 case Builtin::BI_rotl:
2910 case Builtin::BI_lrotl:
2911 case Builtin::BI_rotl64:
2912 return emitRotate(E, false);
2913
2914 case Builtin::BI__builtin_rotateright8:
2915 case Builtin::BI__builtin_rotateright16:
2916 case Builtin::BI__builtin_rotateright32:
2917 case Builtin::BI__builtin_rotateright64:
2918 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2919 case Builtin::BI_rotr16:
2920 case Builtin::BI_rotr:
2921 case Builtin::BI_lrotr:
2922 case Builtin::BI_rotr64:
2923 return emitRotate(E, true);
2924
2925 case Builtin::BI__builtin_constant_p: {
2926 llvm::Type *ResultType = ConvertType(E->getType());
2927
2928 const Expr *Arg = E->getArg(0);
2929 QualType ArgType = Arg->getType();
2930 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2931 // and likely a mistake.
2932 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2933 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2934 // Per the GCC documentation, only numeric constants are recognized after
2935 // inlining.
2936 return RValue::get(ConstantInt::get(ResultType, 0));
2937
2938 if (Arg->HasSideEffects(getContext()))
2939 // The argument is unevaluated, so be conservative if it might have
2940 // side-effects.
2941 return RValue::get(ConstantInt::get(ResultType, 0));
2942
2943 Value *ArgValue = EmitScalarExpr(Arg);
2944 if (ArgType->isObjCObjectPointerType()) {
2945 // Convert Objective-C objects to id because we cannot distinguish between
2946 // LLVM types for Obj-C classes as they are opaque.
2947 ArgType = CGM.getContext().getObjCIdType();
2948 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2949 }
2950 Function *F =
2951 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2952 Value *Result = Builder.CreateCall(F, ArgValue);
2953 if (Result->getType() != ResultType)
2954 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2955 return RValue::get(Result);
2956 }
2957 case Builtin::BI__builtin_dynamic_object_size:
2958 case Builtin::BI__builtin_object_size: {
2959 unsigned Type =
2960 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2961 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2962
2963 // We pass this builtin onto the optimizer so that it can figure out the
2964 // object size in more complex cases.
2965 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2966 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2967 /*EmittedE=*/nullptr, IsDynamic));
2968 }
2969 case Builtin::BI__builtin_prefetch: {
2970 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2971 // FIXME: Technically these constants should of type 'int', yes?
2972 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2973 llvm::ConstantInt::get(Int32Ty, 0);
2974 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2975 llvm::ConstantInt::get(Int32Ty, 3);
2976 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2977 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2978 Builder.CreateCall(F, {Address, RW, Locality, Data});
2979 return RValue::get(nullptr);
2980 }
2981 case Builtin::BI__builtin_readcyclecounter: {
2982 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2983 return RValue::get(Builder.CreateCall(F));
2984 }
2985 case Builtin::BI__builtin___clear_cache: {
2986 Value *Begin = EmitScalarExpr(E->getArg(0));
2987 Value *End = EmitScalarExpr(E->getArg(1));
2988 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2989 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2990 }
2991 case Builtin::BI__builtin_trap:
2992 EmitTrapCall(Intrinsic::trap);
2993 return RValue::get(nullptr);
2994 case Builtin::BI__debugbreak:
2995 EmitTrapCall(Intrinsic::debugtrap);
2996 return RValue::get(nullptr);
2997 case Builtin::BI__builtin_unreachable: {
2998 EmitUnreachable(E->getExprLoc());
2999
3000 // We do need to preserve an insertion point.
3001 EmitBlock(createBasicBlock("unreachable.cont"));
3002
3003 return RValue::get(nullptr);
3004 }
3005
3006 case Builtin::BI__builtin_powi:
3007 case Builtin::BI__builtin_powif:
3008 case Builtin::BI__builtin_powil: {
3009 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3010 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3011
3012 if (Builder.getIsFPConstrained()) {
3013 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3014 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3015 Src0->getType());
3016 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3017 }
3018
3019 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3020 { Src0->getType(), Src1->getType() });
3021 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3022 }
3023 case Builtin::BI__builtin_isgreater:
3024 case Builtin::BI__builtin_isgreaterequal:
3025 case Builtin::BI__builtin_isless:
3026 case Builtin::BI__builtin_islessequal:
3027 case Builtin::BI__builtin_islessgreater:
3028 case Builtin::BI__builtin_isunordered: {
3029 // Ordered comparisons: we know the arguments to these are matching scalar
3030 // floating point values.
3031 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3032 Value *LHS = EmitScalarExpr(E->getArg(0));
3033 Value *RHS = EmitScalarExpr(E->getArg(1));
3034
3035 switch (BuiltinID) {
3036 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3036)
;
3037 case Builtin::BI__builtin_isgreater:
3038 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3039 break;
3040 case Builtin::BI__builtin_isgreaterequal:
3041 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3042 break;
3043 case Builtin::BI__builtin_isless:
3044 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3045 break;
3046 case Builtin::BI__builtin_islessequal:
3047 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3048 break;
3049 case Builtin::BI__builtin_islessgreater:
3050 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3051 break;
3052 case Builtin::BI__builtin_isunordered:
3053 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3054 break;
3055 }
3056 // ZExt bool to int type.
3057 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3058 }
3059 case Builtin::BI__builtin_isnan: {
3060 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3061 Value *V = EmitScalarExpr(E->getArg(0));
3062 llvm::Type *Ty = V->getType();
3063 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3064 if (!Builder.getIsFPConstrained() ||
3065 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3066 !Ty->isIEEE()) {
3067 V = Builder.CreateFCmpUNO(V, V, "cmp");
3068 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3069 }
3070
3071 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3072 return RValue::get(Result);
3073
3074 // NaN has all exp bits set and a non zero significand. Therefore:
3075 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3076 unsigned bitsize = Ty->getScalarSizeInBits();
3077 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3078 Value *IntV = Builder.CreateBitCast(V, IntTy);
3079 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3080 Value *AbsV =
3081 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3082 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3083 Value *Sub =
3084 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3085 // V = sign bit (Sub) <=> V = (Sub < 0)
3086 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3087 if (bitsize > 32)
3088 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3089 return RValue::get(V);
3090 }
3091
3092 case Builtin::BI__builtin_nondeterministic_value: {
3093 llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3094
3095 Value *Result = PoisonValue::get(Ty);
3096 Result = Builder.CreateFreeze(Result);
3097
3098 return RValue::get(Result);
3099 }
3100
3101 case Builtin::BI__builtin_elementwise_abs: {
3102 Value *Result;
3103 QualType QT = E->getArg(0)->getType();
3104
3105 if (auto *VecTy = QT->getAs<VectorType>())
3106 QT = VecTy->getElementType();
3107 if (QT->isIntegerType())
3108 Result = Builder.CreateBinaryIntrinsic(
3109 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3110 Builder.getFalse(), nullptr, "elt.abs");
3111 else
3112 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3113
3114 return RValue::get(Result);
3115 }
3116
3117 case Builtin::BI__builtin_elementwise_ceil:
3118 return RValue::get(
3119 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3120 case Builtin::BI__builtin_elementwise_exp:
3121 return RValue::get(
3122 emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp, "elt.exp"));
3123 case Builtin::BI__builtin_elementwise_exp2:
3124 return RValue::get(
3125 emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3126 case Builtin::BI__builtin_elementwise_log:
3127 return RValue::get(
3128 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log, "elt.log"));
3129 case Builtin::BI__builtin_elementwise_log2:
3130 return RValue::get(
3131 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log2, "elt.log2"));
3132 case Builtin::BI__builtin_elementwise_log10:
3133 return RValue::get(
3134 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log10, "elt.log10"));
3135 case Builtin::BI__builtin_elementwise_cos:
3136 return RValue::get(
3137 emitUnaryBuiltin(*this, E, llvm::Intrinsic::cos, "elt.cos"));
3138 case Builtin::BI__builtin_elementwise_floor:
3139 return RValue::get(
3140 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3141 case Builtin::BI__builtin_elementwise_roundeven:
3142 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3143 "elt.roundeven"));
3144 case Builtin::BI__builtin_elementwise_sin:
3145 return RValue::get(
3146 emitUnaryBuiltin(*this, E, llvm::Intrinsic::sin, "elt.sin"));
3147
3148 case Builtin::BI__builtin_elementwise_trunc:
3149 return RValue::get(
3150 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3151 case Builtin::BI__builtin_elementwise_canonicalize:
3152 return RValue::get(
3153 emitUnaryBuiltin(*this, E, llvm::Intrinsic::canonicalize, "elt.trunc"));
3154 case Builtin::BI__builtin_elementwise_copysign:
3155 return RValue::get(emitBinaryBuiltin(*this, E, llvm::Intrinsic::copysign));
3156 case Builtin::BI__builtin_elementwise_fma:
3157 return RValue::get(emitTernaryBuiltin(*this, E, llvm::Intrinsic::fma));
3158 case Builtin::BI__builtin_elementwise_add_sat:
3159 case Builtin::BI__builtin_elementwise_sub_sat: {
3160 Value *Op0 = EmitScalarExpr(E->getArg(0));
3161 Value *Op1 = EmitScalarExpr(E->getArg(1));
3162 Value *Result;
3163 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected")(static_cast <bool> (Op0->getType()->isIntOrIntVectorTy
() && "integer type expected") ? void (0) : __assert_fail
("Op0->getType()->isIntOrIntVectorTy() && \"integer type expected\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3163, __extension__ __PRETTY_FUNCTION__
))
;
3164 QualType Ty = E->getArg(0)->getType();
3165 if (auto *VecTy = Ty->getAs<VectorType>())
3166 Ty = VecTy->getElementType();
3167 bool IsSigned = Ty->isSignedIntegerType();
3168 unsigned Opc;
3169 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3170 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3171 else
3172 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3173 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3174 return RValue::get(Result);
3175 }
3176
3177 case Builtin::BI__builtin_elementwise_max: {
3178 Value *Op0 = EmitScalarExpr(E->getArg(0));
3179 Value *Op1 = EmitScalarExpr(E->getArg(1));
3180 Value *Result;
3181 if (Op0->getType()->isIntOrIntVectorTy()) {
3182 QualType Ty = E->getArg(0)->getType();
3183 if (auto *VecTy = Ty->getAs<VectorType>())
3184 Ty = VecTy->getElementType();
3185 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3186 ? llvm::Intrinsic::smax
3187 : llvm::Intrinsic::umax,
3188 Op0, Op1, nullptr, "elt.max");
3189 } else
3190 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3191 return RValue::get(Result);
3192 }
3193 case Builtin::BI__builtin_elementwise_min: {
3194 Value *Op0 = EmitScalarExpr(E->getArg(0));
3195 Value *Op1 = EmitScalarExpr(E->getArg(1));
3196 Value *Result;
3197 if (Op0->getType()->isIntOrIntVectorTy()) {
3198 QualType Ty = E->getArg(0)->getType();
3199 if (auto *VecTy = Ty->getAs<VectorType>())
3200 Ty = VecTy->getElementType();
3201 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3202 ? llvm::Intrinsic::smin
3203 : llvm::Intrinsic::umin,
3204 Op0, Op1, nullptr, "elt.min");
3205 } else
3206 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3207 return RValue::get(Result);
3208 }
3209
3210 case Builtin::BI__builtin_reduce_max: {
3211 auto GetIntrinsicID = [](QualType QT) {
3212 if (auto *VecTy = QT->getAs<VectorType>())
3213 QT = VecTy->getElementType();
3214 if (QT->isSignedIntegerType())
3215 return llvm::Intrinsic::vector_reduce_smax;
3216 if (QT->isUnsignedIntegerType())
3217 return llvm::Intrinsic::vector_reduce_umax;
3218 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3218, __extension__ __PRETTY_FUNCTION__
))
;
3219 return llvm::Intrinsic::vector_reduce_fmax;
3220 };
3221 return RValue::get(emitUnaryBuiltin(
3222 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3223 }
3224
3225 case Builtin::BI__builtin_reduce_min: {
3226 auto GetIntrinsicID = [](QualType QT) {
3227 if (auto *VecTy = QT->getAs<VectorType>())
3228 QT = VecTy->getElementType();
3229 if (QT->isSignedIntegerType())
3230 return llvm::Intrinsic::vector_reduce_smin;
3231 if (QT->isUnsignedIntegerType())
3232 return llvm::Intrinsic::vector_reduce_umin;
3233 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3233, __extension__ __PRETTY_FUNCTION__
))
;
3234 return llvm::Intrinsic::vector_reduce_fmin;
3235 };
3236
3237 return RValue::get(emitUnaryBuiltin(
3238 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3239 }
3240
3241 case Builtin::BI__builtin_reduce_add:
3242 return RValue::get(emitUnaryBuiltin(
3243 *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3244 case Builtin::BI__builtin_reduce_mul:
3245 return RValue::get(emitUnaryBuiltin(
3246 *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3247 case Builtin::BI__builtin_reduce_xor:
3248 return RValue::get(emitUnaryBuiltin(
3249 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3250 case Builtin::BI__builtin_reduce_or:
3251 return RValue::get(emitUnaryBuiltin(
3252 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3253 case Builtin::BI__builtin_reduce_and:
3254 return RValue::get(emitUnaryBuiltin(
3255 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3256
3257 case Builtin::BI__builtin_matrix_transpose: {
3258 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3259 Value *MatValue = EmitScalarExpr(E->getArg(0));
3260 MatrixBuilder MB(Builder);
3261 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3262 MatrixTy->getNumColumns());
3263 return RValue::get(Result);
3264 }
3265
3266 case Builtin::BI__builtin_matrix_column_major_load: {
3267 MatrixBuilder MB(Builder);
3268 // Emit everything that isn't dependent on the first parameter type
3269 Value *Stride = EmitScalarExpr(E->getArg(3));
3270 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3271 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3272 assert(PtrTy && "arg0 must be of pointer type")(static_cast <bool> (PtrTy && "arg0 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg0 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3272, __extension__ __PRETTY_FUNCTION__
))
;
3273 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3274
3275 Address Src = EmitPointerWithAlignment(E->getArg(0));
3276 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3277 E->getArg(0)->getExprLoc(), FD, 0);
3278 Value *Result = MB.CreateColumnMajorLoad(
3279 Src.getElementType(), Src.getPointer(),
3280 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3281 ResultTy->getNumRows(), ResultTy->getNumColumns(),
3282 "matrix");
3283 return RValue::get(Result);
3284 }
3285
3286 case Builtin::BI__builtin_matrix_column_major_store: {
3287 MatrixBuilder MB(Builder);
3288 Value *Matrix = EmitScalarExpr(E->getArg(0));
3289 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3290 Value *Stride = EmitScalarExpr(E->getArg(2));
3291
3292 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3293 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3294 assert(PtrTy && "arg1 must be of pointer type")(static_cast <bool> (PtrTy && "arg1 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg1 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3294, __extension__ __PRETTY_FUNCTION__
))
;
3295 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3296
3297 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3298 E->getArg(1)->getExprLoc(), FD, 0);
3299 Value *Result = MB.CreateColumnMajorStore(
3300 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3301 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3302 return RValue::get(Result);
3303 }
3304
3305 case Builtin::BIfinite:
3306 case Builtin::BI__finite:
3307 case Builtin::BIfinitef:
3308 case Builtin::BI__finitef:
3309 case Builtin::BIfinitel:
3310 case Builtin::BI__finitel:
3311 case Builtin::BI__builtin_isinf:
3312 case Builtin::BI__builtin_isfinite: {
3313 // isinf(x) --> fabs(x) == infinity
3314 // isfinite(x) --> fabs(x) != infinity
3315 // x != NaN via the ordered compare in either case.
