Bug Summary

File:build/source/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 1059, column 22
Value stored to 'RetType' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/CodeGen -I /build/source/clang/lib/CodeGen -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/CodeGen/CGBuiltin.cpp
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfo.h"
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenCLRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/Decl.h"
27#include "clang/AST/OSLog.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/CodeGen/CGFunctionInfo.h"
31#include "clang/Frontend/FrontendDiagnostic.h"
32#include "llvm/ADT/APFloat.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/IntrinsicsAArch64.h"
41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsARM.h"
43#include "llvm/IR/IntrinsicsBPF.h"
44#include "llvm/IR/IntrinsicsHexagon.h"
45#include "llvm/IR/IntrinsicsLoongArch.h"
46#include "llvm/IR/IntrinsicsNVPTX.h"
47#include "llvm/IR/IntrinsicsPowerPC.h"
48#include "llvm/IR/IntrinsicsR600.h"
49#include "llvm/IR/IntrinsicsRISCV.h"
50#include "llvm/IR/IntrinsicsS390.h"
51#include "llvm/IR/IntrinsicsVE.h"
52#include "llvm/IR/IntrinsicsWebAssembly.h"
53#include "llvm/IR/IntrinsicsX86.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/MatrixBuilder.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ScopedPrinter.h"
58#include "llvm/TargetParser/AArch64TargetParser.h"
59#include "llvm/TargetParser/X86TargetParser.h"
60#include <optional>
61#include <sstream>
62
63using namespace clang;
64using namespace CodeGen;
65using namespace llvm;
66
67static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
68 Align AlignmentInBytes) {
69 ConstantInt *Byte;
70 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
71 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
72 // Nothing to initialize.
73 return;
74 case LangOptions::TrivialAutoVarInitKind::Zero:
75 Byte = CGF.Builder.getInt8(0x00);
76 break;
77 case LangOptions::TrivialAutoVarInitKind::Pattern: {
78 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
79 Byte = llvm::dyn_cast<llvm::ConstantInt>(
80 initializationPatternFor(CGF.CGM, Int8));
81 break;
82 }
83 }
84 if (CGF.CGM.stopAutoInit())
85 return;
86 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
87 I->addAnnotationMetadata("auto-init");
88}
89
90/// getBuiltinLibFunction - Given a builtin id for a function like
91/// "__builtin_fabsf", return a Function* for "fabsf".
92llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
93 unsigned BuiltinID) {
94 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 94, __extension__ __PRETTY_FUNCTION__
))
;
95
96 // Get the name, skip over the __builtin_ prefix (if necessary).
97 StringRef Name;
98 GlobalDecl D(FD);
99
100 // TODO: This list should be expanded or refactored after all GCC-compatible
101 // std libcall builtins are implemented.
102 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
103 {Builtin::BI__builtin_printf, "__printfieee128"},
104 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
105 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
106 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
107 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
108 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
109 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
110 };
111
112 // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
113 // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
114 // if it is 64-bit 'long double' mode.
115 static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
116 {Builtin::BI__builtin_frexpl, "frexp"},
117 {Builtin::BI__builtin_ldexpl, "ldexp"},
118 {Builtin::BI__builtin_modfl, "modf"},
119 };
120
121 // If the builtin has been declared explicitly with an assembler label,
122 // use the mangled name. This differs from the plain label on platforms
123 // that prefix labels.
124 if (FD->hasAttr<AsmLabelAttr>())
125 Name = getMangledName(D);
126 else {
127 // TODO: This mutation should also be applied to other targets other than
128 // PPC, after backend supports IEEE 128-bit style libcalls.
129 if (getTriple().isPPC64() &&
130 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
131 F128Builtins.find(BuiltinID) != F128Builtins.end())
132 Name = F128Builtins[BuiltinID];
133 else if (getTriple().isOSAIX() &&
134 &getTarget().getLongDoubleFormat() ==
135 &llvm::APFloat::IEEEdouble() &&
136 AIXLongDouble64Builtins.find(BuiltinID) !=
137 AIXLongDouble64Builtins.end())
138 Name = AIXLongDouble64Builtins[BuiltinID];
139 else
140 Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
141 }
142
143 llvm::FunctionType *Ty =
144 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
145
146 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
147}
148
149/// Emit the conversions required to turn the given value into an
150/// integer of the given size.
151static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
152 QualType T, llvm::IntegerType *IntType) {
153 V = CGF.EmitToMemory(V, T);
154
155 if (V->getType()->isPointerTy())
156 return CGF.Builder.CreatePtrToInt(V, IntType);
157
158 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 158, __extension__ __PRETTY_FUNCTION__))
;
159 return V;
160}
161
162static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
163 QualType T, llvm::Type *ResultType) {
164 V = CGF.EmitFromMemory(V, T);
165
166 if (ResultType->isPointerTy())
167 return CGF.Builder.CreateIntToPtr(V, ResultType);
168
169 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 169, __extension__ __PRETTY_FUNCTION__))
;
170 return V;
171}
172
173static llvm::Value *CheckAtomicAlignment(CodeGenFunction &CGF,
174 const CallExpr *E) {
175 ASTContext &Ctx = CGF.getContext();
176 Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
177 unsigned Bytes = Ptr.getElementType()->isPointerTy()
178 ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
179 : Ptr.getElementType()->getScalarSizeInBits() / 8;
180 unsigned Align = Ptr.getAlignment().getQuantity();
181 if (Align % Bytes != 0) {
182 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
183 Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
184 }
185 return Ptr.getPointer();
186}
187
188/// Utility to insert an atomic instruction based on Intrinsic::ID
189/// and the expression node.
190static Value *MakeBinaryAtomicValue(
191 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
192 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
193
194 QualType T = E->getType();
195 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 195, __extension__ __PRETTY_FUNCTION__
))
;
196 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 197, __extension__ __PRETTY_FUNCTION__
))
197 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 197, __extension__ __PRETTY_FUNCTION__
))
;
198 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 198, __extension__ __PRETTY_FUNCTION__
))
;
199
200 llvm::Value *DestPtr = CheckAtomicAlignment(CGF, E);
201 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
202
203 llvm::IntegerType *IntType =
204 llvm::IntegerType::get(CGF.getLLVMContext(),
205 CGF.getContext().getTypeSize(T));
206 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
207
208 llvm::Value *Args[2];
209 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
210 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
211 llvm::Type *ValueType = Args[1]->getType();
212 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
213
214 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
215 Kind, Args[0], Args[1], Ordering);
216 return EmitFromInt(CGF, Result, T, ValueType);
217}
218
219static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
220 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
221 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
222
223 // Convert the type of the pointer to a pointer to the stored type.
224 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
225 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
226 Value *BC = CGF.Builder.CreateBitCast(
227 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
228 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
229 LV.setNontemporal(true);
230 CGF.EmitStoreOfScalar(Val, LV, false);
231 return nullptr;
232}
233
234static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
235 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
236
237 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
238 LV.setNontemporal(true);
239 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
240}
241
242static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
243 llvm::AtomicRMWInst::BinOp Kind,
244 const CallExpr *E) {
245 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
246}
247
248/// Utility to insert an atomic instruction based Intrinsic::ID and
249/// the expression node, where the return value is the result of the
250/// operation.
251static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
252 llvm::AtomicRMWInst::BinOp Kind,
253 const CallExpr *E,
254 Instruction::BinaryOps Op,
255 bool Invert = false) {
256 QualType T = E->getType();
257 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 257, __extension__ __PRETTY_FUNCTION__
))
;
258 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 259, __extension__ __PRETTY_FUNCTION__
))
259 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 259, __extension__ __PRETTY_FUNCTION__
))
;
260 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 260, __extension__ __PRETTY_FUNCTION__
))
;
261
262 llvm::Value *DestPtr = CheckAtomicAlignment(CGF, E);
263 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
264
265 llvm::IntegerType *IntType =
266 llvm::IntegerType::get(CGF.getLLVMContext(),
267 CGF.getContext().getTypeSize(T));
268 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
269
270 llvm::Value *Args[2];
271 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
272 llvm::Type *ValueType = Args[1]->getType();
273 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
274 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
275
276 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
277 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
278 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
279 if (Invert)
280 Result =
281 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
282 llvm::ConstantInt::getAllOnesValue(IntType));
283 Result = EmitFromInt(CGF, Result, T, ValueType);
284 return RValue::get(Result);
285}
286
287/// Utility to insert an atomic cmpxchg instruction.
288///
289/// @param CGF The current codegen function.
290/// @param E Builtin call expression to convert to cmpxchg.
291/// arg0 - address to operate on
292/// arg1 - value to compare with
293/// arg2 - new value
294/// @param ReturnBool Specifies whether to return success flag of
295/// cmpxchg result or the old value.
296///
297/// @returns result of cmpxchg, according to ReturnBool
298///
299/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
300/// invoke the function EmitAtomicCmpXchgForMSIntrin.
301static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
302 bool ReturnBool) {
303 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
304 llvm::Value *DestPtr = CheckAtomicAlignment(CGF, E);
305 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
306
307 llvm::IntegerType *IntType = llvm::IntegerType::get(
308 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
309 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
310
311 Value *Args[3];
312 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
313 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
314 llvm::Type *ValueType = Args[1]->getType();
315 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
316 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
317
318 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
319 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
320 llvm::AtomicOrdering::SequentiallyConsistent);
321 if (ReturnBool)
322 // Extract boolean success flag and zext it to int.
323 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
324 CGF.ConvertType(E->getType()));
325 else
326 // Extract old value and emit it using the same type as compare value.
327 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
328 ValueType);
329}
330
331/// This function should be invoked to emit atomic cmpxchg for Microsoft's
332/// _InterlockedCompareExchange* intrinsics which have the following signature:
333/// T _InterlockedCompareExchange(T volatile *Destination,
334/// T Exchange,
335/// T Comparand);
336///
337/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
338/// cmpxchg *Destination, Comparand, Exchange.
339/// So we need to swap Comparand and Exchange when invoking
340/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
341/// function MakeAtomicCmpXchgValue since it expects the arguments to be
342/// already swapped.
343
344static
345Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
346 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
347 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 347, __extension__ __PRETTY_FUNCTION__
))
;
348 assert(CGF.getContext().hasSameUnqualifiedType((static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 349, __extension__ __PRETTY_FUNCTION__
))
349 E->getType(), E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 349, __extension__ __PRETTY_FUNCTION__
))
;
350 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 351, __extension__ __PRETTY_FUNCTION__
))
351 E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 351, __extension__ __PRETTY_FUNCTION__
))
;
352 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 353, __extension__ __PRETTY_FUNCTION__
))
353 E->getArg(2)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 353, __extension__ __PRETTY_FUNCTION__
))
;
354
355 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
356 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
357 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
358
359 // For Release ordering, the failure ordering should be Monotonic.
360 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
361 AtomicOrdering::Monotonic :
362 SuccessOrdering;
363
364 // The atomic instruction is marked volatile for consistency with MSVC. This
365 // blocks the few atomics optimizations that LLVM has. If we want to optimize
366 // _Interlocked* operations in the future, we will have to remove the volatile
367 // marker.
368 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
369 Destination, Comparand, Exchange,
370 SuccessOrdering, FailureOrdering);
371 Result->setVolatile(true);
372 return CGF.Builder.CreateExtractValue(Result, 0);
373}
374
375// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
376// prototyped like this:
377//
378// unsigned char _InterlockedCompareExchange128...(
379// __int64 volatile * _Destination,
380// __int64 _ExchangeHigh,
381// __int64 _ExchangeLow,
382// __int64 * _ComparandResult);
383static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
384 const CallExpr *E,
385 AtomicOrdering SuccessOrdering) {
386 assert(E->getNumArgs() == 4)(static_cast <bool> (E->getNumArgs() == 4) ? void (0
) : __assert_fail ("E->getNumArgs() == 4", "clang/lib/CodeGen/CGBuiltin.cpp"
, 386, __extension__ __PRETTY_FUNCTION__))
;
387 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
388 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
389 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
390 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
391
392 assert(Destination->getType()->isPointerTy())(static_cast <bool> (Destination->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Destination->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 392, __extension__ __PRETTY_FUNCTION__
))
;
393 assert(!ExchangeHigh->getType()->isPointerTy())(static_cast <bool> (!ExchangeHigh->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeHigh->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 393, __extension__ __PRETTY_FUNCTION__
))
;
394 assert(!ExchangeLow->getType()->isPointerTy())(static_cast <bool> (!ExchangeLow->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeLow->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 394, __extension__ __PRETTY_FUNCTION__
))
;
395 assert(ComparandPtr->getType()->isPointerTy())(static_cast <bool> (ComparandPtr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("ComparandPtr->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 395, __extension__ __PRETTY_FUNCTION__
))
;
396
397 // For Release ordering, the failure ordering should be Monotonic.
398 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
399 ? AtomicOrdering::Monotonic
400 : SuccessOrdering;
401
402 // Convert to i128 pointers and values.
403 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
404 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
405 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
406 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
407 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
408
409 // (((i128)hi) << 64) | ((i128)lo)
410 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
411 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
412 ExchangeHigh =
413 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
414 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
415
416 // Load the comparand for the instruction.
417 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
418
419 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
420 SuccessOrdering, FailureOrdering);
421
422 // The atomic instruction is marked volatile for consistency with MSVC. This
423 // blocks the few atomics optimizations that LLVM has. If we want to optimize
424 // _Interlocked* operations in the future, we will have to remove the volatile
425 // marker.
426 CXI->setVolatile(true);
427
428 // Store the result as an outparameter.
429 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
430 ComparandResult);
431
432 // Get the success boolean and zero extend it to i8.
433 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
434 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
435}
436
437static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
438 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
439 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 439, __extension__ __PRETTY_FUNCTION__
))
;
440
441 auto *IntTy = CGF.ConvertType(E->getType());
442 auto *Result = CGF.Builder.CreateAtomicRMW(
443 AtomicRMWInst::Add,
444 CGF.EmitScalarExpr(E->getArg(0)),
445 ConstantInt::get(IntTy, 1),
446 Ordering);
447 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
448}
449
450static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
451 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
452 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 452, __extension__ __PRETTY_FUNCTION__
))
;
453
454 auto *IntTy = CGF.ConvertType(E->getType());
455 auto *Result = CGF.Builder.CreateAtomicRMW(
456 AtomicRMWInst::Sub,
457 CGF.EmitScalarExpr(E->getArg(0)),
458 ConstantInt::get(IntTy, 1),
459 Ordering);
460 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
461}
462
463// Build a plain volatile load.
464static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
465 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
466 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
467 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
468 llvm::Type *ITy =
469 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
470 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
471 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
472 Load->setVolatile(true);
473 return Load;
474}
475
476// Build a plain volatile store.
477static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
478 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
479 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
480 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
481 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
482 llvm::Type *ITy =
483 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
484 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
485 llvm::StoreInst *Store =
486 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
487 Store->setVolatile(true);
488 return Store;
489}
490
491// Emit a simple mangled intrinsic that has 1 argument and a return type
492// matching the argument type. Depending on mode, this may be a constrained
493// floating-point intrinsic.
494static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
495 const CallExpr *E, unsigned IntrinsicID,
496 unsigned ConstrainedIntrinsicID) {
497 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
498
499 if (CGF.Builder.getIsFPConstrained()) {
500 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
501 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
502 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
503 } else {
504 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
505 return CGF.Builder.CreateCall(F, Src0);
506 }
507}
508
509// Emit an intrinsic that has 2 operands of the same type as its result.
510// Depending on mode, this may be a constrained floating-point intrinsic.
511static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
512 const CallExpr *E, unsigned IntrinsicID,
513 unsigned ConstrainedIntrinsicID) {
514 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
515 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
516
517 if (CGF.Builder.getIsFPConstrained()) {
518 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
519 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
520 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
521 } else {
522 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
523 return CGF.Builder.CreateCall(F, { Src0, Src1 });
524 }
525}
526
527// Emit an intrinsic that has 3 operands of the same type as its result.
528// Depending on mode, this may be a constrained floating-point intrinsic.
529static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
530 const CallExpr *E, unsigned IntrinsicID,
531 unsigned ConstrainedIntrinsicID) {
532 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
533 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
534 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
535
536 if (CGF.Builder.getIsFPConstrained()) {
537 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
538 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
539 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
540 } else {
541 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
542 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
543 }
544}
545
546// Emit an intrinsic where all operands are of the same type as the result.
547// Depending on mode, this may be a constrained floating-point intrinsic.
548static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
549 unsigned IntrinsicID,
550 unsigned ConstrainedIntrinsicID,
551 llvm::Type *Ty,
552 ArrayRef<Value *> Args) {
553 Function *F;
554 if (CGF.Builder.getIsFPConstrained())
555 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
556 else
557 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
558
559 if (CGF.Builder.getIsFPConstrained())
560 return CGF.Builder.CreateConstrainedFPCall(F, Args);
561 else
562 return CGF.Builder.CreateCall(F, Args);
563}
564
565// Emit a simple mangled intrinsic that has 1 argument and a return type
566// matching the argument type.
567static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
568 unsigned IntrinsicID,
569 llvm::StringRef Name = "") {
570 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
571
572 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
573 return CGF.Builder.CreateCall(F, Src0, Name);
574}
575
576// Emit an intrinsic that has 2 operands of the same type as its result.
577static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
578 const CallExpr *E,
579 unsigned IntrinsicID) {
580 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
581 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
582
583 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
584 return CGF.Builder.CreateCall(F, { Src0, Src1 });
585}
586
587// Emit an intrinsic that has 3 operands of the same type as its result.
588static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
589 const CallExpr *E,
590 unsigned IntrinsicID) {
591 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
592 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
593 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
594
595 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
596 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
597}
598
599// Emit an intrinsic that has 1 float or double operand, and 1 integer.
600static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
601 const CallExpr *E,
602 unsigned IntrinsicID) {
603 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
604 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
605
606 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
607 return CGF.Builder.CreateCall(F, {Src0, Src1});
608}
609
610// Emit an intrinsic that has overloaded integer result and fp operand.
611static Value *
612emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
613 unsigned IntrinsicID,
614 unsigned ConstrainedIntrinsicID) {
615 llvm::Type *ResultType = CGF.ConvertType(E->getType());
616 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
617
618 if (CGF.Builder.getIsFPConstrained()) {
619 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
620 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
621 {ResultType, Src0->getType()});
622 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
623 } else {
624 Function *F =
625 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
626 return CGF.Builder.CreateCall(F, Src0);
627 }
628}
629
630/// EmitFAbs - Emit a call to @llvm.fabs().
631static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
632 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
633 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
634 Call->setDoesNotAccessMemory();
635 return Call;
636}
637
638/// Emit the computation of the sign bit for a floating point value. Returns
639/// the i1 sign bit value.
640static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
641 LLVMContext &C = CGF.CGM.getLLVMContext();
642
643 llvm::Type *Ty = V->getType();
644 int Width = Ty->getPrimitiveSizeInBits();
645 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
646 V = CGF.Builder.CreateBitCast(V, IntTy);
647 if (Ty->isPPC_FP128Ty()) {
648 // We want the sign bit of the higher-order double. The bitcast we just
649 // did works as if the double-double was stored to memory and then
650 // read as an i128. The "store" will put the higher-order double in the
651 // lower address in both little- and big-Endian modes, but the "load"
652 // will treat those bits as a different part of the i128: the low bits in
653 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
654 // we need to shift the high bits down to the low before truncating.
655 Width >>= 1;
656 if (CGF.getTarget().isBigEndian()) {
657 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
658 V = CGF.Builder.CreateLShr(V, ShiftCst);
659 }
660 // We are truncating value in order to extract the higher-order
661 // double, which we will be using to extract the sign from.
662 IntTy = llvm::IntegerType::get(C, Width);
663 V = CGF.Builder.CreateTrunc(V, IntTy);
664 }
665 Value *Zero = llvm::Constant::getNullValue(IntTy);
666 return CGF.Builder.CreateICmpSLT(V, Zero);
667}
668
669static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
670 const CallExpr *E, llvm::Constant *calleeValue) {
671 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
672 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
673}
674
675/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
676/// depending on IntrinsicID.
677///
678/// \arg CGF The current codegen function.
679/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
680/// \arg X The first argument to the llvm.*.with.overflow.*.
681/// \arg Y The second argument to the llvm.*.with.overflow.*.
682/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
683/// \returns The result (i.e. sum/product) returned by the intrinsic.
684static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
685 const llvm::Intrinsic::ID IntrinsicID,
686 llvm::Value *X, llvm::Value *Y,
687 llvm::Value *&Carry) {
688 // Make sure we have integers of the same width.
689 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 691, __extension__ __PRETTY_FUNCTION__
))
690 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 691, __extension__ __PRETTY_FUNCTION__
))
691 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 691, __extension__ __PRETTY_FUNCTION__
))
;
692
693 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
694 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
695 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
696 return CGF.Builder.CreateExtractValue(Tmp, 0);
697}
698
699static Value *emitRangedBuiltin(CodeGenFunction &CGF,
700 unsigned IntrinsicID,
701 int low, int high) {
702 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
703 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
704 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
705 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
706 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
707 Call->setMetadata(llvm::LLVMContext::MD_noundef,
708 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
709 return Call;
710}
711
712namespace {
713 struct WidthAndSignedness {
714 unsigned Width;
715 bool Signed;
716 };
717}
718
719static WidthAndSignedness
720getIntegerWidthAndSignedness(const clang::ASTContext &context,
721 const clang::QualType Type) {
722 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 722, __extension__ __PRETTY_FUNCTION__
))
;
723 unsigned Width = Type->isBooleanType() ? 1
724 : Type->isBitIntType() ? context.getIntWidth(Type)
725 : context.getTypeInfo(Type).Width;
726 bool Signed = Type->isSignedIntegerType();
727 return {Width, Signed};
728}
729
730// Given one or more integer types, this function produces an integer type that
731// encompasses them: any value in one of the given types could be expressed in
732// the encompassing type.
733static struct WidthAndSignedness
734EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
735 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 735, __extension__ __PRETTY_FUNCTION__
))
;
736
737 // If any of the given types is signed, we must return a signed type.
738 bool Signed = false;
739 for (const auto &Type : Types) {
740 Signed |= Type.Signed;
741 }
742
743 // The encompassing type must have a width greater than or equal to the width
744 // of the specified types. Additionally, if the encompassing type is signed,
745 // its width must be strictly greater than the width of any unsigned types
746 // given.
747 unsigned Width = 0;
748 for (const auto &Type : Types) {
749 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
750 if (Width < MinWidth) {
751 Width = MinWidth;
752 }
753 }
754
755 return {Width, Signed};
756}
757
758Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
759 llvm::Type *DestType = Int8PtrTy;
760 if (ArgValue->getType() != DestType)
761 ArgValue =
762 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
763
764 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
765 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
766}
767
768/// Checks if using the result of __builtin_object_size(p, @p From) in place of
769/// __builtin_object_size(p, @p To) is correct
770static bool areBOSTypesCompatible(int From, int To) {
771 // Note: Our __builtin_object_size implementation currently treats Type=0 and
772 // Type=2 identically. Encoding this implementation detail here may make
773 // improving __builtin_object_size difficult in the future, so it's omitted.
774 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
775}
776
777static llvm::Value *
778getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
779 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
780}
781
782llvm::Value *
783CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
784 llvm::IntegerType *ResType,
785 llvm::Value *EmittedE,
786 bool IsDynamic) {
787 uint64_t ObjectSize;
788 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
789 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
790 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
791}
792
793/// Returns a Value corresponding to the size of the given expression.
794/// This Value may be either of the following:
795/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
796/// it)
797/// - A call to the @llvm.objectsize intrinsic
798///
799/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
800/// and we wouldn't otherwise try to reference a pass_object_size parameter,
801/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
802llvm::Value *
803CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
804 llvm::IntegerType *ResType,
805 llvm::Value *EmittedE, bool IsDynamic) {
806 // We need to reference an argument if the pointer is a parameter with the
807 // pass_object_size attribute.
808 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
809 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
810 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
811 if (Param != nullptr && PS != nullptr &&
812 areBOSTypesCompatible(PS->getType(), Type)) {
813 auto Iter = SizeArguments.find(Param);
814 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 814, __extension__ __PRETTY_FUNCTION__))
;
815
816 const ImplicitParamDecl *D = Iter->second;
817 auto DIter = LocalDeclMap.find(D);
818 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 818, __extension__ __PRETTY_FUNCTION__))
;
819
820 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
821 getContext().getSizeType(), E->getBeginLoc());
822 }
823 }
824
825 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
826 // evaluate E for side-effects. In either case, we shouldn't lower to
827 // @llvm.objectsize.
828 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
829 return getDefaultBuiltinObjectSizeResult(Type, ResType);
830
831 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
832 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 833, __extension__ __PRETTY_FUNCTION__
))
833 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 833, __extension__ __PRETTY_FUNCTION__
))
;
834
835 Function *F =
836 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
837
838 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
839 Value *Min = Builder.getInt1((Type & 2) != 0);
840 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
841 Value *NullIsUnknown = Builder.getTrue();
842 Value *Dynamic = Builder.getInt1(IsDynamic);
843 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
844}
845
846namespace {
847/// A struct to generically describe a bit test intrinsic.
848struct BitTest {
849 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
850 enum InterlockingKind : uint8_t {
851 Unlocked,
852 Sequential,
853 Acquire,
854 Release,
855 NoFence
856 };
857
858 ActionKind Action;
859 InterlockingKind Interlocking;
860 bool Is64Bit;
861
862 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
863};
864} // namespace
865
866BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
867 switch (BuiltinID) {
868 // Main portable variants.
869 case Builtin::BI_bittest:
870 return {TestOnly, Unlocked, false};
871 case Builtin::BI_bittestandcomplement:
872 return {Complement, Unlocked, false};
873 case Builtin::BI_bittestandreset:
874 return {Reset, Unlocked, false};
875 case Builtin::BI_bittestandset:
876 return {Set, Unlocked, false};
877 case Builtin::BI_interlockedbittestandreset:
878 return {Reset, Sequential, false};
879 case Builtin::BI_interlockedbittestandset:
880 return {Set, Sequential, false};
881
882 // X86-specific 64-bit variants.
883 case Builtin::BI_bittest64:
884 return {TestOnly, Unlocked, true};
885 case Builtin::BI_bittestandcomplement64:
886 return {Complement, Unlocked, true};
887 case Builtin::BI_bittestandreset64:
888 return {Reset, Unlocked, true};
889 case Builtin::BI_bittestandset64:
890 return {Set, Unlocked, true};
891 case Builtin::BI_interlockedbittestandreset64:
892 return {Reset, Sequential, true};
893 case Builtin::BI_interlockedbittestandset64:
894 return {Set, Sequential, true};
895
896 // ARM/AArch64-specific ordering variants.
897 case Builtin::BI_interlockedbittestandset_acq:
898 return {Set, Acquire, false};
899 case Builtin::BI_interlockedbittestandset_rel:
900 return {Set, Release, false};
901 case Builtin::BI_interlockedbittestandset_nf:
902 return {Set, NoFence, false};
903 case Builtin::BI_interlockedbittestandreset_acq:
904 return {Reset, Acquire, false};
905 case Builtin::BI_interlockedbittestandreset_rel:
906 return {Reset, Release, false};
907 case Builtin::BI_interlockedbittestandreset_nf:
908 return {Reset, NoFence, false};
909 }
910 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 910)
;
911}
912
913static char bitActionToX86BTCode(BitTest::ActionKind A) {
914 switch (A) {
915 case BitTest::TestOnly: return '\0';
916 case BitTest::Complement: return 'c';
917 case BitTest::Reset: return 'r';
918 case BitTest::Set: return 's';
919 }
920 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "clang/lib/CodeGen/CGBuiltin.cpp"
, 920)
;
921}
922
923static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
924 BitTest BT,
925 const CallExpr *E, Value *BitBase,
926 Value *BitPos) {
927 char Action = bitActionToX86BTCode(BT.Action);
928 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
929
930 // Build the assembly.
931 SmallString<64> Asm;
932 raw_svector_ostream AsmOS(Asm);
933 if (BT.Interlocking != BitTest::Unlocked)
934 AsmOS << "lock ";
935 AsmOS << "bt";
936 if (Action)
937 AsmOS << Action;
938 AsmOS << SizeSuffix << " $2, ($1)";
939
940 // Build the constraints. FIXME: We should support immediates when possible.
941 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
942 std::string_view MachineClobbers = CGF.getTarget().getClobbers();
943 if (!MachineClobbers.empty()) {
944 Constraints += ',';
945 Constraints += MachineClobbers;
946 }
947 llvm::IntegerType *IntType = llvm::IntegerType::get(
948 CGF.getLLVMContext(),
949 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
950 llvm::Type *IntPtrType = IntType->getPointerTo();
951 llvm::FunctionType *FTy =
952 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
953
954 llvm::InlineAsm *IA =
955 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
956 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
957}
958
959static llvm::AtomicOrdering
960getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
961 switch (I) {
962 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
963 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
964 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
965 case BitTest::Release: return llvm::AtomicOrdering::Release;
966 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
967 }
968 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "clang/lib/CodeGen/CGBuiltin.cpp"
, 968)
;
969}
970
971/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
972/// bits and a bit position and read and optionally modify the bit at that
973/// position. The position index can be arbitrarily large, i.e. it can be larger
974/// than 31 or 63, so we need an indexed load in the general case.
975static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
976 unsigned BuiltinID,
977 const CallExpr *E) {
978 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
979 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
980
981 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
982
983 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
984 // indexing operation internally. Use them if possible.
985 if (CGF.getTarget().getTriple().isX86())
986 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
987
988 // Otherwise, use generic code to load one byte and test the bit. Use all but
989 // the bottom three bits as the array index, and the bottom three bits to form
990 // a mask.
991 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
992 Value *ByteIndex = CGF.Builder.CreateAShr(
993 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
994 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
995 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
996 ByteIndex, "bittest.byteaddr"),
997 CGF.Int8Ty, CharUnits::One());
998 Value *PosLow =
999 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1000 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1001
1002 // The updating instructions will need a mask.
1003 Value *Mask = nullptr;
1004 if (BT.Action != BitTest::TestOnly) {
1005 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1006 "bittest.mask");
1007 }
1008
1009 // Check the action and ordering of the interlocked intrinsics.
1010 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1011
1012 Value *OldByte = nullptr;
1013 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1014 // Emit a combined atomicrmw load/store operation for the interlocked
1015 // intrinsics.
1016 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1017 if (BT.Action == BitTest::Reset) {
1018 Mask = CGF.Builder.CreateNot(Mask);
1019 RMWOp = llvm::AtomicRMWInst::And;
1020 }
1021 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
1022 Ordering);
1023 } else {
1024 // Emit a plain load for the non-interlocked intrinsics.
1025 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1026 Value *NewByte = nullptr;
1027 switch (BT.Action) {
1028 case BitTest::TestOnly:
1029 // Don't store anything.
1030 break;
1031 case BitTest::Complement:
1032 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1033 break;
1034 case BitTest::Reset:
1035 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1036 break;
1037 case BitTest::Set:
1038 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1039 break;
1040 }
1041 if (NewByte)
1042 CGF.Builder.CreateStore(NewByte, ByteAddr);
1043 }
1044
1045 // However we loaded the old byte, either by plain load or atomicrmw, shift
1046 // the bit into the low position and mask it to 0 or 1.
1047 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1048 return CGF.Builder.CreateAnd(
1049 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1050}
1051
1052static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1053 unsigned BuiltinID,
1054 const CallExpr *E) {
1055 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1056
1057 SmallString<64> Asm;
1058 raw_svector_ostream AsmOS(Asm);
1059 llvm::IntegerType *RetType = CGF.Int32Ty;
Value stored to 'RetType' during its initialization is never read
1060
1061 switch (BuiltinID) {
1062 case clang::PPC::BI__builtin_ppc_ldarx:
1063 AsmOS << "ldarx ";
1064 RetType = CGF.Int64Ty;
1065 break;
1066 case clang::PPC::BI__builtin_ppc_lwarx:
1067 AsmOS << "lwarx ";
1068 RetType = CGF.Int32Ty;
1069 break;
1070 case clang::PPC::BI__builtin_ppc_lharx:
1071 AsmOS << "lharx ";
1072 RetType = CGF.Int16Ty;
1073 break;
1074 case clang::PPC::BI__builtin_ppc_lbarx:
1075 AsmOS << "lbarx ";
1076 RetType = CGF.Int8Ty;
1077 break;
1078 default:
1079 llvm_unreachable("Expected only PowerPC load reserve intrinsics")::llvm::llvm_unreachable_internal("Expected only PowerPC load reserve intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1079)
;
1080 }
1081
1082 AsmOS << "$0, ${1:y}";
1083
1084 std::string Constraints = "=r,*Z,~{memory}";
1085 std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1086 if (!MachineClobbers.empty()) {
1087 Constraints += ',';
1088 Constraints += MachineClobbers;
1089 }
1090
1091 llvm::Type *IntPtrType = RetType->getPointerTo();
1092 llvm::FunctionType *FTy =
1093 llvm::FunctionType::get(RetType, {IntPtrType}, false);
1094
1095 llvm::InlineAsm *IA =
1096 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1097 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1098 CI->addParamAttr(
1099 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1100 return CI;
1101}
1102
1103namespace {
1104enum class MSVCSetJmpKind {
1105 _setjmpex,
1106 _setjmp3,
1107 _setjmp
1108};
1109}
1110
1111/// MSVC handles setjmp a bit differently on different platforms. On every
1112/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1113/// parameters can be passed as variadic arguments, but we always pass none.
1114static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1115 const CallExpr *E) {
1116 llvm::Value *Arg1 = nullptr;
1117 llvm::Type *Arg1Ty = nullptr;
1118 StringRef Name;
1119 bool IsVarArg = false;
1120 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1121 Name = "_setjmp3";
1122 Arg1Ty = CGF.Int32Ty;
1123 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1124 IsVarArg = true;
1125 } else {
1126 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1127 Arg1Ty = CGF.Int8PtrTy;
1128 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1129 Arg1 = CGF.Builder.CreateCall(
1130 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1131 } else
1132 Arg1 = CGF.Builder.CreateCall(
1133 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1134 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1135 }
1136
1137 // Mark the call site and declaration with ReturnsTwice.
1138 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1139 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1140 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1141 llvm::Attribute::ReturnsTwice);
1142 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1143 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1144 ReturnsTwiceAttr, /*Local=*/true);
1145
1146 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1147 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1148 llvm::Value *Args[] = {Buf, Arg1};
1149 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1150 CB->setAttributes(ReturnsTwiceAttr);
1151 return RValue::get(CB);
1152}
1153
1154// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1155// we handle them here.
1156enum class CodeGenFunction::MSVCIntrin {
1157 _BitScanForward,
1158 _BitScanReverse,
1159 _InterlockedAnd,
1160 _InterlockedDecrement,
1161 _InterlockedExchange,
1162 _InterlockedExchangeAdd,
1163 _InterlockedExchangeSub,
1164 _InterlockedIncrement,
1165 _InterlockedOr,
1166 _InterlockedXor,
1167 _InterlockedExchangeAdd_acq,
1168 _InterlockedExchangeAdd_rel,
1169 _InterlockedExchangeAdd_nf,
1170 _InterlockedExchange_acq,
1171 _InterlockedExchange_rel,
1172 _InterlockedExchange_nf,
1173 _InterlockedCompareExchange_acq,
1174 _InterlockedCompareExchange_rel,
1175 _InterlockedCompareExchange_nf,
1176 _InterlockedCompareExchange128,
1177 _InterlockedCompareExchange128_acq,
1178 _InterlockedCompareExchange128_rel,
1179 _InterlockedCompareExchange128_nf,
1180 _InterlockedOr_acq,
1181 _InterlockedOr_rel,
1182 _InterlockedOr_nf,
1183 _InterlockedXor_acq,
1184 _InterlockedXor_rel,
1185 _InterlockedXor_nf,
1186 _InterlockedAnd_acq,
1187 _InterlockedAnd_rel,
1188 _InterlockedAnd_nf,
1189 _InterlockedIncrement_acq,
1190 _InterlockedIncrement_rel,
1191 _InterlockedIncrement_nf,
1192 _InterlockedDecrement_acq,
1193 _InterlockedDecrement_rel,
1194 _InterlockedDecrement_nf,
1195 __fastfail,
1196};
1197
1198static std::optional<CodeGenFunction::MSVCIntrin>
1199translateArmToMsvcIntrin(unsigned BuiltinID) {
1200 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1201 switch (BuiltinID) {
1202 default:
1203 return std::nullopt;
1204 case clang::ARM::BI_BitScanForward:
1205 case clang::ARM::BI_BitScanForward64:
1206 return MSVCIntrin::_BitScanForward;
1207 case clang::ARM::BI_BitScanReverse:
1208 case clang::ARM::BI_BitScanReverse64:
1209 return MSVCIntrin::_BitScanReverse;
1210 case clang::ARM::BI_InterlockedAnd64:
1211 return MSVCIntrin::_InterlockedAnd;
1212 case clang::ARM::BI_InterlockedExchange64:
1213 return MSVCIntrin::_InterlockedExchange;
1214 case clang::ARM::BI_InterlockedExchangeAdd64:
1215 return MSVCIntrin::_InterlockedExchangeAdd;
1216 case clang::ARM::BI_InterlockedExchangeSub64:
1217 return MSVCIntrin::_InterlockedExchangeSub;
1218 case clang::ARM::BI_InterlockedOr64:
1219 return MSVCIntrin::_InterlockedOr;
1220 case clang::ARM::BI_InterlockedXor64:
1221 return MSVCIntrin::_InterlockedXor;
1222 case clang::ARM::BI_InterlockedDecrement64:
1223 return MSVCIntrin::_InterlockedDecrement;
1224 case clang::ARM::BI_InterlockedIncrement64:
1225 return MSVCIntrin::_InterlockedIncrement;
1226 case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1227 case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1228 case clang::ARM::BI_InterlockedExchangeAdd_acq:
1229 case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1230 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1231 case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1232 case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1233 case clang::ARM::BI_InterlockedExchangeAdd_rel:
1234 case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1235 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1236 case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1237 case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1238 case clang::ARM::BI_InterlockedExchangeAdd_nf:
1239 case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1240 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1241 case clang::ARM::BI_InterlockedExchange8_acq:
1242 case clang::ARM::BI_InterlockedExchange16_acq:
1243 case clang::ARM::BI_InterlockedExchange_acq:
1244 case clang::ARM::BI_InterlockedExchange64_acq:
1245 return MSVCIntrin::_InterlockedExchange_acq;
1246 case clang::ARM::BI_InterlockedExchange8_rel:
1247 case clang::ARM::BI_InterlockedExchange16_rel:
1248 case clang::ARM::BI_InterlockedExchange_rel:
1249 case clang::ARM::BI_InterlockedExchange64_rel:
1250 return MSVCIntrin::_InterlockedExchange_rel;
1251 case clang::ARM::BI_InterlockedExchange8_nf:
1252 case clang::ARM::BI_InterlockedExchange16_nf:
1253 case clang::ARM::BI_InterlockedExchange_nf:
1254 case clang::ARM::BI_InterlockedExchange64_nf:
1255 return MSVCIntrin::_InterlockedExchange_nf;
1256 case clang::ARM::BI_InterlockedCompareExchange8_acq:
1257 case clang::ARM::BI_InterlockedCompareExchange16_acq:
1258 case clang::ARM::BI_InterlockedCompareExchange_acq:
1259 case clang::ARM::BI_InterlockedCompareExchange64_acq:
1260 return MSVCIntrin::_InterlockedCompareExchange_acq;
1261 case clang::ARM::BI_InterlockedCompareExchange8_rel:
1262 case clang::ARM::BI_InterlockedCompareExchange16_rel:
1263 case clang::ARM::BI_InterlockedCompareExchange_rel:
1264 case clang::ARM::BI_InterlockedCompareExchange64_rel:
1265 return MSVCIntrin::_InterlockedCompareExchange_rel;
1266 case clang::ARM::BI_InterlockedCompareExchange8_nf:
1267 case clang::ARM::BI_InterlockedCompareExchange16_nf:
1268 case clang::ARM::BI_InterlockedCompareExchange_nf:
1269 case clang::ARM::BI_InterlockedCompareExchange64_nf:
1270 return MSVCIntrin::_InterlockedCompareExchange_nf;
1271 case clang::ARM::BI_InterlockedOr8_acq:
1272 case clang::ARM::BI_InterlockedOr16_acq:
1273 case clang::ARM::BI_InterlockedOr_acq:
1274 case clang::ARM::BI_InterlockedOr64_acq:
1275 return MSVCIntrin::_InterlockedOr_acq;
1276 case clang::ARM::BI_InterlockedOr8_rel:
1277 case clang::ARM::BI_InterlockedOr16_rel:
1278 case clang::ARM::BI_InterlockedOr_rel:
1279 case clang::ARM::BI_InterlockedOr64_rel:
1280 return MSVCIntrin::_InterlockedOr_rel;
1281 case clang::ARM::BI_InterlockedOr8_nf:
1282 case clang::ARM::BI_InterlockedOr16_nf:
1283 case clang::ARM::BI_InterlockedOr_nf:
1284 case clang::ARM::BI_InterlockedOr64_nf:
1285 return MSVCIntrin::_InterlockedOr_nf;
1286 case clang::ARM::BI_InterlockedXor8_acq:
1287 case clang::ARM::BI_InterlockedXor16_acq:
1288 case clang::ARM::BI_InterlockedXor_acq:
1289 case clang::ARM::BI_InterlockedXor64_acq:
1290 return MSVCIntrin::_InterlockedXor_acq;
1291 case clang::ARM::BI_InterlockedXor8_rel:
1292 case clang::ARM::BI_InterlockedXor16_rel:
1293 case clang::ARM::BI_InterlockedXor_rel:
1294 case clang::ARM::BI_InterlockedXor64_rel:
1295 return MSVCIntrin::_InterlockedXor_rel;
1296 case clang::ARM::BI_InterlockedXor8_nf:
1297 case clang::ARM::BI_InterlockedXor16_nf:
1298 case clang::ARM::BI_InterlockedXor_nf:
1299 case clang::ARM::BI_InterlockedXor64_nf:
1300 return MSVCIntrin::_InterlockedXor_nf;
1301 case clang::ARM::BI_InterlockedAnd8_acq:
1302 case clang::ARM::BI_InterlockedAnd16_acq:
1303 case clang::ARM::BI_InterlockedAnd_acq:
1304 case clang::ARM::BI_InterlockedAnd64_acq:
1305 return MSVCIntrin::_InterlockedAnd_acq;
1306 case clang::ARM::BI_InterlockedAnd8_rel:
1307 case clang::ARM::BI_InterlockedAnd16_rel:
1308 case clang::ARM::BI_InterlockedAnd_rel:
1309 case clang::ARM::BI_InterlockedAnd64_rel:
1310 return MSVCIntrin::_InterlockedAnd_rel;
1311 case clang::ARM::BI_InterlockedAnd8_nf:
1312 case clang::ARM::BI_InterlockedAnd16_nf:
1313 case clang::ARM::BI_InterlockedAnd_nf:
1314 case clang::ARM::BI_InterlockedAnd64_nf:
1315 return MSVCIntrin::_InterlockedAnd_nf;
1316 case clang::ARM::BI_InterlockedIncrement16_acq:
1317 case clang::ARM::BI_InterlockedIncrement_acq:
1318 case clang::ARM::BI_InterlockedIncrement64_acq:
1319 return MSVCIntrin::_InterlockedIncrement_acq;
1320 case clang::ARM::BI_InterlockedIncrement16_rel:
1321 case clang::ARM::BI_InterlockedIncrement_rel:
1322 case clang::ARM::BI_InterlockedIncrement64_rel:
1323 return MSVCIntrin::_InterlockedIncrement_rel;
1324 case clang::ARM::BI_InterlockedIncrement16_nf:
1325 case clang::ARM::BI_InterlockedIncrement_nf:
1326 case clang::ARM::BI_InterlockedIncrement64_nf:
1327 return MSVCIntrin::_InterlockedIncrement_nf;
1328 case clang::ARM::BI_InterlockedDecrement16_acq:
1329 case clang::ARM::BI_InterlockedDecrement_acq:
1330 case clang::ARM::BI_InterlockedDecrement64_acq:
1331 return MSVCIntrin::_InterlockedDecrement_acq;
1332 case clang::ARM::BI_InterlockedDecrement16_rel:
1333 case clang::ARM::BI_InterlockedDecrement_rel:
1334 case clang::ARM::BI_InterlockedDecrement64_rel:
1335 return MSVCIntrin::_InterlockedDecrement_rel;
1336 case clang::ARM::BI_InterlockedDecrement16_nf:
1337 case clang::ARM::BI_InterlockedDecrement_nf:
1338 case clang::ARM::BI_InterlockedDecrement64_nf:
1339 return MSVCIntrin::_InterlockedDecrement_nf;
1340 }
1341 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1341)
;
1342}
1343
1344static std::optional<CodeGenFunction::MSVCIntrin>
1345translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1346 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1347 switch (BuiltinID) {
1348 default:
1349 return std::nullopt;
1350 case clang::AArch64::BI_BitScanForward:
1351 case clang::AArch64::BI_BitScanForward64:
1352 return MSVCIntrin::_BitScanForward;
1353 case clang::AArch64::BI_BitScanReverse:
1354 case clang::AArch64::BI_BitScanReverse64:
1355 return MSVCIntrin::_BitScanReverse;
1356 case clang::AArch64::BI_InterlockedAnd64:
1357 return MSVCIntrin::_InterlockedAnd;
1358 case clang::AArch64::BI_InterlockedExchange64:
1359 return MSVCIntrin::_InterlockedExchange;
1360 case clang::AArch64::BI_InterlockedExchangeAdd64:
1361 return MSVCIntrin::_InterlockedExchangeAdd;
1362 case clang::AArch64::BI_InterlockedExchangeSub64:
1363 return MSVCIntrin::_InterlockedExchangeSub;
1364 case clang::AArch64::BI_InterlockedOr64:
1365 return MSVCIntrin::_InterlockedOr;
1366 case clang::AArch64::BI_InterlockedXor64:
1367 return MSVCIntrin::_InterlockedXor;
1368 case clang::AArch64::BI_InterlockedDecrement64:
1369 return MSVCIntrin::_InterlockedDecrement;
1370 case clang::AArch64::BI_InterlockedIncrement64:
1371 return MSVCIntrin::_InterlockedIncrement;
1372 case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1373 case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1374 case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1375 case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1376 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1377 case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1378 case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1379 case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1380 case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1381 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1382 case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1383 case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1384 case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1385 case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1386 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1387 case clang::AArch64::BI_InterlockedExchange8_acq:
1388 case clang::AArch64::BI_InterlockedExchange16_acq:
1389 case clang::AArch64::BI_InterlockedExchange_acq:
1390 case clang::AArch64::BI_InterlockedExchange64_acq:
1391 return MSVCIntrin::_InterlockedExchange_acq;
1392 case clang::AArch64::BI_InterlockedExchange8_rel:
1393 case clang::AArch64::BI_InterlockedExchange16_rel:
1394 case clang::AArch64::BI_InterlockedExchange_rel:
1395 case clang::AArch64::BI_InterlockedExchange64_rel:
1396 return MSVCIntrin::_InterlockedExchange_rel;
1397 case clang::AArch64::BI_InterlockedExchange8_nf:
1398 case clang::AArch64::BI_InterlockedExchange16_nf:
1399 case clang::AArch64::BI_InterlockedExchange_nf:
1400 case clang::AArch64::BI_InterlockedExchange64_nf:
1401 return MSVCIntrin::_InterlockedExchange_nf;
1402 case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1403 case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1404 case clang::AArch64::BI_InterlockedCompareExchange_acq:
1405 case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1406 return MSVCIntrin::_InterlockedCompareExchange_acq;
1407 case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1408 case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1409 case clang::AArch64::BI_InterlockedCompareExchange_rel:
1410 case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1411 return MSVCIntrin::_InterlockedCompareExchange_rel;
1412 case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1413 case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1414 case clang::AArch64::BI_InterlockedCompareExchange_nf:
1415 case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1416 return MSVCIntrin::_InterlockedCompareExchange_nf;
1417 case clang::AArch64::BI_InterlockedCompareExchange128:
1418 return MSVCIntrin::_InterlockedCompareExchange128;
1419 case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1420 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1421 case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1422 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1423 case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1424 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1425 case clang::AArch64::BI_InterlockedOr8_acq:
1426 case clang::AArch64::BI_InterlockedOr16_acq:
1427 case clang::AArch64::BI_InterlockedOr_acq:
1428 case clang::AArch64::BI_InterlockedOr64_acq:
1429 return MSVCIntrin::_InterlockedOr_acq;
1430 case clang::AArch64::BI_InterlockedOr8_rel:
1431 case clang::AArch64::BI_InterlockedOr16_rel:
1432 case clang::AArch64::BI_InterlockedOr_rel:
1433 case clang::AArch64::BI_InterlockedOr64_rel:
1434 return MSVCIntrin::_InterlockedOr_rel;
1435 case clang::AArch64::BI_InterlockedOr8_nf:
1436 case clang::AArch64::BI_InterlockedOr16_nf:
1437 case clang::AArch64::BI_InterlockedOr_nf:
1438 case clang::AArch64::BI_InterlockedOr64_nf:
1439 return MSVCIntrin::_InterlockedOr_nf;
1440 case clang::AArch64::BI_InterlockedXor8_acq:
1441 case clang::AArch64::BI_InterlockedXor16_acq:
1442 case clang::AArch64::BI_InterlockedXor_acq:
1443 case clang::AArch64::BI_InterlockedXor64_acq:
1444 return MSVCIntrin::_InterlockedXor_acq;
1445 case clang::AArch64::BI_InterlockedXor8_rel:
1446 case clang::AArch64::BI_InterlockedXor16_rel:
1447 case clang::AArch64::BI_InterlockedXor_rel:
1448 case clang::AArch64::BI_InterlockedXor64_rel:
1449 return MSVCIntrin::_InterlockedXor_rel;
1450 case clang::AArch64::BI_InterlockedXor8_nf:
1451 case clang::AArch64::BI_InterlockedXor16_nf:
1452 case clang::AArch64::BI_InterlockedXor_nf:
1453 case clang::AArch64::BI_InterlockedXor64_nf:
1454 return MSVCIntrin::_InterlockedXor_nf;
1455 case clang::AArch64::BI_InterlockedAnd8_acq:
1456 case clang::AArch64::BI_InterlockedAnd16_acq:
1457 case clang::AArch64::BI_InterlockedAnd_acq:
1458 case clang::AArch64::BI_InterlockedAnd64_acq:
1459 return MSVCIntrin::_InterlockedAnd_acq;
1460 case clang::AArch64::BI_InterlockedAnd8_rel:
1461 case clang::AArch64::BI_InterlockedAnd16_rel:
1462 case clang::AArch64::BI_InterlockedAnd_rel:
1463 case clang::AArch64::BI_InterlockedAnd64_rel:
1464 return MSVCIntrin::_InterlockedAnd_rel;
1465 case clang::AArch64::BI_InterlockedAnd8_nf:
1466 case clang::AArch64::BI_InterlockedAnd16_nf:
1467 case clang::AArch64::BI_InterlockedAnd_nf:
1468 case clang::AArch64::BI_InterlockedAnd64_nf:
1469 return MSVCIntrin::_InterlockedAnd_nf;
1470 case clang::AArch64::BI_InterlockedIncrement16_acq:
1471 case clang::AArch64::BI_InterlockedIncrement_acq:
1472 case clang::AArch64::BI_InterlockedIncrement64_acq:
1473 return MSVCIntrin::_InterlockedIncrement_acq;
1474 case clang::AArch64::BI_InterlockedIncrement16_rel:
1475 case clang::AArch64::BI_InterlockedIncrement_rel:
1476 case clang::AArch64::BI_InterlockedIncrement64_rel:
1477 return MSVCIntrin::_InterlockedIncrement_rel;
1478 case clang::AArch64::BI_InterlockedIncrement16_nf:
1479 case clang::AArch64::BI_InterlockedIncrement_nf:
1480 case clang::AArch64::BI_InterlockedIncrement64_nf:
1481 return MSVCIntrin::_InterlockedIncrement_nf;
1482 case clang::AArch64::BI_InterlockedDecrement16_acq:
1483 case clang::AArch64::BI_InterlockedDecrement_acq:
1484 case clang::AArch64::BI_InterlockedDecrement64_acq:
1485 return MSVCIntrin::_InterlockedDecrement_acq;
1486 case clang::AArch64::BI_InterlockedDecrement16_rel:
1487 case clang::AArch64::BI_InterlockedDecrement_rel:
1488 case clang::AArch64::BI_InterlockedDecrement64_rel:
1489 return MSVCIntrin::_InterlockedDecrement_rel;
1490 case clang::AArch64::BI_InterlockedDecrement16_nf:
1491 case clang::AArch64::BI_InterlockedDecrement_nf:
1492 case clang::AArch64::BI_InterlockedDecrement64_nf:
1493 return MSVCIntrin::_InterlockedDecrement_nf;
1494 }
1495 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1495)
;
1496}
1497
1498static std::optional<CodeGenFunction::MSVCIntrin>
1499translateX86ToMsvcIntrin(unsigned BuiltinID) {
1500 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1501 switch (BuiltinID) {
1502 default:
1503 return std::nullopt;
1504 case clang::X86::BI_BitScanForward:
1505 case clang::X86::BI_BitScanForward64:
1506 return MSVCIntrin::_BitScanForward;
1507 case clang::X86::BI_BitScanReverse:
1508 case clang::X86::BI_BitScanReverse64:
1509 return MSVCIntrin::_BitScanReverse;
1510 case clang::X86::BI_InterlockedAnd64:
1511 return MSVCIntrin::_InterlockedAnd;
1512 case clang::X86::BI_InterlockedCompareExchange128:
1513 return MSVCIntrin::_InterlockedCompareExchange128;
1514 case clang::X86::BI_InterlockedExchange64:
1515 return MSVCIntrin::_InterlockedExchange;
1516 case clang::X86::BI_InterlockedExchangeAdd64:
1517 return MSVCIntrin::_InterlockedExchangeAdd;
1518 case clang::X86::BI_InterlockedExchangeSub64:
1519 return MSVCIntrin::_InterlockedExchangeSub;
1520 case clang::X86::BI_InterlockedOr64:
1521 return MSVCIntrin::_InterlockedOr;
1522 case clang::X86::BI_InterlockedXor64:
1523 return MSVCIntrin::_InterlockedXor;
1524 case clang::X86::BI_InterlockedDecrement64:
1525 return MSVCIntrin::_InterlockedDecrement;
1526 case clang::X86::BI_InterlockedIncrement64:
1527 return MSVCIntrin::_InterlockedIncrement;
1528 }
1529 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1529)
;
1530}
1531
1532// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1533Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1534 const CallExpr *E) {
1535 switch (BuiltinID) {
1536 case MSVCIntrin::_BitScanForward:
1537 case MSVCIntrin::_BitScanReverse: {
1538 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1539 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1540
1541 llvm::Type *ArgType = ArgValue->getType();
1542 llvm::Type *IndexType = IndexAddress.getElementType();
1543 llvm::Type *ResultType = ConvertType(E->getType());
1544
1545 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1546 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1547 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1548
1549 BasicBlock *Begin = Builder.GetInsertBlock();
1550 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1551 Builder.SetInsertPoint(End);
1552 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1553
1554 Builder.SetInsertPoint(Begin);
1555 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1556 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1557 Builder.CreateCondBr(IsZero, End, NotZero);
1558 Result->addIncoming(ResZero, Begin);
1559
1560 Builder.SetInsertPoint(NotZero);
1561
1562 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1563 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1564 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1565 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1566 Builder.CreateStore(ZeroCount, IndexAddress, false);
1567 } else {
1568 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1569 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1570
1571 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1572 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1573 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1574 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1575 Builder.CreateStore(Index, IndexAddress, false);
1576 }
1577 Builder.CreateBr(End);
1578 Result->addIncoming(ResOne, NotZero);
1579
1580 Builder.SetInsertPoint(End);
1581 return Result;
1582 }
1583 case MSVCIntrin::_InterlockedAnd:
1584 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1585 case MSVCIntrin::_InterlockedExchange:
1586 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1587 case MSVCIntrin::_InterlockedExchangeAdd:
1588 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1589 case MSVCIntrin::_InterlockedExchangeSub:
1590 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1591 case MSVCIntrin::_InterlockedOr:
1592 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1593 case MSVCIntrin::_InterlockedXor:
1594 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1595 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1596 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1597 AtomicOrdering::Acquire);
1598 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1599 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1600 AtomicOrdering::Release);
1601 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1602 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1603 AtomicOrdering::Monotonic);
1604 case MSVCIntrin::_InterlockedExchange_acq:
1605 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1606 AtomicOrdering::Acquire);
1607 case MSVCIntrin::_InterlockedExchange_rel:
1608 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1609 AtomicOrdering::Release);
1610 case MSVCIntrin::_InterlockedExchange_nf:
1611 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1612 AtomicOrdering::Monotonic);
1613 case MSVCIntrin::_InterlockedCompareExchange_acq:
1614 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1615 case MSVCIntrin::_InterlockedCompareExchange_rel:
1616 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1617 case MSVCIntrin::_InterlockedCompareExchange_nf:
1618 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1619 case MSVCIntrin::_InterlockedCompareExchange128:
1620 return EmitAtomicCmpXchg128ForMSIntrin(
1621 *this, E, AtomicOrdering::SequentiallyConsistent);
1622 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1623 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1624 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1625 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1626 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1627 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1628 case MSVCIntrin::_InterlockedOr_acq:
1629 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1630 AtomicOrdering::Acquire);
1631 case MSVCIntrin::_InterlockedOr_rel:
1632 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1633 AtomicOrdering::Release);
1634 case MSVCIntrin::_InterlockedOr_nf:
1635 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1636 AtomicOrdering::Monotonic);
1637 case MSVCIntrin::_InterlockedXor_acq:
1638 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1639 AtomicOrdering::Acquire);
1640 case MSVCIntrin::_InterlockedXor_rel:
1641 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1642 AtomicOrdering::Release);
1643 case MSVCIntrin::_InterlockedXor_nf:
1644 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1645 AtomicOrdering::Monotonic);
1646 case MSVCIntrin::_InterlockedAnd_acq:
1647 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1648 AtomicOrdering::Acquire);
1649 case MSVCIntrin::_InterlockedAnd_rel:
1650 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1651 AtomicOrdering::Release);
1652 case MSVCIntrin::_InterlockedAnd_nf:
1653 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1654 AtomicOrdering::Monotonic);
1655 case MSVCIntrin::_InterlockedIncrement_acq:
1656 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1657 case MSVCIntrin::_InterlockedIncrement_rel:
1658 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1659 case MSVCIntrin::_InterlockedIncrement_nf:
1660 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1661 case MSVCIntrin::_InterlockedDecrement_acq:
1662 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1663 case MSVCIntrin::_InterlockedDecrement_rel:
1664 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1665 case MSVCIntrin::_InterlockedDecrement_nf:
1666 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1667
1668 case MSVCIntrin::_InterlockedDecrement:
1669 return EmitAtomicDecrementValue(*this, E);
1670 case MSVCIntrin::_InterlockedIncrement:
1671 return EmitAtomicIncrementValue(*this, E);
1672
1673 case MSVCIntrin::__fastfail: {
1674 // Request immediate process termination from the kernel. The instruction
1675 // sequences to do this are documented on MSDN:
1676 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1677 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1678 StringRef Asm, Constraints;
1679 switch (ISA) {
1680 default:
1681 ErrorUnsupported(E, "__fastfail call for this architecture");
1682 break;
1683 case llvm::Triple::x86:
1684 case llvm::Triple::x86_64:
1685 Asm = "int $$0x29";
1686 Constraints = "{cx}";
1687 break;
1688 case llvm::Triple::thumb:
1689 Asm = "udf #251";
1690 Constraints = "{r0}";
1691 break;
1692 case llvm::Triple::aarch64:
1693 Asm = "brk #0xF003";
1694 Constraints = "{w0}";
1695 }
1696 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1697 llvm::InlineAsm *IA =
1698 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1699 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1700 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1701 llvm::Attribute::NoReturn);
1702 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1703 CI->setAttributes(NoReturnAttr);
1704 return CI;
1705 }
1706 }
1707 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1707)
;
1708}
1709
1710namespace {
1711// ARC cleanup for __builtin_os_log_format
1712struct CallObjCArcUse final : EHScopeStack::Cleanup {
1713 CallObjCArcUse(llvm::Value *object) : object(object) {}
1714 llvm::Value *object;
1715
1716 void Emit(CodeGenFunction &CGF, Flags flags) override {
1717 CGF.EmitARCIntrinsicUse(object);
1718 }
1719};
1720}
1721
1722Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1723 BuiltinCheckKind Kind) {
1724 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1725, __extension__ __PRETTY_FUNCTION__
))
1725 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1725, __extension__ __PRETTY_FUNCTION__
))
;
1726
1727 Value *ArgValue = EmitScalarExpr(E);
1728 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1729 return ArgValue;
1730
1731 SanitizerScope SanScope(this);
1732 Value *Cond = Builder.CreateICmpNE(
1733 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1734 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1735 SanitizerHandler::InvalidBuiltin,
1736 {EmitCheckSourceLocation(E->getExprLoc()),
1737 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1738 std::nullopt);
1739 return ArgValue;
1740}
1741
1742/// Get the argument type for arguments to os_log_helper.
1743static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1744 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1745 return C.getCanonicalType(UnsignedTy);
1746}
1747
1748llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1749 const analyze_os_log::OSLogBufferLayout &Layout,
1750 CharUnits BufferAlignment) {
1751 ASTContext &Ctx = getContext();
1752
1753 llvm::SmallString<64> Name;
1754 {
1755 raw_svector_ostream OS(Name);
1756 OS << "__os_log_helper";
1757 OS << "_" << BufferAlignment.getQuantity();
1758 OS << "_" << int(Layout.getSummaryByte());
1759 OS << "_" << int(Layout.getNumArgsByte());
1760 for (const auto &Item : Layout.Items)
1761 OS << "_" << int(Item.getSizeByte()) << "_"
1762 << int(Item.getDescriptorByte());
1763 }
1764
1765 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1766 return F;
1767
1768 llvm::SmallVector<QualType, 4> ArgTys;
1769 FunctionArgList Args;
1770 Args.push_back(ImplicitParamDecl::Create(
1771 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1772 ImplicitParamDecl::Other));
1773 ArgTys.emplace_back(Ctx.VoidPtrTy);
1774
1775 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1776 char Size = Layout.Items[I].getSizeByte();
1777 if (!Size)
1778 continue;
1779
1780 QualType ArgTy = getOSLogArgType(Ctx, Size);
1781 Args.push_back(ImplicitParamDecl::Create(
1782 Ctx, nullptr, SourceLocation(),
1783 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1784 ImplicitParamDecl::Other));
1785 ArgTys.emplace_back(ArgTy);
1786 }
1787
1788 QualType ReturnTy = Ctx.VoidTy;
1789
1790 // The helper function has linkonce_odr linkage to enable the linker to merge
1791 // identical functions. To ensure the merging always happens, 'noinline' is
1792 // attached to the function when compiling with -Oz.
1793 const CGFunctionInfo &FI =
1794 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1795 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1796 llvm::Function *Fn = llvm::Function::Create(
1797 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1798 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1799 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1800 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1801 Fn->setDoesNotThrow();
1802
1803 // Attach 'noinline' at -Oz.
1804 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1805 Fn->addFnAttr(llvm::Attribute::NoInline);
1806
1807 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1808 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1809
1810 // Create a scope with an artificial location for the body of this function.
1811 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1812
1813 CharUnits Offset;
1814 Address BufAddr =
1815 Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1816 BufferAlignment);
1817 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1818 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1819 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1820 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1821
1822 unsigned I = 1;
1823 for (const auto &Item : Layout.Items) {
1824 Builder.CreateStore(
1825 Builder.getInt8(Item.getDescriptorByte()),
1826 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1827 Builder.CreateStore(
1828 Builder.getInt8(Item.getSizeByte()),
1829 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1830
1831 CharUnits Size = Item.size();
1832 if (!Size.getQuantity())
1833 continue;
1834
1835 Address Arg = GetAddrOfLocalVar(Args[I]);
1836 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1837 Addr =
1838 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1839 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1840 Offset += Size;
1841 ++I;
1842 }
1843
1844 FinishFunction();
1845
1846 return Fn;
1847}
1848
1849RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1850 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1851, __extension__ __PRETTY_FUNCTION__
))
1851 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1851, __extension__ __PRETTY_FUNCTION__
))
;
1852 ASTContext &Ctx = getContext();
1853 analyze_os_log::OSLogBufferLayout Layout;
1854 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1855 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1856 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1857
1858 // Ignore argument 1, the format string. It is not currently used.
1859 CallArgList Args;
1860 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1861
1862 for (const auto &Item : Layout.Items) {
1863 int Size = Item.getSizeByte();
1864 if (!Size)
1865 continue;
1866
1867 llvm::Value *ArgVal;
1868
1869 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1870 uint64_t Val = 0;
1871 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1872 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1873 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1874 } else if (const Expr *TheExpr = Item.getExpr()) {
1875 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1876
1877 // If a temporary object that requires destruction after the full
1878 // expression is passed, push a lifetime-extended cleanup to extend its
1879 // lifetime to the end of the enclosing block scope.
1880 auto LifetimeExtendObject = [&](const Expr *E) {
1881 E = E->IgnoreParenCasts();
1882 // Extend lifetimes of objects returned by function calls and message
1883 // sends.
1884
1885 // FIXME: We should do this in other cases in which temporaries are
1886 // created including arguments of non-ARC types (e.g., C++
1887 // temporaries).
1888 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1889 return true;
1890 return false;
1891 };
1892
1893 if (TheExpr->getType()->isObjCRetainableType() &&
1894 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1895 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1896, __extension__ __PRETTY_FUNCTION__
))
1896 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1896, __extension__ __PRETTY_FUNCTION__
))
;
1897 if (!isa<Constant>(ArgVal)) {
1898 CleanupKind Cleanup = getARCCleanupKind();
1899 QualType Ty = TheExpr->getType();
1900 Address Alloca = Address::invalid();
1901 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1902 ArgVal = EmitARCRetain(Ty, ArgVal);
1903 Builder.CreateStore(ArgVal, Addr);
1904 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1905 CodeGenFunction::destroyARCStrongPrecise,
1906 Cleanup & EHCleanup);
1907
1908 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1909 // argument has to be alive.
1910 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1911 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1912 }
1913 }
1914 } else {
1915 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1916 }
1917
1918 unsigned ArgValSize =
1919 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1920 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1921 ArgValSize);
1922 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1923 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1924 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1925 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1926 Args.add(RValue::get(ArgVal), ArgTy);
1927 }
1928
1929 const CGFunctionInfo &FI =
1930 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1931 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1932 Layout, BufAddr.getAlignment());
1933 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1934 return RValue::get(BufAddr.getPointer());
1935}
1936
1937static bool isSpecialUnsignedMultiplySignedResult(
1938 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1939 WidthAndSignedness ResultInfo) {
1940 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1941 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1942 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1943}
1944
1945static RValue EmitCheckedUnsignedMultiplySignedResult(
1946 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1947 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1948 const clang::Expr *ResultArg, QualType ResultQTy,
1949 WidthAndSignedness ResultInfo) {
1950 assert(isSpecialUnsignedMultiplySignedResult((static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1952, __extension__ __PRETTY_FUNCTION__
))
1951 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1952, __extension__ __PRETTY_FUNCTION__
))
1952 "Cannot specialize this multiply")(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1952, __extension__ __PRETTY_FUNCTION__
))
;
1953
1954 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1955 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1956
1957 llvm::Value *HasOverflow;
1958 llvm::Value *Result = EmitOverflowIntrinsic(
1959 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1960
1961 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1962 // however, since the original builtin had a signed result, we need to report
1963 // an overflow when the result is greater than INT_MAX.
1964 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1965 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1966
1967 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1968 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1969
1970 bool isVolatile =
1971 ResultArg->getType()->getPointeeType().isVolatileQualified();
1972 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1973 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1974 isVolatile);
1975 return RValue::get(HasOverflow);
1976}
1977
1978/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1979static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1980 WidthAndSignedness Op1Info,
1981 WidthAndSignedness Op2Info,
1982 WidthAndSignedness ResultInfo) {
1983 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1984 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1985 Op1Info.Signed != Op2Info.Signed;
1986}
1987
1988/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1989/// the generic checked-binop irgen.
1990static RValue
1991EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1992 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1993 WidthAndSignedness Op2Info,
1994 const clang::Expr *ResultArg, QualType ResultQTy,
1995 WidthAndSignedness ResultInfo) {
1996 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1998, __extension__ __PRETTY_FUNCTION__
))
1997 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1998, __extension__ __PRETTY_FUNCTION__
))
1998 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1998, __extension__ __PRETTY_FUNCTION__
))
;
1999
2000 // Emit the signed and unsigned operands.
2001 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2002 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2003 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2004 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2005 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2006 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2007
2008 // One of the operands may be smaller than the other. If so, [s|z]ext it.
2009 if (SignedOpWidth < UnsignedOpWidth)
2010 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2011 if (UnsignedOpWidth < SignedOpWidth)
2012 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2013
2014 llvm::Type *OpTy = Signed->getType();
2015 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2016 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2017 llvm::Type *ResTy = ResultPtr.getElementType();
2018 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2019
2020 // Take the absolute value of the signed operand.
2021 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2022 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2023 llvm::Value *AbsSigned =
2024 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2025
2026 // Perform a checked unsigned multiplication.
2027 llvm::Value *UnsignedOverflow;
2028 llvm::Value *UnsignedResult =
2029 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2030 Unsigned, UnsignedOverflow);
2031
2032 llvm::Value *Overflow, *Result;
2033 if (ResultInfo.Signed) {
2034 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2035 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2036 auto IntMax =
2037 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2038 llvm::Value *MaxResult =
2039 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2040 CGF.Builder.CreateZExt(IsNegative, OpTy));
2041 llvm::Value *SignedOverflow =
2042 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2043 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2044
2045 // Prepare the signed result (possibly by negating it).
2046 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2047 llvm::Value *SignedResult =
2048 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2049 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2050 } else {
2051 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2052 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2053 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2054 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2055 if (ResultInfo.Width < OpWidth) {
2056 auto IntMax =
2057 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2058 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2059 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2060 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2061 }
2062
2063 // Negate the product if it would be negative in infinite precision.
2064 Result = CGF.Builder.CreateSelect(
2065 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2066
2067 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2068 }
2069 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2069, __extension__ __PRETTY_FUNCTION__
))
;
2070
2071 bool isVolatile =
2072 ResultArg->getType()->getPointeeType().isVolatileQualified();
2073 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2074 isVolatile);
2075 return RValue::get(Overflow);
2076}
2077
2078static bool
2079TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2080 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2081 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2082 Ty = Ctx.getBaseElementType(Arr);
2083
2084 const auto *Record = Ty->getAsCXXRecordDecl();
2085 if (!Record)
2086 return false;
2087
2088 // We've already checked this type, or are in the process of checking it.
2089 if (!Seen.insert(Record).second)
2090 return false;
2091
2092 assert(Record->hasDefinition() &&(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2093, __extension__ __PRETTY_FUNCTION__
))
2093 "Incomplete types should already be diagnosed")(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2093, __extension__ __PRETTY_FUNCTION__
))
;
2094
2095 if (Record->isDynamicClass())
2096 return true;
2097
2098 for (FieldDecl *F : Record->fields()) {
2099 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2100 return true;
2101 }
2102 return false;
2103}
2104
2105/// Determine if the specified type requires laundering by checking if it is a
2106/// dynamic class type or contains a subobject which is a dynamic class type.
2107static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2108 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2109 return false;
2110 llvm::SmallPtrSet<const Decl *, 16> Seen;
2111 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2112}
2113
2114RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2115 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2116 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2117
2118 // The builtin's shift arg may have a different type than the source arg and
2119 // result, but the LLVM intrinsic uses the same type for all values.
2120 llvm::Type *Ty = Src->getType();
2121 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2122
2123 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2124 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2125 Function *F = CGM.getIntrinsic(IID, Ty);
2126 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2127}
2128
2129// Map math builtins for long-double to f128 version.
2130static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2131 switch (BuiltinID) {
2132#define MUTATE_LDBL(func) \
2133 case Builtin::BI__builtin_##func##l: \
2134 return Builtin::BI__builtin_##func##f128;
2135 MUTATE_LDBL(sqrt)
2136 MUTATE_LDBL(cbrt)
2137 MUTATE_LDBL(fabs)
2138 MUTATE_LDBL(log)
2139 MUTATE_LDBL(log2)
2140 MUTATE_LDBL(log10)
2141 MUTATE_LDBL(log1p)
2142 MUTATE_LDBL(logb)
2143 MUTATE_LDBL(exp)
2144 MUTATE_LDBL(exp2)
2145 MUTATE_LDBL(expm1)
2146 MUTATE_LDBL(fdim)
2147 MUTATE_LDBL(hypot)
2148 MUTATE_LDBL(ilogb)
2149 MUTATE_LDBL(pow)
2150 MUTATE_LDBL(fmin)
2151 MUTATE_LDBL(fmax)
2152 MUTATE_LDBL(ceil)
2153 MUTATE_LDBL(trunc)
2154 MUTATE_LDBL(rint)
2155 MUTATE_LDBL(nearbyint)
2156 MUTATE_LDBL(round)
2157 MUTATE_LDBL(floor)
2158 MUTATE_LDBL(lround)
2159 MUTATE_LDBL(llround)
2160 MUTATE_LDBL(lrint)
2161 MUTATE_LDBL(llrint)
2162 MUTATE_LDBL(fmod)
2163 MUTATE_LDBL(modf)
2164 MUTATE_LDBL(nan)
2165 MUTATE_LDBL(nans)
2166 MUTATE_LDBL(inf)
2167 MUTATE_LDBL(fma)
2168 MUTATE_LDBL(sin)
2169 MUTATE_LDBL(cos)
2170 MUTATE_LDBL(tan)
2171 MUTATE_LDBL(sinh)
2172 MUTATE_LDBL(cosh)
2173 MUTATE_LDBL(tanh)
2174 MUTATE_LDBL(asin)
2175 MUTATE_LDBL(acos)
2176 MUTATE_LDBL(atan)
2177 MUTATE_LDBL(asinh)
2178 MUTATE_LDBL(acosh)
2179 MUTATE_LDBL(atanh)
2180 MUTATE_LDBL(atan2)
2181 MUTATE_LDBL(erf)
2182 MUTATE_LDBL(erfc)
2183 MUTATE_LDBL(ldexp)
2184 MUTATE_LDBL(frexp)
2185 MUTATE_LDBL(huge_val)
2186 MUTATE_LDBL(copysign)
2187 MUTATE_LDBL(nextafter)
2188 MUTATE_LDBL(nexttoward)
2189 MUTATE_LDBL(remainder)
2190 MUTATE_LDBL(remquo)
2191 MUTATE_LDBL(scalbln)
2192 MUTATE_LDBL(scalbn)
2193 MUTATE_LDBL(tgamma)
2194 MUTATE_LDBL(lgamma)
2195#undef MUTATE_LDBL
2196 default:
2197 return BuiltinID;
2198 }
2199}
2200
2201RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2202 const CallExpr *E,
2203 ReturnValueSlot ReturnValue) {
2204 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2205 // See if we can constant fold this builtin. If so, don't emit it at all.
2206 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2207 Expr::EvalResult Result;
2208 if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2209 !Result.hasSideEffects()) {
2210 if (Result.Val.isInt())
2211 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2212 Result.Val.getInt()));
2213 if (Result.Val.isFloat())
2214 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2215 Result.Val.getFloat()));
2216 }
2217
2218 // If current long-double semantics is IEEE 128-bit, replace math builtins
2219 // of long-double with f128 equivalent.
2220 // TODO: This mutation should also be applied to other targets other than PPC,
2221 // after backend supports IEEE 128-bit style libcalls.
2222 if (getTarget().getTriple().isPPC64() &&
2223 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2224 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2225
2226 // If the builtin has been declared explicitly with an assembler label,
2227 // disable the specialized emitting below. Ideally we should communicate the
2228 // rename in IR, or at least avoid generating the intrinsic calls that are
2229 // likely to get lowered to the renamed library functions.
2230 const unsigned BuiltinIDIfNoAsmLabel =
2231 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2232
2233 // There are LLVM math intrinsics/instructions corresponding to math library
2234 // functions except the LLVM op will never set errno while the math library
2235 // might. Also, math builtins have the same semantics as their math library
2236 // twins. Thus, we can transform math library and builtin calls to their
2237 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2238 // In case FP exceptions are enabled, the experimental versions of the
2239 // intrinsics model those.
2240 bool ConstWithoutErrnoAndExceptions =
2241 getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2242 bool ConstWithoutExceptions =
2243 getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2244 if (FD->hasAttr<ConstAttr>() ||
2245 ((ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
2246 (!ConstWithoutErrnoAndExceptions || (!getLangOpts().MathErrno)))) {
2247 switch (BuiltinIDIfNoAsmLabel) {
2248 case Builtin::BIceil:
2249 case Builtin::BIceilf:
2250 case Builtin::BIceill:
2251 case Builtin::BI__builtin_ceil:
2252 case Builtin::BI__builtin_ceilf:
2253 case Builtin::BI__builtin_ceilf16:
2254 case Builtin::BI__builtin_ceill:
2255 case Builtin::BI__builtin_ceilf128:
2256 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2257 Intrinsic::ceil,
2258 Intrinsic::experimental_constrained_ceil));
2259
2260 case Builtin::BIcopysign:
2261 case Builtin::BIcopysignf:
2262 case Builtin::BIcopysignl:
2263 case Builtin::BI__builtin_copysign:
2264 case Builtin::BI__builtin_copysignf:
2265 case Builtin::BI__builtin_copysignf16:
2266 case Builtin::BI__builtin_copysignl:
2267 case Builtin::BI__builtin_copysignf128:
2268 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2269
2270 case Builtin::BIcos:
2271 case Builtin::BIcosf:
2272 case Builtin::BIcosl:
2273 case Builtin::BI__builtin_cos:
2274 case Builtin::BI__builtin_cosf:
2275 case Builtin::BI__builtin_cosf16:
2276 case Builtin::BI__builtin_cosl:
2277 case Builtin::BI__builtin_cosf128:
2278 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2279 Intrinsic::cos,
2280 Intrinsic::experimental_constrained_cos));
2281
2282 case Builtin::BIexp:
2283 case Builtin::BIexpf:
2284 case Builtin::BIexpl:
2285 case Builtin::BI__builtin_exp:
2286 case Builtin::BI__builtin_expf:
2287 case Builtin::BI__builtin_expf16:
2288 case Builtin::BI__builtin_expl:
2289 case Builtin::BI__builtin_expf128:
2290 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2291 Intrinsic::exp,
2292 Intrinsic::experimental_constrained_exp));
2293
2294 case Builtin::BIexp2:
2295 case Builtin::BIexp2f:
2296 case Builtin::BIexp2l:
2297 case Builtin::BI__builtin_exp2:
2298 case Builtin::BI__builtin_exp2f:
2299 case Builtin::BI__builtin_exp2f16:
2300 case Builtin::BI__builtin_exp2l:
2301 case Builtin::BI__builtin_exp2f128:
2302 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2303 Intrinsic::exp2,
2304 Intrinsic::experimental_constrained_exp2));
2305
2306 case Builtin::BIfabs:
2307 case Builtin::BIfabsf:
2308 case Builtin::BIfabsl:
2309 case Builtin::BI__builtin_fabs:
2310 case Builtin::BI__builtin_fabsf:
2311 case Builtin::BI__builtin_fabsf16:
2312 case Builtin::BI__builtin_fabsl:
2313 case Builtin::BI__builtin_fabsf128:
2314 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2315
2316 case Builtin::BIfloor:
2317 case Builtin::BIfloorf:
2318 case Builtin::BIfloorl:
2319 case Builtin::BI__builtin_floor:
2320 case Builtin::BI__builtin_floorf:
2321 case Builtin::BI__builtin_floorf16:
2322 case Builtin::BI__builtin_floorl:
2323 case Builtin::BI__builtin_floorf128:
2324 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2325 Intrinsic::floor,
2326 Intrinsic::experimental_constrained_floor));
2327
2328 case Builtin::BIfma:
2329 case Builtin::BIfmaf:
2330 case Builtin::BIfmal:
2331 case Builtin::BI__builtin_fma:
2332 case Builtin::BI__builtin_fmaf:
2333 case Builtin::BI__builtin_fmaf16:
2334 case Builtin::BI__builtin_fmal:
2335 case Builtin::BI__builtin_fmaf128:
2336 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2337 Intrinsic::fma,
2338 Intrinsic::experimental_constrained_fma));
2339
2340 case Builtin::BIfmax:
2341 case Builtin::BIfmaxf:
2342 case Builtin::BIfmaxl:
2343 case Builtin::BI__builtin_fmax:
2344 case Builtin::BI__builtin_fmaxf:
2345 case Builtin::BI__builtin_fmaxf16:
2346 case Builtin::BI__builtin_fmaxl:
2347 case Builtin::BI__builtin_fmaxf128:
2348 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2349 Intrinsic::maxnum,
2350 Intrinsic::experimental_constrained_maxnum));
2351
2352 case Builtin::BIfmin:
2353 case Builtin::BIfminf:
2354 case Builtin::BIfminl:
2355 case Builtin::BI__builtin_fmin:
2356 case Builtin::BI__builtin_fminf:
2357 case Builtin::BI__builtin_fminf16:
2358 case Builtin::BI__builtin_fminl:
2359 case Builtin::BI__builtin_fminf128:
2360 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2361 Intrinsic::minnum,
2362 Intrinsic::experimental_constrained_minnum));
2363
2364 // fmod() is a special-case. It maps to the frem instruction rather than an
2365 // LLVM intrinsic.
2366 case Builtin::BIfmod:
2367 case Builtin::BIfmodf:
2368 case Builtin::BIfmodl:
2369 case Builtin::BI__builtin_fmod:
2370 case Builtin::BI__builtin_fmodf:
2371 case Builtin::BI__builtin_fmodf16:
2372 case Builtin::BI__builtin_fmodl:
2373 case Builtin::BI__builtin_fmodf128: {
2374 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2375 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2376 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2377 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2378 }
2379
2380 case Builtin::BIlog:
2381 case Builtin::BIlogf:
2382 case Builtin::BIlogl:
2383 case Builtin::BI__builtin_log:
2384 case Builtin::BI__builtin_logf:
2385 case Builtin::BI__builtin_logf16:
2386 case Builtin::BI__builtin_logl:
2387 case Builtin::BI__builtin_logf128:
2388 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2389 Intrinsic::log,
2390 Intrinsic::experimental_constrained_log));
2391
2392 case Builtin::BIlog10:
2393 case Builtin::BIlog10f:
2394 case Builtin::BIlog10l:
2395 case Builtin::BI__builtin_log10:
2396 case Builtin::BI__builtin_log10f:
2397 case Builtin::BI__builtin_log10f16:
2398 case Builtin::BI__builtin_log10l:
2399 case Builtin::BI__builtin_log10f128:
2400 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2401 Intrinsic::log10,
2402 Intrinsic::experimental_constrained_log10));
2403
2404 case Builtin::BIlog2:
2405 case Builtin::BIlog2f:
2406 case Builtin::BIlog2l:
2407 case Builtin::BI__builtin_log2:
2408 case Builtin::BI__builtin_log2f:
2409 case Builtin::BI__builtin_log2f16:
2410 case Builtin::BI__builtin_log2l:
2411 case Builtin::BI__builtin_log2f128:
2412 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2413 Intrinsic::log2,
2414 Intrinsic::experimental_constrained_log2));
2415
2416 case Builtin::BInearbyint:
2417 case Builtin::BInearbyintf:
2418 case Builtin::BInearbyintl:
2419 case Builtin::BI__builtin_nearbyint:
2420 case Builtin::BI__builtin_nearbyintf:
2421 case Builtin::BI__builtin_nearbyintl:
2422 case Builtin::BI__builtin_nearbyintf128:
2423 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2424 Intrinsic::nearbyint,
2425 Intrinsic::experimental_constrained_nearbyint));
2426
2427 case Builtin::BIpow:
2428 case Builtin::BIpowf:
2429 case Builtin::BIpowl:
2430 case Builtin::BI__builtin_pow:
2431 case Builtin::BI__builtin_powf:
2432 case Builtin::BI__builtin_powf16:
2433 case Builtin::BI__builtin_powl:
2434 case Builtin::BI__builtin_powf128:
2435 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2436 Intrinsic::pow,
2437 Intrinsic::experimental_constrained_pow));
2438
2439 case Builtin::BIrint:
2440 case Builtin::BIrintf:
2441 case Builtin::BIrintl:
2442 case Builtin::BI__builtin_rint:
2443 case Builtin::BI__builtin_rintf:
2444 case Builtin::BI__builtin_rintf16:
2445 case Builtin::BI__builtin_rintl:
2446 case Builtin::BI__builtin_rintf128:
2447 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2448 Intrinsic::rint,
2449 Intrinsic::experimental_constrained_rint));
2450
2451 case Builtin::BIround:
2452 case Builtin::BIroundf:
2453 case Builtin::BIroundl:
2454 case Builtin::BI__builtin_round:
2455 case Builtin::BI__builtin_roundf:
2456 case Builtin::BI__builtin_roundf16:
2457 case Builtin::BI__builtin_roundl:
2458 case Builtin::BI__builtin_roundf128:
2459 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2460 Intrinsic::round,
2461 Intrinsic::experimental_constrained_round));
2462
2463 case Builtin::BIroundeven:
2464 case Builtin::BIroundevenf:
2465 case Builtin::BIroundevenl:
2466 case Builtin::BI__builtin_roundeven:
2467 case Builtin::BI__builtin_roundevenf:
2468 case Builtin::BI__builtin_roundevenf16:
2469 case Builtin::BI__builtin_roundevenl:
2470 case Builtin::BI__builtin_roundevenf128:
2471 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2472 Intrinsic::roundeven,
2473 Intrinsic::experimental_constrained_roundeven));
2474
2475 case Builtin::BIsin:
2476 case Builtin::BIsinf:
2477 case Builtin::BIsinl:
2478 case Builtin::BI__builtin_sin:
2479 case Builtin::BI__builtin_sinf:
2480 case Builtin::BI__builtin_sinf16:
2481 case Builtin::BI__builtin_sinl:
2482 case Builtin::BI__builtin_sinf128:
2483 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2484 Intrinsic::sin,
2485 Intrinsic::experimental_constrained_sin));
2486
2487 case Builtin::BIsqrt:
2488 case Builtin::BIsqrtf:
2489 case Builtin::BIsqrtl:
2490 case Builtin::BI__builtin_sqrt:
2491 case Builtin::BI__builtin_sqrtf:
2492 case Builtin::BI__builtin_sqrtf16:
2493 case Builtin::BI__builtin_sqrtl:
2494 case Builtin::BI__builtin_sqrtf128:
2495 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2496 Intrinsic::sqrt,
2497 Intrinsic::experimental_constrained_sqrt));
2498
2499 case Builtin::BItrunc:
2500 case Builtin::BItruncf:
2501 case Builtin::BItruncl:
2502 case Builtin::BI__builtin_trunc:
2503 case Builtin::BI__builtin_truncf:
2504 case Builtin::BI__builtin_truncf16:
2505 case Builtin::BI__builtin_truncl:
2506 case Builtin::BI__builtin_truncf128:
2507 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2508 Intrinsic::trunc,
2509 Intrinsic::experimental_constrained_trunc));
2510
2511 case Builtin::BIlround:
2512 case Builtin::BIlroundf:
2513 case Builtin::BIlroundl:
2514 case Builtin::BI__builtin_lround:
2515 case Builtin::BI__builtin_lroundf:
2516 case Builtin::BI__builtin_lroundl:
2517 case Builtin::BI__builtin_lroundf128:
2518 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2519 *this, E, Intrinsic::lround,
2520 Intrinsic::experimental_constrained_lround));
2521
2522 case Builtin::BIllround:
2523 case Builtin::BIllroundf:
2524 case Builtin::BIllroundl:
2525 case Builtin::BI__builtin_llround:
2526 case Builtin::BI__builtin_llroundf:
2527 case Builtin::BI__builtin_llroundl:
2528 case Builtin::BI__builtin_llroundf128:
2529 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2530 *this, E, Intrinsic::llround,
2531 Intrinsic::experimental_constrained_llround));
2532
2533 case Builtin::BIlrint:
2534 case Builtin::BIlrintf:
2535 case Builtin::BIlrintl:
2536 case Builtin::BI__builtin_lrint:
2537 case Builtin::BI__builtin_lrintf:
2538 case Builtin::BI__builtin_lrintl:
2539 case Builtin::BI__builtin_lrintf128:
2540 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2541 *this, E, Intrinsic::lrint,
2542 Intrinsic::experimental_constrained_lrint));
2543
2544 case Builtin::BIllrint:
2545 case Builtin::BIllrintf:
2546 case Builtin::BIllrintl:
2547 case Builtin::BI__builtin_llrint:
2548 case Builtin::BI__builtin_llrintf:
2549 case Builtin::BI__builtin_llrintl:
2550 case Builtin::BI__builtin_llrintf128:
2551 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2552 *this, E, Intrinsic::llrint,
2553 Intrinsic::experimental_constrained_llrint));
2554
2555 default:
2556 break;
2557 }
2558 }
2559
2560 switch (BuiltinIDIfNoAsmLabel) {
2561 default: break;
2562 case Builtin::BI__builtin___CFStringMakeConstantString:
2563 case Builtin::BI__builtin___NSStringMakeConstantString:
2564 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2565 case Builtin::BI__builtin_stdarg_start:
2566 case Builtin::BI__builtin_va_start:
2567 case Builtin::BI__va_start:
2568 case Builtin::BI__builtin_va_end:
2569 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2570 ? EmitScalarExpr(E->getArg(0))
2571 : EmitVAListRef(E->getArg(0)).getPointer(),
2572 BuiltinID != Builtin::BI__builtin_va_end);
2573 return RValue::get(nullptr);
2574 case Builtin::BI__builtin_va_copy: {
2575 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2576 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2577
2578 llvm::Type *Type = Int8PtrTy;
2579
2580 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2581 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2582 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr});
2583 return RValue::get(nullptr);
2584 }
2585 case Builtin::BI__builtin_abs:
2586 case Builtin::BI__builtin_labs:
2587 case Builtin::BI__builtin_llabs: {
2588 // X < 0 ? -X : X
2589 // The negation has 'nsw' because abs of INT_MIN is undefined.
2590 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2591 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2592 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2593 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2594 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2595 return RValue::get(Result);
2596 }
2597 case Builtin::BI__builtin_complex: {
2598 Value *Real = EmitScalarExpr(E->getArg(0));
2599 Value *Imag = EmitScalarExpr(E->getArg(1));
2600 return RValue::getComplex({Real, Imag});
2601 }
2602 case Builtin::BI__builtin_conj:
2603 case Builtin::BI__builtin_conjf:
2604 case Builtin::BI__builtin_conjl:
2605 case Builtin::BIconj:
2606 case Builtin::BIconjf:
2607 case Builtin::BIconjl: {
2608 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2609 Value *Real = ComplexVal.first;
2610 Value *Imag = ComplexVal.second;
2611 Imag = Builder.CreateFNeg(Imag, "neg");
2612 return RValue::getComplex(std::make_pair(Real, Imag));
2613 }
2614 case Builtin::BI__builtin_creal:
2615 case Builtin::BI__builtin_crealf:
2616 case Builtin::BI__builtin_creall:
2617 case Builtin::BIcreal:
2618 case Builtin::BIcrealf:
2619 case Builtin::BIcreall: {
2620 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2621 return RValue::get(ComplexVal.first);
2622 }
2623
2624 case Builtin::BI__builtin_preserve_access_index: {
2625 // Only enabled preserved access index region when debuginfo
2626 // is available as debuginfo is needed to preserve user-level
2627 // access pattern.
2628 if (!getDebugInfo()) {
2629 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2630 return RValue::get(EmitScalarExpr(E->getArg(0)));
2631 }
2632
2633 // Nested builtin_preserve_access_index() not supported
2634 if (IsInPreservedAIRegion) {
2635 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2636 return RValue::get(EmitScalarExpr(E->getArg(0)));
2637 }
2638
2639 IsInPreservedAIRegion = true;
2640 Value *Res = EmitScalarExpr(E->getArg(0));
2641 IsInPreservedAIRegion = false;
2642 return RValue::get(Res);
2643 }
2644
2645 case Builtin::BI__builtin_cimag:
2646 case Builtin::BI__builtin_cimagf:
2647 case Builtin::BI__builtin_cimagl:
2648 case Builtin::BIcimag:
2649 case Builtin::BIcimagf:
2650 case Builtin::BIcimagl: {
2651 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2652 return RValue::get(ComplexVal.second);
2653 }
2654
2655 case Builtin::BI__builtin_clrsb:
2656 case Builtin::BI__builtin_clrsbl:
2657 case Builtin::BI__builtin_clrsbll: {
2658 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2659 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2660
2661 llvm::Type *ArgType = ArgValue->getType();
2662 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2663
2664 llvm::Type *ResultType = ConvertType(E->getType());
2665 Value *Zero = llvm::Constant::getNullValue(ArgType);
2666 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2667 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2668 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2669 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2670 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2671 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2672 "cast");
2673 return RValue::get(Result);
2674 }
2675 case Builtin::BI__builtin_ctzs:
2676 case Builtin::BI__builtin_ctz:
2677 case Builtin::BI__builtin_ctzl:
2678 case Builtin::BI__builtin_ctzll: {
2679 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2680
2681 llvm::Type *ArgType = ArgValue->getType();
2682 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2683
2684 llvm::Type *ResultType = ConvertType(E->getType());
2685 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2686 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2687 if (Result->getType() != ResultType)
2688 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2689 "cast");
2690 return RValue::get(Result);
2691 }
2692 case Builtin::BI__builtin_clzs:
2693 case Builtin::BI__builtin_clz:
2694 case Builtin::BI__builtin_clzl:
2695 case Builtin::BI__builtin_clzll: {
2696 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2697
2698 llvm::Type *ArgType = ArgValue->getType();
2699 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2700
2701 llvm::Type *ResultType = ConvertType(E->getType());
2702 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2703 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2704 if (Result->getType() != ResultType)
2705 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2706 "cast");
2707 return RValue::get(Result);
2708 }
2709 case Builtin::BI__builtin_ffs:
2710 case Builtin::BI__builtin_ffsl:
2711 case Builtin::BI__builtin_ffsll: {
2712 // ffs(x) -> x ? cttz(x) + 1 : 0
2713 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2714
2715 llvm::Type *ArgType = ArgValue->getType();
2716 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2717
2718 llvm::Type *ResultType = ConvertType(E->getType());
2719 Value *Tmp =
2720 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2721 llvm::ConstantInt::get(ArgType, 1));
2722 Value *Zero = llvm::Constant::getNullValue(ArgType);
2723 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2724 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2725 if (Result->getType() != ResultType)
2726 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2727 "cast");
2728 return RValue::get(Result);
2729 }
2730 case Builtin::BI__builtin_parity:
2731 case Builtin::BI__builtin_parityl:
2732 case Builtin::BI__builtin_parityll: {
2733 // parity(x) -> ctpop(x) & 1
2734 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2735
2736 llvm::Type *ArgType = ArgValue->getType();
2737 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2738
2739 llvm::Type *ResultType = ConvertType(E->getType());
2740 Value *Tmp = Builder.CreateCall(F, ArgValue);
2741 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2742 if (Result->getType() != ResultType)
2743 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2744 "cast");
2745 return RValue::get(Result);
2746 }
2747 case Builtin::BI__lzcnt16:
2748 case Builtin::BI__lzcnt:
2749 case Builtin::BI__lzcnt64: {
2750 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2751
2752 llvm::Type *ArgType = ArgValue->getType();
2753 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2754
2755 llvm::Type *ResultType = ConvertType(E->getType());
2756 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2757 if (Result->getType() != ResultType)
2758 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2759 "cast");
2760 return RValue::get(Result);
2761 }
2762 case Builtin::BI__popcnt16:
2763 case Builtin::BI__popcnt:
2764 case Builtin::BI__popcnt64:
2765 case Builtin::BI__builtin_popcount:
2766 case Builtin::BI__builtin_popcountl:
2767 case Builtin::BI__builtin_popcountll: {
2768 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2769
2770 llvm::Type *ArgType = ArgValue->getType();
2771 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2772
2773 llvm::Type *ResultType = ConvertType(E->getType());
2774 Value *Result = Builder.CreateCall(F, ArgValue);
2775 if (Result->getType() != ResultType)
2776 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2777 "cast");
2778 return RValue::get(Result);
2779 }
2780 case Builtin::BI__builtin_unpredictable: {
2781 // Always return the argument of __builtin_unpredictable. LLVM does not
2782 // handle this builtin. Metadata for this builtin should be added directly
2783 // to instructions such as branches or switches that use it.
2784 return RValue::get(EmitScalarExpr(E->getArg(0)));
2785 }
2786 case Builtin::BI__builtin_expect: {
2787 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2788 llvm::Type *ArgType = ArgValue->getType();
2789
2790 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2791 // Don't generate llvm.expect on -O0 as the backend won't use it for
2792 // anything.
2793 // Note, we still IRGen ExpectedValue because it could have side-effects.
2794 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2795 return RValue::get(ArgValue);
2796
2797 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2798 Value *Result =
2799 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2800 return RValue::get(Result);
2801 }
2802 case Builtin::BI__builtin_expect_with_probability: {
2803 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2804 llvm::Type *ArgType = ArgValue->getType();
2805
2806 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2807 llvm::APFloat Probability(0.0);
2808 const Expr *ProbArg = E->getArg(2);
2809 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2810 assert(EvalSucceed && "probability should be able to evaluate as float")(static_cast <bool> (EvalSucceed && "probability should be able to evaluate as float"
) ? void (0) : __assert_fail ("EvalSucceed && \"probability should be able to evaluate as float\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2810, __extension__ __PRETTY_FUNCTION__
))
;
2811 (void)EvalSucceed;
2812 bool LoseInfo = false;
2813 Probability.convert(llvm::APFloat::IEEEdouble(),
2814 llvm::RoundingMode::Dynamic, &LoseInfo);
2815 llvm::Type *Ty = ConvertType(ProbArg->getType());
2816 Constant *Confidence = ConstantFP::get(Ty, Probability);
2817 // Don't generate llvm.expect.with.probability on -O0 as the backend
2818 // won't use it for anything.
2819 // Note, we still IRGen ExpectedValue because it could have side-effects.
2820 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2821 return RValue::get(ArgValue);
2822
2823 Function *FnExpect =
2824 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2825 Value *Result = Builder.CreateCall(
2826 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2827 return RValue::get(Result);
2828 }
2829 case Builtin::BI__builtin_assume_aligned: {
2830 const Expr *Ptr = E->getArg(0);
2831 Value *PtrValue = EmitScalarExpr(Ptr);
2832 Value *OffsetValue =
2833 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2834
2835 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2836 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2837 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2838 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2839 llvm::Value::MaximumAlignment);
2840
2841 emitAlignmentAssumption(PtrValue, Ptr,
2842 /*The expr loc is sufficient.*/ SourceLocation(),
2843 AlignmentCI, OffsetValue);
2844 return RValue::get(PtrValue);
2845 }
2846 case Builtin::BI__assume:
2847 case Builtin::BI__builtin_assume: {
2848 if (E->getArg(0)->HasSideEffects(getContext()))
2849 return RValue::get(nullptr);
2850
2851 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2852 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2853 Builder.CreateCall(FnAssume, ArgValue);
2854 return RValue::get(nullptr);
2855 }
2856 case Builtin::BI__builtin_assume_separate_storage: {
2857 const Expr *Arg0 = E->getArg(0);
2858 const Expr *Arg1 = E->getArg(1);
2859
2860 Value *Value0 = EmitScalarExpr(Arg0);
2861 Value *Value1 = EmitScalarExpr(Arg1);
2862
2863 Value *Values[] = {Value0, Value1};
2864 OperandBundleDefT<Value *> OBD("separate_storage", Values);
2865 Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD});
2866 return RValue::get(nullptr);
2867 }
2868 case Builtin::BI__arithmetic_fence: {
2869 // Create the builtin call if FastMath is selected, and the target
2870 // supports the builtin, otherwise just return the argument.
2871 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2872 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2873 bool isArithmeticFenceEnabled =
2874 FMF.allowReassoc() &&
2875 getContext().getTargetInfo().checkArithmeticFenceSupported();
2876 QualType ArgType = E->getArg(0)->getType();
2877 if (ArgType->isComplexType()) {
2878 if (isArithmeticFenceEnabled) {
2879 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2880 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2881 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2882 ConvertType(ElementType));
2883 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2884 ConvertType(ElementType));
2885 return RValue::getComplex(std::make_pair(Real, Imag));
2886 }
2887 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2888 Value *Real = ComplexVal.first;
2889 Value *Imag = ComplexVal.second;
2890 return RValue::getComplex(std::make_pair(Real, Imag));
2891 }
2892 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2893 if (isArithmeticFenceEnabled)
2894 return RValue::get(
2895 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2896 return RValue::get(ArgValue);
2897 }
2898 case Builtin::BI__builtin_bswap16:
2899 case Builtin::BI__builtin_bswap32:
2900 case Builtin::BI__builtin_bswap64:
2901 case Builtin::BI_byteswap_ushort:
2902 case Builtin::BI_byteswap_ulong:
2903 case Builtin::BI_byteswap_uint64: {
2904 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2905 }
2906 case Builtin::BI__builtin_bitreverse8:
2907 case Builtin::BI__builtin_bitreverse16:
2908 case Builtin::BI__builtin_bitreverse32:
2909 case Builtin::BI__builtin_bitreverse64: {
2910 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2911 }
2912 case Builtin::BI__builtin_rotateleft8:
2913 case Builtin::BI__builtin_rotateleft16:
2914 case Builtin::BI__builtin_rotateleft32:
2915 case Builtin::BI__builtin_rotateleft64:
2916 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2917 case Builtin::BI_rotl16:
2918 case Builtin::BI_rotl:
2919 case Builtin::BI_lrotl:
2920 case Builtin::BI_rotl64:
2921 return emitRotate(E, false);
2922
2923 case Builtin::BI__builtin_rotateright8:
2924 case Builtin::BI__builtin_rotateright16:
2925 case Builtin::BI__builtin_rotateright32:
2926 case Builtin::BI__builtin_rotateright64:
2927 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2928 case Builtin::BI_rotr16:
2929 case Builtin::BI_rotr:
2930 case Builtin::BI_lrotr:
2931 case Builtin::BI_rotr64:
2932 return emitRotate(E, true);
2933
2934 case Builtin::BI__builtin_constant_p: {
2935 llvm::Type *ResultType = ConvertType(E->getType());
2936
2937 const Expr *Arg = E->getArg(0);
2938 QualType ArgType = Arg->getType();
2939 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2940 // and likely a mistake.
2941 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2942 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2943 // Per the GCC documentation, only numeric constants are recognized after
2944 // inlining.
2945 return RValue::get(ConstantInt::get(ResultType, 0));
2946
2947 if (Arg->HasSideEffects(getContext()))
2948 // The argument is unevaluated, so be conservative if it might have
2949 // side-effects.
2950 return RValue::get(ConstantInt::get(ResultType, 0));
2951
2952 Value *ArgValue = EmitScalarExpr(Arg);
2953 if (ArgType->isObjCObjectPointerType()) {
2954 // Convert Objective-C objects to id because we cannot distinguish between
2955 // LLVM types for Obj-C classes as they are opaque.
2956 ArgType = CGM.getContext().getObjCIdType();
2957 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2958 }
2959 Function *F =
2960 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2961 Value *Result = Builder.CreateCall(F, ArgValue);
2962 if (Result->getType() != ResultType)
2963 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2964 return RValue::get(Result);
2965 }
2966 case Builtin::BI__builtin_dynamic_object_size:
2967 case Builtin::BI__builtin_object_size: {
2968 unsigned Type =
2969 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2970 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2971
2972 // We pass this builtin onto the optimizer so that it can figure out the
2973 // object size in more complex cases.
2974 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2975 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2976 /*EmittedE=*/nullptr, IsDynamic));
2977 }
2978 case Builtin::BI__builtin_prefetch: {
2979 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2980 // FIXME: Technically these constants should of type 'int', yes?
2981 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2982 llvm::ConstantInt::get(Int32Ty, 0);
2983 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2984 llvm::ConstantInt::get(Int32Ty, 3);
2985 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2986 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2987 Builder.CreateCall(F, {Address, RW, Locality, Data});
2988 return RValue::get(nullptr);
2989 }
2990 case Builtin::BI__builtin_readcyclecounter: {
2991 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2992 return RValue::get(Builder.CreateCall(F));
2993 }
2994 case Builtin::BI__builtin___clear_cache: {
2995 Value *Begin = EmitScalarExpr(E->getArg(0));
2996 Value *End = EmitScalarExpr(E->getArg(1));
2997 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2998 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2999 }
3000 case Builtin::BI__builtin_trap:
3001 EmitTrapCall(Intrinsic::trap);
3002 return RValue::get(nullptr);
3003 case Builtin::BI__debugbreak:
3004 EmitTrapCall(Intrinsic::debugtrap);
3005 return RValue::get(nullptr);
3006 case Builtin::BI__builtin_unreachable: {
3007 EmitUnreachable(E->getExprLoc());
3008
3009 // We do need to preserve an insertion point.
3010 EmitBlock(createBasicBlock("unreachable.cont"));
3011
3012 return RValue::get(nullptr);
3013 }
3014
3015 case Builtin::BI__builtin_powi:
3016 case Builtin::BI__builtin_powif:
3017 case Builtin::BI__builtin_powil: {
3018 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3019 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3020
3021 if (Builder.getIsFPConstrained()) {
3022 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3023 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3024 Src0->getType());
3025 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3026 }
3027
3028 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3029 { Src0->getType(), Src1->getType() });
3030 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3031 }
3032 case Builtin::BI__builtin_isgreater:
3033 case Builtin::BI__builtin_isgreaterequal:
3034 case Builtin::BI__builtin_isless:
3035 case Builtin::BI__builtin_islessequal:
3036 case Builtin::BI__builtin_islessgreater:
3037 case Builtin::BI__builtin_isunordered: {
3038 // Ordered comparisons: we know the arguments to these are matching scalar
3039 // floating point values.
3040 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3041 Value *LHS = EmitScalarExpr(E->getArg(0));
3042 Value *RHS = EmitScalarExpr(E->getArg(1));
3043
3044 switch (BuiltinID) {
3045 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3045)
;
3046 case Builtin::BI__builtin_isgreater:
3047 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3048 break;
3049 case Builtin::BI__builtin_isgreaterequal:
3050 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3051 break;
3052 case Builtin::BI__builtin_isless:
3053 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3054 break;
3055 case Builtin::BI__builtin_islessequal:
3056 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3057 break;
3058 case Builtin::BI__builtin_islessgreater:
3059 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3060 break;
3061 case Builtin::BI__builtin_isunordered:
3062 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3063 break;
3064 }
3065 // ZExt bool to int type.
3066 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3067 }
3068 case Builtin::BI__builtin_isnan: {
3069 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3070 Value *V = EmitScalarExpr(E->getArg(0));
3071 llvm::Type *Ty = V->getType();
3072 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3073 if (!Builder.getIsFPConstrained() ||
3074 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3075 !Ty->isIEEE()) {
3076 V = Builder.CreateFCmpUNO(V, V, "cmp");
3077 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3078 }
3079
3080 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3081 return RValue::get(Result);
3082
3083 // NaN has all exp bits set and a non zero significand. Therefore:
3084 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3085 unsigned bitsize = Ty->getScalarSizeInBits();
3086 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3087 Value *IntV = Builder.CreateBitCast(V, IntTy);
3088 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3089 Value *AbsV =
3090 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3091 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3092 Value *Sub =
3093 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3094 // V = sign bit (Sub) <=> V = (Sub < 0)
3095 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3096 if (bitsize > 32)
3097 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3098 return RValue::get(V);
3099 }
3100
3101 case Builtin::BI__builtin_nondeterministic_value: {
3102 llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3103
3104 Value *Result = PoisonValue::get(Ty);
3105 Result = Builder.CreateFreeze(Result);
3106
3107 return RValue::get(Result);
3108 }
3109
3110 case Builtin::BI__builtin_elementwise_abs: {
3111 Value *Result;
3112 QualType QT = E->getArg(0)->getType();
3113
3114 if (auto *VecTy = QT->getAs<VectorType>())
3115 QT = VecTy->getElementType();
3116 if (QT->isIntegerType())
3117 Result = Builder.CreateBinaryIntrinsic(
3118 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3119 Builder.getFalse(), nullptr, "elt.abs");
3120 else
3121 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3122
3123 return RValue::get(Result);
3124 }
3125
3126 case Builtin::BI__builtin_elementwise_ceil:
3127 return RValue::get(
3128 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3129 case Builtin::BI__builtin_elementwise_exp:
3130 return RValue::get(
3131 emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp, "elt.exp"));
3132 case Builtin::BI__builtin_elementwise_exp2:
3133 return RValue::get(
3134 emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3135 case Builtin::BI__builtin_elementwise_log:
3136 return RValue::get(
3137 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log, "elt.log"));
3138 case Builtin::BI__builtin_elementwise_log2:
3139 return RValue::get(
3140 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log2, "elt.log2"));
3141 case Builtin::BI__builtin_elementwise_log10:
3142 return RValue::get(
3143 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log10, "elt.log10"));
3144 case Builtin::BI__builtin_elementwise_cos:
3145 return RValue::get(
3146 emitUnaryBuiltin(*this, E, llvm::Intrinsic::cos, "elt.cos"));
3147 case Builtin::BI__builtin_elementwise_floor:
3148 return RValue::get(
3149 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3150 case Builtin::BI__builtin_elementwise_roundeven:
3151 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3152 "elt.roundeven"));
3153 case Builtin::BI__builtin_elementwise_sin:
3154 return RValue::get(
3155 emitUnaryBuiltin(*this, E, llvm::Intrinsic::sin, "elt.sin"));
3156
3157 case Builtin::BI__builtin_elementwise_trunc:
3158 return RValue::get(
3159 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3160 case Builtin::BI__builtin_elementwise_canonicalize:
3161 return RValue::get(
3162 emitUnaryBuiltin(*this, E, llvm::Intrinsic::canonicalize, "elt.trunc"));
3163 case Builtin::BI__builtin_elementwise_copysign:
3164 return RValue::get(emitBinaryBuiltin(*this, E, llvm::Intrinsic::copysign));
3165 case Builtin::BI__builtin_elementwise_fma:
3166 return RValue::get(emitTernaryBuiltin(*this, E, llvm::Intrinsic::fma));
3167 case Builtin::BI__builtin_elementwise_add_sat:
3168 case Builtin::BI__builtin_elementwise_sub_sat: {
3169 Value *Op0 = EmitScalarExpr(E->getArg(0));
3170 Value *Op1 = EmitScalarExpr(E->getArg(1));
3171 Value *Result;
3172 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected")(static_cast <bool> (Op0->getType()->isIntOrIntVectorTy
() && "integer type expected") ? void (0) : __assert_fail
("Op0->getType()->isIntOrIntVectorTy() && \"integer type expected\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3172, __extension__ __PRETTY_FUNCTION__
))
;
3173 QualType Ty = E->getArg(0)->getType();
3174 if (auto *VecTy = Ty->getAs<VectorType>())
3175 Ty = VecTy->getElementType();
3176 bool IsSigned = Ty->isSignedIntegerType();
3177 unsigned Opc;
3178 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3179 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3180 else
3181 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3182 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3183 return RValue::get(Result);
3184 }
3185
3186 case Builtin::BI__builtin_elementwise_max: {
3187 Value *Op0 = EmitScalarExpr(E->getArg(0));
3188 Value *Op1 = EmitScalarExpr(E->getArg(1));
3189 Value *Result;
3190 if (Op0->getType()->isIntOrIntVectorTy()) {
3191 QualType Ty = E->getArg(0)->getType();
3192 if (auto *VecTy = Ty->getAs<VectorType>())
3193 Ty = VecTy->getElementType();
3194 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3195 ? llvm::Intrinsic::smax
3196 : llvm::Intrinsic::umax,
3197 Op0, Op1, nullptr, "elt.max");
3198 } else
3199 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3200 return RValue::get(Result);
3201 }
3202 case Builtin::BI__builtin_elementwise_min: {
3203 Value *Op0 = EmitScalarExpr(E->getArg(0));
3204 Value *Op1 = EmitScalarExpr(E->getArg(1));
3205 Value *Result;
3206 if (Op0->getType()->isIntOrIntVectorTy()) {
3207 QualType Ty = E->getArg(0)->getType();
3208 if (auto *VecTy = Ty->getAs<VectorType>())
3209 Ty = VecTy->getElementType();
3210 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3211 ? llvm::Intrinsic::smin
3212 : llvm::Intrinsic::umin,
3213 Op0, Op1, nullptr, "elt.min");
3214 } else
3215 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3216 return RValue::get(Result);
3217 }
3218
3219 case Builtin::BI__builtin_reduce_max: {
3220 auto GetIntrinsicID = [](QualType QT) {
3221 if (auto *VecTy = QT->getAs<VectorType>())
3222 QT = VecTy->getElementType();
3223 if (QT->isSignedIntegerType())
3224 return llvm::Intrinsic::vector_reduce_smax;
3225 if (QT->isUnsignedIntegerType())
3226 return llvm::Intrinsic::vector_reduce_umax;
3227 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3227, __extension__ __PRETTY_FUNCTION__
))
;
3228 return llvm::Intrinsic::vector_reduce_fmax;
3229 };
3230 return RValue::get(emitUnaryBuiltin(
3231 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3232 }
3233
3234 case Builtin::BI__builtin_reduce_min: {
3235 auto GetIntrinsicID = [](QualType QT) {
3236 if (auto *VecTy = QT->getAs<VectorType>())
3237 QT = VecTy->getElementType();
3238 if (QT->isSignedIntegerType())
3239 return llvm::Intrinsic::vector_reduce_smin;
3240 if (QT->isUnsignedIntegerType())
3241 return llvm::Intrinsic::vector_reduce_umin;
3242 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3242, __extension__ __PRETTY_FUNCTION__
))
;
3243 return llvm::Intrinsic::vector_reduce_fmin;
3244 };
3245
3246 return RValue::get(emitUnaryBuiltin(
3247 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3248 }
3249
3250 case Builtin::BI__builtin_reduce_add:
3251 return RValue::get(emitUnaryBuiltin(
3252 *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3253 case Builtin::BI__builtin_reduce_mul:
3254 return RValue::get(emitUnaryBuiltin(
3255 *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3256 case Builtin::BI__builtin_reduce_xor:
3257 return RValue::get(emitUnaryBuiltin(
3258 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3259 case Builtin::BI__builtin_reduce_or:
3260 return RValue::get(emitUnaryBuiltin(
3261 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3262 case Builtin::BI__builtin_reduce_and:
3263 return RValue::get(emitUnaryBuiltin(
3264 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3265
3266 case Builtin::BI__builtin_matrix_transpose: {
3267 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3268 Value *MatValue = EmitScalarExpr(E->getArg(0));
3269 MatrixBuilder MB(Builder);
3270 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3271 MatrixTy->getNumColumns());
3272 return RValue::get(Result);
3273 }
3274
3275 case Builtin::BI__builtin_matrix_column_major_load: {
3276 MatrixBuilder MB(Builder);
3277 // Emit everything that isn't dependent on the first parameter type
3278 Value *Stride = EmitScalarExpr(E->getArg(3));
3279 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3280 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3281 assert(PtrTy && "arg0 must be of pointer type")(static_cast <bool> (PtrTy && "arg0 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg0 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3281, __extension__ __PRETTY_FUNCTION__
))
;
3282 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3283
3284 Address Src = EmitPointerWithAlignment(E->getArg(0));
3285 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3286 E->getArg(0)->getExprLoc(), FD, 0);
3287 Value *Result = MB.CreateColumnMajorLoad(
3288 Src.getElementType(), Src.getPointer(),
3289 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3290 ResultTy->getNumRows(), ResultTy->getNumColumns(),
3291 "matrix");
3292 return RValue::get(Result);
3293 }
3294
3295 case Builtin::BI__builtin_matrix_column_major_store: {
3296 MatrixBuilder MB(Builder);
3297 Value *Matrix = EmitScalarExpr(E->getArg(0));
3298 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3299 Value *Stride = EmitScalarExpr(E->getArg(2));
3300
3301 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3302 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3303 assert(PtrTy && "arg1 must be of pointer type")(static_cast <bool> (PtrTy && "arg1 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg1 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3303, __extension__ __PRETTY_FUNCTION__
))
;
3304 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3305
3306 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3307 E->getArg(1)->getExprLoc(), FD, 0);
3308 Value *Result = MB.CreateColumnMajorStore(
3309 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3310 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3311 return RValue::get(Result);
3312 }
3313
3314 case Builtin::BIfinite:
3315 case Builtin::BI__finite:
3316 case Builtin::BIfinitef:
3317 case Builtin::BI__finitef:
3318 case Builtin::BIfinitel:
3319 case Builtin::BI__finitel:
3320 case Builtin::BI__builtin_isinf:
3321 case Builtin::BI__builtin_isfinite: {
3322 // isinf(x) --> fabs(x) == infinity
3323 // isfinite(x) --> fabs(x) != infinity
3324 // x != NaN via the ordered compare in either case.
3325 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3326 Value *V = EmitScalarExpr(E->getArg(0));
3327 llvm::Type *Ty = V->getType();
3328 if (!Builder.getIsFPConstrained() ||
3329 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3330 !Ty->isIEEE()) {
3331 Value *Fabs = EmitFAbs(*this, V);
3332 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3333 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3334 ? CmpInst::FCMP_OEQ
3335 : CmpInst::FCMP_ONE;
3336 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3337 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3338 }
3339
3340 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3341 return RValue::get(Result);
3342
3343 // Inf values have all exp bits set and a zero significand. Therefore:
3344 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3345 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3346 unsigned bitsize = Ty->getScalarSizeInBits();
3347 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3348 Value *IntV = Builder.CreateBitCast(V, IntTy);
3349 Value *Shl1 = Builder.CreateShl(IntV, 1);
3350 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3351 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3352 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3353 if (BuiltinID == Builtin::BI__builtin_isinf)
3354 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3355 else
3356 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3357 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3358 }
3359
3360 case Builtin::BI__builtin_isinf_sign: {
3361 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3362 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3363 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3364 Value *Arg = EmitScalarExpr(E->getArg(0));
3365 Value *AbsArg = EmitFAbs(*this, Arg);
3366 Value *IsInf = Builder.CreateFCmpOEQ(
3367 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3368 Value *IsNeg = EmitSignBit(*this, Arg);
3369
3370 llvm::Type *IntTy = ConvertType(E->getType());
3371 Value *Zero = Constant::getNullValue(IntTy);
3372 Value *One = ConstantInt::get(IntTy, 1);
3373 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3374 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3375 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3376 return RValue::get(Result);
3377 }
3378
3379 case Builtin::BI__builtin_isnormal: {
3380 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3381 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3382 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3383 Value *V = EmitScalarExpr(E->getArg(0));
3384 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3385
3386 Value *Abs = EmitFAbs(*this, V);
3387 Value *IsLessThanInf =
3388 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3389 APFloat Smallest = APFloat::getSmallestNormalized(
3390 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3391 Value *IsNormal =
3392 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3393 "isnormal");
3394 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3395 V = Builder.CreateAnd(V, IsNormal, "and");
3396 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3397 }
3398
3399 case Builtin::BI__builtin_flt_rounds: {
3400 Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
3401
3402 llvm::Type *ResultType = ConvertType(E->getType());
3403 Value *Result = Builder.CreateCall(F);
3404 if (Result->getType() != ResultType)
3405 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3406 "cast");
3407 return RValue::get(Result);
3408 }
3409
3410 case Builtin::BI__builtin_set_flt_rounds: {
3411 Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
3412
3413 Value *V = EmitScalarExpr(E->getArg(0));
3414 Builder.CreateCall(F, V);
3415 return RValue::get(nullptr);
3416 }
3417
3418 case Builtin::BI__builtin_fpclassify: {
3419 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3420 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3421 Value *V = EmitScalarExpr(E->getArg(5));
3422 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3423
3424 // Create Result
3425 BasicBlock *Begin = Builder.GetInsertBlock();
3426 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3427 Builder.SetInsertPoint(End);
3428 PHINode *Result =
3429 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3430 "fpclassify_result");
3431
3432 // if (V==0) return FP_ZERO
3433 Builder.SetInsertPoint(Begin);
3434 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3435 "iszero");
3436 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3437 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3438 Builder.CreateCondBr(IsZero, End, NotZero);
3439 Result->addIncoming(ZeroLiteral, Begin);
3440
3441 // if (V != V) return FP_NAN
3442 Builder.SetInsertPoint(NotZero);
3443 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3444 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3445 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3446 Builder.CreateCondBr(IsNan, End, NotNan);
3447 Result->addIncoming(NanLiteral, NotZero);
3448
3449 // if (fabs(V) == infinity) return FP_INFINITY
3450 Builder.SetInsertPoint(NotNan);
3451 Value *VAbs = EmitFAbs(*this, V);
3452 Value *IsInf =
3453 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3454 "isinf");
3455 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3456 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3457 Builder.CreateCondBr(IsInf, End, NotInf);
3458 Result->addIncoming(InfLiteral, NotNan);
3459
3460 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3461 Builder.SetInsertPoint(NotInf);
3462 APFloat Smallest = APFloat::getSmallestNormalized(
3463 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3464 Value *IsNormal =
3465 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3466 "isnormal");
3467 Value *NormalResult =
3468 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3469 EmitScalarExpr(E->getArg(3)));
3470 Builder.CreateBr(End);
3471 Result->addIncoming(NormalResult, NotInf);
3472
3473 // return Result
3474 Builder.SetInsertPoint(End);
3475 return RValue::get(Result);
3476 }
3477
3478 case Builtin::BIalloca:
3479 case Builtin::BI_alloca:
3480 case Builtin::BI__builtin_alloca_uninitialized:
3481 case Builtin::BI__builtin_alloca: {
3482 Value *Size = EmitScalarExpr(E->getArg(0));
3483 const TargetInfo &TI = getContext().getTargetInfo();
3484 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3485 const Align SuitableAlignmentInBytes =
3486 CGM.getContext()
3487 .toCharUnitsFromBits(TI.getSuitableAlign())
3488 .getAsAlign();
3489 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3490 AI->setAlignment(SuitableAlignmentInBytes);
3491 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3492 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3493 return RValue::get(AI);
3494 }
3495
3496 case Builtin::BI__builtin_alloca_with_align_uninitialized:
3497 case Builtin::BI__builtin_alloca_with_align: {
3498 Value *Size = EmitScalarExpr(E->getArg(0));
3499 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3500 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3501 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3502 const Align AlignmentInBytes =
3503 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3504 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3505 AI->setAlignment(AlignmentInBytes);
3506 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3507 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3508 return RValue::get(AI);
3509 }
3510
3511 case Builtin::BIbzero:
3512 case Builtin::BI__builtin_bzero: {
3513 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3514 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3515 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3516 E->getArg(0)->getExprLoc(), FD, 0);
3517 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3518 return RValue::get(nullptr);
3519 }
3520 case Builtin::BImemcpy:
3521 case Builtin::BI__builtin_memcpy:
3522 case Builtin::BImempcpy:
3523 case Builtin::BI__builtin_mempcpy: {
3524 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3525 Address Src = EmitPointerWithAlignment(E->getArg(1));
3526 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3527 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3528 E->getArg(0)->getExprLoc(), FD, 0);
3529 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3530 E->getArg(1)->getExprLoc(), FD, 1);
3531 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3532 if (BuiltinID == Builtin::BImempcpy ||
3533 BuiltinID == Builtin::BI__builtin_mempcpy)
3534 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3535 Dest.getPointer(), SizeVal));
3536 else
3537 return RValue::get(Dest.getPointer());
3538 }
3539
3540 case Builtin::BI__builtin_memcpy_inline: {
3541 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3542 Address Src = EmitPointerWithAlignment(E->getArg(1));
3543 uint64_t Size =
3544 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3545 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3546 E->getArg(0)->getExprLoc(), FD, 0);
3547 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3548 E->getArg(1)->getExprLoc(), FD, 1);
3549 Builder.CreateMemCpyInline(Dest, Src, Size);
3550 return RValue::get(nullptr);
3551 }
3552
3553 case Builtin::BI__builtin_char_memchr:
3554 BuiltinID = Builtin::BI__builtin_memchr;
3555 break;
3556
3557 case Builtin::BI__builtin___memcpy_chk: {
3558 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3559 Expr::EvalResult SizeResult, DstSizeResult;
3560 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3561 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3562 break;
3563 llvm::APSInt Size = SizeResult.Val.getInt();
3564 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3565 if (Size.ugt(DstSize))
3566 break;
3567 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3568 Address Src = EmitPointerWithAlignment(E->getArg(1));
3569 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3570 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3571 return RValue::get(Dest.getPointer());
3572 }
3573
3574 case Builtin::BI__builtin_objc_memmove_collectable: {
3575 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3576 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3577 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3578 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3579 DestAddr, SrcAddr, SizeVal);
3580 return RValue::get(DestAddr.getPointer());
3581 }
3582
3583 case Builtin::BI__builtin___memmove_chk: {
3584 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3585 Expr::EvalResult SizeResult, DstSizeResult;
3586 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3587 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3588 break;
3589 llvm::APSInt Size = SizeResult.Val.getInt();
3590 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3591 if (Size.ugt(DstSize))
3592 break;
3593 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3594 Address Src = EmitPointerWithAlignment(E->getArg(1));
3595 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3596 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3597 return RValue::get(Dest.getPointer());
3598 }
3599
3600 case Builtin::BImemmove:
3601 case Builtin::BI__builtin_memmove: {
3602 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3603 Address Src = EmitPointerWithAlignment(E->getArg(1));
3604 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3605 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3606 E->getArg(0)->getExprLoc(), FD, 0);
3607 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3608 E->getArg(1)->getExprLoc(), FD, 1);
3609 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3610 return RValue::get(Dest.getPointer());
3611 }
3612 case Builtin::BImemset:
3613 case Builtin::BI__builtin_memset: {
3614 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3615 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3616 Builder.getInt8Ty());
3617 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3618 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3619 E->getArg(0)->getExprLoc(), FD, 0);
3620 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3621 return RValue::get(Dest.getPointer());
3622 }
3623 case Builtin::BI__builtin_memset_inline: {
3624 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3625 Value *ByteVal =
3626 Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
3627 uint64_t Size =
3628 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3629 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3630 E->getArg(0)->getExprLoc(), FD, 0);
3631 Builder.CreateMemSetInline(Dest, ByteVal, Size);
3632 return RValue::get(nullptr);
3633 }
3634 case Builtin::BI__builtin___memset_chk: {
3635 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3636 Expr::EvalResult SizeResult, DstSizeResult;
3637 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3638 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3639 break;
3640 llvm::APSInt Size = SizeResult.Val.getInt();
3641 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3642 if (Size.ugt(DstSize))
3643 break;
3644 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3645 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3646 Builder.getInt8Ty());
3647 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3648 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3649 return RValue::get(Dest.getPointer());
3650 }
3651 case Builtin::BI__builtin_wmemchr: {
3652 // The MSVC runtime library does not provide a definition of wmemchr, so we
3653 // need an inline implementation.
3654 if (!getTarget().getTriple().isOSMSVCRT())
3655 break;
3656
3657 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3658 Value *Str = EmitScalarExpr(E->getArg(0));
3659 Value *Chr = EmitScalarExpr(E->getArg(1));
3660 Value *Size = EmitScalarExpr(E->getArg(2));
3661
3662 BasicBlock *Entry = Builder.GetInsertBlock();
3663 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3664 BasicBlock *Next = createBasicBlock("wmemchr.next");
3665 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3666 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3667 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3668
3669 EmitBlock(CmpEq);
3670 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3671 StrPhi->addIncoming(Str, Entry);
3672 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3673 SizePhi->addIncoming(Size, Entry);
3674 CharUnits WCharAlign =
3675 getContext().getTypeAlignInChars(getContext().WCharTy);
3676 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3677 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3678 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3679 Builder.CreateCondBr(StrEqChr, Exit, Next);
3680
3681 EmitBlock(Next);
3682 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3683 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3684 Value *NextSizeEq0 =
3685 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3686 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3687 StrPhi->addIncoming(NextStr, Next);
3688 SizePhi->addIncoming(NextSize, Next);
3689
3690 EmitBlock(Exit);
3691 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3692 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3693 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3694 Ret->addIncoming(FoundChr, CmpEq);
3695 return RValue::get(Ret);
3696 }
3697 case Builtin::BI__builtin_wmemcmp: {
3698 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3699 // need an inline implementation.
3700 if (!getTarget().getTriple().isOSMSVCRT())
3701 break;
3702
3703 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3704
3705 Value *Dst = EmitScalarExpr(E->getArg(0));
3706 Value *Src = EmitScalarExpr(E->getArg(1));
3707 Value *Size = EmitScalarExpr(E->getArg(2));
3708
3709 BasicBlock *Entry = Builder.GetInsertBlock();
3710 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3711 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3712 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3713 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3714 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3715 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3716
3717 EmitBlock(CmpGT);
3718 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3719 DstPhi->addIncoming(Dst, Entry);
3720 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3721 SrcPhi->addIncoming(Src, Entry);
3722 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3723 SizePhi->addIncoming(Size, Entry);
3724 CharUnits WCharAlign =
3725 getContext().getTypeAlignInChars(getContext().WCharTy);
3726 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3727 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3728 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3729 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3730
3731 EmitBlock(CmpLT);
3732 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3733 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3734
3735 EmitBlock(Next);
3736 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3737 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3738 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3739 Value *NextSizeEq0 =
3740 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3741 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3742 DstPhi->addIncoming(NextDst, Next);
3743 SrcPhi->addIncoming(NextSrc, Next);
3744 SizePhi->addIncoming(NextSize, Next);
3745
3746 EmitBlock(Exit);
3747 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3748 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3749 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3750 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3751 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3752 return RValue::get(Ret);
3753 }
3754 case Builtin::BI__builtin_dwarf_cfa: {
3755 // The offset in bytes from the first argument to the CFA.
3756 //
3757 // Why on earth is this in the frontend? Is there any reason at
3758 // all that the backend can't reasonably determine this while
3759 // lowering llvm.eh.dwarf.cfa()?
3760 //
3761 // TODO: If there's a satisfactory reason, add a target hook for
3762 // this instead of hard-coding 0, which is correct for most targets.
3763 int32_t Offset = 0;
3764
3765 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3766 return RValue::get(Builder.CreateCall(F,
3767 llvm::ConstantInt::get(Int32Ty, Offset)));
3768 }
3769 case Builtin::BI__builtin_return_address: {
3770 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3771 getContext().UnsignedIntTy);
3772 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3773 return RValue::get(Builder.CreateCall(F, Depth));
3774 }
3775 case Builtin::BI_ReturnAddress: {
3776 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3777 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3778 }
3779 case Builtin::BI__builtin_frame_address: {
3780 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3781 getContext().UnsignedIntTy);
3782 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3783 return RValue::get(Builder.CreateCall(F, Depth));
3784 }
3785 case Builtin::BI__builtin_extract_return_addr: {
3786 Value *Address = EmitScalarExpr(E->getArg(0));
3787 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3788 return RValue::get(Result);
3789 }
3790 case Builtin::BI__builtin_frob_return_addr: {
3791 Value *Address = EmitScalarExpr(E->getArg(0));
3792 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3793 return RValue::get(Result);
3794 }
3795 case Builtin::BI__builtin_dwarf_sp_column: {
3796 llvm::IntegerType *Ty
3797 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3798 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3799 if (Column == -1) {
3800 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3801 return RValue::get(llvm::UndefValue::get(Ty));
3802 }
3803 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3804 }
3805 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3806 Value *Address = EmitScalarExpr(E->getArg(0));
3807 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3808 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3809 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3810 }
3811 case Builtin::BI__builtin_eh_return: {
3812 Value *Int = EmitScalarExpr(E->getArg(0));
3813 Value *Ptr = EmitScalarExpr(E->getArg(1));
3814
3815 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3816 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3817, __extension__ __PRETTY_FUNCTION__
))
3817 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3817, __extension__ __PRETTY_FUNCTION__
))
;
3818 Function *F =
3819 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3820 : Intrinsic::eh_return_i64);
3821 Builder.CreateCall(F, {Int, Ptr});
3822 Builder.CreateUnreachable();
3823
3824 // We do need to preserve an insertion point.
3825 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3826
3827 return RValue::get(nullptr);
3828 }
3829 case Builtin::BI__builtin_unwind_init: {
3830 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3831 Builder.CreateCall(F);
3832 return RValue::get(nullptr);
3833 }
3834 case Builtin::BI__builtin_extend_pointer: {
3835 // Extends a pointer to the size of an _Unwind_Word, which is
3836 // uint64_t on all platforms. Generally this gets poked into a
3837 // register and eventually used as an address, so if the
3838 // addressing registers are wider than pointers and the platform
3839 // doesn't implicitly ignore high-order bits when doing
3840 // addressing, we need to make sure we zext / sext based on
3841 // the platform's expectations.
3842 //
3843 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3844
3845 // Cast the pointer to intptr_t.
3846 Value *Ptr = EmitScalarExpr(E->getArg(0));
3847 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3848
3849 // If that's 64 bits, we're done.
3850 if (IntPtrTy->getBitWidth() == 64)
3851 return RValue::get(Result);
3852
3853 // Otherwise, ask the codegen data what to do.
3854 if (getTargetHooks().extendPointerWithSExt())
3855 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3856 else
3857 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3858 }
3859 case Builtin::BI__builtin_setjmp: {
3860 // Buffer is a void**.
3861 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3862
3863 // Store the frame pointer to the setjmp buffer.
3864 Value *FrameAddr = Builder.CreateCall(
3865 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3866 ConstantInt::get(Int32Ty, 0));
3867 Builder.CreateStore(FrameAddr, Buf);
3868
3869 // Store the stack pointer to the setjmp buffer.
3870 Value *StackAddr =
3871 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3872 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3873 Builder.CreateStore(StackAddr, StackSaveSlot);
3874
3875 // Call LLVM's EH setjmp, which is lightweight.
3876 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3877 Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3878 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3879 }
3880 case Builtin::BI__builtin_longjmp: {
3881 Value *Buf = EmitScalarExpr(E->getArg(0));
3882 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3883
3884 // Call LLVM's EH longjmp, which is lightweight.
3885 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3886
3887 // longjmp doesn't return; mark this as unreachable.
3888 Builder.CreateUnreachable();
3889
3890 // We do need to preserve an insertion point.
3891 EmitBlock(createBasicBlock("longjmp.cont"));
3892
3893 return RValue::get(nullptr);
3894 }
3895 case Builtin::BI__builtin_launder: {
3896 const Expr *Arg = E->getArg(0);
3897 QualType ArgTy = Arg->getType()->getPointeeType();
3898 Value *Ptr = EmitScalarExpr(Arg);
3899 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3900 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3901
3902 return RValue::get(Ptr);
3903 }
3904 case Builtin::BI__sync_fetch_and_add:
3905 case Builtin::BI__sync_fetch_and_sub:
3906 case Builtin::BI__sync_fetch_and_or:
3907 case Builtin::BI__sync_fetch_and_and:
3908 case Builtin::BI__sync_fetch_and_xor:
3909 case Builtin::BI__sync_fetch_and_nand:
3910 case Builtin::BI__sync_add_and_fetch:
3911 case Builtin::BI__sync_sub_and_fetch:
3912 case Builtin::BI__sync_and_and_fetch:
3913 case Builtin::BI__sync_or_and_fetch:
3914 case Builtin::BI__sync_xor_and_fetch:
3915 case Builtin::BI__sync_nand_and_fetch:
3916 case Builtin::BI__sync_val_compare_and_swap:
3917 case Builtin::BI__sync_bool_compare_and_swap:
3918 case Builtin::BI__sync_lock_test_and_set:
3919 case Builtin::BI__sync_lock_release:
3920 case Builtin::BI__sync_swap:
3921 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3921)
;
3922 case Builtin::BI__sync_fetch_and_add_1:
3923 case Builtin::BI__sync_fetch_and_add_2:
3924 case Builtin::BI__sync_fetch_and_add_4:
3925 case Builtin::BI__sync_fetch_and_add_8:
3926 case Builtin::BI__sync_fetch_and_add_16:
3927 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3928 case Builtin::BI__sync_fetch_and_sub_1:
3929 case Builtin::BI__sync_fetch_and_sub_2:
3930 case Builtin::BI__sync_fetch_and_sub_4:
3931 case Builtin::BI__sync_fetch_and_sub_8:
3932 case Builtin::BI__sync_fetch_and_sub_16:
3933 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3934 case Builtin::BI__sync_fetch_and_or_1:
3935 case Builtin::BI__sync_fetch_and_or_2:
3936 case Builtin::BI__sync_fetch_and_or_4:
3937 case Builtin::BI__sync_fetch_and_or_8:
3938 case Builtin::BI__sync_fetch_and_or_16:
3939 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3940 case Builtin::BI__sync_fetch_and_and_1:
3941 case Builtin::BI__sync_fetch_and_and_2:
3942 case Builtin::BI__sync_fetch_and_and_4:
3943 case Builtin::BI__sync_fetch_and_and_8:
3944 case Builtin::BI__sync_fetch_and_and_16:
3945 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3946 case Builtin::BI__sync_fetch_and_xor_1:
3947 case Builtin::BI__sync_fetch_and_xor_2:
3948 case Builtin::BI__sync_fetch_and_xor_4:
3949 case Builtin::BI__sync_fetch_and_xor_8:
3950 case Builtin::BI__sync_fetch_and_xor_16:
3951 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3952 case Builtin::BI__sync_fetch_and_nand_1:
3953 case Builtin::BI__sync_fetch_and_nand_2:
3954 case Builtin::BI__sync_fetch_and_nand_4:
3955 case Builtin::BI__sync_fetch_and_nand_8:
3956 case Builtin::BI__sync_fetch_and_nand_16:
3957 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3958
3959 // Clang extensions: not overloaded yet.
3960 case Builtin::BI__sync_fetch_and_min:
3961 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3962 case Builtin::BI__sync_fetch_and_max:
3963 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3964 case Builtin::BI__sync_fetch_and_umin:
3965 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3966 case Builtin::BI__sync_fetch_and_umax:
3967 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3968
3969 case Builtin::BI__sync_add_and_fetch_1:
3970 case Builtin::BI__sync_add_and_fetch_2:
3971 case Builtin::BI__sync_add_and_fetch_4:
3972 case Builtin::BI__sync_add_and_fetch_8:
3973 case Builtin::BI__sync_add_and_fetch_16:
3974 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3975 llvm::Instruction::Add);
3976 case Builtin::BI__sync_sub_and_fetch_1:
3977 case Builtin::BI__sync_sub_and_fetch_2:
3978 case Builtin::BI__sync_sub_and_fetch_4:
3979 case Builtin::BI__sync_sub_and_fetch_8:
3980 case Builtin::BI__sync_sub_and_fetch_16:
3981 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3982 llvm::Instruction::Sub);
3983 case Builtin::BI__sync_and_and_fetch_1:
3984 case Builtin::BI__sync_and_and_fetch_2:
3985 case Builtin::BI__sync_and_and_fetch_4:
3986 case Builtin::BI__sync_and_and_fetch_8:
3987 case Builtin::BI__sync_and_and_fetch_16:
3988 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3989 llvm::Instruction::And);
3990 case Builtin::BI__sync_or_and_fetch_1:
3991 case Builtin::BI__sync_or_and_fetch_2:
3992 case Builtin::BI__sync_or_and_fetch_4:
3993 case Builtin::BI__sync_or_and_fetch_8:
3994 case Builtin::BI__sync_or_and_fetch_16:
3995 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3996 llvm::Instruction::Or);
3997 case Builtin::BI__sync_xor_and_fetch_1:
3998 case Builtin::BI__sync_xor_and_fetch_2:
3999 case Builtin::BI__sync_xor_and_fetch_4:
4000 case Builtin::BI__sync_xor_and_fetch_8:
4001 case Builtin::BI__sync_xor_and_fetch_16:
4002 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
4003 llvm::Instruction::Xor);
4004 case Builtin::BI__sync_nand_and_fetch_1:
4005 case Builtin::BI__sync_nand_and_fetch_2:
4006 case Builtin::BI__sync_nand_and_fetch_4:
4007 case Builtin::BI__sync_nand_and_fetch_8:
4008 case Builtin::BI__sync_nand_and_fetch_16:
4009 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4010 llvm::Instruction::And, true);
4011
4012 case Builtin::BI__sync_val_compare_and_swap_1:
4013 case Builtin::BI__sync_val_compare_and_swap_2:
4014 case Builtin::BI__sync_val_compare_and_swap_4:
4015 case Builtin::BI__sync_val_compare_and_swap_8:
4016 case Builtin::BI__sync_val_compare_and_swap_16:
4017 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4018
4019 case Builtin::BI__sync_bool_compare_and_swap_1:
4020 case Builtin::BI__sync_bool_compare_and_swap_2:
4021 case Builtin::BI__sync_bool_compare_and_swap_4:
4022 case Builtin::BI__sync_bool_compare_and_swap_8:
4023 case Builtin::BI__sync_bool_compare_and_swap_16:
4024 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4025
4026 case Builtin::BI__sync_swap_1:
4027 case Builtin::BI__sync_swap_2:
4028 case Builtin::BI__sync_swap_4:
4029 case Builtin::BI__sync_swap_8:
4030 case Builtin::BI__sync_swap_16:
4031 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4032
4033 case Builtin::BI__sync_lock_test_and_set_1:
4034 case Builtin::BI__sync_lock_test_and_set_2:
4035 case Builtin::BI__sync_lock_test_and_set_4:
4036 case Builtin::BI__sync_lock_test_and_set_8:
4037 case Builtin::BI__sync_lock_test_and_set_16:
4038 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4039
4040 case Builtin::BI__sync_lock_release_1:
4041 case Builtin::BI__sync_lock_release_2:
4042 case Builtin::BI__sync_lock_release_4:
4043 case Builtin::BI__sync_lock_release_8:
4044 case Builtin::BI__sync_lock_release_16: {
4045 Value *Ptr = CheckAtomicAlignment(*this, E);
4046 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4047 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
4048 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4049 StoreSize.getQuantity() * 8);
4050 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
4051 llvm::StoreInst *Store =
4052 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
4053 StoreSize);
4054 Store->setAtomic(llvm::AtomicOrdering::Release);
4055 return RValue::get(nullptr);
4056 }
4057
4058 case Builtin::BI__sync_synchronize: {
4059 // We assume this is supposed to correspond to a C++0x-style
4060 // sequentially-consistent fence (i.e. this is only usable for
4061 // synchronization, not device I/O or anything like that). This intrinsic
4062 // is really badly designed in the sense that in theory, there isn't
4063 // any way to safely use it... but in practice, it mostly works
4064 // to use it with non-atomic loads and stores to get acquire/release
4065 // semantics.
4066 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4067 return RValue::get(nullptr);
4068 }
4069
4070 case Builtin::BI__builtin_nontemporal_load:
4071 return RValue::get(EmitNontemporalLoad(*this, E));
4072 case Builtin::BI__builtin_nontemporal_store:
4073 return RValue::get(EmitNontemporalStore(*this, E));
4074 case Builtin::BI__c11_atomic_is_lock_free:
4075 case Builtin::BI__atomic_is_lock_free: {
4076 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4077 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4078 // _Atomic(T) is always properly-aligned.
4079 const char *LibCallName = "__atomic_is_lock_free";
4080 CallArgList Args;
4081 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4082 getContext().getSizeType());
4083 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4084 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4085 getContext().VoidPtrTy);
4086 else
4087 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4088 getContext().VoidPtrTy);
4089 const CGFunctionInfo &FuncInfo =
4090 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4091 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4092 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4093 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4094 ReturnValueSlot(), Args);
4095 }
4096
4097 case Builtin::BI__atomic_test_and_set: {
4098 // Look at the argument type to determine whether this is a volatile
4099 // operation. The parameter type is always volatile.
4100 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4101 bool Volatile =
4102 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4103
4104 Value *Ptr = EmitScalarExpr(E->getArg(0));
4105 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4106 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4107 Value *NewVal = Builder.getInt8(1);
4108 Value *Order = EmitScalarExpr(E->getArg(1));
4109 if (isa<llvm::ConstantInt>(Order)) {
4110 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4111 AtomicRMWInst *Result = nullptr;
4112 switch (ord) {
4113 case 0: // memory_order_relaxed
4114 default: // invalid order
4115 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4116 llvm::AtomicOrdering::Monotonic);
4117 break;
4118 case 1: // memory_order_consume
4119 case 2: // memory_order_acquire
4120 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4121 llvm::AtomicOrdering::Acquire);
4122 break;
4123 case 3: // memory_order_release
4124 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4125 llvm::AtomicOrdering::Release);
4126 break;
4127 case 4: // memory_order_acq_rel
4128
4129 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4130 llvm::AtomicOrdering::AcquireRelease);
4131 break;
4132 case 5: // memory_order_seq_cst
4133 Result = Builder.CreateAtomicRMW(
4134 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4135 llvm::AtomicOrdering::SequentiallyConsistent);
4136 break;
4137 }
4138 Result->setVolatile(Volatile);
4139 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4140 }
4141
4142 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4143
4144 llvm::BasicBlock *BBs[5] = {
4145 createBasicBlock("monotonic", CurFn),
4146 createBasicBlock("acquire", CurFn),
4147 createBasicBlock("release", CurFn),
4148 createBasicBlock("acqrel", CurFn),
4149 createBasicBlock("seqcst", CurFn)
4150 };
4151 llvm::AtomicOrdering Orders[5] = {
4152 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4153 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4154 llvm::AtomicOrdering::SequentiallyConsistent};
4155
4156 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4157 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4158
4159 Builder.SetInsertPoint(ContBB);
4160 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4161
4162 for (unsigned i = 0; i < 5; ++i) {
4163 Builder.SetInsertPoint(BBs[i]);
4164 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4165 Ptr, NewVal, Orders[i]);
4166 RMW->setVolatile(Volatile);
4167 Result->addIncoming(RMW, BBs[i]);
4168 Builder.CreateBr(ContBB);
4169 }
4170
4171 SI->addCase(Builder.getInt32(0), BBs[0]);
4172 SI->addCase(Builder.getInt32(1), BBs[1]);
4173 SI->addCase(Builder.getInt32(2), BBs[1]);
4174 SI->addCase(Builder.getInt32(3), BBs[2]);
4175 SI->addCase(Builder.getInt32(4), BBs[3]);
4176 SI->addCase(Builder.getInt32(5), BBs[4]);
4177
4178 Builder.SetInsertPoint(ContBB);
4179 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4180 }
4181
4182 case Builtin::BI__atomic_clear: {
4183 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4184 bool Volatile =
4185 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4186
4187 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4188 Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4189 Value *NewVal = Builder.getInt8(0);
4190 Value *Order = EmitScalarExpr(E->getArg(1));
4191 if (isa<llvm::ConstantInt>(Order)) {
4192 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4193 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4194 switch (ord) {
4195 case 0: // memory_order_relaxed
4196 default: // invalid order
4197 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4198 break;
4199 case 3: // memory_order_release
4200 Store->setOrdering(llvm::AtomicOrdering::Release);
4201 break;
4202 case 5: // memory_order_seq_cst
4203 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4204 break;
4205 }
4206 return RValue::get(nullptr);
4207 }
4208
4209 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4210
4211 llvm::BasicBlock *BBs[3] = {
4212 createBasicBlock("monotonic", CurFn),
4213 createBasicBlock("release", CurFn),
4214 createBasicBlock("seqcst", CurFn)
4215 };
4216 llvm::AtomicOrdering Orders[3] = {
4217 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4218 llvm::AtomicOrdering::SequentiallyConsistent};
4219
4220 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4221 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4222
4223 for (unsigned i = 0; i < 3; ++i) {
4224 Builder.SetInsertPoint(BBs[i]);
4225 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4226 Store->setOrdering(Orders[i]);
4227 Builder.CreateBr(ContBB);
4228 }
4229
4230 SI->addCase(Builder.getInt32(0), BBs[0]);
4231 SI->addCase(Builder.getInt32(3), BBs[1]);
4232 SI->addCase(Builder.getInt32(5), BBs[2]);
4233
4234 Builder.SetInsertPoint(ContBB);
4235 return RValue::get(nullptr);
4236 }
4237
4238 case Builtin::BI__atomic_thread_fence:
4239 case Builtin::BI__atomic_signal_fence:
4240 case Builtin::BI__c11_atomic_thread_fence:
4241 case Builtin::BI__c11_atomic_signal_fence: {
4242 llvm::SyncScope::ID SSID;
4243 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4244 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4245 SSID = llvm::SyncScope::SingleThread;
4246 else
4247 SSID = llvm::SyncScope::System;
4248 Value *Order = EmitScalarExpr(E->getArg(0));
4249 if (isa<llvm::ConstantInt>(Order)) {
4250 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4251 switch (ord) {
4252 case 0: // memory_order_relaxed
4253 default: // invalid order
4254 break;
4255 case 1: // memory_order_consume
4256 case 2: // memory_order_acquire
4257 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4258 break;
4259 case 3: // memory_order_release
4260 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4261 break;
4262 case 4: // memory_order_acq_rel
4263 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4264 break;
4265 case 5: // memory_order_seq_cst
4266 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4267 break;
4268 }
4269 return RValue::get(nullptr);
4270 }
4271
4272 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4273 AcquireBB = createBasicBlock("acquire", CurFn);
4274 ReleaseBB = createBasicBlock("release", CurFn);
4275 AcqRelBB = createBasicBlock("acqrel", CurFn);
4276 SeqCstBB = createBasicBlock("seqcst", CurFn);
4277 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4278
4279 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4280 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4281
4282 Builder.SetInsertPoint(AcquireBB);
4283 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4284 Builder.CreateBr(ContBB);
4285 SI->addCase(Builder.getInt32(1), AcquireBB);
4286 SI->addCase(Builder.getInt32(2), AcquireBB);
4287
4288 Builder.SetInsertPoint(ReleaseBB);
4289 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4290 Builder.CreateBr(ContBB);
4291 SI->addCase(Builder.getInt32(3), ReleaseBB);
4292
4293 Builder.SetInsertPoint(AcqRelBB);
4294 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4295 Builder.CreateBr(ContBB);
4296 SI->addCase(Builder.getInt32(4), AcqRelBB);
4297
4298 Builder.SetInsertPoint(SeqCstBB);
4299 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4300 Builder.CreateBr(ContBB);
4301 SI->addCase(Builder.getInt32(5), SeqCstBB);
4302
4303 Builder.SetInsertPoint(ContBB);
4304 return RValue::get(nullptr);
4305 }
4306
4307 case Builtin::BI__builtin_signbit:
4308 case Builtin::BI__builtin_signbitf:
4309 case Builtin::BI__builtin_signbitl: {
4310 return RValue::get(
4311 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4312 ConvertType(E->getType())));
4313 }
4314 case Builtin::BI__warn_memset_zero_len:
4315 return RValue::getIgnored();
4316 case Builtin::BI__annotation: {
4317 // Re-encode each wide string to UTF8 and make an MDString.
4318 SmallVector<Metadata *, 1> Strings;
4319 for (const Expr *Arg : E->arguments()) {
4320 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4321 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"clang/lib/CodeGen/CGBuiltin.cpp", 4321, __extension__ __PRETTY_FUNCTION__
))
;
4322 StringRef WideBytes = Str->getBytes();
4323 std::string StrUtf8;
4324 if (!convertUTF16ToUTF8String(
4325 ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4326 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4327 continue;
4328 }
4329 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4330 }
4331
4332 // Build and MDTuple of MDStrings and emit the intrinsic call.
4333 llvm::Function *F =
4334 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4335 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4336 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4337 return RValue::getIgnored();
4338 }
4339 case Builtin::BI__builtin_annotation: {
4340 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4341 llvm::Function *F =
4342 CGM.getIntrinsic(llvm::Intrinsic::annotation,
4343 {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
4344
4345 // Get the annotation string, go through casts. Sema requires this to be a
4346 // non-wide string literal, potentially casted, so the cast<> is safe.
4347 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4348 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4349 return RValue::get(
4350 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4351 }
4352 case Builtin::BI__builtin_addcb:
4353 case Builtin::BI__builtin_addcs:
4354 case Builtin::BI__builtin_addc:
4355 case Builtin::BI__builtin_addcl:
4356 case Builtin::BI__builtin_addcll:
4357 case Builtin::BI__builtin_subcb:
4358 case Builtin::BI__builtin_subcs:
4359 case Builtin::BI__builtin_subc:
4360 case Builtin::BI__builtin_subcl:
4361 case Builtin::BI__builtin_subcll: {
4362
4363 // We translate all of these builtins from expressions of the form:
4364 // int x = ..., y = ..., carryin = ..., carryout, result;
4365 // result = __builtin_addc(x, y, carryin, &carryout);
4366 //
4367 // to LLVM IR of the form:
4368 //
4369 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4370 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4371 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4372 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4373 // i32 %carryin)
4374 // %result = extractvalue {i32, i1} %tmp2, 0
4375 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4376 // %tmp3 = or i1 %carry1, %carry2
4377 // %tmp4 = zext i1 %tmp3 to i32
4378 // store i32 %tmp4, i32* %carryout
4379
4380 // Scalarize our inputs.
4381 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4382 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4383 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4384 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4385
4386 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4387 llvm::Intrinsic::ID IntrinsicId;
4388 switch (BuiltinID) {
4389 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4389)
;
4390 case Builtin::BI__builtin_addcb:
4391 case Builtin::BI__builtin_addcs:
4392 case Builtin::BI__builtin_addc:
4393 case Builtin::BI__builtin_addcl:
4394 case Builtin::BI__builtin_addcll:
4395 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4396 break;
4397 case Builtin::BI__builtin_subcb:
4398 case Builtin::BI__builtin_subcs:
4399 case Builtin::BI__builtin_subc:
4400 case Builtin::BI__builtin_subcl:
4401 case Builtin::BI__builtin_subcll:
4402 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4403 break;
4404 }
4405
4406 // Construct our resulting LLVM IR expression.
4407 llvm::Value *Carry1;
4408 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4409 X, Y, Carry1);
4410 llvm::Value *Carry2;
4411 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4412 Sum1, Carryin, Carry2);
4413 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4414 X->getType());
4415 Builder.CreateStore(CarryOut, CarryOutPtr);
4416 return RValue::get(Sum2);
4417 }
4418
4419 case Builtin::BI__builtin_add_overflow:
4420 case Builtin::BI__builtin_sub_overflow:
4421 case Builtin::BI__builtin_mul_overflow: {
4422 const clang::Expr *LeftArg = E->getArg(0);
4423 const clang::Expr *RightArg = E->getArg(1);
4424 const clang::Expr *ResultArg = E->getArg(2);
4425
4426 clang::QualType ResultQTy =
4427 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4428
4429 WidthAndSignedness LeftInfo =
4430 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4431 WidthAndSignedness RightInfo =
4432 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4433 WidthAndSignedness ResultInfo =
4434 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4435
4436 // Handle mixed-sign multiplication as a special case, because adding
4437 // runtime or backend support for our generic irgen would be too expensive.
4438 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4439 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4440 RightInfo, ResultArg, ResultQTy,
4441 ResultInfo);
4442
4443 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4444 ResultInfo))
4445 return EmitCheckedUnsignedMultiplySignedResult(
4446 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4447 ResultInfo);
4448
4449 WidthAndSignedness EncompassingInfo =
4450 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4451
4452 llvm::Type *EncompassingLLVMTy =
4453 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4454
4455 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4456
4457 llvm::Intrinsic::ID IntrinsicId;
4458 switch (BuiltinID) {
4459 default:
4460 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4460)
;
4461 case Builtin::BI__builtin_add_overflow:
4462 IntrinsicId = EncompassingInfo.Signed
4463 ? llvm::Intrinsic::sadd_with_overflow
4464 : llvm::Intrinsic::uadd_with_overflow;
4465 break;
4466 case Builtin::BI__builtin_sub_overflow:
4467 IntrinsicId = EncompassingInfo.Signed
4468 ? llvm::Intrinsic::ssub_with_overflow
4469 : llvm::Intrinsic::usub_with_overflow;
4470 break;
4471 case Builtin::BI__builtin_mul_overflow:
4472 IntrinsicId = EncompassingInfo.Signed
4473 ? llvm::Intrinsic::smul_with_overflow
4474 : llvm::Intrinsic::umul_with_overflow;
4475 break;
4476 }
4477
4478 llvm::Value *Left = EmitScalarExpr(LeftArg);
4479 llvm::Value *Right = EmitScalarExpr(RightArg);
4480 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4481
4482 // Extend each operand to the encompassing type.
4483 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4484 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4485
4486 // Perform the operation on the extended values.
4487 llvm::Value *Overflow, *Result;
4488 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4489
4490 if (EncompassingInfo.Width > ResultInfo.Width) {
4491 // The encompassing type is wider than the result type, so we need to
4492 // truncate it.
4493 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4494
4495 // To see if the truncation caused an overflow, we will extend
4496 // the result and then compare it to the original result.
4497 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4498 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4499 llvm::Value *TruncationOverflow =
4500 Builder.CreateICmpNE(Result, ResultTruncExt);
4501
4502 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4503 Result = ResultTrunc;
4504 }
4505
4506 // Finally, store the result using the pointer.
4507 bool isVolatile =
4508 ResultArg->getType()->getPointeeType().isVolatileQualified();
4509 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4510
4511 return RValue::get(Overflow);
4512 }
4513
4514 case Builtin::BI__builtin_uadd_overflow:
4515 case Builtin::BI__builtin_uaddl_overflow:
4516 case Builtin::BI__builtin_uaddll_overflow:
4517 case Builtin::BI__builtin_usub_overflow:
4518 case Builtin::BI__builtin_usubl_overflow:
4519 case Builtin::BI__builtin_usubll_overflow:
4520 case Builtin::BI__builtin_umul_overflow:
4521 case Builtin::BI__builtin_umull_overflow:
4522 case Builtin::BI__builtin_umulll_overflow:
4523 case Builtin::BI__builtin_sadd_overflow:
4524 case Builtin::BI__builtin_saddl_overflow:
4525 case Builtin::BI__builtin_saddll_overflow:
4526 case Builtin::BI__builtin_ssub_overflow:
4527 case Builtin::BI__builtin_ssubl_overflow:
4528 case Builtin::BI__builtin_ssubll_overflow:
4529 case Builtin::BI__builtin_smul_overflow:
4530 case Builtin::BI__builtin_smull_overflow:
4531 case Builtin::BI__builtin_smulll_overflow: {
4532
4533 // We translate all of these builtins directly to the relevant llvm IR node.
4534
4535 // Scalarize our inputs.