3316 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3317 Value *V = EmitScalarExpr(E->getArg(0));
3318 llvm::Type *Ty = V->getType();
3319 if (!Builder.getIsFPConstrained() ||
3320 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3321 !Ty->isIEEE()) {
3322 Value *Fabs = EmitFAbs(*this, V);
3323 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3324 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3325 ? CmpInst::FCMP_OEQ
3326 : CmpInst::FCMP_ONE;
3327 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3328 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3329 }
3330
3331 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3332 return RValue::get(Result);
3333
3334 // Inf values have all exp bits set and a zero significand. Therefore:
3335 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3336 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3337 unsigned bitsize = Ty->getScalarSizeInBits();
3338 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3339 Value *IntV = Builder.CreateBitCast(V, IntTy);
3340 Value *Shl1 = Builder.CreateShl(IntV, 1);
3341 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3342 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3343 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3344 if (BuiltinID == Builtin::BI__builtin_isinf)
3345 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3346 else
3347 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3348 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3349 }
3350
3351 case Builtin::BI__builtin_isinf_sign: {
3352 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3353 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3354 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3355 Value *Arg = EmitScalarExpr(E->getArg(0));
3356 Value *AbsArg = EmitFAbs(*this, Arg);
3357 Value *IsInf = Builder.CreateFCmpOEQ(
3358 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3359 Value *IsNeg = EmitSignBit(*this, Arg);
3360
3361 llvm::Type *IntTy = ConvertType(E->getType());
3362 Value *Zero = Constant::getNullValue(IntTy);
3363 Value *One = ConstantInt::get(IntTy, 1);
3364 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3365 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3366 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3367 return RValue::get(Result);
3368 }
3369
3370 case Builtin::BI__builtin_isnormal: {
3371 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3372 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3373 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3374 Value *V = EmitScalarExpr(E->getArg(0));
3375 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3376
3377 Value *Abs = EmitFAbs(*this, V);
3378 Value *IsLessThanInf =
3379 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3380 APFloat Smallest = APFloat::getSmallestNormalized(
3381 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3382 Value *IsNormal =
3383 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3384 "isnormal");
3385 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3386 V = Builder.CreateAnd(V, IsNormal, "and");
3387 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3388 }
3389
3390 case Builtin::BI__builtin_flt_rounds: {
3391 Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
3392
3393 llvm::Type *ResultType = ConvertType(E->getType());
3394 Value *Result = Builder.CreateCall(F);
3395 if (Result->getType() != ResultType)
3396 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3397 "cast");
3398 return RValue::get(Result);
3399 }
3400
3401 case Builtin::BI__builtin_set_flt_rounds: {
3402 Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
3403
3404 Value *V = EmitScalarExpr(E->getArg(0));
3405 Builder.CreateCall(F, V);
3406 return RValue::get(nullptr);
3407 }
3408
3409 case Builtin::BI__builtin_fpclassify: {
3410 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3411 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3412 Value *V = EmitScalarExpr(E->getArg(5));
3413 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3414
3415 // Create Result
3416 BasicBlock *Begin = Builder.GetInsertBlock();
3417 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3418 Builder.SetInsertPoint(End);
3419 PHINode *Result =
3420 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3421 "fpclassify_result");
3422
3423 // if (V==0) return FP_ZERO
3424 Builder.SetInsertPoint(Begin);
3425 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3426 "iszero");
3427 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3428 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3429 Builder.CreateCondBr(IsZero, End, NotZero);
3430 Result->addIncoming(ZeroLiteral, Begin);
3431
3432 // if (V != V) return FP_NAN
3433 Builder.SetInsertPoint(NotZero);
3434 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3435 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3436 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3437 Builder.CreateCondBr(IsNan, End, NotNan);
3438 Result->addIncoming(NanLiteral, NotZero);
3439
3440 // if (fabs(V) == infinity) return FP_INFINITY
3441 Builder.SetInsertPoint(NotNan);
3442 Value *VAbs = EmitFAbs(*this, V);
3443 Value *IsInf =
3444 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3445 "isinf");
3446 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3447 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3448 Builder.CreateCondBr(IsInf, End, NotInf);
3449 Result->addIncoming(InfLiteral, NotNan);
3450
3451 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3452 Builder.SetInsertPoint(NotInf);
3453 APFloat Smallest = APFloat::getSmallestNormalized(
3454 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3455 Value *IsNormal =
3456 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3457 "isnormal");
3458 Value *NormalResult =
3459 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3460 EmitScalarExpr(E->getArg(3)));
3461 Builder.CreateBr(End);
3462 Result->addIncoming(NormalResult, NotInf);
3463
3464 // return Result
3465 Builder.SetInsertPoint(End);
3466 return RValue::get(Result);
3467 }
3468
3469 case Builtin::BIalloca:
3470 case Builtin::BI_alloca:
3471 case Builtin::BI__builtin_alloca_uninitialized:
3472 case Builtin::BI__builtin_alloca: {
3473 Value *Size = EmitScalarExpr(E->getArg(0));
3474 const TargetInfo &TI = getContext().getTargetInfo();
3475 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3476 const Align SuitableAlignmentInBytes =
3477 CGM.getContext()
3478 .toCharUnitsFromBits(TI.getSuitableAlign())
3479 .getAsAlign();
3480 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3481 AI->setAlignment(SuitableAlignmentInBytes);
3482 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3483 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3484 return RValue::get(AI);
3485 }
3486
3487 case Builtin::BI__builtin_alloca_with_align_uninitialized:
3488 case Builtin::BI__builtin_alloca_with_align: {
3489 Value *Size = EmitScalarExpr(E->getArg(0));
3490 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3491 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3492 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3493 const Align AlignmentInBytes =
3494 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3495 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3496 AI->setAlignment(AlignmentInBytes);
3497 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3498 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3499 return RValue::get(AI);
3500 }
3501
3502 case Builtin::BIbzero:
3503 case Builtin::BI__builtin_bzero: {
3504 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3505 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3506 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3507 E->getArg(0)->getExprLoc(), FD, 0);
3508 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3509 return RValue::get(nullptr);
3510 }
3511 case Builtin::BImemcpy:
3512 case Builtin::BI__builtin_memcpy:
3513 case Builtin::BImempcpy:
3514 case Builtin::BI__builtin_mempcpy: {
3515 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3516 Address Src = EmitPointerWithAlignment(E->getArg(1));
3517 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3518 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3519 E->getArg(0)->getExprLoc(), FD, 0);
3520 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3521 E->getArg(1)->getExprLoc(), FD, 1);
3522 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3523 if (BuiltinID == Builtin::BImempcpy ||
3524 BuiltinID == Builtin::BI__builtin_mempcpy)
3525 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3526 Dest.getPointer(), SizeVal));
3527 else
3528 return RValue::get(Dest.getPointer());
3529 }
3530
3531 case Builtin::BI__builtin_memcpy_inline: {
3532 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3533 Address Src = EmitPointerWithAlignment(E->getArg(1));
3534 uint64_t Size =
3535 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3536 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3537 E->getArg(0)->getExprLoc(), FD, 0);
3538 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3539 E->getArg(1)->getExprLoc(), FD, 1);
3540 Builder.CreateMemCpyInline(Dest, Src, Size);
3541 return RValue::get(nullptr);
3542 }
3543
3544 case Builtin::BI__builtin_char_memchr:
3545 BuiltinID = Builtin::BI__builtin_memchr;
3546 break;
3547
3548 case Builtin::BI__builtin___memcpy_chk: {
3549 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3550 Expr::EvalResult SizeResult, DstSizeResult;
3551 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3552 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3553 break;
3554 llvm::APSInt Size = SizeResult.Val.getInt();
3555 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3556 if (Size.ugt(DstSize))
3557 break;
3558 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3559 Address Src = EmitPointerWithAlignment(E->getArg(1));
3560 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3561 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3562 return RValue::get(Dest.getPointer());
3563 }
3564
3565 case Builtin::BI__builtin_objc_memmove_collectable: {
3566 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3567 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3568 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3569 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3570 DestAddr, SrcAddr, SizeVal);
3571 return RValue::get(DestAddr.getPointer());
3572 }
3573
3574 case Builtin::BI__builtin___memmove_chk: {
3575 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3576 Expr::EvalResult SizeResult, DstSizeResult;
3577 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3578 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3579 break;
3580 llvm::APSInt Size = SizeResult.Val.getInt();
3581 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3582 if (Size.ugt(DstSize))
3583 break;
3584 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3585 Address Src = EmitPointerWithAlignment(E->getArg(1));
3586 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3587 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3588 return RValue::get(Dest.getPointer());
3589 }
3590
3591 case Builtin::BImemmove:
3592 case Builtin::BI__builtin_memmove: {
3593 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3594 Address Src = EmitPointerWithAlignment(E->getArg(1));
3595 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3596 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3597 E->getArg(0)->getExprLoc(), FD, 0);
3598 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3599 E->getArg(1)->getExprLoc(), FD, 1);
3600 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3601 return RValue::get(Dest.getPointer());
3602 }
3603 case Builtin::BImemset:
3604 case Builtin::BI__builtin_memset: {
3605 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3606 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3607 Builder.getInt8Ty());
3608 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3609 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3610 E->getArg(0)->getExprLoc(), FD, 0);
3611 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3612 return RValue::get(Dest.getPointer());
3613 }
3614 case Builtin::BI__builtin_memset_inline: {
3615 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3616 Value *ByteVal =
3617 Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
3618 uint64_t Size =
3619 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3620 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3621 E->getArg(0)->getExprLoc(), FD, 0);
3622 Builder.CreateMemSetInline(Dest, ByteVal, Size);
3623 return RValue::get(nullptr);
3624 }
3625 case Builtin::BI__builtin___memset_chk: {
3626 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3627 Expr::EvalResult SizeResult, DstSizeResult;
3628 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3629 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3630 break;
3631 llvm::APSInt Size = SizeResult.Val.getInt();
3632 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3633 if (Size.ugt(DstSize))
3634 break;
3635 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3636 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3637 Builder.getInt8Ty());
3638 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3639 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3640 return RValue::get(Dest.getPointer());
3641 }
3642 case Builtin::BI__builtin_wmemchr: {
3643 // The MSVC runtime library does not provide a definition of wmemchr, so we
3644 // need an inline implementation.