4536 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4537 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4538 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4539
4540 // Decide which of the overflow intrinsics we are lowering to:
4541 llvm::Intrinsic::ID IntrinsicId;
4542 switch (BuiltinID) {
4543 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4543)
;
4544 case Builtin::BI__builtin_uadd_overflow:
4545 case Builtin::BI__builtin_uaddl_overflow:
4546 case Builtin::BI__builtin_uaddll_overflow:
4547 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4548 break;
4549 case Builtin::BI__builtin_usub_overflow:
4550 case Builtin::BI__builtin_usubl_overflow:
4551 case Builtin::BI__builtin_usubll_overflow:
4552 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4553 break;
4554 case Builtin::BI__builtin_umul_overflow:
4555 case Builtin::BI__builtin_umull_overflow:
4556 case Builtin::BI__builtin_umulll_overflow:
4557 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4558 break;
4559 case Builtin::BI__builtin_sadd_overflow:
4560 case Builtin::BI__builtin_saddl_overflow:
4561 case Builtin::BI__builtin_saddll_overflow:
4562 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4563 break;
4564 case Builtin::BI__builtin_ssub_overflow:
4565 case Builtin::BI__builtin_ssubl_overflow:
4566 case Builtin::BI__builtin_ssubll_overflow:
4567 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4568 break;
4569 case Builtin::BI__builtin_smul_overflow:
4570 case Builtin::BI__builtin_smull_overflow:
4571 case Builtin::BI__builtin_smulll_overflow:
4572 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4573 break;
4574 }
4575
4576
4577 llvm::Value *Carry;
4578 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4579 Builder.CreateStore(Sum, SumOutPtr);
4580
4581 return RValue::get(Carry);
4582 }
4583 case Builtin::BIaddressof:
4584 case Builtin::BI__addressof:
4585 case Builtin::BI__builtin_addressof:
4586 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4587 case Builtin::BI__builtin_function_start:
4588 return RValue::get(CGM.GetFunctionStart(
4589 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4590 case Builtin::BI__builtin_operator_new:
4591 return EmitBuiltinNewDeleteCall(
4592 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4593 case Builtin::BI__builtin_operator_delete:
4594 EmitBuiltinNewDeleteCall(
4595 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4596 return RValue::get(nullptr);
4597
4598 case Builtin::BI__builtin_is_aligned:
4599 return EmitBuiltinIsAligned(E);
4600 case Builtin::BI__builtin_align_up:
4601 return EmitBuiltinAlignTo(E, true);
4602 case Builtin::BI__builtin_align_down:
4603 return EmitBuiltinAlignTo(E, false);
4604
4605 case Builtin::BI__noop:
4606 // __noop always evaluates to an integer literal zero.
4607 return RValue::get(ConstantInt::get(IntTy, 0));
4608 case Builtin::BI__builtin_call_with_static_chain: {
4609 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4610 const Expr *Chain = E->getArg(1);
4611 return EmitCall(Call->getCallee()->getType(),
4612 EmitCallee(Call->getCallee()), Call, ReturnValue,
4613 EmitScalarExpr(Chain));
4614 }
4615 case Builtin::BI_InterlockedExchange8:
4616 case Builtin::BI_InterlockedExchange16:
4617 case Builtin::BI_InterlockedExchange:
4618 case Builtin::BI_InterlockedExchangePointer:
4619 return RValue::get(
4620 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4621 case Builtin::BI_InterlockedCompareExchangePointer:
4622 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4623 llvm::Type *RTy;
4624 llvm::IntegerType *IntType =
4625 IntegerType::get(getLLVMContext(),
4626 getContext().getTypeSize(E->getType()));
4627 llvm::Type *IntPtrType = IntType->getPointerTo();
4628
4629 llvm::Value *Destination =
4630 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4631
4632 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4633 RTy = Exchange->getType();
4634 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4635
4636 llvm::Value *Comparand =
4637 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4638
4639 auto Ordering =
4640 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4641 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4642
4643 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4644 Ordering, Ordering);
4645 Result->setVolatile(true);
4646
4647 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4648 0),
4649 RTy));
4650 }
4651 case Builtin::BI_InterlockedCompareExchange8:
4652 case Builtin::BI_InterlockedCompareExchange16:
4653 case Builtin::BI_InterlockedCompareExchange:
4654 case Builtin::BI_InterlockedCompareExchange64:
4655 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4656 case Builtin::BI_InterlockedIncrement16:
4657 case Builtin::BI_InterlockedIncrement:
4658 return RValue::get(
4659 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4660 case Builtin::BI_InterlockedDecrement16:
4661 case Builtin::BI_InterlockedDecrement:
4662 return RValue::get(
4663 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4664 case Builtin::BI_InterlockedAnd8:
4665 case Builtin::BI_InterlockedAnd16:
4666 case Builtin::BI_InterlockedAnd:
4667 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4668 case Builtin::BI_InterlockedExchangeAdd8:
4669 case Builtin::BI_InterlockedExchangeAdd16:
4670 case Builtin::BI_InterlockedExchangeAdd:
4671 return RValue::get(
4672 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4673 case Builtin::BI_InterlockedExchangeSub8:
4674 case Builtin::BI_InterlockedExchangeSub16:
4675 case Builtin::BI_InterlockedExchangeSub:
4676 return RValue::get(
4677 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4678 case Builtin::BI_InterlockedOr8:
4679 case Builtin::BI_InterlockedOr16:
4680 case Builtin::BI_InterlockedOr:
4681 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4682 case Builtin::BI_InterlockedXor8:
4683 case Builtin::BI_InterlockedXor16:
4684 case Builtin::BI_InterlockedXor:
4685 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4686
4687 case Builtin::BI_bittest64:
4688 case Builtin::BI_bittest:
4689 case Builtin::BI_bittestandcomplement64:
4690 case Builtin::BI_bittestandcomplement:
4691 case Builtin::BI_bittestandreset64:
4692 case Builtin::BI_bittestandreset:
4693 case Builtin::BI_bittestandset64:
4694 case Builtin::BI_bittestandset:
4695 case Builtin::BI_interlockedbittestandreset:
4696 case Builtin::BI_interlockedbittestandreset64:
4697 case Builtin::BI_interlockedbittestandset64:
4698 case Builtin::BI_interlockedbittestandset:
4699 case Builtin::BI_interlockedbittestandset_acq:
4700 case Builtin::BI_interlockedbittestandset_rel:
4701 case Builtin::BI_interlockedbittestandset_nf:
4702 case Builtin::BI_interlockedbittestandreset_acq:
4703 case Builtin::BI_interlockedbittestandreset_rel:
4704 case Builtin::BI_interlockedbittestandreset_nf:
4705 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4706
4707 // These builtins exist to emit regular volatile loads and stores not
4708 // affected by the -fms-volatile setting.
4709 case Builtin::BI__iso_volatile_load8:
4710 case Builtin::BI__iso_volatile_load16:
4711 case Builtin::BI__iso_volatile_load32:
4712 case Builtin::BI__iso_volatile_load64:
4713 return RValue::get(EmitISOVolatileLoad(*this, E));
4714 case Builtin::BI__iso_volatile_store8:
4715 case Builtin::BI__iso_volatile_store16:
4716 case Builtin::BI__iso_volatile_store32:
4717 case Builtin::BI__iso_volatile_store64:
4718 return RValue::get(EmitISOVolatileStore(*this, E));
4719
4720 case Builtin::BI__exception_code:
4721 case Builtin::BI_exception_code:
4722 return RValue::get(EmitSEHExceptionCode());
4723 case Builtin::BI__exception_info:
4724 case Builtin::BI_exception_info:
4725 return RValue::get(EmitSEHExceptionInfo());
4726 case Builtin::BI__abnormal_termination:
4727 case Builtin::BI_abnormal_termination:
4728 return RValue::get(EmitSEHAbnormalTermination());
4729 case Builtin::BI_setjmpex:
4730 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4731 E->getArg(0)->getType()->isPointerType())
4732 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4733 break;
4734 case Builtin::BI_setjmp:
4735 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4736 E->getArg(0)->getType()->isPointerType()) {
4737 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4738 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4739 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4740 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4741 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4742 }
4743 break;
4744
4745 // C++ std:: builtins.
4746 case Builtin::BImove:
4747 case Builtin::BImove_if_noexcept:
4748 case Builtin::BIforward:
4749 case Builtin::BIforward_like:
4750 case Builtin::BIas_const:
4751 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4752 case Builtin::BI__GetExceptionInfo: {
4753 if (llvm::GlobalVariable *GV =
4754 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4755 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4756 break;
4757 }
4758
4759 case Builtin::BI__fastfail:
4760 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4761
4762 case Builtin::BI__builtin_coro_id:
4763 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4764 case Builtin::BI__builtin_coro_promise:
4765 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4766 case Builtin::BI__builtin_coro_resume:
4767 EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4768 return RValue::get(nullptr);
4769 case Builtin::BI__builtin_coro_frame:
4770 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4771 case Builtin::BI__builtin_coro_noop:
4772 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4773 case Builtin::BI__builtin_coro_free:
4774 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4775 case Builtin::BI__builtin_coro_destroy:
4776 EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4777 return RValue::get(nullptr);
4778 case Builtin::BI__builtin_coro_done:
4779 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4780 case Builtin::BI__builtin_coro_alloc:
4781 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4782 case Builtin::BI__builtin_coro_begin:
4783 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4784 case Builtin::BI__builtin_coro_end:
4785 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4786 case Builtin::BI__builtin_coro_suspend:
4787 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4788 case Builtin::BI__builtin_coro_size:
4789 return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
4790 case Builtin::BI__builtin_coro_align:
4791 return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
4792
4793 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4794 case Builtin::BIread_pipe:
4795 case Builtin::BIwrite_pipe: {
4796 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4797 *Arg1 = EmitScalarExpr(E->getArg(1));
4798 CGOpenCLRuntime OpenCLRT(CGM);
4799 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4800 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4801
4802 // Type of the generic packet parameter.
4803 unsigned GenericAS =
4804 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4805 llvm::Type *I8PTy = llvm::PointerType::get(
4806 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4807
4808 // Testing which overloaded version we should generate the call for.
4809 if (2U == E->getNumArgs()) {
4810 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4811 : "__write_pipe_2";
4812 // Creating a generic function type to be able to call with any builtin or
4813 // user defined type.
4814 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4815 llvm::FunctionType *FTy = llvm::FunctionType::get(
4816 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4817 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4818 return RValue::get(
4819 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4820 {Arg0, BCast, PacketSize, PacketAlign}));
4821 } else {
4822 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4823, __extension__ __PRETTY_FUNCTION__
))
4823 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4823, __extension__ __PRETTY_FUNCTION__
))
;
4824 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4825 : "__write_pipe_4";
4826
4827 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4828 Int32Ty, Int32Ty};
4829 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4830 *Arg3 = EmitScalarExpr(E->getArg(3));
4831 llvm::FunctionType *FTy = llvm::FunctionType::get(
4832 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4833 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4834 // We know the third argument is an integer type, but we may need to cast
4835 // it to i32.
4836 if (Arg2->getType() != Int32Ty)
4837 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4838 return RValue::get(
4839 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4840 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4841 }
4842 }
4843 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4844 // functions
4845 case Builtin::BIreserve_read_pipe:
4846 case Builtin::BIreserve_write_pipe:
4847 case Builtin::BIwork_group_reserve_read_pipe:
4848 case Builtin::BIwork_group_reserve_write_pipe:
4849 case Builtin::BIsub_group_reserve_read_pipe:
4850 case Builtin::BIsub_group_reserve_write_pipe: {
4851 // Composing the mangled name for the function.
4852 const char *Name;
4853 if (BuiltinID == Builtin::BIreserve_read_pipe)
4854 Name = "__reserve_read_pipe";
4855 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4856 Name = "__reserve_write_pipe";
4857 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4858 Name = "__work_group_reserve_read_pipe";
4859 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4860 Name = "__work_group_reserve_write_pipe";
4861 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4862 Name = "__sub_group_reserve_read_pipe";
4863 else
4864 Name = "__sub_group_reserve_write_pipe";
4865
4866 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4867 *Arg1 = EmitScalarExpr(E->getArg(1));
4868 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4869 CGOpenCLRuntime OpenCLRT(CGM);
4870 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4871 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4872
4873 // Building the generic function prototype.
4874 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4875 llvm::FunctionType *FTy = llvm::FunctionType::get(
4876 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4877 // We know the second argument is an integer type, but we may need to cast
4878 // it to i32.
4879 if (Arg1->getType() != Int32Ty)
4880 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4881 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4882 {Arg0, Arg1, PacketSize, PacketAlign}));
4883 }
4884 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4885 // functions
4886 case Builtin::BIcommit_read_pipe:
4887 case Builtin::BIcommit_write_pipe:
4888 case Builtin::BIwork_group_commit_read_pipe:
4889 case Builtin::BIwork_group_commit_write_pipe:
4890 case Builtin::BIsub_group_commit_read_pipe:
4891 case Builtin::BIsub_group_commit_write_pipe: {
4892 const char *Name;
4893 if (BuiltinID == Builtin::BIcommit_read_pipe)
4894 Name = "__commit_read_pipe";
4895 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4896 Name = "__commit_write_pipe";
4897 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4898 Name = "__work_group_commit_read_pipe";
4899 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4900 Name = "__work_group_commit_write_pipe";
4901 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4902 Name = "__sub_group_commit_read_pipe";
4903 else
4904 Name = "__sub_group_commit_write_pipe";
4905
4906 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4907 *Arg1 = EmitScalarExpr(E->getArg(1));
4908 CGOpenCLRuntime OpenCLRT(CGM);
4909 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4910 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4911
4912 // Building the generic function prototype.
4913 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4914 llvm::FunctionType *FTy =
4915 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4916 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4917
4918 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4919 {Arg0, Arg1, PacketSize, PacketAlign}));
4920 }
4921 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4922 case Builtin::BIget_pipe_num_packets:
4923 case Builtin::BIget_pipe_max_packets: {
4924 const char *BaseName;
4925 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4926 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4927 BaseName = "__get_pipe_num_packets";
4928 else
4929 BaseName = "__get_pipe_max_packets";
4930 std::string Name = std::string(BaseName) +
4931 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4932
4933 // Building the generic function prototype.
4934 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4935 CGOpenCLRuntime OpenCLRT(CGM);
4936 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4937 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4938 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4939 llvm::FunctionType *FTy = llvm::FunctionType::get(
4940 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4941
4942 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4943 {Arg0, PacketSize, PacketAlign}));
4944 }
4945
4946 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4947 case Builtin::BIto_global:
4948 case Builtin::BIto_local:
4949 case Builtin::BIto_private: {
4950 auto Arg0 = EmitScalarExpr(E->getArg(0));
4951 auto NewArgT = llvm::PointerType::get(Int8Ty,
4952 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4953 auto NewRetT = llvm::PointerType::get(Int8Ty,
4954 CGM.getContext().getTargetAddressSpace(
4955 E->getType()->getPointeeType().getAddressSpace()));
4956 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4957 llvm::Value *NewArg;
4958 if (Arg0->getType()->getPointerAddressSpace() !=
4959 NewArgT->getPointerAddressSpace())
4960 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4961 else
4962 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4963 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4964 auto NewCall =
4965 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4966 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4967 ConvertType(E->getType())));
4968 }
4969
4970 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4971 // It contains four different overload formats specified in Table 6.13.17.1.
4972 case Builtin::BIenqueue_kernel: {
4973 StringRef Name; // Generated function call name
4974 unsigned NumArgs = E->getNumArgs();
4975
4976 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4977 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4978 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4979
4980 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4981 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4982 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4983 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4984 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4985
4986 if (NumArgs == 4) {
4987 // The most basic form of the call with parameters:
4988 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4989 Name = "__enqueue_kernel_basic";
4990 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4991 GenericVoidPtrTy};
4992 llvm::FunctionType *FTy = llvm::FunctionType::get(
4993 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4994
4995 auto Info =
4996 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4997 llvm::Value *Kernel =
4998 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
4999 llvm::Value *Block =
5000 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5001
5002 AttrBuilder B(Builder.getContext());
5003 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
5004 llvm::AttributeList ByValAttrSet =
5005 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
5006
5007 auto RTCall =
5008 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
5009 {Queue, Flags, Range, Kernel, Block});
5010 RTCall->setAttributes(ByValAttrSet);
5011 return RValue::get(RTCall);
5012 }
5013 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5013, __extension__ __PRETTY_FUNCTION__
))
;
5014
5015 // Create a temporary array to hold the sizes of local pointer arguments
5016 // for the block. \p First is the position of the first size argument.
5017 auto CreateArrayForSizeVar = [=](unsigned First)
5018 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5019 llvm::APInt ArraySize(32, NumArgs - First);
5020 QualType SizeArrayTy = getContext().getConstantArrayType(
5021 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
5022 /*IndexTypeQuals=*/0);
5023 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5024 llvm::Value *TmpPtr = Tmp.getPointer();
5025 llvm::Value *TmpSize = EmitLifetimeStart(
5026 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5027 llvm::Value *ElemPtr;
5028 // Each of the following arguments specifies the size of the corresponding
5029 // argument passed to the enqueued block.
5030 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5031 for (unsigned I = First; I < NumArgs; ++I) {
5032 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5033 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5034 {Zero, Index});
5035 if (I == First)
5036 ElemPtr = GEP;
5037 auto *V =
5038 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5039 Builder.CreateAlignedStore(
5040 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5041 }
5042 return std::tie(ElemPtr, TmpSize, TmpPtr);
5043 };
5044
5045 // Could have events and/or varargs.
5046 if (E->getArg(3)->getType()->isBlockPointerType()) {
5047 // No events passed, but has variadic arguments.
5048 Name = "__enqueue_kernel_varargs";
5049 auto Info =
5050 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5051 llvm::Value *Kernel =
5052 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5053 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5054 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5055 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5056
5057 // Create a vector of the arguments, as well as a constant value to
5058 // express to the runtime the number of variadic arguments.
5059 llvm::Value *const Args[] = {Queue, Flags,
5060 Range, Kernel,
5061 Block, ConstantInt::get(IntTy, NumArgs - 4),
5062 ElemPtr};
5063 llvm::Type *const ArgTys[] = {
5064 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5065 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5066
5067 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5068 auto Call = RValue::get(
5069 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5070 if (TmpSize)
5071 EmitLifetimeEnd(TmpSize, TmpPtr);
5072 return Call;
5073 }
5074 // Any calls now have event arguments passed.
5075 if (NumArgs >= 7) {
5076 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
5077 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
5078 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5079
5080 llvm::Value *NumEvents =
5081 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5082
5083 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5084 // to be a null pointer constant (including `0` literal), we can take it
5085 // into account and emit null pointer directly.
5086 llvm::Value *EventWaitList = nullptr;
5087 if (E->getArg(4)->isNullPointerConstant(
5088 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5089 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
5090 } else {
5091 EventWaitList = E->getArg(4)->getType()->isArrayType()
5092 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5093 : EmitScalarExpr(E->getArg(4));
5094 // Convert to generic address space.
5095 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
5096 }
5097 llvm::Value *EventRet = nullptr;
5098 if (E->getArg(5)->isNullPointerConstant(
5099 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5100 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
5101 } else {
5102 EventRet =
5103 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
5104 }
5105
5106 auto Info =
5107 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5108 llvm::Value *Kernel =
5109 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5110 llvm::Value *Block =
5111 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5112
5113 std::vector<llvm::Type *> ArgTys = {
5114 QueueTy, Int32Ty, RangeTy, Int32Ty,
5115 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5116
5117 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5118 NumEvents, EventWaitList, EventRet,
5119 Kernel, Block};
5120
5121 if (NumArgs == 7) {
5122 // Has events but no variadics.
5123 Name = "__enqueue_kernel_basic_events";
5124 llvm::FunctionType *FTy = llvm::FunctionType::get(
5125 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5126 return RValue::get(
5127 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5128 llvm::ArrayRef<llvm::Value *>(Args)));
5129 }
5130 // Has event info and variadics
5131 // Pass the number of variadics to the runtime function too.
5132 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5133 ArgTys.push_back(Int32Ty);
5134 Name = "__enqueue_kernel_events_varargs";
5135
5136 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5137 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5138 Args.push_back(ElemPtr);
5139 ArgTys.push_back(ElemPtr->getType());
5140
5141 llvm::FunctionType *FTy = llvm::FunctionType::get(
5142 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5143 auto Call =
5144 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5145 llvm::ArrayRef<llvm::Value *>(Args)));
5146 if (TmpSize)
5147 EmitLifetimeEnd(TmpSize, TmpPtr);
5148 return Call;
5149 }
5150 [[fallthrough]];
5151 }
5152 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5153 // parameter.
5154 case Builtin::BIget_kernel_work_group_size: {
5155 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5156 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5157 auto Info =
5158 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5159 Value *Kernel =
5160 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5161 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5162 return RValue::get(EmitRuntimeCall(
5163 CGM.CreateRuntimeFunction(
5164 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5165 false),
5166 "__get_kernel_work_group_size_impl"),
5167 {Kernel, Arg}));
5168 }
5169 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5170 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5171 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5172 auto Info =
5173 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5174 Value *Kernel =
5175 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5176 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5177 return RValue::get(EmitRuntimeCall(
5178 CGM.CreateRuntimeFunction(
5179 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5180 false),
5181 "__get_kernel_preferred_work_group_size_multiple_impl"),
5182 {Kernel, Arg}));
5183 }
5184 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5185 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5186 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5187 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5188 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5189 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5190 auto Info =
5191 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5192 Value *Kernel =
5193 Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5194 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5195 const char *Name =
5196 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5197 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5198 : "__get_kernel_sub_group_count_for_ndrange_impl";
5199 return RValue::get(EmitRuntimeCall(
5200 CGM.CreateRuntimeFunction(
5201 llvm::FunctionType::get(
5202 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5203 false),
5204 Name),
5205 {NDRange, Kernel, Block}));
5206 }
5207
5208 case Builtin::BI__builtin_store_half:
5209 case Builtin::BI__builtin_store_halff: {
5210 Value *Val = EmitScalarExpr(E->getArg(0));
5211 Address Address = EmitPointerWithAlignment(E->getArg(1));
5212 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5213 Builder.CreateStore(HalfVal, Address);
5214 return RValue::get(nullptr);
5215 }
5216 case Builtin::BI__builtin_load_half: {
5217 Address Address = EmitPointerWithAlignment(E->getArg(0));
5218 Value *HalfVal = Builder.CreateLoad(Address);
5219 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5220 }
5221 case Builtin::BI__builtin_load_halff: {
5222 Address Address = EmitPointerWithAlignment(E->getArg(0));
5223 Value *HalfVal = Builder.CreateLoad(Address);
5224 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5225 }
5226 case Builtin::BIprintf:
5227 if (getTarget().getTriple().isNVPTX() ||
5228 getTarget().getTriple().isAMDGCN()) {
5229 if (getLangOpts().OpenMPIsDevice)
5230 return EmitOpenMPDevicePrintfCallExpr(E);
5231 if (getTarget().getTriple().isNVPTX())
5232 return EmitNVPTXDevicePrintfCallExpr(E);
5233 if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5234 return EmitAMDGPUDevicePrintfCallExpr(E);
5235 }
5236
5237 break;
5238 case Builtin::BI__builtin_canonicalize:
5239 case Builtin::BI__builtin_canonicalizef:
5240 case Builtin::BI__builtin_canonicalizef16:
5241 case Builtin::BI__builtin_canonicalizel:
5242 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5243
5244 case Builtin::BI__builtin_thread_pointer: {
5245 if (!getContext().getTargetInfo().isTLSSupported())
5246 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5247 // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
5248 break;
5249 }
5250 case Builtin::BI__builtin_os_log_format:
5251 return emitBuiltinOSLogFormat(*E);
5252
5253 case Builtin::BI__xray_customevent: {
5254 if (!ShouldXRayInstrumentFunction())
5255 return RValue::getIgnored();
5256
5257 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5258 XRayInstrKind::Custom))
5259 return RValue::getIgnored();
5260
5261 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5262 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5263 return RValue::getIgnored();
5264
5265 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5266 auto FTy = F->getFunctionType();
5267 auto Arg0 = E->getArg(0);
5268 auto Arg0Val = EmitScalarExpr(Arg0);
5269 auto Arg0Ty = Arg0->getType();
5270 auto PTy0 = FTy->getParamType(0);
5271 if (PTy0 != Arg0Val->getType()) {
5272 if (Arg0Ty->isArrayType())
5273 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5274 else
5275 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5276 }
5277 auto Arg1 = EmitScalarExpr(E->getArg(1));
5278 auto PTy1 = FTy->getParamType(1);
5279 if (PTy1 != Arg1->getType())
5280 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5281 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5282 }
5283
5284 case Builtin::BI__xray_typedevent: {
5285 // TODO: There should be a way to always emit events even if the current
5286 // function is not instrumented. Losing events in a stream can cripple
5287 // a trace.
5288 if (!ShouldXRayInstrumentFunction())
5289 return RValue::getIgnored();
5290
5291 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5292 XRayInstrKind::Typed))
5293 return RValue::getIgnored();
5294
5295 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5296 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5297 return RValue::getIgnored();
5298
5299 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5300 auto FTy = F->getFunctionType();
5301 auto Arg0 = EmitScalarExpr(E->getArg(0));
5302 auto PTy0 = FTy->getParamType(0);
5303 if (PTy0 != Arg0->getType())
5304 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5305 auto Arg1 = E->getArg(1);
5306 auto Arg1Val = EmitScalarExpr(Arg1);
5307 auto Arg1Ty = Arg1->getType();
5308 auto PTy1 = FTy->getParamType(1);
5309 if (PTy1 != Arg1Val->getType()) {
5310 if (Arg1Ty->isArrayType())
5311 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5312 else
5313 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5314 }
5315 auto Arg2 = EmitScalarExpr(E->getArg(2));
5316 auto PTy2 = FTy->getParamType(2);
5317 if (PTy2 != Arg2->getType())
5318 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5319 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5320 }
5321
5322 case Builtin::BI__builtin_ms_va_start:
5323 case Builtin::BI__builtin_ms_va_end:
5324 return RValue::get(
5325 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5326 BuiltinID == Builtin::BI__builtin_ms_va_start));
5327
5328 case Builtin::BI__builtin_ms_va_copy: {
5329 // Lower this manually. We can't reliably determine whether or not any
5330 // given va_copy() is for a Win64 va_list from the calling convention
5331 // alone, because it's legal to do this from a System V ABI function.
5332 // With opaque pointer types, we won't have enough information in LLVM
5333 // IR to determine this from the argument types, either. Best to do it
5334 // now, while we have enough information.
5335 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5336 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5337
5338 llvm::Type *BPP = Int8PtrPtrTy;
5339
5340 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5341 Int8PtrTy, DestAddr.getAlignment());
5342 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5343 Int8PtrTy, SrcAddr.getAlignment());
5344
5345 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5346 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5347 }
5348
5349 case Builtin::BI__builtin_get_device_side_mangled_name: {
5350 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5351 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5352 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5353 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5354 llvm::ConstantInt::get(SizeTy, 0)};
5355 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5356 Str.getPointer(), Zeros);
5357 return RValue::get(Ptr);
5358 }
5359 }
5360
5361 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5362 // the call using the normal call path, but using the unmangled
5363 // version of the function name.
5364 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5365 return emitLibraryCall(*this, FD, E,
5366 CGM.getBuiltinLibFunction(FD, BuiltinID));
5367
5368 // If this is a predefined lib function (e.g. malloc), emit the call
5369 // using exactly the normal call path.
5370 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5371 return emitLibraryCall(*this, FD, E,
5372 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5373
5374 // Check that a call to a target specific builtin has the correct target
5375 // features.
5376 // This is down here to avoid non-target specific builtins, however, if
5377 // generic builtins start to require generic target features then we
5378 // can move this up to the beginning of the function.
5379 checkTargetFeatures(E, FD);
5380
5381 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5382 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5383
5384 // See if we have a target specific intrinsic.
5385 StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
5386 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5387 StringRef Prefix =
5388 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5389 if (!Prefix.empty()) {
5390 IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
5391 // NOTE we don't need to perform a compatibility flag check here since the
5392 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5393 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5394 if (IntrinsicID == Intrinsic::not_intrinsic)
5395 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5396 }
5397
5398 if (IntrinsicID != Intrinsic::not_intrinsic) {
5399 SmallVector<Value*, 16> Args;
5400
5401 // Find out if any arguments are required to be integer constant
5402 // expressions.
5403 unsigned ICEArguments = 0;
5404 ASTContext::GetBuiltinTypeError Error;
5405 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5406 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5406, __extension__ __PRETTY_FUNCTION__
))
;
5407
5408 Function *F = CGM.getIntrinsic(IntrinsicID);
5409 llvm::FunctionType *FTy = F->getFunctionType();
5410
5411 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5412 Value *ArgValue;
5413 // If this is a normal argument, just emit it as a scalar.
5414 if ((ICEArguments & (1 << i)) == 0) {
5415 ArgValue = EmitScalarExpr(E->getArg(i));
5416 } else {
5417 // If this is required to be a constant, constant fold it so that we
5418 // know that the generated intrinsic gets a ConstantInt.
5419 ArgValue = llvm::ConstantInt::get(
5420 getLLVMContext(),
5421 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5422 }
5423
5424 // If the intrinsic arg type is different from the builtin arg type
5425 // we need to do a bit cast.
5426 llvm::Type *PTy = FTy->getParamType(i);
5427 if (PTy != ArgValue->getType()) {
5428 // XXX - vector of pointers?
5429 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5430 if (PtrTy->getAddressSpace() !=
5431 ArgValue->getType()->getPointerAddressSpace()) {
5432 ArgValue = Builder.CreateAddrSpaceCast(
5433 ArgValue,
5434 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5435 }
5436 }
5437
5438 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5439, __extension__ __PRETTY_FUNCTION__
))
5439 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5439, __extension__ __PRETTY_FUNCTION__
))
;
5440 // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5441 // in amx intrinsics.
5442 if (PTy->isX86_AMXTy())
5443 ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5444 {ArgValue->getType()}, {ArgValue});
5445 else
5446 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5447 }
5448
5449 Args.push_back(ArgValue);
5450 }
5451
5452 Value *V = Builder.CreateCall(F, Args);
5453 QualType BuiltinRetType = E->getType();
5454
5455 llvm::Type *RetTy = VoidTy;
5456 if (!BuiltinRetType->isVoidType())
5457 RetTy = ConvertType(BuiltinRetType);
5458
5459 if (RetTy != V->getType()) {
5460 // XXX - vector of pointers?
5461 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5462 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5463 V = Builder.CreateAddrSpaceCast(
5464 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5465 }
5466 }
5467
5468 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5469, __extension__ __PRETTY_FUNCTION__
))
5469 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5469, __extension__ __PRETTY_FUNCTION__
))
;
5470 // Cast x86_amx to vector type (e.g., v256i32), this only happen
5471 // in amx intrinsics.
5472 if (V->getType()->isX86_AMXTy())
5473 V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5474 {V});
5475 else
5476 V = Builder.CreateBitCast(V, RetTy);
5477 }
5478
5479 if (RetTy->isVoidTy())
5480 return RValue::get(nullptr);
5481
5482 return RValue::get(V);
5483 }
5484
5485 // Some target-specific builtins can have aggregate return values, e.g.
5486 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5487 // ReturnValue to be non-null, so that the target-specific emission code can
5488 // always just emit into it.
5489 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5490 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5491 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5492 ReturnValue = ReturnValueSlot(DestPtr, false);
5493 }
5494
5495 // Now see if we can emit a target-specific builtin.
5496 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5497 switch (EvalKind) {
5498 case TEK_Scalar:
5499 if (V->getType()->isVoidTy())
5500 return RValue::get(nullptr);
5501 return RValue::get(V);
5502 case TEK_Aggregate:
5503 return RValue::getAggregate(ReturnValue.getValue(),
5504 ReturnValue.isVolatile());
5505 case TEK_Complex:
5506 llvm_unreachable("No current target builtin returns complex")::llvm::llvm_unreachable_internal("No current target builtin returns complex"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5506)
;
5507 }
5508 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")::llvm::llvm_unreachable_internal("Bad evaluation kind in EmitBuiltinExpr"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5508)
;
5509 }
5510
5511 ErrorUnsupported(E, "builtin function");
5512
5513 // Unknown builtin, for now just dump it out and return undef.
5514 return GetUndefRValue(E->getType());
5515}
5516
5517static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5518 unsigned BuiltinID, const CallExpr *E,
5519 ReturnValueSlot ReturnValue,
5520 llvm::Triple::ArchType Arch) {
5521 switch (Arch) {
5522 case llvm::Triple::arm:
5523 case llvm::Triple::armeb:
5524 case llvm::Triple::thumb:
5525 case llvm::Triple::thumbeb:
5526 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5527 case llvm::Triple::aarch64:
5528 case llvm::Triple::aarch64_32:
5529 case llvm::Triple::aarch64_be:
5530 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5531 case llvm::Triple::bpfeb:
5532 case llvm::Triple::bpfel:
5533 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5534 case llvm::Triple::x86:
5535 case llvm::Triple::x86_64:
5536 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5537 case llvm::Triple::ppc:
5538 case llvm::Triple::ppcle:
5539 case llvm::Triple::ppc64:
5540 case llvm::Triple::ppc64le:
5541 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5542 case llvm::Triple::r600:
5543 case llvm::Triple::amdgcn:
5544 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5545 case llvm::Triple::systemz:
5546 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5547 case llvm::Triple::nvptx:
5548 case llvm::Triple::nvptx64:
5549 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5550 case llvm::Triple::wasm32:
5551 case llvm::Triple::wasm64:
5552 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5553 case llvm::Triple::hexagon:
5554 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5555 case llvm::Triple::riscv32:
5556 case llvm::Triple::riscv64:
5557 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5558 case llvm::Triple::loongarch32:
5559 case llvm::Triple::loongarch64:
5560 return CGF->EmitLoongArchBuiltinExpr(BuiltinID, E);
5561 default:
5562 return nullptr;
5563 }
5564}
5565
5566Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5567 const CallExpr *E,
5568 ReturnValueSlot ReturnValue) {
5569 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5570 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5570, __extension__ __PRETTY_FUNCTION__
))
;
5571 return EmitTargetArchBuiltinExpr(
5572 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5573 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5574 }
5575
5576 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5577 getTarget().getTriple().getArch());
5578}
5579
5580static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5581 NeonTypeFlags TypeFlags,
5582 bool HasLegalHalfType = true,
5583 bool V1Ty = false,
5584 bool AllowBFloatArgsAndRet = true) {
5585 int IsQuad = TypeFlags.isQuad();
5586 switch (TypeFlags.getEltType()) {
5587 case NeonTypeFlags::Int8:
5588 case NeonTypeFlags::Poly8:
5589 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5590 case NeonTypeFlags::Int16:
5591 case NeonTypeFlags::Poly16:
5592 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5593 case NeonTypeFlags::BFloat16:
5594 if (AllowBFloatArgsAndRet)
5595 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5596 else
5597 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5598 case NeonTypeFlags::Float16:
5599 if (HasLegalHalfType)
5600 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5601 else
5602 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5603 case NeonTypeFlags::Int32:
5604 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5605 case NeonTypeFlags::Int64:
5606 case NeonTypeFlags::Poly64:
5607 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5608 case NeonTypeFlags::Poly128:
5609 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5610 // There is a lot of i128 and f128 API missing.
5611 // so we use v16i8 to represent poly128 and get pattern matched.
5612 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5613 case NeonTypeFlags::Float32:
5614 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5615 case NeonTypeFlags::Float64:
5616 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5617 }
5618 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5618)
;
5619}
5620
5621static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5622 NeonTypeFlags IntTypeFlags) {
5623 int IsQuad = IntTypeFlags.isQuad();
5624 switch (IntTypeFlags.getEltType()) {
5625 case NeonTypeFlags::Int16:
5626 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5627 case NeonTypeFlags::Int32:
5628 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5629 case NeonTypeFlags::Int64:
5630 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5631 default:
5632 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5632)
;
5633 }
5634}
5635
5636Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5637 const ElementCount &Count) {
5638 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5639 return Builder.CreateShuffleVector(V, V, SV, "lane");
5640}
5641
5642Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5643 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5644 return EmitNeonSplat(V, C, EC);
5645}
5646
5647Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5648 const char *name,
5649 unsigned shift, bool rightshift) {
5650 unsigned j = 0;
5651 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5652 ai != ae; ++ai, ++j) {
5653 if (F->isConstrainedFPIntrinsic())
5654 if (ai->getType()->isMetadataTy())
5655 continue;
5656 if (shift > 0 && shift == j)
5657 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5658 else
5659 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5660 }
5661
5662 if (F->isConstrainedFPIntrinsic())
5663 return Builder.CreateConstrainedFPCall(F, Ops, name);
5664 else
5665 return Builder.CreateCall(F, Ops, name);
5666}
5667
5668Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5669 bool neg) {
5670 int SV = cast<ConstantInt>(V)->getSExtValue();
5671 return ConstantInt::get(Ty, neg ? -SV : SV);
5672}
5673
5674// Right-shift a vector by a constant.
5675Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5676 llvm::Type *Ty, bool usgn,
5677 const char *name) {
5678 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5679
5680 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5681 int EltSize = VTy->getScalarSizeInBits();
5682
5683 Vec = Builder.CreateBitCast(Vec, Ty);
5684
5685 // lshr/ashr are undefined when the shift amount is equal to the vector
5686 // element size.
5687 if (ShiftAmt == EltSize) {
5688 if (usgn) {
5689 // Right-shifting an unsigned value by its size yields 0.
5690 return llvm::ConstantAggregateZero::get(VTy);
5691 } else {
5692 // Right-shifting a signed value by its size is equivalent
5693 // to a shift of size-1.
5694 --ShiftAmt;
5695 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5696 }
5697 }
5698
5699 Shift = EmitNeonShiftVector(Shift, Ty, false);
5700 if (usgn)
5701 return Builder.CreateLShr(Vec, Shift, name);
5702 else
5703 return Builder.CreateAShr(Vec, Shift, name);
5704}
5705
5706enum {
5707 AddRetType = (1 << 0),
5708 Add1ArgType = (1 << 1),
5709 Add2ArgTypes = (1 << 2),
5710
5711 VectorizeRetType = (1 << 3),
5712 VectorizeArgTypes = (1 << 4),
5713
5714 InventFloatType = (1 << 5),
5715 UnsignedAlts = (1 << 6),
5716
5717 Use64BitVectors = (1 << 7),
5718 Use128BitVectors = (1 << 8),
5719
5720 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5721 VectorRet = AddRetType | VectorizeRetType,
5722 VectorRetGetArgs01 =
5723 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5724 FpCmpzModifiers =
5725 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5726};
5727
5728namespace {
5729struct ARMVectorIntrinsicInfo {
5730 const char *NameHint;
5731 unsigned BuiltinID;
5732 unsigned LLVMIntrinsic;
5733 unsigned AltLLVMIntrinsic;
5734 uint64_t TypeModifier;
5735
5736 bool operator<(unsigned RHSBuiltinID) const {
5737 return BuiltinID < RHSBuiltinID;
5738 }
5739 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5740 return BuiltinID < TE.BuiltinID;
5741 }
5742};
5743} // end anonymous namespace
5744
5745#define NEONMAP0(NameBase) \
5746 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5747
5748#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5749 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5750 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5751
5752#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5753 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5754 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5755 TypeModifier }
5756
5757static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5758 NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
5759 NEONMAP0(splat_lane_v),
5760 NEONMAP0(splat_laneq_v),
5761 NEONMAP0(splatq_lane_v),
5762 NEONMAP0(splatq_laneq_v),
5763 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5764 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5765 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5766 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5767 NEONMAP0(vadd_v),
5768 NEONMAP0(vaddhn_v),
5769 NEONMAP0(vaddq_v),
5770 NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
5771 NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
5772 NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
5773 NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
5774 NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
5775 NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
5776 NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
5777 NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
5778 NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
5779 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5780 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5781 NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
5782 NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
5783 NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
5784 NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
5785 NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
5786 NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
5787 NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
5788 NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
5789 NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
5790 NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
5791 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5792 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5793 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5794 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5795 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5796 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5797 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5798 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5799 NEONMAP0(vceqz_v),
5800 NEONMAP0(vceqzq_v),
5801 NEONMAP0(vcgez_v),
5802 NEONMAP0(vcgezq_v),
5803 NEONMAP0(vcgtz_v),
5804 NEONMAP0(vcgtzq_v),
5805 NEONMAP0(vclez_v),
5806 NEONMAP0(vclezq_v),
5807 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5808 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5809 NEONMAP0(vcltz_v),
5810 NEONMAP0(vcltzq_v),
5811 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5812 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5813 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5814 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5815 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5816 NEONMAP0(vcvt_f16_s16),
5817 NEONMAP0(vcvt_f16_u16),
5818 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5819 NEONMAP0(vcvt_f32_v),
5820 NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
5821 NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
5822 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5823 NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
5824 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5825 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5826 NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
5827 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5828 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5829 NEONMAP0(vcvt_s16_f16),
5830 NEONMAP0(vcvt_s32_v),
5831 NEONMAP0(vcvt_s64_v),
5832 NEONMAP0(vcvt_u16_f16),
5833 NEONMAP0(vcvt_u32_v),
5834 NEONMAP0(vcvt_u64_v),
5835 NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
5836 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5837 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5838 NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
5839 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5840 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5841 NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
5842 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5843 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5844 NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
5845 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5846 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5847 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5848 NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
5849 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5850 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5851 NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
5852 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5853 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5854 NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
5855 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5856 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5857 NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
5858 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5859 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5860 NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
5861 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5862 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5863 NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
5864 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5865 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5866 NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
5867 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5868 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5869 NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
5870 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5871 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5872 NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
5873 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5874 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5875 NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
5876 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5877 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5878 NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
5879 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5880 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5881 NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
5882 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5883 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5884 NEONMAP0(vcvtq_f16_s16),
5885 NEONMAP0(vcvtq_f16_u16),
5886 NEONMAP0(vcvtq_f32_v),
5887 NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
5888 NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
5889 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5890 NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
5891 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5892 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5893 NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
5894 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5895 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5896 NEONMAP0(vcvtq_s16_f16),
5897 NEONMAP0(vcvtq_s32_v),
5898 NEONMAP0(vcvtq_s64_v),
5899 NEONMAP0(vcvtq_u16_f16),
5900 NEONMAP0(vcvtq_u32_v),
5901 NEONMAP0(vcvtq_u64_v),
5902 NEONMAP1(vdot_s32, arm_neon_sdot, 0),
5903 NEONMAP1(vdot_u32, arm_neon_udot, 0),
5904 NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
5905 NEONMAP1(vdotq_u32, arm_neon_udot, 0),
5906 NEONMAP0(vext_v),
5907 NEONMAP0(vextq_v),
5908 NEONMAP0(vfma_v),
5909 NEONMAP0(vfmaq_v),
5910 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5911 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5912 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5913 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5914 NEONMAP0(vld1_dup_v),
5915 NEONMAP1(vld1_v, arm_neon_vld1, 0),
5916 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5917 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5918 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5919 NEONMAP0(vld1q_dup_v),
5920 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5921 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5922 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5923 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5924 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5925 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5926 NEONMAP1(vld2_v, arm_neon_vld2, 0),
5927 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5928 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5929 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5930 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5931 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5932 NEONMAP1(vld3_v, arm_neon_vld3, 0),
5933 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5934 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5935 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5936 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5937 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5938 NEONMAP1(vld4_v, arm_neon_vld4, 0),
5939 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5940 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5941 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5942 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5943 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5944 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5945 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5946 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5947 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5948 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5949 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5950 NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0),
5951 NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0),
5952 NEONMAP0(vmovl_v),
5953 NEONMAP0(vmovn_v),
5954 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5955 NEONMAP0(vmull_v),
5956 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5957 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5958 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5959 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5960 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5961 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5962 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5963 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5964 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5965 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5966 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5967 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5968 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5969 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5970 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5971 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5972 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5973 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5974 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5975 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5976 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5977 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5978 NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType),
5979 NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType),
5980 NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType),
5981 NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType),
5982 NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType),
5983 NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType),
5984 NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType),
5985 NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType),
5986 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5987 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5988 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5989 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5990 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5991 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5992 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5993 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5994 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5995 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5996 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5997 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5998 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5999 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6000 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6001 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
6002 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
6003 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6004 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6005 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
6006 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
6007 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
6008 NEONMAP0(vrndi_v),
6009 NEONMAP0(vrndiq_v),
6010 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
6011 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
6012 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
6013 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
6014 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
6015 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
6016 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
6017 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
6018 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
6019 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6020 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6021 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6022 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6023 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6024 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6025 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
6026 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
6027 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
6028 NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0),
6029 NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0),
6030 NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0),
6031 NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0),
6032 NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0),
6033 NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0),
6034 NEONMAP0(vshl_n_v),
6035 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6036 NEONMAP0(vshll_n_v),
6037 NEONMAP0(vshlq_n_v),
6038 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6039 NEONMAP0(vshr_n_v),
6040 NEONMAP0(vshrn_n_v),
6041 NEONMAP0(vshrq_n_v),
6042 NEONMAP1(vst1_v, arm_neon_vst1, 0),
6043 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
6044 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
6045 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
6046 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
6047 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
6048 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
6049 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
6050 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6051 NEONMAP1(vst2_v, arm_neon_vst2, 0),
6052 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6053 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6054 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6055 NEONMAP1(vst3_v, arm_neon_vst3, 0),
6056 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6057 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6058 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6059 NEONMAP1(vst4_v, arm_neon_vst4, 0),
6060 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6061 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6062 NEONMAP0(vsubhn_v),
6063 NEONMAP0(vtrn_v),
6064 NEONMAP0(vtrnq_v),
6065 NEONMAP0(vtst_v),
6066 NEONMAP0(vtstq_v),
6067 NEONMAP1(vusdot_s32, arm_neon_usdot, 0),
6068 NEONMAP1(vusdotq_s32, arm_neon_usdot, 0),
6069 NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0),
6070 NEONMAP0(vuzp_v),
6071 NEONMAP0(vuzpq_v),
6072 NEONMAP0(vzip_v),
6073 NEONMAP0(vzipq_v)
6074};
6075
6076static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6077 NEONMAP1(__a64_vcvtq_low_bf16_f32, aarch64_neon_bfcvtn, 0),
6078 NEONMAP0(splat_lane_v),
6079 NEONMAP0(splat_laneq_v),
6080 NEONMAP0(splatq_lane_v),
6081 NEONMAP0(splatq_laneq_v),
6082 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6083 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6084 NEONMAP0(vadd_v),
6085 NEONMAP0(vaddhn_v),
6086 NEONMAP0(vaddq_p128),
6087 NEONMAP0(vaddq_v),
6088 NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0),
6089 NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0),
6090 NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0),
6091 NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0),
6092 NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6093 NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6094 NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6095 NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6096 NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6097 NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6098 NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6099 NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6100 NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0),
6101 NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0),
6102 NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0),
6103 NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0),
6104 NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0),
6105 NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6106 NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6107 NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6108 NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6109 NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6110 NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6111 NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType),
6112 NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6113 NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6114 NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType),
6115 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6116 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6117 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6118 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6119 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6120 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6121 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6122 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6123 NEONMAP0(vceqz_v),
6124 NEONMAP0(vceqzq_v),
6125 NEONMAP0(vcgez_v),
6126 NEONMAP0(vcgezq_v),
6127 NEONMAP0(vcgtz_v),
6128 NEONMAP0(vcgtzq_v),
6129 NEONMAP0(vclez_v),
6130 NEONMAP0(vclezq_v),
6131 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6132 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6133 NEONMAP0(vcltz_v),
6134 NEONMAP0(vcltzq_v),
6135 NEONMAP1(vclz_v, ctlz, Add1ArgType),
6136 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6137 NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6138 NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6139 NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6140 NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6141 NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6142 NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6143 NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6144 NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6145 NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6146 NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6147 NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType),
6148 NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6149 NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6150 NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType),
6151 NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6152 NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6153 NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType),
6154 NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6155 NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6156 NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType),
6157 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6158 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6159 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6160 NEONMAP0(vcvt_f16_s16),
6161 NEONMAP0(vcvt_f16_u16),
6162 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6163 NEONMAP0(vcvt_f32_v),
6164 NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6165 NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6166 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6167 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6168 NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6169 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6170 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6171 NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6172 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6173 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6174 NEONMAP0(vcvtq_f16_s16),
6175 NEONMAP0(vcvtq_f16_u16),
6176 NEONMAP0(vcvtq_f32_v),
6177 NEONMAP1(vcvtq_high_bf16_f32, aarch64_neon_bfcvtn2, 0),
6178 NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6179 NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6180 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6181 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6182 NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6183 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6184 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6185 NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6186 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6187 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6188 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6189 NEONMAP1(vdot_s32, aarch64_neon_sdot, 0),
6190 NEONMAP1(vdot_u32, aarch64_neon_udot, 0),
6191 NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0),
6192 NEONMAP1(vdotq_u32, aarch64_neon_udot, 0),
6193 NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6194 NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6195 NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6196 NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6197 NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6198 NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6199 NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6200 NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6201 NEONMAP0(vext_v),
6202 NEONMAP0(vextq_v),
6203 NEONMAP0(vfma_v),
6204 NEONMAP0(vfmaq_v),
6205 NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0),
6206 NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0),
6207 NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0),
6208 NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0),
6209 NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0),
6210 NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0),
6211 NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0),
6212 NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0),
6213 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6214 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6215 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6216 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6217 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6218 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6219 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6220 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6221 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6222 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6223 NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0),
6224 NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0),
6225 NEONMAP0(vmovl_v),
6226 NEONMAP0(vmovn_v),
6227 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6228 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6229 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6230 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6231 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6232 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6233 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6234 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6235 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6236 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6237 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6238 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6239 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6240 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6241 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6242 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6243 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6244 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6245 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6246 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6247 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6248 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6249 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6250 NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType),
6251 NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6252 NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType),
6253 NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6254 NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
6255 NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6256 NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
6257 NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6258 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6259 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6260 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6261 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6262 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6263 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6264 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6265 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6266 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6267 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6268 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6269 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6270 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6271 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6272 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6273 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6274 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6275 NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0),
6276 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6277 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6278 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6279 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6280 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6281 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6282 NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType),
6283 NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType),
6284 NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType),
6285 NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType),
6286 NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType),
6287 NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType),
6288 NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType),
6289 NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType),
6290 NEONMAP0(vrndi_v),
6291 NEONMAP0(vrndiq_v),
6292 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6293 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6294 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6295 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6296 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6297 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6298 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6299 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6300 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6301 NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0),
6302 NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0),
6303 NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0),
6304 NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0),
6305 NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0),
6306 NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0),
6307 NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0),
6308 NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0),
6309 NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0),
6310 NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0),
6311 NEONMAP0(vshl_n_v),
6312 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6313 NEONMAP0(vshll_n_v),
6314 NEONMAP0(vshlq_n_v),
6315 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6316 NEONMAP0(vshr_n_v),
6317 NEONMAP0(vshrn_n_v),
6318 NEONMAP0(vshrq_n_v),
6319 NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0),
6320 NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0),
6321 NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0),
6322 NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0),
6323 NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0),
6324 NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0),
6325 NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0),
6326 NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0),
6327 NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0),
6328 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6329 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6330 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6331 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6332 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6333 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6334 NEONMAP0(vsubhn_v),
6335 NEONMAP0(vtst_v),
6336 NEONMAP0(vtstq_v),
6337 NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0),
6338 NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0),
6339 NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0),
6340 NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0),
6341};
6342
6343static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6344 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6345 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6346 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6347 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6348 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6349 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6350 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6351 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6352 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6353 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6354 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6355 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6356 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6357 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6358 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6359 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6360 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6361 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6362 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6363 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6364 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6365 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6366 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6367 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6368 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6369 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6370 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6371 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6372 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6373 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6374 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6375 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6376 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6377 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6378 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6379 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6380 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6381 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6382 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6383 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6384 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6385 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6386 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6387 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6388 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6389 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6390 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6391 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6392 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6393 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6394 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6395 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6396 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6397 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6398 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6399 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6400 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6401 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6402 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6403 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6404 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6405 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6406 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6407 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6408 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6409 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6410 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6411 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6412 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6413 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6414 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6415 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6416 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6417 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6418 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6419 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6420 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6421 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6422 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6423 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6424 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6425 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6426 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6427 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6428 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6429 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6430 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6431 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6432 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6433 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6434 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6435 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6436 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6437 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6438 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6439 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6440 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6441 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6442 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6443 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6444 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6445 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6446 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6447 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6448 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6449 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6450 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6451 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6452 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6453 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6454 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6455 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6456 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6457 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6458 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6459 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6460 NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6461 NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6462 NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6463 NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6464 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6465 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6466 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6467 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6468 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6469 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6470 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6471 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6472 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6473 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6474 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6475 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6476 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6477 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6478 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6479 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6480 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6481 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6482 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6483 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6484 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6485 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6486 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6487 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6488 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6489 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6490 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6491 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6492 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6493 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6494 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6495 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6496 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6497 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6498 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6499 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6500 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6501 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6502 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6503 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6504 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6505 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6506 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6507 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6508 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6509 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6510 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6511 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6512 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6513 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6514 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6515 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6516 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6517 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6518 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6519 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6520 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6521 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6522 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6523 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6524 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6525 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6526 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6527 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6528 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6529 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6530 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6531 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6532 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6533 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6534 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6535 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6536 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6537 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6538 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6539 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6540 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6541 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6542 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6543 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6544 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6545 // FP16 scalar intrinisics go here.
6546 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6547 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6548 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6549 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6550 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6551 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6552 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6553 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6554 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6555 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6556 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6557 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6558 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6559 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6560 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6561 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6562 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6563 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6564 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6565 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6566 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6567 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6568 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6569 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6570 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6571 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6572 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6573 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6574 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6575 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6576 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6577 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6578 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6579 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6580};
6581
6582// Some intrinsics are equivalent for codegen.
6583static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = {
6584 { NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, },
6585 { NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, },
6586 { NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, },
6587 { NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, },
6588 { NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, },
6589 { NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, },
6590 { NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, },
6591 { NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, },
6592 { NEON::BI__builtin_neon_vbsl_f16, NEON::BI__builtin_neon_vbsl_v, },
6593 { NEON::BI__builtin_neon_vbslq_f16, NEON::BI__builtin_neon_vbslq_v, },
6594 { NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, },
6595 { NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, },
6596 { NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, },
6597 { NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, },
6598 { NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, },
6599 { NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, },
6600 { NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, },
6601 { NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, },
6602 { NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, },
6603 { NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, },
6604 { NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, },
6605 { NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, },
6606 { NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, },
6607 { NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, },
6608 { NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, },
6609 { NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, },
6610 { NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, },
6611 { NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, },
6612 { NEON::BI__builtin_neon_vext_f16, NEON::BI__builtin_neon_vext_v, },
6613 { NEON::BI__builtin_neon_vextq_f16, NEON::BI__builtin_neon_vextq_v, },
6614 { NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, },
6615 { NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, },
6616 { NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, },
6617 { NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, },
6618 { NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, },
6619 { NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, },
6620 { NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v },
6621 { NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v },
6622 { NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v },
6623 { NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v },
6624 { NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v },
6625 { NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v },
6626 { NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v },
6627 { NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v },
6628 { NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v },
6629 { NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v },
6630 { NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v },
6631 { NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v },
6632 { NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v },
6633 { NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v },
6634 { NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v },
6635 { NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v },
6636 { NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v },
6637 { NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v },
6638 { NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v },
6639 { NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v },
6640 { NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v },
6641 { NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v },
6642 { NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v },
6643 { NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v },
6644 { NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v },
6645 { NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v },
6646 { NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v },
6647 { NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v },
6648 { NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v },
6649 { NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v },
6650 { NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, },
6651 { NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, },
6652 { NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, },
6653 { NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, },
6654 { NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, },
6655 { NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, },
6656 { NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, },
6657 { NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, },
6658 { NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, },
6659 { NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, },
6660 { NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, },
6661 { NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, },
6662 { NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, },
6663 { NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, },
6664 { NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, },
6665 { NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, },
6666 { NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, },
6667 { NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, },
6668 { NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, },
6669 { NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, },
6670 { NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, },
6671 { NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, },
6672 { NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, },
6673 { NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, },
6674 { NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, },
6675 { NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, },
6676 { NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, },
6677 { NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, },
6678 { NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, },
6679 { NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, },
6680 { NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, },
6681 { NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, },
6682 { NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, },
6683 { NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, },
6684 { NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, },
6685 { NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, },
6686 { NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, },
6687 { NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, },
6688 { NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, },
6689 { NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, },
6690 { NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, },
6691 { NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, },
6692 { NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, },
6693 { NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, },
6694 { NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v },
6695 { NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v },
6696 { NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v },
6697 { NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v },
6698 { NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v },
6699 { NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v },
6700 { NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v },
6701 { NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v },
6702 { NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v },
6703 { NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v },
6704 { NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v },
6705 { NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v },
6706 { NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v },
6707 { NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v },
6708 { NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v },
6709 { NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v },
6710 { NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v },
6711 { NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v },
6712 { NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v },
6713 { NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v },
6714 { NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v },
6715 { NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v },
6716 { NEON::BI__builtin_neon_vtrn_f16, NEON::BI__builtin_neon_vtrn_v, },
6717 { NEON::BI__builtin_neon_vtrnq_f16, NEON::BI__builtin_neon_vtrnq_v, },
6718 { NEON::BI__builtin_neon_vuzp_f16, NEON::BI__builtin_neon_vuzp_v, },
6719 { NEON::BI__builtin_neon_vuzpq_f16, NEON::BI__builtin_neon_vuzpq_v, },
6720 { NEON::BI__builtin_neon_vzip_f16, NEON::BI__builtin_neon_vzip_v, },
6721 { NEON::BI__builtin_neon_vzipq_f16, NEON::BI__builtin_neon_vzipq_v, },
6722};
6723
6724#undef NEONMAP0
6725#undef NEONMAP1
6726#undef NEONMAP2
6727
6728#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6729 { \
6730 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
6731 TypeModifier \
6732 }
6733
6734#define SVEMAP2(NameBase, TypeModifier) \
6735 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6736static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6737#define GET_SVE_LLVM_INTRINSIC_MAP
6738#include "clang/Basic/arm_sve_builtin_cg.inc"
6739#include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
6740#undef GET_SVE_LLVM_INTRINSIC_MAP
6741};
6742
6743#undef SVEMAP1
6744#undef SVEMAP2
6745
6746static bool NEONSIMDIntrinsicsProvenSorted = false;
6747
6748static bool AArch64SIMDIntrinsicsProvenSorted = false;
6749static bool AArch64SISDIntrinsicsProvenSorted = false;
6750static bool AArch64SVEIntrinsicsProvenSorted = false;
6751
6752static const ARMVectorIntrinsicInfo *
6753findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6754 unsigned BuiltinID, bool &MapProvenSorted) {
6755
6756#ifndef NDEBUG
6757 if (!MapProvenSorted) {
6758 assert(llvm::is_sorted(IntrinsicMap))(static_cast <bool> (llvm::is_sorted(IntrinsicMap)) ? void
(0) : __assert_fail ("llvm::is_sorted(IntrinsicMap)", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6758, __extension__ __PRETTY_FUNCTION__))
;
6759 MapProvenSorted = true;
6760 }
6761#endif
6762
6763 const ARMVectorIntrinsicInfo *Builtin =
6764 llvm::lower_bound(IntrinsicMap, BuiltinID);
6765
6766 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6767 return Builtin;
6768
6769 return nullptr;
6770}
6771
6772Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6773 unsigned Modifier,
6774 llvm::Type *ArgType,
6775 const CallExpr *E) {
6776 int VectorSize = 0;
6777 if (Modifier & Use64BitVectors)
6778 VectorSize = 64;
6779 else if (Modifier & Use128BitVectors)
6780 VectorSize = 128;
6781
6782 // Return type.
6783 SmallVector<llvm::Type *, 3> Tys;
6784 if (Modifier & AddRetType) {
6785 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6786 if (Modifier & VectorizeRetType)
6787 Ty = llvm::FixedVectorType::get(
6788 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6789
6790 Tys.push_back(Ty);
6791 }
6792
6793 // Arguments.
6794 if (Modifier & VectorizeArgTypes) {
6795 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6796 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6797 }
6798
6799 if (Modifier & (Add1ArgType | Add2ArgTypes))
6800 Tys.push_back(ArgType);
6801
6802 if (Modifier & Add2ArgTypes)
6803 Tys.push_back(ArgType);
6804
6805 if (Modifier & InventFloatType)
6806 Tys.push_back(FloatTy);
6807
6808 return CGM.getIntrinsic(IntrinsicID, Tys);
6809}
6810
6811static Value *EmitCommonNeonSISDBuiltinExpr(
6812 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6813 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6814 unsigned BuiltinID = SISDInfo.BuiltinID;
6815 unsigned int Int = SISDInfo.LLVMIntrinsic;
6816 unsigned Modifier = SISDInfo.TypeModifier;
6817 const char *s = SISDInfo.NameHint;
6818
6819 switch (BuiltinID) {
6820 case NEON::BI__builtin_neon_vcled_s64:
6821 case NEON::BI__builtin_neon_vcled_u64:
6822 case NEON::BI__builtin_neon_vcles_f32:
6823 case NEON::BI__builtin_neon_vcled_f64:
6824 case NEON::BI__builtin_neon_vcltd_s64:
6825 case NEON::BI__builtin_neon_vcltd_u64:
6826 case NEON::BI__builtin_neon_vclts_f32:
6827 case NEON::BI__builtin_neon_vcltd_f64:
6828 case NEON::BI__builtin_neon_vcales_f32:
6829 case NEON::BI__builtin_neon_vcaled_f64:
6830 case NEON::BI__builtin_neon_vcalts_f32:
6831 case NEON::BI__builtin_neon_vcaltd_f64:
6832 // Only one direction of comparisons actually exist, cmle is actually a cmge
6833 // with swapped operands. The table gives us the right intrinsic but we
6834 // still need to do the swap.
6835 std::swap(Ops[0], Ops[1]);
6836 break;
6837 }
6838
6839 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 6839, __extension__ __PRETTY_FUNCTION__
))
;
6840
6841 // Determine the type(s) of this overloaded AArch64 intrinsic.
6842 const Expr *Arg = E->getArg(0);
6843 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6844 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6845
6846 int j = 0;
6847 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6848 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6849 ai != ae; ++ai, ++j) {
6850 llvm::Type *ArgTy = ai->getType();
6851 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6852 ArgTy->getPrimitiveSizeInBits())
6853 continue;
6854
6855 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 6855, __extension__ __PRETTY_FUNCTION__
))
;
6856 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6857 // it before inserting.
6858 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6859 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6860 Ops[j] =
6861 CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0);
6862 }
6863
6864 Value *Result = CGF.EmitNeonCall(F, Ops, s);
6865 llvm::Type *ResultType = CGF.ConvertType(E->getType());
6866 if (ResultType->getPrimitiveSizeInBits().getFixedValue() <
6867 Result->getType()->getPrimitiveSizeInBits().getFixedValue())
6868 return CGF.Builder.CreateExtractElement(Result, C0);
6869
6870 return CGF.Builder.CreateBitCast(Result, ResultType, s);
6871}
6872
6873Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6874 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6875 const char *NameHint, unsigned Modifier, const CallExpr *E,
6876 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6877 llvm::Triple::ArchType Arch) {
6878 // Get the last argument, which specifies the vector type.
6879 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6880 std::optional<llvm::APSInt> NeonTypeConst =
6881 Arg->getIntegerConstantExpr(getContext());
6882 if (!NeonTypeConst)
6883 return nullptr;
6884
6885 // Determine the type of this overloaded NEON intrinsic.
6886 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6887 bool Usgn = Type.isUnsigned();
6888 bool Quad = Type.isQuad();
6889 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6890 const bool AllowBFloatArgsAndRet =
6891 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6892
6893 llvm::FixedVectorType *VTy =
6894 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6895 llvm::Type *Ty = VTy;
6896 if (!Ty)
6897 return nullptr;
6898
6899 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6900 return Builder.getInt32(addr.getAlignment().getQuantity());
6901 };
6902
6903 unsigned Int = LLVMIntrinsic;
6904 if ((Modifier & UnsignedAlts) && !Usgn)
6905 Int = AltLLVMIntrinsic;
6906
6907 switch (BuiltinID) {
6908 default: break;
6909 case NEON::BI__builtin_neon_splat_lane_v:
6910 case NEON::BI__builtin_neon_splat_laneq_v:
6911 case NEON::BI__builtin_neon_splatq_lane_v:
6912 case NEON::BI__builtin_neon_splatq_laneq_v: {
6913 auto NumElements = VTy->getElementCount();
6914 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6915 NumElements = NumElements * 2;
6916 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6917 NumElements = NumElements.divideCoefficientBy(2);
6918
6919 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6920 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6921 }
6922 case NEON::BI__builtin_neon_vpadd_v:
6923 case NEON::BI__builtin_neon_vpaddq_v:
6924 // We don't allow fp/int overloading of intrinsics.
6925 if (VTy->getElementType()->isFloatingPointTy() &&
6926 Int == Intrinsic::aarch64_neon_addp)
6927 Int = Intrinsic::aarch64_neon_faddp;
6928 break;
6929 case NEON::BI__builtin_neon_vabs_v:
6930 case NEON::BI__builtin_neon_vabsq_v:
6931 if (VTy->getElementType()->isFloatingPointTy())
6932 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6933 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6934 case NEON::BI__builtin_neon_vadd_v:
6935 case NEON::BI__builtin_neon_vaddq_v: {
6936 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6937 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6938 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6939 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
6940 return Builder.CreateBitCast(Ops[0], Ty);
6941 }
6942 case NEON::BI__builtin_neon_vaddhn_v: {
6943 llvm::FixedVectorType *SrcTy =
6944 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6945
6946 // %sum = add <4 x i32> %lhs, %rhs
6947 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6948 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6949 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6950
6951 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6952 Constant *ShiftAmt =
6953 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6954 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6955
6956 // %res = trunc <4 x i32> %high to <4 x i16>
6957 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6958 }
6959 case NEON::BI__builtin_neon_vcale_v:
6960 case NEON::BI__builtin_neon_vcaleq_v:
6961 case NEON::BI__builtin_neon_vcalt_v:
6962 case NEON::BI__builtin_neon_vcaltq_v:
6963 std::swap(Ops[0], Ops[1]);
6964 [[fallthrough]];
6965 case NEON::BI__builtin_neon_vcage_v:
6966 case NEON::BI__builtin_neon_vcageq_v:
6967 case NEON::BI__builtin_neon_vcagt_v:
6968 case NEON::BI__builtin_neon_vcagtq_v: {
6969 llvm::Type *Ty;
6970 switch (VTy->getScalarSizeInBits()) {
6971 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6971)
;
6972 case 32:
6973 Ty = FloatTy;
6974 break;
6975 case 64:
6976 Ty = DoubleTy;
6977 break;
6978 case 16:
6979 Ty = HalfTy;
6980 break;
6981 }
6982 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6983 llvm::Type *Tys[] = { VTy, VecFlt };
6984 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6985 return EmitNeonCall(F, Ops, NameHint);
6986 }
6987 case NEON::BI__builtin_neon_vceqz_v:
6988 case NEON::BI__builtin_neon_vceqzq_v:
6989 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6990 ICmpInst::ICMP_EQ, "vceqz");
6991 case NEON::BI__builtin_neon_vcgez_v:
6992 case NEON::BI__builtin_neon_vcgezq_v:
6993 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6994 ICmpInst::ICMP_SGE, "vcgez");
6995 case NEON::BI__builtin_neon_vclez_v:
6996 case NEON::BI__builtin_neon_vclezq_v:
6997 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6998 ICmpInst::ICMP_SLE, "vclez");
6999 case NEON::BI__builtin_neon_vcgtz_v:
7000 case NEON::BI__builtin_neon_vcgtzq_v:
7001 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
7002 ICmpInst::ICMP_SGT, "vcgtz");
7003 case NEON::BI__builtin_neon_vcltz_v:
7004 case NEON::BI__builtin_neon_vcltzq_v:
7005 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
7006 ICmpInst::ICMP_SLT, "vcltz");
7007 case NEON::BI__builtin_neon_vclz_v:
7008 case NEON::BI__builtin_neon_vclzq_v:
7009 // We generate target-independent intrinsic, which needs a second argument
7010 // for whether or not clz of zero is undefined; on ARM it isn't.
7011 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
7012 break;
7013 case NEON::BI__builtin_neon_vcvt_f32_v:
7014 case NEON::BI__builtin_neon_vcvtq_f32_v:
7015 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7016 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
7017 HasLegalHalfType);
7018 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7019 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7020 case NEON::BI__builtin_neon_vcvt_f16_s16:
7021 case NEON::BI__builtin_neon_vcvt_f16_u16:
7022 case NEON::BI__builtin_neon_vcvtq_f16_s16:
7023 case NEON::BI__builtin_neon_vcvtq_f16_u16:
7024 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7025 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
7026 HasLegalHalfType);
7027 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7028 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7029 case NEON::BI__builtin_neon_vcvt_n_f16_s16:
7030 case NEON::BI__builtin_neon_vcvt_n_f16_u16:
7031 case NEON::BI__builtin_neon_vcvtq_n_f16_s16:
7032 case NEON::BI__builtin_neon_vcvtq_n_f16_u16: {
7033 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7034 Function *F = CGM.getIntrinsic(Int, Tys);
7035 return EmitNeonCall(F, Ops, "vcvt_n");
7036 }
7037 case NEON::BI__builtin_neon_vcvt_n_f32_v:
7038 case NEON::BI__builtin_neon_vcvt_n_f64_v:
7039 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
7040 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
7041 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7042 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7043 Function *F = CGM.getIntrinsic(Int, Tys);
7044 return EmitNeonCall(F, Ops, "vcvt_n");
7045 }
7046 case NEON::BI__builtin_neon_vcvt_n_s16_f16:
7047 case NEON::BI__builtin_neon_vcvt_n_s32_v:
7048 case NEON::BI__builtin_neon_vcvt_n_u16_f16:
7049 case NEON::BI__builtin_neon_vcvt_n_u32_v:
7050 case NEON::BI__builtin_neon_vcvt_n_s64_v:
7051 case NEON::BI__builtin_neon_vcvt_n_u64_v:
7052 case NEON::BI__builtin_neon_vcvtq_n_s16_f16:
7053 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
7054 case NEON::BI__builtin_neon_vcvtq_n_u16_f16:
7055 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
7056 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
7057 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
7058 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7059 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7060 return EmitNeonCall(F, Ops, "vcvt_n");
7061 }
7062 case NEON::BI__builtin_neon_vcvt_s32_v:
7063 case NEON::BI__builtin_neon_vcvt_u32_v:
7064 case NEON::BI__builtin_neon_vcvt_s64_v:
7065 case NEON::BI__builtin_neon_vcvt_u64_v:
7066 case NEON::BI__builtin_neon_vcvt_s16_f16:
7067 case NEON::BI__builtin_neon_vcvt_u16_f16:
7068 case NEON::BI__builtin_neon_vcvtq_s32_v:
7069 case NEON::BI__builtin_neon_vcvtq_u32_v:
7070 case NEON::BI__builtin_neon_vcvtq_s64_v:
7071 case NEON::BI__builtin_neon_vcvtq_u64_v:
7072 case NEON::BI__builtin_neon_vcvtq_s16_f16:
7073 case NEON::BI__builtin_neon_vcvtq_u16_f16: {
7074 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
7075 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
7076 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
7077 }
7078 case NEON::BI__builtin_neon_vcvta_s16_f16:
7079 case NEON::BI__builtin_neon_vcvta_s32_v:
7080 case NEON::BI__builtin_neon_vcvta_s64_v:
7081 case NEON::BI__builtin_neon_vcvta_u16_f16:
7082 case NEON::BI__builtin_neon_vcvta_u32_v:
7083 case NEON::BI__builtin_neon_vcvta_u64_v:
7084 case NEON::BI__builtin_neon_vcvtaq_s16_f16:
7085 case NEON::BI__builtin_neon_vcvtaq_s32_v:
7086 case NEON::BI__builtin_neon_vcvtaq_s64_v:
7087 case NEON::BI__builtin_neon_vcvtaq_u16_f16:
7088 case NEON::BI__builtin_neon_vcvtaq_u32_v:
7089 case NEON::BI__builtin_neon_vcvtaq_u64_v:
7090 case NEON::BI__builtin_neon_vcvtn_s16_f16:
7091 case NEON::BI__builtin_neon_vcvtn_s32_v:
7092 case NEON::BI__builtin_neon_vcvtn_s64_v:
7093 case NEON::BI__builtin_neon_vcvtn_u16_f16:
7094 case NEON::BI__builtin_neon_vcvtn_u32_v:
7095 case NEON::BI__builtin_neon_vcvtn_u64_v:
7096 case NEON::BI__builtin_neon_vcvtnq_s16_f16:
7097 case NEON::BI__builtin_neon_vcvtnq_s32_v:
7098 case NEON::BI__builtin_neon_vcvtnq_s64_v:
7099 case NEON::BI__builtin_neon_vcvtnq_u16_f16:
7100 case NEON::BI__builtin_neon_vcvtnq_u32_v:
7101 case NEON::BI__builtin_neon_vcvtnq_u64_v:
7102 case NEON::BI__builtin_neon_vcvtp_s16_f16:
7103 case NEON::BI__builtin_neon_vcvtp_s32_v:
7104 case NEON::BI__builtin_neon_vcvtp_s64_v:
7105 case NEON::BI__builtin_neon_vcvtp_u16_f16:
7106 case NEON::BI__builtin_neon_vcvtp_u32_v:
7107 case NEON::BI__builtin_neon_vcvtp_u64_v:
7108 case NEON::BI__builtin_neon_vcvtpq_s16_f16:
7109 case NEON::BI__builtin_neon_vcvtpq_s32_v:
7110 case NEON::BI__builtin_neon_vcvtpq_s64_v:
7111 case NEON::BI__builtin_neon_vcvtpq_u16_f16:
7112 case NEON::BI__builtin_neon_vcvtpq_u32_v:
7113 case NEON::BI__builtin_neon_vcvtpq_u64_v:
7114 case NEON::BI__builtin_neon_vcvtm_s16_f16:
7115 case NEON::BI__builtin_neon_vcvtm_s32_v:
7116 case NEON::BI__builtin_neon_vcvtm_s64_v:
7117 case NEON::BI__builtin_neon_vcvtm_u16_f16:
7118 case NEON::BI__builtin_neon_vcvtm_u32_v:
7119 case NEON::BI__builtin_neon_vcvtm_u64_v:
7120 case NEON::BI__builtin_neon_vcvtmq_s16_f16:
7121 case NEON::BI__builtin_neon_vcvtmq_s32_v:
7122 case NEON::BI__builtin_neon_vcvtmq_s64_v:
7123 case NEON::BI__builtin_neon_vcvtmq_u16_f16:
7124 case NEON::BI__builtin_neon_vcvtmq_u32_v:
7125 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7126 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7127 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7128 }
7129 case NEON::BI__builtin_neon_vcvtx_f32_v: {
7130 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
7131 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7132
7133 }
7134 case NEON::BI__builtin_neon_vext_v:
7135 case NEON::BI__builtin_neon_vextq_v: {
7136 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
7137 SmallVector<int, 16> Indices;
7138 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7139 Indices.push_back(i+CV);
7140
7141 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7142 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7143 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
7144 }
7145 case NEON::BI__builtin_neon_vfma_v:
7146 case NEON::BI__builtin_neon_vfmaq_v: {
7147 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7148 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7149 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7150
7151 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7152 return emitCallMaybeConstrainedFPBuiltin(
7153 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
7154 {Ops[1], Ops[2], Ops[0]});
7155 }
7156 case NEON::BI__builtin_neon_vld1_v:
7157 case NEON::BI__builtin_neon_vld1q_v: {
7158 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7159 Ops.push_back(getAlignmentValue32(PtrOp0));
7160 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
7161 }
7162 case NEON::BI__builtin_neon_vld1_x2_v:
7163 case NEON::BI__builtin_neon_vld1q_x2_v:
7164 case NEON::BI__builtin_neon_vld1_x3_v:
7165 case NEON::BI__builtin_neon_vld1q_x3_v:
7166 case NEON::BI__builtin_neon_vld1_x4_v:
7167 case NEON::BI__builtin_neon_vld1q_x4_v: {
7168 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7169 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7170 llvm::Type *Tys[2] = { VTy, PTy };
7171 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7172 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7173 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7174 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7175 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7176 }
7177 case NEON::BI__builtin_neon_vld2_v:
7178 case NEON::BI__builtin_neon_vld2q_v:
7179 case NEON::BI__builtin_neon_vld3_v:
7180 case NEON::BI__builtin_neon_vld3q_v:
7181 case NEON::BI__builtin_neon_vld4_v:
7182 case NEON::BI__builtin_neon_vld4q_v:
7183 case NEON::BI__builtin_neon_vld2_dup_v:
7184 case NEON::BI__builtin_neon_vld2q_dup_v:
7185 case NEON::BI__builtin_neon_vld3_dup_v:
7186 case NEON::BI__builtin_neon_vld3q_dup_v:
7187 case NEON::BI__builtin_neon_vld4_dup_v:
7188 case NEON::BI__builtin_neon_vld4q_dup_v: {
7189 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7190 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7191 Value *Align = getAlignmentValue32(PtrOp1);
7192 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
7193 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7194 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7195 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7196 }
7197 case NEON::BI__builtin_neon_vld1_dup_v:
7198 case NEON::BI__builtin_neon_vld1q_dup_v: {
7199 Value *V = PoisonValue::get(Ty);
7200 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7201 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
7202 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7203 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
7204 return EmitNeonSplat(Ops[0], CI);
7205 }
7206 case NEON::BI__builtin_neon_vld2_lane_v:
7207 case NEON::BI__builtin_neon_vld2q_lane_v:
7208 case NEON::BI__builtin_neon_vld3_lane_v:
7209 case NEON::BI__builtin_neon_vld3q_lane_v:
7210 case NEON::BI__builtin_neon_vld4_lane_v:
7211 case NEON::BI__builtin_neon_vld4q_lane_v: {
7212 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7213 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7214 for (unsigned I = 2; I < Ops.size() - 1; ++I)
7215 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
7216 Ops.push_back(getAlignmentValue32(PtrOp1));
7217 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint);
7218 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7219 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7220 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7221 }
7222 case NEON::BI__builtin_neon_vmovl_v: {
7223 llvm::FixedVectorType *DTy =
7224 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7225 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
7226 if (Usgn)
7227 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
7228 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
7229 }
7230 case NEON::BI__builtin_neon_vmovn_v: {
7231 llvm::FixedVectorType *QTy =
7232 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7233 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
7234 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
7235 }
7236 case NEON::BI__builtin_neon_vmull_v:
7237 // FIXME: the integer vmull operations could be emitted in terms of pure
7238 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
7239 // hoisting the exts outside loops. Until global ISel comes along that can
7240 // see through such movement this leads to bad CodeGen. So we need an
7241 // intrinsic for now.
7242 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
7243 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
7244 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
7245 case NEON::BI__builtin_neon_vpadal_v:
7246 case NEON::BI__builtin_neon_vpadalq_v: {
7247 // The source operand type has twice as many elements of half the size.
7248 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7249 llvm::Type *EltTy =
7250 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7251 auto *NarrowTy =
7252 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7253 llvm::Type *Tys[2] = { Ty, NarrowTy };
7254 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7255 }
7256 case NEON::BI__builtin_neon_vpaddl_v:
7257 case NEON::BI__builtin_neon_vpaddlq_v: {
7258 // The source operand type has twice as many elements of half the size.