3645 if (!getTarget().getTriple().isOSMSVCRT())
3646 break;
3647
3648 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3649 Value *Str = EmitScalarExpr(E->getArg(0));
3650 Value *Chr = EmitScalarExpr(E->getArg(1));
3651 Value *Size = EmitScalarExpr(E->getArg(2));
3652
3653 BasicBlock *Entry = Builder.GetInsertBlock();
3654 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3655 BasicBlock *Next = createBasicBlock("wmemchr.next");
3656 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3657 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3658 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3659
3660 EmitBlock(CmpEq);
3661 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3662 StrPhi->addIncoming(Str, Entry);
3663 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3664 SizePhi->addIncoming(Size, Entry);
3665 CharUnits WCharAlign =
3666 getContext().getTypeAlignInChars(getContext().WCharTy);
3667 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3668 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3669 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3670 Builder.CreateCondBr(StrEqChr, Exit, Next);
3671
3672 EmitBlock(Next);
3673 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3674 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3675 Value *NextSizeEq0 =
3676 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3677 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3678 StrPhi->addIncoming(NextStr, Next);
3679 SizePhi->addIncoming(NextSize, Next);
3680
3681 EmitBlock(Exit);
3682 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3683 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3684 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3685 Ret->addIncoming(FoundChr, CmpEq);
3686 return RValue::get(Ret);
3687 }
3688 case Builtin::BI__builtin_wmemcmp: {
3689 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3690 // need an inline implementation.
3691 if (!getTarget().getTriple().isOSMSVCRT())
3692 break;
3693
3694 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3695
3696 Value *Dst = EmitScalarExpr(E->getArg(0));
3697 Value *Src = EmitScalarExpr(E->getArg(1));
3698 Value *Size = EmitScalarExpr(E->getArg(2));
3699
3700 BasicBlock *Entry = Builder.GetInsertBlock();
3701 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3702 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3703 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3704 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3705 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3706 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3707
3708 EmitBlock(CmpGT);
3709 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3710 DstPhi->addIncoming(Dst, Entry);
3711 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3712 SrcPhi->addIncoming(Src, Entry);
3713 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3714 SizePhi->addIncoming(Size, Entry);
3715 CharUnits WCharAlign =
3716 getContext().getTypeAlignInChars(getContext().WCharTy);
3717 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3718 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3719 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3720 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3721
3722 EmitBlock(CmpLT);
3723 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3724 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3725
3726 EmitBlock(Next);
3727 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3728 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3729 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3730 Value *NextSizeEq0 =
3731 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3732 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3733 DstPhi->addIncoming(NextDst, Next);
3734 SrcPhi->addIncoming(NextSrc, Next);
3735 SizePhi->addIncoming(NextSize, Next);
3736
3737 EmitBlock(Exit);
3738 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3739 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3740 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3741 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3742 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3743 return RValue::get(Ret);
3744 }
3745 case Builtin::BI__builtin_dwarf_cfa: {
3746 // The offset in bytes from the first argument to the CFA.
3747 //
3748 // Why on earth is this in the frontend? Is there any reason at
3749 // all that the backend can't reasonably determine this while
3750 // lowering llvm.eh.dwarf.cfa()?
3751 //
3752 // TODO: If there's a satisfactory reason, add a target hook for
3753 // this instead of hard-coding 0, which is correct for most targets.
3754 int32_t Offset = 0;
3755
3756 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3757 return RValue::get(Builder.CreateCall(F,
3758 llvm::ConstantInt::get(Int32Ty, Offset)));
3759 }
3760 case Builtin::BI__builtin_return_address: {
3761 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3762 getContext().UnsignedIntTy);
3763 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3764 return RValue::get(Builder.CreateCall(F, Depth));
3765 }
3766 case Builtin::BI_ReturnAddress: {
3767 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3768 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3769 }
3770 case Builtin::BI__builtin_frame_address: {
3771 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3772 getContext().UnsignedIntTy);
3773 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3774 return RValue::get(Builder.CreateCall(F, Depth));
3775 }
3776 case Builtin::BI__builtin_extract_return_addr: {
3777 Value *Address = EmitScalarExpr(E->getArg(0));
3778 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3779 return RValue::get(Result);
3780 }
3781 case Builtin::BI__builtin_frob_return_addr: {
3782 Value *Address = EmitScalarExpr(E->getArg(0));
3783 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3784 return RValue::get(Result);
3785 }
3786 case Builtin::BI__builtin_dwarf_sp_column: {
3787 llvm::IntegerType *Ty
3788 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3789 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3790 if (Column == -1) {
3791 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3792 return RValue::get(llvm::UndefValue::get(Ty));
3793 }
3794 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3795 }
3796 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3797 Value *Address = EmitScalarExpr(E->getArg(0));
3798 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3799 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3800 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3801 }
3802 case Builtin::BI__builtin_eh_return: {
3803 Value *Int = EmitScalarExpr(E->getArg(0));
3804 Value *Ptr = EmitScalarExpr(E->getArg(1));
3805
3806 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3807 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3808, __extension__ __PRETTY_FUNCTION__
))
3808 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3808, __extension__ __PRETTY_FUNCTION__
))
;
3809 Function *F =
3810 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3811 : Intrinsic::eh_return_i64);
3812 Builder.CreateCall(F, {Int, Ptr});
3813 Builder.CreateUnreachable();
3814
3815 // We do need to preserve an insertion point.
3816 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3817
3818 return RValue::get(nullptr);
3819 }
3820 case Builtin::BI__builtin_unwind_init: {
3821 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3822 Builder.CreateCall(F);
3823 return RValue::get(nullptr);
3824 }
3825 case Builtin::BI__builtin_extend_pointer: {
3826 // Extends a pointer to the size of an _Unwind_Word, which is
3827 // uint64_t on all platforms. Generally this gets poked into a
3828 // register and eventually used as an address, so if the
3829 // addressing registers are wider than pointers and the platform
3830 // doesn't implicitly ignore high-order bits when doing
3831 // addressing, we need to make sure we zext / sext based on
3832 // the platform's expectations.
3833 //
3834 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3835
3836 // Cast the pointer to intptr_t.
3837 Value *Ptr = EmitScalarExpr(E->getArg(0));
3838 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3839
3840 // If that's 64 bits, we're done.
3841 if (IntPtrTy->getBitWidth() == 64)
3842 return RValue::get(Result);
3843
3844 // Otherwise, ask the codegen data what to do.
3845 if (getTargetHooks().extendPointerWithSExt())
3846 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3847 else
3848 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3849 }
3850 case Builtin::BI__builtin_setjmp: {
3851 // Buffer is a void**.
3852 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3853
3854 // Store the frame pointer to the setjmp buffer.
3855 Value *FrameAddr = Builder.CreateCall(
3856 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3857 ConstantInt::get(Int32Ty, 0));
3858 Builder.CreateStore(FrameAddr, Buf);
3859
3860 // Store the stack pointer to the setjmp buffer.
3861 Value *StackAddr =
3862 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3863 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3864 Builder.CreateStore(StackAddr, StackSaveSlot);
3865
3866 // Call LLVM's EH setjmp, which is lightweight.
3867 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3868 Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3869 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3870 }
3871 case Builtin::BI__builtin_longjmp: {
3872 Value *Buf = EmitScalarExpr(E->getArg(0));
3873 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3874
3875 // Call LLVM's EH longjmp, which is lightweight.
3876 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3877
3878 // longjmp doesn't return; mark this as unreachable.
3879 Builder.CreateUnreachable();
3880
3881 // We do need to preserve an insertion point.
3882 EmitBlock(createBasicBlock("longjmp.cont"));
3883
3884 return RValue::get(nullptr);
3885 }
3886 case Builtin::BI__builtin_launder: {
3887 const Expr *Arg = E->getArg(0);
3888 QualType ArgTy = Arg->getType()->getPointeeType();
3889 Value *Ptr = EmitScalarExpr(Arg);
3890 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3891 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3892
3893 return RValue::get(Ptr);
3894 }
3895 case Builtin::BI__sync_fetch_and_add:
3896 case Builtin::BI__sync_fetch_and_sub:
3897 case Builtin::BI__sync_fetch_and_or:
3898 case Builtin::BI__sync_fetch_and_and:
3899 case Builtin::BI__sync_fetch_and_xor:
3900 case Builtin::BI__sync_fetch_and_nand:
3901 case Builtin::BI__sync_add_and_fetch:
3902 case Builtin::BI__sync_sub_and_fetch:
3903 case Builtin::BI__sync_and_and_fetch:
3904 case Builtin::BI__sync_or_and_fetch:
3905 case Builtin::BI__sync_xor_and_fetch:
3906 case Builtin::BI__sync_nand_and_fetch:
3907 case Builtin::BI__sync_val_compare_and_swap:
3908 case Builtin::BI__sync_bool_compare_and_swap:
3909 case Builtin::BI__sync_lock_test_and_set:
3910 case Builtin::BI__sync_lock_release:
3911 case Builtin::BI__sync_swap:
3912 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3912)
;
3913 case Builtin::BI__sync_fetch_and_add_1:
3914 case Builtin::BI__sync_fetch_and_add_2:
3915 case Builtin::BI__sync_fetch_and_add_4:
3916 case Builtin::BI__sync_fetch_and_add_8:
3917 case Builtin::BI__sync_fetch_and_add_16:
3918 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3919 case Builtin::BI__sync_fetch_and_sub_1:
3920 case Builtin::BI__sync_fetch_and_sub_2:
3921 case Builtin::BI__sync_fetch_and_sub_4:
3922 case Builtin::BI__sync_fetch_and_sub_8:
3923 case Builtin::BI__sync_fetch_and_sub_16:
3924 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3925 case Builtin::BI__sync_fetch_and_or_1:
3926 case Builtin::BI__sync_fetch_and_or_2:
3927 case Builtin::BI__sync_fetch_and_or_4:
3928 case Builtin::BI__sync_fetch_and_or_8:
3929 case Builtin::BI__sync_fetch_and_or_16:
3930 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3931 case Builtin::BI__sync_fetch_and_and_1:
3932 case Builtin::BI__sync_fetch_and_and_2:
3933 case Builtin::BI__sync_fetch_and_and_4:
3934 case Builtin::BI__sync_fetch_and_and_8:
3935 case Builtin::BI__sync_fetch_and_and_16:
3936 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3937 case Builtin::BI__sync_fetch_and_xor_1:
3938 case Builtin::BI__sync_fetch_and_xor_2:
3939 case Builtin::BI__sync_fetch_and_xor_4:
3940 case Builtin::BI__sync_fetch_and_xor_8:
3941 case Builtin::BI__sync_fetch_and_xor_16:
3942 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3943 case Builtin::BI__sync_fetch_and_nand_1:
3944 case Builtin::BI__sync_fetch_and_nand_2:
3945 case Builtin::BI__sync_fetch_and_nand_4:
3946 case Builtin::BI__sync_fetch_and_nand_8:
3947 case Builtin::BI__sync_fetch_and_nand_16:
3948 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3949
3950 // Clang extensions: not overloaded yet.