7259 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7260 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7261 auto *NarrowTy =
7262 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7263 llvm::Type *Tys[2] = { Ty, NarrowTy };
7264 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
7265 }
7266 case NEON::BI__builtin_neon_vqdmlal_v:
7267 case NEON::BI__builtin_neon_vqdmlsl_v: {
7268 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
7269 Ops[1] =
7270 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
7271 Ops.resize(2);
7272 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
7273 }
7274 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
7275 case NEON::BI__builtin_neon_vqdmulh_lane_v:
7276 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
7277 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
7278 auto *RTy = cast<llvm::FixedVectorType>(Ty);
7279 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
7280 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
7281 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
7282 RTy->getNumElements() * 2);
7283 llvm::Type *Tys[2] = {
7284 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7285 /*isQuad*/ false))};
7286 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7287 }
7288 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
7289 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
7290 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
7291 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
7292 llvm::Type *Tys[2] = {
7293 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7294 /*isQuad*/ true))};
7295 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7296 }
7297 case NEON::BI__builtin_neon_vqshl_n_v:
7298 case NEON::BI__builtin_neon_vqshlq_n_v:
7299 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
7300 1, false);
7301 case NEON::BI__builtin_neon_vqshlu_n_v:
7302 case NEON::BI__builtin_neon_vqshluq_n_v:
7303 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
7304 1, false);
7305 case NEON::BI__builtin_neon_vrecpe_v:
7306 case NEON::BI__builtin_neon_vrecpeq_v:
7307 case NEON::BI__builtin_neon_vrsqrte_v:
7308 case NEON::BI__builtin_neon_vrsqrteq_v:
7309 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
7310 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7311 case NEON::BI__builtin_neon_vrndi_v:
7312 case NEON::BI__builtin_neon_vrndiq_v:
7313 Int = Builder.getIsFPConstrained()
7314 ? Intrinsic::experimental_constrained_nearbyint
7315 : Intrinsic::nearbyint;
7316 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7317 case NEON::BI__builtin_neon_vrshr_n_v:
7318 case NEON::BI__builtin_neon_vrshrq_n_v:
7319 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
7320 1, true);
7321 case NEON::BI__builtin_neon_vsha512hq_u64:
7322 case NEON::BI__builtin_neon_vsha512h2q_u64:
7323 case NEON::BI__builtin_neon_vsha512su0q_u64:
7324 case NEON::BI__builtin_neon_vsha512su1q_u64: {
7325 Function *F = CGM.getIntrinsic(Int);
7326 return EmitNeonCall(F, Ops, "");
7327 }
7328 case NEON::BI__builtin_neon_vshl_n_v:
7329 case NEON::BI__builtin_neon_vshlq_n_v:
7330 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
7331 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
7332 "vshl_n");
7333 case NEON::BI__builtin_neon_vshll_n_v: {
7334 llvm::FixedVectorType *SrcTy =
7335 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7336 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7337 if (Usgn)
7338 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7339 else
7340 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7341 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7342 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7343 }
7344 case NEON::BI__builtin_neon_vshrn_n_v: {
7345 llvm::FixedVectorType *SrcTy =
7346 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7347 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7348 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7349 if (Usgn)
7350 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7351 else
7352 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7353 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7354 }
7355 case NEON::BI__builtin_neon_vshr_n_v:
7356 case NEON::BI__builtin_neon_vshrq_n_v:
7357 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7358 case NEON::BI__builtin_neon_vst1_v:
7359 case NEON::BI__builtin_neon_vst1q_v:
7360 case NEON::BI__builtin_neon_vst2_v:
7361 case NEON::BI__builtin_neon_vst2q_v:
7362 case NEON::BI__builtin_neon_vst3_v:
7363 case NEON::BI__builtin_neon_vst3q_v:
7364 case NEON::BI__builtin_neon_vst4_v:
7365 case NEON::BI__builtin_neon_vst4q_v:
7366 case NEON::BI__builtin_neon_vst2_lane_v:
7367 case NEON::BI__builtin_neon_vst2q_lane_v:
7368 case NEON::BI__builtin_neon_vst3_lane_v:
7369 case NEON::BI__builtin_neon_vst3q_lane_v:
7370 case NEON::BI__builtin_neon_vst4_lane_v:
7371 case NEON::BI__builtin_neon_vst4q_lane_v: {
7372 llvm::Type *Tys[] = {Int8PtrTy, Ty};
7373 Ops.push_back(getAlignmentValue32(PtrOp0));
7374 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7375 }
7376 case NEON::BI__builtin_neon_vsm3partw1q_u32:
7377 case NEON::BI__builtin_neon_vsm3partw2q_u32:
7378 case NEON::BI__builtin_neon_vsm3ss1q_u32:
7379 case NEON::BI__builtin_neon_vsm4ekeyq_u32:
7380 case NEON::BI__builtin_neon_vsm4eq_u32: {
7381 Function *F = CGM.getIntrinsic(Int);
7382 return EmitNeonCall(F, Ops, "");
7383 }
7384 case NEON::BI__builtin_neon_vsm3tt1aq_u32:
7385 case NEON::BI__builtin_neon_vsm3tt1bq_u32:
7386 case NEON::BI__builtin_neon_vsm3tt2aq_u32:
7387 case NEON::BI__builtin_neon_vsm3tt2bq_u32: {
7388 Function *F = CGM.getIntrinsic(Int);
7389 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7390 return EmitNeonCall(F, Ops, "");
7391 }
7392 case NEON::BI__builtin_neon_vst1_x2_v:
7393 case NEON::BI__builtin_neon_vst1q_x2_v:
7394 case NEON::BI__builtin_neon_vst1_x3_v:
7395 case NEON::BI__builtin_neon_vst1q_x3_v:
7396 case NEON::BI__builtin_neon_vst1_x4_v:
7397 case NEON::BI__builtin_neon_vst1q_x4_v: {
7398 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7399 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7400 // in AArch64 it comes last. We may want to stick to one or another.
7401 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7402 Arch == llvm::Triple::aarch64_32) {
7403 llvm::Type *Tys[2] = { VTy, PTy };
7404 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7405 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7406 }
7407 llvm::Type *Tys[2] = { PTy, VTy };
7408 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7409 }
7410 case NEON::BI__builtin_neon_vsubhn_v: {
7411 llvm::FixedVectorType *SrcTy =
7412 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7413
7414 // %sum = add <4 x i32> %lhs, %rhs
7415 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7416 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7417 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7418
7419 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7420 Constant *ShiftAmt =
7421 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7422 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7423
7424 // %res = trunc <4 x i32> %high to <4 x i16>
7425 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7426 }
7427 case NEON::BI__builtin_neon_vtrn_v:
7428 case NEON::BI__builtin_neon_vtrnq_v: {
7429 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7430 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7431 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7432 Value *SV = nullptr;
7433
7434 for (unsigned vi = 0; vi != 2; ++vi) {
7435 SmallVector<int, 16> Indices;
7436 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7437 Indices.push_back(i+vi);
7438 Indices.push_back(i+e+vi);
7439 }
7440 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7441 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7442 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7443 }
7444 return SV;
7445 }
7446 case NEON::BI__builtin_neon_vtst_v:
7447 case NEON::BI__builtin_neon_vtstq_v: {
7448 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7449 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7450 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7451 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7452 ConstantAggregateZero::get(Ty));
7453 return Builder.CreateSExt(Ops[0], Ty, "vtst");
7454 }
7455 case NEON::BI__builtin_neon_vuzp_v:
7456 case NEON::BI__builtin_neon_vuzpq_v: {
7457 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7458 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7459 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7460 Value *SV = nullptr;
7461
7462 for (unsigned vi = 0; vi != 2; ++vi) {
7463 SmallVector<int, 16> Indices;
7464 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7465 Indices.push_back(2*i+vi);
7466
7467 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7468 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7469 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7470 }
7471 return SV;
7472 }
7473 case NEON::BI__builtin_neon_vxarq_u64: {
7474 Function *F = CGM.getIntrinsic(Int);
7475 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7476 return EmitNeonCall(F, Ops, "");
7477 }
7478 case NEON::BI__builtin_neon_vzip_v:
7479 case NEON::BI__builtin_neon_vzipq_v: {
7480 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7481 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7482 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7483 Value *SV = nullptr;
7484
7485 for (unsigned vi = 0; vi != 2; ++vi) {
7486 SmallVector<int, 16> Indices;
7487 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7488 Indices.push_back((i + vi*e) >> 1);
7489 Indices.push_back(((i + vi*e) >> 1)+e);
7490 }
7491 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7492 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7493 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7494 }
7495 return SV;
7496 }
7497 case NEON::BI__builtin_neon_vdot_s32:
7498 case NEON::BI__builtin_neon_vdot_u32:
7499 case NEON::BI__builtin_neon_vdotq_s32:
7500 case NEON::BI__builtin_neon_vdotq_u32: {
7501 auto *InputTy =
7502 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7503 llvm::Type *Tys[2] = { Ty, InputTy };
7504 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7505 }
7506 case NEON::BI__builtin_neon_vfmlal_low_f16:
7507 case NEON::BI__builtin_neon_vfmlalq_low_f16: {
7508 auto *InputTy =
7509 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7510 llvm::Type *Tys[2] = { Ty, InputTy };
7511 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7512 }
7513 case NEON::BI__builtin_neon_vfmlsl_low_f16:
7514 case NEON::BI__builtin_neon_vfmlslq_low_f16: {
7515 auto *InputTy =
7516 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7517 llvm::Type *Tys[2] = { Ty, InputTy };
7518 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7519 }
7520 case NEON::BI__builtin_neon_vfmlal_high_f16:
7521 case NEON::BI__builtin_neon_vfmlalq_high_f16: {
7522 auto *InputTy =
7523 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7524 llvm::Type *Tys[2] = { Ty, InputTy };
7525 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7526 }
7527 case NEON::BI__builtin_neon_vfmlsl_high_f16:
7528 case NEON::BI__builtin_neon_vfmlslq_high_f16: {
7529 auto *InputTy =
7530 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7531 llvm::Type *Tys[2] = { Ty, InputTy };
7532 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7533 }
7534 case NEON::BI__builtin_neon_vmmlaq_s32:
7535 case NEON::BI__builtin_neon_vmmlaq_u32: {
7536 auto *InputTy =
7537 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7538 llvm::Type *Tys[2] = { Ty, InputTy };
7539 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla");
7540 }
7541 case NEON::BI__builtin_neon_vusmmlaq_s32: {
7542 auto *InputTy =
7543 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7544 llvm::Type *Tys[2] = { Ty, InputTy };
7545 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7546 }
7547 case NEON::BI__builtin_neon_vusdot_s32:
7548 case NEON::BI__builtin_neon_vusdotq_s32: {
7549 auto *InputTy =
7550 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7551 llvm::Type *Tys[2] = { Ty, InputTy };
7552 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7553 }
7554 case NEON::BI__builtin_neon_vbfdot_f32:
7555 case NEON::BI__builtin_neon_vbfdotq_f32: {
7556 llvm::Type *InputTy =
7557 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7558 llvm::Type *Tys[2] = { Ty, InputTy };
7559 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7560 }
7561 case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: {
7562 llvm::Type *Tys[1] = { Ty };
7563 Function *F = CGM.getIntrinsic(Int, Tys);
7564 return EmitNeonCall(F, Ops, "vcvtfp2bf");
7565 }
7566
7567 }
7568
7569 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7569, __extension__ __PRETTY_FUNCTION__
))
;
7570
7571 // Determine the type(s) of this overloaded AArch64 intrinsic.
7572 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7573
7574 Value *Result = EmitNeonCall(F, Ops, NameHint);
7575 llvm::Type *ResultType = ConvertType(E->getType());
7576 // AArch64 intrinsic one-element vector type cast to
7577 // scalar type expected by the builtin
7578 return Builder.CreateBitCast(Result, ResultType, NameHint);
7579}
7580
7581Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7582 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7583 const CmpInst::Predicate Ip, const Twine &Name) {
7584 llvm::Type *OTy = Op->getType();
7585
7586 // FIXME: this is utterly horrific. We should not be looking at previous
7587 // codegen context to find out what needs doing. Unfortunately TableGen
7588 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7589 // (etc).
7590 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7591 OTy = BI->getOperand(0)->getType();
7592
7593 Op = Builder.CreateBitCast(Op, OTy);
7594 if (OTy->getScalarType()->isFloatingPointTy()) {
7595 if (Fp == CmpInst::FCMP_OEQ)
7596 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7597 else
7598 Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
7599 } else {
7600 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7601 }
7602 return Builder.CreateSExt(Op, Ty, Name);
7603}
7604
7605static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7606 Value *ExtOp, Value *IndexOp,
7607 llvm::Type *ResTy, unsigned IntID,
7608 const char *Name) {
7609 SmallVector<Value *, 2> TblOps;
7610 if (ExtOp)
7611 TblOps.push_back(ExtOp);
7612
7613 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7614 SmallVector<int, 16> Indices;
7615 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7616 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7617 Indices.push_back(2*i);
7618 Indices.push_back(2*i+1);
7619 }
7620
7621 int PairPos = 0, End = Ops.size() - 1;
7622 while (PairPos < End) {
7623 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7624 Ops[PairPos+1], Indices,
7625 Name));
7626 PairPos += 2;
7627 }
7628
7629 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7630 // of the 128-bit lookup table with zero.
7631 if (PairPos == End) {
7632 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7633 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7634 ZeroTbl, Indices, Name));
7635 }
7636
7637 Function *TblF;
7638 TblOps.push_back(IndexOp);
7639 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7640
7641 return CGF.EmitNeonCall(TblF, TblOps, Name);
7642}
7643
7644Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7645 unsigned Value;
7646 switch (BuiltinID) {
7647 default:
7648 return nullptr;
7649 case clang::ARM::BI__builtin_arm_nop:
7650 Value = 0;
7651 break;
7652 case clang::ARM::BI__builtin_arm_yield:
7653 case clang::ARM::BI__yield:
7654 Value = 1;
7655 break;
7656 case clang::ARM::BI__builtin_arm_wfe:
7657 case clang::ARM::BI__wfe:
7658 Value = 2;
7659 break;
7660 case clang::ARM::BI__builtin_arm_wfi:
7661 case clang::ARM::BI__wfi:
7662 Value = 3;
7663 break;
7664 case clang::ARM::BI__builtin_arm_sev:
7665 case clang::ARM::BI__sev:
7666 Value = 4;
7667 break;
7668 case clang::ARM::BI__builtin_arm_sevl:
7669 case clang::ARM::BI__sevl:
7670 Value = 5;
7671 break;
7672 }
7673
7674 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7675 llvm::ConstantInt::get(Int32Ty, Value));
7676}
7677
7678enum SpecialRegisterAccessKind {
7679 NormalRead,
7680 VolatileRead,
7681 Write,
7682};
7683
7684// Generates the IR for the read/write special register builtin,
7685// ValueType is the type of the value that is to be written or read,
7686// RegisterType is the type of the register being written to or read from.
7687static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7688 const CallExpr *E,
7689 llvm::Type *RegisterType,
7690 llvm::Type *ValueType,
7691 SpecialRegisterAccessKind AccessKind,
7692 StringRef SysReg = "") {
7693 // write and register intrinsics only support 32, 64 and 128 bit operations.
7694 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) ||(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64) || RegisterType->isIntegerTy
(128)) && "Unsupported size for register.") ? void (0
) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) || RegisterType->isIntegerTy(128)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7696, __extension__ __PRETTY_FUNCTION__
))
7695 RegisterType->isIntegerTy(128)) &&(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64) || RegisterType->isIntegerTy
(128)) && "Unsupported size for register.") ? void (0
) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) || RegisterType->isIntegerTy(128)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7696, __extension__ __PRETTY_FUNCTION__
))
7696 "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64) || RegisterType->isIntegerTy
(128)) && "Unsupported size for register.") ? void (0
) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) || RegisterType->isIntegerTy(128)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7696, __extension__ __PRETTY_FUNCTION__
))
;
7697
7698 CodeGen::CGBuilderTy &Builder = CGF.Builder;
7699 CodeGen::CodeGenModule &CGM = CGF.CGM;
7700 LLVMContext &Context = CGM.getLLVMContext();
7701
7702 if (SysReg.empty()) {
7703 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7704 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7705 }
7706
7707 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7708 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7709 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7710
7711 llvm::Type *Types[] = { RegisterType };
7712
7713 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7714 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7715, __extension__ __PRETTY_FUNCTION__
))
7715 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7715, __extension__ __PRETTY_FUNCTION__
))
;
7716
7717 if (AccessKind != Write) {
7718 assert(AccessKind == NormalRead || AccessKind == VolatileRead)(static_cast <bool> (AccessKind == NormalRead || AccessKind
== VolatileRead) ? void (0) : __assert_fail ("AccessKind == NormalRead || AccessKind == VolatileRead"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7718, __extension__ __PRETTY_FUNCTION__
))
;
7719 llvm::Function *F = CGM.getIntrinsic(
7720 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7721 : llvm::Intrinsic::read_register,
7722 Types);
7723 llvm::Value *Call = Builder.CreateCall(F, Metadata);
7724
7725 if (MixedTypes)
7726 // Read into 64 bit register and then truncate result to 32 bit.
7727 return Builder.CreateTrunc(Call, ValueType);
7728
7729 if (ValueType->isPointerTy())
7730 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7731 return Builder.CreateIntToPtr(Call, ValueType);
7732
7733 return Call;
7734 }
7735
7736 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7737 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7738 if (MixedTypes) {
7739 // Extend 32 bit write value to 64 bit to pass to write.
7740 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7741 return Builder.CreateCall(F, { Metadata, ArgValue });
7742 }
7743
7744 if (ValueType->isPointerTy()) {
7745 // Have VoidPtrTy ArgValue but want to return an i32/i64.
7746 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7747 return Builder.CreateCall(F, { Metadata, ArgValue });
7748 }
7749
7750 return Builder.CreateCall(F, { Metadata, ArgValue });
7751}
7752
7753/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7754/// argument that specifies the vector type.
7755static bool HasExtraNeonArgument(unsigned BuiltinID) {
7756 switch (BuiltinID) {
7757 default: break;
7758 case NEON::BI__builtin_neon_vget_lane_i8:
7759 case NEON::BI__builtin_neon_vget_lane_i16:
7760 case NEON::BI__builtin_neon_vget_lane_bf16:
7761 case NEON::BI__builtin_neon_vget_lane_i32:
7762 case NEON::BI__builtin_neon_vget_lane_i64:
7763 case NEON::BI__builtin_neon_vget_lane_f32:
7764 case NEON::BI__builtin_neon_vgetq_lane_i8:
7765 case NEON::BI__builtin_neon_vgetq_lane_i16:
7766 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7767 case NEON::BI__builtin_neon_vgetq_lane_i32:
7768 case NEON::BI__builtin_neon_vgetq_lane_i64:
7769 case NEON::BI__builtin_neon_vgetq_lane_f32:
7770 case NEON::BI__builtin_neon_vduph_lane_bf16:
7771 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7772 case NEON::BI__builtin_neon_vset_lane_i8:
7773 case NEON::BI__builtin_neon_vset_lane_i16:
7774 case NEON::BI__builtin_neon_vset_lane_bf16:
7775 case NEON::BI__builtin_neon_vset_lane_i32:
7776 case NEON::BI__builtin_neon_vset_lane_i64:
7777 case NEON::BI__builtin_neon_vset_lane_f32:
7778 case NEON::BI__builtin_neon_vsetq_lane_i8:
7779 case NEON::BI__builtin_neon_vsetq_lane_i16:
7780 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7781 case NEON::BI__builtin_neon_vsetq_lane_i32:
7782 case NEON::BI__builtin_neon_vsetq_lane_i64:
7783 case NEON::BI__builtin_neon_vsetq_lane_f32:
7784 case NEON::BI__builtin_neon_vsha1h_u32:
7785 case NEON::BI__builtin_neon_vsha1cq_u32:
7786 case NEON::BI__builtin_neon_vsha1pq_u32:
7787 case NEON::BI__builtin_neon_vsha1mq_u32:
7788 case NEON::BI__builtin_neon_vcvth_bf16_f32:
7789 case clang::ARM::BI_MoveToCoprocessor:
7790 case clang::ARM::BI_MoveToCoprocessor2:
7791 return false;
7792 }
7793 return true;
7794}
7795
7796Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7797 const CallExpr *E,
7798 ReturnValueSlot ReturnValue,
7799 llvm::Triple::ArchType Arch) {
7800 if (auto Hint = GetValueForARMHint(BuiltinID))
7801 return Hint;
7802
7803 if (BuiltinID == clang::ARM::BI__emit) {
7804 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7805 llvm::FunctionType *FTy =
7806 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7807
7808 Expr::EvalResult Result;
7809 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7810 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7810)
;
7811
7812 llvm::APSInt Value = Result.Val.getInt();
7813 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7814
7815 llvm::InlineAsm *Emit =
7816 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7817 /*hasSideEffects=*/true)
7818 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7819 /*hasSideEffects=*/true);
7820
7821 return Builder.CreateCall(Emit);
7822 }
7823
7824 if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
7825 Value *Option = EmitScalarExpr(E->getArg(0));
7826 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7827 }
7828
7829 if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
7830 Value *Address = EmitScalarExpr(E->getArg(0));
7831 Value *RW = EmitScalarExpr(E->getArg(1));
7832 Value *IsData = EmitScalarExpr(E->getArg(2));
7833
7834 // Locality is not supported on ARM target
7835 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7836
7837 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7838 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7839 }
7840
7841 if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
7842 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7843 return Builder.CreateCall(
7844 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7845 }
7846
7847 if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
7848 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7849 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7850 }
7851 if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
7852 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7853 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7854 "cls");
7855 }
7856
7857 if (BuiltinID == clang::ARM::BI__clear_cache) {
7858 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7858, __extension__ __PRETTY_FUNCTION__
))
;
7859 const FunctionDecl *FD = E->getDirectCallee();
7860 Value *Ops[2];
7861 for (unsigned i = 0; i < 2; i++)
7862 Ops[i] = EmitScalarExpr(E->getArg(i));
7863 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7864 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7865 StringRef Name = FD->getName();
7866 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7867 }
7868
7869 if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
7870 BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
7871 Function *F;
7872
7873 switch (BuiltinID) {
7874 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7874)
;
7875 case clang::ARM::BI__builtin_arm_mcrr:
7876 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7877 break;
7878 case clang::ARM::BI__builtin_arm_mcrr2:
7879 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7880 break;
7881 }
7882
7883 // MCRR{2} instruction has 5 operands but
7884 // the intrinsic has 4 because Rt and Rt2
7885 // are represented as a single unsigned 64
7886 // bit integer in the intrinsic definition
7887 // but internally it's represented as 2 32
7888 // bit integers.
7889
7890 Value *Coproc = EmitScalarExpr(E->getArg(0));
7891 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7892 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7893 Value *CRm = EmitScalarExpr(E->getArg(3));
7894
7895 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7896 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7897 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7898 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7899
7900 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7901 }
7902
7903 if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
7904 BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
7905 Function *F;
7906
7907 switch (BuiltinID) {
7908 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7908)
;
7909 case clang::ARM::BI__builtin_arm_mrrc:
7910 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7911 break;
7912 case clang::ARM::BI__builtin_arm_mrrc2:
7913 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7914 break;
7915 }
7916
7917 Value *Coproc = EmitScalarExpr(E->getArg(0));
7918 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7919 Value *CRm = EmitScalarExpr(E->getArg(2));
7920 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7921
7922 // Returns an unsigned 64 bit integer, represented
7923 // as two 32 bit integers.
7924
7925 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7926 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7927 Rt = Builder.CreateZExt(Rt, Int64Ty);
7928 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7929
7930 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7931 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7932 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7933
7934 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7935 }
7936
7937 if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
7938 ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
7939 BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
7940 getContext().getTypeSize(E->getType()) == 64) ||
7941 BuiltinID == clang::ARM::BI__ldrexd) {
7942 Function *F;
7943
7944 switch (BuiltinID) {
7945 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7945)
;
7946 case clang::ARM::BI__builtin_arm_ldaex:
7947 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7948 break;
7949 case clang::ARM::BI__builtin_arm_ldrexd:
7950 case clang::ARM::BI__builtin_arm_ldrex:
7951 case clang::ARM::BI__ldrexd:
7952 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7953 break;
7954 }
7955
7956 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7957 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7958 "ldrexd");
7959
7960 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7961 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7962 Val0 = Builder.CreateZExt(Val0, Int64Ty);
7963 Val1 = Builder.CreateZExt(Val1, Int64Ty);
7964
7965 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7966 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7967 Val = Builder.CreateOr(Val, Val1);
7968 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7969 }
7970
7971 if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
7972 BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
7973 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7974
7975 QualType Ty = E->getType();
7976 llvm::Type *RealResTy = ConvertType(Ty);
7977 llvm::Type *IntTy =
7978 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
7979 llvm::Type *PtrTy = IntTy->getPointerTo();
7980 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7981
7982 Function *F = CGM.getIntrinsic(
7983 BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
7984 : Intrinsic::arm_ldrex,
7985 PtrTy);
7986 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7987 Val->addParamAttr(
7988 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
7989
7990 if (RealResTy->isPointerTy())
7991 return Builder.CreateIntToPtr(Val, RealResTy);
7992 else {
7993 llvm::Type *IntResTy = llvm::IntegerType::get(
7994 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7995 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
7996 RealResTy);
7997 }
7998 }
7999
8000 if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
8001 ((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
8002 BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
8003 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
8004 Function *F = CGM.getIntrinsic(
8005 BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
8006 : Intrinsic::arm_strexd);
8007 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
8008
8009 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8010 Value *Val = EmitScalarExpr(E->getArg(0));
8011 Builder.CreateStore(Val, Tmp);
8012
8013 Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
8014 Val = Builder.CreateLoad(LdPtr);
8015
8016 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8017 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8018 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
8019 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
8020 }
8021
8022 if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
8023 BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
8024 Value *StoreVal = EmitScalarExpr(E->getArg(0));
8025 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8026
8027 QualType Ty = E->getArg(0)->getType();
8028 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
8029 getContext().getTypeSize(Ty));
8030 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
8031
8032 if (StoreVal->getType()->isPointerTy())
8033 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
8034 else {
8035 llvm::Type *IntTy = llvm::IntegerType::get(
8036 getLLVMContext(),
8037 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8038 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8039 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
8040 }
8041
8042 Function *F = CGM.getIntrinsic(
8043 BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
8044 : Intrinsic::arm_strex,
8045 StoreAddr->getType());
8046
8047 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
8048 CI->addParamAttr(
8049 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
8050 return CI;
8051 }
8052
8053 if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
8054 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
8055 return Builder.CreateCall(F);
8056 }
8057
8058 // CRC32
8059 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8060 switch (BuiltinID) {
8061 case clang::ARM::BI__builtin_arm_crc32b:
8062 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
8063 case clang::ARM::BI__builtin_arm_crc32cb:
8064 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
8065 case clang::ARM::BI__builtin_arm_crc32h:
8066 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
8067 case clang::ARM::BI__builtin_arm_crc32ch:
8068 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
8069 case clang::ARM::BI__builtin_arm_crc32w:
8070 case clang::ARM::BI__builtin_arm_crc32d:
8071 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
8072 case clang::ARM::BI__builtin_arm_crc32cw:
8073 case clang::ARM::BI__builtin_arm_crc32cd:
8074 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
8075 }
8076
8077 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8078 Value *Arg0 = EmitScalarExpr(E->getArg(0));
8079 Value *Arg1 = EmitScalarExpr(E->getArg(1));
8080
8081 // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8082 // intrinsics, hence we need different codegen for these cases.
8083 if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
8084 BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
8085 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8086 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
8087 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
8088 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
8089
8090 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8091 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
8092 return Builder.CreateCall(F, {Res, Arg1b});
8093 } else {
8094 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
8095
8096 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8097 return Builder.CreateCall(F, {Arg0, Arg1});
8098 }
8099 }
8100
8101 if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8102 BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8103 BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8104 BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
8105 BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
8106 BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
8107
8108 SpecialRegisterAccessKind AccessKind = Write;
8109 if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8110 BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8111 BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
8112 AccessKind = VolatileRead;
8113
8114 bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8115 BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
8116
8117 bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8118 BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
8119
8120 llvm::Type *ValueType;
8121 llvm::Type *RegisterType;
8122 if (IsPointerBuiltin) {
8123 ValueType = VoidPtrTy;
8124 RegisterType = Int32Ty;
8125 } else if (Is64Bit) {
8126 ValueType = RegisterType = Int64Ty;
8127 } else {
8128 ValueType = RegisterType = Int32Ty;
8129 }
8130
8131 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8132 AccessKind);
8133 }
8134
8135 if (BuiltinID == ARM::BI__builtin_sponentry) {
8136 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8137 return Builder.CreateCall(F);
8138 }
8139
8140 // Handle MSVC intrinsics before argument evaluation to prevent double
8141 // evaluation.
8142 if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
8143 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
8144
8145 // Deal with MVE builtins
8146 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8147 return Result;
8148 // Handle CDE builtins
8149 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8150 return Result;
8151
8152 // Some intrinsics are equivalent - if they are use the base intrinsic ID.
8153 auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
8154 return P.first == BuiltinID;
8155 });
8156 if (It != end(NEONEquivalentIntrinsicMap))
8157 BuiltinID = It->second;
8158
8159 // Find out if any arguments are required to be integer constant
8160 // expressions.
8161 unsigned ICEArguments = 0;
8162 ASTContext::GetBuiltinTypeError Error;
8163 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8164 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8164, __extension__ __PRETTY_FUNCTION__
))
;
8165
8166 auto getAlignmentValue32 = [&](Address addr) -> Value* {
8167 return Builder.getInt32(addr.getAlignment().getQuantity());
8168 };
8169
8170 Address PtrOp0 = Address::invalid();
8171 Address PtrOp1 = Address::invalid();
8172 SmallVector<Value*, 4> Ops;
8173 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
8174 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
8175 for (unsigned i = 0, e = NumArgs; i != e; i++) {
8176 if (i == 0) {
8177 switch (BuiltinID) {
8178 case NEON::BI__builtin_neon_vld1_v:
8179 case NEON::BI__builtin_neon_vld1q_v:
8180 case NEON::BI__builtin_neon_vld1q_lane_v:
8181 case NEON::BI__builtin_neon_vld1_lane_v:
8182 case NEON::BI__builtin_neon_vld1_dup_v:
8183 case NEON::BI__builtin_neon_vld1q_dup_v:
8184 case NEON::BI__builtin_neon_vst1_v:
8185 case NEON::BI__builtin_neon_vst1q_v:
8186 case NEON::BI__builtin_neon_vst1q_lane_v:
8187 case NEON::BI__builtin_neon_vst1_lane_v:
8188 case NEON::BI__builtin_neon_vst2_v:
8189 case NEON::BI__builtin_neon_vst2q_v:
8190 case NEON::BI__builtin_neon_vst2_lane_v:
8191 case NEON::BI__builtin_neon_vst2q_lane_v:
8192 case NEON::BI__builtin_neon_vst3_v:
8193 case NEON::BI__builtin_neon_vst3q_v:
8194 case NEON::BI__builtin_neon_vst3_lane_v:
8195 case NEON::BI__builtin_neon_vst3q_lane_v:
8196 case NEON::BI__builtin_neon_vst4_v:
8197 case NEON::BI__builtin_neon_vst4q_v:
8198 case NEON::BI__builtin_neon_vst4_lane_v:
8199 case NEON::BI__builtin_neon_vst4q_lane_v:
8200 // Get the alignment for the argument in addition to the value;
8201 // we'll use it later.
8202 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
8203 Ops.push_back(PtrOp0.getPointer());
8204 continue;
8205 }
8206 }
8207 if (i == 1) {
8208 switch (BuiltinID) {
8209 case NEON::BI__builtin_neon_vld2_v:
8210 case NEON::BI__builtin_neon_vld2q_v:
8211 case NEON::BI__builtin_neon_vld3_v:
8212 case NEON::BI__builtin_neon_vld3q_v:
8213 case NEON::BI__builtin_neon_vld4_v:
8214 case NEON::BI__builtin_neon_vld4q_v:
8215 case NEON::BI__builtin_neon_vld2_lane_v:
8216 case NEON::BI__builtin_neon_vld2q_lane_v:
8217 case NEON::BI__builtin_neon_vld3_lane_v:
8218 case NEON::BI__builtin_neon_vld3q_lane_v:
8219 case NEON::BI__builtin_neon_vld4_lane_v:
8220 case NEON::BI__builtin_neon_vld4q_lane_v:
8221 case NEON::BI__builtin_neon_vld2_dup_v:
8222 case NEON::BI__builtin_neon_vld2q_dup_v:
8223 case NEON::BI__builtin_neon_vld3_dup_v:
8224 case NEON::BI__builtin_neon_vld3q_dup_v:
8225 case NEON::BI__builtin_neon_vld4_dup_v:
8226 case NEON::BI__builtin_neon_vld4q_dup_v:
8227 // Get the alignment for the argument in addition to the value;
8228 // we'll use it later.
8229 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
8230 Ops.push_back(PtrOp1.getPointer());
8231 continue;
8232 }
8233 }
8234
8235 if ((ICEArguments & (1 << i)) == 0) {
8236 Ops.push_back(EmitScalarExpr(E->getArg(i)));
8237 } else {
8238 // If this is required to be a constant, constant fold it so that we know
8239 // that the generated intrinsic gets a ConstantInt.
8240 Ops.push_back(llvm::ConstantInt::get(
8241 getLLVMContext(),
8242 *E->getArg(i)->getIntegerConstantExpr(getContext())));
8243 }
8244 }
8245
8246 switch (BuiltinID) {
8247 default: break;
8248
8249 case NEON::BI__builtin_neon_vget_lane_i8:
8250 case NEON::BI__builtin_neon_vget_lane_i16:
8251 case NEON::BI__builtin_neon_vget_lane_i32:
8252 case NEON::BI__builtin_neon_vget_lane_i64:
8253 case NEON::BI__builtin_neon_vget_lane_bf16:
8254 case NEON::BI__builtin_neon_vget_lane_f32:
8255 case NEON::BI__builtin_neon_vgetq_lane_i8:
8256 case NEON::BI__builtin_neon_vgetq_lane_i16:
8257 case NEON::BI__builtin_neon_vgetq_lane_i32:
8258 case NEON::BI__builtin_neon_vgetq_lane_i64:
8259 case NEON::BI__builtin_neon_vgetq_lane_bf16:
8260 case NEON::BI__builtin_neon_vgetq_lane_f32:
8261 case NEON::BI__builtin_neon_vduph_lane_bf16:
8262 case NEON::BI__builtin_neon_vduph_laneq_bf16:
8263 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
8264
8265 case NEON::BI__builtin_neon_vrndns_f32: {
8266 Value *Arg = EmitScalarExpr(E->getArg(0));
8267 llvm::Type *Tys[] = {Arg->getType()};
8268 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
8269 return Builder.CreateCall(F, {Arg}, "vrndn"); }
8270
8271 case NEON::BI__builtin_neon_vset_lane_i8:
8272 case NEON::BI__builtin_neon_vset_lane_i16:
8273 case NEON::BI__builtin_neon_vset_lane_i32:
8274 case NEON::BI__builtin_neon_vset_lane_i64:
8275 case NEON::BI__builtin_neon_vset_lane_bf16:
8276 case NEON::BI__builtin_neon_vset_lane_f32:
8277 case NEON::BI__builtin_neon_vsetq_lane_i8:
8278 case NEON::BI__builtin_neon_vsetq_lane_i16:
8279 case NEON::BI__builtin_neon_vsetq_lane_i32:
8280 case NEON::BI__builtin_neon_vsetq_lane_i64:
8281 case NEON::BI__builtin_neon_vsetq_lane_bf16:
8282 case NEON::BI__builtin_neon_vsetq_lane_f32:
8283 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8284
8285 case NEON::BI__builtin_neon_vsha1h_u32:
8286 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
8287 "vsha1h");
8288 case NEON::BI__builtin_neon_vsha1cq_u32:
8289 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
8290 "vsha1h");
8291 case NEON::BI__builtin_neon_vsha1pq_u32:
8292 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
8293 "vsha1h");
8294 case NEON::BI__builtin_neon_vsha1mq_u32:
8295 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
8296 "vsha1h");
8297
8298 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
8299 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
8300 "vcvtbfp2bf");
8301 }
8302
8303 // The ARM _MoveToCoprocessor builtins put the input register value as
8304 // the first argument, but the LLVM intrinsic expects it as the third one.
8305 case clang::ARM::BI_MoveToCoprocessor:
8306 case clang::ARM::BI_MoveToCoprocessor2: {
8307 Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
8308 ? Intrinsic::arm_mcr
8309 : Intrinsic::arm_mcr2);
8310 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
8311 Ops[3], Ops[4], Ops[5]});
8312 }
8313 }
8314
8315 // Get the last argument, which specifies the vector type.
8316 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "clang/lib/CodeGen/CGBuiltin.cpp", 8316, __extension__
__PRETTY_FUNCTION__))
;
8317 const Expr *Arg = E->getArg(E->getNumArgs()-1);
8318 std::optional<llvm::APSInt> Result =
8319 Arg->getIntegerConstantExpr(getContext());
8320 if (!Result)
8321 return nullptr;
8322
8323 if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
8324 BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
8325 // Determine the overloaded type of this builtin.
8326 llvm::Type *Ty;
8327 if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
8328 Ty = FloatTy;
8329 else
8330 Ty = DoubleTy;
8331
8332 // Determine whether this is an unsigned conversion or not.
8333 bool usgn = Result->getZExtValue() == 1;
8334 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
8335
8336 // Call the appropriate intrinsic.
8337 Function *F = CGM.getIntrinsic(Int, Ty);
8338 return Builder.CreateCall(F, Ops, "vcvtr");
8339 }
8340
8341 // Determine the type of this overloaded NEON intrinsic.
8342 NeonTypeFlags Type = Result->getZExtValue();
8343 bool usgn = Type.isUnsigned();
8344 bool rightShift = false;
8345
8346 llvm::FixedVectorType *VTy =
8347 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8348 getTarget().hasBFloat16Type());
8349 llvm::Type *Ty = VTy;
8350 if (!Ty)
8351 return nullptr;
8352
8353 // Many NEON builtins have identical semantics and uses in ARM and
8354 // AArch64. Emit these in a single function.
8355 auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap);
8356 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8357 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8358 if (Builtin)
8359 return EmitCommonNeonBuiltinExpr(
8360 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8361 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8362
8363 unsigned Int;
8364 switch (BuiltinID) {
8365 default: return nullptr;
8366 case NEON::BI__builtin_neon_vld1q_lane_v:
8367 // Handle 64-bit integer elements as a special case. Use shuffles of
8368 // one-element vectors to avoid poor code for i64 in the backend.
8369 if (VTy->getElementType()->isIntegerTy(64)) {
8370 // Extract the other lane.
8371 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8372 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8373 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8374 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8375 // Load the value as a one-element vector.
8376 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8377 llvm::Type *Tys[] = {Ty, Int8PtrTy};
8378 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8379 Value *Align = getAlignmentValue32(PtrOp0);
8380 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8381 // Combine them.
8382 int Indices[] = {1 - Lane, Lane};
8383 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8384 }
8385 [[fallthrough]];
8386 case NEON::BI__builtin_neon_vld1_lane_v: {
8387 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8388 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
8389 Value *Ld = Builder.CreateLoad(PtrOp0);
8390 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8391 }
8392 case NEON::BI__builtin_neon_vqrshrn_n_v:
8393 Int =
8394 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8395 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8396 1, true);
8397 case NEON::BI__builtin_neon_vqrshrun_n_v:
8398 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8399 Ops, "vqrshrun_n", 1, true);
8400 case NEON::BI__builtin_neon_vqshrn_n_v:
8401 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8402 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8403 1, true);
8404 case NEON::BI__builtin_neon_vqshrun_n_v:
8405 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8406 Ops, "vqshrun_n", 1, true);
8407 case NEON::BI__builtin_neon_vrecpe_v:
8408 case NEON::BI__builtin_neon_vrecpeq_v:
8409 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8410 Ops, "vrecpe");
8411 case NEON::BI__builtin_neon_vrshrn_n_v:
8412 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8413 Ops, "vrshrn_n", 1, true);
8414 case NEON::BI__builtin_neon_vrsra_n_v:
8415 case NEON::BI__builtin_neon_vrsraq_n_v:
8416 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8417 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8418 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8419 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8420 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8421 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8422 case NEON::BI__builtin_neon_vsri_n_v:
8423 case NEON::BI__builtin_neon_vsriq_n_v:
8424 rightShift = true;
8425 [[fallthrough]];
8426 case NEON::BI__builtin_neon_vsli_n_v:
8427 case NEON::BI__builtin_neon_vsliq_n_v:
8428 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8429 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8430 Ops, "vsli_n");
8431 case NEON::BI__builtin_neon_vsra_n_v:
8432 case NEON::BI__builtin_neon_vsraq_n_v:
8433 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8434 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8435 return Builder.CreateAdd(Ops[0], Ops[1]);
8436 case NEON::BI__builtin_neon_vst1q_lane_v:
8437 // Handle 64-bit integer elements as a special case. Use a shuffle to get
8438 // a one-element vector and avoid poor code for i64 in the backend.
8439 if (VTy->getElementType()->isIntegerTy(64)) {
8440 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8441 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8442 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8443 Ops[2] = getAlignmentValue32(PtrOp0);
8444 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8445 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8446 Tys), Ops);
8447 }
8448 [[fallthrough]];
8449 case NEON::BI__builtin_neon_vst1_lane_v: {
8450 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8451 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8452 auto St = Builder.CreateStore(
8453 Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
8454 return St;
8455 }
8456 case NEON::BI__builtin_neon_vtbl1_v:
8457 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8458 Ops, "vtbl1");
8459 case NEON::BI__builtin_neon_vtbl2_v:
8460 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8461 Ops, "vtbl2");
8462 case NEON::BI__builtin_neon_vtbl3_v:
8463 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8464 Ops, "vtbl3");
8465 case NEON::BI__builtin_neon_vtbl4_v:
8466 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8467 Ops, "vtbl4");
8468 case NEON::BI__builtin_neon_vtbx1_v:
8469 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
8470 Ops, "vtbx1");
8471 case NEON::BI__builtin_neon_vtbx2_v:
8472 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8473 Ops, "vtbx2");
8474 case NEON::BI__builtin_neon_vtbx3_v:
8475 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8476 Ops, "vtbx3");
8477 case NEON::BI__builtin_neon_vtbx4_v:
8478 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8479 Ops, "vtbx4");
8480 }
8481}
8482
8483template<typename Integer>
8484static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8485 return E->getIntegerConstantExpr(Context)->getExtValue();
8486}
8487
8488static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8489 llvm::Type *T, bool Unsigned) {
8490 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8491 // which finds it convenient to specify signed/unsigned as a boolean flag.
8492 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8493}
8494
8495static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8496 uint32_t Shift, bool Unsigned) {
8497 // MVE helper function for integer shift right. This must handle signed vs
8498 // unsigned, and also deal specially with the case where the shift count is
8499 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8500 // undefined behavior, but in MVE it's legal, so we must convert it to code
8501 // that is not undefined in IR.
8502 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8503 ->getElementType()
8504 ->getPrimitiveSizeInBits();
8505 if (Shift == LaneBits) {
8506 // An unsigned shift of the full lane size always generates zero, so we can
8507 // simply emit a zero vector. A signed shift of the full lane size does the
8508 // same thing as shifting by one bit fewer.
8509 if (Unsigned)
8510 return llvm::Constant::getNullValue(V->getType());
8511 else
8512 --Shift;
8513 }
8514 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8515}
8516
8517static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8518 // MVE-specific helper function for a vector splat, which infers the element
8519 // count of the output vector by knowing that MVE vectors are all 128 bits
8520 // wide.
8521 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8522 return Builder.CreateVectorSplat(Elements, V);
8523}
8524
8525static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8526 CodeGenFunction *CGF,
8527 llvm::Value *V,
8528 llvm::Type *DestType) {
8529 // Convert one MVE vector type into another by reinterpreting its in-register
8530 // format.
8531 //
8532 // Little-endian, this is identical to a bitcast (which reinterprets the
8533 // memory format). But big-endian, they're not necessarily the same, because
8534 // the register and memory formats map to each other differently depending on
8535 // the lane size.
8536 //
8537 // We generate a bitcast whenever we can (if we're little-endian, or if the
8538 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8539 // that performs the different kind of reinterpretation.
8540 if (CGF->getTarget().isBigEndian() &&
8541 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8542 return Builder.CreateCall(
8543 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8544 {DestType, V->getType()}),
8545 V);
8546 } else {
8547 return Builder.CreateBitCast(V, DestType);
8548 }
8549}
8550
8551static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8552 // Make a shufflevector that extracts every other element of a vector (evens
8553 // or odds, as desired).
8554 SmallVector<int, 16> Indices;
8555 unsigned InputElements =
8556 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8557 for (unsigned i = 0; i < InputElements; i += 2)
8558 Indices.push_back(i + Odd);
8559 return Builder.CreateShuffleVector(V, Indices);
8560}
8561
8562static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8563 llvm::Value *V1) {
8564 // Make a shufflevector that interleaves two vectors element by element.
8565 assert(V0->getType() == V1->getType() && "Can't zip different vector types")(static_cast <bool> (V0->getType() == V1->getType
() && "Can't zip different vector types") ? void (0) :
__assert_fail ("V0->getType() == V1->getType() && \"Can't zip different vector types\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8565, __extension__ __PRETTY_FUNCTION__
))
;
8566 SmallVector<int, 16> Indices;
8567 unsigned InputElements =
8568 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8569 for (unsigned i = 0; i < InputElements; i++) {
8570 Indices.push_back(i);
8571 Indices.push_back(i + InputElements);
8572 }
8573 return Builder.CreateShuffleVector(V0, V1, Indices);
8574}
8575
8576template<unsigned HighBit, unsigned OtherBits>
8577static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8578 // MVE-specific helper function to make a vector splat of a constant such as
8579 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8580 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8581 unsigned LaneBits = T->getPrimitiveSizeInBits();
8582 uint32_t Value = HighBit << (LaneBits - 1);
8583 if (OtherBits)
8584 Value |= (1UL << (LaneBits - 1)) - 1;
8585 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8586 return ARMMVEVectorSplat(Builder, Lane);
8587}
8588
8589static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8590 llvm::Value *V,
8591 unsigned ReverseWidth) {
8592 // MVE-specific helper function which reverses the elements of a
8593 // vector within every (ReverseWidth)-bit collection of lanes.
8594 SmallVector<int, 16> Indices;
8595 unsigned LaneSize = V->getType()->getScalarSizeInBits();
8596 unsigned Elements = 128 / LaneSize;
8597 unsigned Mask = ReverseWidth / LaneSize - 1;
8598 for (unsigned i = 0; i < Elements; i++)
8599 Indices.push_back(i ^ Mask);
8600 return Builder.CreateShuffleVector(V, Indices);
8601}
8602
8603Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8604 const CallExpr *E,
8605 ReturnValueSlot ReturnValue,
8606 llvm::Triple::ArchType Arch) {
8607 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8608 Intrinsic::ID IRIntr;
8609 unsigned NumVectors;
8610
8611 // Code autogenerated by Tablegen will handle all the simple builtins.
8612 switch (BuiltinID) {
8613 #include "clang/Basic/arm_mve_builtin_cg.inc"
8614
8615 // If we didn't match an MVE builtin id at all, go back to the
8616 // main EmitARMBuiltinExpr.
8617 default:
8618 return nullptr;
8619 }
8620
8621 // Anything that breaks from that switch is an MVE builtin that
8622 // needs handwritten code to generate.
8623
8624 switch (CustomCodeGenType) {
8625
8626 case CustomCodeGen::VLD24: {
8627 llvm::SmallVector<Value *, 4> Ops;
8628 llvm::SmallVector<llvm::Type *, 4> Tys;
8629
8630 auto MvecCType = E->getType();
8631 auto MvecLType = ConvertType(MvecCType);
8632 assert(MvecLType->isStructTy() &&(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8633, __extension__ __PRETTY_FUNCTION__
))
8633 "Return type for vld[24]q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8633, __extension__ __PRETTY_FUNCTION__
))
;
8634 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8635, __extension__ __PRETTY_FUNCTION__
))
8635 "Return-type struct for vld[24]q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8635, __extension__ __PRETTY_FUNCTION__
))
;
8636 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8637 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8638, __extension__ __PRETTY_FUNCTION__
))
8638 "Return-type struct for vld[24]q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8638, __extension__ __PRETTY_FUNCTION__
))
;
8639 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8640, __extension__ __PRETTY_FUNCTION__
))
8640 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8640, __extension__ __PRETTY_FUNCTION__
))
;
8641 auto VecLType = MvecLTypeInner->getArrayElementType();
8642
8643 Tys.push_back(VecLType);
8644
8645 auto Addr = E->getArg(0);
8646 Ops.push_back(EmitScalarExpr(Addr));
8647 Tys.push_back(ConvertType(Addr->getType()));
8648
8649 Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
8650 Value *LoadResult = Builder.CreateCall(F, Ops);
8651 Value *MvecOut = PoisonValue::get(MvecLType);
8652 for (unsigned i = 0; i < NumVectors; ++i) {
8653 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8654 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8655 }
8656
8657 if (ReturnValue.isNull())
8658 return MvecOut;
8659 else
8660 return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8661 }
8662
8663 case CustomCodeGen::VST24: {
8664 llvm::SmallVector<Value *, 4> Ops;
8665 llvm::SmallVector<llvm::Type *, 4> Tys;
8666
8667 auto Addr = E->getArg(0);
8668 Ops.push_back(EmitScalarExpr(Addr));
8669 Tys.push_back(ConvertType(Addr->getType()));
8670
8671 auto MvecCType = E->getArg(1)->getType();
8672 auto MvecLType = ConvertType(MvecCType);
8673 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Data type for vst2q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Data type for vst2q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8673, __extension__ __PRETTY_FUNCTION__
))
;
8674 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8675, __extension__ __PRETTY_FUNCTION__
))
8675 "Data-type struct for vst2q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8675, __extension__ __PRETTY_FUNCTION__
))
;
8676 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8677 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8678, __extension__ __PRETTY_FUNCTION__
))
8678 "Data-type struct for vst2q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8678, __extension__ __PRETTY_FUNCTION__
))
;
8679 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8680, __extension__ __PRETTY_FUNCTION__
))
8680 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8680, __extension__ __PRETTY_FUNCTION__
))
;
8681 auto VecLType = MvecLTypeInner->getArrayElementType();
8682
8683 Tys.push_back(VecLType);
8684
8685 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8686 EmitAggExpr(E->getArg(1), MvecSlot);
8687 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8688 for (unsigned i = 0; i < NumVectors; i++)
8689 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8690
8691 Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
8692 Value *ToReturn = nullptr;
8693 for (unsigned i = 0; i < NumVectors; i++) {
8694 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8695 ToReturn = Builder.CreateCall(F, Ops);
8696 Ops.pop_back();
8697 }
8698 return ToReturn;
8699 }
8700 }
8701 llvm_unreachable("unknown custom codegen type.")::llvm::llvm_unreachable_internal("unknown custom codegen type."
, "clang/lib/CodeGen/CGBuiltin.cpp", 8701)
;
8702}
8703
8704Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8705 const CallExpr *E,
8706 ReturnValueSlot ReturnValue,
8707 llvm::Triple::ArchType Arch) {
8708 switch (BuiltinID) {
8709 default:
8710 return nullptr;
8711#include "clang/Basic/arm_cde_builtin_cg.inc"
8712 }
8713}
8714
8715static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8716 const CallExpr *E,
8717 SmallVectorImpl<Value *> &Ops,
8718 llvm::Triple::ArchType Arch) {
8719 unsigned int Int = 0;
8720 const char *s = nullptr;
8721
8722 switch (BuiltinID) {
8723 default:
8724 return nullptr;
8725 case NEON::BI__builtin_neon_vtbl1_v:
8726 case NEON::BI__builtin_neon_vqtbl1_v:
8727 case NEON::BI__builtin_neon_vqtbl1q_v:
8728 case NEON::BI__builtin_neon_vtbl2_v:
8729 case NEON::BI__builtin_neon_vqtbl2_v:
8730 case NEON::BI__builtin_neon_vqtbl2q_v:
8731 case NEON::BI__builtin_neon_vtbl3_v:
8732 case NEON::BI__builtin_neon_vqtbl3_v:
8733 case NEON::BI__builtin_neon_vqtbl3q_v:
8734 case NEON::BI__builtin_neon_vtbl4_v:
8735 case NEON::BI__builtin_neon_vqtbl4_v:
8736 case NEON::BI__builtin_neon_vqtbl4q_v:
8737 break;
8738 case NEON::BI__builtin_neon_vtbx1_v:
8739 case NEON::BI__builtin_neon_vqtbx1_v:
8740 case NEON::BI__builtin_neon_vqtbx1q_v:
8741 case NEON::BI__builtin_neon_vtbx2_v:
8742 case NEON::BI__builtin_neon_vqtbx2_v:
8743 case NEON::BI__builtin_neon_vqtbx2q_v:
8744 case NEON::BI__builtin_neon_vtbx3_v:
8745 case NEON::BI__builtin_neon_vqtbx3_v:
8746 case NEON::BI__builtin_neon_vqtbx3q_v:
8747 case NEON::BI__builtin_neon_vtbx4_v:
8748 case NEON::BI__builtin_neon_vqtbx4_v:
8749 case NEON::BI__builtin_neon_vqtbx4q_v:
8750 break;
8751 }
8752
8753 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8753, __extension__ __PRETTY_FUNCTION__))
;
8754
8755 // Get the last argument, which specifies the vector type.
8756 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8757 std::optional<llvm::APSInt> Result =
8758 Arg->getIntegerConstantExpr(CGF.getContext());
8759 if (!Result)
8760 return nullptr;
8761
8762 // Determine the type of this overloaded NEON intrinsic.
8763 NeonTypeFlags Type = Result->getZExtValue();
8764 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8765 if (!Ty)
8766 return nullptr;
8767
8768 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8769
8770 // AArch64 scalar builtins are not overloaded, they do not have an extra
8771 // argument that specifies the vector type, need to handle each case.
8772 switch (BuiltinID) {
8773 case NEON::BI__builtin_neon_vtbl1_v: {
8774 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1],
8775 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8776 }
8777 case NEON::BI__builtin_neon_vtbl2_v: {
8778 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2],
8779 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8780 }
8781 case NEON::BI__builtin_neon_vtbl3_v: {
8782 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3],
8783 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8784 }
8785 case NEON::BI__builtin_neon_vtbl4_v: {
8786 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4],
8787 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8788 }
8789 case NEON::BI__builtin_neon_vtbx1_v: {
8790 Value *TblRes =
8791 packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty,
8792 Intrinsic::aarch64_neon_tbl1, "vtbl1");
8793
8794 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8795 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8796 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8797
8798 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8799 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8800 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8801 }
8802 case NEON::BI__builtin_neon_vtbx2_v: {
8803 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3],
8804 Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1");
8805 }
8806 case NEON::BI__builtin_neon_vtbx3_v: {
8807 Value *TblRes =
8808 packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty,
8809 Intrinsic::aarch64_neon_tbl2, "vtbl2");
8810
8811 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8812 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8813 TwentyFourV);
8814 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8815
8816 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8817 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8818 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8819 }
8820 case NEON::BI__builtin_neon_vtbx4_v: {
8821 return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5],
8822 Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2");
8823 }
8824 case NEON::BI__builtin_neon_vqtbl1_v:
8825 case NEON::BI__builtin_neon_vqtbl1q_v:
8826 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8827 case NEON::BI__builtin_neon_vqtbl2_v:
8828 case NEON::BI__builtin_neon_vqtbl2q_v: {
8829 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8830 case NEON::BI__builtin_neon_vqtbl3_v:
8831 case NEON::BI__builtin_neon_vqtbl3q_v:
8832 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8833 case NEON::BI__builtin_neon_vqtbl4_v:
8834 case NEON::BI__builtin_neon_vqtbl4q_v:
8835 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8836 case NEON::BI__builtin_neon_vqtbx1_v:
8837 case NEON::BI__builtin_neon_vqtbx1q_v:
8838 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8839 case NEON::BI__builtin_neon_vqtbx2_v:
8840 case NEON::BI__builtin_neon_vqtbx2q_v:
8841 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8842 case NEON::BI__builtin_neon_vqtbx3_v:
8843 case NEON::BI__builtin_neon_vqtbx3q_v:
8844 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8845 case NEON::BI__builtin_neon_vqtbx4_v:
8846 case NEON::BI__builtin_neon_vqtbx4q_v:
8847 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8848 }
8849 }
8850
8851 if (!Int)
8852 return nullptr;
8853
8854 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8855 return CGF.EmitNeonCall(F, Ops, s);
8856}
8857
8858Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8859 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8860 Op = Builder.CreateBitCast(Op, Int16Ty);
8861 Value *V = PoisonValue::get(VTy);
8862 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8863 Op = Builder.CreateInsertElement(V, Op, CI);
8864 return Op;
8865}
8866
8867/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8868/// access builtin. Only required if it can't be inferred from the base pointer
8869/// operand.
8870llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8871 switch (TypeFlags.getMemEltType()) {
8872 case SVETypeFlags::MemEltTyDefault:
8873 return getEltType(TypeFlags);
8874 case SVETypeFlags::MemEltTyInt8:
8875 return Builder.getInt8Ty();
8876 case SVETypeFlags::MemEltTyInt16:
8877 return Builder.getInt16Ty();
8878 case SVETypeFlags::MemEltTyInt32:
8879 return Builder.getInt32Ty();
8880 case SVETypeFlags::MemEltTyInt64:
8881 return Builder.getInt64Ty();
8882 }
8883 llvm_unreachable("Unknown MemEltType")::llvm::llvm_unreachable_internal("Unknown MemEltType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8883)
;
8884}
8885
8886llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8887 switch (TypeFlags.getEltType()) {
8888 default:
8889 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8889)
;
8890
8891 case SVETypeFlags::EltTyInt8:
8892 return Builder.getInt8Ty();
8893 case SVETypeFlags::EltTyInt16:
8894 return Builder.getInt16Ty();
8895 case SVETypeFlags::EltTyInt32:
8896 return Builder.getInt32Ty();
8897 case SVETypeFlags::EltTyInt64:
8898 return Builder.getInt64Ty();
8899
8900 case SVETypeFlags::EltTyFloat16:
8901 return Builder.getHalfTy();
8902 case SVETypeFlags::EltTyFloat32:
8903 return Builder.getFloatTy();
8904 case SVETypeFlags::EltTyFloat64:
8905 return Builder.getDoubleTy();
8906
8907 case SVETypeFlags::EltTyBFloat16:
8908 return Builder.getBFloatTy();
8909
8910 case SVETypeFlags::EltTyBool8:
8911 case SVETypeFlags::EltTyBool16:
8912 case SVETypeFlags::EltTyBool32:
8913 case SVETypeFlags::EltTyBool64:
8914 return Builder.getInt1Ty();
8915 }
8916}
8917
8918// Return the llvm predicate vector type corresponding to the specified element
8919// TypeFlags.
8920llvm::ScalableVectorType *
8921CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8922 switch (TypeFlags.getEltType()) {
8923 default: llvm_unreachable("Unhandled SVETypeFlag!")::llvm::llvm_unreachable_internal("Unhandled SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8923)
;
8924
8925 case SVETypeFlags::EltTyInt8:
8926 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8927 case SVETypeFlags::EltTyInt16:
8928 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8929 case SVETypeFlags::EltTyInt32:
8930 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8931 case SVETypeFlags::EltTyInt64:
8932 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8933
8934 case SVETypeFlags::EltTyBFloat16:
8935 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8936 case SVETypeFlags::EltTyFloat16:
8937 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8938 case SVETypeFlags::EltTyFloat32:
8939 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8940 case SVETypeFlags::EltTyFloat64:
8941 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8942
8943 case SVETypeFlags::EltTyBool8:
8944 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8945 case SVETypeFlags::EltTyBool16:
8946 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8947 case SVETypeFlags::EltTyBool32:
8948 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8949 case SVETypeFlags::EltTyBool64:
8950 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8951 }
8952}
8953
8954// Return the llvm vector type corresponding to the specified element TypeFlags.
8955llvm::ScalableVectorType *
8956CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8957 switch (TypeFlags.getEltType()) {
8958 default:
8959 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8959)
;
8960
8961 case SVETypeFlags::EltTyInt8:
8962 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8963 case SVETypeFlags::EltTyInt16:
8964 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8965 case SVETypeFlags::EltTyInt32:
8966 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8967 case SVETypeFlags::EltTyInt64:
8968 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8969
8970 case SVETypeFlags::EltTyFloat16:
8971 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8972 case SVETypeFlags::EltTyBFloat16:
8973 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8974 case SVETypeFlags::EltTyFloat32:
8975 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8976 case SVETypeFlags::EltTyFloat64:
8977 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8978
8979 case SVETypeFlags::EltTyBool8:
8980 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8981 case SVETypeFlags::EltTyBool16:
8982 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8983 case SVETypeFlags::EltTyBool32:
8984 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8985 case SVETypeFlags::EltTyBool64:
8986 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8987 }
8988}
8989
8990llvm::Value *
8991CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8992 Function *Ptrue =
8993 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8994 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8995}
8996
8997constexpr unsigned SVEBitsPerBlock = 128;
8998
8999static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
9000 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
9001 return llvm::ScalableVectorType::get(EltTy, NumElts);
9002}
9003
9004// Reinterpret the input predicate so that it can be used to correctly isolate
9005// the elements of the specified datatype.
9006Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
9007 llvm::ScalableVectorType *VTy) {
9008 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
9009 if (Pred->getType() == RTy)
9010 return Pred;
9011
9012 unsigned IntID;
9013 llvm::Type *IntrinsicTy;
9014 switch (VTy->getMinNumElements()) {
9015 default:
9016 llvm_unreachable("unsupported element count!")::llvm::llvm_unreachable_internal("unsupported element count!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 9016)
;
9017 case 2:
9018 case 4:
9019 case 8:
9020 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
9021 IntrinsicTy = RTy;
9022 break;
9023 case 16:
9024 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
9025 IntrinsicTy = Pred->getType();
9026 break;
9027 }
9028
9029 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
9030 Value *C = Builder.CreateCall(F, Pred);
9031 assert(C->getType() == RTy && "Unexpected return type!")(static_cast <bool> (C->getType() == RTy && "Unexpected return type!"
) ? void (0) : __assert_fail ("C->getType() == RTy && \"Unexpected return type!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9031, __extension__ __PRETTY_FUNCTION__
))
;
9032 return C;
9033}
9034
9035Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
9036 SmallVectorImpl<Value *> &Ops,
9037 unsigned IntID) {
9038 auto *ResultTy = getSVEType(TypeFlags);
9039 auto *OverloadedTy =
9040 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
9041
9042 // At the ACLE level there's only one predicate type, svbool_t, which is
9043 // mapped to <n x 16 x i1>. However, this might be incompatible with the
9044 // actual type being loaded. For example, when loading doubles (i64) the
9045 // predicated should be <n x 2 x i1> instead. At the IR level the type of
9046 // the predicate and the data being loaded must match. Cast accordingly.
9047 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9048
9049 Function *F = nullptr;
9050 if (Ops[1]->getType()->isVectorTy())
9051 // This is the "vector base, scalar offset" case. In order to uniquely
9052 // map this built-in to an LLVM IR intrinsic, we need both the return type
9053 // and the type of the vector base.
9054 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
9055 else
9056 // This is the "scalar base, vector offset case". The type of the offset
9057 // is encoded in the name of the intrinsic. We only need to specify the
9058 // return type in order to uniquely map this built-in to an LLVM IR
9059 // intrinsic.
9060 F = CGM.getIntrinsic(IntID, OverloadedTy);
9061
9062 // Pass 0 when the offset is missing. This can only be applied when using
9063 // the "vector base" addressing mode for which ACLE allows no offset. The
9064 // corresponding LLVM IR always requires an offset.
9065 if (Ops.size() == 2) {
9066 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9066, __extension__ __PRETTY_FUNCTION__
))
;
9067 Ops.push_back(ConstantInt::get(Int64Ty, 0));
9068 }
9069
9070 // For "vector base, scalar index" scale the index so that it becomes a
9071 // scalar offset.
9072 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
9073 unsigned BytesPerElt =
9074 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9075 Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9076 }
9077
9078 Value *Call = Builder.CreateCall(F, Ops);
9079
9080 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
9081 // other cases it's folded into a nop.
9082 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
9083 : Builder.CreateSExt(Call, ResultTy);
9084}
9085
9086Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
9087 SmallVectorImpl<Value *> &Ops,
9088 unsigned IntID) {
9089 auto *SrcDataTy = getSVEType(TypeFlags);
9090 auto *OverloadedTy =
9091 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
9092
9093 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
9094 // it's the first argument. Move it accordingly.
9095 Ops.insert(Ops.begin(), Ops.pop_back_val());
9096
9097 Function *F = nullptr;
9098 if (Ops[2]->getType()->isVectorTy())
9099 // This is the "vector base, scalar offset" case. In order to uniquely
9100 // map this built-in to an LLVM IR intrinsic, we need both the return type
9101 // and the type of the vector base.
9102 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
9103 else
9104 // This is the "scalar base, vector offset case". The type of the offset
9105 // is encoded in the name of the intrinsic. We only need to specify the
9106 // return type in order to uniquely map this built-in to an LLVM IR
9107 // intrinsic.
9108 F = CGM.getIntrinsic(IntID, OverloadedTy);
9109
9110 // Pass 0 when the offset is missing. This can only be applied when using
9111 // the "vector base" addressing mode for which ACLE allows no offset. The
9112 // corresponding LLVM IR always requires an offset.
9113 if (Ops.size() == 3) {
9114 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9114, __extension__ __PRETTY_FUNCTION__
))
;
9115 Ops.push_back(ConstantInt::get(Int64Ty, 0));
9116 }
9117
9118 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9119 // folded into a nop.
9120 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
9121
9122 // At the ACLE level there's only one predicate type, svbool_t, which is
9123 // mapped to <n x 16 x i1>. However, this might be incompatible with the
9124 // actual type being stored. For example, when storing doubles (i64) the
9125 // predicated should be <n x 2 x i1> instead. At the IR level the type of
9126 // the predicate and the data being stored must match. Cast accordingly.
9127 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
9128
9129 // For "vector base, scalar index" scale the index so that it becomes a
9130 // scalar offset.
9131 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
9132 unsigned BytesPerElt =
9133 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9134 Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt));
9135 }
9136
9137 return Builder.CreateCall(F, Ops);
9138}
9139
9140Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
9141 SmallVectorImpl<Value *> &Ops,
9142 unsigned IntID) {
9143 // The gather prefetches are overloaded on the vector input - this can either
9144 // be the vector of base addresses or vector of offsets.
9145 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
9146 if (!OverloadedTy)
9147 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
9148
9149 // Cast the predicate from svbool_t to the right number of elements.
9150 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9151
9152 // vector + imm addressing modes
9153 if (Ops[1]->getType()->isVectorTy()) {
9154 if (Ops.size() == 3) {
9155 // Pass 0 for 'vector+imm' when the index is omitted.
9156 Ops.push_back(ConstantInt::get(Int64Ty, 0));
9157
9158 // The sv_prfop is the last operand in the builtin and IR intrinsic.
9159 std::swap(Ops[2], Ops[3]);
9160 } else {
9161 // Index needs to be passed as scaled offset.
9162 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9163 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
9164 if (BytesPerElt > 1)
9165 Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9166 }
9167 }
9168
9169 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
9170 return Builder.CreateCall(F, Ops);
9171}
9172
9173Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
9174 SmallVectorImpl<Value*> &Ops,
9175 unsigned IntID) {
9176 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9177 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
9178 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
9179
9180 unsigned N;
9181 switch (IntID) {
9182 case Intrinsic::aarch64_sve_ld2_sret:
9183 N = 2;
9184 break;
9185 case Intrinsic::aarch64_sve_ld3_sret:
9186 N = 3;
9187 break;
9188 case Intrinsic::aarch64_sve_ld4_sret:
9189 N = 4;
9190 break;
9191 default:
9192 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 9192)
;
9193 }
9194 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
9195 VTy->getElementCount() * N);
9196
9197 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
9198 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
9199
9200 // Does the load have an offset?
9201 if (Ops.size() > 2)
9202 BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
9203
9204 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
9205 Function *F = CGM.getIntrinsic(IntID, {VTy});
9206 Value *Call = Builder.CreateCall(F, {Predicate, BasePtr});
9207 unsigned MinElts = VTy->getMinNumElements();
9208 Value *Ret = llvm::PoisonValue::get(RetTy);
9209 for (unsigned I = 0; I < N; I++) {
9210 Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9211 Value *SRet = Builder.CreateExtractValue(Call, I);
9212 Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx);
9213 }
9214 return Ret;
9215}
9216
9217Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
9218 SmallVectorImpl<Value*> &Ops,
9219 unsigned IntID) {
9220 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9221 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
9222 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
9223
9224 unsigned N;
9225 switch (IntID) {
9226 case Intrinsic::aarch64_sve_st2:
9227 N = 2;
9228 break;
9229 case Intrinsic::aarch64_sve_st3:
9230 N = 3;
9231 break;
9232 case Intrinsic::aarch64_sve_st4:
9233 N = 4;
9234 break;
9235 default:
9236 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 9236)
;
9237 }
9238
9239 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
9240 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
9241
9242 // Does the store have an offset?
9243 if (Ops.size() > 3)
9244 BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
9245
9246 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
9247 Value *Val = Ops.back();
9248
9249 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
9250 // need to break up the tuple vector.
9251 SmallVector<llvm::Value*, 5> Operands;
9252 unsigned MinElts = VTy->getElementCount().getKnownMinValue();
9253 for (unsigned I = 0; I < N; ++I) {
9254 Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9255 Operands.push_back(Builder.CreateExtractVector(VTy, Val, Idx));
9256 }
9257 Operands.append({Predicate, BasePtr});
9258
9259 Function *F = CGM.getIntrinsic(IntID, { VTy });
9260 return Builder.CreateCall(F, Operands);
9261}
9262
9263// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
9264// svpmullt_pair intrinsics, with the exception that their results are bitcast
9265// to a wider type.
9266Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
9267 SmallVectorImpl<Value *> &Ops,
9268 unsigned BuiltinID) {
9269 // Splat scalar operand to vector (intrinsics with _n infix)
9270 if (TypeFlags.hasSplatOperand()) {
9271 unsigned OpNo = TypeFlags.getSplatOperand();
9272 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9273 }
9274
9275 // The pair-wise function has a narrower overloaded type.
9276 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
9277 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
9278
9279 // Now bitcast to the wider result type.
9280 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
9281 return EmitSVEReinterpret(Call, Ty);
9282}
9283
9284Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
9285 ArrayRef<Value *> Ops, unsigned BuiltinID) {
9286 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
9287 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
9288 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
9289}
9290
9291Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
9292 SmallVectorImpl<Value *> &Ops,
9293 unsigned BuiltinID) {
9294 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9295 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
9296 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9297
9298 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9299 Value *BasePtr = Ops[1];
9300
9301 // Implement the index operand if not omitted.
9302 if (Ops.size() > 3) {
9303 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
9304 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9305 }
9306
9307 // Prefetch intriniscs always expect an i8*
9308 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
9309 Value *PrfOp = Ops.back();
9310
9311 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
9312 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
9313}
9314
9315Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
9316 llvm::Type *ReturnTy,
9317 SmallVectorImpl<Value *> &Ops,
9318 unsigned BuiltinID,
9319 bool IsZExtReturn) {
9320 QualType LangPTy = E->getArg(1)->getType();
9321 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9322 LangPTy->castAs<PointerType>()->getPointeeType());
9323
9324 // The vector type that is returned may be different from the
9325 // eventual type loaded from memory.
9326 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
9327 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9328
9329 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9330 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9331
9332 // Does the load have an offset?
9333 if (Ops.size() > 2)
9334 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9335
9336 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9337 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9338 auto *Load =
9339 cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
9340 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9341 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
9342
9343 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
9344 : Builder.CreateSExt(Load, VectorTy);
9345}
9346
9347Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
9348 SmallVectorImpl<Value *> &Ops,
9349 unsigned BuiltinID) {
9350 QualType LangPTy = E->getArg(1)->getType();
9351 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9352 LangPTy->castAs<PointerType>()->getPointeeType());
9353
9354 // The vector type that is stored may be different from the
9355 // eventual type stored to memory.
9356 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9357 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9358
9359 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9360 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9361
9362 // Does the store have an offset?
9363 if (Ops.size() == 4)
9364 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9365
9366 // Last value is always the data
9367 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
9368
9369 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9370 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9371 auto *Store =
9372 cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9373 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9374 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9375 return Store;
9376}
9377
9378// Limit the usage of scalable llvm IR generated by the ACLE by using the
9379// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
9380Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
9381 return Builder.CreateVectorSplat(
9382 cast<llvm::VectorType>(Ty)->getElementCount(), Scalar);
9383}
9384
9385Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
9386 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
9387}
9388
9389Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
9390 // FIXME: For big endian this needs an additional REV, or needs a separate
9391 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
9392 // instruction is defined as 'bitwise' equivalent from memory point of
9393 // view (when storing/reloading), whereas the svreinterpret builtin
9394 // implements bitwise equivalent cast from register point of view.
9395 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
9396 return Builder.CreateBitCast(Val, Ty);
9397}
9398
9399static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9400 SmallVectorImpl<Value *> &Ops) {
9401 auto *SplatZero = Constant::getNullValue(Ty);
9402 Ops.insert(Ops.begin(), SplatZero);
9403}
9404
9405static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9406 SmallVectorImpl<Value *> &Ops) {
9407 auto *SplatUndef = UndefValue::get(Ty);
9408 Ops.insert(Ops.begin(), SplatUndef);
9409}
9410
9411SmallVector<llvm::Type *, 2>
9412CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
9413 llvm::Type *ResultType,
9414 ArrayRef<Value *> Ops) {
9415 if (TypeFlags.isOverloadNone())
9416 return {};
9417
9418 llvm::Type *DefaultType = getSVEType(TypeFlags);
9419
9420 if (TypeFlags.isOverloadWhile())
9421 return {DefaultType, Ops[1]->getType()};
9422
9423 if (TypeFlags.isOverloadWhileRW())
9424 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
9425
9426 if (TypeFlags.isOverloadCvt())
9427 return {Ops[0]->getType(), Ops.back()->getType()};
9428
9429 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads")(static_cast <bool> (TypeFlags.isOverloadDefault() &&
"Unexpected value for overloads") ? void (0) : __assert_fail
("TypeFlags.isOverloadDefault() && \"Unexpected value for overloads\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9429, __extension__ __PRETTY_FUNCTION__
))
;
9430 return {DefaultType};
9431}
9432
9433Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
9434 llvm::Type *Ty,
9435 ArrayRef<Value *> Ops) {
9436 assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) &&(static_cast <bool> ((TypeFlags.isTupleSet() || TypeFlags
.isTupleGet()) && "Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()"
) ? void (0) : __assert_fail ("(TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) && \"Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9437, __extension__ __PRETTY_FUNCTION__
))
9437 "Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()")(static_cast <bool> ((TypeFlags.isTupleSet() || TypeFlags
.isTupleGet()) && "Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()"
) ? void (0) : __assert_fail ("(TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) && \"Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9437, __extension__ __PRETTY_FUNCTION__
))
;
9438
9439 unsigned I = cast<ConstantInt>(Ops[1])->getSExtValue();
9440 auto *SingleVecTy = dyn_cast<llvm::ScalableVectorType>(
9441 TypeFlags.isTupleSet() ? Ops[2]->getType() : Ty);
9442 Value *Idx = ConstantInt::get(CGM.Int64Ty,
9443 I * SingleVecTy->getMinNumElements());
9444
9445 if (TypeFlags.isTupleSet())
9446 return Builder.CreateInsertVector(Ty, Ops[0], Ops[2], Idx);
9447 return Builder.CreateExtractVector(Ty, Ops[0], Idx);
9448}
9449
9450Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
9451 llvm::Type *Ty,
9452 ArrayRef<Value *> Ops) {
9453 assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate")(static_cast <bool> (TypeFlags.isTupleCreate() &&
"Expects TypleFlag isTupleCreate") ? void (0) : __assert_fail
("TypeFlags.isTupleCreate() && \"Expects TypleFlag isTupleCreate\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9453, __extension__ __PRETTY_FUNCTION__
))
;
9454
9455 auto *SrcTy = dyn_cast<llvm::ScalableVectorType>(Ops[0]->getType());
9456 unsigned MinElts = SrcTy->getMinNumElements();
9457 Value *Call = llvm::PoisonValue::get(Ty);
9458 for (unsigned I = 0; I < Ops.size(); I++) {
9459 Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9460 Call = Builder.CreateInsertVector(Ty, Call, Ops[I], Idx);
9461 }
9462
9463 return Call;
9464}
9465
9466Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
9467 const CallExpr *E) {
9468 // Find out if any arguments are required to be integer constant expressions.
9469 unsigned ICEArguments = 0;
9470 ASTContext::GetBuiltinTypeError Error;
9471 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9472 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9472, __extension__ __PRETTY_FUNCTION__
))
;
9473
9474 llvm::Type *Ty = ConvertType(E->getType());
9475 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
9476 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
9477 Value *Val = EmitScalarExpr(E->getArg(0));
9478 return EmitSVEReinterpret(Val, Ty);
9479 }
9480
9481 llvm::SmallVector<Value *, 4> Ops;
9482 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9483 if ((ICEArguments & (1 << i)) == 0)
9484 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9485 else {
9486 // If this is required to be a constant, constant fold it so that we know
9487 // that the generated intrinsic gets a ConstantInt.
9488 std::optional<llvm::APSInt> Result =
9489 E->getArg(i)->getIntegerConstantExpr(getContext());
9490 assert(Result && "Expected argument to be a constant")(static_cast <bool> (Result && "Expected argument to be a constant"
) ? void (0) : __assert_fail ("Result && \"Expected argument to be a constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9490, __extension__ __PRETTY_FUNCTION__
))
;
9491
9492 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
9493 // truncate because the immediate has been range checked and no valid
9494 // immediate requires more than a handful of bits.
9495 *Result = Result->extOrTrunc(32);
9496 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
9497 }
9498 }
9499
9500 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
9501 AArch64SVEIntrinsicsProvenSorted);
9502 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9503 if (TypeFlags.isLoad())
9504 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
9505 TypeFlags.isZExtReturn());
9506 else if (TypeFlags.isStore())
9507 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
9508 else if (TypeFlags.isGatherLoad())
9509 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9510 else if (TypeFlags.isScatterStore())
9511 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9512 else if (TypeFlags.isPrefetch())
9513 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9514 else if (TypeFlags.isGatherPrefetch())
9515 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9516 else if (TypeFlags.isStructLoad())
9517 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9518 else if (TypeFlags.isStructStore())
9519 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9520 else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet())
9521 return EmitSVETupleSetOrGet(TypeFlags, Ty, Ops);
9522 else if (TypeFlags.isTupleCreate())
9523 return EmitSVETupleCreate(TypeFlags, Ty, Ops);
9524 else if (TypeFlags.isUndef())
9525 return UndefValue::get(Ty);
9526 else if (Builtin->LLVMIntrinsic != 0) {
9527 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9528 InsertExplicitZeroOperand(Builder, Ty, Ops);
9529
9530 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9531 InsertExplicitUndefOperand(Builder, Ty, Ops);
9532
9533 // Some ACLE builtins leave out the argument to specify the predicate
9534 // pattern, which is expected to be expanded to an SV_ALL pattern.
9535 if (TypeFlags.isAppendSVALL())
9536 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9537 if (TypeFlags.isInsertOp1SVALL())
9538 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9539
9540 // Predicates must match the main datatype.