3951 case Builtin::BI__sync_fetch_and_min:
3952 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3953 case Builtin::BI__sync_fetch_and_max:
3954 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3955 case Builtin::BI__sync_fetch_and_umin:
3956 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3957 case Builtin::BI__sync_fetch_and_umax:
3958 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3959
3960 case Builtin::BI__sync_add_and_fetch_1:
3961 case Builtin::BI__sync_add_and_fetch_2:
3962 case Builtin::BI__sync_add_and_fetch_4:
3963 case Builtin::BI__sync_add_and_fetch_8:
3964 case Builtin::BI__sync_add_and_fetch_16:
3965 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3966 llvm::Instruction::Add);
3967 case Builtin::BI__sync_sub_and_fetch_1:
3968 case Builtin::BI__sync_sub_and_fetch_2:
3969 case Builtin::BI__sync_sub_and_fetch_4:
3970 case Builtin::BI__sync_sub_and_fetch_8:
3971 case Builtin::BI__sync_sub_and_fetch_16:
3972 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3973 llvm::Instruction::Sub);
3974 case Builtin::BI__sync_and_and_fetch_1:
3975 case Builtin::BI__sync_and_and_fetch_2:
3976 case Builtin::BI__sync_and_and_fetch_4:
3977 case Builtin::BI__sync_and_and_fetch_8:
3978 case Builtin::BI__sync_and_and_fetch_16:
3979 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3980 llvm::Instruction::And);
3981 case Builtin::BI__sync_or_and_fetch_1:
3982 case Builtin::BI__sync_or_and_fetch_2:
3983 case Builtin::BI__sync_or_and_fetch_4:
3984 case Builtin::BI__sync_or_and_fetch_8:
3985 case Builtin::BI__sync_or_and_fetch_16:
3986 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3987 llvm::Instruction::Or);
3988 case Builtin::BI__sync_xor_and_fetch_1:
3989 case Builtin::BI__sync_xor_and_fetch_2:
3990 case Builtin::BI__sync_xor_and_fetch_4:
3991 case Builtin::BI__sync_xor_and_fetch_8:
3992 case Builtin::BI__sync_xor_and_fetch_16:
3993 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3994 llvm::Instruction::Xor);
3995 case Builtin::BI__sync_nand_and_fetch_1:
3996 case Builtin::BI__sync_nand_and_fetch_2:
3997 case Builtin::BI__sync_nand_and_fetch_4:
3998 case Builtin::BI__sync_nand_and_fetch_8:
3999 case Builtin::BI__sync_nand_and_fetch_16:
4000 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4001 llvm::Instruction::And, true);
4002
4003 case Builtin::BI__sync_val_compare_and_swap_1:
4004 case Builtin::BI__sync_val_compare_and_swap_2:
4005 case Builtin::BI__sync_val_compare_and_swap_4:
4006 case Builtin::BI__sync_val_compare_and_swap_8:
4007 case Builtin::BI__sync_val_compare_and_swap_16:
4008 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4009
4010 case Builtin::BI__sync_bool_compare_and_swap_1:
4011 case Builtin::BI__sync_bool_compare_and_swap_2:
4012 case Builtin::BI__sync_bool_compare_and_swap_4:
4013 case Builtin::BI__sync_bool_compare_and_swap_8:
4014 case Builtin::BI__sync_bool_compare_and_swap_16:
4015 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4016
4017 case Builtin::BI__sync_swap_1:
4018 case Builtin::BI__sync_swap_2:
4019 case Builtin::BI__sync_swap_4:
4020 case Builtin::BI__sync_swap_8:
4021 case Builtin::BI__sync_swap_16:
4022 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4023
4024 case Builtin::BI__sync_lock_test_and_set_1:
4025 case Builtin::BI__sync_lock_test_and_set_2:
4026 case Builtin::BI__sync_lock_test_and_set_4:
4027 case Builtin::BI__sync_lock_test_and_set_8:
4028 case Builtin::BI__sync_lock_test_and_set_16:
4029 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4030
4031 case Builtin::BI__sync_lock_release_1:
4032 case Builtin::BI__sync_lock_release_2:
4033 case Builtin::BI__sync_lock_release_4:
4034 case Builtin::BI__sync_lock_release_8:
4035 case Builtin::BI__sync_lock_release_16: {
4036 CheckAtomicAlignment(*this, E);
4037 Value *Ptr = EmitScalarExpr(E->getArg(0));
4038 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4039 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
4040 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4041 StoreSize.getQuantity() * 8);
4042 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
4043 llvm::StoreInst *Store =
4044 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
4045 StoreSize);
4046 Store->setAtomic(llvm::AtomicOrdering::Release);
4047 return RValue::get(nullptr);
4048 }
4049
4050 case Builtin::BI__sync_synchronize: {
4051 // We assume this is supposed to correspond to a C++0x-style
4052 // sequentially-consistent fence (i.e. this is only usable for
4053 // synchronization, not device I/O or anything like that). This intrinsic
4054 // is really badly designed in the sense that in theory, there isn't
4055 // any way to safely use it... but in practice, it mostly works
4056 // to use it with non-atomic loads and stores to get acquire/release
4057 // semantics.
4058 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4059 return RValue::get(nullptr);
4060 }
4061
4062 case Builtin::BI__builtin_nontemporal_load:
4063 return RValue::get(EmitNontemporalLoad(*this, E));
4064 case Builtin::BI__builtin_nontemporal_store:
4065 return RValue::get(EmitNontemporalStore(*this, E));
4066 case Builtin::BI__c11_atomic_is_lock_free:
4067 case Builtin::BI__atomic_is_lock_free: {
4068 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4069 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4070 // _Atomic(T) is always properly-aligned.
4071 const char *LibCallName = "__atomic_is_lock_free";
4072 CallArgList Args;
4073 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4074 getContext().getSizeType());
4075 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4076 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4077 getContext().VoidPtrTy);
4078 else
4079 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4080 getContext().VoidPtrTy);
4081 const CGFunctionInfo &FuncInfo =
4082 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4083 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4084 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4085 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4086 ReturnValueSlot(), Args);
4087 }
4088
4089 case Builtin::BI__atomic_test_and_set: {
4090 // Look at the argument type to determine whether this is a volatile
4091 // operation. The parameter type is always volatile.
4092 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4093 bool Volatile =
4094 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4095
4096 Value *Ptr = EmitScalarExpr(E->getArg(0));
4097 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4098 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4099 Value *NewVal = Builder.getInt8(1);
4100 Value *Order = EmitScalarExpr(E->getArg(1));
4101 if (isa<llvm::ConstantInt>(Order)) {
4102 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4103 AtomicRMWInst *Result = nullptr;
4104 switch (ord) {
4105 case 0: // memory_order_relaxed
4106 default: // invalid order
4107 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4108 llvm::AtomicOrdering::Monotonic);
4109 break;
4110 case 1: // memory_order_consume
4111 case 2: // memory_order_acquire
4112 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4113 llvm::AtomicOrdering::Acquire);
4114 break;
4115 case 3: // memory_order_release
4116 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4117 llvm::AtomicOrdering::Release);
4118 break;
4119 case 4: // memory_order_acq_rel
4120
4121 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4122 llvm::AtomicOrdering::AcquireRelease);
4123 break;
4124 case 5: // memory_order_seq_cst
4125 Result = Builder.CreateAtomicRMW(
4126 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4127 llvm::AtomicOrdering::SequentiallyConsistent);
4128 break;
4129 }
4130 Result->setVolatile(Volatile);
4131 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4132 }
4133
4134 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4135
4136 llvm::BasicBlock *BBs[5] = {
4137 createBasicBlock("monotonic", CurFn),
4138 createBasicBlock("acquire", CurFn),
4139 createBasicBlock("release", CurFn),
4140 createBasicBlock("acqrel", CurFn),
4141 createBasicBlock("seqcst", CurFn)
4142 };
4143 llvm::AtomicOrdering Orders[5] = {
4144 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4145 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4146 llvm::AtomicOrdering::SequentiallyConsistent};
4147
4148 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4149 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4150
4151 Builder.SetInsertPoint(ContBB);
4152 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4153
4154 for (unsigned i = 0; i < 5; ++i) {
4155 Builder.SetInsertPoint(BBs[i]);
4156 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4157 Ptr, NewVal, Orders[i]);
4158 RMW->setVolatile(Volatile);
4159 Result->addIncoming(RMW, BBs[i]);
4160 Builder.CreateBr(ContBB);
4161 }
4162
4163 SI->addCase(Builder.getInt32(0), BBs[0]);
4164 SI->addCase(Builder.getInt32(1), BBs[1]);
4165 SI->addCase(Builder.getInt32(2), BBs[1]);
4166 SI->addCase(Builder.getInt32(3), BBs[2]);
4167 SI->addCase(Builder.getInt32(4), BBs[3]);
4168 SI->addCase(Builder.getInt32(5), BBs[4]);
4169
4170 Builder.SetInsertPoint(ContBB);
4171 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4172 }
4173
4174 case Builtin::BI__atomic_clear: {
4175 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4176 bool Volatile =
4177 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4178
4179 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4180 Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4181 Value *NewVal = Builder.getInt8(0);
4182 Value *Order = EmitScalarExpr(E->getArg(1));
4183 if (isa<llvm::ConstantInt>(Order)) {
4184 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4185 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4186 switch (ord) {
4187 case 0: // memory_order_relaxed
4188 default: // invalid order
4189 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4190 break;
4191 case 3: // memory_order_release
4192 Store->setOrdering(llvm::AtomicOrdering::Release);
4193 break;
4194 case 5: // memory_order_seq_cst
4195 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4196 break;
4197 }
4198 return RValue::get(nullptr);
4199 }
4200
4201 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4202
4203 llvm::BasicBlock *BBs[3] = {
4204 createBasicBlock("monotonic", CurFn),
4205 createBasicBlock("release", CurFn),
4206 createBasicBlock("seqcst", CurFn)
4207 };
4208 llvm::AtomicOrdering Orders[3] = {
4209 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4210 llvm::AtomicOrdering::SequentiallyConsistent};
4211
4212 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4213 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4214
4215 for (unsigned i = 0; i < 3; ++i) {
4216 Builder.SetInsertPoint(BBs[i]);
4217 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4218 Store->setOrdering(Orders[i]);
4219 Builder.CreateBr(ContBB);
4220 }
4221
4222 SI->addCase(Builder.getInt32(0), BBs[0]);
4223 SI->addCase(Builder.getInt32(3), BBs[1]);
4224 SI->addCase(Builder.getInt32(5), BBs[2]);
4225
4226 Builder.SetInsertPoint(ContBB);
4227 return RValue::get(nullptr);
4228 }
4229
4230 case Builtin::BI__atomic_thread_fence:
4231 case Builtin::BI__atomic_signal_fence:
4232 case Builtin::BI__c11_atomic_thread_fence:
4233 case Builtin::BI__c11_atomic_signal_fence: {
4234 llvm::SyncScope::ID SSID;
4235 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4236 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4237 SSID = llvm::SyncScope::SingleThread;
4238 else
4239 SSID = llvm::SyncScope::System;
4240 Value *Order = EmitScalarExpr(E->getArg(0));
4241 if (isa<llvm::ConstantInt>(Order)) {
4242 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4243 switch (ord) {
4244 case 0: // memory_order_relaxed
4245 default: // invalid order
4246 break;
4247 case 1: // memory_order_consume
4248 case 2: // memory_order_acquire
4249 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4250 break;
4251 case 3: // memory_order_release
4252 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4253 break;
4254 case 4: // memory_order_acq_rel
4255 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4256 break;
4257 case 5: // memory_order_seq_cst
4258 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4259 break;
4260 }
4261 return RValue::get(nullptr);
4262 }
4263
4264 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4265 AcquireBB = createBasicBlock("acquire", CurFn);
4266 ReleaseBB = createBasicBlock("release", CurFn);
4267 AcqRelBB = createBasicBlock("acqrel", CurFn);
4268 SeqCstBB = createBasicBlock("seqcst", CurFn);
4269 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4270
4271 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4272 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4273
4274 Builder.SetInsertPoint(AcquireBB);
4275 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4276 Builder.CreateBr(ContBB);
4277 SI->addCase(Builder.getInt32(1), AcquireBB);
4278 SI->addCase(Builder.getInt32(2), AcquireBB);
4279
4280 Builder.SetInsertPoint(ReleaseBB);
4281 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4282 Builder.CreateBr(ContBB);
4283 SI->addCase(Builder.getInt32(3), ReleaseBB);
4284
4285 Builder.SetInsertPoint(AcqRelBB);
4286 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4287 Builder.CreateBr(ContBB);
4288 SI->addCase(Builder.getInt32(4), AcqRelBB);
4289
4290 Builder.SetInsertPoint(SeqCstBB);
4291 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4292 Builder.CreateBr(ContBB);
4293 SI->addCase(Builder.getInt32(5), SeqCstBB);
4294
4295 Builder.SetInsertPoint(ContBB);
4296 return RValue::get(nullptr);
4297 }
4298
4299 case Builtin::BI__builtin_signbit:
4300 case Builtin::BI__builtin_signbitf:
4301 case Builtin::BI__builtin_signbitl: {
4302 return RValue::get(
4303 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4304 ConvertType(E->getType())));
4305 }
4306 case Builtin::BI__warn_memset_zero_len:
4307 return RValue::getIgnored();
4308 case Builtin::BI__annotation: {
4309 // Re-encode each wide string to UTF8 and make an MDString.
4310 SmallVector<Metadata *, 1> Strings;
4311 for (const Expr *Arg : E->arguments()) {
4312 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4313 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"clang/lib/CodeGen/CGBuiltin.cpp", 4313, __extension__ __PRETTY_FUNCTION__
))
;
4314 StringRef WideBytes = Str->getBytes();
4315 std::string StrUtf8;
4316 if (!convertUTF16ToUTF8String(
4317 ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4318 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4319 continue;
4320 }
4321 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4322 }
4323
4324 // Build and MDTuple of MDStrings and emit the intrinsic call.