9541 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9542 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9543 if (PredTy->getElementType()->isIntegerTy(1))
9544 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9545
9546 // Splat scalar operand to vector (intrinsics with _n infix)
9547 if (TypeFlags.hasSplatOperand()) {
9548 unsigned OpNo = TypeFlags.getSplatOperand();
9549 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9550 }
9551
9552 if (TypeFlags.isReverseCompare())
9553 std::swap(Ops[1], Ops[2]);
9554 else if (TypeFlags.isReverseUSDOT())
9555 std::swap(Ops[1], Ops[2]);
9556 else if (TypeFlags.isReverseMergeAnyBinOp() &&
9557 TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
9558 std::swap(Ops[1], Ops[2]);
9559 else if (TypeFlags.isReverseMergeAnyAccOp() &&
9560 TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
9561 std::swap(Ops[1], Ops[3]);
9562
9563 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9564 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9565 llvm::Type *OpndTy = Ops[1]->getType();
9566 auto *SplatZero = Constant::getNullValue(OpndTy);
9567 Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero);
9568 }
9569
9570 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9571 getSVEOverloadTypes(TypeFlags, Ty, Ops));
9572 Value *Call = Builder.CreateCall(F, Ops);
9573
9574 // Predicate results must be converted to svbool_t.
9575 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9576 if (PredTy->getScalarType()->isIntegerTy(1))
9577 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9578
9579 return Call;
9580 }
9581
9582 switch (BuiltinID) {
9583 default:
9584 return nullptr;
9585
9586 case SVE::BI__builtin_sve_svmov_b_z: {
9587 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9588 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9589 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9590 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9591 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9592 }
9593
9594 case SVE::BI__builtin_sve_svnot_b_z: {
9595 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9596 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9597 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9598 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9599 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9600 }
9601
9602 case SVE::BI__builtin_sve_svmovlb_u16:
9603 case SVE::BI__builtin_sve_svmovlb_u32:
9604 case SVE::BI__builtin_sve_svmovlb_u64:
9605 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9606
9607 case SVE::BI__builtin_sve_svmovlb_s16:
9608 case SVE::BI__builtin_sve_svmovlb_s32:
9609 case SVE::BI__builtin_sve_svmovlb_s64:
9610 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9611
9612 case SVE::BI__builtin_sve_svmovlt_u16:
9613 case SVE::BI__builtin_sve_svmovlt_u32:
9614 case SVE::BI__builtin_sve_svmovlt_u64:
9615 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9616
9617 case SVE::BI__builtin_sve_svmovlt_s16:
9618 case SVE::BI__builtin_sve_svmovlt_s32:
9619 case SVE::BI__builtin_sve_svmovlt_s64:
9620 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9621
9622 case SVE::BI__builtin_sve_svpmullt_u16:
9623 case SVE::BI__builtin_sve_svpmullt_u64:
9624 case SVE::BI__builtin_sve_svpmullt_n_u16:
9625 case SVE::BI__builtin_sve_svpmullt_n_u64:
9626 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9627
9628 case SVE::BI__builtin_sve_svpmullb_u16:
9629 case SVE::BI__builtin_sve_svpmullb_u64:
9630 case SVE::BI__builtin_sve_svpmullb_n_u16:
9631 case SVE::BI__builtin_sve_svpmullb_n_u64:
9632 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9633
9634 case SVE::BI__builtin_sve_svdup_n_b8:
9635 case SVE::BI__builtin_sve_svdup_n_b16:
9636 case SVE::BI__builtin_sve_svdup_n_b32:
9637 case SVE::BI__builtin_sve_svdup_n_b64: {
9638 Value *CmpNE =
9639 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9640 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9641 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9642 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9643 }
9644
9645 case SVE::BI__builtin_sve_svdupq_n_b8:
9646 case SVE::BI__builtin_sve_svdupq_n_b16:
9647 case SVE::BI__builtin_sve_svdupq_n_b32:
9648 case SVE::BI__builtin_sve_svdupq_n_b64:
9649 case SVE::BI__builtin_sve_svdupq_n_u8:
9650 case SVE::BI__builtin_sve_svdupq_n_s8:
9651 case SVE::BI__builtin_sve_svdupq_n_u64:
9652 case SVE::BI__builtin_sve_svdupq_n_f64:
9653 case SVE::BI__builtin_sve_svdupq_n_s64:
9654 case SVE::BI__builtin_sve_svdupq_n_u16:
9655 case SVE::BI__builtin_sve_svdupq_n_f16:
9656 case SVE::BI__builtin_sve_svdupq_n_bf16:
9657 case SVE::BI__builtin_sve_svdupq_n_s16:
9658 case SVE::BI__builtin_sve_svdupq_n_u32:
9659 case SVE::BI__builtin_sve_svdupq_n_f32:
9660 case SVE::BI__builtin_sve_svdupq_n_s32: {
9661 // These builtins are implemented by storing each element to an array and using
9662 // ld1rq to materialize a vector.
9663 unsigned NumOpnds = Ops.size();
9664
9665 bool IsBoolTy =
9666 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9667
9668 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9669 // so that the compare can use the width that is natural for the expected
9670 // number of predicate lanes.
9671 llvm::Type *EltTy = Ops[0]->getType();
9672 if (IsBoolTy)
9673 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9674
9675 SmallVector<llvm::Value *, 16> VecOps;
9676 for (unsigned I = 0; I < NumOpnds; ++I)
9677 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9678 Value *Vec = BuildVector(VecOps);
9679
9680 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9681 Value *InsertSubVec = Builder.CreateInsertVector(
9682 OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9683
9684 Function *F =
9685 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9686 Value *DupQLane =
9687 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9688
9689 if (!IsBoolTy)
9690 return DupQLane;
9691
9692 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9693 Value *Pred = EmitSVEAllTruePred(TypeFlags);
9694
9695 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9696 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9697 : Intrinsic::aarch64_sve_cmpne_wide,
9698 OverloadedTy);
9699 Value *Call = Builder.CreateCall(
9700 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9701 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9702 }
9703
9704 case SVE::BI__builtin_sve_svpfalse_b:
9705 return ConstantInt::getFalse(Ty);
9706
9707 case SVE::BI__builtin_sve_svlen_bf16:
9708 case SVE::BI__builtin_sve_svlen_f16:
9709 case SVE::BI__builtin_sve_svlen_f32:
9710 case SVE::BI__builtin_sve_svlen_f64:
9711 case SVE::BI__builtin_sve_svlen_s8:
9712 case SVE::BI__builtin_sve_svlen_s16:
9713 case SVE::BI__builtin_sve_svlen_s32:
9714 case SVE::BI__builtin_sve_svlen_s64:
9715 case SVE::BI__builtin_sve_svlen_u8:
9716 case SVE::BI__builtin_sve_svlen_u16:
9717 case SVE::BI__builtin_sve_svlen_u32:
9718 case SVE::BI__builtin_sve_svlen_u64: {
9719 SVETypeFlags TF(Builtin->TypeModifier);
9720 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9721 auto *NumEls =
9722 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9723
9724 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9725 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9726 }
9727
9728 case SVE::BI__builtin_sve_svtbl2_u8:
9729 case SVE::BI__builtin_sve_svtbl2_s8:
9730 case SVE::BI__builtin_sve_svtbl2_u16:
9731 case SVE::BI__builtin_sve_svtbl2_s16:
9732 case SVE::BI__builtin_sve_svtbl2_u32:
9733 case SVE::BI__builtin_sve_svtbl2_s32:
9734 case SVE::BI__builtin_sve_svtbl2_u64:
9735 case SVE::BI__builtin_sve_svtbl2_s64:
9736 case SVE::BI__builtin_sve_svtbl2_f16:
9737 case SVE::BI__builtin_sve_svtbl2_bf16:
9738 case SVE::BI__builtin_sve_svtbl2_f32:
9739 case SVE::BI__builtin_sve_svtbl2_f64: {
9740 SVETypeFlags TF(Builtin->TypeModifier);
9741 auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF));
9742 Value *V0 = Builder.CreateExtractVector(VTy, Ops[0],
9743 ConstantInt::get(CGM.Int64Ty, 0));
9744 unsigned MinElts = VTy->getMinNumElements();
9745 Value *V1 = Builder.CreateExtractVector(
9746 VTy, Ops[0], ConstantInt::get(CGM.Int64Ty, MinElts));
9747 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9748 return Builder.CreateCall(F, {V0, V1, Ops[1]});
9749 }
9750
9751 case SVE::BI__builtin_sve_svset_neonq_s8:
9752 case SVE::BI__builtin_sve_svset_neonq_s16:
9753 case SVE::BI__builtin_sve_svset_neonq_s32:
9754 case SVE::BI__builtin_sve_svset_neonq_s64:
9755 case SVE::BI__builtin_sve_svset_neonq_u8:
9756 case SVE::BI__builtin_sve_svset_neonq_u16:
9757 case SVE::BI__builtin_sve_svset_neonq_u32:
9758 case SVE::BI__builtin_sve_svset_neonq_u64:
9759 case SVE::BI__builtin_sve_svset_neonq_f16:
9760 case SVE::BI__builtin_sve_svset_neonq_f32:
9761 case SVE::BI__builtin_sve_svset_neonq_f64:
9762 case SVE::BI__builtin_sve_svset_neonq_bf16: {
9763 return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
9764 }
9765
9766 case SVE::BI__builtin_sve_svget_neonq_s8:
9767 case SVE::BI__builtin_sve_svget_neonq_s16:
9768 case SVE::BI__builtin_sve_svget_neonq_s32:
9769 case SVE::BI__builtin_sve_svget_neonq_s64:
9770 case SVE::BI__builtin_sve_svget_neonq_u8:
9771 case SVE::BI__builtin_sve_svget_neonq_u16:
9772 case SVE::BI__builtin_sve_svget_neonq_u32:
9773 case SVE::BI__builtin_sve_svget_neonq_u64:
9774 case SVE::BI__builtin_sve_svget_neonq_f16:
9775 case SVE::BI__builtin_sve_svget_neonq_f32:
9776 case SVE::BI__builtin_sve_svget_neonq_f64:
9777 case SVE::BI__builtin_sve_svget_neonq_bf16: {
9778 return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
9779 }
9780
9781 case SVE::BI__builtin_sve_svdup_neonq_s8:
9782 case SVE::BI__builtin_sve_svdup_neonq_s16:
9783 case SVE::BI__builtin_sve_svdup_neonq_s32:
9784 case SVE::BI__builtin_sve_svdup_neonq_s64:
9785 case SVE::BI__builtin_sve_svdup_neonq_u8:
9786 case SVE::BI__builtin_sve_svdup_neonq_u16:
9787 case SVE::BI__builtin_sve_svdup_neonq_u32:
9788 case SVE::BI__builtin_sve_svdup_neonq_u64:
9789 case SVE::BI__builtin_sve_svdup_neonq_f16:
9790 case SVE::BI__builtin_sve_svdup_neonq_f32:
9791 case SVE::BI__builtin_sve_svdup_neonq_f64:
9792 case SVE::BI__builtin_sve_svdup_neonq_bf16: {
9793 Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0],
9794 Builder.getInt64(0));
9795 return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
9796 {Insert, Builder.getInt64(0)});
9797 }
9798 }
9799
9800 /// Should not happen
9801 return nullptr;
9802}
9803
9804Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9805 const CallExpr *E,
9806 llvm::Triple::ArchType Arch) {
9807 if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
9808 BuiltinID <= clang::AArch64::LastSVEBuiltin)
9809 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9810
9811 unsigned HintID = static_cast<unsigned>(-1);
9812 switch (BuiltinID) {
9813 default: break;
9814 case clang::AArch64::BI__builtin_arm_nop:
9815 HintID = 0;
9816 break;
9817 case clang::AArch64::BI__builtin_arm_yield:
9818 case clang::AArch64::BI__yield:
9819 HintID = 1;
9820 break;
9821 case clang::AArch64::BI__builtin_arm_wfe:
9822 case clang::AArch64::BI__wfe:
9823 HintID = 2;
9824 break;
9825 case clang::AArch64::BI__builtin_arm_wfi:
9826 case clang::AArch64::BI__wfi:
9827 HintID = 3;
9828 break;
9829 case clang::AArch64::BI__builtin_arm_sev:
9830 case clang::AArch64::BI__sev:
9831 HintID = 4;
9832 break;
9833 case clang::AArch64::BI__builtin_arm_sevl:
9834 case clang::AArch64::BI__sevl:
9835 HintID = 5;
9836 break;
9837 }
9838
9839 if (HintID != static_cast<unsigned>(-1)) {
9840 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9841 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9842 }
9843
9844 if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
9845 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9846, __extension__ __PRETTY_FUNCTION__
))
9846 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9846, __extension__ __PRETTY_FUNCTION__
))
;
9847 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9848 return Builder.CreateCall(
9849 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9850 }
9851 if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
9852 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9853, __extension__ __PRETTY_FUNCTION__
))
9853 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9853, __extension__ __PRETTY_FUNCTION__
))
;
9854 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9855 return Builder.CreateCall(
9856 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9857 }
9858
9859 if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
9860 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9861 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9862 "cls");
9863 }
9864 if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
9865 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9866 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9867 "cls");
9868 }
9869
9870 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf ||
9871 BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) {
9872 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9873 llvm::Type *Ty = Arg->getType();
9874 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9875 Arg, "frint32z");
9876 }
9877
9878 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf ||
9879 BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) {
9880 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9881 llvm::Type *Ty = Arg->getType();
9882 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9883 Arg, "frint64z");
9884 }
9885
9886 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf ||
9887 BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) {
9888 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9889 llvm::Type *Ty = Arg->getType();
9890 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9891 Arg, "frint32x");
9892 }
9893
9894 if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf ||
9895 BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) {
9896 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9897 llvm::Type *Ty = Arg->getType();
9898 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9899 Arg, "frint64x");
9900 }
9901
9902 if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
9903 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9904, __extension__ __PRETTY_FUNCTION__
))
9904 "__jcvt of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9904, __extension__ __PRETTY_FUNCTION__
))
;
9905 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9906 return Builder.CreateCall(
9907 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9908 }
9909
9910 if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
9911 BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
9912 BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
9913 BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
9914 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9915 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9916
9917 if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
9918 // Load from the address via an LLVM intrinsic, receiving a
9919 // tuple of 8 i64 words, and store each one to ValPtr.
9920 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9921 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9922 llvm::Value *ToRet;
9923 for (size_t i = 0; i < 8; i++) {
9924 llvm::Value *ValOffsetPtr =
9925 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9926 Address Addr =
9927 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9928 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9929 }
9930 return ToRet;
9931 } else {
9932 // Load 8 i64 words from ValPtr, and store them to the address
9933 // via an LLVM intrinsic.
9934 SmallVector<llvm::Value *, 9> Args;
9935 Args.push_back(MemAddr);
9936 for (size_t i = 0; i < 8; i++) {
9937 llvm::Value *ValOffsetPtr =
9938 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9939 Address Addr =
9940 Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9941 Args.push_back(Builder.CreateLoad(Addr));
9942 }
9943
9944 auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
9945 ? Intrinsic::aarch64_st64b
9946 : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
9947 ? Intrinsic::aarch64_st64bv
9948 : Intrinsic::aarch64_st64bv0);
9949 Function *F = CGM.getIntrinsic(Intr);
9950 return Builder.CreateCall(F, Args);
9951 }
9952 }
9953
9954 if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
9955 BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
9956
9957 auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
9958 ? Intrinsic::aarch64_rndr
9959 : Intrinsic::aarch64_rndrrs);
9960 Function *F = CGM.getIntrinsic(Intr);
9961 llvm::Value *Val = Builder.CreateCall(F);
9962 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9963 Value *Status = Builder.CreateExtractValue(Val, 1);
9964
9965 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9966 Builder.CreateStore(RandomValue, MemAddress);
9967 Status = Builder.CreateZExt(Status, Int32Ty);
9968 return Status;
9969 }
9970
9971 if (BuiltinID == clang::AArch64::BI__clear_cache) {
9972 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9972, __extension__ __PRETTY_FUNCTION__
))
;
9973 const FunctionDecl *FD = E->getDirectCallee();
9974 Value *Ops[2];
9975 for (unsigned i = 0; i < 2; i++)
9976 Ops[i] = EmitScalarExpr(E->getArg(i));
9977 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9978 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9979 StringRef Name = FD->getName();
9980 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9981 }
9982
9983 if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
9984 BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
9985 getContext().getTypeSize(E->getType()) == 128) {
9986 Function *F =
9987 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
9988 ? Intrinsic::aarch64_ldaxp
9989 : Intrinsic::aarch64_ldxp);
9990
9991 Value *LdPtr = EmitScalarExpr(E->getArg(0));
9992 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9993 "ldxp");
9994
9995 Value *Val0 = Builder.CreateExtractValue(Val, 1);
9996 Value *Val1 = Builder.CreateExtractValue(Val, 0);
9997 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9998 Val0 = Builder.CreateZExt(Val0, Int128Ty);
9999 Val1 = Builder.CreateZExt(Val1, Int128Ty);
10000
10001 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
10002 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
10003 Val = Builder.CreateOr(Val, Val1);
10004 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
10005 } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
10006 BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
10007 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
10008
10009 QualType Ty = E->getType();
10010 llvm::Type *RealResTy = ConvertType(Ty);
10011 llvm::Type *IntTy =
10012 llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
10013 llvm::Type *PtrTy = IntTy->getPointerTo();
10014 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
10015
10016 Function *F =
10017 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
10018 ? Intrinsic::aarch64_ldaxr
10019 : Intrinsic::aarch64_ldxr,
10020 PtrTy);
10021 CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
10022 Val->addParamAttr(
10023 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
10024
10025 if (RealResTy->isPointerTy())
10026 return Builder.CreateIntToPtr(Val, RealResTy);
10027
10028 llvm::Type *IntResTy = llvm::IntegerType::get(
10029 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
10030 return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
10031 RealResTy);
10032 }
10033
10034 if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
10035 BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
10036 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
10037 Function *F =
10038 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
10039 ? Intrinsic::aarch64_stlxp
10040 : Intrinsic::aarch64_stxp);
10041 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
10042
10043 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10044 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
10045
10046 Tmp = Builder.CreateElementBitCast(Tmp, STy);
10047 llvm::Value *Val = Builder.CreateLoad(Tmp);
10048
10049 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
10050 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
10051 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
10052 Int8PtrTy);
10053 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
10054 }
10055
10056 if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
10057 BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
10058 Value *StoreVal = EmitScalarExpr(E->getArg(0));
10059 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
10060
10061 QualType Ty = E->getArg(0)->getType();
10062 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
10063 getContext().getTypeSize(Ty));
10064 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
10065
10066 if (StoreVal->getType()->isPointerTy())
10067 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
10068 else {
10069 llvm::Type *IntTy = llvm::IntegerType::get(
10070 getLLVMContext(),
10071 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
10072 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
10073 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
10074 }
10075
10076 Function *F =
10077 CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
10078 ? Intrinsic::aarch64_stlxr
10079 : Intrinsic::aarch64_stxr,
10080 StoreAddr->getType());
10081 CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
10082 CI->addParamAttr(
10083 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
10084 return CI;
10085 }
10086
10087 if (BuiltinID == clang::AArch64::BI__getReg) {
10088 Expr::EvalResult Result;
10089 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
10090 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10090)
;
10091
10092 llvm::APSInt Value = Result.Val.getInt();
10093 LLVMContext &Context = CGM.getLLVMContext();
10094 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
10095
10096 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
10097 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10098 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10099
10100 llvm::Function *F =
10101 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10102 return Builder.CreateCall(F, Metadata);
10103 }
10104
10105 if (BuiltinID == clang::AArch64::BI__break) {
10106 Expr::EvalResult Result;
10107 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
10108 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10108)
;
10109
10110 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
10111 return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
10112 }
10113
10114 if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
10115 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
10116 return Builder.CreateCall(F);
10117 }
10118
10119 if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
10120 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
10121 llvm::SyncScope::SingleThread);
10122
10123 // CRC32
10124 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
10125 switch (BuiltinID) {
10126 case clang::AArch64::BI__builtin_arm_crc32b:
10127 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
10128 case clang::AArch64::BI__builtin_arm_crc32cb:
10129 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
10130 case clang::AArch64::BI__builtin_arm_crc32h:
10131 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
10132 case clang::AArch64::BI__builtin_arm_crc32ch:
10133 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
10134 case clang::AArch64::BI__builtin_arm_crc32w:
10135 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
10136 case clang::AArch64::BI__builtin_arm_crc32cw:
10137 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
10138 case clang::AArch64::BI__builtin_arm_crc32d:
10139 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
10140 case clang::AArch64::BI__builtin_arm_crc32cd:
10141 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
10142 }
10143
10144 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
10145 Value *Arg0 = EmitScalarExpr(E->getArg(0));
10146 Value *Arg1 = EmitScalarExpr(E->getArg(1));
10147 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
10148
10149 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
10150 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
10151
10152 return Builder.CreateCall(F, {Arg0, Arg1});
10153 }
10154
10155 // Memory Operations (MOPS)
10156 if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
10157 Value *Dst = EmitScalarExpr(E->getArg(0));
10158 Value *Val = EmitScalarExpr(E->getArg(1));
10159 Value *Size = EmitScalarExpr(E->getArg(2));
10160 Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
10161 Val = Builder.CreateTrunc(Val, Int8Ty);
10162 Size = Builder.CreateIntCast(Size, Int64Ty, false);
10163 return Builder.CreateCall(
10164 CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
10165 }
10166
10167 // Memory Tagging Extensions (MTE) Intrinsics
10168 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
10169 switch (BuiltinID) {
10170 case clang::AArch64::BI__builtin_arm_irg:
10171 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
10172 case clang::AArch64::BI__builtin_arm_addg:
10173 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
10174 case clang::AArch64::BI__builtin_arm_gmi:
10175 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
10176 case clang::AArch64::BI__builtin_arm_ldg:
10177 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
10178 case clang::AArch64::BI__builtin_arm_stg:
10179 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
10180 case clang::AArch64::BI__builtin_arm_subp:
10181 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
10182 }
10183
10184 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
10185 llvm::Type *T = ConvertType(E->getType());
10186
10187 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
10188 Value *Pointer = EmitScalarExpr(E->getArg(0));
10189 Value *Mask = EmitScalarExpr(E->getArg(1));
10190
10191 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
10192 Mask = Builder.CreateZExt(Mask, Int64Ty);
10193 Value *RV = Builder.CreateCall(
10194 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
10195 return Builder.CreatePointerCast(RV, T);
10196 }
10197 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
10198 Value *Pointer = EmitScalarExpr(E->getArg(0));
10199 Value *TagOffset = EmitScalarExpr(E->getArg(1));
10200
10201 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
10202 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
10203 Value *RV = Builder.CreateCall(
10204 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
10205 return Builder.CreatePointerCast(RV, T);
10206 }
10207 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
10208 Value *Pointer = EmitScalarExpr(E->getArg(0));
10209 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
10210
10211 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
10212 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
10213 return Builder.CreateCall(
10214 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
10215 }
10216 // Although it is possible to supply a different return
10217 // address (first arg) to this intrinsic, for now we set
10218 // return address same as input address.
10219 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
10220 Value *TagAddress = EmitScalarExpr(E->getArg(0));
10221 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
10222 Value *RV = Builder.CreateCall(
10223 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
10224 return Builder.CreatePointerCast(RV, T);
10225 }
10226 // Although it is possible to supply a different tag (to set)
10227 // to this intrinsic (as first arg), for now we supply
10228 // the tag that is in input address arg (common use case).
10229 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
10230 Value *TagAddress = EmitScalarExpr(E->getArg(0));
10231 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
10232 return Builder.CreateCall(
10233 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
10234 }
10235 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
10236 Value *PointerA = EmitScalarExpr(E->getArg(0));
10237 Value *PointerB = EmitScalarExpr(E->getArg(1));
10238 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
10239 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
10240 return Builder.CreateCall(
10241 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
10242 }
10243 }
10244
10245 if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
10246 BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
10247 BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
10248 BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
10249 BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
10250 BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
10251 BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 ||
10252 BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
10253
10254 SpecialRegisterAccessKind AccessKind = Write;
10255 if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
10256 BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
10257 BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
10258 BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
10259 AccessKind = VolatileRead;
10260
10261 bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
10262 BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
10263
10264 bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
10265 BuiltinID == clang::AArch64::BI__builtin_arm_wsr;
10266
10267 bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
10268 BuiltinID == clang::AArch64::BI__builtin_arm_wsr128;
10269
10270 llvm::Type *ValueType;
10271 llvm::Type *RegisterType = Int64Ty;
10272 if (Is32Bit) {
10273 ValueType = Int32Ty;
10274 } else if (Is128Bit) {
10275 llvm::Type *Int128Ty =
10276 llvm::IntegerType::getInt128Ty(CGM.getLLVMContext());
10277 ValueType = Int128Ty;
10278 RegisterType = Int128Ty;
10279 } else if (IsPointerBuiltin) {
10280 ValueType = VoidPtrTy;
10281 } else {
10282 ValueType = Int64Ty;
10283 };
10284
10285 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
10286 AccessKind);
10287 }
10288
10289 if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
10290 BuiltinID == clang::AArch64::BI_WriteStatusReg) {
10291 LLVMContext &Context = CGM.getLLVMContext();
10292
10293 unsigned SysReg =
10294 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
10295
10296 std::string SysRegStr;
10297 llvm::raw_string_ostream(SysRegStr) <<
10298 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
10299 ((SysReg >> 11) & 7) << ":" <<
10300 ((SysReg >> 7) & 15) << ":" <<
10301 ((SysReg >> 3) & 15) << ":" <<
10302 ( SysReg & 7);
10303
10304 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
10305 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10306 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10307
10308 llvm::Type *RegisterType = Int64Ty;
10309 llvm::Type *Types[] = { RegisterType };
10310
10311 if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
10312 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
10313
10314 return Builder.CreateCall(F, Metadata);
10315 }
10316
10317 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
10318 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
10319
10320 return Builder.CreateCall(F, { Metadata, ArgValue });
10321 }
10322
10323 if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
10324 llvm::Function *F =
10325 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
10326 return Builder.CreateCall(F);
10327 }
10328
10329 if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
10330 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
10331 return Builder.CreateCall(F);
10332 }
10333
10334 if (BuiltinID == clang::AArch64::BI__mulh ||
10335 BuiltinID == clang::AArch64::BI__umulh) {
10336 llvm::Type *ResType = ConvertType(E->getType());
10337 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
10338
10339 bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
10340 Value *LHS =
10341 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
10342 Value *RHS =
10343 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
10344
10345 Value *MulResult, *HigherBits;
10346 if (IsSigned) {
10347 MulResult = Builder.CreateNSWMul(LHS, RHS);
10348 HigherBits = Builder.CreateAShr(MulResult, 64);
10349 } else {
10350 MulResult = Builder.CreateNUWMul(LHS, RHS);
10351 HigherBits = Builder.CreateLShr(MulResult, 64);
10352 }
10353 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
10354
10355 return HigherBits;
10356 }
10357
10358 if (BuiltinID == AArch64::BI__writex18byte ||
10359 BuiltinID == AArch64::BI__writex18word ||
10360 BuiltinID == AArch64::BI__writex18dword ||
10361 BuiltinID == AArch64::BI__writex18qword) {
10362 llvm::Type *IntTy = ConvertType(E->getArg(1)->getType());
10363
10364 // Read x18 as i8*
10365 LLVMContext &Context = CGM.getLLVMContext();
10366 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
10367 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10368 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10369 llvm::Function *F =
10370 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10371 llvm::Value *X18 = Builder.CreateCall(F, Metadata);
10372 X18 = Builder.CreateIntToPtr(X18, llvm::PointerType::get(Int8Ty, 0));
10373
10374 // Store val at x18 + offset
10375 Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
10376 Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
10377 Ptr = Builder.CreatePointerCast(Ptr, llvm::PointerType::get(IntTy, 0));
10378 Value *Val = EmitScalarExpr(E->getArg(1));
10379 StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
10380 return Store;
10381 }
10382
10383 if (BuiltinID == AArch64::BI__readx18byte ||
10384 BuiltinID == AArch64::BI__readx18word ||
10385 BuiltinID == AArch64::BI__readx18dword ||
10386 BuiltinID == AArch64::BI__readx18qword) {
10387 llvm::Type *IntTy = ConvertType(E->getType());
10388
10389 // Read x18 as i8*
10390 LLVMContext &Context = CGM.getLLVMContext();
10391 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
10392 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10393 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10394 llvm::Function *F =
10395 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10396 llvm::Value *X18 = Builder.CreateCall(F, Metadata);
10397 X18 = Builder.CreateIntToPtr(X18, llvm::PointerType::get(Int8Ty, 0));
10398
10399 // Load x18 + offset
10400 Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
10401 Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
10402 Ptr = Builder.CreatePointerCast(Ptr, llvm::PointerType::get(IntTy, 0));
10403 LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
10404 return Load;
10405 }
10406
10407 // Handle MSVC intrinsics before argument evaluation to prevent double
10408 // evaluation.
10409 if (std::optional<MSVCIntrin> MsvcIntId =
10410 translateAarch64ToMsvcIntrin(BuiltinID))
10411 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
10412
10413 // Some intrinsics are equivalent - if they are use the base intrinsic ID.
10414 auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
10415 return P.first == BuiltinID;
10416 });
10417 if (It != end(NEONEquivalentIntrinsicMap))
10418 BuiltinID = It->second;
10419
10420 // Find out if any arguments are required to be integer constant
10421 // expressions.
10422 unsigned ICEArguments = 0;
10423 ASTContext::GetBuiltinTypeError Error;
10424 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10425 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10425, __extension__ __PRETTY_FUNCTION__
))
;
10426
10427 llvm::SmallVector<Value*, 4> Ops;
10428 Address PtrOp0 = Address::invalid();
10429 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
10430 if (i == 0) {
10431 switch (BuiltinID) {
10432 case NEON::BI__builtin_neon_vld1_v:
10433 case NEON::BI__builtin_neon_vld1q_v:
10434 case NEON::BI__builtin_neon_vld1_dup_v:
10435 case NEON::BI__builtin_neon_vld1q_dup_v:
10436 case NEON::BI__builtin_neon_vld1_lane_v:
10437 case NEON::BI__builtin_neon_vld1q_lane_v:
10438 case NEON::BI__builtin_neon_vst1_v:
10439 case NEON::BI__builtin_neon_vst1q_v:
10440 case NEON::BI__builtin_neon_vst1_lane_v:
10441 case NEON::BI__builtin_neon_vst1q_lane_v:
10442 // Get the alignment for the argument in addition to the value;
10443 // we'll use it later.
10444 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
10445 Ops.push_back(PtrOp0.getPointer());
10446 continue;
10447 }
10448 }
10449 if ((ICEArguments & (1 << i)) == 0) {
10450 Ops.push_back(EmitScalarExpr(E->getArg(i)));
10451 } else {
10452 // If this is required to be a constant, constant fold it so that we know
10453 // that the generated intrinsic gets a ConstantInt.
10454 Ops.push_back(llvm::ConstantInt::get(
10455 getLLVMContext(),
10456 *E->getArg(i)->getIntegerConstantExpr(getContext())));
10457 }
10458 }
10459
10460 auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap);
10461 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
10462 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
10463
10464 if (Builtin) {
10465 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
10466 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
10467 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10467, __extension__ __PRETTY_FUNCTION__
))
;
10468 return Result;
10469 }
10470
10471 const Expr *Arg = E->getArg(E->getNumArgs()-1);
10472 NeonTypeFlags Type(0);
10473 if (std::optional<llvm::APSInt> Result =
10474 Arg->getIntegerConstantExpr(getContext()))
10475 // Determine the type of this overloaded NEON intrinsic.
10476 Type = NeonTypeFlags(Result->getZExtValue());
10477
10478 bool usgn = Type.isUnsigned();
10479 bool quad = Type.isQuad();
10480
10481 // Handle non-overloaded intrinsics first.
10482 switch (BuiltinID) {
10483 default: break;
10484 case NEON::BI__builtin_neon_vabsh_f16:
10485 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10486 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
10487 case NEON::BI__builtin_neon_vaddq_p128: {
10488 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
10489 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10490 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10491 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10492 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
10493 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10494 return Builder.CreateBitCast(Ops[0], Int128Ty);
10495 }
10496 case NEON::BI__builtin_neon_vldrq_p128: {
10497 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10498 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
10499 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
10500 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
10501 CharUnits::fromQuantity(16));
10502 }
10503 case NEON::BI__builtin_neon_vstrq_p128: {
10504 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
10505 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
10506 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
10507 }
10508 case NEON::BI__builtin_neon_vcvts_f32_u32:
10509 case NEON::BI__builtin_neon_vcvtd_f64_u64:
10510 usgn = true;
10511 [[fallthrough]];
10512 case NEON::BI__builtin_neon_vcvts_f32_s32:
10513 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
10514 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10515 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
10516 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
10517 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
10518 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10519 if (usgn)
10520 return Builder.CreateUIToFP(Ops[0], FTy);
10521 return Builder.CreateSIToFP(Ops[0], FTy);
10522 }
10523 case NEON::BI__builtin_neon_vcvth_f16_u16:
10524 case NEON::BI__builtin_neon_vcvth_f16_u32:
10525 case NEON::BI__builtin_neon_vcvth_f16_u64:
10526 usgn = true;
10527 [[fallthrough]];
10528 case NEON::BI__builtin_neon_vcvth_f16_s16:
10529 case NEON::BI__builtin_neon_vcvth_f16_s32:
10530 case NEON::BI__builtin_neon_vcvth_f16_s64: {
10531 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10532 llvm::Type *FTy = HalfTy;
10533 llvm::Type *InTy;
10534 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
10535 InTy = Int64Ty;
10536 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
10537 InTy = Int32Ty;
10538 else
10539 InTy = Int16Ty;
10540 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10541 if (usgn)
10542 return Builder.CreateUIToFP(Ops[0], FTy);
10543 return Builder.CreateSIToFP(Ops[0], FTy);
10544 }
10545 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10546 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10547 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10548 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10549 case NEON::BI__builtin_neon_vcvth_u16_f16:
10550 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10551 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10552 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10553 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10554 case NEON::BI__builtin_neon_vcvth_s16_f16: {
10555 unsigned Int;
10556 llvm::Type* InTy = Int32Ty;
10557 llvm::Type* FTy = HalfTy;
10558 llvm::Type *Tys[2] = {InTy, FTy};
10559 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10560 switch (BuiltinID) {
10561 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10561)
;
10562 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10563 Int = Intrinsic::aarch64_neon_fcvtau; break;
10564 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10565 Int = Intrinsic::aarch64_neon_fcvtmu; break;
10566 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10567 Int = Intrinsic::aarch64_neon_fcvtnu; break;
10568 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10569 Int = Intrinsic::aarch64_neon_fcvtpu; break;
10570 case NEON::BI__builtin_neon_vcvth_u16_f16:
10571 Int = Intrinsic::aarch64_neon_fcvtzu; break;
10572 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10573 Int = Intrinsic::aarch64_neon_fcvtas; break;
10574 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10575 Int = Intrinsic::aarch64_neon_fcvtms; break;
10576 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10577 Int = Intrinsic::aarch64_neon_fcvtns; break;
10578 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10579 Int = Intrinsic::aarch64_neon_fcvtps; break;
10580 case NEON::BI__builtin_neon_vcvth_s16_f16:
10581 Int = Intrinsic::aarch64_neon_fcvtzs; break;
10582 }
10583 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
10584 return Builder.CreateTrunc(Ops[0], Int16Ty);
10585 }
10586 case NEON::BI__builtin_neon_vcaleh_f16:
10587 case NEON::BI__builtin_neon_vcalth_f16:
10588 case NEON::BI__builtin_neon_vcageh_f16:
10589 case NEON::BI__builtin_neon_vcagth_f16: {
10590 unsigned Int;
10591 llvm::Type* InTy = Int32Ty;
10592 llvm::Type* FTy = HalfTy;
10593 llvm::Type *Tys[2] = {InTy, FTy};
10594 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10595 switch (BuiltinID) {
10596 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10596)
;
10597 case NEON::BI__builtin_neon_vcageh_f16:
10598 Int = Intrinsic::aarch64_neon_facge; break;
10599 case NEON::BI__builtin_neon_vcagth_f16:
10600 Int = Intrinsic::aarch64_neon_facgt; break;
10601 case NEON::BI__builtin_neon_vcaleh_f16:
10602 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
10603 case NEON::BI__builtin_neon_vcalth_f16:
10604 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
10605 }
10606 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
10607 return Builder.CreateTrunc(Ops[0], Int16Ty);
10608 }
10609 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10610 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
10611 unsigned Int;
10612 llvm::Type* InTy = Int32Ty;
10613 llvm::Type* FTy = HalfTy;
10614 llvm::Type *Tys[2] = {InTy, FTy};
10615 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10616 switch (BuiltinID) {
10617 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10617)
;
10618 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10619 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
10620 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
10621 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
10622 }
10623 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10624 return Builder.CreateTrunc(Ops[0], Int16Ty);
10625 }
10626 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10627 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
10628 unsigned Int;
10629 llvm::Type* FTy = HalfTy;
10630 llvm::Type* InTy = Int32Ty;
10631 llvm::Type *Tys[2] = {FTy, InTy};
10632 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10633 switch (BuiltinID) {
10634 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10634)
;
10635 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10636 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
10637 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
10638 break;
10639 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
10640 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
10641 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
10642 break;
10643 }
10644 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10645 }
10646 case NEON::BI__builtin_neon_vpaddd_s64: {
10647 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
10648 Value *Vec = EmitScalarExpr(E->getArg(0));
10649 // The vector is v2f64, so make sure it's bitcast to that.
10650 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
10651 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10652 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10653 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10654 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10655 // Pairwise addition of a v2f64 into a scalar f64.
10656 return Builder.CreateAdd(Op0, Op1, "vpaddd");
10657 }
10658 case NEON::BI__builtin_neon_vpaddd_f64: {
10659 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10660 Value *Vec = EmitScalarExpr(E->getArg(0));
10661 // The vector is v2f64, so make sure it's bitcast to that.
10662 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10663 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10664 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10665 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10666 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10667 // Pairwise addition of a v2f64 into a scalar f64.
10668 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10669 }
10670 case NEON::BI__builtin_neon_vpadds_f32: {
10671 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10672 Value *Vec = EmitScalarExpr(E->getArg(0));
10673 // The vector is v2f32, so make sure it's bitcast to that.
10674 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10675 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10676 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10677 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10678 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10679 // Pairwise addition of a v2f32 into a scalar f32.
10680 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10681 }
10682 case NEON::BI__builtin_neon_vceqzd_s64:
10683 case NEON::BI__builtin_neon_vceqzd_f64:
10684 case NEON::BI__builtin_neon_vceqzs_f32:
10685 case NEON::BI__builtin_neon_vceqzh_f16:
10686 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10687 return EmitAArch64CompareBuiltinExpr(
10688 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10689 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10690 case NEON::BI__builtin_neon_vcgezd_s64:
10691 case NEON::BI__builtin_neon_vcgezd_f64:
10692 case NEON::BI__builtin_neon_vcgezs_f32:
10693 case NEON::BI__builtin_neon_vcgezh_f16:
10694 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10695 return EmitAArch64CompareBuiltinExpr(
10696 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10697 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10698 case NEON::BI__builtin_neon_vclezd_s64:
10699 case NEON::BI__builtin_neon_vclezd_f64:
10700 case NEON::BI__builtin_neon_vclezs_f32:
10701 case NEON::BI__builtin_neon_vclezh_f16:
10702 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10703 return EmitAArch64CompareBuiltinExpr(
10704 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10705 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10706 case NEON::BI__builtin_neon_vcgtzd_s64:
10707 case NEON::BI__builtin_neon_vcgtzd_f64:
10708 case NEON::BI__builtin_neon_vcgtzs_f32:
10709 case NEON::BI__builtin_neon_vcgtzh_f16:
10710 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10711 return EmitAArch64CompareBuiltinExpr(
10712 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10713 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10714 case NEON::BI__builtin_neon_vcltzd_s64:
10715 case NEON::BI__builtin_neon_vcltzd_f64:
10716 case NEON::BI__builtin_neon_vcltzs_f32:
10717 case NEON::BI__builtin_neon_vcltzh_f16:
10718 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10719 return EmitAArch64CompareBuiltinExpr(
10720 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10721 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10722
10723 case NEON::BI__builtin_neon_vceqzd_u64: {
10724 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10725 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10726 Ops[0] =
10727 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10728 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10729 }
10730 case NEON::BI__builtin_neon_vceqd_f64:
10731 case NEON::BI__builtin_neon_vcled_f64:
10732 case NEON::BI__builtin_neon_vcltd_f64:
10733 case NEON::BI__builtin_neon_vcged_f64:
10734 case NEON::BI__builtin_neon_vcgtd_f64: {
10735 llvm::CmpInst::Predicate P;
10736 switch (BuiltinID) {
10737 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10737)
;
10738 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10739 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10740 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10741 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10742 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10743 }
10744 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10745 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10746 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10747 if (P == llvm::FCmpInst::FCMP_OEQ)
10748 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10749 else
10750 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10751 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10752 }
10753 case NEON::BI__builtin_neon_vceqs_f32:
10754 case NEON::BI__builtin_neon_vcles_f32:
10755 case NEON::BI__builtin_neon_vclts_f32:
10756 case NEON::BI__builtin_neon_vcges_f32:
10757 case NEON::BI__builtin_neon_vcgts_f32: {
10758 llvm::CmpInst::Predicate P;
10759 switch (BuiltinID) {
10760 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10760)
;
10761 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10762 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10763 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10764 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10765 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10766 }
10767 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10768 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10769 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10770 if (P == llvm::FCmpInst::FCMP_OEQ)
10771 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10772 else
10773 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10774 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10775 }
10776 case NEON::BI__builtin_neon_vceqh_f16:
10777 case NEON::BI__builtin_neon_vcleh_f16:
10778 case NEON::BI__builtin_neon_vclth_f16:
10779 case NEON::BI__builtin_neon_vcgeh_f16:
10780 case NEON::BI__builtin_neon_vcgth_f16: {
10781 llvm::CmpInst::Predicate P;
10782 switch (BuiltinID) {
10783 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10783)
;
10784 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10785 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10786 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10787 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10788 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10789 }
10790 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10791 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10792 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10793 if (P == llvm::FCmpInst::FCMP_OEQ)
10794 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10795 else
10796 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10797 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10798 }
10799 case NEON::BI__builtin_neon_vceqd_s64:
10800 case NEON::BI__builtin_neon_vceqd_u64:
10801 case NEON::BI__builtin_neon_vcgtd_s64:
10802 case NEON::BI__builtin_neon_vcgtd_u64:
10803 case NEON::BI__builtin_neon_vcltd_s64:
10804 case NEON::BI__builtin_neon_vcltd_u64:
10805 case NEON::BI__builtin_neon_vcged_u64:
10806 case NEON::BI__builtin_neon_vcged_s64:
10807 case NEON::BI__builtin_neon_vcled_u64:
10808 case NEON::BI__builtin_neon_vcled_s64: {
10809 llvm::CmpInst::Predicate P;
10810 switch (BuiltinID) {
10811 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10811)
;
10812 case NEON::BI__builtin_neon_vceqd_s64:
10813 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10814 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10815 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10816 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10817 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10818 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10819 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10820 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10821 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10822 }
10823 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10824 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10825 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10826 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10827 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10828 }
10829 case NEON::BI__builtin_neon_vtstd_s64:
10830 case NEON::BI__builtin_neon_vtstd_u64: {
10831 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10832 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10833 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10834 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10835 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10836 llvm::Constant::getNullValue(Int64Ty));
10837 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10838 }
10839 case NEON::BI__builtin_neon_vset_lane_i8:
10840 case NEON::BI__builtin_neon_vset_lane_i16:
10841 case NEON::BI__builtin_neon_vset_lane_i32:
10842 case NEON::BI__builtin_neon_vset_lane_i64:
10843 case NEON::BI__builtin_neon_vset_lane_bf16:
10844 case NEON::BI__builtin_neon_vset_lane_f32:
10845 case NEON::BI__builtin_neon_vsetq_lane_i8:
10846 case NEON::BI__builtin_neon_vsetq_lane_i16:
10847 case NEON::BI__builtin_neon_vsetq_lane_i32:
10848 case NEON::BI__builtin_neon_vsetq_lane_i64:
10849 case NEON::BI__builtin_neon_vsetq_lane_bf16:
10850 case NEON::BI__builtin_neon_vsetq_lane_f32:
10851 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10852 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10853 case NEON::BI__builtin_neon_vset_lane_f64:
10854 // The vector type needs a cast for the v1f64 variant.
10855 Ops[1] =
10856 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10857 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10858 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10859 case NEON::BI__builtin_neon_vsetq_lane_f64:
10860 // The vector type needs a cast for the v2f64 variant.
10861 Ops[1] =
10862 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10863 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10864 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10865
10866 case NEON::BI__builtin_neon_vget_lane_i8:
10867 case NEON::BI__builtin_neon_vdupb_lane_i8:
10868 Ops[0] =
10869 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10870 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10871 "vget_lane");
10872 case NEON::BI__builtin_neon_vgetq_lane_i8:
10873 case NEON::BI__builtin_neon_vdupb_laneq_i8:
10874 Ops[0] =
10875 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10876 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10877 "vgetq_lane");
10878 case NEON::BI__builtin_neon_vget_lane_i16:
10879 case NEON::BI__builtin_neon_vduph_lane_i16:
10880 Ops[0] =
10881 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10882 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10883 "vget_lane");
10884 case NEON::BI__builtin_neon_vgetq_lane_i16:
10885 case NEON::BI__builtin_neon_vduph_laneq_i16:
10886 Ops[0] =
10887 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10888 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10889 "vgetq_lane");
10890 case NEON::BI__builtin_neon_vget_lane_i32:
10891 case NEON::BI__builtin_neon_vdups_lane_i32:
10892 Ops[0] =
10893 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10894 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10895 "vget_lane");
10896 case NEON::BI__builtin_neon_vdups_lane_f32:
10897 Ops[0] =
10898 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10899 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10900 "vdups_lane");
10901 case NEON::BI__builtin_neon_vgetq_lane_i32:
10902 case NEON::BI__builtin_neon_vdups_laneq_i32:
10903 Ops[0] =
10904 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10905 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10906 "vgetq_lane");
10907 case NEON::BI__builtin_neon_vget_lane_i64:
10908 case NEON::BI__builtin_neon_vdupd_lane_i64:
10909 Ops[0] =
10910 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10911 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10912 "vget_lane");
10913 case NEON::BI__builtin_neon_vdupd_lane_f64:
10914 Ops[0] =
10915 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10916 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10917 "vdupd_lane");
10918 case NEON::BI__builtin_neon_vgetq_lane_i64:
10919 case NEON::BI__builtin_neon_vdupd_laneq_i64:
10920 Ops[0] =
10921 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10922 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10923 "vgetq_lane");
10924 case NEON::BI__builtin_neon_vget_lane_f32:
10925 Ops[0] =
10926 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10927 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10928 "vget_lane");
10929 case NEON::BI__builtin_neon_vget_lane_f64:
10930 Ops[0] =
10931 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10932 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10933 "vget_lane");
10934 case NEON::BI__builtin_neon_vgetq_lane_f32:
10935 case NEON::BI__builtin_neon_vdups_laneq_f32:
10936 Ops[0] =
10937 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10938 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10939 "vgetq_lane");
10940 case NEON::BI__builtin_neon_vgetq_lane_f64:
10941 case NEON::BI__builtin_neon_vdupd_laneq_f64:
10942 Ops[0] =
10943 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10944 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10945 "vgetq_lane");
10946 case NEON::BI__builtin_neon_vaddh_f16:
10947 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10948 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10949 case NEON::BI__builtin_neon_vsubh_f16:
10950 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10951 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10952 case NEON::BI__builtin_neon_vmulh_f16:
10953 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10954 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10955 case NEON::BI__builtin_neon_vdivh_f16:
10956 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10957 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10958 case NEON::BI__builtin_neon_vfmah_f16:
10959 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10960 return emitCallMaybeConstrainedFPBuiltin(
10961 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10962 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10963 case NEON::BI__builtin_neon_vfmsh_f16: {
10964 Value* Neg = Builder.CreateFNeg(EmitScalarExpr(E->getArg(1)), "vsubh");
10965
10966 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10967 return emitCallMaybeConstrainedFPBuiltin(
10968 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10969 {Neg, EmitScalarExpr(E->getArg(2)), Ops[0]});
10970 }
10971 case NEON::BI__builtin_neon_vaddd_s64:
10972 case NEON::BI__builtin_neon_vaddd_u64:
10973 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10974 case NEON::BI__builtin_neon_vsubd_s64:
10975 case NEON::BI__builtin_neon_vsubd_u64:
10976 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10977 case NEON::BI__builtin_neon_vqdmlalh_s16:
10978 case NEON::BI__builtin_neon_vqdmlslh_s16: {
10979 SmallVector<Value *, 2> ProductOps;
10980 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10981 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10982 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10983 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10984 ProductOps, "vqdmlXl");
10985 Constant *CI = ConstantInt::get(SizeTy, 0);
10986 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10987
10988 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10989 ? Intrinsic::aarch64_neon_sqadd
10990 : Intrinsic::aarch64_neon_sqsub;
10991 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10992 }
10993 case NEON::BI__builtin_neon_vqshlud_n_s64: {
10994 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10995 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10996 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10997 Ops, "vqshlu_n");
10998 }
10999 case NEON::BI__builtin_neon_vqshld_n_u64:
11000 case NEON::BI__builtin_neon_vqshld_n_s64: {
11001 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
11002 ? Intrinsic::aarch64_neon_uqshl
11003 : Intrinsic::aarch64_neon_sqshl;
11004 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11005 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
11006 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
11007 }
11008 case NEON::BI__builtin_neon_vrshrd_n_u64:
11009 case NEON::BI__builtin_neon_vrshrd_n_s64: {
11010 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
11011 ? Intrinsic::aarch64_neon_urshl
11012 : Intrinsic::aarch64_neon_srshl;
11013 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11014 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
11015 Ops[1] = ConstantInt::get(Int64Ty, -SV);
11016 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
11017 }
11018 case NEON::BI__builtin_neon_vrsrad_n_u64:
11019 case NEON::BI__builtin_neon_vrsrad_n_s64: {
11020 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
11021 ? Intrinsic::aarch64_neon_urshl
11022 : Intrinsic::aarch64_neon_srshl;
11023 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
11024 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
11025 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
11026 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
11027 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
11028 }
11029 case NEON::BI__builtin_neon_vshld_n_s64:
11030 case NEON::BI__builtin_neon_vshld_n_u64: {
11031 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11032 return Builder.CreateShl(
11033 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
11034 }
11035 case NEON::BI__builtin_neon_vshrd_n_s64: {
11036 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11037 return Builder.CreateAShr(
11038 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
11039 Amt->getZExtValue())),
11040 "shrd_n");
11041 }
11042 case NEON::BI__builtin_neon_vshrd_n_u64: {
11043 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11044 uint64_t ShiftAmt = Amt->getZExtValue();
11045 // Right-shifting an unsigned value by its size yields 0.
11046 if (ShiftAmt == 64)
11047 return ConstantInt::get(Int64Ty, 0);
11048 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
11049 "shrd_n");
11050 }
11051 case NEON::BI__builtin_neon_vsrad_n_s64: {
11052 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
11053 Ops[1] = Builder.CreateAShr(
11054 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
11055 Amt->getZExtValue())),
11056 "shrd_n");
11057 return Builder.CreateAdd(Ops[0], Ops[1]);
11058 }
11059 case NEON::BI__builtin_neon_vsrad_n_u64: {
11060 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
11061 uint64_t ShiftAmt = Amt->getZExtValue();
11062 // Right-shifting an unsigned value by its size yields 0.
11063 // As Op + 0 = Op, return Ops[0] directly.
11064 if (ShiftAmt == 64)
11065 return Ops[0];
11066 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
11067 "shrd_n");
11068 return Builder.CreateAdd(Ops[0], Ops[1]);
11069 }
11070 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
11071 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
11072 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
11073 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
11074 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
11075 "lane");
11076 SmallVector<Value *, 2> ProductOps;
11077 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
11078 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
11079 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
11080 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
11081 ProductOps, "vqdmlXl");
11082 Constant *CI = ConstantInt::get(SizeTy, 0);
11083 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
11084 Ops.pop_back();
11085
11086 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
11087 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
11088 ? Intrinsic::aarch64_neon_sqadd
11089 : Intrinsic::aarch64_neon_sqsub;
11090 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
11091 }
11092 case NEON::BI__builtin_neon_vqdmlals_s32:
11093 case NEON::BI__builtin_neon_vqdmlsls_s32: {
11094 SmallVector<Value *, 2> ProductOps;
11095 ProductOps.push_back(Ops[1]);
11096 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
11097 Ops[1] =
11098 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
11099 ProductOps, "vqdmlXl");
11100
11101 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
11102 ? Intrinsic::aarch64_neon_sqadd
11103 : Intrinsic::aarch64_neon_sqsub;
11104 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
11105 }
11106 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
11107 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
11108 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
11109 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
11110 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
11111 "lane");
11112 SmallVector<Value *, 2> ProductOps;
11113 ProductOps.push_back(Ops[1]);
11114 ProductOps.push_back(Ops[2]);
11115 Ops[1] =
11116 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
11117 ProductOps, "vqdmlXl");
11118 Ops.pop_back();
11119
11120 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
11121 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
11122 ? Intrinsic::aarch64_neon_sqadd
11123 : Intrinsic::aarch64_neon_sqsub;
11124 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
11125 }
11126 case NEON::BI__builtin_neon_vget_lane_bf16:
11127 case NEON::BI__builtin_neon_vduph_lane_bf16:
11128 case NEON::BI__builtin_neon_vduph_lane_f16: {
11129 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11130 "vget_lane");
11131 }
11132 case NEON::BI__builtin_neon_vgetq_lane_bf16:
11133 case NEON::BI__builtin_neon_vduph_laneq_bf16:
11134 case NEON::BI__builtin_neon_vduph_laneq_f16: {
11135 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11136 "vgetq_lane");
11137 }
11138
11139 case clang::AArch64::BI_InterlockedAdd: {
11140 Value *Arg0 = EmitScalarExpr(E->getArg(0));
11141 Value *Arg1 = EmitScalarExpr(E->getArg(1));
11142 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
11143 AtomicRMWInst::Add, Arg0, Arg1,
11144 llvm::AtomicOrdering::SequentiallyConsistent);
11145 return Builder.CreateAdd(RMWI, Arg1);
11146 }
11147 }
11148
11149 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
11150 llvm::Type *Ty = VTy;
11151 if (!Ty)
11152 return nullptr;
11153
11154 // Not all intrinsics handled by the common case work for AArch64 yet, so only
11155 // defer to common code if it's been added to our special map.
11156 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
11157 AArch64SIMDIntrinsicsProvenSorted);
11158
11159 if (Builtin)
11160 return EmitCommonNeonBuiltinExpr(
11161 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
11162 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
11163 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
11164
11165 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
11166 return V;
11167
11168 unsigned Int;
11169 switch (BuiltinID) {
11170 default: return nullptr;
11171 case NEON::BI__builtin_neon_vbsl_v:
11172 case NEON::BI__builtin_neon_vbslq_v: {
11173 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
11174 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
11175 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
11176 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
11177
11178 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
11179 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
11180 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
11181 return Builder.CreateBitCast(Ops[0], Ty);
11182 }
11183 case NEON::BI__builtin_neon_vfma_lane_v:
11184 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
11185 // The ARM builtins (and instructions) have the addend as the first
11186 // operand, but the 'fma' intrinsics have it last. Swap it around here.
11187 Value *Addend = Ops[0];
11188 Value *Multiplicand = Ops[1];
11189 Value *LaneSource = Ops[2];
11190 Ops[0] = Multiplicand;
11191 Ops[1] = LaneSource;
11192 Ops[2] = Addend;
11193
11194 // Now adjust things to handle the lane access.
11195 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
11196 ? llvm::FixedVectorType::get(VTy->getElementType(),
11197 VTy->getNumElements() / 2)
11198 : VTy;
11199 llvm::Constant *cst = cast<Constant>(Ops[3]);
11200 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
11201 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
11202 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
11203
11204 Ops.pop_back();
11205 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
11206 : Intrinsic::fma;
11207 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
11208 }
11209 case NEON::BI__builtin_neon_vfma_laneq_v: {
11210 auto *VTy = cast<llvm::FixedVectorType>(Ty);
11211 // v1f64 fma should be mapped to Neon scalar f64 fma
11212 if (VTy && VTy->getElementType() == DoubleTy) {
11213 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11214 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
11215 llvm::FixedVectorType *VTy =
11216 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
11217 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
11218 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
11219 Value *Result;
11220 Result = emitCallMaybeConstrainedFPBuiltin(
11221 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
11222 DoubleTy, {Ops[1], Ops[2], Ops[0]});
11223 return Builder.CreateBitCast(Result, Ty);
11224 }
11225 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11226 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11227
11228 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
11229 VTy->getNumElements() * 2);
11230 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
11231 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
11232 cast<ConstantInt>(Ops[3]));
11233 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
11234
11235 return emitCallMaybeConstrainedFPBuiltin(
11236 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
11237 {Ops[2], Ops[1], Ops[0]});
11238 }
11239 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
11240 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11241 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11242
11243 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11244 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
11245 return emitCallMaybeConstrainedFPBuiltin(
11246 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
11247 {Ops[2], Ops[1], Ops[0]});
11248 }
11249 case NEON::BI__builtin_neon_vfmah_lane_f16:
11250 case NEON::BI__builtin_neon_vfmas_lane_f32:
11251 case NEON::BI__builtin_neon_vfmah_laneq_f16:
11252 case NEON::BI__builtin_neon_vfmas_laneq_f32:
11253 case NEON::BI__builtin_neon_vfmad_lane_f64:
11254 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
11255 Ops.push_back(EmitScalarExpr(E->getArg(3)));
11256 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
11257 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
11258 return emitCallMaybeConstrainedFPBuiltin(
11259 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
11260 {Ops[1], Ops[2], Ops[0]});
11261 }
11262 case NEON::BI__builtin_neon_vmull_v:
11263 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11264 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
11265 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
11266 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
11267 case NEON::BI__builtin_neon_vmax_v:
11268 case NEON::BI__builtin_neon_vmaxq_v:
11269 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11270 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
11271 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
11272 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
11273 case NEON::BI__builtin_neon_vmaxh_f16: {
11274 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11275 Int = Intrinsic::aarch64_neon_fmax;
11276 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
11277 }
11278 case NEON::BI__builtin_neon_vmin_v:
11279 case NEON::BI__builtin_neon_vminq_v:
11280 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11281 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
11282 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
11283 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
11284 case NEON::BI__builtin_neon_vminh_f16: {
11285 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11286 Int = Intrinsic::aarch64_neon_fmin;
11287 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
11288 }
11289 case NEON::BI__builtin_neon_vabd_v:
11290 case NEON::BI__builtin_neon_vabdq_v:
11291 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11292 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
11293 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
11294 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
11295 case NEON::BI__builtin_neon_vpadal_v:
11296 case NEON::BI__builtin_neon_vpadalq_v: {
11297 unsigned ArgElts = VTy->getNumElements();
11298 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
11299 unsigned BitWidth = EltTy->getBitWidth();
11300 auto *ArgTy = llvm::FixedVectorType::get(
11301 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
11302 llvm::Type* Tys[2] = { VTy, ArgTy };
11303 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
11304 SmallVector<llvm::Value*, 1> TmpOps;
11305 TmpOps.push_back(Ops[1]);
11306 Function *F = CGM.getIntrinsic(Int, Tys);
11307 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
11308 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
11309 return Builder.CreateAdd(tmp, addend);
11310 }
11311 case NEON::BI__builtin_neon_vpmin_v:
11312 case NEON::BI__builtin_neon_vpminq_v:
11313 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11314 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
11315 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
11316 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
11317 case NEON::BI__builtin_neon_vpmax_v:
11318 case NEON::BI__builtin_neon_vpmaxq_v:
11319 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11320 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
11321 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
11322 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
11323 case NEON::BI__builtin_neon_vminnm_v:
11324 case NEON::BI__builtin_neon_vminnmq_v:
11325 Int = Intrinsic::aarch64_neon_fminnm;
11326 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
11327 case NEON::BI__builtin_neon_vminnmh_f16:
11328 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11329 Int = Intrinsic::aarch64_neon_fminnm;
11330 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
11331 case NEON::BI__builtin_neon_vmaxnm_v:
11332 case NEON::BI__builtin_neon_vmaxnmq_v:
11333 Int = Intrinsic::aarch64_neon_fmaxnm;
11334 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
11335 case NEON::BI__builtin_neon_vmaxnmh_f16:
11336 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11337 Int = Intrinsic::aarch64_neon_fmaxnm;
11338 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
11339 case NEON::BI__builtin_neon_vrecpss_f32: {
11340 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11341 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
11342 Ops, "vrecps");
11343 }
11344 case NEON::BI__builtin_neon_vrecpsd_f64:
11345 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11346 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
11347 Ops, "vrecps");
11348 case NEON::BI__builtin_neon_vrecpsh_f16:
11349 Ops.push_back(EmitScalarExpr(E->getArg(1)));
11350 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
11351 Ops, "vrecps");
11352 case NEON::BI__builtin_neon_vqshrun_n_v:
11353 Int = Intrinsic::aarch64_neon_sqshrun;
11354 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
11355 case NEON::BI__builtin_neon_vqrshrun_n_v:
11356 Int = Intrinsic::aarch64_neon_sqrshrun;
11357 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
11358 case NEON::BI__builtin_neon_vqshrn_n_v:
11359 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
11360 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
11361 case NEON::BI__builtin_neon_vrshrn_n_v:
11362 Int = Intrinsic::aarch64_neon_rshrn;
11363 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
11364 case NEON::BI__builtin_neon_vqrshrn_n_v:
11365 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
11366 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
11367 case NEON::BI__builtin_neon_vrndah_f16: {
11368 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11369 Int = Builder.getIsFPConstrained()
11370 ? Intrinsic::experimental_constrained_round
11371 : Intrinsic::round;
11372 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
11373 }
11374 case NEON::BI__builtin_neon_vrnda_v:
11375 case NEON::BI__builtin_neon_vrndaq_v: {
11376 Int = Builder.getIsFPConstrained()
11377 ? Intrinsic::experimental_constrained_round
11378 : Intrinsic::round;
11379 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
11380 }
11381 case NEON::BI__builtin_neon_vrndih_f16: {
11382 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11383 Int = Builder.getIsFPConstrained()
11384 ? Intrinsic::experimental_constrained_nearbyint
11385 : Intrinsic::nearbyint;
11386 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
11387 }
11388 case NEON::BI__builtin_neon_vrndmh_f16: {
11389 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11390 Int = Builder.getIsFPConstrained()
11391 ? Intrinsic::experimental_constrained_floor
11392 : Intrinsic::floor;
11393 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
11394 }
11395 case NEON::BI__builtin_neon_vrndm_v:
11396 case NEON::BI__builtin_neon_vrndmq_v: {
11397 Int = Builder.getIsFPConstrained()
11398 ? Intrinsic::experimental_constrained_floor
11399 : Intrinsic::floor;
11400 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
11401 }
11402 case NEON::BI__builtin_neon_vrndnh_f16: {
11403 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11404 Int = Builder.getIsFPConstrained()
11405 ? Intrinsic::experimental_constrained_roundeven
11406 : Intrinsic::roundeven;
11407 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
11408 }
11409 case NEON::BI__builtin_neon_vrndn_v:
11410 case NEON::BI__builtin_neon_vrndnq_v: {
11411 Int = Builder.getIsFPConstrained()
11412 ? Intrinsic::experimental_constrained_roundeven
11413 : Intrinsic::roundeven;
11414 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
11415 }
11416 case NEON::BI__builtin_neon_vrndns_f32: {
11417 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11418 Int = Builder.getIsFPConstrained()
11419 ? Intrinsic::experimental_constrained_roundeven
11420 : Intrinsic::roundeven;
11421 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
11422 }
11423 case NEON::BI__builtin_neon_vrndph_f16: {
11424 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11425 Int = Builder.getIsFPConstrained()
11426 ? Intrinsic::experimental_constrained_ceil
11427 : Intrinsic::ceil;
11428 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
11429 }
11430 case NEON::BI__builtin_neon_vrndp_v:
11431 case NEON::BI__builtin_neon_vrndpq_v: {
11432 Int = Builder.getIsFPConstrained()
11433 ? Intrinsic::experimental_constrained_ceil
11434 : Intrinsic::ceil;
11435 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
11436 }
11437 case NEON::BI__builtin_neon_vrndxh_f16: {
11438 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11439 Int = Builder.getIsFPConstrained()
11440 ? Intrinsic::experimental_constrained_rint
11441 : Intrinsic::rint;
11442 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
11443 }
11444 case NEON::BI__builtin_neon_vrndx_v:
11445 case NEON::BI__builtin_neon_vrndxq_v: {
11446 Int = Builder.getIsFPConstrained()
11447 ? Intrinsic::experimental_constrained_rint
11448 : Intrinsic::rint;
11449 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
11450 }
11451 case NEON::BI__builtin_neon_vrndh_f16: {
11452 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11453 Int = Builder.getIsFPConstrained()
11454 ? Intrinsic::experimental_constrained_trunc
11455 : Intrinsic::trunc;
11456 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
11457 }
11458 case NEON::BI__builtin_neon_vrnd32x_f32:
11459 case NEON::BI__builtin_neon_vrnd32xq_f32: {
11460 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11461 Int = Intrinsic::aarch64_neon_frint32x;
11462 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
11463 }
11464 case NEON::BI__builtin_neon_vrnd32z_f32:
11465 case NEON::BI__builtin_neon_vrnd32zq_f32: {
11466 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11467 Int = Intrinsic::aarch64_neon_frint32z;
11468 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
11469 }
11470 case NEON::BI__builtin_neon_vrnd64x_f32:
11471 case NEON::BI__builtin_neon_vrnd64xq_f32: {
11472 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11473 Int = Intrinsic::aarch64_neon_frint64x;
11474 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
11475 }
11476 case NEON::BI__builtin_neon_vrnd64z_f32:
11477 case NEON::BI__builtin_neon_vrnd64zq_f32: {
11478 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11479 Int = Intrinsic::aarch64_neon_frint64z;
11480 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
11481 }
11482 case NEON::BI__builtin_neon_vrnd_v:
11483 case NEON::BI__builtin_neon_vrndq_v: {
11484 Int = Builder.getIsFPConstrained()
11485 ? Intrinsic::experimental_constrained_trunc
11486 : Intrinsic::trunc;
11487 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
11488 }
11489 case NEON::BI__builtin_neon_vcvt_f64_v:
11490 case NEON::BI__builtin_neon_vcvtq_f64_v:
11491 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11492 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
11493 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
11494 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
11495 case NEON::BI__builtin_neon_vcvt_f64_f32: {
11496 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11497, __extension__ __PRETTY_FUNCTION__
))
11497 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11497, __extension__ __PRETTY_FUNCTION__
))
;
11498 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
11499 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11500
11501 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
11502 }
11503 case NEON::BI__builtin_neon_vcvt_f32_f64: {
11504 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11505, __extension__ __PRETTY_FUNCTION__
))
11505 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11505, __extension__ __PRETTY_FUNCTION__
))
;
11506 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
11507 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11508
11509 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
11510 }
11511 case NEON::BI__builtin_neon_vcvt_s32_v:
11512 case NEON::BI__builtin_neon_vcvt_u32_v:
11513 case NEON::BI__builtin_neon_vcvt_s64_v:
11514 case NEON::BI__builtin_neon_vcvt_u64_v:
11515 case NEON::BI__builtin_neon_vcvt_s16_f16:
11516 case NEON::BI__builtin_neon_vcvt_u16_f16:
11517 case NEON::BI__builtin_neon_vcvtq_s32_v:
11518 case NEON::BI__builtin_neon_vcvtq_u32_v:
11519 case NEON::BI__builtin_neon_vcvtq_s64_v:
11520 case NEON::BI__builtin_neon_vcvtq_u64_v:
11521 case NEON::BI__builtin_neon_vcvtq_s16_f16:
11522 case NEON::BI__builtin_neon_vcvtq_u16_f16: {
11523 Int =
11524 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
11525 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
11526 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
11527 }
11528 case NEON::BI__builtin_neon_vcvta_s16_f16:
11529 case NEON::BI__builtin_neon_vcvta_u16_f16:
11530 case NEON::BI__builtin_neon_vcvta_s32_v:
11531 case NEON::BI__builtin_neon_vcvtaq_s16_f16:
11532 case NEON::BI__builtin_neon_vcvtaq_s32_v:
11533 case NEON::BI__builtin_neon_vcvta_u32_v:
11534 case NEON::BI__builtin_neon_vcvtaq_u16_f16:
11535 case NEON::BI__builtin_neon_vcvtaq_u32_v:
11536 case NEON::BI__builtin_neon_vcvta_s64_v:
11537 case NEON::BI__builtin_neon_vcvtaq_s64_v:
11538 case NEON::BI__builtin_neon_vcvta_u64_v:
11539 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
11540 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
11541 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11542 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
11543 }
11544 case NEON::BI__builtin_neon_vcvtm_s16_f16:
11545 case NEON::BI__builtin_neon_vcvtm_s32_v:
11546 case NEON::BI__builtin_neon_vcvtmq_s16_f16:
11547 case NEON::BI__builtin_neon_vcvtmq_s32_v:
11548 case NEON::BI__builtin_neon_vcvtm_u16_f16:
11549 case NEON::BI__builtin_neon_vcvtm_u32_v:
11550 case NEON::BI__builtin_neon_vcvtmq_u16_f16:
11551 case NEON::BI__builtin_neon_vcvtmq_u32_v:
11552 case NEON::BI__builtin_neon_vcvtm_s64_v:
11553 case NEON::BI__builtin_neon_vcvtmq_s64_v:
11554 case NEON::BI__builtin_neon_vcvtm_u64_v:
11555 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
11556 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
11557 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11558 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
11559 }
11560 case NEON::BI__builtin_neon_vcvtn_s16_f16:
11561 case NEON::BI__builtin_neon_vcvtn_s32_v:
11562 case NEON::BI__builtin_neon_vcvtnq_s16_f16:
11563 case NEON::BI__builtin_neon_vcvtnq_s32_v:
11564 case NEON::BI__builtin_neon_vcvtn_u16_f16:
11565 case NEON::BI__builtin_neon_vcvtn_u32_v:
11566 case NEON::BI__builtin_neon_vcvtnq_u16_f16:
11567 case NEON::BI__builtin_neon_vcvtnq_u32_v:
11568 case NEON::BI__builtin_neon_vcvtn_s64_v:
11569 case NEON::BI__builtin_neon_vcvtnq_s64_v:
11570 case NEON::BI__builtin_neon_vcvtn_u64_v:
11571 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
11572 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
11573 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11574 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
11575 }
11576 case NEON::BI__builtin_neon_vcvtp_s16_f16:
11577 case NEON::BI__builtin_neon_vcvtp_s32_v:
11578 case NEON::BI__builtin_neon_vcvtpq_s16_f16:
11579 case NEON::BI__builtin_neon_vcvtpq_s32_v:
11580 case NEON::BI__builtin_neon_vcvtp_u16_f16:
11581 case NEON::BI__builtin_neon_vcvtp_u32_v:
11582 case NEON::BI__builtin_neon_vcvtpq_u16_f16:
11583 case NEON::BI__builtin_neon_vcvtpq_u32_v:
11584 case NEON::BI__builtin_neon_vcvtp_s64_v:
11585 case NEON::BI__builtin_neon_vcvtpq_s64_v:
11586 case NEON::BI__builtin_neon_vcvtp_u64_v:
11587 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
11588 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
11589 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11590 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
11591 }
11592 case NEON::BI__builtin_neon_vmulx_v:
11593 case NEON::BI__builtin_neon_vmulxq_v: {
11594 Int = Intrinsic::aarch64_neon_fmulx;
11595 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
11596 }
11597 case NEON::BI__builtin_neon_vmulxh_lane_f16:
11598 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
11599 // vmulx_lane should be mapped to Neon scalar mulx after
11600 // extracting the scalar element
11601 Ops.push_back(EmitScalarExpr(E->getArg(2)));
11602 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11603 Ops.pop_back();
11604 Int = Intrinsic::aarch64_neon_fmulx;
11605 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
11606 }
11607 case NEON::BI__builtin_neon_vmul_lane_v:
11608 case NEON::BI__builtin_neon_vmul_laneq_v: {
11609 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
11610 bool Quad = false;
11611 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
11612 Quad = true;
11613 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11614 llvm::FixedVectorType *VTy =
11615 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
11616 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11617 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11618 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
11619 return Builder.CreateBitCast(Result, Ty);
11620 }
11621 case NEON::BI__builtin_neon_vnegd_s64:
11622 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
11623 case NEON::BI__builtin_neon_vnegh_f16:
11624 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
11625 case NEON::BI__builtin_neon_vpmaxnm_v:
11626 case NEON::BI__builtin_neon_vpmaxnmq_v: {
11627 Int = Intrinsic::aarch64_neon_fmaxnmp;
11628 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
11629 }
11630 case NEON::BI__builtin_neon_vpminnm_v:
11631 case NEON::BI__builtin_neon_vpminnmq_v: {
11632 Int = Intrinsic::aarch64_neon_fminnmp;
11633 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
11634 }
11635 case NEON::BI__builtin_neon_vsqrth_f16: {
11636 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11637 Int = Builder.getIsFPConstrained()
11638 ? Intrinsic::experimental_constrained_sqrt
11639 : Intrinsic::sqrt;
11640 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
11641 }
11642 case NEON::BI__builtin_neon_vsqrt_v:
11643 case NEON::BI__builtin_neon_vsqrtq_v: {
11644 Int = Builder.getIsFPConstrained()
11645 ? Intrinsic::experimental_constrained_sqrt
11646 : Intrinsic::sqrt;
11647 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11648 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
11649 }
11650 case NEON::BI__builtin_neon_vrbit_v:
11651 case NEON::BI__builtin_neon_vrbitq_v: {
11652 Int = Intrinsic::bitreverse;
11653 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
11654 }
11655 case NEON::BI__builtin_neon_vaddv_u8:
11656 // FIXME: These are handled by the AArch64 scalar code.