4325 llvm::Function *F =
4326 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4327 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4328 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4329 return RValue::getIgnored();
4330 }
4331 case Builtin::BI__builtin_annotation: {
4332 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4333 llvm::Function *F =
4334 CGM.getIntrinsic(llvm::Intrinsic::annotation,
4335 {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
4336
4337 // Get the annotation string, go through casts. Sema requires this to be a
4338 // non-wide string literal, potentially casted, so the cast<> is safe.
4339 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4340 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4341 return RValue::get(
4342 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4343 }
4344 case Builtin::BI__builtin_addcb:
4345 case Builtin::BI__builtin_addcs:
4346 case Builtin::BI__builtin_addc:
4347 case Builtin::BI__builtin_addcl:
4348 case Builtin::BI__builtin_addcll:
4349 case Builtin::BI__builtin_subcb:
4350 case Builtin::BI__builtin_subcs:
4351 case Builtin::BI__builtin_subc:
4352 case Builtin::BI__builtin_subcl:
4353 case Builtin::BI__builtin_subcll: {
4354
4355 // We translate all of these builtins from expressions of the form:
4356 // int x = ..., y = ..., carryin = ..., carryout, result;
4357 // result = __builtin_addc(x, y, carryin, &carryout);
4358 //
4359 // to LLVM IR of the form:
4360 //
4361 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4362 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4363 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4364 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4365 // i32 %carryin)
4366 // %result = extractvalue {i32, i1} %tmp2, 0
4367 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4368 // %tmp3 = or i1 %carry1, %carry2
4369 // %tmp4 = zext i1 %tmp3 to i32
4370 // store i32 %tmp4, i32* %carryout
4371
4372 // Scalarize our inputs.
4373 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4374 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4375 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4376 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4377
4378 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4379 llvm::Intrinsic::ID IntrinsicId;
4380 switch (BuiltinID) {
4381 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4381)
;
4382 case Builtin::BI__builtin_addcb:
4383 case Builtin::BI__builtin_addcs:
4384 case Builtin::BI__builtin_addc:
4385 case Builtin::BI__builtin_addcl:
4386 case Builtin::BI__builtin_addcll:
4387 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4388 break;
4389 case Builtin::BI__builtin_subcb:
4390 case Builtin::BI__builtin_subcs:
4391 case Builtin::BI__builtin_subc:
4392 case Builtin::BI__builtin_subcl:
4393 case Builtin::BI__builtin_subcll:
4394 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4395 break;
4396 }
4397
4398 // Construct our resulting LLVM IR expression.
4399 llvm::Value *Carry1;
4400 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4401 X, Y, Carry1);
4402 llvm::Value *Carry2;
4403 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4404 Sum1, Carryin, Carry2);
4405 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4406 X->getType());
4407 Builder.CreateStore(CarryOut, CarryOutPtr);
4408 return RValue::get(Sum2);
4409 }
4410
4411 case Builtin::BI__builtin_add_overflow:
4412 case Builtin::BI__builtin_sub_overflow:
4413 case Builtin::BI__builtin_mul_overflow: {
4414 const clang::Expr *LeftArg = E->getArg(0);
4415 const clang::Expr *RightArg = E->getArg(1);
4416 const clang::Expr *ResultArg = E->getArg(2);
4417
4418 clang::QualType ResultQTy =
4419 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4420
4421 WidthAndSignedness LeftInfo =
4422 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4423 WidthAndSignedness RightInfo =
4424 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4425 WidthAndSignedness ResultInfo =
4426 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4427
4428 // Handle mixed-sign multiplication as a special case, because adding
4429 // runtime or backend support for our generic irgen would be too expensive.
4430 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4431 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4432 RightInfo, ResultArg, ResultQTy,
4433 ResultInfo);
4434
4435 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4436 ResultInfo))
4437 return EmitCheckedUnsignedMultiplySignedResult(
4438 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4439 ResultInfo);
4440
4441 WidthAndSignedness EncompassingInfo =
4442 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4443
4444 llvm::Type *EncompassingLLVMTy =
4445 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4446
4447 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4448
4449 llvm::Intrinsic::ID IntrinsicId;
4450 switch (BuiltinID) {
4451 default:
4452 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4452)
;
4453 case Builtin::BI__builtin_add_overflow:
4454 IntrinsicId = EncompassingInfo.Signed
4455 ? llvm::Intrinsic::sadd_with_overflow
4456 : llvm::Intrinsic::uadd_with_overflow;
4457 break;
4458 case Builtin::BI__builtin_sub_overflow:
4459 IntrinsicId = EncompassingInfo.Signed
4460 ? llvm::Intrinsic::ssub_with_overflow
4461 : llvm::Intrinsic::usub_with_overflow;
4462 break;
4463 case Builtin::BI__builtin_mul_overflow:
4464 IntrinsicId = EncompassingInfo.Signed
4465 ? llvm::Intrinsic::smul_with_overflow
4466 : llvm::Intrinsic::umul_with_overflow;
4467 break;
4468 }
4469
4470 llvm::Value *Left = EmitScalarExpr(LeftArg);
4471 llvm::Value *Right = EmitScalarExpr(RightArg);
4472 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4473
4474 // Extend each operand to the encompassing type.
4475 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4476 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4477
4478 // Perform the operation on the extended values.
4479 llvm::Value *Overflow, *Result;
4480 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4481
4482 if (EncompassingInfo.Width > ResultInfo.Width) {
4483 // The encompassing type is wider than the result type, so we need to
4484 // truncate it.
4485 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4486
4487 // To see if the truncation caused an overflow, we will extend
4488 // the result and then compare it to the original result.
4489 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4490 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4491 llvm::Value *TruncationOverflow =
4492 Builder.CreateICmpNE(Result, ResultTruncExt);
4493
4494 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4495 Result = ResultTrunc;
4496 }
4497
4498 // Finally, store the result using the pointer.
4499 bool isVolatile =
4500 ResultArg->getType()->getPointeeType().isVolatileQualified();
4501 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4502
4503 return RValue::get(Overflow);
4504 }
4505
4506 case Builtin::BI__builtin_uadd_overflow:
4507 case Builtin::BI__builtin_uaddl_overflow:
4508 case Builtin::BI__builtin_uaddll_overflow:
4509 case Builtin::BI__builtin_usub_overflow:
4510 case Builtin::BI__builtin_usubl_overflow:
4511 case Builtin::BI__builtin_usubll_overflow:
4512 case Builtin::BI__builtin_umul_overflow:
4513 case Builtin::BI__builtin_umull_overflow:
4514 case Builtin::BI__builtin_umulll_overflow:
4515 case Builtin::BI__builtin_sadd_overflow:
4516 case Builtin::BI__builtin_saddl_overflow:
4517 case Builtin::BI__builtin_saddll_overflow:
4518 case Builtin::BI__builtin_ssub_overflow:
4519 case Builtin::BI__builtin_ssubl_overflow:
4520 case Builtin::BI__builtin_ssubll_overflow:
4521 case Builtin::BI__builtin_smul_overflow:
4522 case Builtin::BI__builtin_smull_overflow:
4523 case Builtin::BI__builtin_smulll_overflow: {
4524
4525 // We translate all of these builtins directly to the relevant llvm IR node.
4526
4527 // Scalarize our inputs.
4528 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4529 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4530 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4531
4532 // Decide which of the overflow intrinsics we are lowering to:
4533 llvm::Intrinsic::ID IntrinsicId;
4534 switch (BuiltinID) {
4535 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4535)
;
4536 case Builtin::BI__builtin_uadd_overflow:
4537 case Builtin::BI__builtin_uaddl_overflow:
4538 case Builtin::BI__builtin_uaddll_overflow:
4539 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4540 break;
4541 case Builtin::BI__builtin_usub_overflow:
4542 case Builtin::BI__builtin_usubl_overflow:
4543 case Builtin::BI__builtin_usubll_overflow:
4544 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4545 break;
4546 case Builtin::BI__builtin_umul_overflow:
4547 case Builtin::BI__builtin_umull_overflow:
4548 case Builtin::BI__builtin_umulll_overflow:
4549 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4550 break;
4551 case Builtin::BI__builtin_sadd_overflow:
4552 case Builtin::BI__builtin_saddl_overflow:
4553 case Builtin::BI__builtin_saddll_overflow:
4554 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4555 break;
4556 case Builtin::BI__builtin_ssub_overflow:
4557 case Builtin::BI__builtin_ssubl_overflow:
4558 case Builtin::BI__builtin_ssubll_overflow:
4559 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4560 break;
4561 case Builtin::BI__builtin_smul_overflow:
4562 case Builtin::BI__builtin_smull_overflow:
4563 case Builtin::BI__builtin_smulll_overflow:
4564 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4565 break;
4566 }
4567
4568
4569 llvm::Value *Carry;
4570 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4571 Builder.CreateStore(Sum, SumOutPtr);
4572
4573 return RValue::get(Carry);
4574 }
4575 case Builtin::BIaddressof:
4576 case Builtin::BI__addressof:
4577 case Builtin::BI__builtin_addressof:
4578 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4579 case Builtin::BI__builtin_function_start:
4580 return RValue::get(CGM.GetFunctionStart(
4581 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4582 case Builtin::BI__builtin_operator_new:
4583 return EmitBuiltinNewDeleteCall(
4584 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4585 case Builtin::BI__builtin_operator_delete:
4586 EmitBuiltinNewDeleteCall(
4587 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4588 return RValue::get(nullptr);
4589
4590 case Builtin::BI__builtin_is_aligned:
4591 return EmitBuiltinIsAligned(E);
4592 case Builtin::BI__builtin_align_up:
4593 return EmitBuiltinAlignTo(E, true);
4594 case Builtin::BI__builtin_align_down:
4595 return EmitBuiltinAlignTo(E, false);
4596
4597 case Builtin::BI__noop:
4598 // __noop always evaluates to an integer literal zero.
4599 return RValue::get(ConstantInt::get(IntTy, 0));
4600 case Builtin::BI__builtin_call_with_static_chain: {
4601 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4602 const Expr *Chain = E->getArg(1);
4603 return EmitCall(Call->getCallee()->getType(),
4604 EmitCallee(Call->getCallee()), Call, ReturnValue,
4605 EmitScalarExpr(Chain));
4606 }
4607 case Builtin::BI_InterlockedExchange8:
4608 case Builtin::BI_InterlockedExchange16:
4609 case Builtin::BI_InterlockedExchange:
4610 case Builtin::BI_InterlockedExchangePointer:
4611 return RValue::get(
4612 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4613 case Builtin::BI_InterlockedCompareExchangePointer:
4614 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4615 llvm::Type *RTy;
4616 llvm::IntegerType *IntType =
4617 IntegerType::get(getLLVMContext(),
4618 getContext().getTypeSize(E->getType()));
4619 llvm::Type *IntPtrType = IntType->getPointerTo();
4620
4621 llvm::Value *Destination =
4622 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4623
4624 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4625 RTy = Exchange->getType();
4626 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4627
4628 llvm::Value *Comparand =
4629 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4630
4631 auto Ordering =
4632 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4633 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4634
4635 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4636 Ordering, Ordering);
4637 Result->setVolatile(true);
4638
4639 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4640 0),
4641 RTy));
4642 }
4643 case Builtin::BI_InterlockedCompareExchange8:
4644 case Builtin::BI_InterlockedCompareExchange16:
4645 case Builtin::BI_InterlockedCompareExchange:
4646 case Builtin::BI_InterlockedCompareExchange64:
4647 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4648 case Builtin::BI_InterlockedIncrement16:
4649 case Builtin::BI_InterlockedIncrement:
4650 return RValue::get(
4651 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4652 case Builtin::BI_InterlockedDecrement16:
4653 case Builtin::BI_InterlockedDecrement:
4654 return RValue::get(
4655 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4656 case Builtin::BI_InterlockedAnd8:
4657 case Builtin::BI_InterlockedAnd16:
4658 case Builtin::BI_InterlockedAnd:
4659 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4660 case Builtin::BI_InterlockedExchangeAdd8:
4661 case Builtin::BI_InterlockedExchangeAdd16:
4662 case Builtin::BI_InterlockedExchangeAdd:
4663 return RValue::get(
4664 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4665 case Builtin::BI_InterlockedExchangeSub8:
4666 case Builtin::BI_InterlockedExchangeSub16:
4667 case Builtin::BI_InterlockedExchangeSub:
4668 return RValue::get(
4669 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4670 case Builtin::BI_InterlockedOr8:
4671 case Builtin::BI_InterlockedOr16:
4672 case Builtin::BI_InterlockedOr:
4673 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4674 case Builtin::BI_InterlockedXor8:
4675 case Builtin::BI_InterlockedXor16:
4676 case Builtin::BI_InterlockedXor:
4677 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4678
4679 case Builtin::BI_bittest64:
4680 case Builtin::BI_bittest:
4681 case Builtin::BI_bittestandcomplement64:
4682 case Builtin::BI_bittestandcomplement:
4683 case Builtin::BI_bittestandreset64:
4684 case Builtin::BI_bittestandreset:
4685 case Builtin::BI_bittestandset64:
4686 case Builtin::BI_bittestandset:
4687 case Builtin::BI_interlockedbittestandreset:
4688 case Builtin::BI_interlockedbittestandreset64:
4689 case Builtin::BI_interlockedbittestandset64:
4690 case Builtin::BI_interlockedbittestandset:
4691 case Builtin::BI_interlockedbittestandset_acq:
4692 case Builtin::BI_interlockedbittestandset_rel:
4693 case Builtin::BI_interlockedbittestandset_nf:
4694 case Builtin::BI_interlockedbittestandreset_acq:
4695 case Builtin::BI_interlockedbittestandreset_rel:
4696 case Builtin::BI_interlockedbittestandreset_nf:
4697 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4698
4699 // These builtins exist to emit regular volatile loads and stores not
4700 // affected by the -fms-volatile setting.
4701 case Builtin::BI__iso_volatile_load8:
4702 case Builtin::BI__iso_volatile_load16:
4703 case Builtin::BI__iso_volatile_load32:
4704 case Builtin::BI__iso_volatile_load64:
4705 return RValue::get(EmitISOVolatileLoad(*this, E));
4706 case Builtin::BI__iso_volatile_store8:
4707 case Builtin::BI__iso_volatile_store16:
4708 case Builtin::BI__iso_volatile_store32:
4709 case Builtin::BI__iso_volatile_store64:
4710 return RValue::get(EmitISOVolatileStore(*this, E));
4711
4712 case Builtin::BI__exception_code:
4713 case Builtin::BI_exception_code:
4714 return RValue::get(EmitSEHExceptionCode());
4715 case Builtin::BI__exception_info:
4716 case Builtin::BI_exception_info:
4717 return RValue::get(EmitSEHExceptionInfo());
4718 case Builtin::BI__abnormal_termination:
4719 case Builtin::BI_abnormal_termination:
4720 return RValue::get(EmitSEHAbnormalTermination());
4721 case Builtin::BI_setjmpex:
4722 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4723 E->getArg(0)->getType()->isPointerType())
4724 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4725 break;
4726 case Builtin::BI_setjmp:
4727 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4728 E->getArg(0)->getType()->isPointerType()) {
4729 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4730 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4731 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4732 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4733 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4734 }
4735 break;
4736
4737 // C++ std:: builtins.
4738 case Builtin::BImove:
4739 case Builtin::BImove_if_noexcept:
4740 case Builtin::BIforward:
4741 case Builtin::BIforward_like:
4742 case Builtin::BIas_const:
4743 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4744 case Builtin::BI__GetExceptionInfo: {
4745 if (llvm::GlobalVariable *GV =
4746 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4747 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4748 break;
4749 }
4750
4751 case Builtin::BI__fastfail:
4752 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4753
4754 case Builtin::BI__builtin_coro_id:
4755 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4756 case Builtin::BI__builtin_coro_promise:
4757 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4758 case Builtin::BI__builtin_coro_resume:
4759 EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4760 return RValue::get(nullptr);
4761 case Builtin::BI__builtin_coro_frame:
4762 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4763 case Builtin::BI__builtin_coro_noop:
4764 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4765 case Builtin::BI__builtin_coro_free:
4766 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4767 case Builtin::BI__builtin_coro_destroy:
4768 EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4769 return RValue::get(nullptr);
4770 case Builtin::BI__builtin_coro_done:
4771 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4772 case Builtin::BI__builtin_coro_alloc:
4773 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4774 case Builtin::BI__builtin_coro_begin:
4775 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4776 case Builtin::BI__builtin_coro_end:
4777 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4778 case Builtin::BI__builtin_coro_suspend:
4779 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4780 case Builtin::BI__builtin_coro_size:
4781 return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
4782 case Builtin::BI__builtin_coro_align:
4783 return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
4784
4785 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4786 case Builtin::BIread_pipe:
4787 case Builtin::BIwrite_pipe: {
4788 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4789 *Arg1 = EmitScalarExpr(E->getArg(1));
4790 CGOpenCLRuntime OpenCLRT(CGM);
4791 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4792 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4793
4794 // Type of the generic packet parameter.
4795 unsigned GenericAS =
4796 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4797 llvm::Type *I8PTy = llvm::PointerType::get(
4798 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4799
4800 // Testing which overloaded version we should generate the call for.
4801 if (2U == E->getNumArgs()) {
4802 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4803 : "__write_pipe_2";
4804 // Creating a generic function type to be able to call with any builtin or
4805 // user defined type.
4806 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4807 llvm::FunctionType *FTy = llvm::FunctionType::get(
4808 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4809 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4810 return RValue::get(
4811 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4812 {Arg0, BCast, PacketSize, PacketAlign}));
4813 } else {
4814 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4815, __extension__ __PRETTY_FUNCTION__
))
4815 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4815, __extension__ __PRETTY_FUNCTION__
))
;
4816 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4817 : "__write_pipe_4";
4818
4819 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4820 Int32Ty, Int32Ty};
4821 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4822 *Arg3 = EmitScalarExpr(E->getArg(3));
4823 llvm::FunctionType *FTy = llvm::FunctionType::get(
4824 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4825 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4826 // We know the third argument is an integer type, but we may need to cast
4827 // it to i32.
4828 if (Arg2->getType() != Int32Ty)
4829 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4830 return RValue::get(
4831 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4832 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4833 }
4834 }
4835 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4836 // functions
4837 case Builtin::BIreserve_read_pipe:
4838 case Builtin::BIreserve_write_pipe:
4839 case Builtin::BIwork_group_reserve_read_pipe:
4840 case Builtin::BIwork_group_reserve_write_pipe:
4841 case Builtin::BIsub_group_reserve_read_pipe:
4842 case Builtin::BIsub_group_reserve_write_pipe: {
4843 // Composing the mangled name for the function.
4844 const char *Name;
4845 if (BuiltinID == Builtin::BIreserve_read_pipe)
4846 Name = "__reserve_read_pipe";
4847 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4848 Name = "__reserve_write_pipe";
4849 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4850 Name = "__work_group_reserve_read_pipe";
4851 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4852 Name = "__work_group_reserve_write_pipe";
4853 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4854 Name = "__sub_group_reserve_read_pipe";
4855 else
4856 Name = "__sub_group_reserve_write_pipe";
4857
4858 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4859 *Arg1 = EmitScalarExpr(E->getArg(1));
4860 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4861 CGOpenCLRuntime OpenCLRT(CGM);
4862 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4863 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4864
4865 // Building the generic function prototype.
4866 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4867 llvm::FunctionType *FTy = llvm::FunctionType::get(
4868 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4869 // We know the second argument is an integer type, but we may need to cast
4870 // it to i32.
4871 if (Arg1->getType() != Int32Ty)
4872 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4873 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4874 {Arg0, Arg1, PacketSize, PacketAlign}));
4875 }
4876 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4877 // functions
4878 case Builtin::BIcommit_read_pipe:
4879 case Builtin::BIcommit_write_pipe:
4880 case Builtin::BIwork_group_commit_read_pipe:
4881 case Builtin::BIwork_group_commit_write_pipe:
4882 case Builtin::BIsub_group_commit_read_pipe:
4883 case Builtin::BIsub_group_commit_write_pipe: {
4884 const char *Name;
4885 if (BuiltinID == Builtin::BIcommit_read_pipe)
4886 Name = "__commit_read_pipe";
4887 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4888 Name = "__commit_write_pipe";
4889 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4890 Name = "__work_group_commit_read_pipe";
4891 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4892 Name = "__work_group_commit_write_pipe";
4893 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4894 Name = "__sub_group_commit_read_pipe";
4895 else
4896 Name = "__sub_group_commit_write_pipe";
4897
4898 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4899 *Arg1 = EmitScalarExpr(E->getArg(1));
4900 CGOpenCLRuntime OpenCLRT(CGM);
4901 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4902 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4903
4904 // Building the generic function prototype.
4905 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4906 llvm::FunctionType *FTy =
4907 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4908 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4909
4910 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4911 {Arg0, Arg1, PacketSize, PacketAlign}));
4912 }
4913 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4914 case Builtin::BIget_pipe_num_packets:
4915 case Builtin::BIget_pipe_max_packets: {
4916 const char *BaseName;
4917 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4918 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4919 BaseName = "__get_pipe_num_packets";
4920 else
4921 BaseName = "__get_pipe_max_packets";
4922 std::string Name = std::string(BaseName) +
4923 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4924
4925 // Building the generic function prototype.
4926 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4927 CGOpenCLRuntime OpenCLRT(CGM);
4928 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4929 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4930 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4931 llvm::FunctionType *FTy = llvm::FunctionType::get(
4932 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4933
4934 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4935 {Arg0, PacketSize, PacketAlign}));
4936 }
4937
4938 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4939 case Builtin::BIto_global:
4940 case Builtin::BIto_local:
4941 case Builtin::BIto_private: {
4942 auto Arg0 = EmitScalarExpr(E->getArg(0));
4943 auto NewArgT = llvm::PointerType::get(Int8Ty,
4944 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4945 auto NewRetT = llvm::PointerType::get(Int8Ty,
4946 CGM.getContext().getTargetAddressSpace(
4947 E->getType()->getPointeeType().getAddressSpace()));
4948 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4949 llvm::Value *NewArg;
4950 if (Arg0->getType()->getPointerAddressSpace() !=
4951 NewArgT->getPointerAddressSpace())
4952 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4953 else
4954 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4955 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4956 auto NewCall =
4957 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4958 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4959 ConvertType(E->getType())));
4960 }
4961
4962 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4963 // It contains four different overload formats specified in Table 6.13.17.1.
4964 case Builtin::BIenqueue_kernel: {
4965 StringRef Name; // Generated function call name
4966 unsigned NumArgs = E->getNumArgs();
4967
4968 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4969 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4970 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4971
4972 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4973 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4974 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4975 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4976 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4977
4978 if (NumArgs == 4) {
4979 // The most basic form of the call with parameters:
4980 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4981 Name = "__enqueue_kernel_basic";
4982 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4983 GenericVoidPtrTy};
4984 llvm::FunctionType *FTy = llvm::FunctionType::get(
4985 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4986
4987 auto Info =
4988 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4989 llvm::Value *Kernel =
4990 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
4991 llvm::Value *Block =
4992 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4993
4994 AttrBuilder B(Builder.getContext());
4995 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4996 llvm::AttributeList ByValAttrSet =
4997 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4998
4999 auto RTCall =
5000 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
5001 {Queue, Flags, Range, Kernel, Block});
5002 RTCall->setAttributes(ByValAttrSet);
5003 return RValue::get(RTCall);
5004 }
5005 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5005, __extension__ __PRETTY_FUNCTION__
))
;
5006
5007 // Create a temporary array to hold the sizes of local pointer arguments
5008 // for the block. \p First is the position of the first size argument.
5009 auto CreateArrayForSizeVar = [=](unsigned First)
5010 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5011 llvm::APInt ArraySize(32, NumArgs - First);
5012 QualType SizeArrayTy = getContext().getConstantArrayType(
5013 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
5014 /*IndexTypeQuals=*/0);
5015 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5016 llvm::Value *TmpPtr = Tmp.getPointer();
5017 llvm::Value *TmpSize = EmitLifetimeStart(
5018 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5019 llvm::Value *ElemPtr;
5020 // Each of the following arguments specifies the size of the corresponding
5021 // argument passed to the enqueued block.
5022 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5023 for (unsigned I = First; I < NumArgs; ++I) {
5024 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5025 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5026 {Zero, Index});
5027 if (I == First)
5028 ElemPtr = GEP;
5029 auto *V =
5030 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5031 Builder.CreateAlignedStore(
5032 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5033 }
5034 return std::tie(ElemPtr, TmpSize, TmpPtr);
5035 };
5036
5037 // Could have events and/or varargs.
5038 if (E->getArg(3)->getType()->isBlockPointerType()) {
5039 // No events passed, but has variadic arguments.
5040 Name = "__enqueue_kernel_varargs";
5041 auto Info =
5042 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5043 llvm::Value *Kernel =
5044 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5045 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5046 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5047 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5048
5049 // Create a vector of the arguments, as well as a constant value to
5050 // express to the runtime the number of variadic arguments.