11657 usgn = true;
11658 [[fallthrough]];
11659 case NEON::BI__builtin_neon_vaddv_s8: {
11660 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11661 Ty = Int32Ty;
11662 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11663 llvm::Type *Tys[2] = { Ty, VTy };
11664 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11665 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11666 return Builder.CreateTrunc(Ops[0], Int8Ty);
11667 }
11668 case NEON::BI__builtin_neon_vaddv_u16:
11669 usgn = true;
11670 [[fallthrough]];
11671 case NEON::BI__builtin_neon_vaddv_s16: {
11672 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11673 Ty = Int32Ty;
11674 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11675 llvm::Type *Tys[2] = { Ty, VTy };
11676 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11677 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11678 return Builder.CreateTrunc(Ops[0], Int16Ty);
11679 }
11680 case NEON::BI__builtin_neon_vaddvq_u8:
11681 usgn = true;
11682 [[fallthrough]];
11683 case NEON::BI__builtin_neon_vaddvq_s8: {
11684 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11685 Ty = Int32Ty;
11686 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11687 llvm::Type *Tys[2] = { Ty, VTy };
11688 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11689 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11690 return Builder.CreateTrunc(Ops[0], Int8Ty);
11691 }
11692 case NEON::BI__builtin_neon_vaddvq_u16:
11693 usgn = true;
11694 [[fallthrough]];
11695 case NEON::BI__builtin_neon_vaddvq_s16: {
11696 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11697 Ty = Int32Ty;
11698 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11699 llvm::Type *Tys[2] = { Ty, VTy };
11700 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11701 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11702 return Builder.CreateTrunc(Ops[0], Int16Ty);
11703 }
11704 case NEON::BI__builtin_neon_vmaxv_u8: {
11705 Int = Intrinsic::aarch64_neon_umaxv;
11706 Ty = Int32Ty;
11707 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11708 llvm::Type *Tys[2] = { Ty, VTy };
11709 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11710 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11711 return Builder.CreateTrunc(Ops[0], Int8Ty);
11712 }
11713 case NEON::BI__builtin_neon_vmaxv_u16: {
11714 Int = Intrinsic::aarch64_neon_umaxv;
11715 Ty = Int32Ty;
11716 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11717 llvm::Type *Tys[2] = { Ty, VTy };
11718 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11719 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11720 return Builder.CreateTrunc(Ops[0], Int16Ty);
11721 }
11722 case NEON::BI__builtin_neon_vmaxvq_u8: {
11723 Int = Intrinsic::aarch64_neon_umaxv;
11724 Ty = Int32Ty;
11725 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11726 llvm::Type *Tys[2] = { Ty, VTy };
11727 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11728 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11729 return Builder.CreateTrunc(Ops[0], Int8Ty);
11730 }
11731 case NEON::BI__builtin_neon_vmaxvq_u16: {
11732 Int = Intrinsic::aarch64_neon_umaxv;
11733 Ty = Int32Ty;
11734 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11735 llvm::Type *Tys[2] = { Ty, VTy };
11736 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11737 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11738 return Builder.CreateTrunc(Ops[0], Int16Ty);
11739 }
11740 case NEON::BI__builtin_neon_vmaxv_s8: {
11741 Int = Intrinsic::aarch64_neon_smaxv;
11742 Ty = Int32Ty;
11743 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11744 llvm::Type *Tys[2] = { Ty, VTy };
11745 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11746 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11747 return Builder.CreateTrunc(Ops[0], Int8Ty);
11748 }
11749 case NEON::BI__builtin_neon_vmaxv_s16: {
11750 Int = Intrinsic::aarch64_neon_smaxv;
11751 Ty = Int32Ty;
11752 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11753 llvm::Type *Tys[2] = { Ty, VTy };
11754 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11755 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11756 return Builder.CreateTrunc(Ops[0], Int16Ty);
11757 }
11758 case NEON::BI__builtin_neon_vmaxvq_s8: {
11759 Int = Intrinsic::aarch64_neon_smaxv;
11760 Ty = Int32Ty;
11761 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11762 llvm::Type *Tys[2] = { Ty, VTy };
11763 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11764 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11765 return Builder.CreateTrunc(Ops[0], Int8Ty);
11766 }
11767 case NEON::BI__builtin_neon_vmaxvq_s16: {
11768 Int = Intrinsic::aarch64_neon_smaxv;
11769 Ty = Int32Ty;
11770 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11771 llvm::Type *Tys[2] = { Ty, VTy };
11772 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11773 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11774 return Builder.CreateTrunc(Ops[0], Int16Ty);
11775 }
11776 case NEON::BI__builtin_neon_vmaxv_f16: {
11777 Int = Intrinsic::aarch64_neon_fmaxv;
11778 Ty = HalfTy;
11779 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11780 llvm::Type *Tys[2] = { Ty, VTy };
11781 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11782 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11783 return Builder.CreateTrunc(Ops[0], HalfTy);
11784 }
11785 case NEON::BI__builtin_neon_vmaxvq_f16: {
11786 Int = Intrinsic::aarch64_neon_fmaxv;
11787 Ty = HalfTy;
11788 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11789 llvm::Type *Tys[2] = { Ty, VTy };
11790 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11791 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11792 return Builder.CreateTrunc(Ops[0], HalfTy);
11793 }
11794 case NEON::BI__builtin_neon_vminv_u8: {
11795 Int = Intrinsic::aarch64_neon_uminv;
11796 Ty = Int32Ty;
11797 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11798 llvm::Type *Tys[2] = { Ty, VTy };
11799 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11800 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11801 return Builder.CreateTrunc(Ops[0], Int8Ty);
11802 }
11803 case NEON::BI__builtin_neon_vminv_u16: {
11804 Int = Intrinsic::aarch64_neon_uminv;
11805 Ty = Int32Ty;
11806 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11807 llvm::Type *Tys[2] = { Ty, VTy };
11808 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11809 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11810 return Builder.CreateTrunc(Ops[0], Int16Ty);
11811 }
11812 case NEON::BI__builtin_neon_vminvq_u8: {
11813 Int = Intrinsic::aarch64_neon_uminv;
11814 Ty = Int32Ty;
11815 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11816 llvm::Type *Tys[2] = { Ty, VTy };
11817 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11818 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11819 return Builder.CreateTrunc(Ops[0], Int8Ty);
11820 }
11821 case NEON::BI__builtin_neon_vminvq_u16: {
11822 Int = Intrinsic::aarch64_neon_uminv;
11823 Ty = Int32Ty;
11824 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11825 llvm::Type *Tys[2] = { Ty, VTy };
11826 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11827 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11828 return Builder.CreateTrunc(Ops[0], Int16Ty);
11829 }
11830 case NEON::BI__builtin_neon_vminv_s8: {
11831 Int = Intrinsic::aarch64_neon_sminv;
11832 Ty = Int32Ty;
11833 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11834 llvm::Type *Tys[2] = { Ty, VTy };
11835 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11836 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11837 return Builder.CreateTrunc(Ops[0], Int8Ty);
11838 }
11839 case NEON::BI__builtin_neon_vminv_s16: {
11840 Int = Intrinsic::aarch64_neon_sminv;
11841 Ty = Int32Ty;
11842 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11843 llvm::Type *Tys[2] = { Ty, VTy };
11844 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11845 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11846 return Builder.CreateTrunc(Ops[0], Int16Ty);
11847 }
11848 case NEON::BI__builtin_neon_vminvq_s8: {
11849 Int = Intrinsic::aarch64_neon_sminv;
11850 Ty = Int32Ty;
11851 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11852 llvm::Type *Tys[2] = { Ty, VTy };
11853 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11854 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11855 return Builder.CreateTrunc(Ops[0], Int8Ty);
11856 }
11857 case NEON::BI__builtin_neon_vminvq_s16: {
11858 Int = Intrinsic::aarch64_neon_sminv;
11859 Ty = Int32Ty;
11860 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11861 llvm::Type *Tys[2] = { Ty, VTy };
11862 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11863 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11864 return Builder.CreateTrunc(Ops[0], Int16Ty);
11865 }
11866 case NEON::BI__builtin_neon_vminv_f16: {
11867 Int = Intrinsic::aarch64_neon_fminv;
11868 Ty = HalfTy;
11869 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11870 llvm::Type *Tys[2] = { Ty, VTy };
11871 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11872 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11873 return Builder.CreateTrunc(Ops[0], HalfTy);
11874 }
11875 case NEON::BI__builtin_neon_vminvq_f16: {
11876 Int = Intrinsic::aarch64_neon_fminv;
11877 Ty = HalfTy;
11878 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11879 llvm::Type *Tys[2] = { Ty, VTy };
11880 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11881 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11882 return Builder.CreateTrunc(Ops[0], HalfTy);
11883 }
11884 case NEON::BI__builtin_neon_vmaxnmv_f16: {
11885 Int = Intrinsic::aarch64_neon_fmaxnmv;
11886 Ty = HalfTy;
11887 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11888 llvm::Type *Tys[2] = { Ty, VTy };
11889 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11890 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11891 return Builder.CreateTrunc(Ops[0], HalfTy);
11892 }
11893 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11894 Int = Intrinsic::aarch64_neon_fmaxnmv;
11895 Ty = HalfTy;
11896 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11897 llvm::Type *Tys[2] = { Ty, VTy };
11898 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11899 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11900 return Builder.CreateTrunc(Ops[0], HalfTy);
11901 }
11902 case NEON::BI__builtin_neon_vminnmv_f16: {
11903 Int = Intrinsic::aarch64_neon_fminnmv;
11904 Ty = HalfTy;
11905 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11906 llvm::Type *Tys[2] = { Ty, VTy };
11907 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11908 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11909 return Builder.CreateTrunc(Ops[0], HalfTy);
11910 }
11911 case NEON::BI__builtin_neon_vminnmvq_f16: {
11912 Int = Intrinsic::aarch64_neon_fminnmv;
11913 Ty = HalfTy;
11914 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11915 llvm::Type *Tys[2] = { Ty, VTy };
11916 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11917 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11918 return Builder.CreateTrunc(Ops[0], HalfTy);
11919 }
11920 case NEON::BI__builtin_neon_vmul_n_f64: {
11921 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11922 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11923 return Builder.CreateFMul(Ops[0], RHS);
11924 }
11925 case NEON::BI__builtin_neon_vaddlv_u8: {
11926 Int = Intrinsic::aarch64_neon_uaddlv;
11927 Ty = Int32Ty;
11928 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11929 llvm::Type *Tys[2] = { Ty, VTy };
11930 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11931 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11932 return Builder.CreateTrunc(Ops[0], Int16Ty);
11933 }
11934 case NEON::BI__builtin_neon_vaddlv_u16: {
11935 Int = Intrinsic::aarch64_neon_uaddlv;
11936 Ty = Int32Ty;
11937 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11938 llvm::Type *Tys[2] = { Ty, VTy };
11939 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11940 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11941 }
11942 case NEON::BI__builtin_neon_vaddlvq_u8: {
11943 Int = Intrinsic::aarch64_neon_uaddlv;
11944 Ty = Int32Ty;
11945 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11946 llvm::Type *Tys[2] = { Ty, VTy };
11947 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11948 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11949 return Builder.CreateTrunc(Ops[0], Int16Ty);
11950 }
11951 case NEON::BI__builtin_neon_vaddlvq_u16: {
11952 Int = Intrinsic::aarch64_neon_uaddlv;
11953 Ty = Int32Ty;
11954 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11955 llvm::Type *Tys[2] = { Ty, VTy };
11956 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11957 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11958 }
11959 case NEON::BI__builtin_neon_vaddlv_s8: {
11960 Int = Intrinsic::aarch64_neon_saddlv;
11961 Ty = Int32Ty;
11962 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11963 llvm::Type *Tys[2] = { Ty, VTy };
11964 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11965 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11966 return Builder.CreateTrunc(Ops[0], Int16Ty);
11967 }
11968 case NEON::BI__builtin_neon_vaddlv_s16: {
11969 Int = Intrinsic::aarch64_neon_saddlv;
11970 Ty = Int32Ty;
11971 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11972 llvm::Type *Tys[2] = { Ty, VTy };
11973 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11974 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11975 }
11976 case NEON::BI__builtin_neon_vaddlvq_s8: {
11977 Int = Intrinsic::aarch64_neon_saddlv;
11978 Ty = Int32Ty;
11979 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11980 llvm::Type *Tys[2] = { Ty, VTy };
11981 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11982 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11983 return Builder.CreateTrunc(Ops[0], Int16Ty);
11984 }
11985 case NEON::BI__builtin_neon_vaddlvq_s16: {
11986 Int = Intrinsic::aarch64_neon_saddlv;
11987 Ty = Int32Ty;
11988 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11989 llvm::Type *Tys[2] = { Ty, VTy };
11990 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11991 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11992 }
11993 case NEON::BI__builtin_neon_vsri_n_v:
11994 case NEON::BI__builtin_neon_vsriq_n_v: {
11995 Int = Intrinsic::aarch64_neon_vsri;
11996 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11997 return EmitNeonCall(Intrin, Ops, "vsri_n");
11998 }
11999 case NEON::BI__builtin_neon_vsli_n_v:
12000 case NEON::BI__builtin_neon_vsliq_n_v: {
12001 Int = Intrinsic::aarch64_neon_vsli;
12002 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
12003 return EmitNeonCall(Intrin, Ops, "vsli_n");
12004 }
12005 case NEON::BI__builtin_neon_vsra_n_v:
12006 case NEON::BI__builtin_neon_vsraq_n_v:
12007 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12008 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
12009 return Builder.CreateAdd(Ops[0], Ops[1]);
12010 case NEON::BI__builtin_neon_vrsra_n_v:
12011 case NEON::BI__builtin_neon_vrsraq_n_v: {
12012 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
12013 SmallVector<llvm::Value*,2> TmpOps;
12014 TmpOps.push_back(Ops[1]);
12015 TmpOps.push_back(Ops[2]);
12016 Function* F = CGM.getIntrinsic(Int, Ty);
12017 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
12018 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
12019 return Builder.CreateAdd(Ops[0], tmp);
12020 }
12021 case NEON::BI__builtin_neon_vld1_v:
12022 case NEON::BI__builtin_neon_vld1q_v: {
12023 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
12024 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
12025 }
12026 case NEON::BI__builtin_neon_vst1_v:
12027 case NEON::BI__builtin_neon_vst1q_v:
12028 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
12029 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
12030 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
12031 case NEON::BI__builtin_neon_vld1_lane_v:
12032 case NEON::BI__builtin_neon_vld1q_lane_v: {
12033 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12034 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
12035 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12036 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
12037 PtrOp0.getAlignment());
12038 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
12039 }
12040 case NEON::BI__builtin_neon_vld1_dup_v:
12041 case NEON::BI__builtin_neon_vld1q_dup_v: {
12042 Value *V = PoisonValue::get(Ty);
12043 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
12044 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12045 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
12046 PtrOp0.getAlignment());
12047 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
12048 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
12049 return EmitNeonSplat(Ops[0], CI);
12050 }
12051 case NEON::BI__builtin_neon_vst1_lane_v:
12052 case NEON::BI__builtin_neon_vst1q_lane_v:
12053 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12054 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
12055 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12056 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
12057 PtrOp0.getAlignment());
12058 case NEON::BI__builtin_neon_vld2_v:
12059 case NEON::BI__builtin_neon_vld2q_v: {
12060 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
12061 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12062 llvm::Type *Tys[2] = { VTy, PTy };
12063 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
12064 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
12065 Ops[0] = Builder.CreateBitCast(Ops[0],
12066 llvm::PointerType::getUnqual(Ops[1]->getType()));
12067 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12068 }
12069 case NEON::BI__builtin_neon_vld3_v:
12070 case NEON::BI__builtin_neon_vld3q_v: {
12071 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
12072 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12073 llvm::Type *Tys[2] = { VTy, PTy };
12074 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
12075 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
12076 Ops[0] = Builder.CreateBitCast(Ops[0],
12077 llvm::PointerType::getUnqual(Ops[1]->getType()));
12078 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12079 }
12080 case NEON::BI__builtin_neon_vld4_v:
12081 case NEON::BI__builtin_neon_vld4q_v: {
12082 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
12083 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12084 llvm::Type *Tys[2] = { VTy, PTy };
12085 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
12086 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
12087 Ops[0] = Builder.CreateBitCast(Ops[0],
12088 llvm::PointerType::getUnqual(Ops[1]->getType()));
12089 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12090 }
12091 case NEON::BI__builtin_neon_vld2_dup_v:
12092 case NEON::BI__builtin_neon_vld2q_dup_v: {
12093 llvm::Type *PTy =
12094 llvm::PointerType::getUnqual(VTy->getElementType());
12095 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12096 llvm::Type *Tys[2] = { VTy, PTy };
12097 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
12098 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
12099 Ops[0] = Builder.CreateBitCast(Ops[0],
12100 llvm::PointerType::getUnqual(Ops[1]->getType()));
12101 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12102 }
12103 case NEON::BI__builtin_neon_vld3_dup_v:
12104 case NEON::BI__builtin_neon_vld3q_dup_v: {
12105 llvm::Type *PTy =
12106 llvm::PointerType::getUnqual(VTy->getElementType());
12107 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12108 llvm::Type *Tys[2] = { VTy, PTy };
12109 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
12110 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
12111 Ops[0] = Builder.CreateBitCast(Ops[0],
12112 llvm::PointerType::getUnqual(Ops[1]->getType()));
12113 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12114 }
12115 case NEON::BI__builtin_neon_vld4_dup_v:
12116 case NEON::BI__builtin_neon_vld4q_dup_v: {
12117 llvm::Type *PTy =
12118 llvm::PointerType::getUnqual(VTy->getElementType());
12119 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12120 llvm::Type *Tys[2] = { VTy, PTy };
12121 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
12122 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
12123 Ops[0] = Builder.CreateBitCast(Ops[0],
12124 llvm::PointerType::getUnqual(Ops[1]->getType()));
12125 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12126 }
12127 case NEON::BI__builtin_neon_vld2_lane_v:
12128 case NEON::BI__builtin_neon_vld2q_lane_v: {
12129 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
12130 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
12131 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
12132 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12133 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12134 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
12135 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane");
12136 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12137 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12138 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12139 }
12140 case NEON::BI__builtin_neon_vld3_lane_v:
12141 case NEON::BI__builtin_neon_vld3q_lane_v: {
12142 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
12143 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
12144 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
12145 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12146 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12147 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
12148 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
12149 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane");
12150 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12151 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12152 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12153 }
12154 case NEON::BI__builtin_neon_vld4_lane_v:
12155 case NEON::BI__builtin_neon_vld4q_lane_v: {
12156 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
12157 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
12158 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
12159 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12160 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12161 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
12162 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
12163 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
12164 Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane");
12165 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12166 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12167 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12168 }
12169 case NEON::BI__builtin_neon_vst2_v:
12170 case NEON::BI__builtin_neon_vst2q_v: {
12171 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12172 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
12173 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
12174 Ops, "");
12175 }
12176 case NEON::BI__builtin_neon_vst2_lane_v:
12177 case NEON::BI__builtin_neon_vst2q_lane_v: {
12178 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12179 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12180 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
12181 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
12182 Ops, "");
12183 }
12184 case NEON::BI__builtin_neon_vst3_v:
12185 case NEON::BI__builtin_neon_vst3q_v: {
12186 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12187 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
12188 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
12189 Ops, "");
12190 }
12191 case NEON::BI__builtin_neon_vst3_lane_v:
12192 case NEON::BI__builtin_neon_vst3q_lane_v: {
12193 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12194 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
12195 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
12196 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
12197 Ops, "");
12198 }
12199 case NEON::BI__builtin_neon_vst4_v:
12200 case NEON::BI__builtin_neon_vst4q_v: {
12201 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12202 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
12203 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
12204 Ops, "");
12205 }
12206 case NEON::BI__builtin_neon_vst4_lane_v:
12207 case NEON::BI__builtin_neon_vst4q_lane_v: {
12208 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12209 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
12210 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
12211 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
12212 Ops, "");
12213 }
12214 case NEON::BI__builtin_neon_vtrn_v:
12215 case NEON::BI__builtin_neon_vtrnq_v: {
12216 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12217 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12218 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12219 Value *SV = nullptr;
12220
12221 for (unsigned vi = 0; vi != 2; ++vi) {
12222 SmallVector<int, 16> Indices;
12223 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
12224 Indices.push_back(i+vi);
12225 Indices.push_back(i+e+vi);
12226 }
12227 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
12228 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
12229 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
12230 }
12231 return SV;
12232 }
12233 case NEON::BI__builtin_neon_vuzp_v:
12234 case NEON::BI__builtin_neon_vuzpq_v: {
12235 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12236 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12237 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12238 Value *SV = nullptr;
12239
12240 for (unsigned vi = 0; vi != 2; ++vi) {
12241 SmallVector<int, 16> Indices;
12242 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
12243 Indices.push_back(2*i+vi);
12244
12245 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
12246 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
12247 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
12248 }
12249 return SV;
12250 }
12251 case NEON::BI__builtin_neon_vzip_v:
12252 case NEON::BI__builtin_neon_vzipq_v: {
12253 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12254 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12255 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12256 Value *SV = nullptr;
12257
12258 for (unsigned vi = 0; vi != 2; ++vi) {
12259 SmallVector<int, 16> Indices;
12260 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
12261 Indices.push_back((i + vi*e) >> 1);
12262 Indices.push_back(((i + vi*e) >> 1)+e);
12263 }
12264 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
12265 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
12266 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
12267 }
12268 return SV;
12269 }
12270 case NEON::BI__builtin_neon_vqtbl1q_v: {
12271 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
12272 Ops, "vtbl1");
12273 }
12274 case NEON::BI__builtin_neon_vqtbl2q_v: {
12275 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
12276 Ops, "vtbl2");
12277 }
12278 case NEON::BI__builtin_neon_vqtbl3q_v: {
12279 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
12280 Ops, "vtbl3");
12281 }
12282 case NEON::BI__builtin_neon_vqtbl4q_v: {
12283 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
12284 Ops, "vtbl4");
12285 }
12286 case NEON::BI__builtin_neon_vqtbx1q_v: {
12287 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
12288 Ops, "vtbx1");
12289 }
12290 case NEON::BI__builtin_neon_vqtbx2q_v: {
12291 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
12292 Ops, "vtbx2");
12293 }
12294 case NEON::BI__builtin_neon_vqtbx3q_v: {
12295 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
12296 Ops, "vtbx3");
12297 }
12298 case NEON::BI__builtin_neon_vqtbx4q_v: {
12299 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
12300 Ops, "vtbx4");
12301 }
12302 case NEON::BI__builtin_neon_vsqadd_v:
12303 case NEON::BI__builtin_neon_vsqaddq_v: {
12304 Int = Intrinsic::aarch64_neon_usqadd;
12305 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
12306 }
12307 case NEON::BI__builtin_neon_vuqadd_v:
12308 case NEON::BI__builtin_neon_vuqaddq_v: {
12309 Int = Intrinsic::aarch64_neon_suqadd;
12310 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
12311 }
12312 }
12313}
12314
12315Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
12316 const CallExpr *E) {
12317 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12321, __extension__ __PRETTY_FUNCTION__
))
12318 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12321, __extension__ __PRETTY_FUNCTION__
))
12319 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12321, __extension__ __PRETTY_FUNCTION__
))
12320 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12321, __extension__ __PRETTY_FUNCTION__
))
12321 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12321, __extension__ __PRETTY_FUNCTION__
))
;
12322
12323 // A sequence number, injected into IR builtin functions, to
12324 // prevent CSE given the only difference of the function
12325 // may just be the debuginfo metadata.
12326 static uint32_t BuiltinSeqNum;
12327
12328 switch (BuiltinID) {
12329 default:
12330 llvm_unreachable("Unexpected BPF builtin")::llvm::llvm_unreachable_internal("Unexpected BPF builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12330)
;
12331 case BPF::BI__builtin_preserve_field_info: {
12332 const Expr *Arg = E->getArg(0);
12333 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
12334
12335 if (!getDebugInfo()) {
12336 CGM.Error(E->getExprLoc(),
12337 "using __builtin_preserve_field_info() without -g");
12338 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
12339 : EmitLValue(Arg).getPointer(*this);
12340 }
12341
12342 // Enable underlying preserve_*_access_index() generation.
12343 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
12344 IsInPreservedAIRegion = true;
12345 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
12346 : EmitLValue(Arg).getPointer(*this);
12347 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
12348
12349 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12350 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
12351
12352 // Built the IR for the preserve_field_info intrinsic.
12353 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
12354 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
12355 {FieldAddr->getType()});
12356 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
12357 }
12358 case BPF::BI__builtin_btf_type_id:
12359 case BPF::BI__builtin_preserve_type_info: {
12360 if (!getDebugInfo()) {
12361 CGM.Error(E->getExprLoc(), "using builtin function without -g");
12362 return nullptr;
12363 }
12364
12365 const Expr *Arg0 = E->getArg(0);
12366 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12367 Arg0->getType(), Arg0->getExprLoc());
12368
12369 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12370 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12371 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12372
12373 llvm::Function *FnDecl;
12374 if (BuiltinID == BPF::BI__builtin_btf_type_id)
12375 FnDecl = llvm::Intrinsic::getDeclaration(
12376 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
12377 else
12378 FnDecl = llvm::Intrinsic::getDeclaration(
12379 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
12380 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
12381 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12382 return Fn;
12383 }
12384 case BPF::BI__builtin_preserve_enum_value: {
12385 if (!getDebugInfo()) {
12386 CGM.Error(E->getExprLoc(), "using builtin function without -g");
12387 return nullptr;
12388 }
12389
12390 const Expr *Arg0 = E->getArg(0);
12391 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12392 Arg0->getType(), Arg0->getExprLoc());
12393
12394 // Find enumerator
12395 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
12396 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
12397 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
12398 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
12399
12400 auto &InitVal = Enumerator->getInitVal();
12401 std::string InitValStr;
12402 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX(9223372036854775807L)))
12403 InitValStr = std::to_string(InitVal.getSExtValue());
12404 else
12405 InitValStr = std::to_string(InitVal.getZExtValue());
12406 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
12407 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
12408
12409 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12410 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12411 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12412
12413 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
12414 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
12415 CallInst *Fn =
12416 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
12417 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12418 return Fn;
12419 }
12420 }
12421}
12422
12423llvm::Value *CodeGenFunction::
12424BuildVector(ArrayRef<llvm::Value*> Ops) {
12425 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12426, __extension__ __PRETTY_FUNCTION__
))
12426 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12426, __extension__ __PRETTY_FUNCTION__
))
;
12427 bool AllConstants = true;
12428 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
12429 AllConstants &= isa<Constant>(Ops[i]);
12430
12431 // If this is a constant vector, create a ConstantVector.
12432 if (AllConstants) {
12433 SmallVector<llvm::Constant*, 16> CstOps;
12434 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12435 CstOps.push_back(cast<Constant>(Ops[i]));
12436 return llvm::ConstantVector::get(CstOps);
12437 }
12438
12439 // Otherwise, insertelement the values to build the vector.
12440 Value *Result = llvm::PoisonValue::get(
12441 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
12442
12443 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12444 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i));
12445
12446 return Result;
12447}
12448
12449// Convert the mask from an integer type to a vector of i1.
12450static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
12451 unsigned NumElts) {
12452
12453 auto *MaskTy = llvm::FixedVectorType::get(
12454 CGF.Builder.getInt1Ty(),
12455 cast<IntegerType>(Mask->getType())->getBitWidth());
12456 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
12457
12458 // If we have less than 8 elements, then the starting mask was an i8 and
12459 // we need to extract down to the right number of elements.
12460 if (NumElts < 8) {
12461 int Indices[4];
12462 for (unsigned i = 0; i != NumElts; ++i)
12463 Indices[i] = i;
12464 MaskVec = CGF.Builder.CreateShuffleVector(
12465 MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract");
12466 }
12467 return MaskVec;
12468}
12469
12470static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12471 Align Alignment) {
12472 // Cast the pointer to right type.
12473 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12474 llvm::PointerType::getUnqual(Ops[1]->getType()));
12475
12476 Value *MaskVec = getMaskVecValue(
12477 CGF, Ops[2],
12478 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
12479
12480 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
12481}
12482
12483static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12484 Align Alignment) {
12485 // Cast the pointer to right type.
12486 llvm::Type *Ty = Ops[1]->getType();
12487 Value *Ptr =
12488 CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12489
12490 Value *MaskVec = getMaskVecValue(
12491 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
12492
12493 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
12494}
12495
12496static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
12497 ArrayRef<Value *> Ops) {
12498 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
12499 llvm::Type *PtrTy = ResultTy->getElementType();
12500
12501 // Cast the pointer to element type.
12502 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12503 llvm::PointerType::getUnqual(PtrTy));
12504
12505 Value *MaskVec = getMaskVecValue(
12506 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
12507
12508 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
12509 ResultTy);
12510 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
12511}
12512
12513static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
12514 ArrayRef<Value *> Ops,
12515 bool IsCompress) {
12516 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12517
12518 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12519
12520 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
12521 : Intrinsic::x86_avx512_mask_expand;
12522 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
12523 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
12524}
12525
12526static Value *EmitX86CompressStore(CodeGenFunction &CGF,
12527 ArrayRef<Value *> Ops) {
12528 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12529 llvm::Type *PtrTy = ResultTy->getElementType();
12530
12531 // Cast the pointer to element type.
12532 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12533 llvm::PointerType::getUnqual(PtrTy));
12534
12535 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12536
12537 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
12538 ResultTy);
12539 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
12540}
12541
12542static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
12543 ArrayRef<Value *> Ops,
12544 bool InvertLHS = false) {
12545 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12546 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
12547 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
12548
12549 if (InvertLHS)
12550 LHS = CGF.Builder.CreateNot(LHS);
12551
12552 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
12553 Ops[0]->getType());
12554}
12555
12556static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
12557 Value *Amt, bool IsRight) {
12558 llvm::Type *Ty = Op0->getType();
12559
12560 // Amount may be scalar immediate, in which case create a splat vector.
12561 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
12562 // we only care about the lowest log2 bits anyway.
12563 if (Amt->getType() != Ty) {
12564 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
12565 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
12566 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
12567 }
12568
12569 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
12570 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
12571 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
12572}
12573
12574static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12575 bool IsSigned) {
12576 Value *Op0 = Ops[0];
12577 Value *Op1 = Ops[1];
12578 llvm::Type *Ty = Op0->getType();
12579 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
12580
12581 CmpInst::Predicate Pred;
12582 switch (Imm) {
12583 case 0x0:
12584 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12585 break;
12586 case 0x1:
12587 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
12588 break;
12589 case 0x2:
12590 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12591 break;
12592 case 0x3:
12593 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12594 break;
12595 case 0x4:
12596 Pred = ICmpInst::ICMP_EQ;
12597 break;
12598 case 0x5:
12599 Pred = ICmpInst::ICMP_NE;
12600 break;
12601 case 0x6:
12602 return llvm::Constant::getNullValue(Ty); // FALSE
12603 case 0x7:
12604 return llvm::Constant::getAllOnesValue(Ty); // TRUE
12605 default:
12606 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "clang/lib/CodeGen/CGBuiltin.cpp", 12606)
;
12607 }
12608
12609 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
12610 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
12611 return Res;
12612}
12613
12614static Value *EmitX86Select(CodeGenFunction &CGF,
12615 Value *Mask, Value *Op0, Value *Op1) {
12616
12617 // If the mask is all ones just return first argument.
12618 if (const auto *C = dyn_cast<Constant>(Mask))
12619 if (C->isAllOnesValue())
12620 return Op0;
12621
12622 Mask = getMaskVecValue(
12623 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
12624
12625 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12626}
12627
12628static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
12629 Value *Mask, Value *Op0, Value *Op1) {
12630 // If the mask is all ones just return first argument.
12631 if (const auto *C = dyn_cast<Constant>(Mask))
12632 if (C->isAllOnesValue())
12633 return Op0;
12634
12635 auto *MaskTy = llvm::FixedVectorType::get(
12636 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
12637 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
12638 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
12639 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12640}
12641
12642static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
12643 unsigned NumElts, Value *MaskIn) {
12644 if (MaskIn) {
12645 const auto *C = dyn_cast<Constant>(MaskIn);
12646 if (!C || !C->isAllOnesValue())
12647 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
12648 }
12649
12650 if (NumElts < 8) {
12651 int Indices[8];
12652 for (unsigned i = 0; i != NumElts; ++i)
12653 Indices[i] = i;
12654 for (unsigned i = NumElts; i != 8; ++i)
12655 Indices[i] = i % NumElts + NumElts;
12656 Cmp = CGF.Builder.CreateShuffleVector(
12657 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
12658 }
12659
12660 return CGF.Builder.CreateBitCast(Cmp,
12661 IntegerType::get(CGF.getLLVMContext(),
12662 std::max(NumElts, 8U)));
12663}
12664
12665static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12666 bool Signed, ArrayRef<Value *> Ops) {
12667 assert((Ops.size() == 2 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12668, __extension__ __PRETTY_FUNCTION__
))
12668 "Unexpected number of arguments")(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12668, __extension__ __PRETTY_FUNCTION__
))
;
12669 unsigned NumElts =
12670 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12671 Value *Cmp;
12672
12673 if (CC == 3) {
12674 Cmp = Constant::getNullValue(
12675 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12676 } else if (CC == 7) {
12677 Cmp = Constant::getAllOnesValue(
12678 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12679 } else {
12680 ICmpInst::Predicate Pred;
12681 switch (CC) {
12682 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12682)
;
12683 case 0: Pred = ICmpInst::ICMP_EQ; break;
12684 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12685 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12686 case 4: Pred = ICmpInst::ICMP_NE; break;
12687 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12688 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12689 }
12690 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12691 }
12692
12693 Value *MaskIn = nullptr;
12694 if (Ops.size() == 4)
12695 MaskIn = Ops[3];
12696
12697 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12698}
12699
12700static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12701 Value *Zero = Constant::getNullValue(In->getType());
12702 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12703}
12704
12705static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12706 ArrayRef<Value *> Ops, bool IsSigned) {
12707 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12708 llvm::Type *Ty = Ops[1]->getType();
12709
12710 Value *Res;
12711 if (Rnd != 4) {
12712 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12713 : Intrinsic::x86_avx512_uitofp_round;
12714 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12715 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12716 } else {
12717 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12718 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12719 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12720 }
12721
12722 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12723}
12724
12725// Lowers X86 FMA intrinsics to IR.
12726static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12727 ArrayRef<Value *> Ops, unsigned BuiltinID,
12728 bool IsAddSub) {
12729
12730 bool Subtract = false;
12731 Intrinsic::ID IID = Intrinsic::not_intrinsic;
12732 switch (BuiltinID) {
12733 default: break;
12734 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12735 Subtract = true;
12736 [[fallthrough]];
12737 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12738 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12739 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12740 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12741 break;
12742 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12743 Subtract = true;
12744 [[fallthrough]];
12745 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12746 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12747 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12748 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12749 break;
12750 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12751 Subtract = true;
12752 [[fallthrough]];
12753 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12754 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12755 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12756 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12757 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12758 Subtract = true;
12759 [[fallthrough]];
12760 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12761 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12762 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12763 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12764 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12765 Subtract = true;
12766 [[fallthrough]];
12767 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12768 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12769 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12770 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12771 break;
12772 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12773 Subtract = true;
12774 [[fallthrough]];
12775 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12776 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12777 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12778 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12779 break;
12780 }
12781
12782 Value *A = Ops[0];
12783 Value *B = Ops[1];
12784 Value *C = Ops[2];
12785
12786 if (Subtract)
12787 C = CGF.Builder.CreateFNeg(C);
12788
12789 Value *Res;
12790
12791 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12792 if (IID != Intrinsic::not_intrinsic &&
12793 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12794 IsAddSub)) {
12795 Function *Intr = CGF.CGM.getIntrinsic(IID);
12796 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12797 } else {
12798 llvm::Type *Ty = A->getType();
12799 Function *FMA;
12800 if (CGF.Builder.getIsFPConstrained()) {
12801 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12802 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12803 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12804 } else {
12805 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12806 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12807 }
12808 }
12809
12810 // Handle any required masking.
12811 Value *MaskFalseVal = nullptr;
12812 switch (BuiltinID) {
12813 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12814 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12815 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12816 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12817 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12818 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12819 MaskFalseVal = Ops[0];
12820 break;
12821 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12822 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12823 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12824 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12825 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12826 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12827 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12828 break;
12829 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12830 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12831 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12832 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12833 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12834 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12835 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12836 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12837 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12838 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12839 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12840 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12841 MaskFalseVal = Ops[2];
12842 break;
12843 }
12844
12845 if (MaskFalseVal)
12846 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12847
12848 return Res;
12849}
12850
12851static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12852 MutableArrayRef<Value *> Ops, Value *Upper,
12853 bool ZeroMask = false, unsigned PTIdx = 0,
12854 bool NegAcc = false) {
12855 unsigned Rnd = 4;
12856 if (Ops.size() > 4)
12857 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12858
12859 if (NegAcc)
12860 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12861
12862 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12863 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12864 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12865 Value *Res;
12866 if (Rnd != 4) {
12867 Intrinsic::ID IID;
12868
12869 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12870 case 16:
12871 IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12872 break;
12873 case 32:
12874 IID = Intrinsic::x86_avx512_vfmadd_f32;
12875 break;
12876 case 64:
12877 IID = Intrinsic::x86_avx512_vfmadd_f64;
12878 break;
12879 default:
12880 llvm_unreachable("Unexpected size")::llvm::llvm_unreachable_internal("Unexpected size", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12880)
;
12881 }
12882 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12883 {Ops[0], Ops[1], Ops[2], Ops[4]});
12884 } else if (CGF.Builder.getIsFPConstrained()) {
12885 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12886 Function *FMA = CGF.CGM.getIntrinsic(
12887 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12888 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12889 } else {
12890 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12891 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12892 }
12893 // If we have more than 3 arguments, we need to do masking.
12894 if (Ops.size() > 3) {
12895 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12896 : Ops[PTIdx];
12897
12898 // If we negated the accumulator and the its the PassThru value we need to
12899 // bypass the negate. Conveniently Upper should be the same thing in this
12900 // case.
12901 if (NegAcc && PTIdx == 2)
12902 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12903
12904 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12905 }
12906 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12907}
12908
12909static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12910 ArrayRef<Value *> Ops) {
12911 llvm::Type *Ty = Ops[0]->getType();
12912 // Arguments have a vXi32 type so cast to vXi64.
12913 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12914 Ty->getPrimitiveSizeInBits() / 64);
12915 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12916 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12917
12918 if (IsSigned) {
12919 // Shift left then arithmetic shift right.
12920 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12921 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12922 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12923 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12924 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12925 } else {
12926 // Clear the upper bits.
12927 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12928 LHS = CGF.Builder.CreateAnd(LHS, Mask);
12929 RHS = CGF.Builder.CreateAnd(RHS, Mask);
12930 }
12931
12932 return CGF.Builder.CreateMul(LHS, RHS);
12933}
12934
12935// Emit a masked pternlog intrinsic. This only exists because the header has to
12936// use a macro and we aren't able to pass the input argument to a pternlog
12937// builtin and a select builtin without evaluating it twice.
12938static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12939 ArrayRef<Value *> Ops) {
12940 llvm::Type *Ty = Ops[0]->getType();
12941
12942 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12943 unsigned EltWidth = Ty->getScalarSizeInBits();
12944 Intrinsic::ID IID;
12945 if (VecWidth == 128 && EltWidth == 32)
12946 IID = Intrinsic::x86_avx512_pternlog_d_128;
12947 else if (VecWidth == 256 && EltWidth == 32)
12948 IID = Intrinsic::x86_avx512_pternlog_d_256;
12949 else if (VecWidth == 512 && EltWidth == 32)
12950 IID = Intrinsic::x86_avx512_pternlog_d_512;
12951 else if (VecWidth == 128 && EltWidth == 64)
12952 IID = Intrinsic::x86_avx512_pternlog_q_128;
12953 else if (VecWidth == 256 && EltWidth == 64)
12954 IID = Intrinsic::x86_avx512_pternlog_q_256;
12955 else if (VecWidth == 512 && EltWidth == 64)
12956 IID = Intrinsic::x86_avx512_pternlog_q_512;
12957 else
12958 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12958)
;
12959
12960 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12961 Ops.drop_back());
12962 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12963 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12964}
12965
12966static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12967 llvm::Type *DstTy) {
12968 unsigned NumberOfElements =
12969 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12970 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12971 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12972}
12973
12974Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12975 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12976 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12977 return EmitX86CpuIs(CPUStr);
12978}
12979
12980// Convert F16 halfs to floats.
12981static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12982 ArrayRef<Value *> Ops,
12983 llvm::Type *DstTy) {
12984 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12985, __extension__ __PRETTY_FUNCTION__
))
12985 "Unknown cvtph2ps intrinsic")(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12985, __extension__ __PRETTY_FUNCTION__
))
;
12986
12987 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12988 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12989 Function *F =
12990 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12991 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12992 }
12993
12994 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12995 Value *Src = Ops[0];
12996
12997 // Extract the subvector.
12998 if (NumDstElts !=
12999 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
13000 assert(NumDstElts == 4 && "Unexpected vector size")(static_cast <bool> (NumDstElts == 4 && "Unexpected vector size"
) ? void (0) : __assert_fail ("NumDstElts == 4 && \"Unexpected vector size\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13000, __extension__ __PRETTY_FUNCTION__
))
;
13001 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
13002 }
13003
13004 // Bitcast from vXi16 to vXf16.
13005 auto *HalfTy = llvm::FixedVectorType::get(
13006 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
13007 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
13008
13009 // Perform the fp-extension.
13010 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
13011
13012 if (Ops.size() >= 3)
13013 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
13014 return Res;
13015}
13016
13017Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
13018
13019 llvm::Type *Int32Ty = Builder.getInt32Ty();
13020
13021 // Matching the struct layout from the compiler-rt/libgcc structure that is
13022 // filled in:
13023 // unsigned int __cpu_vendor;
13024 // unsigned int __cpu_type;
13025 // unsigned int __cpu_subtype;
13026 // unsigned int __cpu_features[1];
13027 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
13028 llvm::ArrayType::get(Int32Ty, 1));
13029
13030 // Grab the global __cpu_model.
13031 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
13032 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
13033
13034 // Calculate the index needed to access the correct field based on the
13035 // range. Also adjust the expected value.
13036 unsigned Index;
13037 unsigned Value;
13038 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
13039#define X86_VENDOR(ENUM, STRING) \
13040 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
13041#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
13042 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
13043#define X86_CPU_TYPE(ENUM, STR) \
13044 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
13045#define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) \
13046 .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
13047#define X86_CPU_SUBTYPE(ENUM, STR) \
13048 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
13049#include "llvm/TargetParser/X86TargetParser.def"
13050 .Default({0, 0});
13051 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13051, __extension__ __PRETTY_FUNCTION__
))
;
13052
13053 // Grab the appropriate field from __cpu_model.
13054 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
13055 ConstantInt::get(Int32Ty, Index)};
13056 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
13057 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
13058 CharUnits::fromQuantity(4));
13059
13060 // Check the value of the field against the requested value.
13061 return Builder.CreateICmpEQ(CpuValue,
13062 llvm::ConstantInt::get(Int32Ty, Value));
13063}
13064
13065Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
13066 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
13067 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
13068 return EmitX86CpuSupports(FeatureStr);
13069}
13070
13071Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
13072 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
13073}
13074
13075llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
13076 uint32_t Features1 = Lo_32(FeaturesMask);
13077 uint32_t Features2 = Hi_32(FeaturesMask);
13078
13079 Value *Result = Builder.getTrue();
13080
13081 if (Features1 != 0) {
13082 // Matching the struct layout from the compiler-rt/libgcc structure that is
13083 // filled in:
13084 // unsigned int __cpu_vendor;
13085 // unsigned int __cpu_type;
13086 // unsigned int __cpu_subtype;
13087 // unsigned int __cpu_features[1];
13088 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
13089 llvm::ArrayType::get(Int32Ty, 1));
13090
13091 // Grab the global __cpu_model.
13092 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
13093 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
13094
13095 // Grab the first (0th) element from the field __cpu_features off of the
13096 // global in the struct STy.
13097 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
13098 Builder.getInt32(0)};
13099 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
13100 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
13101 CharUnits::fromQuantity(4));
13102
13103 // Check the value of the bit corresponding to the feature requested.
13104 Value *Mask = Builder.getInt32(Features1);
13105 Value *Bitset = Builder.CreateAnd(Features, Mask);
13106 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13107 Result = Builder.CreateAnd(Result, Cmp);
13108 }
13109
13110 if (Features2 != 0) {
13111 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
13112 "__cpu_features2");
13113 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
13114
13115 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
13116 CharUnits::fromQuantity(4));
13117
13118 // Check the value of the bit corresponding to the feature requested.
13119 Value *Mask = Builder.getInt32(Features2);
13120 Value *Bitset = Builder.CreateAnd(Features, Mask);
13121 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13122 Result = Builder.CreateAnd(Result, Cmp);
13123 }
13124
13125 return Result;
13126}
13127
13128Value *CodeGenFunction::EmitAArch64CpuInit() {
13129 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
13130 llvm::FunctionCallee Func =
13131 CGM.CreateRuntimeFunction(FTy, "init_cpu_features_resolver");
13132 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
13133 cast<llvm::GlobalValue>(Func.getCallee())
13134 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
13135 return Builder.CreateCall(Func);
13136}
13137
13138Value *CodeGenFunction::EmitX86CpuInit() {
13139 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
13140 /*Variadic*/ false);
13141 llvm::FunctionCallee Func =
13142 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
13143 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
13144 cast<llvm::GlobalValue>(Func.getCallee())
13145 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
13146 return Builder.CreateCall(Func);
13147}
13148
13149llvm::Value *
13150CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) {
13151 uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs);
13152 Value *Result = Builder.getTrue();
13153 if (FeaturesMask != 0) {
13154 // Get features from structure in runtime library
13155 // struct {
13156 // unsigned long long features;
13157 // } __aarch64_cpu_features;
13158 llvm::Type *STy = llvm::StructType::get(Int64Ty);
13159 llvm::Constant *AArch64CPUFeatures =
13160 CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features");
13161 cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true);
13162 llvm::Value *CpuFeatures = Builder.CreateGEP(
13163 STy, AArch64CPUFeatures,
13164 {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)});
13165 Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures,
13166 CharUnits::fromQuantity(8));
13167 Value *Mask = Builder.getInt64(FeaturesMask);
13168 Value *Bitset = Builder.CreateAnd(Features, Mask);
13169 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13170 Result = Builder.CreateAnd(Result, Cmp);
13171 }
13172 return Result;
13173}
13174
13175Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
13176 const CallExpr *E) {
13177 if (BuiltinID == X86::BI__builtin_cpu_is)
13178 return EmitX86CpuIs(E);
13179 if (BuiltinID == X86::BI__builtin_cpu_supports)
13180 return EmitX86CpuSupports(E);
13181 if (BuiltinID == X86::BI__builtin_cpu_init)
13182 return EmitX86CpuInit();
13183
13184 // Handle MSVC intrinsics before argument evaluation to prevent double
13185 // evaluation.
13186 if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
13187 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
13188
13189 SmallVector<Value*, 4> Ops;
13190 bool IsMaskFCmp = false;
13191 bool IsConjFMA = false;
13192
13193 // Find out if any arguments are required to be integer constant expressions.
13194 unsigned ICEArguments = 0;
13195 ASTContext::GetBuiltinTypeError Error;
13196 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
13197 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13197, __extension__ __PRETTY_FUNCTION__
))
;
13198
13199 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
13200 // If this is a normal argument, just emit it as a scalar.
13201 if ((ICEArguments & (1 << i)) == 0) {
13202 Ops.push_back(EmitScalarExpr(E->getArg(i)));
13203 continue;
13204 }
13205
13206 // If this is required to be a constant, constant fold it so that we know
13207 // that the generated intrinsic gets a ConstantInt.
13208 Ops.push_back(llvm::ConstantInt::get(
13209 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
13210 }
13211
13212 // These exist so that the builtin that takes an immediate can be bounds
13213 // checked by clang to avoid passing bad immediates to the backend. Since
13214 // AVX has a larger immediate than SSE we would need separate builtins to
13215 // do the different bounds checking. Rather than create a clang specific
13216 // SSE only builtin, this implements eight separate builtins to match gcc
13217 // implementation.
13218 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
13219 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
13220 llvm::Function *F = CGM.getIntrinsic(ID);
13221 return Builder.CreateCall(F, Ops);
13222 };
13223
13224 // For the vector forms of FP comparisons, translate the builtins directly to
13225 // IR.
13226 // TODO: The builtins could be removed if the SSE header files used vector
13227 // extension comparisons directly (vector ordered/unordered may need
13228 // additional support via __builtin_isnan()).
13229 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
13230 bool IsSignaling) {
13231 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13232 Value *Cmp;
13233 if (IsSignaling)
13234 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
13235 else
13236 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
13237 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
13238 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
13239 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
13240 return Builder.CreateBitCast(Sext, FPVecTy);
13241 };
13242
13243 switch (BuiltinID) {
13244 default: return nullptr;
13245 case X86::BI_mm_prefetch: {
13246 Value *Address = Ops[0];
13247 ConstantInt *C = cast<ConstantInt>(Ops[1]);
13248 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
13249 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
13250 Value *Data = ConstantInt::get(Int32Ty, 1);
13251 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
13252 return Builder.CreateCall(F, {Address, RW, Locality, Data});
13253 }
13254 case X86::BI_mm_clflush: {
13255 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
13256 Ops[0]);
13257 }
13258 case X86::BI_mm_lfence: {
13259 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
13260 }
13261 case X86::BI_mm_mfence: {
13262 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
13263 }
13264 case X86::BI_mm_sfence: {
13265 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
13266 }
13267 case X86::BI_mm_pause: {
13268 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
13269 }
13270 case X86::BI__rdtsc: {
13271 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
13272 }
13273 case X86::BI__builtin_ia32_rdtscp: {
13274 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
13275 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13276 Ops[0]);
13277 return Builder.CreateExtractValue(Call, 0);
13278 }
13279 case X86::BI__builtin_ia32_lzcnt_u16:
13280 case X86::BI__builtin_ia32_lzcnt_u32:
13281 case X86::BI__builtin_ia32_lzcnt_u64: {
13282 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13283 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13284 }
13285 case X86::BI__builtin_ia32_tzcnt_u16:
13286 case X86::BI__builtin_ia32_tzcnt_u32:
13287 case X86::BI__builtin_ia32_tzcnt_u64: {
13288 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
13289 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13290 }
13291 case X86::BI__builtin_ia32_undef128:
13292 case X86::BI__builtin_ia32_undef256:
13293 case X86::BI__builtin_ia32_undef512:
13294 // The x86 definition of "undef" is not the same as the LLVM definition
13295 // (PR32176). We leave optimizing away an unnecessary zero constant to the
13296 // IR optimizer and backend.
13297 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
13298 // value, we should use that here instead of a zero.
13299 return llvm::Constant::getNullValue(ConvertType(E->getType()));
13300 case X86::BI__builtin_ia32_vec_init_v8qi:
13301 case X86::BI__builtin_ia32_vec_init_v4hi:
13302 case X86::BI__builtin_ia32_vec_init_v2si:
13303 return Builder.CreateBitCast(BuildVector(Ops),
13304 llvm::Type::getX86_MMXTy(getLLVMContext()));
13305 case X86::BI__builtin_ia32_vec_ext_v2si:
13306 case X86::BI__builtin_ia32_vec_ext_v16qi:
13307 case X86::BI__builtin_ia32_vec_ext_v8hi:
13308 case X86::BI__builtin_ia32_vec_ext_v4si:
13309 case X86::BI__builtin_ia32_vec_ext_v4sf:
13310 case X86::BI__builtin_ia32_vec_ext_v2di:
13311 case X86::BI__builtin_ia32_vec_ext_v32qi:
13312 case X86::BI__builtin_ia32_vec_ext_v16hi:
13313 case X86::BI__builtin_ia32_vec_ext_v8si:
13314 case X86::BI__builtin_ia32_vec_ext_v4di: {
13315 unsigned NumElts =
13316 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13317 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13318 Index &= NumElts - 1;
13319 // These builtins exist so we can ensure the index is an ICE and in range.
13320 // Otherwise we could just do this in the header file.
13321 return Builder.CreateExtractElement(Ops[0], Index);
13322 }
13323 case X86::BI__builtin_ia32_vec_set_v16qi:
13324 case X86::BI__builtin_ia32_vec_set_v8hi:
13325 case X86::BI__builtin_ia32_vec_set_v4si:
13326 case X86::BI__builtin_ia32_vec_set_v2di:
13327 case X86::BI__builtin_ia32_vec_set_v32qi:
13328 case X86::BI__builtin_ia32_vec_set_v16hi:
13329 case X86::BI__builtin_ia32_vec_set_v8si:
13330 case X86::BI__builtin_ia32_vec_set_v4di: {
13331 unsigned NumElts =
13332 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13333 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13334 Index &= NumElts - 1;
13335 // These builtins exist so we can ensure the index is an ICE and in range.
13336 // Otherwise we could just do this in the header file.
13337 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
13338 }
13339 case X86::BI_mm_setcsr:
13340 case X86::BI__builtin_ia32_ldmxcsr: {
13341 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
13342 Builder.CreateStore(Ops[0], Tmp);
13343 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
13344 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
13345 }
13346 case X86::BI_mm_getcsr:
13347 case X86::BI__builtin_ia32_stmxcsr: {
13348 Address Tmp = CreateMemTemp(E->getType());
13349 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
13350 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
13351 return Builder.CreateLoad(Tmp, "stmxcsr");
13352 }
13353 case X86::BI__builtin_ia32_xsave:
13354 case X86::BI__builtin_ia32_xsave64:
13355 case X86::BI__builtin_ia32_xrstor:
13356 case X86::BI__builtin_ia32_xrstor64:
13357 case X86::BI__builtin_ia32_xsaveopt:
13358 case X86::BI__builtin_ia32_xsaveopt64:
13359 case X86::BI__builtin_ia32_xrstors:
13360 case X86::BI__builtin_ia32_xrstors64:
13361 case X86::BI__builtin_ia32_xsavec:
13362 case X86::BI__builtin_ia32_xsavec64:
13363 case X86::BI__builtin_ia32_xsaves:
13364 case X86::BI__builtin_ia32_xsaves64:
13365 case X86::BI__builtin_ia32_xsetbv:
13366 case X86::BI_xsetbv: {
13367 Intrinsic::ID ID;
13368#define INTRINSIC_X86_XSAVE_ID(NAME) \
13369 case X86::BI__builtin_ia32_##NAME: \
13370 ID = Intrinsic::x86_##NAME; \
13371 break
13372 switch (BuiltinID) {
13373 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13373)
;
13374 INTRINSIC_X86_XSAVE_ID(xsave);
13375 INTRINSIC_X86_XSAVE_ID(xsave64);
13376 INTRINSIC_X86_XSAVE_ID(xrstor);
13377 INTRINSIC_X86_XSAVE_ID(xrstor64);
13378 INTRINSIC_X86_XSAVE_ID(xsaveopt);
13379 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
13380 INTRINSIC_X86_XSAVE_ID(xrstors);
13381 INTRINSIC_X86_XSAVE_ID(xrstors64);
13382 INTRINSIC_X86_XSAVE_ID(xsavec);
13383 INTRINSIC_X86_XSAVE_ID(xsavec64);
13384 INTRINSIC_X86_XSAVE_ID(xsaves);
13385 INTRINSIC_X86_XSAVE_ID(xsaves64);
13386 INTRINSIC_X86_XSAVE_ID(xsetbv);
13387 case X86::BI_xsetbv:
13388 ID = Intrinsic::x86_xsetbv;
13389 break;
13390 }
13391#undef INTRINSIC_X86_XSAVE_ID
13392 Value *Mhi = Builder.CreateTrunc(
13393 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
13394 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
13395 Ops[1] = Mhi;
13396 Ops.push_back(Mlo);
13397 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13398 }
13399 case X86::BI__builtin_ia32_xgetbv:
13400 case X86::BI_xgetbv:
13401 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
13402 case X86::BI__builtin_ia32_storedqudi128_mask:
13403 case X86::BI__builtin_ia32_storedqusi128_mask:
13404 case X86::BI__builtin_ia32_storedquhi128_mask:
13405 case X86::BI__builtin_ia32_storedquqi128_mask:
13406 case X86::BI__builtin_ia32_storeupd128_mask:
13407 case X86::BI__builtin_ia32_storeups128_mask:
13408 case X86::BI__builtin_ia32_storedqudi256_mask:
13409 case X86::BI__builtin_ia32_storedqusi256_mask:
13410 case X86::BI__builtin_ia32_storedquhi256_mask:
13411 case X86::BI__builtin_ia32_storedquqi256_mask:
13412 case X86::BI__builtin_ia32_storeupd256_mask:
13413 case X86::BI__builtin_ia32_storeups256_mask:
13414 case X86::BI__builtin_ia32_storedqudi512_mask:
13415 case X86::BI__builtin_ia32_storedqusi512_mask:
13416 case X86::BI__builtin_ia32_storedquhi512_mask:
13417 case X86::BI__builtin_ia32_storedquqi512_mask:
13418 case X86::BI__builtin_ia32_storeupd512_mask:
13419 case X86::BI__builtin_ia32_storeups512_mask:
13420 return EmitX86MaskedStore(*this, Ops, Align(1));
13421
13422 case X86::BI__builtin_ia32_storesh128_mask:
13423 case X86::BI__builtin_ia32_storess128_mask:
13424 case X86::BI__builtin_ia32_storesd128_mask:
13425 return EmitX86MaskedStore(*this, Ops, Align(1));
13426
13427 case X86::BI__builtin_ia32_vpopcntb_128:
13428 case X86::BI__builtin_ia32_vpopcntd_128:
13429 case X86::BI__builtin_ia32_vpopcntq_128:
13430 case X86::BI__builtin_ia32_vpopcntw_128:
13431 case X86::BI__builtin_ia32_vpopcntb_256:
13432 case X86::BI__builtin_ia32_vpopcntd_256:
13433 case X86::BI__builtin_ia32_vpopcntq_256:
13434 case X86::BI__builtin_ia32_vpopcntw_256:
13435 case X86::BI__builtin_ia32_vpopcntb_512:
13436 case X86::BI__builtin_ia32_vpopcntd_512:
13437 case X86::BI__builtin_ia32_vpopcntq_512:
13438 case X86::BI__builtin_ia32_vpopcntw_512: {
13439 llvm::Type *ResultType = ConvertType(E->getType());
13440 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13441 return Builder.CreateCall(F, Ops);
13442 }
13443 case X86::BI__builtin_ia32_cvtmask2b128:
13444 case X86::BI__builtin_ia32_cvtmask2b256:
13445 case X86::BI__builtin_ia32_cvtmask2b512:
13446 case X86::BI__builtin_ia32_cvtmask2w128:
13447 case X86::BI__builtin_ia32_cvtmask2w256:
13448 case X86::BI__builtin_ia32_cvtmask2w512:
13449 case X86::BI__builtin_ia32_cvtmask2d128:
13450 case X86::BI__builtin_ia32_cvtmask2d256:
13451 case X86::BI__builtin_ia32_cvtmask2d512:
13452 case X86::BI__builtin_ia32_cvtmask2q128:
13453 case X86::BI__builtin_ia32_cvtmask2q256:
13454 case X86::BI__builtin_ia32_cvtmask2q512:
13455 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
13456
13457 case X86::BI__builtin_ia32_cvtb2mask128:
13458 case X86::BI__builtin_ia32_cvtb2mask256:
13459 case X86::BI__builtin_ia32_cvtb2mask512:
13460 case X86::BI__builtin_ia32_cvtw2mask128:
13461 case X86::BI__builtin_ia32_cvtw2mask256:
13462 case X86::BI__builtin_ia32_cvtw2mask512:
13463 case X86::BI__builtin_ia32_cvtd2mask128:
13464 case X86::BI__builtin_ia32_cvtd2mask256:
13465 case X86::BI__builtin_ia32_cvtd2mask512:
13466 case X86::BI__builtin_ia32_cvtq2mask128:
13467 case X86::BI__builtin_ia32_cvtq2mask256:
13468 case X86::BI__builtin_ia32_cvtq2mask512:
13469 return EmitX86ConvertToMask(*this, Ops[0]);
13470
13471 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
13472 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
13473 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
13474 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
13475 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
13476 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
13477 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
13478 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
13479 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
13480 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
13481 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
13482 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
13483 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
13484 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
13485
13486 case X86::BI__builtin_ia32_vfmaddss3:
13487 case X86::BI__builtin_ia32_vfmaddsd3:
13488 case X86::BI__builtin_ia32_vfmaddsh3_mask:
13489 case X86::BI__builtin_ia32_vfmaddss3_mask:
13490 case X86::BI__builtin_ia32_vfmaddsd3_mask:
13491 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
13492 case X86::BI__builtin_ia32_vfmaddss:
13493 case X86::BI__builtin_ia32_vfmaddsd:
13494 return EmitScalarFMAExpr(*this, E, Ops,
13495 Constant::getNullValue(Ops[0]->getType()));
13496 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
13497 case X86::BI__builtin_ia32_vfmaddss3_maskz:
13498 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
13499 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
13500 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
13501 case X86::BI__builtin_ia32_vfmaddss3_mask3:
13502 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
13503 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
13504 case X86::BI__builtin_ia32_vfmsubsh3_mask3:
13505 case X86::BI__builtin_ia32_vfmsubss3_mask3:
13506 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
13507 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
13508 /*NegAcc*/ true);
13509 case X86::BI__builtin_ia32_vfmaddph:
13510 case X86::BI__builtin_ia32_vfmaddps:
13511 case X86::BI__builtin_ia32_vfmaddpd:
13512 case X86::BI__builtin_ia32_vfmaddph256:
13513 case X86::BI__builtin_ia32_vfmaddps256:
13514 case X86::BI__builtin_ia32_vfmaddpd256:
13515 case X86::BI__builtin_ia32_vfmaddph512_mask:
13516 case X86::BI__builtin_ia32_vfmaddph512_maskz:
13517 case X86::BI__builtin_ia32_vfmaddph512_mask3:
13518 case X86::BI__builtin_ia32_vfmaddps512_mask:
13519 case X86::BI__builtin_ia32_vfmaddps512_maskz:
13520 case X86::BI__builtin_ia32_vfmaddps512_mask3:
13521 case X86::BI__builtin_ia32_vfmsubps512_mask3:
13522 case X86::BI__builtin_ia32_vfmaddpd512_mask:
13523 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
13524 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
13525 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
13526 case X86::BI__builtin_ia32_vfmsubph512_mask3:
13527 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
13528 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
13529 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13530 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13531 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13532 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
13533 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13534 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13535 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13536 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13537 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13538 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13539 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13540 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
13541
13542 case X86::BI__builtin_ia32_movdqa32store128_mask:
13543 case X86::BI__builtin_ia32_movdqa64store128_mask:
13544 case X86::BI__builtin_ia32_storeaps128_mask:
13545 case X86::BI__builtin_ia32_storeapd128_mask:
13546 case X86::BI__builtin_ia32_movdqa32store256_mask:
13547 case X86::BI__builtin_ia32_movdqa64store256_mask:
13548 case X86::BI__builtin_ia32_storeaps256_mask:
13549 case X86::BI__builtin_ia32_storeapd256_mask:
13550 case X86::BI__builtin_ia32_movdqa32store512_mask:
13551 case X86::BI__builtin_ia32_movdqa64store512_mask:
13552 case X86::BI__builtin_ia32_storeaps512_mask:
13553 case X86::BI__builtin_ia32_storeapd512_mask:
13554 return EmitX86MaskedStore(
13555 *this, Ops,
13556 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13557
13558 case X86::BI__builtin_ia32_loadups128_mask:
13559 case X86::BI__builtin_ia32_loadups256_mask:
13560 case X86::BI__builtin_ia32_loadups512_mask:
13561 case X86::BI__builtin_ia32_loadupd128_mask:
13562 case X86::BI__builtin_ia32_loadupd256_mask:
13563 case X86::BI__builtin_ia32_loadupd512_mask:
13564 case X86::BI__builtin_ia32_loaddquqi128_mask:
13565 case X86::BI__builtin_ia32_loaddquqi256_mask:
13566 case X86::BI__builtin_ia32_loaddquqi512_mask:
13567 case X86::BI__builtin_ia32_loaddquhi128_mask:
13568 case X86::BI__builtin_ia32_loaddquhi256_mask:
13569 case X86::BI__builtin_ia32_loaddquhi512_mask:
13570 case X86::BI__builtin_ia32_loaddqusi128_mask:
13571 case X86::BI__builtin_ia32_loaddqusi256_mask:
13572 case X86::BI__builtin_ia32_loaddqusi512_mask:
13573 case X86::BI__builtin_ia32_loaddqudi128_mask:
13574 case X86::BI__builtin_ia32_loaddqudi256_mask:
13575 case X86::BI__builtin_ia32_loaddqudi512_mask:
13576 return EmitX86MaskedLoad(*this, Ops, Align(1));
13577
13578 case X86::BI__builtin_ia32_loadsh128_mask:
13579 case X86::BI__builtin_ia32_loadss128_mask:
13580 case X86::BI__builtin_ia32_loadsd128_mask:
13581 return EmitX86MaskedLoad(*this, Ops, Align(1));
13582
13583 case X86::BI__builtin_ia32_loadaps128_mask:
13584 case X86::BI__builtin_ia32_loadaps256_mask:
13585 case X86::BI__builtin_ia32_loadaps512_mask:
13586 case X86::BI__builtin_ia32_loadapd128_mask:
13587 case X86::BI__builtin_ia32_loadapd256_mask:
13588 case X86::BI__builtin_ia32_loadapd512_mask:
13589 case X86::BI__builtin_ia32_movdqa32load128_mask:
13590 case X86::BI__builtin_ia32_movdqa32load256_mask:
13591 case X86::BI__builtin_ia32_movdqa32load512_mask:
13592 case X86::BI__builtin_ia32_movdqa64load128_mask:
13593 case X86::BI__builtin_ia32_movdqa64load256_mask:
13594 case X86::BI__builtin_ia32_movdqa64load512_mask:
13595 return EmitX86MaskedLoad(
13596 *this, Ops,
13597 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13598
13599 case X86::BI__builtin_ia32_expandloaddf128_mask:
13600 case X86::BI__builtin_ia32_expandloaddf256_mask:
13601 case X86::BI__builtin_ia32_expandloaddf512_mask:
13602 case X86::BI__builtin_ia32_expandloadsf128_mask:
13603 case X86::BI__builtin_ia32_expandloadsf256_mask:
13604 case X86::BI__builtin_ia32_expandloadsf512_mask:
13605 case X86::BI__builtin_ia32_expandloaddi128_mask:
13606 case X86::BI__builtin_ia32_expandloaddi256_mask:
13607 case X86::BI__builtin_ia32_expandloaddi512_mask:
13608 case X86::BI__builtin_ia32_expandloadsi128_mask:
13609 case X86::BI__builtin_ia32_expandloadsi256_mask:
13610 case X86::BI__builtin_ia32_expandloadsi512_mask:
13611 case X86::BI__builtin_ia32_expandloadhi128_mask:
13612 case X86::BI__builtin_ia32_expandloadhi256_mask:
13613 case X86::BI__builtin_ia32_expandloadhi512_mask:
13614 case X86::BI__builtin_ia32_expandloadqi128_mask:
13615 case X86::BI__builtin_ia32_expandloadqi256_mask:
13616 case X86::BI__builtin_ia32_expandloadqi512_mask:
13617 return EmitX86ExpandLoad(*this, Ops);
13618
13619 case X86::BI__builtin_ia32_compressstoredf128_mask:
13620 case X86::BI__builtin_ia32_compressstoredf256_mask:
13621 case X86::BI__builtin_ia32_compressstoredf512_mask:
13622 case X86::BI__builtin_ia32_compressstoresf128_mask:
13623 case X86::BI__builtin_ia32_compressstoresf256_mask:
13624 case X86::BI__builtin_ia32_compressstoresf512_mask:
13625 case X86::BI__builtin_ia32_compressstoredi128_mask:
13626 case X86::BI__builtin_ia32_compressstoredi256_mask:
13627 case X86::BI__builtin_ia32_compressstoredi512_mask:
13628 case X86::BI__builtin_ia32_compressstoresi128_mask:
13629 case X86::BI__builtin_ia32_compressstoresi256_mask:
13630 case X86::BI__builtin_ia32_compressstoresi512_mask:
13631 case X86::BI__builtin_ia32_compressstorehi128_mask:
13632 case X86::BI__builtin_ia32_compressstorehi256_mask:
13633 case X86::BI__builtin_ia32_compressstorehi512_mask:
13634 case X86::BI__builtin_ia32_compressstoreqi128_mask:
13635 case X86::BI__builtin_ia32_compressstoreqi256_mask:
13636 case X86::BI__builtin_ia32_compressstoreqi512_mask:
13637 return EmitX86CompressStore(*this, Ops);
13638
13639 case X86::BI__builtin_ia32_expanddf128_mask:
13640 case X86::BI__builtin_ia32_expanddf256_mask:
13641 case X86::BI__builtin_ia32_expanddf512_mask:
13642 case X86::BI__builtin_ia32_expandsf128_mask:
13643 case X86::BI__builtin_ia32_expandsf256_mask:
13644 case X86::BI__builtin_ia32_expandsf512_mask:
13645 case X86::BI__builtin_ia32_expanddi128_mask:
13646 case X86::BI__builtin_ia32_expanddi256_mask:
13647 case X86::BI__builtin_ia32_expanddi512_mask:
13648 case X86::BI__builtin_ia32_expandsi128_mask:
13649 case X86::BI__builtin_ia32_expandsi256_mask:
13650 case X86::BI__builtin_ia32_expandsi512_mask:
13651 case X86::BI__builtin_ia32_expandhi128_mask:
13652 case X86::BI__builtin_ia32_expandhi256_mask:
13653 case X86::BI__builtin_ia32_expandhi512_mask:
13654 case X86::BI__builtin_ia32_expandqi128_mask:
13655 case X86::BI__builtin_ia32_expandqi256_mask:
13656 case X86::BI__builtin_ia32_expandqi512_mask:
13657 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
13658
13659 case X86::BI__builtin_ia32_compressdf128_mask:
13660 case X86::BI__builtin_ia32_compressdf256_mask:
13661 case X86::BI__builtin_ia32_compressdf512_mask:
13662 case X86::BI__builtin_ia32_compresssf128_mask:
13663 case X86::BI__builtin_ia32_compresssf256_mask:
13664 case X86::BI__builtin_ia32_compresssf512_mask:
13665 case X86::BI__builtin_ia32_compressdi128_mask:
13666 case X86::BI__builtin_ia32_compressdi256_mask:
13667 case X86::BI__builtin_ia32_compressdi512_mask:
13668 case X86::BI__builtin_ia32_compresssi128_mask:
13669 case X86::BI__builtin_ia32_compresssi256_mask:
13670 case X86::BI__builtin_ia32_compresssi512_mask:
13671 case X86::BI__builtin_ia32_compresshi128_mask:
13672 case X86::BI__builtin_ia32_compresshi256_mask:
13673 case X86::BI__builtin_ia32_compresshi512_mask:
13674 case X86::BI__builtin_ia32_compressqi128_mask:
13675 case X86::BI__builtin_ia32_compressqi256_mask:
13676 case X86::BI__builtin_ia32_compressqi512_mask:
13677 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
13678
13679 case X86::BI__builtin_ia32_gather3div2df:
13680 case X86::BI__builtin_ia32_gather3div2di:
13681 case X86::BI__builtin_ia32_gather3div4df:
13682 case X86::BI__builtin_ia32_gather3div4di:
13683 case X86::BI__builtin_ia32_gather3div4sf:
13684 case X86::BI__builtin_ia32_gather3div4si:
13685 case X86::BI__builtin_ia32_gather3div8sf:
13686 case X86::BI__builtin_ia32_gather3div8si:
13687 case X86::BI__builtin_ia32_gather3siv2df:
13688 case X86::BI__builtin_ia32_gather3siv2di:
13689 case X86::BI__builtin_ia32_gather3siv4df:
13690 case X86::BI__builtin_ia32_gather3siv4di:
13691 case X86::BI__builtin_ia32_gather3siv4sf:
13692 case X86::BI__builtin_ia32_gather3siv4si:
13693 case X86::BI__builtin_ia32_gather3siv8sf:
13694 case X86::BI__builtin_ia32_gather3siv8si:
13695 case X86::BI__builtin_ia32_gathersiv8df:
13696 case X86::BI__builtin_ia32_gathersiv16sf:
13697 case X86::BI__builtin_ia32_gatherdiv8df:
13698 case X86::BI__builtin_ia32_gatherdiv16sf:
13699 case X86::BI__builtin_ia32_gathersiv8di:
13700 case X86::BI__builtin_ia32_gathersiv16si:
13701 case X86::BI__builtin_ia32_gatherdiv8di:
13702 case X86::BI__builtin_ia32_gatherdiv16si: {
13703 Intrinsic::ID IID;
13704 switch (BuiltinID) {
13705 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13705)
;
13706 case X86::BI__builtin_ia32_gather3div2df:
13707 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13708 break;
13709 case X86::BI__builtin_ia32_gather3div2di:
13710 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13711 break;
13712 case X86::BI__builtin_ia32_gather3div4df:
13713 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13714 break;
13715 case X86::BI__builtin_ia32_gather3div4di:
13716 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13717 break;
13718 case X86::BI__builtin_ia32_gather3div4sf:
13719 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13720 break;
13721 case X86::BI__builtin_ia32_gather3div4si:
13722 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13723 break;
13724 case X86::BI__builtin_ia32_gather3div8sf:
13725 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13726 break;
13727 case X86::BI__builtin_ia32_gather3div8si:
13728 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13729 break;
13730 case X86::BI__builtin_ia32_gather3siv2df:
13731 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13732 break;
13733 case X86::BI__builtin_ia32_gather3siv2di:
13734 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13735 break;
13736 case X86::BI__builtin_ia32_gather3siv4df:
13737 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13738 break;
13739 case X86::BI__builtin_ia32_gather3siv4di:
13740 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13741 break;
13742 case X86::BI__builtin_ia32_gather3siv4sf:
13743 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13744 break;
13745 case X86::BI__builtin_ia32_gather3siv4si:
13746 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13747 break;
13748 case X86::BI__builtin_ia32_gather3siv8sf:
13749 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13750 break;
13751 case X86::BI__builtin_ia32_gather3siv8si:
13752 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13753 break;
13754 case X86::BI__builtin_ia32_gathersiv8df:
13755 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13756 break;
13757 case X86::BI__builtin_ia32_gathersiv16sf:
13758 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13759 break;
13760 case X86::BI__builtin_ia32_gatherdiv8df:
13761 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13762 break;
13763 case X86::BI__builtin_ia32_gatherdiv16sf:
13764 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13765 break;
13766 case X86::BI__builtin_ia32_gathersiv8di:
13767 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13768 break;
13769 case X86::BI__builtin_ia32_gathersiv16si:
13770 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13771 break;
13772 case X86::BI__builtin_ia32_gatherdiv8di:
13773 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13774 break;
13775 case X86::BI__builtin_ia32_gatherdiv16si:
13776 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13777 break;
13778 }
13779
13780 unsigned MinElts = std::min(
13781 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13782 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13783 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13784 Function *Intr = CGM.getIntrinsic(IID);
13785 return Builder.CreateCall(Intr, Ops);
13786 }
13787
13788 case X86::BI__builtin_ia32_scattersiv8df:
13789 case X86::BI__builtin_ia32_scattersiv16sf:
13790 case X86::BI__builtin_ia32_scatterdiv8df:
13791 case X86::BI__builtin_ia32_scatterdiv16sf:
13792 case X86::BI__builtin_ia32_scattersiv8di:
13793 case X86::BI__builtin_ia32_scattersiv16si:
13794 case X86::BI__builtin_ia32_scatterdiv8di:
13795 case X86::BI__builtin_ia32_scatterdiv16si:
13796 case X86::BI__builtin_ia32_scatterdiv2df:
13797 case X86::BI__builtin_ia32_scatterdiv2di:
13798 case X86::BI__builtin_ia32_scatterdiv4df:
13799 case X86::BI__builtin_ia32_scatterdiv4di:
13800 case X86::BI__builtin_ia32_scatterdiv4sf:
13801 case X86::BI__builtin_ia32_scatterdiv4si:
13802 case X86::BI__builtin_ia32_scatterdiv8sf:
13803 case X86::BI__builtin_ia32_scatterdiv8si:
13804 case X86::BI__builtin_ia32_scattersiv2df:
13805 case X86::BI__builtin_ia32_scattersiv2di:
13806 case X86::BI__builtin_ia32_scattersiv4df:
13807 case X86::BI__builtin_ia32_scattersiv4di:
13808 case X86::BI__builtin_ia32_scattersiv4sf:
13809 case X86::BI__builtin_ia32_scattersiv4si:
13810 case X86::BI__builtin_ia32_scattersiv8sf:
13811 case X86::BI__builtin_ia32_scattersiv8si: {
13812 Intrinsic::ID IID;
13813 switch (BuiltinID) {
13814 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13814)
;
13815 case X86::BI__builtin_ia32_scattersiv8df:
13816 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13817 break;
13818 case X86::BI__builtin_ia32_scattersiv16sf:
13819 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13820 break;
13821 case X86::BI__builtin_ia32_scatterdiv8df:
13822 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13823 break;
13824 case X86::BI__builtin_ia32_scatterdiv16sf:
13825 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13826 break;
13827 case X86::BI__builtin_ia32_scattersiv8di:
13828 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13829 break;
13830 case X86::BI__builtin_ia32_scattersiv16si:
13831 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13832 break;
13833 case X86::BI__builtin_ia32_scatterdiv8di:
13834 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13835 break;
13836 case X86::BI__builtin_ia32_scatterdiv16si:
13837 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13838 break;
13839 case X86::BI__builtin_ia32_scatterdiv2df:
13840 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13841 break;
13842 case X86::BI__builtin_ia32_scatterdiv2di:
13843 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13844 break;
13845 case X86::BI__builtin_ia32_scatterdiv4df:
13846 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13847 break;
13848 case X86::BI__builtin_ia32_scatterdiv4di:
13849 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13850 break;
13851 case X86::BI__builtin_ia32_scatterdiv4sf:
13852 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13853 break;
13854 case X86::BI__builtin_ia32_scatterdiv4si:
13855 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13856 break;
13857 case X86::BI__builtin_ia32_scatterdiv8sf:
13858 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13859 break;
13860 case X86::BI__builtin_ia32_scatterdiv8si:
13861 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13862 break;
13863 case X86::BI__builtin_ia32_scattersiv2df:
13864 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13865 break;
13866 case X86::BI__builtin_ia32_scattersiv2di:
13867 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13868 break;
13869 case X86::BI__builtin_ia32_scattersiv4df:
13870 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13871 break;
13872 case X86::BI__builtin_ia32_scattersiv4di:
13873 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13874 break;
13875 case X86::BI__builtin_ia32_scattersiv4sf:
13876 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13877 break;
13878 case X86::BI__builtin_ia32_scattersiv4si:
13879 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13880 break;
13881 case X86::BI__builtin_ia32_scattersiv8sf:
13882 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13883 break;
13884 case X86::BI__builtin_ia32_scattersiv8si:
13885 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13886 break;
13887 }
13888
13889 unsigned MinElts = std::min(
13890 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13891 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13892 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13893 Function *Intr = CGM.getIntrinsic(IID);
13894 return Builder.CreateCall(Intr, Ops);
13895 }
13896
13897 case X86::BI__builtin_ia32_vextractf128_pd256:
13898 case X86::BI__builtin_ia32_vextractf128_ps256:
13899 case X86::BI__builtin_ia32_vextractf128_si256:
13900 case X86::BI__builtin_ia32_extract128i256:
13901 case X86::BI__builtin_ia32_extractf64x4_mask:
13902 case X86::BI__builtin_ia32_extractf32x4_mask:
13903 case X86::BI__builtin_ia32_extracti64x4_mask:
13904 case X86::BI__builtin_ia32_extracti32x4_mask:
13905 case X86::BI__builtin_ia32_extractf32x8_mask:
13906 case X86::BI__builtin_ia32_extracti32x8_mask:
13907 case X86::BI__builtin_ia32_extractf32x4_256_mask:
13908 case X86::BI__builtin_ia32_extracti32x4_256_mask:
13909 case X86::BI__builtin_ia32_extractf64x2_256_mask:
13910 case X86::BI__builtin_ia32_extracti64x2_256_mask:
13911 case X86::BI__builtin_ia32_extractf64x2_512_mask:
13912 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13913 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13914 unsigned NumElts = DstTy->getNumElements();
13915 unsigned SrcNumElts =
13916 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13917 unsigned SubVectors = SrcNumElts / NumElts;
13918 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13919 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13919, __extension__ __PRETTY_FUNCTION__
))
;
13920 Index &= SubVectors - 1; // Remove any extra bits.
13921 Index *= NumElts;
13922
13923 int Indices[16];
13924 for (unsigned i = 0; i != NumElts; ++i)
13925 Indices[i] = i + Index;
13926
13927 Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
13928 "extract");
13929
13930 if (Ops.size() == 4)
13931 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13932
13933 return Res;
13934 }
13935 case X86::BI__builtin_ia32_vinsertf128_pd256:
13936 case X86::BI__builtin_ia32_vinsertf128_ps256:
13937 case X86::BI__builtin_ia32_vinsertf128_si256:
13938 case X86::BI__builtin_ia32_insert128i256:
13939 case X86::BI__builtin_ia32_insertf64x4:
13940 case X86::BI__builtin_ia32_insertf32x4:
13941 case X86::BI__builtin_ia32_inserti64x4:
13942 case X86::BI__builtin_ia32_inserti32x4:
13943 case X86::BI__builtin_ia32_insertf32x8:
13944 case X86::BI__builtin_ia32_inserti32x8:
13945 case X86::BI__builtin_ia32_insertf32x4_256:
13946 case X86::BI__builtin_ia32_inserti32x4_256:
13947 case X86::BI__builtin_ia32_insertf64x2_256:
13948 case X86::BI__builtin_ia32_inserti64x2_256:
13949 case X86::BI__builtin_ia32_insertf64x2_512:
13950 case X86::BI__builtin_ia32_inserti64x2_512: {
13951 unsigned DstNumElts =
13952 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13953 unsigned SrcNumElts =
13954 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13955 unsigned SubVectors = DstNumElts / SrcNumElts;
13956 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13957 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13957, __extension__ __PRETTY_FUNCTION__
))
;
13958 Index &= SubVectors - 1; // Remove any extra bits.
13959 Index *= SrcNumElts;
13960
13961 int Indices[16];
13962 for (unsigned i = 0; i != DstNumElts; ++i)
13963 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13964
13965 Value *Op1 = Builder.CreateShuffleVector(
13966 Ops[1], ArrayRef(Indices, DstNumElts), "widen");
13967
13968 for (unsigned i = 0; i != DstNumElts; ++i) {
13969 if (i >= Index && i < (Index + SrcNumElts))
13970 Indices[i] = (i - Index) + DstNumElts;
13971 else
13972 Indices[i] = i;
13973 }
13974
13975 return Builder.CreateShuffleVector(Ops[0], Op1,
13976 ArrayRef(Indices, DstNumElts), "insert");
13977 }
13978 case X86::BI__builtin_ia32_pmovqd512_mask:
13979 case X86::BI__builtin_ia32_pmovwb512_mask: {
13980 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13981 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13982 }
13983 case X86::BI__builtin_ia32_pmovdb512_mask:
13984 case X86::BI__builtin_ia32_pmovdw512_mask:
13985 case X86::BI__builtin_ia32_pmovqw512_mask: {
13986 if (const auto *C = dyn_cast<Constant>(Ops[2]))
13987 if (C->isAllOnesValue())
13988 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13989
13990 Intrinsic::ID IID;
13991 switch (BuiltinID) {
13992 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13992)
;
13993 case X86::BI__builtin_ia32_pmovdb512_mask:
13994 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13995 break;
13996 case X86::BI__builtin_ia32_pmovdw512_mask:
13997 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13998 break;
13999 case X86::BI__builtin_ia32_pmovqw512_mask:
14000 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
14001 break;
14002 }
14003
14004 Function *Intr = CGM.getIntrinsic(IID);
14005 return Builder.CreateCall(Intr, Ops);
14006 }
14007 case X86::BI__builtin_ia32_pblendw128:
14008 case X86::BI__builtin_ia32_blendpd:
14009 case X86::BI__builtin_ia32_blendps:
14010 case X86::BI__builtin_ia32_blendpd256:
14011 case X86::BI__builtin_ia32_blendps256:
14012 case X86::BI__builtin_ia32_pblendw256:
14013 case X86::BI__builtin_ia32_pblendd128:
14014 case X86::BI__builtin_ia32_pblendd256: {
14015 unsigned NumElts =
14016 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14017 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14018
14019 int Indices[16];
14020 // If there are more than 8 elements, the immediate is used twice so make
14021 // sure we handle that.