5051 llvm::Value *const Args[] = {Queue, Flags,
5052 Range, Kernel,
5053 Block, ConstantInt::get(IntTy, NumArgs - 4),
5054 ElemPtr};
5055 llvm::Type *const ArgTys[] = {
5056 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5057 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5058
5059 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5060 auto Call = RValue::get(
5061 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5062 if (TmpSize)
5063 EmitLifetimeEnd(TmpSize, TmpPtr);
5064 return Call;
5065 }
5066 // Any calls now have event arguments passed.
5067 if (NumArgs >= 7) {
5068 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
5069 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
5070 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5071
5072 llvm::Value *NumEvents =
5073 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5074
5075 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5076 // to be a null pointer constant (including `0` literal), we can take it
5077 // into account and emit null pointer directly.
5078 llvm::Value *EventWaitList = nullptr;
5079 if (E->getArg(4)->isNullPointerConstant(
5080 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5081 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
5082 } else {
5083 EventWaitList = E->getArg(4)->getType()->isArrayType()
5084 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5085 : EmitScalarExpr(E->getArg(4));
5086 // Convert to generic address space.
5087 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
5088 }
5089 llvm::Value *EventRet = nullptr;
5090 if (E->getArg(5)->isNullPointerConstant(
5091 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5092 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
5093 } else {
5094 EventRet =
5095 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
5096 }
5097
5098 auto Info =
5099 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5100 llvm::Value *Kernel =
5101 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5102 llvm::Value *Block =
5103 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5104
5105 std::vector<llvm::Type *> ArgTys = {
5106 QueueTy, Int32Ty, RangeTy, Int32Ty,
5107 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5108
5109 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5110 NumEvents, EventWaitList, EventRet,
5111 Kernel, Block};
5112
5113 if (NumArgs == 7) {
5114 // Has events but no variadics.
5115 Name = "__enqueue_kernel_basic_events";
5116 llvm::FunctionType *FTy = llvm::FunctionType::get(
5117 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5118 return RValue::get(
5119 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5120 llvm::ArrayRef<llvm::Value *>(Args)));
5121 }
5122 // Has event info and variadics
5123 // Pass the number of variadics to the runtime function too.
5124 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5125 ArgTys.push_back(Int32Ty);
5126 Name = "__enqueue_kernel_events_varargs";
5127
5128 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5129 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5130 Args.push_back(ElemPtr);
5131 ArgTys.push_back(ElemPtr->getType());
5132
5133 llvm::FunctionType *FTy = llvm::FunctionType::get(
5134 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5135 auto Call =
5136 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5137 llvm::ArrayRef<llvm::Value *>(Args)));
5138 if (TmpSize)
5139 EmitLifetimeEnd(TmpSize, TmpPtr);
5140 return Call;
5141 }
5142 [[fallthrough]];
5143 }
5144 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5145 // parameter.
5146 case Builtin::BIget_kernel_work_group_size: {
5147 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5148 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5149 auto Info =
5150 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5151 Value *Kernel =
5152 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5153 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5154 return RValue::get(EmitRuntimeCall(
5155 CGM.CreateRuntimeFunction(
5156 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5157 false),
5158 "__get_kernel_work_group_size_impl"),
5159 {Kernel, Arg}));
5160 }
5161 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5162 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5163 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5164 auto Info =
5165 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5166 Value *Kernel =
5167 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5168 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5169 return RValue::get(EmitRuntimeCall(
5170 CGM.CreateRuntimeFunction(
5171 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5172 false),
5173 "__get_kernel_preferred_work_group_size_multiple_impl"),
5174 {Kernel, Arg}));
5175 }
5176 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5177 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5178 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5179 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5180 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5181 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5182 auto Info =
5183 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5184 Value *Kernel =
5185 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5186 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5187 const char *Name =
5188 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5189 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5190 : "__get_kernel_sub_group_count_for_ndrange_impl";
5191 return RValue::get(EmitRuntimeCall(
5192 CGM.CreateRuntimeFunction(
5193 llvm::FunctionType::get(
5194 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5195 false),
5196 Name),
5197 {NDRange, Kernel, Block}));
5198 }
5199
5200 case Builtin::BI__builtin_store_half:
5201 case Builtin::BI__builtin_store_halff: {
5202 Value *Val = EmitScalarExpr(E->getArg(0));
5203 Address Address = EmitPointerWithAlignment(E->getArg(1));
5204 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5205 Builder.CreateStore(HalfVal, Address);
5206 return RValue::get(nullptr);
5207 }
5208 case Builtin::BI__builtin_load_half: {
5209 Address Address = EmitPointerWithAlignment(E->getArg(0));
5210 Value *HalfVal = Builder.CreateLoad(Address);
5211 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5212 }
5213 case Builtin::BI__builtin_load_halff: {
5214 Address Address = EmitPointerWithAlignment(E->getArg(0));
5215 Value *HalfVal = Builder.CreateLoad(Address);
5216 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5217 }
5218 case Builtin::BIprintf:
5219 if (getTarget().getTriple().isNVPTX() ||
5220 getTarget().getTriple().isAMDGCN()) {
5221 if (getLangOpts().OpenMPIsDevice)
5222 return EmitOpenMPDevicePrintfCallExpr(E);
5223 if (getTarget().getTriple().isNVPTX())
5224 return EmitNVPTXDevicePrintfCallExpr(E);
5225 if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5226 return EmitAMDGPUDevicePrintfCallExpr(E);
5227 }
5228
5229 break;
5230 case Builtin::BI__builtin_canonicalize:
5231 case Builtin::BI__builtin_canonicalizef:
5232 case Builtin::BI__builtin_canonicalizef16:
5233 case Builtin::BI__builtin_canonicalizel:
5234 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5235
5236 case Builtin::BI__builtin_thread_pointer: {
5237 if (!getContext().getTargetInfo().isTLSSupported())
5238 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5239 // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
5240 break;
5241 }
5242 case Builtin::BI__builtin_os_log_format:
5243 return emitBuiltinOSLogFormat(*E);
5244
5245 case Builtin::BI__xray_customevent: {
5246 if (!ShouldXRayInstrumentFunction())
5247 return RValue::getIgnored();
5248
5249 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5250 XRayInstrKind::Custom))
5251 return RValue::getIgnored();
5252
5253 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5254 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5255 return RValue::getIgnored();
5256
5257 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5258 auto FTy = F->getFunctionType();
5259 auto Arg0 = E->getArg(0);
5260 auto Arg0Val = EmitScalarExpr(Arg0);
5261 auto Arg0Ty = Arg0->getType();
5262 auto PTy0 = FTy->getParamType(0);
5263 if (PTy0 != Arg0Val->getType()) {
5264 if (Arg0Ty->isArrayType())
5265 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5266 else
5267 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5268 }
5269 auto Arg1 = EmitScalarExpr(E->getArg(1));
5270 auto PTy1 = FTy->getParamType(1);
5271 if (PTy1 != Arg1->getType())
5272 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5273 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5274 }
5275
5276 case Builtin::BI__xray_typedevent: {
5277 // TODO: There should be a way to always emit events even if the current
5278 // function is not instrumented. Losing events in a stream can cripple
5279 // a trace.
5280 if (!ShouldXRayInstrumentFunction())
5281 return RValue::getIgnored();
5282
5283 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5284 XRayInstrKind::Typed))
5285 return RValue::getIgnored();
5286
5287 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5288 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5289 return RValue::getIgnored();
5290
5291 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5292 auto FTy = F->getFunctionType();
5293 auto Arg0 = EmitScalarExpr(E->getArg(0));
5294 auto PTy0 = FTy->getParamType(0);
5295 if (PTy0 != Arg0->getType())
5296 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5297 auto Arg1 = E->getArg(1);
5298 auto Arg1Val = EmitScalarExpr(Arg1);
5299 auto Arg1Ty = Arg1->getType();
5300 auto PTy1 = FTy->getParamType(1);
5301 if (PTy1 != Arg1Val->getType()) {
5302 if (Arg1Ty->isArrayType())
5303 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5304 else
5305 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5306 }
5307 auto Arg2 = EmitScalarExpr(E->getArg(2));
5308 auto PTy2 = FTy->getParamType(2);
5309 if (PTy2 != Arg2->getType())
5310 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5311 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5312 }
5313
5314 case Builtin::BI__builtin_ms_va_start:
5315 case Builtin::BI__builtin_ms_va_end:
5316 return RValue::get(
5317 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5318 BuiltinID == Builtin::BI__builtin_ms_va_start));
5319
5320 case Builtin::BI__builtin_ms_va_copy: {
5321 // Lower this manually. We can't reliably determine whether or not any
5322 // given va_copy() is for a Win64 va_list from the calling convention
5323 // alone, because it's legal to do this from a System V ABI function.
5324 // With opaque pointer types, we won't have enough information in LLVM
5325 // IR to determine this from the argument types, either. Best to do it
5326 // now, while we have enough information.
5327 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5328 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5329
5330 llvm::Type *BPP = Int8PtrPtrTy;
5331
5332 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5333 Int8PtrTy, DestAddr.getAlignment());
5334 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5335 Int8PtrTy, SrcAddr.getAlignment());
5336
5337 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5338 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5339 }
5340
5341 case Builtin::BI__builtin_get_device_side_mangled_name: {
5342 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5343 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5344 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5345 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5346 llvm::ConstantInt::get(SizeTy, 0)};
5347 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5348 Str.getPointer(), Zeros);
5349 return RValue::get(Ptr);
5350 }
5351 }
5352
5353 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5354 // the call using the normal call path, but using the unmangled
5355 // version of the function name.
5356 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5357 return emitLibraryCall(*this, FD, E,
5358 CGM.getBuiltinLibFunction(FD, BuiltinID));
5359
5360 // If this is a predefined lib function (e.g. malloc), emit the call
5361 // using exactly the normal call path.
5362 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5363 return emitLibraryCall(*this, FD, E,
5364 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5365
5366 // Check that a call to a target specific builtin has the correct target
5367 // features.
5368 // This is down here to avoid non-target specific builtins, however, if
5369 // generic builtins start to require generic target features then we
5370 // can move this up to the beginning of the function.
5371 checkTargetFeatures(E, FD);
5372
5373 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5374 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5375
5376 // See if we have a target specific intrinsic.
5377 StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
5378 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5379 StringRef Prefix =
5380 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5381 if (!Prefix.empty()) {
5382 IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
5383 // NOTE we don't need to perform a compatibility flag check here since the
5384 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5385 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5386 if (IntrinsicID == Intrinsic::not_intrinsic)
5387 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5388 }
5389
5390 if (IntrinsicID != Intrinsic::not_intrinsic) {
5391 SmallVector<Value*, 16> Args;
5392
5393 // Find out if any arguments are required to be integer constant
5394 // expressions.
5395 unsigned ICEArguments = 0;
5396 ASTContext::GetBuiltinTypeError Error;
5397 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5398 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5398, __extension__ __PRETTY_FUNCTION__
))
;
5399
5400 Function *F = CGM.getIntrinsic(IntrinsicID);
5401 llvm::FunctionType *FTy = F->getFunctionType();
5402
5403 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5404 Value *ArgValue;
5405 // If this is a normal argument, just emit it as a scalar.
5406 if ((ICEArguments & (1 << i)) == 0) {
5407 ArgValue = EmitScalarExpr(E->getArg(i));
5408 } else {
5409 // If this is required to be a constant, constant fold it so that we
5410 // know that the generated intrinsic gets a ConstantInt.
5411 ArgValue = llvm::ConstantInt::get(
5412 getLLVMContext(),
5413 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5414 }
5415
5416 // If the intrinsic arg type is different from the builtin arg type
5417 // we need to do a bit cast.
5418 llvm::Type *PTy = FTy->getParamType(i);
5419 if (PTy != ArgValue->getType()) {
5420 // XXX - vector of pointers?
5421 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5422 if (PtrTy->getAddressSpace() !=
5423 ArgValue->getType()->getPointerAddressSpace()) {
5424 ArgValue = Builder.CreateAddrSpaceCast(
5425 ArgValue,
5426 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5427 }
5428 }
5429
5430 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5431, __extension__ __PRETTY_FUNCTION__
))
5431 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5431, __extension__ __PRETTY_FUNCTION__
))
;
5432 // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5433 // in amx intrinsics.
5434 if (PTy->isX86_AMXTy())
5435 ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5436 {ArgValue->getType()}, {ArgValue});
5437 else
5438 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5439 }
5440
5441 Args.push_back(ArgValue);
5442 }
5443
5444 Value *V = Builder.CreateCall(F, Args);
5445 QualType BuiltinRetType = E->getType();
5446
5447 llvm::Type *RetTy = VoidTy;
5448 if (!BuiltinRetType->isVoidType())
5449 RetTy = ConvertType(BuiltinRetType);
5450
5451 if (RetTy != V->getType()) {
5452 // XXX - vector of pointers?