14022 for (unsigned i = 0; i != NumElts; ++i)
14023 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
14024
14025 return Builder.CreateShuffleVector(Ops[0], Ops[1],
14026 ArrayRef(Indices, NumElts), "blend");
14027 }
14028 case X86::BI__builtin_ia32_pshuflw:
14029 case X86::BI__builtin_ia32_pshuflw256:
14030 case X86::BI__builtin_ia32_pshuflw512: {
14031 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14032 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14033 unsigned NumElts = Ty->getNumElements();
14034
14035 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14036 Imm = (Imm & 0xff) * 0x01010101;
14037
14038 int Indices[32];
14039 for (unsigned l = 0; l != NumElts; l += 8) {
14040 for (unsigned i = 0; i != 4; ++i) {
14041 Indices[l + i] = l + (Imm & 3);
14042 Imm >>= 2;
14043 }
14044 for (unsigned i = 4; i != 8; ++i)
14045 Indices[l + i] = l + i;
14046 }
14047
14048 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14049 "pshuflw");
14050 }
14051 case X86::BI__builtin_ia32_pshufhw:
14052 case X86::BI__builtin_ia32_pshufhw256:
14053 case X86::BI__builtin_ia32_pshufhw512: {
14054 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14055 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14056 unsigned NumElts = Ty->getNumElements();
14057
14058 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14059 Imm = (Imm & 0xff) * 0x01010101;
14060
14061 int Indices[32];
14062 for (unsigned l = 0; l != NumElts; l += 8) {
14063 for (unsigned i = 0; i != 4; ++i)
14064 Indices[l + i] = l + i;
14065 for (unsigned i = 4; i != 8; ++i) {
14066 Indices[l + i] = l + 4 + (Imm & 3);
14067 Imm >>= 2;
14068 }
14069 }
14070
14071 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14072 "pshufhw");
14073 }
14074 case X86::BI__builtin_ia32_pshufd:
14075 case X86::BI__builtin_ia32_pshufd256:
14076 case X86::BI__builtin_ia32_pshufd512:
14077 case X86::BI__builtin_ia32_vpermilpd:
14078 case X86::BI__builtin_ia32_vpermilps:
14079 case X86::BI__builtin_ia32_vpermilpd256:
14080 case X86::BI__builtin_ia32_vpermilps256:
14081 case X86::BI__builtin_ia32_vpermilpd512:
14082 case X86::BI__builtin_ia32_vpermilps512: {
14083 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14084 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14085 unsigned NumElts = Ty->getNumElements();
14086 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
14087 unsigned NumLaneElts = NumElts / NumLanes;
14088
14089 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14090 Imm = (Imm & 0xff) * 0x01010101;
14091
14092 int Indices[16];
14093 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14094 for (unsigned i = 0; i != NumLaneElts; ++i) {
14095 Indices[i + l] = (Imm % NumLaneElts) + l;
14096 Imm /= NumLaneElts;
14097 }
14098 }
14099
14100 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14101 "permil");
14102 }
14103 case X86::BI__builtin_ia32_shufpd:
14104 case X86::BI__builtin_ia32_shufpd256:
14105 case X86::BI__builtin_ia32_shufpd512:
14106 case X86::BI__builtin_ia32_shufps:
14107 case X86::BI__builtin_ia32_shufps256:
14108 case X86::BI__builtin_ia32_shufps512: {
14109 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14110 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14111 unsigned NumElts = Ty->getNumElements();
14112 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
14113 unsigned NumLaneElts = NumElts / NumLanes;
14114
14115 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14116 Imm = (Imm & 0xff) * 0x01010101;
14117
14118 int Indices[16];
14119 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14120 for (unsigned i = 0; i != NumLaneElts; ++i) {
14121 unsigned Index = Imm % NumLaneElts;
14122 Imm /= NumLaneElts;
14123 if (i >= (NumLaneElts / 2))
14124 Index += NumElts;
14125 Indices[l + i] = l + Index;
14126 }
14127 }
14128
14129 return Builder.CreateShuffleVector(Ops[0], Ops[1],
14130 ArrayRef(Indices, NumElts), "shufp");
14131 }
14132 case X86::BI__builtin_ia32_permdi256:
14133 case X86::BI__builtin_ia32_permdf256:
14134 case X86::BI__builtin_ia32_permdi512:
14135 case X86::BI__builtin_ia32_permdf512: {
14136 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14137 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14138 unsigned NumElts = Ty->getNumElements();
14139
14140 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
14141 int Indices[8];
14142 for (unsigned l = 0; l != NumElts; l += 4)
14143 for (unsigned i = 0; i != 4; ++i)
14144 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
14145
14146 return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14147 "perm");
14148 }
14149 case X86::BI__builtin_ia32_palignr128:
14150 case X86::BI__builtin_ia32_palignr256:
14151 case X86::BI__builtin_ia32_palignr512: {
14152 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
14153
14154 unsigned NumElts =
14155 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14156 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "clang/lib/CodeGen/CGBuiltin.cpp", 14156
, __extension__ __PRETTY_FUNCTION__))
;
14157
14158 // If palignr is shifting the pair of vectors more than the size of two
14159 // lanes, emit zero.
14160 if (ShiftVal >= 32)
14161 return llvm::Constant::getNullValue(ConvertType(E->getType()));
14162
14163 // If palignr is shifting the pair of input vectors more than one lane,
14164 // but less than two lanes, convert to shifting in zeroes.
14165 if (ShiftVal > 16) {
14166 ShiftVal -= 16;
14167 Ops[1] = Ops[0];
14168 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
14169 }
14170
14171 int Indices[64];
14172 // 256-bit palignr operates on 128-bit lanes so we need to handle that
14173 for (unsigned l = 0; l != NumElts; l += 16) {
14174 for (unsigned i = 0; i != 16; ++i) {
14175 unsigned Idx = ShiftVal + i;
14176 if (Idx >= 16)
14177 Idx += NumElts - 16; // End of lane, switch operand.
14178 Indices[l + i] = Idx + l;
14179 }
14180 }
14181
14182 return Builder.CreateShuffleVector(Ops[1], Ops[0],
14183 ArrayRef(Indices, NumElts), "palignr");
14184 }
14185 case X86::BI__builtin_ia32_alignd128:
14186 case X86::BI__builtin_ia32_alignd256:
14187 case X86::BI__builtin_ia32_alignd512:
14188 case X86::BI__builtin_ia32_alignq128:
14189 case X86::BI__builtin_ia32_alignq256:
14190 case X86::BI__builtin_ia32_alignq512: {
14191 unsigned NumElts =
14192 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14193 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
14194
14195 // Mask the shift amount to width of a vector.
14196 ShiftVal &= NumElts - 1;
14197
14198 int Indices[16];
14199 for (unsigned i = 0; i != NumElts; ++i)
14200 Indices[i] = i + ShiftVal;
14201
14202 return Builder.CreateShuffleVector(Ops[1], Ops[0],
14203 ArrayRef(Indices, NumElts), "valign");
14204 }
14205 case X86::BI__builtin_ia32_shuf_f32x4_256:
14206 case X86::BI__builtin_ia32_shuf_f64x2_256:
14207 case X86::BI__builtin_ia32_shuf_i32x4_256:
14208 case X86::BI__builtin_ia32_shuf_i64x2_256:
14209 case X86::BI__builtin_ia32_shuf_f32x4:
14210 case X86::BI__builtin_ia32_shuf_f64x2:
14211 case X86::BI__builtin_ia32_shuf_i32x4:
14212 case X86::BI__builtin_ia32_shuf_i64x2: {
14213 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14214 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14215 unsigned NumElts = Ty->getNumElements();
14216 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
14217 unsigned NumLaneElts = NumElts / NumLanes;
14218
14219 int Indices[16];
14220 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14221 unsigned Index = (Imm % NumLanes) * NumLaneElts;
14222 Imm /= NumLanes; // Discard the bits we just used.
14223 if (l >= (NumElts / 2))
14224 Index += NumElts; // Switch to other source.
14225 for (unsigned i = 0; i != NumLaneElts; ++i) {
14226 Indices[l + i] = Index + i;
14227 }
14228 }
14229
14230 return Builder.CreateShuffleVector(Ops[0], Ops[1],
14231 ArrayRef(Indices, NumElts), "shuf");
14232 }
14233
14234 case X86::BI__builtin_ia32_vperm2f128_pd256:
14235 case X86::BI__builtin_ia32_vperm2f128_ps256:
14236 case X86::BI__builtin_ia32_vperm2f128_si256:
14237 case X86::BI__builtin_ia32_permti256: {
14238 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14239 unsigned NumElts =
14240 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14241
14242 // This takes a very simple approach since there are two lanes and a
14243 // shuffle can have 2 inputs. So we reserve the first input for the first
14244 // lane and the second input for the second lane. This may result in
14245 // duplicate sources, but this can be dealt with in the backend.
14246
14247 Value *OutOps[2];
14248 int Indices[8];
14249 for (unsigned l = 0; l != 2; ++l) {
14250 // Determine the source for this lane.
14251 if (Imm & (1 << ((l * 4) + 3)))
14252 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
14253 else if (Imm & (1 << ((l * 4) + 1)))
14254 OutOps[l] = Ops[1];
14255 else
14256 OutOps[l] = Ops[0];
14257
14258 for (unsigned i = 0; i != NumElts/2; ++i) {
14259 // Start with ith element of the source for this lane.
14260 unsigned Idx = (l * NumElts) + i;
14261 // If bit 0 of the immediate half is set, switch to the high half of
14262 // the source.
14263 if (Imm & (1 << (l * 4)))
14264 Idx += NumElts/2;
14265 Indices[(l * (NumElts/2)) + i] = Idx;
14266 }
14267 }
14268
14269 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
14270 ArrayRef(Indices, NumElts), "vperm");
14271 }
14272
14273 case X86::BI__builtin_ia32_pslldqi128_byteshift:
14274 case X86::BI__builtin_ia32_pslldqi256_byteshift:
14275 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
14276 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14277 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
14278 // Builtin type is vXi64 so multiply by 8 to get bytes.
14279 unsigned NumElts = ResultType->getNumElements() * 8;
14280
14281 // If pslldq is shifting the vector more than 15 bytes, emit zero.
14282 if (ShiftVal >= 16)
14283 return llvm::Constant::getNullValue(ResultType);
14284
14285 int Indices[64];
14286 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
14287 for (unsigned l = 0; l != NumElts; l += 16) {
14288 for (unsigned i = 0; i != 16; ++i) {
14289 unsigned Idx = NumElts + i - ShiftVal;
14290 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
14291 Indices[l + i] = Idx + l;
14292 }
14293 }
14294
14295 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
14296 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
14297 Value *Zero = llvm::Constant::getNullValue(VecTy);
14298 Value *SV = Builder.CreateShuffleVector(
14299 Zero, Cast, ArrayRef(Indices, NumElts), "pslldq");
14300 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
14301 }
14302 case X86::BI__builtin_ia32_psrldqi128_byteshift:
14303 case X86::BI__builtin_ia32_psrldqi256_byteshift:
14304 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
14305 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14306 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
14307 // Builtin type is vXi64 so multiply by 8 to get bytes.
14308 unsigned NumElts = ResultType->getNumElements() * 8;
14309
14310 // If psrldq is shifting the vector more than 15 bytes, emit zero.
14311 if (ShiftVal >= 16)
14312 return llvm::Constant::getNullValue(ResultType);
14313
14314 int Indices[64];
14315 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
14316 for (unsigned l = 0; l != NumElts; l += 16) {
14317 for (unsigned i = 0; i != 16; ++i) {
14318 unsigned Idx = i + ShiftVal;
14319 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
14320 Indices[l + i] = Idx + l;
14321 }
14322 }
14323
14324 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
14325 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
14326 Value *Zero = llvm::Constant::getNullValue(VecTy);
14327 Value *SV = Builder.CreateShuffleVector(
14328 Cast, Zero, ArrayRef(Indices, NumElts), "psrldq");
14329 return Builder.CreateBitCast(SV, ResultType, "cast");
14330 }
14331 case X86::BI__builtin_ia32_kshiftliqi:
14332 case X86::BI__builtin_ia32_kshiftlihi:
14333 case X86::BI__builtin_ia32_kshiftlisi:
14334 case X86::BI__builtin_ia32_kshiftlidi: {
14335 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14336 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14337
14338 if (ShiftVal >= NumElts)
14339 return llvm::Constant::getNullValue(Ops[0]->getType());
14340
14341 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
14342
14343 int Indices[64];
14344 for (unsigned i = 0; i != NumElts; ++i)
14345 Indices[i] = NumElts + i - ShiftVal;
14346
14347 Value *Zero = llvm::Constant::getNullValue(In->getType());
14348 Value *SV = Builder.CreateShuffleVector(
14349 Zero, In, ArrayRef(Indices, NumElts), "kshiftl");
14350 return Builder.CreateBitCast(SV, Ops[0]->getType());
14351 }
14352 case X86::BI__builtin_ia32_kshiftriqi:
14353 case X86::BI__builtin_ia32_kshiftrihi:
14354 case X86::BI__builtin_ia32_kshiftrisi:
14355 case X86::BI__builtin_ia32_kshiftridi: {
14356 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14357 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14358
14359 if (ShiftVal >= NumElts)
14360 return llvm::Constant::getNullValue(Ops[0]->getType());
14361
14362 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
14363
14364 int Indices[64];
14365 for (unsigned i = 0; i != NumElts; ++i)
14366 Indices[i] = i + ShiftVal;
14367
14368 Value *Zero = llvm::Constant::getNullValue(In->getType());
14369 Value *SV = Builder.CreateShuffleVector(
14370 In, Zero, ArrayRef(Indices, NumElts), "kshiftr");
14371 return Builder.CreateBitCast(SV, Ops[0]->getType());
14372 }
14373 case X86::BI__builtin_ia32_movnti:
14374 case X86::BI__builtin_ia32_movnti64:
14375 case X86::BI__builtin_ia32_movntsd:
14376 case X86::BI__builtin_ia32_movntss: {
14377 llvm::MDNode *Node = llvm::MDNode::get(
14378 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
14379
14380 Value *Ptr = Ops[0];
14381 Value *Src = Ops[1];
14382
14383 // Extract the 0'th element of the source vector.
14384 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
14385 BuiltinID == X86::BI__builtin_ia32_movntss)
14386 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
14387
14388 // Convert the type of the pointer to a pointer to the stored type.
14389 Value *BC = Builder.CreateBitCast(
14390 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
14391
14392 // Unaligned nontemporal store of the scalar value.
14393 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
14394 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
14395 SI->setAlignment(llvm::Align(1));
14396 return SI;
14397 }
14398 // Rotate is a special case of funnel shift - 1st 2 args are the same.
14399 case X86::BI__builtin_ia32_vprotb:
14400 case X86::BI__builtin_ia32_vprotw:
14401 case X86::BI__builtin_ia32_vprotd:
14402 case X86::BI__builtin_ia32_vprotq:
14403 case X86::BI__builtin_ia32_vprotbi:
14404 case X86::BI__builtin_ia32_vprotwi:
14405 case X86::BI__builtin_ia32_vprotdi:
14406 case X86::BI__builtin_ia32_vprotqi:
14407 case X86::BI__builtin_ia32_prold128:
14408 case X86::BI__builtin_ia32_prold256:
14409 case X86::BI__builtin_ia32_prold512:
14410 case X86::BI__builtin_ia32_prolq128:
14411 case X86::BI__builtin_ia32_prolq256:
14412 case X86::BI__builtin_ia32_prolq512:
14413 case X86::BI__builtin_ia32_prolvd128:
14414 case X86::BI__builtin_ia32_prolvd256:
14415 case X86::BI__builtin_ia32_prolvd512:
14416 case X86::BI__builtin_ia32_prolvq128:
14417 case X86::BI__builtin_ia32_prolvq256:
14418 case X86::BI__builtin_ia32_prolvq512:
14419 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
14420 case X86::BI__builtin_ia32_prord128:
14421 case X86::BI__builtin_ia32_prord256:
14422 case X86::BI__builtin_ia32_prord512:
14423 case X86::BI__builtin_ia32_prorq128:
14424 case X86::BI__builtin_ia32_prorq256:
14425 case X86::BI__builtin_ia32_prorq512:
14426 case X86::BI__builtin_ia32_prorvd128:
14427 case X86::BI__builtin_ia32_prorvd256:
14428 case X86::BI__builtin_ia32_prorvd512:
14429 case X86::BI__builtin_ia32_prorvq128:
14430 case X86::BI__builtin_ia32_prorvq256:
14431 case X86::BI__builtin_ia32_prorvq512:
14432 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
14433 case X86::BI__builtin_ia32_selectb_128:
14434 case X86::BI__builtin_ia32_selectb_256:
14435 case X86::BI__builtin_ia32_selectb_512:
14436 case X86::BI__builtin_ia32_selectw_128:
14437 case X86::BI__builtin_ia32_selectw_256:
14438 case X86::BI__builtin_ia32_selectw_512:
14439 case X86::BI__builtin_ia32_selectd_128:
14440 case X86::BI__builtin_ia32_selectd_256:
14441 case X86::BI__builtin_ia32_selectd_512:
14442 case X86::BI__builtin_ia32_selectq_128:
14443 case X86::BI__builtin_ia32_selectq_256:
14444 case X86::BI__builtin_ia32_selectq_512:
14445 case X86::BI__builtin_ia32_selectph_128:
14446 case X86::BI__builtin_ia32_selectph_256:
14447 case X86::BI__builtin_ia32_selectph_512:
14448 case X86::BI__builtin_ia32_selectpbf_128:
14449 case X86::BI__builtin_ia32_selectpbf_256:
14450 case X86::BI__builtin_ia32_selectpbf_512:
14451 case X86::BI__builtin_ia32_selectps_128:
14452 case X86::BI__builtin_ia32_selectps_256:
14453 case X86::BI__builtin_ia32_selectps_512:
14454 case X86::BI__builtin_ia32_selectpd_128:
14455 case X86::BI__builtin_ia32_selectpd_256:
14456 case X86::BI__builtin_ia32_selectpd_512:
14457 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
14458 case X86::BI__builtin_ia32_selectsh_128:
14459 case X86::BI__builtin_ia32_selectsbf_128:
14460 case X86::BI__builtin_ia32_selectss_128:
14461 case X86::BI__builtin_ia32_selectsd_128: {
14462 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14463 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14464 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
14465 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
14466 }
14467 case X86::BI__builtin_ia32_cmpb128_mask:
14468 case X86::BI__builtin_ia32_cmpb256_mask:
14469 case X86::BI__builtin_ia32_cmpb512_mask:
14470 case X86::BI__builtin_ia32_cmpw128_mask:
14471 case X86::BI__builtin_ia32_cmpw256_mask:
14472 case X86::BI__builtin_ia32_cmpw512_mask:
14473 case X86::BI__builtin_ia32_cmpd128_mask:
14474 case X86::BI__builtin_ia32_cmpd256_mask:
14475 case X86::BI__builtin_ia32_cmpd512_mask:
14476 case X86::BI__builtin_ia32_cmpq128_mask:
14477 case X86::BI__builtin_ia32_cmpq256_mask:
14478 case X86::BI__builtin_ia32_cmpq512_mask: {
14479 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14480 return EmitX86MaskedCompare(*this, CC, true, Ops);
14481 }
14482 case X86::BI__builtin_ia32_ucmpb128_mask:
14483 case X86::BI__builtin_ia32_ucmpb256_mask:
14484 case X86::BI__builtin_ia32_ucmpb512_mask:
14485 case X86::BI__builtin_ia32_ucmpw128_mask:
14486 case X86::BI__builtin_ia32_ucmpw256_mask:
14487 case X86::BI__builtin_ia32_ucmpw512_mask:
14488 case X86::BI__builtin_ia32_ucmpd128_mask:
14489 case X86::BI__builtin_ia32_ucmpd256_mask:
14490 case X86::BI__builtin_ia32_ucmpd512_mask:
14491 case X86::BI__builtin_ia32_ucmpq128_mask:
14492 case X86::BI__builtin_ia32_ucmpq256_mask:
14493 case X86::BI__builtin_ia32_ucmpq512_mask: {
14494 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14495 return EmitX86MaskedCompare(*this, CC, false, Ops);
14496 }
14497 case X86::BI__builtin_ia32_vpcomb:
14498 case X86::BI__builtin_ia32_vpcomw:
14499 case X86::BI__builtin_ia32_vpcomd:
14500 case X86::BI__builtin_ia32_vpcomq:
14501 return EmitX86vpcom(*this, Ops, true);
14502 case X86::BI__builtin_ia32_vpcomub:
14503 case X86::BI__builtin_ia32_vpcomuw:
14504 case X86::BI__builtin_ia32_vpcomud:
14505 case X86::BI__builtin_ia32_vpcomuq:
14506 return EmitX86vpcom(*this, Ops, false);
14507
14508 case X86::BI__builtin_ia32_kortestcqi:
14509 case X86::BI__builtin_ia32_kortestchi:
14510 case X86::BI__builtin_ia32_kortestcsi:
14511 case X86::BI__builtin_ia32_kortestcdi: {
14512 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14513 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
14514 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14515 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14516 }
14517 case X86::BI__builtin_ia32_kortestzqi:
14518 case X86::BI__builtin_ia32_kortestzhi:
14519 case X86::BI__builtin_ia32_kortestzsi:
14520 case X86::BI__builtin_ia32_kortestzdi: {
14521 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14522 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
14523 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14524 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14525 }
14526
14527 case X86::BI__builtin_ia32_ktestcqi:
14528 case X86::BI__builtin_ia32_ktestzqi:
14529 case X86::BI__builtin_ia32_ktestchi:
14530 case X86::BI__builtin_ia32_ktestzhi:
14531 case X86::BI__builtin_ia32_ktestcsi:
14532 case X86::BI__builtin_ia32_ktestzsi:
14533 case X86::BI__builtin_ia32_ktestcdi:
14534 case X86::BI__builtin_ia32_ktestzdi: {
14535 Intrinsic::ID IID;
14536 switch (BuiltinID) {
14537 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14537)
;
14538 case X86::BI__builtin_ia32_ktestcqi:
14539 IID = Intrinsic::x86_avx512_ktestc_b;
14540 break;
14541 case X86::BI__builtin_ia32_ktestzqi:
14542 IID = Intrinsic::x86_avx512_ktestz_b;
14543 break;
14544 case X86::BI__builtin_ia32_ktestchi:
14545 IID = Intrinsic::x86_avx512_ktestc_w;
14546 break;
14547 case X86::BI__builtin_ia32_ktestzhi:
14548 IID = Intrinsic::x86_avx512_ktestz_w;
14549 break;
14550 case X86::BI__builtin_ia32_ktestcsi:
14551 IID = Intrinsic::x86_avx512_ktestc_d;
14552 break;
14553 case X86::BI__builtin_ia32_ktestzsi:
14554 IID = Intrinsic::x86_avx512_ktestz_d;
14555 break;
14556 case X86::BI__builtin_ia32_ktestcdi:
14557 IID = Intrinsic::x86_avx512_ktestc_q;
14558 break;
14559 case X86::BI__builtin_ia32_ktestzdi:
14560 IID = Intrinsic::x86_avx512_ktestz_q;
14561 break;
14562 }
14563
14564 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14565 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14566 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14567 Function *Intr = CGM.getIntrinsic(IID);
14568 return Builder.CreateCall(Intr, {LHS, RHS});
14569 }
14570
14571 case X86::BI__builtin_ia32_kaddqi:
14572 case X86::BI__builtin_ia32_kaddhi:
14573 case X86::BI__builtin_ia32_kaddsi:
14574 case X86::BI__builtin_ia32_kadddi: {
14575 Intrinsic::ID IID;
14576 switch (BuiltinID) {
14577 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14577)
;
14578 case X86::BI__builtin_ia32_kaddqi:
14579 IID = Intrinsic::x86_avx512_kadd_b;
14580 break;
14581 case X86::BI__builtin_ia32_kaddhi:
14582 IID = Intrinsic::x86_avx512_kadd_w;
14583 break;
14584 case X86::BI__builtin_ia32_kaddsi:
14585 IID = Intrinsic::x86_avx512_kadd_d;
14586 break;
14587 case X86::BI__builtin_ia32_kadddi:
14588 IID = Intrinsic::x86_avx512_kadd_q;
14589 break;
14590 }
14591
14592 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14593 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14594 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14595 Function *Intr = CGM.getIntrinsic(IID);
14596 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
14597 return Builder.CreateBitCast(Res, Ops[0]->getType());
14598 }
14599 case X86::BI__builtin_ia32_kandqi:
14600 case X86::BI__builtin_ia32_kandhi:
14601 case X86::BI__builtin_ia32_kandsi:
14602 case X86::BI__builtin_ia32_kanddi:
14603 return EmitX86MaskLogic(*this, Instruction::And, Ops);
14604 case X86::BI__builtin_ia32_kandnqi:
14605 case X86::BI__builtin_ia32_kandnhi:
14606 case X86::BI__builtin_ia32_kandnsi:
14607 case X86::BI__builtin_ia32_kandndi:
14608 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
14609 case X86::BI__builtin_ia32_korqi:
14610 case X86::BI__builtin_ia32_korhi:
14611 case X86::BI__builtin_ia32_korsi:
14612 case X86::BI__builtin_ia32_kordi:
14613 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
14614 case X86::BI__builtin_ia32_kxnorqi:
14615 case X86::BI__builtin_ia32_kxnorhi:
14616 case X86::BI__builtin_ia32_kxnorsi:
14617 case X86::BI__builtin_ia32_kxnordi:
14618 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
14619 case X86::BI__builtin_ia32_kxorqi:
14620 case X86::BI__builtin_ia32_kxorhi:
14621 case X86::BI__builtin_ia32_kxorsi:
14622 case X86::BI__builtin_ia32_kxordi:
14623 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
14624 case X86::BI__builtin_ia32_knotqi:
14625 case X86::BI__builtin_ia32_knothi:
14626 case X86::BI__builtin_ia32_knotsi:
14627 case X86::BI__builtin_ia32_knotdi: {
14628 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14629 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14630 return Builder.CreateBitCast(Builder.CreateNot(Res),
14631 Ops[0]->getType());
14632 }
14633 case X86::BI__builtin_ia32_kmovb:
14634 case X86::BI__builtin_ia32_kmovw:
14635 case X86::BI__builtin_ia32_kmovd:
14636 case X86::BI__builtin_ia32_kmovq: {
14637 // Bitcast to vXi1 type and then back to integer. This gets the mask
14638 // register type into the IR, but might be optimized out depending on
14639 // what's around it.
14640 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14641 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14642 return Builder.CreateBitCast(Res, Ops[0]->getType());
14643 }
14644
14645 case X86::BI__builtin_ia32_kunpckdi:
14646 case X86::BI__builtin_ia32_kunpcksi:
14647 case X86::BI__builtin_ia32_kunpckhi: {
14648 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14649 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14650 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14651 int Indices[64];
14652 for (unsigned i = 0; i != NumElts; ++i)
14653 Indices[i] = i;
14654
14655 // First extract half of each vector. This gives better codegen than
14656 // doing it in a single shuffle.
14657 LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2));
14658 RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2));
14659 // Concat the vectors.
14660 // NOTE: Operands are swapped to match the intrinsic definition.
14661 Value *Res =
14662 Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts));
14663 return Builder.CreateBitCast(Res, Ops[0]->getType());
14664 }
14665
14666 case X86::BI__builtin_ia32_vplzcntd_128:
14667 case X86::BI__builtin_ia32_vplzcntd_256:
14668 case X86::BI__builtin_ia32_vplzcntd_512:
14669 case X86::BI__builtin_ia32_vplzcntq_128:
14670 case X86::BI__builtin_ia32_vplzcntq_256:
14671 case X86::BI__builtin_ia32_vplzcntq_512: {
14672 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14673 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14674 }
14675 case X86::BI__builtin_ia32_sqrtss:
14676 case X86::BI__builtin_ia32_sqrtsd: {
14677 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14678 Function *F;
14679 if (Builder.getIsFPConstrained()) {
14680 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14681 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14682 A->getType());
14683 A = Builder.CreateConstrainedFPCall(F, {A});
14684 } else {
14685 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14686 A = Builder.CreateCall(F, {A});
14687 }
14688 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14689 }
14690 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14691 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14692 case X86::BI__builtin_ia32_sqrtss_round_mask: {
14693 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14694 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14695 // otherwise keep the intrinsic.
14696 if (CC != 4) {
14697 Intrinsic::ID IID;
14698
14699 switch (BuiltinID) {
14700 default:
14701 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14701)
;
14702 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14703 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14704 break;
14705 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14706 IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14707 break;
14708 case X86::BI__builtin_ia32_sqrtss_round_mask:
14709 IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14710 break;
14711 }
14712 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14713 }
14714 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14715 Function *F;
14716 if (Builder.getIsFPConstrained()) {
14717 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14718 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14719 A->getType());
14720 A = Builder.CreateConstrainedFPCall(F, A);
14721 } else {
14722 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14723 A = Builder.CreateCall(F, A);
14724 }
14725 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14726 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14727 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14728 }
14729 case X86::BI__builtin_ia32_sqrtpd256:
14730 case X86::BI__builtin_ia32_sqrtpd:
14731 case X86::BI__builtin_ia32_sqrtps256:
14732 case X86::BI__builtin_ia32_sqrtps:
14733 case X86::BI__builtin_ia32_sqrtph256:
14734 case X86::BI__builtin_ia32_sqrtph:
14735 case X86::BI__builtin_ia32_sqrtph512:
14736 case X86::BI__builtin_ia32_sqrtps512:
14737 case X86::BI__builtin_ia32_sqrtpd512: {
14738 if (Ops.size() == 2) {
14739 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14740 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14741 // otherwise keep the intrinsic.
14742 if (CC != 4) {
14743 Intrinsic::ID IID;
14744
14745 switch (BuiltinID) {
14746 default:
14747 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14747)
;
14748 case X86::BI__builtin_ia32_sqrtph512:
14749 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14750 break;
14751 case X86::BI__builtin_ia32_sqrtps512:
14752 IID = Intrinsic::x86_avx512_sqrt_ps_512;
14753 break;
14754 case X86::BI__builtin_ia32_sqrtpd512:
14755 IID = Intrinsic::x86_avx512_sqrt_pd_512;
14756 break;
14757 }
14758 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14759 }
14760 }
14761 if (Builder.getIsFPConstrained()) {
14762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14763 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14764 Ops[0]->getType());
14765 return Builder.CreateConstrainedFPCall(F, Ops[0]);
14766 } else {
14767 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14768 return Builder.CreateCall(F, Ops[0]);
14769 }
14770 }
14771
14772 case X86::BI__builtin_ia32_pmuludq128:
14773 case X86::BI__builtin_ia32_pmuludq256:
14774 case X86::BI__builtin_ia32_pmuludq512:
14775 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14776
14777 case X86::BI__builtin_ia32_pmuldq128:
14778 case X86::BI__builtin_ia32_pmuldq256:
14779 case X86::BI__builtin_ia32_pmuldq512:
14780 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14781
14782 case X86::BI__builtin_ia32_pternlogd512_mask:
14783 case X86::BI__builtin_ia32_pternlogq512_mask:
14784 case X86::BI__builtin_ia32_pternlogd128_mask:
14785 case X86::BI__builtin_ia32_pternlogd256_mask:
14786 case X86::BI__builtin_ia32_pternlogq128_mask:
14787 case X86::BI__builtin_ia32_pternlogq256_mask:
14788 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14789
14790 case X86::BI__builtin_ia32_pternlogd512_maskz:
14791 case X86::BI__builtin_ia32_pternlogq512_maskz:
14792 case X86::BI__builtin_ia32_pternlogd128_maskz:
14793 case X86::BI__builtin_ia32_pternlogd256_maskz:
14794 case X86::BI__builtin_ia32_pternlogq128_maskz:
14795 case X86::BI__builtin_ia32_pternlogq256_maskz:
14796 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14797
14798 case X86::BI__builtin_ia32_vpshldd128:
14799 case X86::BI__builtin_ia32_vpshldd256:
14800 case X86::BI__builtin_ia32_vpshldd512:
14801 case X86::BI__builtin_ia32_vpshldq128:
14802 case X86::BI__builtin_ia32_vpshldq256:
14803 case X86::BI__builtin_ia32_vpshldq512:
14804 case X86::BI__builtin_ia32_vpshldw128:
14805 case X86::BI__builtin_ia32_vpshldw256:
14806 case X86::BI__builtin_ia32_vpshldw512:
14807 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14808
14809 case X86::BI__builtin_ia32_vpshrdd128:
14810 case X86::BI__builtin_ia32_vpshrdd256:
14811 case X86::BI__builtin_ia32_vpshrdd512:
14812 case X86::BI__builtin_ia32_vpshrdq128:
14813 case X86::BI__builtin_ia32_vpshrdq256:
14814 case X86::BI__builtin_ia32_vpshrdq512:
14815 case X86::BI__builtin_ia32_vpshrdw128:
14816 case X86::BI__builtin_ia32_vpshrdw256:
14817 case X86::BI__builtin_ia32_vpshrdw512:
14818 // Ops 0 and 1 are swapped.
14819 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14820
14821 case X86::BI__builtin_ia32_vpshldvd128:
14822 case X86::BI__builtin_ia32_vpshldvd256:
14823 case X86::BI__builtin_ia32_vpshldvd512:
14824 case X86::BI__builtin_ia32_vpshldvq128:
14825 case X86::BI__builtin_ia32_vpshldvq256:
14826 case X86::BI__builtin_ia32_vpshldvq512:
14827 case X86::BI__builtin_ia32_vpshldvw128:
14828 case X86::BI__builtin_ia32_vpshldvw256:
14829 case X86::BI__builtin_ia32_vpshldvw512:
14830 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14831
14832 case X86::BI__builtin_ia32_vpshrdvd128:
14833 case X86::BI__builtin_ia32_vpshrdvd256:
14834 case X86::BI__builtin_ia32_vpshrdvd512:
14835 case X86::BI__builtin_ia32_vpshrdvq128:
14836 case X86::BI__builtin_ia32_vpshrdvq256:
14837 case X86::BI__builtin_ia32_vpshrdvq512:
14838 case X86::BI__builtin_ia32_vpshrdvw128:
14839 case X86::BI__builtin_ia32_vpshrdvw256:
14840 case X86::BI__builtin_ia32_vpshrdvw512:
14841 // Ops 0 and 1 are swapped.
14842 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14843
14844 // Reductions
14845 case X86::BI__builtin_ia32_reduce_fadd_pd512:
14846 case X86::BI__builtin_ia32_reduce_fadd_ps512:
14847 case X86::BI__builtin_ia32_reduce_fadd_ph512:
14848 case X86::BI__builtin_ia32_reduce_fadd_ph256:
14849 case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14850 Function *F =
14851 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14852 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14853 Builder.getFastMathFlags().setAllowReassoc();
14854 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14855 }
14856 case X86::BI__builtin_ia32_reduce_fmul_pd512:
14857 case X86::BI__builtin_ia32_reduce_fmul_ps512:
14858 case X86::BI__builtin_ia32_reduce_fmul_ph512:
14859 case X86::BI__builtin_ia32_reduce_fmul_ph256:
14860 case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14861 Function *F =
14862 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14863 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14864 Builder.getFastMathFlags().setAllowReassoc();
14865 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14866 }
14867 case X86::BI__builtin_ia32_reduce_fmax_pd512:
14868 case X86::BI__builtin_ia32_reduce_fmax_ps512:
14869 case X86::BI__builtin_ia32_reduce_fmax_ph512:
14870 case X86::BI__builtin_ia32_reduce_fmax_ph256:
14871 case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14872 Function *F =
14873 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14874 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14875 Builder.getFastMathFlags().setNoNaNs();
14876 return Builder.CreateCall(F, {Ops[0]});
14877 }
14878 case X86::BI__builtin_ia32_reduce_fmin_pd512:
14879 case X86::BI__builtin_ia32_reduce_fmin_ps512:
14880 case X86::BI__builtin_ia32_reduce_fmin_ph512:
14881 case X86::BI__builtin_ia32_reduce_fmin_ph256:
14882 case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14883 Function *F =
14884 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14885 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14886 Builder.getFastMathFlags().setNoNaNs();
14887 return Builder.CreateCall(F, {Ops[0]});
14888 }
14889
14890 // 3DNow!
14891 case X86::BI__builtin_ia32_pswapdsf:
14892 case X86::BI__builtin_ia32_pswapdsi: {
14893 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14894 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14895 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14896 return Builder.CreateCall(F, Ops, "pswapd");
14897 }
14898 case X86::BI__builtin_ia32_rdrand16_step:
14899 case X86::BI__builtin_ia32_rdrand32_step:
14900 case X86::BI__builtin_ia32_rdrand64_step:
14901 case X86::BI__builtin_ia32_rdseed16_step:
14902 case X86::BI__builtin_ia32_rdseed32_step:
14903 case X86::BI__builtin_ia32_rdseed64_step: {
14904 Intrinsic::ID ID;
14905 switch (BuiltinID) {
14906 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14906)
;
14907 case X86::BI__builtin_ia32_rdrand16_step:
14908 ID = Intrinsic::x86_rdrand_16;
14909 break;
14910 case X86::BI__builtin_ia32_rdrand32_step:
14911 ID = Intrinsic::x86_rdrand_32;
14912 break;
14913 case X86::BI__builtin_ia32_rdrand64_step:
14914 ID = Intrinsic::x86_rdrand_64;
14915 break;
14916 case X86::BI__builtin_ia32_rdseed16_step:
14917 ID = Intrinsic::x86_rdseed_16;
14918 break;
14919 case X86::BI__builtin_ia32_rdseed32_step:
14920 ID = Intrinsic::x86_rdseed_32;
14921 break;
14922 case X86::BI__builtin_ia32_rdseed64_step:
14923 ID = Intrinsic::x86_rdseed_64;
14924 break;
14925 }
14926
14927 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14928 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14929 Ops[0]);
14930 return Builder.CreateExtractValue(Call, 1);
14931 }
14932 case X86::BI__builtin_ia32_addcarryx_u32:
14933 case X86::BI__builtin_ia32_addcarryx_u64:
14934 case X86::BI__builtin_ia32_subborrow_u32:
14935 case X86::BI__builtin_ia32_subborrow_u64: {
14936 Intrinsic::ID IID;
14937 switch (BuiltinID) {
14938 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14938)
;
14939 case X86::BI__builtin_ia32_addcarryx_u32:
14940 IID = Intrinsic::x86_addcarry_32;
14941 break;
14942 case X86::BI__builtin_ia32_addcarryx_u64:
14943 IID = Intrinsic::x86_addcarry_64;
14944 break;
14945 case X86::BI__builtin_ia32_subborrow_u32:
14946 IID = Intrinsic::x86_subborrow_32;
14947 break;
14948 case X86::BI__builtin_ia32_subborrow_u64:
14949 IID = Intrinsic::x86_subborrow_64;
14950 break;
14951 }
14952
14953 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14954 { Ops[0], Ops[1], Ops[2] });
14955 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14956 Ops[3]);
14957 return Builder.CreateExtractValue(Call, 0);
14958 }
14959
14960 case X86::BI__builtin_ia32_fpclassps128_mask:
14961 case X86::BI__builtin_ia32_fpclassps256_mask:
14962 case X86::BI__builtin_ia32_fpclassps512_mask:
14963 case X86::BI__builtin_ia32_fpclassph128_mask:
14964 case X86::BI__builtin_ia32_fpclassph256_mask:
14965 case X86::BI__builtin_ia32_fpclassph512_mask:
14966 case X86::BI__builtin_ia32_fpclasspd128_mask:
14967 case X86::BI__builtin_ia32_fpclasspd256_mask:
14968 case X86::BI__builtin_ia32_fpclasspd512_mask: {
14969 unsigned NumElts =
14970 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14971 Value *MaskIn = Ops[2];
14972 Ops.erase(&Ops[2]);
14973
14974 Intrinsic::ID ID;
14975 switch (BuiltinID) {
14976 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14976)
;
14977 case X86::BI__builtin_ia32_fpclassph128_mask:
14978 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14979 break;
14980 case X86::BI__builtin_ia32_fpclassph256_mask:
14981 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14982 break;
14983 case X86::BI__builtin_ia32_fpclassph512_mask:
14984 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14985 break;
14986 case X86::BI__builtin_ia32_fpclassps128_mask:
14987 ID = Intrinsic::x86_avx512_fpclass_ps_128;
14988 break;
14989 case X86::BI__builtin_ia32_fpclassps256_mask:
14990 ID = Intrinsic::x86_avx512_fpclass_ps_256;
14991 break;
14992 case X86::BI__builtin_ia32_fpclassps512_mask:
14993 ID = Intrinsic::x86_avx512_fpclass_ps_512;
14994 break;
14995 case X86::BI__builtin_ia32_fpclasspd128_mask:
14996 ID = Intrinsic::x86_avx512_fpclass_pd_128;
14997 break;
14998 case X86::BI__builtin_ia32_fpclasspd256_mask:
14999 ID = Intrinsic::x86_avx512_fpclass_pd_256;
15000 break;
15001 case X86::BI__builtin_ia32_fpclasspd512_mask:
15002 ID = Intrinsic::x86_avx512_fpclass_pd_512;
15003 break;
15004 }
15005
15006 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15007 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
15008 }
15009
15010 case X86::BI__builtin_ia32_vp2intersect_q_512:
15011 case X86::BI__builtin_ia32_vp2intersect_q_256:
15012 case X86::BI__builtin_ia32_vp2intersect_q_128:
15013 case X86::BI__builtin_ia32_vp2intersect_d_512:
15014 case X86::BI__builtin_ia32_vp2intersect_d_256:
15015 case X86::BI__builtin_ia32_vp2intersect_d_128: {
15016 unsigned NumElts =
15017 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15018 Intrinsic::ID ID;
15019
15020 switch (BuiltinID) {
15021 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15021)
;
15022 case X86::BI__builtin_ia32_vp2intersect_q_512:
15023 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
15024 break;
15025 case X86::BI__builtin_ia32_vp2intersect_q_256:
15026 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
15027 break;
15028 case X86::BI__builtin_ia32_vp2intersect_q_128:
15029 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
15030 break;
15031 case X86::BI__builtin_ia32_vp2intersect_d_512:
15032 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
15033 break;
15034 case X86::BI__builtin_ia32_vp2intersect_d_256:
15035 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
15036 break;
15037 case X86::BI__builtin_ia32_vp2intersect_d_128:
15038 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
15039 break;
15040 }
15041
15042 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
15043 Value *Result = Builder.CreateExtractValue(Call, 0);
15044 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
15045 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
15046
15047 Result = Builder.CreateExtractValue(Call, 1);
15048 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
15049 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
15050 }
15051
15052 case X86::BI__builtin_ia32_vpmultishiftqb128:
15053 case X86::BI__builtin_ia32_vpmultishiftqb256:
15054 case X86::BI__builtin_ia32_vpmultishiftqb512: {
15055 Intrinsic::ID ID;
15056 switch (BuiltinID) {
15057 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15057)
;
15058 case X86::BI__builtin_ia32_vpmultishiftqb128:
15059 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
15060 break;
15061 case X86::BI__builtin_ia32_vpmultishiftqb256:
15062 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
15063 break;
15064 case X86::BI__builtin_ia32_vpmultishiftqb512:
15065 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
15066 break;
15067 }
15068
15069 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15070 }
15071
15072 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
15073 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
15074 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
15075 unsigned NumElts =
15076 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15077 Value *MaskIn = Ops[2];
15078 Ops.erase(&Ops[2]);
15079
15080 Intrinsic::ID ID;
15081 switch (BuiltinID) {
15082 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15082)
;
15083 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
15084 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
15085 break;
15086 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
15087 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
15088 break;
15089 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
15090 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
15091 break;
15092 }
15093
15094 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15095 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
15096 }
15097
15098 // packed comparison intrinsics
15099 case X86::BI__builtin_ia32_cmpeqps:
15100 case X86::BI__builtin_ia32_cmpeqpd:
15101 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
15102 case X86::BI__builtin_ia32_cmpltps:
15103 case X86::BI__builtin_ia32_cmpltpd:
15104 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
15105 case X86::BI__builtin_ia32_cmpleps:
15106 case X86::BI__builtin_ia32_cmplepd:
15107 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
15108 case X86::BI__builtin_ia32_cmpunordps:
15109 case X86::BI__builtin_ia32_cmpunordpd:
15110 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
15111 case X86::BI__builtin_ia32_cmpneqps:
15112 case X86::BI__builtin_ia32_cmpneqpd:
15113 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
15114 case X86::BI__builtin_ia32_cmpnltps:
15115 case X86::BI__builtin_ia32_cmpnltpd:
15116 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
15117 case X86::BI__builtin_ia32_cmpnleps:
15118 case X86::BI__builtin_ia32_cmpnlepd:
15119 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
15120 case X86::BI__builtin_ia32_cmpordps:
15121 case X86::BI__builtin_ia32_cmpordpd:
15122 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
15123 case X86::BI__builtin_ia32_cmpph128_mask:
15124 case X86::BI__builtin_ia32_cmpph256_mask:
15125 case X86::BI__builtin_ia32_cmpph512_mask:
15126 case X86::BI__builtin_ia32_cmpps128_mask:
15127 case X86::BI__builtin_ia32_cmpps256_mask:
15128 case X86::BI__builtin_ia32_cmpps512_mask:
15129 case X86::BI__builtin_ia32_cmppd128_mask:
15130 case X86::BI__builtin_ia32_cmppd256_mask:
15131 case X86::BI__builtin_ia32_cmppd512_mask:
15132 IsMaskFCmp = true;
15133 [[fallthrough]];
15134 case X86::BI__builtin_ia32_cmpps:
15135 case X86::BI__builtin_ia32_cmpps256:
15136 case X86::BI__builtin_ia32_cmppd:
15137 case X86::BI__builtin_ia32_cmppd256: {
15138 // Lowering vector comparisons to fcmp instructions, while
15139 // ignoring signalling behaviour requested
15140 // ignoring rounding mode requested
15141 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
15142
15143 // The third argument is the comparison condition, and integer in the
15144 // range [0, 31]
15145 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
15146
15147 // Lowering to IR fcmp instruction.
15148 // Ignoring requested signaling behaviour,
15149 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
15150 FCmpInst::Predicate Pred;
15151 bool IsSignaling;
15152 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
15153 // behavior is inverted. We'll handle that after the switch.
15154 switch (CC & 0xf) {
15155 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
15156 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
15157 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
15158 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
15159 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
15160 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
15161 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
15162 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
15163 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
15164 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
15165 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
15166 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
15167 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
15168 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
15169 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
15170 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
15171 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15171)
;
15172 }
15173
15174 // Invert the signalling behavior for 16-31.
15175 if (CC & 0x10)
15176 IsSignaling = !IsSignaling;
15177
15178 // If the predicate is true or false and we're using constrained intrinsics,
15179 // we don't have a compare intrinsic we can use. Just use the legacy X86
15180 // specific intrinsic.
15181 // If the intrinsic is mask enabled and we're using constrained intrinsics,
15182 // use the legacy X86 specific intrinsic.
15183 if (Builder.getIsFPConstrained() &&
15184 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
15185 IsMaskFCmp)) {
15186
15187 Intrinsic::ID IID;
15188 switch (BuiltinID) {
15189 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15189)
;
15190 case X86::BI__builtin_ia32_cmpps:
15191 IID = Intrinsic::x86_sse_cmp_ps;
15192 break;
15193 case X86::BI__builtin_ia32_cmpps256:
15194 IID = Intrinsic::x86_avx_cmp_ps_256;
15195 break;
15196 case X86::BI__builtin_ia32_cmppd:
15197 IID = Intrinsic::x86_sse2_cmp_pd;
15198 break;
15199 case X86::BI__builtin_ia32_cmppd256:
15200 IID = Intrinsic::x86_avx_cmp_pd_256;
15201 break;
15202 case X86::BI__builtin_ia32_cmpps512_mask:
15203 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
15204 break;
15205 case X86::BI__builtin_ia32_cmppd512_mask:
15206 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
15207 break;
15208 case X86::BI__builtin_ia32_cmpps128_mask:
15209 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
15210 break;
15211 case X86::BI__builtin_ia32_cmpps256_mask:
15212 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
15213 break;
15214 case X86::BI__builtin_ia32_cmppd128_mask:
15215 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
15216 break;
15217 case X86::BI__builtin_ia32_cmppd256_mask:
15218 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
15219 break;
15220 }
15221
15222 Function *Intr = CGM.getIntrinsic(IID);
15223 if (IsMaskFCmp) {
15224 unsigned NumElts =
15225 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15226 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
15227 Value *Cmp = Builder.CreateCall(Intr, Ops);
15228 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
15229 }
15230
15231 return Builder.CreateCall(Intr, Ops);
15232 }
15233
15234 // Builtins without the _mask suffix return a vector of integers
15235 // of the same width as the input vectors
15236 if (IsMaskFCmp) {
15237 // We ignore SAE if strict FP is disabled. We only keep precise
15238 // exception behavior under strict FP.
15239 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
15240 // object will be required.
15241 unsigned NumElts =
15242 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15243 Value *Cmp;
15244 if (IsSignaling)
15245 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
15246 else
15247 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
15248 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
15249 }
15250
15251 return getVectorFCmpIR(Pred, IsSignaling);
15252 }
15253
15254 // SSE scalar comparison intrinsics
15255 case X86::BI__builtin_ia32_cmpeqss:
15256 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
15257 case X86::BI__builtin_ia32_cmpltss:
15258 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
15259 case X86::BI__builtin_ia32_cmpless:
15260 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
15261 case X86::BI__builtin_ia32_cmpunordss:
15262 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
15263 case X86::BI__builtin_ia32_cmpneqss:
15264 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
15265 case X86::BI__builtin_ia32_cmpnltss:
15266 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
15267 case X86::BI__builtin_ia32_cmpnless:
15268 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
15269 case X86::BI__builtin_ia32_cmpordss:
15270 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
15271 case X86::BI__builtin_ia32_cmpeqsd:
15272 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
15273 case X86::BI__builtin_ia32_cmpltsd:
15274 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
15275 case X86::BI__builtin_ia32_cmplesd:
15276 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
15277 case X86::BI__builtin_ia32_cmpunordsd:
15278 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
15279 case X86::BI__builtin_ia32_cmpneqsd:
15280 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
15281 case X86::BI__builtin_ia32_cmpnltsd:
15282 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
15283 case X86::BI__builtin_ia32_cmpnlesd:
15284 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
15285 case X86::BI__builtin_ia32_cmpordsd:
15286 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
15287
15288 // f16c half2float intrinsics
15289 case X86::BI__builtin_ia32_vcvtph2ps:
15290 case X86::BI__builtin_ia32_vcvtph2ps256:
15291 case X86::BI__builtin_ia32_vcvtph2ps_mask:
15292 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
15293 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
15294 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15295 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
15296 }
15297
15298 // AVX512 bf16 intrinsics
15299 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
15300 Ops[2] = getMaskVecValue(
15301 *this, Ops[2],
15302 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
15303 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
15304 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15305 }
15306 case X86::BI__builtin_ia32_cvtsbf162ss_32:
15307 return Builder.CreateFPExt(Ops[0], Builder.getFloatTy());
15308
15309 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
15310 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
15311 Intrinsic::ID IID;
15312 switch (BuiltinID) {
15313 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15313)
;
15314 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
15315 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
15316 break;
15317 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
15318 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
15319 break;
15320 }
15321 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
15322 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
15323 }
15324
15325 case X86::BI__cpuid:
15326 case X86::BI__cpuidex: {
15327 Value *FuncId = EmitScalarExpr(E->getArg(1));
15328 Value *SubFuncId = BuiltinID == X86::BI__cpuidex
15329 ? EmitScalarExpr(E->getArg(2))
15330 : llvm::ConstantInt::get(Int32Ty, 0);
15331
15332 llvm::StructType *CpuidRetTy =
15333 llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
15334 llvm::FunctionType *FTy =
15335 llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
15336
15337 StringRef Asm, Constraints;
15338 if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
15339 Asm = "cpuid";
15340 Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
15341 } else {
15342 // x86-64 uses %rbx as the base register, so preserve it.
15343 Asm = "xchgq %rbx, ${1:q}\n"
15344 "cpuid\n"
15345 "xchgq %rbx, ${1:q}";
15346 Constraints = "={ax},=r,={cx},={dx},0,2";
15347 }
15348
15349 llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
15350 /*hasSideEffects=*/false);
15351 Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
15352 Value *BasePtr = EmitScalarExpr(E->getArg(0));
15353 Value *Store = nullptr;
15354 for (unsigned i = 0; i < 4; i++) {
15355 Value *Extracted = Builder.CreateExtractValue(IACall, i);
15356 Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
15357 Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
15358 }
15359
15360 // Return the last store instruction to signal that we have emitted the
15361 // the intrinsic.
15362 return Store;
15363 }
15364
15365 case X86::BI__emul:
15366 case X86::BI__emulu: {
15367 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
15368 bool isSigned = (BuiltinID == X86::BI__emul);
15369 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
15370 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
15371 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
15372 }
15373 case X86::BI__mulh:
15374 case X86::BI__umulh:
15375 case X86::BI_mul128:
15376 case X86::BI_umul128: {
15377 llvm::Type *ResType = ConvertType(E->getType());
15378 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15379
15380 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
15381 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
15382 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
15383
15384 Value *MulResult, *HigherBits;
15385 if (IsSigned) {
15386 MulResult = Builder.CreateNSWMul(LHS, RHS);
15387 HigherBits = Builder.CreateAShr(MulResult, 64);
15388 } else {
15389 MulResult = Builder.CreateNUWMul(LHS, RHS);
15390 HigherBits = Builder.CreateLShr(MulResult, 64);
15391 }
15392 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
15393
15394 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
15395 return HigherBits;
15396
15397 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
15398 Builder.CreateStore(HigherBits, HighBitsAddress);
15399 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
15400 }
15401
15402 case X86::BI__faststorefence: {
15403 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15404 llvm::SyncScope::System);
15405 }
15406 case X86::BI__shiftleft128:
15407 case X86::BI__shiftright128: {
15408 llvm::Function *F = CGM.getIntrinsic(
15409 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
15410 Int64Ty);
15411 // Flip low/high ops and zero-extend amount to matching type.
15412 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
15413 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
15414 std::swap(Ops[0], Ops[1]);
15415 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15416 return Builder.CreateCall(F, Ops);
15417 }
15418 case X86::BI_ReadWriteBarrier:
15419 case X86::BI_ReadBarrier:
15420 case X86::BI_WriteBarrier: {
15421 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15422 llvm::SyncScope::SingleThread);
15423 }
15424
15425 case X86::BI_AddressOfReturnAddress: {
15426 Function *F =
15427 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
15428 return Builder.CreateCall(F);
15429 }
15430 case X86::BI__stosb: {
15431 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
15432 // instruction, but it will create a memset that won't be optimized away.
15433 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
15434 }
15435 case X86::BI__ud2:
15436 // llvm.trap makes a ud2a instruction on x86.
15437 return EmitTrapCall(Intrinsic::trap);
15438 case X86::BI__int2c: {
15439 // This syscall signals a driver assertion failure in x86 NT kernels.
15440 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
15441 llvm::InlineAsm *IA =
15442 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
15443 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
15444 getLLVMContext(), llvm::AttributeList::FunctionIndex,
15445 llvm::Attribute::NoReturn);
15446 llvm::CallInst *CI = Builder.CreateCall(IA);
15447 CI->setAttributes(NoReturnAttr);
15448 return CI;
15449 }
15450 case X86::BI__readfsbyte:
15451 case X86::BI__readfsword:
15452 case X86::BI__readfsdword:
15453 case X86::BI__readfsqword: {
15454 llvm::Type *IntTy = ConvertType(E->getType());
15455 Value *Ptr =
15456 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
15457 LoadInst *Load = Builder.CreateAlignedLoad(
15458 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15459 Load->setVolatile(true);
15460 return Load;
15461 }
15462 case X86::BI__readgsbyte:
15463 case X86::BI__readgsword:
15464 case X86::BI__readgsdword:
15465 case X86::BI__readgsqword: {
15466 llvm::Type *IntTy = ConvertType(E->getType());
15467 Value *Ptr =
15468 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
15469 LoadInst *Load = Builder.CreateAlignedLoad(
15470 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15471 Load->setVolatile(true);
15472 return Load;
15473 }
15474 case X86::BI__builtin_ia32_encodekey128_u32: {
15475 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
15476
15477 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
15478
15479 for (int i = 0; i < 3; ++i) {
15480 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15481 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
15482 Ptr = Builder.CreateBitCast(
15483 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15484 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15485 }
15486
15487 return Builder.CreateExtractValue(Call, 0);
15488 }
15489 case X86::BI__builtin_ia32_encodekey256_u32: {
15490 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
15491
15492 Value *Call =
15493 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
15494
15495 for (int i = 0; i < 4; ++i) {
15496 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15497 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
15498 Ptr = Builder.CreateBitCast(
15499 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15500 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15501 }
15502
15503 return Builder.CreateExtractValue(Call, 0);
15504 }
15505 case X86::BI__builtin_ia32_aesenc128kl_u8:
15506 case X86::BI__builtin_ia32_aesdec128kl_u8:
15507 case X86::BI__builtin_ia32_aesenc256kl_u8:
15508 case X86::BI__builtin_ia32_aesdec256kl_u8: {
15509 Intrinsic::ID IID;
15510 StringRef BlockName;
15511 switch (BuiltinID) {
15512 default:
15513 llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15513)
;
15514 case X86::BI__builtin_ia32_aesenc128kl_u8:
15515 IID = Intrinsic::x86_aesenc128kl;
15516 BlockName = "aesenc128kl";
15517 break;
15518 case X86::BI__builtin_ia32_aesdec128kl_u8:
15519 IID = Intrinsic::x86_aesdec128kl;
15520 BlockName = "aesdec128kl";
15521 break;
15522 case X86::BI__builtin_ia32_aesenc256kl_u8:
15523 IID = Intrinsic::x86_aesenc256kl;
15524 BlockName = "aesenc256kl";
15525 break;
15526 case X86::BI__builtin_ia32_aesdec256kl_u8:
15527 IID = Intrinsic::x86_aesdec256kl;
15528 BlockName = "aesdec256kl";
15529 break;
15530 }
15531
15532 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
15533
15534 BasicBlock *NoError =
15535 createBasicBlock(BlockName + "_no_error", this->CurFn);
15536 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15537 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15538
15539 Value *Ret = Builder.CreateExtractValue(Call, 0);
15540 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15541 Value *Out = Builder.CreateExtractValue(Call, 1);
15542 Builder.CreateCondBr(Succ, NoError, Error);
15543
15544 Builder.SetInsertPoint(NoError);
15545 Builder.CreateDefaultAlignedStore(Out, Ops[0]);
15546 Builder.CreateBr(End);
15547
15548 Builder.SetInsertPoint(Error);
15549 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15550 Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
15551 Builder.CreateBr(End);
15552
15553 Builder.SetInsertPoint(End);
15554 return Builder.CreateExtractValue(Call, 0);
15555 }
15556 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15557 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15558 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15559 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
15560 Intrinsic::ID IID;
15561 StringRef BlockName;
15562 switch (BuiltinID) {
15563 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15564 IID = Intrinsic::x86_aesencwide128kl;
15565 BlockName = "aesencwide128kl";
15566 break;
15567 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15568 IID = Intrinsic::x86_aesdecwide128kl;
15569 BlockName = "aesdecwide128kl";
15570 break;
15571 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15572 IID = Intrinsic::x86_aesencwide256kl;
15573 BlockName = "aesencwide256kl";
15574 break;
15575 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15576 IID = Intrinsic::x86_aesdecwide256kl;
15577 BlockName = "aesdecwide256kl";
15578 break;
15579 }
15580
15581 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15582 Value *InOps[9];
15583 InOps[0] = Ops[2];
15584 for (int i = 0; i != 8; ++i) {
15585 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15586 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15587 }
15588
15589 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15590
15591 BasicBlock *NoError =
15592 createBasicBlock(BlockName + "_no_error", this->CurFn);
15593 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15594 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15595
15596 Value *Ret = Builder.CreateExtractValue(Call, 0);
15597 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15598 Builder.CreateCondBr(Succ, NoError, Error);
15599
15600 Builder.SetInsertPoint(NoError);
15601 for (int i = 0; i != 8; ++i) {
15602 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15603 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15604 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15605 }
15606 Builder.CreateBr(End);
15607
15608 Builder.SetInsertPoint(Error);
15609 for (int i = 0; i != 8; ++i) {
15610 Value *Out = Builder.CreateExtractValue(Call, i + 1);
15611 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15612 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15613 Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15614 }
15615 Builder.CreateBr(End);
15616
15617 Builder.SetInsertPoint(End);
15618 return Builder.CreateExtractValue(Call, 0);
15619 }
15620 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
15621 IsConjFMA = true;
15622 [[fallthrough]];
15623 case X86::BI__builtin_ia32_vfmaddcph512_mask: {
15624 Intrinsic::ID IID = IsConjFMA
15625 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
15626 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
15627 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15628 return EmitX86Select(*this, Ops[3], Call, Ops[0]);
15629 }
15630 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
15631 IsConjFMA = true;
15632 [[fallthrough]];
15633 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
15634 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15635 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15636 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15637 Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
15638 return EmitX86Select(*this, And, Call, Ops[0]);
15639 }
15640 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
15641 IsConjFMA = true;
15642 [[fallthrough]];
15643 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
15644 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15645 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15646 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15647 static constexpr int Mask[] = {0, 5, 6, 7};
15648 return Builder.CreateShuffleVector(Call, Ops[2], Mask);
15649 }
15650 case X86::BI__builtin_ia32_prefetchi:
15651 return Builder.CreateCall(
15652 CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()),
15653 {Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1],
15654 llvm::ConstantInt::get(Int32Ty, 0)});
15655 }
15656}
15657
15658Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15659 const CallExpr *E) {
15660 // Do not emit the builtin arguments in the arguments of a function call,
15661 // because the evaluation order of function arguments is not specified in C++.
15662 // This is important when testing to ensure the arguments are emitted in the
15663 // same order every time. Eg:
15664 // Instead of:
15665 // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
15666 // EmitScalarExpr(E->getArg(1)), "swdiv");
15667 // Use:
15668 // Value *Op0 = EmitScalarExpr(E->getArg(0));
15669 // Value *Op1 = EmitScalarExpr(E->getArg(1));
15670 // return Builder.CreateFDiv(Op0, Op1, "swdiv")
15671
15672 Intrinsic::ID ID = Intrinsic::not_intrinsic;
15673
15674 switch (BuiltinID) {
15675 default: return nullptr;
15676
15677 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15678 // call __builtin_readcyclecounter.
15679 case PPC::BI__builtin_ppc_get_timebase:
15680 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15681
15682 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15683 case PPC::BI__builtin_altivec_lvx:
15684 case PPC::BI__builtin_altivec_lvxl:
15685 case PPC::BI__builtin_altivec_lvebx:
15686 case PPC::BI__builtin_altivec_lvehx:
15687 case PPC::BI__builtin_altivec_lvewx:
15688 case PPC::BI__builtin_altivec_lvsl:
15689 case PPC::BI__builtin_altivec_lvsr:
15690 case PPC::BI__builtin_vsx_lxvd2x:
15691 case PPC::BI__builtin_vsx_lxvw4x:
15692 case PPC::BI__builtin_vsx_lxvd2x_be:
15693 case PPC::BI__builtin_vsx_lxvw4x_be:
15694 case PPC::BI__builtin_vsx_lxvl:
15695 case PPC::BI__builtin_vsx_lxvll:
15696 {
15697 SmallVector<Value *, 2> Ops;
15698 Ops.push_back(EmitScalarExpr(E->getArg(0)));
15699 Ops.push_back(EmitScalarExpr(E->getArg(1)));
15700 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15701 BuiltinID == PPC::BI__builtin_vsx_lxvll){
15702 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15703 }else {
15704 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15705 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15706 Ops.pop_back();
15707 }
15708
15709 switch (BuiltinID) {
15710 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15710)
;
15711 case PPC::BI__builtin_altivec_lvx:
15712 ID = Intrinsic::ppc_altivec_lvx;
15713 break;
15714 case PPC::BI__builtin_altivec_lvxl:
15715 ID = Intrinsic::ppc_altivec_lvxl;
15716 break;
15717 case PPC::BI__builtin_altivec_lvebx:
15718 ID = Intrinsic::ppc_altivec_lvebx;
15719 break;
15720 case PPC::BI__builtin_altivec_lvehx:
15721 ID = Intrinsic::ppc_altivec_lvehx;
15722 break;
15723 case PPC::BI__builtin_altivec_lvewx:
15724 ID = Intrinsic::ppc_altivec_lvewx;
15725 break;
15726 case PPC::BI__builtin_altivec_lvsl:
15727 ID = Intrinsic::ppc_altivec_lvsl;
15728 break;
15729 case PPC::BI__builtin_altivec_lvsr:
15730 ID = Intrinsic::ppc_altivec_lvsr;
15731 break;
15732 case PPC::BI__builtin_vsx_lxvd2x:
15733 ID = Intrinsic::ppc_vsx_lxvd2x;
15734 break;
15735 case PPC::BI__builtin_vsx_lxvw4x:
15736 ID = Intrinsic::ppc_vsx_lxvw4x;
15737 break;
15738 case PPC::BI__builtin_vsx_lxvd2x_be:
15739 ID = Intrinsic::ppc_vsx_lxvd2x_be;
15740 break;
15741 case PPC::BI__builtin_vsx_lxvw4x_be:
15742 ID = Intrinsic::ppc_vsx_lxvw4x_be;
15743 break;
15744 case PPC::BI__builtin_vsx_lxvl:
15745 ID = Intrinsic::ppc_vsx_lxvl;
15746 break;
15747 case PPC::BI__builtin_vsx_lxvll:
15748 ID = Intrinsic::ppc_vsx_lxvll;
15749 break;
15750 }
15751 llvm::Function *F = CGM.getIntrinsic(ID);
15752 return Builder.CreateCall(F, Ops, "");
15753 }
15754
15755 // vec_st, vec_xst_be
15756 case PPC::BI__builtin_altivec_stvx:
15757 case PPC::BI__builtin_altivec_stvxl:
15758 case PPC::BI__builtin_altivec_stvebx:
15759 case PPC::BI__builtin_altivec_stvehx:
15760 case PPC::BI__builtin_altivec_stvewx:
15761 case PPC::BI__builtin_vsx_stxvd2x:
15762 case PPC::BI__builtin_vsx_stxvw4x:
15763 case PPC::BI__builtin_vsx_stxvd2x_be:
15764 case PPC::BI__builtin_vsx_stxvw4x_be:
15765 case PPC::BI__builtin_vsx_stxvl:
15766 case PPC::BI__builtin_vsx_stxvll:
15767 {
15768 SmallVector<Value *, 3> Ops;
15769 Ops.push_back(EmitScalarExpr(E->getArg(0)));
15770 Ops.push_back(EmitScalarExpr(E->getArg(1)));
15771 Ops.push_back(EmitScalarExpr(E->getArg(2)));
15772 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15773 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15774 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15775 }else {
15776 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15777 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15778 Ops.pop_back();
15779 }
15780
15781 switch (BuiltinID) {
15782 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15782)
;
15783 case PPC::BI__builtin_altivec_stvx:
15784 ID = Intrinsic::ppc_altivec_stvx;
15785 break;
15786 case PPC::BI__builtin_altivec_stvxl:
15787 ID = Intrinsic::ppc_altivec_stvxl;
15788 break;
15789 case PPC::BI__builtin_altivec_stvebx:
15790 ID = Intrinsic::ppc_altivec_stvebx;
15791 break;
15792 case PPC::BI__builtin_altivec_stvehx:
15793 ID = Intrinsic::ppc_altivec_stvehx;
15794 break;
15795 case PPC::BI__builtin_altivec_stvewx:
15796 ID = Intrinsic::ppc_altivec_stvewx;
15797 break;
15798 case PPC::BI__builtin_vsx_stxvd2x:
15799 ID = Intrinsic::ppc_vsx_stxvd2x;
15800 break;
15801 case PPC::BI__builtin_vsx_stxvw4x:
15802 ID = Intrinsic::ppc_vsx_stxvw4x;
15803 break;
15804 case PPC::BI__builtin_vsx_stxvd2x_be:
15805 ID = Intrinsic::ppc_vsx_stxvd2x_be;
15806 break;
15807 case PPC::BI__builtin_vsx_stxvw4x_be:
15808 ID = Intrinsic::ppc_vsx_stxvw4x_be;
15809 break;
15810 case PPC::BI__builtin_vsx_stxvl:
15811 ID = Intrinsic::ppc_vsx_stxvl;
15812 break;
15813 case PPC::BI__builtin_vsx_stxvll:
15814 ID = Intrinsic::ppc_vsx_stxvll;
15815 break;
15816 }
15817 llvm::Function *F = CGM.getIntrinsic(ID);
15818 return Builder.CreateCall(F, Ops, "");
15819 }
15820 case PPC::BI__builtin_vsx_ldrmb: {
15821 // Essentially boils down to performing an unaligned VMX load sequence so
15822 // as to avoid crossing a page boundary and then shuffling the elements
15823 // into the right side of the vector register.
15824 Value *Op0 = EmitScalarExpr(E->getArg(0));
15825 Value *Op1 = EmitScalarExpr(E->getArg(1));
15826 int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15827 llvm::Type *ResTy = ConvertType(E->getType());
15828 bool IsLE = getTarget().isLittleEndian();
15829
15830 // If the user wants the entire vector, just load the entire vector.
15831 if (NumBytes == 16) {
15832 Value *BC = Builder.CreateBitCast(Op0, ResTy->getPointerTo());
15833 Value *LD =
15834 Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
15835 if (!IsLE)
15836 return LD;
15837
15838 // Reverse the bytes on LE.
15839 SmallVector<int, 16> RevMask;
15840 for (int Idx = 0; Idx < 16; Idx++)
15841 RevMask.push_back(15 - Idx);
15842 return Builder.CreateShuffleVector(LD, LD, RevMask);
15843 }
15844
15845 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15846 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15847 : Intrinsic::ppc_altivec_lvsl);
15848 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15849 Value *HiMem = Builder.CreateGEP(
15850 Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
15851 Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
15852 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15853 Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
15854
15855 Op0 = IsLE ? HiLd : LoLd;
15856 Op1 = IsLE ? LoLd : HiLd;
15857 Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
15858 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15859
15860 if (IsLE) {
15861 SmallVector<int, 16> Consts;
15862 for (int Idx = 0; Idx < 16; Idx++) {
15863 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15864 : 16 - (NumBytes - Idx);
15865 Consts.push_back(Val);
15866 }
15867 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15868 Zero, Consts);
15869 }
15870 SmallVector<Constant *, 16> Consts;
15871 for (int Idx = 0; Idx < 16; Idx++)
15872 Consts.push_back(Builder.getInt8(NumBytes + Idx));
15873 Value *Mask2 = ConstantVector::get(Consts);
15874 return Builder.CreateBitCast(
15875 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15876 }
15877 case PPC::BI__builtin_vsx_strmb: {
15878 Value *Op0 = EmitScalarExpr(E->getArg(0));
15879 Value *Op1 = EmitScalarExpr(E->getArg(1));
15880 Value *Op2 = EmitScalarExpr(E->getArg(2));
15881 int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15882 bool IsLE = getTarget().isLittleEndian();
15883 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15884 // Storing the whole vector, simply store it on BE and reverse bytes and
15885 // store on LE.
15886 if (Width == 16) {
15887 Value *BC = Builder.CreateBitCast(Op0, Op2->getType()->getPointerTo());
15888 Value *StVec = Op2;
15889 if (IsLE) {
15890 SmallVector<int, 16> RevMask;
15891 for (int Idx = 0; Idx < 16; Idx++)
15892 RevMask.push_back(15 - Idx);
15893 StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
15894 }
15895 return Builder.CreateStore(
15896 StVec, Address(BC, Op2->getType(), CharUnits::fromQuantity(1)));
15897 }
15898 auto *ConvTy = Int64Ty;
15899 unsigned NumElts = 0;
15900 switch (Width) {
15901 default:
15902 llvm_unreachable("width for stores must be a power of 2")::llvm::llvm_unreachable_internal("width for stores must be a power of 2"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15902)
;
15903 case 8:
15904 ConvTy = Int64Ty;
15905 NumElts = 2;
15906 break;
15907 case 4:
15908 ConvTy = Int32Ty;
15909 NumElts = 4;
15910 break;
15911 case 2:
15912 ConvTy = Int16Ty;
15913 NumElts = 8;
15914 break;
15915 case 1:
15916 ConvTy = Int8Ty;
15917 NumElts = 16;
15918 break;
15919 }
15920 Value *Vec = Builder.CreateBitCast(
15921 Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
15922 Value *Ptr =
15923 Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
15924 Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15925 Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15926 if (IsLE && Width > 1) {
15927 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15928 Elt = Builder.CreateCall(F, Elt);
15929 }
15930 return Builder.CreateStore(
15931 Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
15932 };
15933 unsigned Stored = 0;
15934 unsigned RemainingBytes = NumBytes;
15935 Value *Result;
15936 if (NumBytes == 16)
15937 return StoreSubVec(16, 0, 0);
15938 if (NumBytes >= 8) {
15939 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15940 RemainingBytes -= 8;
15941 Stored += 8;
15942 }
15943 if (RemainingBytes >= 4) {
15944 Result = StoreSubVec(4, NumBytes - Stored - 4,
15945 IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15946 RemainingBytes -= 4;
15947 Stored += 4;
15948 }
15949 if (RemainingBytes >= 2) {
15950 Result = StoreSubVec(2, NumBytes - Stored - 2,
15951 IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15952 RemainingBytes -= 2;
15953 Stored += 2;
15954 }
15955 if (RemainingBytes)
15956 Result =
15957 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15958 return Result;
15959 }
15960 // Square root
15961 case PPC::BI__builtin_vsx_xvsqrtsp:
15962 case PPC::BI__builtin_vsx_xvsqrtdp: {
15963 llvm::Type *ResultType = ConvertType(E->getType());
15964 Value *X = EmitScalarExpr(E->getArg(0));
15965 if (Builder.getIsFPConstrained()) {
15966 llvm::Function *F = CGM.getIntrinsic(
15967 Intrinsic::experimental_constrained_sqrt, ResultType);
15968 return Builder.CreateConstrainedFPCall(F, X);
15969 } else {
15970 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15971 return Builder.CreateCall(F, X);
15972 }
15973 }
15974 // Count leading zeros
15975 case PPC::BI__builtin_altivec_vclzb:
15976 case PPC::BI__builtin_altivec_vclzh:
15977 case PPC::BI__builtin_altivec_vclzw:
15978 case PPC::BI__builtin_altivec_vclzd: {
15979 llvm::Type *ResultType = ConvertType(E->getType());
15980 Value *X = EmitScalarExpr(E->getArg(0));
15981 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15982 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15983 return Builder.CreateCall(F, {X, Undef});
15984 }
15985 case PPC::BI__builtin_altivec_vctzb:
15986 case PPC::BI__builtin_altivec_vctzh:
15987 case PPC::BI__builtin_altivec_vctzw:
15988 case PPC::BI__builtin_altivec_vctzd: {
15989 llvm::Type *ResultType = ConvertType(E->getType());
15990 Value *X = EmitScalarExpr(E->getArg(0));
15991 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15992 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15993 return Builder.CreateCall(F, {X, Undef});
15994 }
15995 case PPC::BI__builtin_altivec_vinsd:
15996 case PPC::BI__builtin_altivec_vinsw:
15997 case PPC::BI__builtin_altivec_vinsd_elt:
15998 case PPC::BI__builtin_altivec_vinsw_elt: {
15999 llvm::Type *ResultType = ConvertType(E->getType());
16000 Value *Op0 = EmitScalarExpr(E->getArg(0));
16001 Value *Op1 = EmitScalarExpr(E->getArg(1));
16002 Value *Op2 = EmitScalarExpr(E->getArg(2));
16003
16004 bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
16005 BuiltinID == PPC::BI__builtin_altivec_vinsd);
16006
16007 bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
16008 BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
16009
16010 // The third argument must be a compile time constant.
16011 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16012 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16013, __extension__ __PRETTY_FUNCTION__
))
16013 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16013, __extension__ __PRETTY_FUNCTION__
))
;
16014
16015 // Valid value for the third argument is dependent on the input type and
16016 // builtin called.
16017 int ValidMaxValue = 0;
16018 if (IsUnaligned)
16019 ValidMaxValue = (Is32bit) ? 12 : 8;
16020 else
16021 ValidMaxValue = (Is32bit) ? 3 : 1;
16022
16023 // Get value of third argument.
16024 int64_t ConstArg = ArgCI->getSExtValue();
16025
16026 // Compose range checking error message.
16027 std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
16028 RangeErrMsg += " number " + llvm::to_string(ConstArg);
16029 RangeErrMsg += " is outside of the valid range [0, ";
16030 RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
16031
16032 // Issue error if third argument is not within the valid range.
16033 if (ConstArg < 0 || ConstArg > ValidMaxValue)
16034 CGM.Error(E->getExprLoc(), RangeErrMsg);
16035
16036 // Input to vec_replace_elt is an element index, convert to byte index.
16037 if (!IsUnaligned) {
16038 ConstArg *= Is32bit ? 4 : 8;
16039 // Fix the constant according to endianess.
16040 if (getTarget().isLittleEndian())
16041 ConstArg = (Is32bit ? 12 : 8) - ConstArg;
16042 }
16043
16044 ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
16045 Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
16046 // Casting input to vector int as per intrinsic definition.
16047 Op0 =
16048 Is32bit
16049 ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
16050 : Builder.CreateBitCast(Op0,
16051 llvm::FixedVectorType::get(Int64Ty, 2));
16052 return Builder.CreateBitCast(
16053 Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
16054 }
16055 case PPC::BI__builtin_altivec_vpopcntb:
16056 case PPC::BI__builtin_altivec_vpopcnth:
16057 case PPC::BI__builtin_altivec_vpopcntw:
16058 case PPC::BI__builtin_altivec_vpopcntd: {
16059 llvm::Type *ResultType = ConvertType(E->getType());
16060 Value *X = EmitScalarExpr(E->getArg(0));
16061 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
16062 return Builder.CreateCall(F, X);
16063 }
16064 case PPC::BI__builtin_altivec_vadduqm:
16065 case PPC::BI__builtin_altivec_vsubuqm: {
16066 Value *Op0 = EmitScalarExpr(E->getArg(0));
16067 Value *Op1 = EmitScalarExpr(E->getArg(1));
16068 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
16069 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
16070 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
16071 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
16072 return Builder.CreateAdd(Op0, Op1, "vadduqm");
16073 else
16074 return Builder.CreateSub(Op0, Op1, "vsubuqm");
16075 }
16076 case PPC::BI__builtin_altivec_vaddcuq_c:
16077 case PPC::BI__builtin_altivec_vsubcuq_c: {
16078 SmallVector<Value *, 2> Ops;
16079 Value *Op0 = EmitScalarExpr(E->getArg(0));
16080 Value *Op1 = EmitScalarExpr(E->getArg(1));
16081 llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
16082 llvm::IntegerType::get(getLLVMContext(), 128), 1);
16083 Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
16084 Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
16085 ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
16086 ? Intrinsic::ppc_altivec_vaddcuq
16087 : Intrinsic::ppc_altivec_vsubcuq;
16088 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
16089 }
16090 case PPC::BI__builtin_altivec_vaddeuqm_c:
16091 case PPC::BI__builtin_altivec_vaddecuq_c:
16092 case PPC::BI__builtin_altivec_vsubeuqm_c:
16093 case PPC::BI__builtin_altivec_vsubecuq_c: {
16094 SmallVector<Value *, 3> Ops;
16095 Value *Op0 = EmitScalarExpr(E->getArg(0));
16096 Value *Op1 = EmitScalarExpr(E->getArg(1));
16097 Value *Op2 = EmitScalarExpr(E->getArg(2));
16098 llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
16099 llvm::IntegerType::get(getLLVMContext(), 128), 1);
16100 Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
16101 Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
16102 Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
16103 switch (BuiltinID) {
16104 default:
16105 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16105)
;
16106 case PPC::BI__builtin_altivec_vaddeuqm_c:
16107 ID = Intrinsic::ppc_altivec_vaddeuqm;
16108 break;
16109 case PPC::BI__builtin_altivec_vaddecuq_c:
16110 ID = Intrinsic::ppc_altivec_vaddecuq;
16111 break;
16112 case PPC::BI__builtin_altivec_vsubeuqm_c:
16113 ID = Intrinsic::ppc_altivec_vsubeuqm;
16114 break;
16115 case PPC::BI__builtin_altivec_vsubecuq_c:
16116 ID = Intrinsic::ppc_altivec_vsubecuq;
16117 break;
16118 }
16119 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
16120 }
16121 // Rotate and insert under mask operation.