5453 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5454 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5455 V = Builder.CreateAddrSpaceCast(
5456 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5457 }
5458 }
5459
5460 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5461, __extension__ __PRETTY_FUNCTION__
))
5461 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5461, __extension__ __PRETTY_FUNCTION__
))
;
5462 // Cast x86_amx to vector type (e.g., v256i32), this only happen
5463 // in amx intrinsics.
5464 if (V->getType()->isX86_AMXTy())
5465 V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5466 {V});
5467 else
5468 V = Builder.CreateBitCast(V, RetTy);
5469 }
5470
5471 if (RetTy->isVoidTy())
5472 return RValue::get(nullptr);
5473
5474 return RValue::get(V);
5475 }
5476
5477 // Some target-specific builtins can have aggregate return values, e.g.
5478 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5479 // ReturnValue to be non-null, so that the target-specific emission code can
5480 // always just emit into it.
5481 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5482 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5483 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5484 ReturnValue = ReturnValueSlot(DestPtr, false);
5485 }
5486
5487 // Now see if we can emit a target-specific builtin.
5488 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5489 switch (EvalKind) {
5490 case TEK_Scalar:
5491 if (V->getType()->isVoidTy())
5492 return RValue::get(nullptr);
5493 return RValue::get(V);
5494 case TEK_Aggregate:
5495 return RValue::getAggregate(ReturnValue.getValue(),
5496 ReturnValue.isVolatile());
5497 case TEK_Complex:
5498 llvm_unreachable("No current target builtin returns complex")::llvm::llvm_unreachable_internal("No current target builtin returns complex"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5498)
;
5499 }
5500 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")::llvm::llvm_unreachable_internal("Bad evaluation kind in EmitBuiltinExpr"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5500)
;
5501 }
5502
5503 ErrorUnsupported(E, "builtin function");
5504
5505 // Unknown builtin, for now just dump it out and return undef.
5506 return GetUndefRValue(E->getType());
5507}
5508
5509static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5510 unsigned BuiltinID, const CallExpr *E,
5511 ReturnValueSlot ReturnValue,
5512 llvm::Triple::ArchType Arch) {
5513 switch (Arch) {
5514 case llvm::Triple::arm:
5515 case llvm::Triple::armeb:
5516 case llvm::Triple::thumb:
5517 case llvm::Triple::thumbeb:
5518 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5519 case llvm::Triple::aarch64:
5520 case llvm::Triple::aarch64_32:
5521 case llvm::Triple::aarch64_be:
5522 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5523 case llvm::Triple::bpfeb:
5524 case llvm::Triple::bpfel:
5525 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5526 case llvm::Triple::x86:
5527 case llvm::Triple::x86_64:
5528 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5529 case llvm::Triple::ppc:
5530 case llvm::Triple::ppcle:
5531 case llvm::Triple::ppc64:
5532 case llvm::Triple::ppc64le:
5533 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5534 case llvm::Triple::r600:
5535 case llvm::Triple::amdgcn:
5536 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5537 case llvm::Triple::systemz:
5538 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5539 case llvm::Triple::nvptx:
5540 case llvm::Triple::nvptx64:
5541 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5542 case llvm::Triple::wasm32:
5543 case llvm::Triple::wasm64:
5544 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5545 case llvm::Triple::hexagon:
5546 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5547 case llvm::Triple::riscv32:
5548 case llvm::Triple::riscv64:
5549 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5550 case llvm::Triple::loongarch32:
5551 case llvm::Triple::loongarch64:
5552 return CGF->EmitLoongArchBuiltinExpr(BuiltinID, E);
5553 default:
5554 return nullptr;
5555 }
5556}
5557
5558Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5559 const CallExpr *E,
5560 ReturnValueSlot ReturnValue) {
5561 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5562 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5562, __extension__ __PRETTY_FUNCTION__
))
;
5563 return EmitTargetArchBuiltinExpr(
5564 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5565 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5566 }
5567
5568 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5569 getTarget().getTriple().getArch());
5570}
5571
5572static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5573 NeonTypeFlags TypeFlags,
5574 bool HasLegalHalfType = true,
5575 bool V1Ty = false,
5576 bool AllowBFloatArgsAndRet = true) {
5577 int IsQuad = TypeFlags.isQuad();
5578 switch (TypeFlags.getEltType()) {
5579 case NeonTypeFlags::Int8:
5580 case NeonTypeFlags::Poly8:
5581 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5582 case NeonTypeFlags::Int16:
5583 case NeonTypeFlags::Poly16:
5584 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5585 case NeonTypeFlags::BFloat16:
5586 if (AllowBFloatArgsAndRet)
5587 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5588 else
5589 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5590 case NeonTypeFlags::Float16:
5591 if (HasLegalHalfType)
5592 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5593 else
5594 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5595 case NeonTypeFlags::Int32:
5596 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5597 case NeonTypeFlags::Int64:
5598 case NeonTypeFlags::Poly64:
5599 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5600 case NeonTypeFlags::Poly128:
5601 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5602 // There is a lot of i128 and f128 API missing.
5603 // so we use v16i8 to represent poly128 and get pattern matched.
5604 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5605 case NeonTypeFlags::Float32:
5606 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5607 case NeonTypeFlags::Float64:
5608 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5609 }
5610 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5610)
;
5611}
5612
5613static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5614 NeonTypeFlags IntTypeFlags) {
5615 int IsQuad = IntTypeFlags.isQuad();
5616 switch (IntTypeFlags.getEltType()) {
5617 case NeonTypeFlags::Int16:
5618 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5619 case NeonTypeFlags::Int32:
5620 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5621 case NeonTypeFlags::Int64:
5622 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5623 default:
5624 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5624)
;
5625 }
5626}
5627
5628Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5629 const ElementCount &Count) {
5630 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5631 return Builder.CreateShuffleVector(V, V, SV, "lane");
5632}
5633
5634Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5635 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5636 return EmitNeonSplat(V, C, EC);
5637}
5638
5639Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5640 const char *name,
5641 unsigned shift, bool rightshift) {
5642 unsigned j = 0;
5643 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5644 ai != ae; ++ai, ++j) {
5645 if (F->isConstrainedFPIntrinsic())
5646 if (ai->getType()->isMetadataTy())
5647 continue;
5648 if (shift > 0 && shift == j)
5649 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5650 else
5651 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5652 }
5653
5654 if (F->isConstrainedFPIntrinsic())
5655 return Builder.CreateConstrainedFPCall(F, Ops, name);
5656 else
5657 return Builder.CreateCall(F, Ops, name);
5658}
5659
5660Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5661 bool neg) {
5662 int SV = cast<ConstantInt>(V)->getSExtValue();
5663 return ConstantInt::get(Ty, neg ? -SV : SV);
5664}
5665
5666// Right-shift a vector by a constant.
5667Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5668 llvm::Type *Ty, bool usgn,
5669 const char *name) {
5670 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5671
5672 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5673 int EltSize = VTy->getScalarSizeInBits();
5674
5675 Vec = Builder.CreateBitCast(Vec, Ty);
5676
5677 // lshr/ashr are undefined when the shift amount is equal to the vector
5678 // element size.
5679 if (ShiftAmt == EltSize) {
5680 if (usgn) {
5681 // Right-shifting an unsigned value by its size yields 0.
5682 return llvm::ConstantAggregateZero::get(VTy);
5683 } else {
5684 // Right-shifting a signed value by its size is equivalent
5685 // to a shift of size-1.
5686 --ShiftAmt;
5687 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5688 }
5689 }
5690
5691 Shift = EmitNeonShiftVector(Shift, Ty, false);
5692 if (usgn)
5693 return Builder.CreateLShr(Vec, Shift, name);
5694 else
5695 return Builder.CreateAShr(Vec, Shift, name);
5696}
5697
5698enum {
5699 AddRetType = (1 << 0),
5700 Add1ArgType = (1 << 1),
5701 Add2ArgTypes = (1 << 2),
5702
5703 VectorizeRetType = (1 << 3),
5704 VectorizeArgTypes = (1 << 4),
5705
5706 InventFloatType = (1 << 5),
5707 UnsignedAlts = (1 << 6),
5708
5709 Use64BitVectors = (1 << 7),
5710 Use128BitVectors = (1 << 8),
5711
5712 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5713 VectorRet = AddRetType | VectorizeRetType,
5714 VectorRetGetArgs01 =
5715 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5716 FpCmpzModifiers =
5717 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5718};
5719
5720namespace {
5721struct ARMVectorIntrinsicInfo {
5722 const char *NameHint;
5723 unsigned BuiltinID;
5724 unsigned LLVMIntrinsic;
5725 unsigned AltLLVMIntrinsic;
5726 uint64_t TypeModifier;
5727
5728 bool operator<(unsigned RHSBuiltinID) const {
5729 return BuiltinID < RHSBuiltinID;
5730 }
5731 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5732 return BuiltinID < TE.BuiltinID;
5733 }
5734};
5735} // end anonymous namespace
5736
5737#define NEONMAP0(NameBase) \
5738 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5739
5740#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5741 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5742 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5743
5744#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5745 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5746 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5747 TypeModifier }
5748
5749static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5750 NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
5751 NEONMAP0(splat_lane_v),
5752 NEONMAP0(splat_laneq_v),
5753 NEONMAP0(splatq_lane_v),
5754 NEONMAP0(splatq_laneq_v),
5755 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5756 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5757 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5758 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5759 NEONMAP0(vadd_v),
5760 NEONMAP0(vaddhn_v),
5761 NEONMAP0(vaddq_v),
5762 NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
5763 NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
5764 NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
5765 NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
5766 NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
5767 NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
5768 NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
5769 NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
5770 NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
5771 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5772 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5773 NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
5774 NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
5775 NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
5776 NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
5777 NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
5778 NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
5779 NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
5780 NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
5781 NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
5782 NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
5783 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5784 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5785 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5786 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5787 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5788 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5789 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5790 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5791 NEONMAP0(vceqz_v),
5792 NEONMAP0(vceqzq_v),
5793 NEONMAP0(vcgez_v),
5794 NEONMAP0(vcgezq_v),
5795 NEONMAP0(vcgtz_v),
5796 NEONMAP0(vcgtzq_v),
5797 NEONMAP0(vclez_v),
5798 NEONMAP0(vclezq_v),
5799 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5800 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5801 NEONMAP0(vcltz_v),
5802 NEONMAP0(vcltzq_v),
5803 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5804 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5805 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5806 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5807 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5808 NEONMAP0(vcvt_f16_s16),
5809 NEONMAP0(vcvt_f16_u16),
5810 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5811 NEONMAP0(vcvt_f32_v),
5812 NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
5813 NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
5814 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5815 NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
5816 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5817 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5818 NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
5819 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5820 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5821 NEONMAP0(vcvt_s16_f16),
5822 NEONMAP0(vcvt_s32_v),
5823 NEONMAP0(vcvt_s64_v),
5824 NEONMAP0(vcvt_u16_f16),
5825 NEONMAP0(vcvt_u32_v),
5826 NEONMAP0(vcvt_u64_v),
5827 NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
5828 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5829 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5830 NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
5831 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5832 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5833 NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
5834 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5835 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5836 NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
5837 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5838 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5839 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5840 NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
5841 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5842 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5843 NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
5844 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5845 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5846 NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
5847 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5848 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5849 NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
5850 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5851 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5852 NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
5853 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5854 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5855 NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
5856 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5857 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5858 NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
5859 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5860 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5861 NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
5862 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5863 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5864 NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
5865 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5866 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5867 NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
5868 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5869 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5870 NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
5871 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5872 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5873 NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
5874 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5875 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5876 NEONMAP0(vcvtq_f16_s16),
5877 NEONMAP0(vcvtq_f16_u16),
5878 NEONMAP0(vcvtq_f32_v),
5879 NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
5880 NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
5881 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5882 NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
5883 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5884 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5885 NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
5886 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5887 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5888 NEONMAP0(vcvtq_s16_f16),
5889 NEONMAP0(vcvtq_s32_v),
5890 NEONMAP0(vcvtq_s64_v),
5891 NEONMAP0(vcvtq_u16_f16),
5892 NEONMAP0(vcvtq_u32_v),
5893 NEONMAP0(vcvtq_u64_v),
5894 NEONMAP1(vdot_s32, arm_neon_sdot, 0),
5895 NEONMAP1(vdot_u32, arm_neon_udot, 0),
5896 NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
5897 NEONMAP1(vdotq_u32, arm_neon_udot, 0),
5898