16122 // __rldimi(rs, is, shift, mask)
16123 // (rotl64(rs, shift) & mask) | (is & ~mask)
16124 // __rlwimi(rs, is, shift, mask)
16125 // (rotl(rs, shift) & mask) | (is & ~mask)
16126 case PPC::BI__builtin_ppc_rldimi:
16127 case PPC::BI__builtin_ppc_rlwimi: {
16128 Value *Op0 = EmitScalarExpr(E->getArg(0));
16129 Value *Op1 = EmitScalarExpr(E->getArg(1));
16130 Value *Op2 = EmitScalarExpr(E->getArg(2));
16131 Value *Op3 = EmitScalarExpr(E->getArg(3));
16132 llvm::Type *Ty = Op0->getType();
16133 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16134 if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
16135 Op2 = Builder.CreateZExt(Op2, Int64Ty);
16136 Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
16137 Value *X = Builder.CreateAnd(Shift, Op3);
16138 Value *Y = Builder.CreateAnd(Op1, Builder.CreateNot(Op3));
16139 return Builder.CreateOr(X, Y);
16140 }
16141 // Rotate and insert under mask operation.
16142 // __rlwnm(rs, shift, mask)
16143 // rotl(rs, shift) & mask
16144 case PPC::BI__builtin_ppc_rlwnm: {
16145 Value *Op0 = EmitScalarExpr(E->getArg(0));
16146 Value *Op1 = EmitScalarExpr(E->getArg(1));
16147 Value *Op2 = EmitScalarExpr(E->getArg(2));
16148 llvm::Type *Ty = Op0->getType();
16149 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16150 Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op1});
16151 return Builder.CreateAnd(Shift, Op2);
16152 }
16153 case PPC::BI__builtin_ppc_poppar4:
16154 case PPC::BI__builtin_ppc_poppar8: {
16155 Value *Op0 = EmitScalarExpr(E->getArg(0));
16156 llvm::Type *ArgType = Op0->getType();
16157 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
16158 Value *Tmp = Builder.CreateCall(F, Op0);
16159
16160 llvm::Type *ResultType = ConvertType(E->getType());
16161 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
16162 if (Result->getType() != ResultType)
16163 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
16164 "cast");
16165 return Result;
16166 }
16167 case PPC::BI__builtin_ppc_cmpb: {
16168 Value *Op0 = EmitScalarExpr(E->getArg(0));
16169 Value *Op1 = EmitScalarExpr(E->getArg(1));
16170 if (getTarget().getTriple().isPPC64()) {
16171 Function *F =
16172 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
16173 return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
16174 }
16175 // For 32 bit, emit the code as below:
16176 // %conv = trunc i64 %a to i32
16177 // %conv1 = trunc i64 %b to i32
16178 // %shr = lshr i64 %a, 32
16179 // %conv2 = trunc i64 %shr to i32
16180 // %shr3 = lshr i64 %b, 32
16181 // %conv4 = trunc i64 %shr3 to i32
16182 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
16183 // %conv5 = zext i32 %0 to i64
16184 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
16185 // %conv614 = zext i32 %1 to i64
16186 // %shl = shl nuw i64 %conv614, 32
16187 // %or = or i64 %shl, %conv5
16188 // ret i64 %or
16189 Function *F =
16190 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
16191 Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
16192 Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
16193 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
16194 Value *ArgOneHi =
16195 Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
16196 Value *ArgTwoHi =
16197 Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
16198 Value *ResLo = Builder.CreateZExt(
16199 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
16200 Value *ResHiShift = Builder.CreateZExt(
16201 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
16202 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
16203 return Builder.CreateOr(ResLo, ResHi);
16204 }
16205 // Copy sign
16206 case PPC::BI__builtin_vsx_xvcpsgnsp:
16207 case PPC::BI__builtin_vsx_xvcpsgndp: {
16208 llvm::Type *ResultType = ConvertType(E->getType());
16209 Value *X = EmitScalarExpr(E->getArg(0));
16210 Value *Y = EmitScalarExpr(E->getArg(1));
16211 ID = Intrinsic::copysign;
16212 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
16213 return Builder.CreateCall(F, {X, Y});
16214 }
16215 // Rounding/truncation
16216 case PPC::BI__builtin_vsx_xvrspip:
16217 case PPC::BI__builtin_vsx_xvrdpip:
16218 case PPC::BI__builtin_vsx_xvrdpim:
16219 case PPC::BI__builtin_vsx_xvrspim:
16220 case PPC::BI__builtin_vsx_xvrdpi:
16221 case PPC::BI__builtin_vsx_xvrspi:
16222 case PPC::BI__builtin_vsx_xvrdpic:
16223 case PPC::BI__builtin_vsx_xvrspic:
16224 case PPC::BI__builtin_vsx_xvrdpiz:
16225 case PPC::BI__builtin_vsx_xvrspiz: {
16226 llvm::Type *ResultType = ConvertType(E->getType());
16227 Value *X = EmitScalarExpr(E->getArg(0));
16228 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
16229 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
16230 ID = Builder.getIsFPConstrained()
16231 ? Intrinsic::experimental_constrained_floor
16232 : Intrinsic::floor;
16233 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
16234 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
16235 ID = Builder.getIsFPConstrained()
16236 ? Intrinsic::experimental_constrained_round
16237 : Intrinsic::round;
16238 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
16239 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
16240 ID = Builder.getIsFPConstrained()
16241 ? Intrinsic::experimental_constrained_rint
16242 : Intrinsic::rint;
16243 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
16244 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
16245 ID = Builder.getIsFPConstrained()
16246 ? Intrinsic::experimental_constrained_ceil
16247 : Intrinsic::ceil;
16248 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
16249 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
16250 ID = Builder.getIsFPConstrained()
16251 ? Intrinsic::experimental_constrained_trunc
16252 : Intrinsic::trunc;
16253 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
16254 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
16255 : Builder.CreateCall(F, X);
16256 }
16257
16258 // Absolute value
16259 case PPC::BI__builtin_vsx_xvabsdp:
16260 case PPC::BI__builtin_vsx_xvabssp: {
16261 llvm::Type *ResultType = ConvertType(E->getType());
16262 Value *X = EmitScalarExpr(E->getArg(0));
16263 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16264 return Builder.CreateCall(F, X);
16265 }
16266
16267 // Fastmath by default
16268 case PPC::BI__builtin_ppc_recipdivf:
16269 case PPC::BI__builtin_ppc_recipdivd:
16270 case PPC::BI__builtin_ppc_rsqrtf:
16271 case PPC::BI__builtin_ppc_rsqrtd: {
16272 FastMathFlags FMF = Builder.getFastMathFlags();
16273 Builder.getFastMathFlags().setFast();
16274 llvm::Type *ResultType = ConvertType(E->getType());
16275 Value *X = EmitScalarExpr(E->getArg(0));
16276
16277 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
16278 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
16279 Value *Y = EmitScalarExpr(E->getArg(1));
16280 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
16281 Builder.getFastMathFlags() &= (FMF);
16282 return FDiv;
16283 }
16284 auto *One = ConstantFP::get(ResultType, 1.0);
16285 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16286 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
16287 Builder.getFastMathFlags() &= (FMF);
16288 return FDiv;
16289 }
16290 case PPC::BI__builtin_ppc_alignx: {
16291 Value *Op0 = EmitScalarExpr(E->getArg(0));
16292 Value *Op1 = EmitScalarExpr(E->getArg(1));
16293 ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
16294 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
16295 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
16296 llvm::Value::MaximumAlignment);
16297
16298 emitAlignmentAssumption(Op1, E->getArg(1),
16299 /*The expr loc is sufficient.*/ SourceLocation(),
16300 AlignmentCI, nullptr);
16301 return Op1;
16302 }
16303 case PPC::BI__builtin_ppc_rdlam: {
16304 Value *Op0 = EmitScalarExpr(E->getArg(0));
16305 Value *Op1 = EmitScalarExpr(E->getArg(1));
16306 Value *Op2 = EmitScalarExpr(E->getArg(2));
16307 llvm::Type *Ty = Op0->getType();
16308 Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
16309 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16310 Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
16311 return Builder.CreateAnd(Rotate, Op2);
16312 }
16313 case PPC::BI__builtin_ppc_load2r: {
16314 Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
16315 Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16316 Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
16317 return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
16318 }
16319 // FMA variations
16320 case PPC::BI__builtin_ppc_fnmsub:
16321 case PPC::BI__builtin_ppc_fnmsubs:
16322 case PPC::BI__builtin_vsx_xvmaddadp:
16323 case PPC::BI__builtin_vsx_xvmaddasp:
16324 case PPC::BI__builtin_vsx_xvnmaddadp:
16325 case PPC::BI__builtin_vsx_xvnmaddasp:
16326 case PPC::BI__builtin_vsx_xvmsubadp:
16327 case PPC::BI__builtin_vsx_xvmsubasp:
16328 case PPC::BI__builtin_vsx_xvnmsubadp:
16329 case PPC::BI__builtin_vsx_xvnmsubasp: {
16330 llvm::Type *ResultType = ConvertType(E->getType());
16331 Value *X = EmitScalarExpr(E->getArg(0));
16332 Value *Y = EmitScalarExpr(E->getArg(1));
16333 Value *Z = EmitScalarExpr(E->getArg(2));
16334 llvm::Function *F;
16335 if (Builder.getIsFPConstrained())
16336 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16337 else
16338 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16339 switch (BuiltinID) {
16340 case PPC::BI__builtin_vsx_xvmaddadp:
16341 case PPC::BI__builtin_vsx_xvmaddasp:
16342 if (Builder.getIsFPConstrained())
16343 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16344 else
16345 return Builder.CreateCall(F, {X, Y, Z});
16346 case PPC::BI__builtin_vsx_xvnmaddadp:
16347 case PPC::BI__builtin_vsx_xvnmaddasp:
16348 if (Builder.getIsFPConstrained())
16349 return Builder.CreateFNeg(
16350 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
16351 else
16352 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16353 case PPC::BI__builtin_vsx_xvmsubadp:
16354 case PPC::BI__builtin_vsx_xvmsubasp:
16355 if (Builder.getIsFPConstrained())
16356 return Builder.CreateConstrainedFPCall(
16357 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16358 else
16359 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16360 case PPC::BI__builtin_ppc_fnmsub:
16361 case PPC::BI__builtin_ppc_fnmsubs:
16362 case PPC::BI__builtin_vsx_xvnmsubadp:
16363 case PPC::BI__builtin_vsx_xvnmsubasp:
16364 if (Builder.getIsFPConstrained())
16365 return Builder.CreateFNeg(
16366 Builder.CreateConstrainedFPCall(
16367 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
16368 "neg");
16369 else
16370 return Builder.CreateCall(
16371 CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
16372 }
16373 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16373)
;
16374 return nullptr; // Suppress no-return warning
16375 }
16376
16377 case PPC::BI__builtin_vsx_insertword: {
16378 Value *Op0 = EmitScalarExpr(E->getArg(0));
16379 Value *Op1 = EmitScalarExpr(E->getArg(1));
16380 Value *Op2 = EmitScalarExpr(E->getArg(2));
16381 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
16382
16383 // Third argument is a compile time constant int. It must be clamped to
16384 // to the range [0, 12].
16385 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16386 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16387, __extension__ __PRETTY_FUNCTION__
))
16387 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16387, __extension__ __PRETTY_FUNCTION__
))
;
16388 const int64_t MaxIndex = 12;
16389 int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
16390
16391 // The builtin semantics don't exactly match the xxinsertw instructions
16392 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
16393 // word from the first argument, and inserts it in the second argument. The
16394 // instruction extracts the word from its second input register and inserts
16395 // it into its first input register, so swap the first and second arguments.
16396 std::swap(Op0, Op1);
16397
16398 // Need to cast the second argument from a vector of unsigned int to a
16399 // vector of long long.
16400 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
16401
16402 if (getTarget().isLittleEndian()) {
16403 // Reverse the double words in the vector we will extract from.
16404 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16405 Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
16406
16407 // Reverse the index.
16408 Index = MaxIndex - Index;
16409 }
16410
16411 // Intrinsic expects the first arg to be a vector of int.
16412 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16413 Op2 = ConstantInt::getSigned(Int32Ty, Index);
16414 return Builder.CreateCall(F, {Op0, Op1, Op2});
16415 }
16416
16417 case PPC::BI__builtin_vsx_extractuword: {
16418 Value *Op0 = EmitScalarExpr(E->getArg(0));
16419 Value *Op1 = EmitScalarExpr(E->getArg(1));
16420 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
16421
16422 // Intrinsic expects the first argument to be a vector of doublewords.
16423 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16424
16425 // The second argument is a compile time constant int that needs to
16426 // be clamped to the range [0, 12].
16427 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
16428 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16429, __extension__ __PRETTY_FUNCTION__
))
16429 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16429, __extension__ __PRETTY_FUNCTION__
))
;
16430 const int64_t MaxIndex = 12;
16431 int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
16432
16433 if (getTarget().isLittleEndian()) {
16434 // Reverse the index.
16435 Index = MaxIndex - Index;
16436 Op1 = ConstantInt::getSigned(Int32Ty, Index);
16437
16438 // Emit the call, then reverse the double words of the results vector.
16439 Value *Call = Builder.CreateCall(F, {Op0, Op1});
16440
16441 Value *ShuffleCall =
16442 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
16443 return ShuffleCall;
16444 } else {
16445 Op1 = ConstantInt::getSigned(Int32Ty, Index);
16446 return Builder.CreateCall(F, {Op0, Op1});
16447 }
16448 }
16449
16450 case PPC::BI__builtin_vsx_xxpermdi: {
16451 Value *Op0 = EmitScalarExpr(E->getArg(0));
16452 Value *Op1 = EmitScalarExpr(E->getArg(1));
16453 Value *Op2 = EmitScalarExpr(E->getArg(2));
16454 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16455 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16455, __extension__ __PRETTY_FUNCTION__
))
;
16456
16457 unsigned Index = ArgCI->getZExtValue();
16458 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16459 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
16460
16461 // Account for endianness by treating this as just a shuffle. So we use the
16462 // same indices for both LE and BE in order to produce expected results in
16463 // both cases.
16464 int ElemIdx0 = (Index & 2) >> 1;
16465 int ElemIdx1 = 2 + (Index & 1);
16466
16467 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
16468 Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16469 QualType BIRetType = E->getType();
16470 auto RetTy = ConvertType(BIRetType);
16471 return Builder.CreateBitCast(ShuffleCall, RetTy);
16472 }
16473
16474 case PPC::BI__builtin_vsx_xxsldwi: {
16475 Value *Op0 = EmitScalarExpr(E->getArg(0));
16476 Value *Op1 = EmitScalarExpr(E->getArg(1));
16477 Value *Op2 = EmitScalarExpr(E->getArg(2));
16478 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16479 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 16479, __extension__ __PRETTY_FUNCTION__
))
;
16480 unsigned Index = ArgCI->getZExtValue() & 0x3;
16481 Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16482 Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
16483
16484 // Create a shuffle mask
16485 int ElemIdx0;
16486 int ElemIdx1;
16487 int ElemIdx2;
16488 int ElemIdx3;
16489 if (getTarget().isLittleEndian()) {
16490 // Little endian element N comes from element 8+N-Index of the
16491 // concatenated wide vector (of course, using modulo arithmetic on
16492 // the total number of elements).
16493 ElemIdx0 = (8 - Index) % 8;
16494 ElemIdx1 = (9 - Index) % 8;
16495 ElemIdx2 = (10 - Index) % 8;
16496 ElemIdx3 = (11 - Index) % 8;
16497 } else {
16498 // Big endian ElemIdx<N> = Index + N
16499 ElemIdx0 = Index;
16500 ElemIdx1 = Index + 1;
16501 ElemIdx2 = Index + 2;
16502 ElemIdx3 = Index + 3;
16503 }
16504
16505 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
16506 Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16507 QualType BIRetType = E->getType();
16508 auto RetTy = ConvertType(BIRetType);
16509 return Builder.CreateBitCast(ShuffleCall, RetTy);
16510 }
16511
16512 case PPC::BI__builtin_pack_vector_int128: {
16513 Value *Op0 = EmitScalarExpr(E->getArg(0));
16514 Value *Op1 = EmitScalarExpr(E->getArg(1));
16515 bool isLittleEndian = getTarget().isLittleEndian();
16516 Value *PoisonValue =
16517 llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
16518 Value *Res = Builder.CreateInsertElement(
16519 PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
16520 Res = Builder.CreateInsertElement(Res, Op1,
16521 (uint64_t)(isLittleEndian ? 0 : 1));
16522 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
16523 }
16524
16525 case PPC::BI__builtin_unpack_vector_int128: {
16526 Value *Op0 = EmitScalarExpr(E->getArg(0));
16527 Value *Op1 = EmitScalarExpr(E->getArg(1));
16528 ConstantInt *Index = cast<ConstantInt>(Op1);
16529 Value *Unpacked = Builder.CreateBitCast(
16530 Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
16531
16532 if (getTarget().isLittleEndian())
16533 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
16534
16535 return Builder.CreateExtractElement(Unpacked, Index);
16536 }
16537
16538 case PPC::BI__builtin_ppc_sthcx: {
16539 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
16540 Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16541 Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
16542 return Builder.CreateCall(F, {Op0, Op1});
16543 }
16544
16545 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
16546 // Some of the MMA instructions accumulate their result into an existing
16547 // accumulator whereas the others generate a new accumulator. So we need to
16548 // use custom code generation to expand a builtin call with a pointer to a
16549 // load (if the corresponding instruction accumulates its result) followed by
16550 // the call to the intrinsic and a store of the result.
16551#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
16552 case PPC::BI__builtin_##Name:
16553#include "clang/Basic/BuiltinsPPC.def"
16554 {
16555 SmallVector<Value *, 4> Ops;
16556 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
16557 if (E->getArg(i)->getType()->isArrayType())
16558 Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
16559 else
16560 Ops.push_back(EmitScalarExpr(E->getArg(i)));
16561 // The first argument of these two builtins is a pointer used to store their
16562 // result. However, the llvm intrinsics return their result in multiple
16563 // return values. So, here we emit code extracting these values from the
16564 // intrinsic results and storing them using that pointer.
16565 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
16566 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
16567 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
16568 unsigned NumVecs = 2;
16569 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
16570 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
16571 NumVecs = 4;
16572 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
16573 }
16574 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
16575 Address Addr = EmitPointerWithAlignment(E->getArg(1));
16576 Value *Vec = Builder.CreateLoad(Addr);
16577 Value *Call = Builder.CreateCall(F, {Vec});
16578 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
16579 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
16580 for (unsigned i=0; i<NumVecs; i++) {
16581 Value *Vec = Builder.CreateExtractValue(Call, i);
16582 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
16583 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
16584 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
16585 }
16586 return Call;
16587 }
16588 if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
16589 BuiltinID == PPC::BI__builtin_mma_build_acc) {
16590 // Reverse the order of the operands for LE, so the
16591 // same builtin call can be used on both LE and BE
16592 // without the need for the programmer to swap operands.
16593 // The operands are reversed starting from the second argument,
16594 // the first operand is the pointer to the pair/accumulator
16595 // that is being built.
16596 if (getTarget().isLittleEndian())
16597 std::reverse(Ops.begin() + 1, Ops.end());
16598 }
16599 bool Accumulate;
16600 switch (BuiltinID) {
16601 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
16602 case PPC::BI__builtin_##Name: \
16603 ID = Intrinsic::ppc_##Intr; \
16604 Accumulate = Acc; \
16605 break;
16606 #include "clang/Basic/BuiltinsPPC.def"
16607 }
16608 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16609 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
16610 BuiltinID == PPC::BI__builtin_mma_lxvp ||
16611 BuiltinID == PPC::BI__builtin_mma_stxvp) {
16612 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16613 BuiltinID == PPC::BI__builtin_mma_lxvp) {
16614 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
16615 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16616 } else {
16617 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
16618 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16619 }
16620 Ops.pop_back();
16621 llvm::Function *F = CGM.getIntrinsic(ID);
16622 return Builder.CreateCall(F, Ops, "");
16623 }
16624 SmallVector<Value*, 4> CallOps;
16625 if (Accumulate) {
16626 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16627 Value *Acc = Builder.CreateLoad(Addr);
16628 CallOps.push_back(Acc);
16629 }
16630 for (unsigned i=1; i<Ops.size(); i++)
16631 CallOps.push_back(Ops[i]);
16632 llvm::Function *F = CGM.getIntrinsic(ID);
16633 Value *Call = Builder.CreateCall(F, CallOps);
16634 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
16635 }
16636
16637 case PPC::BI__builtin_ppc_compare_and_swap:
16638 case PPC::BI__builtin_ppc_compare_and_swaplp: {
16639 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16640 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
16641 Value *OldVal = Builder.CreateLoad(OldValAddr);
16642 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
16643 LValue LV = MakeAddrLValue(Addr, AtomicTy);
16644 Value *Op2 = EmitScalarExpr(E->getArg(2));
16645 auto Pair = EmitAtomicCompareExchange(
16646 LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
16647 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
16648 // Unlike c11's atomic_compare_exchange, according to
16649 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
16650 // > In either case, the contents of the memory location specified by addr
16651 // > are copied into the memory location specified by old_val_addr.
16652 // But it hasn't specified storing to OldValAddr is atomic or not and
16653 // which order to use. Now following XL's codegen, treat it as a normal
16654 // store.
16655 Value *LoadedVal = Pair.first.getScalarVal();
16656 Builder.CreateStore(LoadedVal, OldValAddr);
16657 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
16658 }
16659 case PPC::BI__builtin_ppc_fetch_and_add:
16660 case PPC::BI__builtin_ppc_fetch_and_addlp: {
16661 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
16662 llvm::AtomicOrdering::Monotonic);
16663 }
16664 case PPC::BI__builtin_ppc_fetch_and_and:
16665 case PPC::BI__builtin_ppc_fetch_and_andlp: {
16666 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
16667 llvm::AtomicOrdering::Monotonic);
16668 }
16669
16670 case PPC::BI__builtin_ppc_fetch_and_or:
16671 case PPC::BI__builtin_ppc_fetch_and_orlp: {
16672 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
16673 llvm::AtomicOrdering::Monotonic);
16674 }
16675 case PPC::BI__builtin_ppc_fetch_and_swap:
16676 case PPC::BI__builtin_ppc_fetch_and_swaplp: {
16677 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
16678 llvm::AtomicOrdering::Monotonic);
16679 }
16680 case PPC::BI__builtin_ppc_ldarx:
16681 case PPC::BI__builtin_ppc_lwarx:
16682 case PPC::BI__builtin_ppc_lharx:
16683 case PPC::BI__builtin_ppc_lbarx:
16684 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
16685 case PPC::BI__builtin_ppc_mfspr: {
16686 Value *Op0 = EmitScalarExpr(E->getArg(0));
16687 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16688 ? Int32Ty
16689 : Int64Ty;
16690 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
16691 return Builder.CreateCall(F, {Op0});
16692 }
16693 case PPC::BI__builtin_ppc_mtspr: {
16694 Value *Op0 = EmitScalarExpr(E->getArg(0));
16695 Value *Op1 = EmitScalarExpr(E->getArg(1));
16696 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16697 ? Int32Ty
16698 : Int64Ty;
16699 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
16700 return Builder.CreateCall(F, {Op0, Op1});
16701 }
16702 case PPC::BI__builtin_ppc_popcntb: {
16703 Value *ArgValue = EmitScalarExpr(E->getArg(0));
16704 llvm::Type *ArgType = ArgValue->getType();
16705 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
16706 return Builder.CreateCall(F, {ArgValue}, "popcntb");
16707 }
16708 case PPC::BI__builtin_ppc_mtfsf: {
16709 // The builtin takes a uint32 that needs to be cast to an
16710 // f64 to be passed to the intrinsic.
16711 Value *Op0 = EmitScalarExpr(E->getArg(0));
16712 Value *Op1 = EmitScalarExpr(E->getArg(1));
16713 Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
16714 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
16715 return Builder.CreateCall(F, {Op0, Cast}, "");
16716 }
16717
16718 case PPC::BI__builtin_ppc_swdiv_nochk:
16719 case PPC::BI__builtin_ppc_swdivs_nochk: {
16720 Value *Op0 = EmitScalarExpr(E->getArg(0));
16721 Value *Op1 = EmitScalarExpr(E->getArg(1));
16722 FastMathFlags FMF = Builder.getFastMathFlags();
16723 Builder.getFastMathFlags().setFast();
16724 Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
16725 Builder.getFastMathFlags() &= (FMF);
16726 return FDiv;
16727 }
16728 case PPC::BI__builtin_ppc_fric:
16729 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16730 *this, E, Intrinsic::rint,
16731 Intrinsic::experimental_constrained_rint))
16732 .getScalarVal();
16733 case PPC::BI__builtin_ppc_frim:
16734 case PPC::BI__builtin_ppc_frims:
16735 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16736 *this, E, Intrinsic::floor,
16737 Intrinsic::experimental_constrained_floor))
16738 .getScalarVal();
16739 case PPC::BI__builtin_ppc_frin:
16740 case PPC::BI__builtin_ppc_frins:
16741 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16742 *this, E, Intrinsic::round,
16743 Intrinsic::experimental_constrained_round))
16744 .getScalarVal();
16745 case PPC::BI__builtin_ppc_frip:
16746 case PPC::BI__builtin_ppc_frips:
16747 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16748 *this, E, Intrinsic::ceil,
16749 Intrinsic::experimental_constrained_ceil))
16750 .getScalarVal();
16751 case PPC::BI__builtin_ppc_friz:
16752 case PPC::BI__builtin_ppc_frizs:
16753 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16754 *this, E, Intrinsic::trunc,
16755 Intrinsic::experimental_constrained_trunc))
16756 .getScalarVal();
16757 case PPC::BI__builtin_ppc_fsqrt:
16758 case PPC::BI__builtin_ppc_fsqrts:
16759 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16760 *this, E, Intrinsic::sqrt,
16761 Intrinsic::experimental_constrained_sqrt))
16762 .getScalarVal();
16763 case PPC::BI__builtin_ppc_test_data_class: {
16764 Value *Op0 = EmitScalarExpr(E->getArg(0));
16765 Value *Op1 = EmitScalarExpr(E->getArg(1));
16766 return Builder.CreateCall(
16767 CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
16768 {Op0, Op1}, "test_data_class");
16769 }
16770 case PPC::BI__builtin_ppc_maxfe: {
16771 Value *Op0 = EmitScalarExpr(E->getArg(0));
16772 Value *Op1 = EmitScalarExpr(E->getArg(1));
16773 Value *Op2 = EmitScalarExpr(E->getArg(2));
16774 Value *Op3 = EmitScalarExpr(E->getArg(3));
16775 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
16776 {Op0, Op1, Op2, Op3});
16777 }
16778 case PPC::BI__builtin_ppc_maxfl: {
16779 Value *Op0 = EmitScalarExpr(E->getArg(0));
16780 Value *Op1 = EmitScalarExpr(E->getArg(1));
16781 Value *Op2 = EmitScalarExpr(E->getArg(2));
16782 Value *Op3 = EmitScalarExpr(E->getArg(3));
16783 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
16784 {Op0, Op1, Op2, Op3});
16785 }
16786 case PPC::BI__builtin_ppc_maxfs: {
16787 Value *Op0 = EmitScalarExpr(E->getArg(0));
16788 Value *Op1 = EmitScalarExpr(E->getArg(1));
16789 Value *Op2 = EmitScalarExpr(E->getArg(2));
16790 Value *Op3 = EmitScalarExpr(E->getArg(3));
16791 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
16792 {Op0, Op1, Op2, Op3});
16793 }
16794 case PPC::BI__builtin_ppc_minfe: {
16795 Value *Op0 = EmitScalarExpr(E->getArg(0));
16796 Value *Op1 = EmitScalarExpr(E->getArg(1));
16797 Value *Op2 = EmitScalarExpr(E->getArg(2));
16798 Value *Op3 = EmitScalarExpr(E->getArg(3));
16799 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
16800 {Op0, Op1, Op2, Op3});
16801 }
16802 case PPC::BI__builtin_ppc_minfl: {
16803 Value *Op0 = EmitScalarExpr(E->getArg(0));
16804 Value *Op1 = EmitScalarExpr(E->getArg(1));
16805 Value *Op2 = EmitScalarExpr(E->getArg(2));
16806 Value *Op3 = EmitScalarExpr(E->getArg(3));
16807 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
16808 {Op0, Op1, Op2, Op3});
16809 }
16810 case PPC::BI__builtin_ppc_minfs: {
16811 Value *Op0 = EmitScalarExpr(E->getArg(0));
16812 Value *Op1 = EmitScalarExpr(E->getArg(1));
16813 Value *Op2 = EmitScalarExpr(E->getArg(2));
16814 Value *Op3 = EmitScalarExpr(E->getArg(3));
16815 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
16816 {Op0, Op1, Op2, Op3});
16817 }
16818 case PPC::BI__builtin_ppc_swdiv:
16819 case PPC::BI__builtin_ppc_swdivs: {
16820 Value *Op0 = EmitScalarExpr(E->getArg(0));
16821 Value *Op1 = EmitScalarExpr(E->getArg(1));
16822 return Builder.CreateFDiv(Op0, Op1, "swdiv");
16823 }
16824 }
16825}
16826
16827namespace {
16828// If \p E is not null pointer, insert address space cast to match return
16829// type of \p E if necessary.
16830Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16831 const CallExpr *E = nullptr) {
16832 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16833 auto *Call = CGF.Builder.CreateCall(F);
16834 Call->addRetAttr(
16835 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16836 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16837 if (!E)
16838 return Call;
16839 QualType BuiltinRetType = E->getType();
16840 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16841 if (RetTy == Call->getType())
16842 return Call;
16843 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16844}
16845
16846Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
16847 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
16848 auto *Call = CGF.Builder.CreateCall(F);
16849 Call->addRetAttr(
16850 Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
16851 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
16852 return Call;
16853}
16854
16855// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16856Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16857 bool IsCOV_5 = CGF.getTarget().getTargetOpts().CodeObjectVersion ==
16858 clang::TargetOptions::COV_5;
16859 Constant *Offset;
16860 Value *DP;
16861 if (IsCOV_5) {
16862 // Indexing the implicit kernarg segment.
16863 Offset = llvm::ConstantInt::get(CGF.Int32Ty, 12 + Index * 2);
16864 DP = EmitAMDGPUImplicitArgPtr(CGF);
16865 } else {
16866 // Indexing the HSA kernel_dispatch_packet struct.
16867 Offset = llvm::ConstantInt::get(CGF.Int32Ty, 4 + Index * 2);
16868 DP = EmitAMDGPUDispatchPtr(CGF);
16869 }
16870
16871 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16872 auto *DstTy =
16873 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16874 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16875 auto *LD = CGF.Builder.CreateLoad(
16876 Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
16877 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16878 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16879 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16880 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16881 LD->setMetadata(llvm::LLVMContext::MD_noundef,
16882 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
16883 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16884 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
16885 return LD;
16886}
16887
16888// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16889Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16890 const unsigned XOffset = 12;
16891 auto *DP = EmitAMDGPUDispatchPtr(CGF);
16892 // Indexing the HSA kernel_dispatch_packet struct.
16893 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16894 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16895 auto *DstTy =
16896 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16897 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16898 auto *LD = CGF.Builder.CreateLoad(
16899 Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
16900 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16901 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
16902 return LD;
16903}
16904} // namespace
16905
16906// For processing memory ordering and memory scope arguments of various
16907// amdgcn builtins.
16908// \p Order takes a C++11 comptabile memory-ordering specifier and converts
16909// it into LLVM's memory ordering specifier using atomic C ABI, and writes
16910// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16911// specific SyncScopeID and writes it to \p SSID.
16912void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16913 llvm::AtomicOrdering &AO,
16914 llvm::SyncScope::ID &SSID) {
16915 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16916
16917 // Map C11/C++11 memory ordering to LLVM memory ordering
16918 assert(llvm::isValidAtomicOrderingCABI(ord))(static_cast <bool> (llvm::isValidAtomicOrderingCABI(ord
)) ? void (0) : __assert_fail ("llvm::isValidAtomicOrderingCABI(ord)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16918, __extension__ __PRETTY_FUNCTION__
))
;
16919 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16920 case llvm::AtomicOrderingCABI::acquire:
16921 case llvm::AtomicOrderingCABI::consume:
16922 AO = llvm::AtomicOrdering::Acquire;
16923 break;
16924 case llvm::AtomicOrderingCABI::release:
16925 AO = llvm::AtomicOrdering::Release;
16926 break;
16927 case llvm::AtomicOrderingCABI::acq_rel:
16928 AO = llvm::AtomicOrdering::AcquireRelease;
16929 break;
16930 case llvm::AtomicOrderingCABI::seq_cst:
16931 AO = llvm::AtomicOrdering::SequentiallyConsistent;
16932 break;
16933 case llvm::AtomicOrderingCABI::relaxed:
16934 AO = llvm::AtomicOrdering::Monotonic;
16935 break;
16936 }
16937
16938 StringRef scp;
16939 llvm::getConstantStringInfo(Scope, scp);
16940 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16941}
16942
16943Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16944 const CallExpr *E) {
16945 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16946 llvm::SyncScope::ID SSID;
16947 switch (BuiltinID) {
16948 case AMDGPU::BI__builtin_amdgcn_div_scale:
16949 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16950 // Translate from the intrinsics's struct return to the builtin's out
16951 // argument.
16952
16953 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16954
16955 llvm::Value *X = EmitScalarExpr(E->getArg(0));
16956 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16957 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16958
16959 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16960 X->getType());
16961
16962 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16963
16964 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16965 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16966
16967 llvm::Type *RealFlagType = FlagOutPtr.getElementType();
16968
16969 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16970 Builder.CreateStore(FlagExt, FlagOutPtr);
16971 return Result;
16972 }
16973 case AMDGPU::BI__builtin_amdgcn_div_fmas:
16974 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16975 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16976 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16977 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16978 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16979
16980 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16981 Src0->getType());
16982 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16983 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16984 }
16985
16986 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16987 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16988 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16989 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16990 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16991 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16992 llvm::SmallVector<llvm::Value *, 6> Args;
16993 for (unsigned I = 0; I != E->getNumArgs(); ++I)
16994 Args.push_back(EmitScalarExpr(E->getArg(I)));
16995 assert(Args.size() == 5 || Args.size() == 6)(static_cast <bool> (Args.size() == 5 || Args.size() ==
6) ? void (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16995, __extension__ __PRETTY_FUNCTION__
))
;
16996 if (Args.size() == 5)
16997 Args.insert(Args.begin(), llvm::PoisonValue::get(Args[0]->getType()));
16998 Function *F =
16999 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
17000 return Builder.CreateCall(F, Args);
17001 }
17002 case AMDGPU::BI__builtin_amdgcn_div_fixup:
17003 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
17004 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
17005 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
17006 case AMDGPU::BI__builtin_amdgcn_trig_preop:
17007 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
17008 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
17009 case AMDGPU::BI__builtin_amdgcn_rcp:
17010 case AMDGPU::BI__builtin_amdgcn_rcpf:
17011 case AMDGPU::BI__builtin_amdgcn_rcph:
17012 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
17013 case AMDGPU::BI__builtin_amdgcn_sqrt:
17014 case AMDGPU::BI__builtin_amdgcn_sqrtf:
17015 case AMDGPU::BI__builtin_amdgcn_sqrth:
17016 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
17017 case AMDGPU::BI__builtin_amdgcn_rsq:
17018 case AMDGPU::BI__builtin_amdgcn_rsqf:
17019 case AMDGPU::BI__builtin_amdgcn_rsqh:
17020 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
17021 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
17022 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
17023 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
17024 case AMDGPU::BI__builtin_amdgcn_sinf:
17025 case AMDGPU::BI__builtin_amdgcn_sinh:
17026 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
17027 case AMDGPU::BI__builtin_amdgcn_cosf:
17028 case AMDGPU::BI__builtin_amdgcn_cosh:
17029 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
17030 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
17031 return EmitAMDGPUDispatchPtr(*this, E);
17032 case AMDGPU::BI__builtin_amdgcn_log_clampf:
17033 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
17034 case AMDGPU::BI__builtin_amdgcn_ldexp:
17035 case AMDGPU::BI__builtin_amdgcn_ldexpf:
17036 case AMDGPU::BI__builtin_amdgcn_ldexph:
17037 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
17038 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
17039 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
17040 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
17041 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
17042 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
17043 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
17044 Value *Src0 = EmitScalarExpr(E->getArg(0));
17045 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
17046 { Builder.getInt32Ty(), Src0->getType() });
17047 return Builder.CreateCall(F, Src0);
17048 }
17049 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
17050 Value *Src0 = EmitScalarExpr(E->getArg(0));
17051 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
17052 { Builder.getInt16Ty(), Src0->getType() });
17053 return Builder.CreateCall(F, Src0);
17054 }
17055 case AMDGPU::BI__builtin_amdgcn_fract:
17056 case AMDGPU::BI__builtin_amdgcn_fractf:
17057 case AMDGPU::BI__builtin_amdgcn_fracth:
17058 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
17059 case AMDGPU::BI__builtin_amdgcn_lerp:
17060 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
17061 case AMDGPU::BI__builtin_amdgcn_ubfe:
17062 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
17063 case AMDGPU::BI__builtin_amdgcn_sbfe:
17064 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
17065 case AMDGPU::BI__builtin_amdgcn_ballot_w32:
17066 case AMDGPU::BI__builtin_amdgcn_ballot_w64: {
17067 llvm::Type *ResultType = ConvertType(E->getType());
17068 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
17069 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType });
17070 return Builder.CreateCall(F, { Src });
17071 }
17072 case AMDGPU::BI__builtin_amdgcn_uicmp:
17073 case AMDGPU::BI__builtin_amdgcn_uicmpl:
17074 case AMDGPU::BI__builtin_amdgcn_sicmp:
17075 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
17076 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17077 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17078 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17079
17080 // FIXME-GFX10: How should 32 bit mask be handled?
17081 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
17082 { Builder.getInt64Ty(), Src0->getType() });
17083 return Builder.CreateCall(F, { Src0, Src1, Src2 });
17084 }
17085 case AMDGPU::BI__builtin_amdgcn_fcmp:
17086 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
17087 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17088 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17089 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17090
17091 // FIXME-GFX10: How should 32 bit mask be handled?
17092 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
17093 { Builder.getInt64Ty(), Src0->getType() });
17094 return Builder.CreateCall(F, { Src0, Src1, Src2 });
17095 }
17096 case AMDGPU::BI__builtin_amdgcn_class:
17097 case AMDGPU::BI__builtin_amdgcn_classf:
17098 case AMDGPU::BI__builtin_amdgcn_classh:
17099 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
17100 case AMDGPU::BI__builtin_amdgcn_fmed3f:
17101 case AMDGPU::BI__builtin_amdgcn_fmed3h:
17102 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
17103 case AMDGPU::BI__builtin_amdgcn_ds_append:
17104 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
17105 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
17106 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
17107 Value *Src0 = EmitScalarExpr(E->getArg(0));
17108 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
17109 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
17110 }
17111 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
17112 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
17113 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
17114 Intrinsic::ID Intrin;
17115 switch (BuiltinID) {
17116 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
17117 Intrin = Intrinsic::amdgcn_ds_fadd;
17118 break;
17119 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
17120 Intrin = Intrinsic::amdgcn_ds_fmin;
17121 break;
17122 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
17123 Intrin = Intrinsic::amdgcn_ds_fmax;
17124 break;
17125 }
17126 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17127 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17128 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17129 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
17130 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
17131 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
17132 llvm::FunctionType *FTy = F->getFunctionType();
17133 llvm::Type *PTy = FTy->getParamType(0);
17134 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
17135 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
17136 }
17137 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
17138 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
17139 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
17140 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
17141 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
17142 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
17143 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
17144 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
17145 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
17146 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
17147 Intrinsic::ID IID;
17148 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
17149 switch (BuiltinID) {
17150 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
17151 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
17152 IID = Intrinsic::amdgcn_global_atomic_fadd;
17153 break;
17154 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
17155 ArgTy = llvm::FixedVectorType::get(
17156 llvm::Type::getHalfTy(getLLVMContext()), 2);
17157 IID = Intrinsic::amdgcn_global_atomic_fadd;
17158 break;
17159 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
17160 IID = Intrinsic::amdgcn_global_atomic_fadd;
17161 break;
17162 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
17163 IID = Intrinsic::amdgcn_global_atomic_fmin;
17164 break;
17165 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
17166 IID = Intrinsic::amdgcn_global_atomic_fmax;
17167 break;
17168 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
17169 IID = Intrinsic::amdgcn_flat_atomic_fadd;
17170 break;
17171 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
17172 IID = Intrinsic::amdgcn_flat_atomic_fmin;
17173 break;
17174 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
17175 IID = Intrinsic::amdgcn_flat_atomic_fmax;
17176 break;
17177 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
17178 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
17179 IID = Intrinsic::amdgcn_flat_atomic_fadd;
17180 break;
17181 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
17182 ArgTy = llvm::FixedVectorType::get(
17183 llvm::Type::getHalfTy(getLLVMContext()), 2);
17184 IID = Intrinsic::amdgcn_flat_atomic_fadd;
17185 break;
17186 }
17187 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
17188 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
17189 llvm::Function *F =
17190 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
17191 return Builder.CreateCall(F, {Addr, Val});
17192 }
17193 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
17194 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
17195 Intrinsic::ID IID;
17196 switch (BuiltinID) {
17197 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
17198 IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
17199 break;
17200 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
17201 IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
17202 break;
17203 }
17204 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
17205 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
17206 llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
17207 return Builder.CreateCall(F, {Addr, Val});
17208 }
17209 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
17210 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
17211 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16: {
17212 Intrinsic::ID IID;
17213 llvm::Type *ArgTy;
17214 switch (BuiltinID) {
17215 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
17216 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
17217 IID = Intrinsic::amdgcn_ds_fadd;
17218 break;
17219 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
17220 ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
17221 IID = Intrinsic::amdgcn_ds_fadd;
17222 break;
17223 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
17224 ArgTy = llvm::FixedVectorType::get(
17225 llvm::Type::getHalfTy(getLLVMContext()), 2);
17226 IID = Intrinsic::amdgcn_ds_fadd;
17227 break;
17228 }
17229 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
17230 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
17231 llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
17232 llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
17233 llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
17234 llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
17235 llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
17236 return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
17237 }
17238 case AMDGPU::BI__builtin_amdgcn_read_exec: {
17239 CallInst *CI = cast<CallInst>(
17240 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
17241 CI->setConvergent();
17242 return CI;
17243 }
17244 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
17245 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
17246 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
17247 "exec_lo" : "exec_hi";
17248 CallInst *CI = cast<CallInst>(
17249 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
17250 CI->setConvergent();
17251 return CI;
17252 }
17253 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
17254 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
17255 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
17256 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
17257 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
17258 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
17259 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
17260 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
17261 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
17262 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
17263
17264 // The builtins take these arguments as vec4 where the last element is
17265 // ignored. The intrinsic takes them as vec3.
17266 RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
17267 ArrayRef<int>{0, 1, 2});
17268 RayDir =
17269 Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
17270 RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
17271 ArrayRef<int>{0, 1, 2});
17272
17273 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
17274 {NodePtr->getType(), RayDir->getType()});
17275 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
17276 RayInverseDir, TextureDescr});
17277 }
17278
17279 case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: {
17280 SmallVector<Value *, 4> Args;
17281 for (int i = 0, e = E->getNumArgs(); i != e; ++i)
17282 Args.push_back(EmitScalarExpr(E->getArg(i)));
17283
17284 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn);
17285 Value *Call = Builder.CreateCall(F, Args);
17286 Value *Rtn = Builder.CreateExtractValue(Call, 0);
17287 Value *A = Builder.CreateExtractValue(Call, 1);
17288 llvm::Type *RetTy = ConvertType(E->getType());
17289 Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn,
17290 (uint64_t)0);
17291 return Builder.CreateInsertElement(I0, A, 1);
17292 }
17293
17294 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
17295 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
17296 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
17297 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
17298 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
17299 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
17300 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
17301 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
17302 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
17303 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
17304 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
17305 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64: {
17306
17307 // These operations perform a matrix multiplication and accumulation of
17308 // the form:
17309 // D = A * B + C
17310 // The return type always matches the type of matrix C.
17311 unsigned ArgForMatchingRetType;
17312 unsigned BuiltinWMMAOp;
17313
17314 switch (BuiltinID) {
17315 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
17316 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
17317 ArgForMatchingRetType = 2;
17318 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
17319 break;
17320 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
17321 case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
17322 ArgForMatchingRetType = 2;
17323 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
17324 break;
17325 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
17326 case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
17327 ArgForMatchingRetType = 2;
17328 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
17329 break;
17330 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
17331 case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
17332 ArgForMatchingRetType = 2;
17333 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
17334 break;
17335 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
17336 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
17337 ArgForMatchingRetType = 4;
17338 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
17339 break;
17340 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
17341 case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
17342 ArgForMatchingRetType = 4;
17343 BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
17344 break;
17345 }
17346
17347 SmallVector<Value *, 6> Args;
17348 for (int i = 0, e = E->getNumArgs(); i != e; ++i)
17349 Args.push_back(EmitScalarExpr(E->getArg(i)));
17350
17351 Function *F = CGM.getIntrinsic(BuiltinWMMAOp,
17352 {Args[ArgForMatchingRetType]->getType()});
17353
17354 return Builder.CreateCall(F, Args);
17355 }
17356
17357 // amdgcn workitem
17358 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
17359 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
17360 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
17361 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
17362 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
17363 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
17364
17365 // amdgcn workgroup size
17366 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
17367 return EmitAMDGPUWorkGroupSize(*this, 0);
17368 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
17369 return EmitAMDGPUWorkGroupSize(*this, 1);
17370 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
17371 return EmitAMDGPUWorkGroupSize(*this, 2);
17372
17373 // amdgcn grid size
17374 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
17375 return EmitAMDGPUGridSize(*this, 0);
17376 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
17377 return EmitAMDGPUGridSize(*this, 1);
17378 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
17379 return EmitAMDGPUGridSize(*this, 2);
17380
17381 // r600 intrinsics
17382 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
17383 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
17384 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
17385 case AMDGPU::BI__builtin_r600_read_tidig_x:
17386 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
17387 case AMDGPU::BI__builtin_r600_read_tidig_y:
17388 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
17389 case AMDGPU::BI__builtin_r600_read_tidig_z:
17390 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
17391 case AMDGPU::BI__builtin_amdgcn_alignbit: {
17392 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17393 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17394 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17395 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
17396 return Builder.CreateCall(F, { Src0, Src1, Src2 });
17397 }
17398 case AMDGPU::BI__builtin_amdgcn_fence: {
17399 ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
17400 EmitScalarExpr(E->getArg(1)), AO, SSID);
17401 return Builder.CreateFence(AO, SSID);
17402 }
17403 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
17404 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
17405 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
17406 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
17407 unsigned BuiltinAtomicOp;
17408 llvm::Type *ResultType = ConvertType(E->getType());
17409
17410 switch (BuiltinID) {
17411 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
17412 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
17413 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
17414 break;
17415 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
17416 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
17417 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
17418 break;
17419 }
17420
17421 Value *Ptr = EmitScalarExpr(E->getArg(0));
17422 Value *Val = EmitScalarExpr(E->getArg(1));
17423
17424 llvm::Function *F =
17425 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
17426
17427 ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
17428 EmitScalarExpr(E->getArg(3)), AO, SSID);
17429
17430 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
17431 // scope as unsigned values
17432 Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
17433 Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
17434
17435 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
17436 bool Volatile =
17437 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
17438 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
17439
17440 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
17441 }
17442 case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn:
17443 case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: {
17444 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
17445 llvm::Type *ResultType = ConvertType(E->getType());
17446 // s_sendmsg_rtn is mangled using return type only.
17447 Function *F =
17448 CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType});
17449 return Builder.CreateCall(F, {Arg});
17450 }
17451 default:
17452 return nullptr;
17453 }
17454}
17455
17456/// Handle a SystemZ function in which the final argument is a pointer
17457/// to an int that receives the post-instruction CC value. At the LLVM level
17458/// this is represented as a function that returns a {result, cc} pair.
17459static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
17460 unsigned IntrinsicID,
17461 const CallExpr *E) {
17462 unsigned NumArgs = E->getNumArgs() - 1;
17463 SmallVector<Value *, 8> Args(NumArgs);
17464 for (unsigned I = 0; I < NumArgs; ++I)
17465 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
17466 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
17467 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
17468 Value *Call = CGF.Builder.CreateCall(F, Args);
17469 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
17470 CGF.Builder.CreateStore(CC, CCPtr);
17471 return CGF.Builder.CreateExtractValue(Call, 0);
17472}
17473
17474Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
17475 const CallExpr *E) {
17476 switch (BuiltinID) {
17477 case SystemZ::BI__builtin_tbegin: {
17478 Value *TDB = EmitScalarExpr(E->getArg(0));
17479 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
17480 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
17481 return Builder.CreateCall(F, {TDB, Control});
17482 }
17483 case SystemZ::BI__builtin_tbegin_nofloat: {
17484 Value *TDB = EmitScalarExpr(E->getArg(0));
17485 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
17486 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
17487 return Builder.CreateCall(F, {TDB, Control});
17488 }
17489 case SystemZ::BI__builtin_tbeginc: {
17490 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
17491 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
17492 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
17493 return Builder.CreateCall(F, {TDB, Control});
17494 }
17495 case SystemZ::BI__builtin_tabort: {
17496 Value *Data = EmitScalarExpr(E->getArg(0));
17497 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
17498 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
17499 }
17500 case SystemZ::BI__builtin_non_tx_store: {
17501 Value *Address = EmitScalarExpr(E->getArg(0));
17502 Value *Data = EmitScalarExpr(E->getArg(1));
17503 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
17504 return Builder.CreateCall(F, {Data, Address});
17505 }
17506
17507 // Vector builtins. Note that most vector builtins are mapped automatically
17508 // to target-specific LLVM intrinsics. The ones handled specially here can
17509 // be represented via standard LLVM IR, which is preferable to enable common
17510 // LLVM optimizations.
17511
17512 case SystemZ::BI__builtin_s390_vpopctb:
17513 case SystemZ::BI__builtin_s390_vpopcth:
17514 case SystemZ::BI__builtin_s390_vpopctf:
17515 case SystemZ::BI__builtin_s390_vpopctg: {
17516 llvm::Type *ResultType = ConvertType(E->getType());
17517 Value *X = EmitScalarExpr(E->getArg(0));
17518 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17519 return Builder.CreateCall(F, X);
17520 }
17521
17522 case SystemZ::BI__builtin_s390_vclzb:
17523 case SystemZ::BI__builtin_s390_vclzh:
17524 case SystemZ::BI__builtin_s390_vclzf:
17525 case SystemZ::BI__builtin_s390_vclzg: {
17526 llvm::Type *ResultType = ConvertType(E->getType());
17527 Value *X = EmitScalarExpr(E->getArg(0));
17528 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17529 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17530 return Builder.CreateCall(F, {X, Undef});
17531 }
17532
17533 case SystemZ::BI__builtin_s390_vctzb:
17534 case SystemZ::BI__builtin_s390_vctzh:
17535 case SystemZ::BI__builtin_s390_vctzf:
17536 case SystemZ::BI__builtin_s390_vctzg: {
17537 llvm::Type *ResultType = ConvertType(E->getType());
17538 Value *X = EmitScalarExpr(E->getArg(0));
17539 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17540 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17541 return Builder.CreateCall(F, {X, Undef});
17542 }
17543
17544 case SystemZ::BI__builtin_s390_vfsqsb:
17545 case SystemZ::BI__builtin_s390_vfsqdb: {
17546 llvm::Type *ResultType = ConvertType(E->getType());
17547 Value *X = EmitScalarExpr(E->getArg(0));
17548 if (Builder.getIsFPConstrained()) {
17549 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
17550 return Builder.CreateConstrainedFPCall(F, { X });
17551 } else {
17552 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17553 return Builder.CreateCall(F, X);
17554 }
17555 }
17556 case SystemZ::BI__builtin_s390_vfmasb:
17557 case SystemZ::BI__builtin_s390_vfmadb: {
17558 llvm::Type *ResultType = ConvertType(E->getType());
17559 Value *X = EmitScalarExpr(E->getArg(0));
17560 Value *Y = EmitScalarExpr(E->getArg(1));
17561 Value *Z = EmitScalarExpr(E->getArg(2));
17562 if (Builder.getIsFPConstrained()) {
17563 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17564 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17565 } else {
17566 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17567 return Builder.CreateCall(F, {X, Y, Z});
17568 }
17569 }
17570 case SystemZ::BI__builtin_s390_vfmssb:
17571 case SystemZ::BI__builtin_s390_vfmsdb: {
17572 llvm::Type *ResultType = ConvertType(E->getType());
17573 Value *X = EmitScalarExpr(E->getArg(0));
17574 Value *Y = EmitScalarExpr(E->getArg(1));
17575 Value *Z = EmitScalarExpr(E->getArg(2));
17576 if (Builder.getIsFPConstrained()) {
17577 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17578 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17579 } else {
17580 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17581 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17582 }
17583 }
17584 case SystemZ::BI__builtin_s390_vfnmasb:
17585 case SystemZ::BI__builtin_s390_vfnmadb: {
17586 llvm::Type *ResultType = ConvertType(E->getType());
17587 Value *X = EmitScalarExpr(E->getArg(0));
17588 Value *Y = EmitScalarExpr(E->getArg(1));
17589 Value *Z = EmitScalarExpr(E->getArg(2));
17590 if (Builder.getIsFPConstrained()) {
17591 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17592 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
17593 } else {
17594 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17595 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17596 }
17597 }
17598 case SystemZ::BI__builtin_s390_vfnmssb:
17599 case SystemZ::BI__builtin_s390_vfnmsdb: {
17600 llvm::Type *ResultType = ConvertType(E->getType());
17601 Value *X = EmitScalarExpr(E->getArg(0));
17602 Value *Y = EmitScalarExpr(E->getArg(1));
17603 Value *Z = EmitScalarExpr(E->getArg(2));
17604 if (Builder.getIsFPConstrained()) {
17605 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17606 Value *NegZ = Builder.CreateFNeg(Z, "sub");
17607 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
17608 } else {
17609 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17610 Value *NegZ = Builder.CreateFNeg(Z, "neg");
17611 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
17612 }
17613 }
17614 case SystemZ::BI__builtin_s390_vflpsb:
17615 case SystemZ::BI__builtin_s390_vflpdb: {
17616 llvm::Type *ResultType = ConvertType(E->getType());
17617 Value *X = EmitScalarExpr(E->getArg(0));
17618 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17619 return Builder.CreateCall(F, X);
17620 }
17621 case SystemZ::BI__builtin_s390_vflnsb:
17622 case SystemZ::BI__builtin_s390_vflndb: {
17623 llvm::Type *ResultType = ConvertType(E->getType());
17624 Value *X = EmitScalarExpr(E->getArg(0));
17625 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17626 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
17627 }
17628 case SystemZ::BI__builtin_s390_vfisb:
17629 case SystemZ::BI__builtin_s390_vfidb: {
17630 llvm::Type *ResultType = ConvertType(E->getType());
17631 Value *X = EmitScalarExpr(E->getArg(0));
17632 // Constant-fold the M4 and M5 mask arguments.
17633 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
17634 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17635 // Check whether this instance can be represented via a LLVM standard
17636 // intrinsic. We only support some combinations of M4 and M5.
17637 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17638 Intrinsic::ID CI;
17639 switch (M4.getZExtValue()) {
17640 default: break;
17641 case 0: // IEEE-inexact exception allowed
17642 switch (M5.getZExtValue()) {
17643 default: break;
17644 case 0: ID = Intrinsic::rint;
17645 CI = Intrinsic::experimental_constrained_rint; break;
17646 }
17647 break;
17648 case 4: // IEEE-inexact exception suppressed
17649 switch (M5.getZExtValue()) {
17650 default: break;
17651 case 0: ID = Intrinsic::nearbyint;
17652 CI = Intrinsic::experimental_constrained_nearbyint; break;
17653 case 1: ID = Intrinsic::round;
17654 CI = Intrinsic::experimental_constrained_round; break;
17655 case 5: ID = Intrinsic::trunc;
17656 CI = Intrinsic::experimental_constrained_trunc; break;
17657 case 6: ID = Intrinsic::ceil;
17658 CI = Intrinsic::experimental_constrained_ceil; break;
17659 case 7: ID = Intrinsic::floor;
17660 CI = Intrinsic::experimental_constrained_floor; break;
17661 }
17662 break;
17663 }
17664 if (ID != Intrinsic::not_intrinsic) {
17665 if (Builder.getIsFPConstrained()) {
17666 Function *F = CGM.getIntrinsic(CI, ResultType);
17667 return Builder.CreateConstrainedFPCall(F, X);
17668 } else {
17669 Function *F = CGM.getIntrinsic(ID, ResultType);
17670 return Builder.CreateCall(F, X);
17671 }
17672 }
17673 switch (BuiltinID) { // FIXME: constrained version?
17674 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
17675 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
17676 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17676)
;
17677 }
17678 Function *F = CGM.getIntrinsic(ID);
17679 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17680 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
17681 return Builder.CreateCall(F, {X, M4Value, M5Value});
17682 }
17683 case SystemZ::BI__builtin_s390_vfmaxsb:
17684 case SystemZ::BI__builtin_s390_vfmaxdb: {
17685 llvm::Type *ResultType = ConvertType(E->getType());
17686 Value *X = EmitScalarExpr(E->getArg(0));
17687 Value *Y = EmitScalarExpr(E->getArg(1));
17688 // Constant-fold the M4 mask argument.
17689 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17690 // Check whether this instance can be represented via a LLVM standard
17691 // intrinsic. We only support some values of M4.
17692 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17693 Intrinsic::ID CI;
17694 switch (M4.getZExtValue()) {
17695 default: break;
17696 case 4: ID = Intrinsic::maxnum;
17697 CI = Intrinsic::experimental_constrained_maxnum; break;
17698 }
17699 if (ID != Intrinsic::not_intrinsic) {
17700 if (Builder.getIsFPConstrained()) {
17701 Function *F = CGM.getIntrinsic(CI, ResultType);
17702 return Builder.CreateConstrainedFPCall(F, {X, Y});
17703 } else {
17704 Function *F = CGM.getIntrinsic(ID, ResultType);
17705 return Builder.CreateCall(F, {X, Y});
17706 }
17707 }
17708 switch (BuiltinID) {
17709 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
17710 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
17711 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17711)
;
17712 }
17713 Function *F = CGM.getIntrinsic(ID);
17714 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17715 return Builder.CreateCall(F, {X, Y, M4Value});
17716 }
17717 case SystemZ::BI__builtin_s390_vfminsb:
17718 case SystemZ::BI__builtin_s390_vfmindb: {
17719 llvm::Type *ResultType = ConvertType(E->getType());
17720 Value *X = EmitScalarExpr(E->getArg(0));
17721 Value *Y = EmitScalarExpr(E->getArg(1));
17722 // Constant-fold the M4 mask argument.
17723 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17724 // Check whether this instance can be represented via a LLVM standard
17725 // intrinsic. We only support some values of M4.
17726 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17727 Intrinsic::ID CI;
17728 switch (M4.getZExtValue()) {
17729 default: break;
17730 case 4: ID = Intrinsic::minnum;
17731 CI = Intrinsic::experimental_constrained_minnum; break;
17732 }
17733 if (ID != Intrinsic::not_intrinsic) {
17734 if (Builder.getIsFPConstrained()) {
17735 Function *F = CGM.getIntrinsic(CI, ResultType);
17736 return Builder.CreateConstrainedFPCall(F, {X, Y});
17737 } else {
17738 Function *F = CGM.getIntrinsic(ID, ResultType);
17739 return Builder.CreateCall(F, {X, Y});
17740 }
17741 }
17742 switch (BuiltinID) {
17743 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
17744 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
17745 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17745)
;
17746 }
17747 Function *F = CGM.getIntrinsic(ID);
17748 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17749 return Builder.CreateCall(F, {X, Y, M4Value});
17750 }
17751
17752 case SystemZ::BI__builtin_s390_vlbrh:
17753 case SystemZ::BI__builtin_s390_vlbrf:
17754 case SystemZ::BI__builtin_s390_vlbrg: {
17755 llvm::Type *ResultType = ConvertType(E->getType());
17756 Value *X = EmitScalarExpr(E->getArg(0));
17757 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
17758 return Builder.CreateCall(F, X);
17759 }
17760
17761 // Vector intrinsics that output the post-instruction CC value.
17762
17763#define INTRINSIC_WITH_CC(NAME) \
17764 case SystemZ::BI__builtin_##NAME: \
17765 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
17766
17767 INTRINSIC_WITH_CC(s390_vpkshs);
17768 INTRINSIC_WITH_CC(s390_vpksfs);
17769 INTRINSIC_WITH_CC(s390_vpksgs);
17770
17771 INTRINSIC_WITH_CC(s390_vpklshs);
17772 INTRINSIC_WITH_CC(s390_vpklsfs);
17773 INTRINSIC_WITH_CC(s390_vpklsgs);
17774
17775 INTRINSIC_WITH_CC(s390_vceqbs);
17776 INTRINSIC_WITH_CC(s390_vceqhs);
17777 INTRINSIC_WITH_CC(s390_vceqfs);
17778 INTRINSIC_WITH_CC(s390_vceqgs);
17779
17780 INTRINSIC_WITH_CC(s390_vchbs);
17781 INTRINSIC_WITH_CC(s390_vchhs);
17782 INTRINSIC_WITH_CC(s390_vchfs);
17783 INTRINSIC_WITH_CC(s390_vchgs);
17784
17785 INTRINSIC_WITH_CC(s390_vchlbs);
17786 INTRINSIC_WITH_CC(s390_vchlhs);
17787 INTRINSIC_WITH_CC(s390_vchlfs);
17788 INTRINSIC_WITH_CC(s390_vchlgs);
17789
17790 INTRINSIC_WITH_CC(s390_vfaebs);
17791 INTRINSIC_WITH_CC(s390_vfaehs);
17792 INTRINSIC_WITH_CC(s390_vfaefs);
17793
17794 INTRINSIC_WITH_CC(s390_vfaezbs);
17795 INTRINSIC_WITH_CC(s390_vfaezhs);
17796 INTRINSIC_WITH_CC(s390_vfaezfs);
17797
17798 INTRINSIC_WITH_CC(s390_vfeebs);
17799 INTRINSIC_WITH_CC(s390_vfeehs);
17800 INTRINSIC_WITH_CC(s390_vfeefs);
17801
17802 INTRINSIC_WITH_CC(s390_vfeezbs);
17803 INTRINSIC_WITH_CC(s390_vfeezhs);
17804 INTRINSIC_WITH_CC(s390_vfeezfs);
17805
17806 INTRINSIC_WITH_CC(s390_vfenebs);
17807 INTRINSIC_WITH_CC(s390_vfenehs);
17808 INTRINSIC_WITH_CC(s390_vfenefs);
17809
17810 INTRINSIC_WITH_CC(s390_vfenezbs);
17811 INTRINSIC_WITH_CC(s390_vfenezhs);
17812 INTRINSIC_WITH_CC(s390_vfenezfs);
17813
17814 INTRINSIC_WITH_CC(s390_vistrbs);
17815 INTRINSIC_WITH_CC(s390_vistrhs);
17816 INTRINSIC_WITH_CC(s390_vistrfs);
17817
17818 INTRINSIC_WITH_CC(s390_vstrcbs);
17819 INTRINSIC_WITH_CC(s390_vstrchs);
17820 INTRINSIC_WITH_CC(s390_vstrcfs);
17821
17822 INTRINSIC_WITH_CC(s390_vstrczbs);
17823 INTRINSIC_WITH_CC(s390_vstrczhs);
17824 INTRINSIC_WITH_CC(s390_vstrczfs);
17825
17826 INTRINSIC_WITH_CC(s390_vfcesbs);
17827 INTRINSIC_WITH_CC(s390_vfcedbs);
17828 INTRINSIC_WITH_CC(s390_vfchsbs);
17829 INTRINSIC_WITH_CC(s390_vfchdbs);
17830 INTRINSIC_WITH_CC(s390_vfchesbs);
17831 INTRINSIC_WITH_CC(s390_vfchedbs);
17832
17833 INTRINSIC_WITH_CC(s390_vftcisb);
17834 INTRINSIC_WITH_CC(s390_vftcidb);
17835
17836 INTRINSIC_WITH_CC(s390_vstrsb);
17837 INTRINSIC_WITH_CC(s390_vstrsh);
17838 INTRINSIC_WITH_CC(s390_vstrsf);
17839
17840 INTRINSIC_WITH_CC(s390_vstrszb);
17841 INTRINSIC_WITH_CC(s390_vstrszh);
17842 INTRINSIC_WITH_CC(s390_vstrszf);
17843
17844#undef INTRINSIC_WITH_CC
17845
17846 default:
17847 return nullptr;
17848 }
17849}
17850
17851namespace {
17852// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
17853struct NVPTXMmaLdstInfo {
17854 unsigned NumResults; // Number of elements to load/store
17855 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
17856 unsigned IID_col;
17857 unsigned IID_row;
17858};
17859
17860#define MMA_INTR(geom_op_type, layout) \
17861 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
17862#define MMA_LDST(n, geom_op_type) \
17863 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
17864
17865static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
17866 switch (BuiltinID) {
17867 // FP MMA loads
17868 case NVPTX::BI__hmma_m16n16k16_ld_a:
17869 return MMA_LDST(8, m16n16k16_load_a_f16);
17870 case NVPTX::BI__hmma_m16n16k16_ld_b:
17871 return MMA_LDST(8, m16n16k16_load_b_f16);
17872 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17873 return MMA_LDST(4, m16n16k16_load_c_f16);
17874 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17875 return MMA_LDST(8, m16n16k16_load_c_f32);
17876 case NVPTX::BI__hmma_m32n8k16_ld_a:
17877 return MMA_LDST(8, m32n8k16_load_a_f16);
17878 case NVPTX::BI__hmma_m32n8k16_ld_b:
17879 return MMA_LDST(8, m32n8k16_load_b_f16);
17880 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17881 return MMA_LDST(4, m32n8k16_load_c_f16);
17882 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17883 return MMA_LDST(8, m32n8k16_load_c_f32);
17884 case NVPTX::BI__hmma_m8n32k16_ld_a:
17885 return MMA_LDST(8, m8n32k16_load_a_f16);
17886 case NVPTX::BI__hmma_m8n32k16_ld_b:
17887 return MMA_LDST(8, m8n32k16_load_b_f16);
17888 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17889 return MMA_LDST(4, m8n32k16_load_c_f16);
17890 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17891 return MMA_LDST(8, m8n32k16_load_c_f32);
17892
17893 // Integer MMA loads
17894 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17895 return MMA_LDST(2, m16n16k16_load_a_s8);
17896 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17897 return MMA_LDST(2, m16n16k16_load_a_u8);
17898 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17899 return MMA_LDST(2, m16n16k16_load_b_s8);
17900 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17901 return MMA_LDST(2, m16n16k16_load_b_u8);
17902 case NVPTX::BI__imma_m16n16k16_ld_c:
17903 return MMA_LDST(8, m16n16k16_load_c_s32);
17904 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17905 return MMA_LDST(4, m32n8k16_load_a_s8);
17906 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17907 return MMA_LDST(4, m32n8k16_load_a_u8);
17908 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17909 return MMA_LDST(1, m32n8k16_load_b_s8);
17910 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17911 return MMA_LDST(1, m32n8k16_load_b_u8);
17912 case NVPTX::BI__imma_m32n8k16_ld_c:
17913 return MMA_LDST(8, m32n8k16_load_c_s32);
17914 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17915 return MMA_LDST(1, m8n32k16_load_a_s8);
17916 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17917 return MMA_LDST(1, m8n32k16_load_a_u8);
17918 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17919 return MMA_LDST(4, m8n32k16_load_b_s8);
17920 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17921 return MMA_LDST(4, m8n32k16_load_b_u8);
17922 case NVPTX::BI__imma_m8n32k16_ld_c:
17923 return MMA_LDST(8, m8n32k16_load_c_s32);
17924
17925 // Sub-integer MMA loads.
17926 // Only row/col layout is supported by A/B fragments.
17927 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17928 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
17929 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17930 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
17931 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17932 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
17933 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17934 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
17935 case NVPTX::BI__imma_m8n8k32_ld_c:
17936 return MMA_LDST(2, m8n8k32_load_c_s32);
17937 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17938 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17939 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17940 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17941 case NVPTX::BI__bmma_m8n8k128_ld_c:
17942 return MMA_LDST(2, m8n8k128_load_c_s32);
17943
17944 // Double MMA loads
17945 case NVPTX::BI__dmma_m8n8k4_ld_a:
17946 return MMA_LDST(1, m8n8k4_load_a_f64);
17947 case NVPTX::BI__dmma_m8n8k4_ld_b:
17948 return MMA_LDST(1, m8n8k4_load_b_f64);
17949 case NVPTX::BI__dmma_m8n8k4_ld_c:
17950 return MMA_LDST(2, m8n8k4_load_c_f64);
17951
17952 // Alternate float MMA loads
17953 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17954 return MMA_LDST(4, m16n16k16_load_a_bf16);
17955 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17956 return MMA_LDST(4, m16n16k16_load_b_bf16);
17957 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17958 return MMA_LDST(2, m8n32k16_load_a_bf16);
17959 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17960 return MMA_LDST(8, m8n32k16_load_b_bf16);
17961 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17962 return MMA_LDST(8, m32n8k16_load_a_bf16);
17963 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17964 return MMA_LDST(2, m32n8k16_load_b_bf16);
17965 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17966 return MMA_LDST(4, m16n16k8_load_a_tf32);
17967 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17968 return MMA_LDST(4, m16n16k8_load_b_tf32);
17969 case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17970 return MMA_LDST(8, m16n16k8_load_c_f32);
17971
17972 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
17973 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17974 // use fragment C for both loads and stores.
17975 // FP MMA stores.
17976 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17977 return MMA_LDST(4, m16n16k16_store_d_f16);
17978 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17979 return MMA_LDST(8, m16n16k16_store_d_f32);
17980 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17981 return MMA_LDST(4, m32n8k16_store_d_f16);
17982 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17983 return MMA_LDST(8, m32n8k16_store_d_f32);
17984 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17985 return MMA_LDST(4, m8n32k16_store_d_f16);
17986 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17987 return MMA_LDST(8, m8n32k16_store_d_f32);
17988
17989 // Integer and sub-integer MMA stores.
17990 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17991 // name, integer loads/stores use LLVM's i32.
17992 case NVPTX::BI__imma_m16n16k16_st_c_i32:
17993 return MMA_LDST(8, m16n16k16_store_d_s32);
17994 case NVPTX::BI__imma_m32n8k16_st_c_i32:
17995 return MMA_LDST(8, m32n8k16_store_d_s32);
17996 case NVPTX::BI__imma_m8n32k16_st_c_i32:
17997 return MMA_LDST(8, m8n32k16_store_d_s32);
17998 case NVPTX::BI__imma_m8n8k32_st_c_i32:
17999 return MMA_LDST(2, m8n8k32_store_d_s32);
18000 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
18001 return MMA_LDST(2, m8n8k128_store_d_s32);
18002
18003 // Double MMA store
18004 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
18005 return MMA_LDST(2, m8n8k4_store_d_f64);
18006
18007 // Alternate float MMA store
18008 case NVPTX::BI__mma_m16n16k8_st_c_f32:
18009 return MMA_LDST(8, m16n16k8_store_d_f32);
18010
18011 default:
18012 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18012)
;
18013 }
18014}
18015#undef MMA_LDST
18016#undef MMA_INTR
18017
18018
18019struct NVPTXMmaInfo {
18020 unsigned NumEltsA;
18021 unsigned NumEltsB;
18022 unsigned NumEltsC;
18023 unsigned NumEltsD;
18024
18025 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
18026 // over 'col' for layout. The index of non-satf variants is expected to match
18027 // the undocumented layout constants used by CUDA's mma.hpp.
18028 std::array<unsigned, 8> Variants;
18029
18030 unsigned getMMAIntrinsic(int Layout, bool Satf) {
18031 unsigned Index = Layout + 4 * Satf;
18032 if (Index >= Variants.size())
18033 return 0;
18034 return Variants[Index];
18035 }
18036};
18037
18038 // Returns an intrinsic that matches Layout and Satf for valid combinations of
18039 // Layout and Satf, 0 otherwise.
18040static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
18041 // clang-format off
18042#define MMA_VARIANTS(geom, type) \
18043 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
18044 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
18045 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
18046 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
18047#define MMA_SATF_VARIANTS(geom, type) \
18048 MMA_VARIANTS(geom, type), \
18049 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
18050 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
18051 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
18052 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
18053// Sub-integer MMA only supports row.col layout.
18054#define MMA_VARIANTS_I4(geom, type) \
18055 0, \
18056 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
18057 0, \
18058 0, \
18059 0, \
18060 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
18061 0, \
18062 0
18063// b1 MMA does not support .satfinite.
18064#define MMA_VARIANTS_B1_XOR(geom, type) \
18065 0, \
18066 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
18067 0, \
18068 0, \
18069 0, \
18070 0, \
18071 0, \
18072 0
18073#define MMA_VARIANTS_B1_AND(geom, type) \
18074 0, \
18075 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
18076 0, \
18077 0, \
18078 0, \
18079 0, \
18080 0, \
18081 0
18082 // clang-format on
18083 switch (BuiltinID) {
18084 // FP MMA
18085 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
18086 // NumEltsN of return value are ordered as A,B,C,D.
18087 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
18088 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
18089 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
18090 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
18091 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
18092 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
18093 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
18094 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
18095 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
18096 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
18097 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
18098 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
18099 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
18100 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
18101 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
18102 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
18103 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
18104 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
18105 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
18106 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
18107 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
18108 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
18109 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
18110 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
18111
18112 // Integer MMA
18113 case NVPTX::BI__imma_m16n16k16_mma_s8:
18114 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
18115 case NVPTX::BI__imma_m16n16k16_mma_u8:
18116 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
18117 case NVPTX::BI__imma_m32n8k16_mma_s8:
18118 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
18119 case NVPTX::BI__imma_m32n8k16_mma_u8:
18120 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
18121 case NVPTX::BI__imma_m8n32k16_mma_s8:
18122 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
18123 case NVPTX::BI__imma_m8n32k16_mma_u8:
18124 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
18125
18126 // Sub-integer MMA
18127 case NVPTX::BI__imma_m8n8k32_mma_s4:
18128 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
18129 case NVPTX::BI__imma_m8n8k32_mma_u4:
18130 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
18131 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
18132 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
18133 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
18134 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
18135
18136 // Double MMA
18137 case NVPTX::BI__dmma_m8n8k4_mma_f64:
18138 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
18139
18140 // Alternate FP MMA
18141 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
18142 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
18143 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
18144 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
18145 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
18146 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
18147 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
18148 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
18149 default:
18150 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18150)
;
18151 }
18152#undef MMA_VARIANTS
18153#undef MMA_SATF_VARIANTS
18154#undef MMA_VARIANTS_I4
18155#undef MMA_VARIANTS_B1_AND
18156#undef MMA_VARIANTS_B1_XOR
18157}
18158
18159static Value *MakeLdgLdu(unsigned IntrinsicID, CodeGenFunction &CGF,
18160 const CallExpr *E) {
18161 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
18162 QualType ArgType = E->getArg(0)->getType();
18163 clang::CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType);
18164 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType());
18165 return CGF.Builder.CreateCall(
18166 CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
18167 {Ptr, ConstantInt::get(CGF.Builder.getInt32Ty(), Align.getQuantity())});
18168}
18169
18170static Value *MakeScopedAtomic(unsigned IntrinsicID, CodeGenFunction &CGF,
18171 const CallExpr *E) {
18172 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
18173 llvm::Type *ElemTy =
18174 CGF.ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
18175 return CGF.Builder.CreateCall(
18176 CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
18177 {Ptr, CGF.EmitScalarExpr(E->getArg(1))});
18178}
18179
18180static Value *MakeHalfType(unsigned IntrinsicID, unsigned BuiltinID,
18181 const CallExpr *E, CodeGenFunction &CGF) {
18182 auto &C = CGF.CGM.getContext();
18183 if (!(C.getLangOpts().NativeHalfType ||
18184 !C.getTargetInfo().useFP16ConversionIntrinsics())) {
18185 CGF.CGM.Error(E->getExprLoc(), C.BuiltinInfo.getName(BuiltinID).str() +
18186 " requires native half type support.");
18187 return nullptr;
18188 }
18189
18190 if (IntrinsicID == Intrinsic::nvvm_ldg_global_f ||
18191 IntrinsicID == Intrinsic::nvvm_ldu_global_f)
18192 return MakeLdgLdu(IntrinsicID, CGF, E);
18193
18194 SmallVector<Value *, 16> Args;
18195 auto *F = CGF.CGM.getIntrinsic(IntrinsicID);
18196 auto *FTy = F->getFunctionType();
18197 unsigned ICEArguments = 0;
18198 ASTContext::GetBuiltinTypeError Error;
18199 C.GetBuiltinType(BuiltinID, Error, &ICEArguments);
18200 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 18200, __extension__ __PRETTY_FUNCTION__
))
;
18201 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
18202 assert((ICEArguments & (1 << i)) == 0)(static_cast <bool> ((ICEArguments & (1 << i)
) == 0) ? void (0) : __assert_fail ("(ICEArguments & (1 << i)) == 0"
, "clang/lib/CodeGen/CGBuiltin.cpp", 18202, __extension__ __PRETTY_FUNCTION__
))
;
18203 auto *ArgValue = CGF.EmitScalarExpr(E->getArg(i));
18204 auto *PTy = FTy->getParamType(i);
18205 if (PTy != ArgValue->getType())
18206 ArgValue = CGF.Builder.CreateBitCast(ArgValue, PTy);
18207 Args.push_back(ArgValue);
18208 }
18209
18210 return CGF.Builder.CreateCall(F, Args);
18211}
18212} // namespace
18213
18214Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
18215 const CallExpr *E) {
18216 switch (BuiltinID) {
18217 case NVPTX::BI__nvvm_atom_add_gen_i:
18218 case NVPTX::BI__nvvm_atom_add_gen_l:
18219 case NVPTX::BI__nvvm_atom_add_gen_ll:
18220 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
18221
18222 case NVPTX::BI__nvvm_atom_sub_gen_i:
18223 case NVPTX::BI__nvvm_atom_sub_gen_l:
18224 case NVPTX::BI__nvvm_atom_sub_gen_ll:
18225 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
18226
18227 case NVPTX::BI__nvvm_atom_and_gen_i:
18228 case NVPTX::BI__nvvm_atom_and_gen_l:
18229 case NVPTX::BI__nvvm_atom_and_gen_ll:
18230 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
18231
18232 case NVPTX::BI__nvvm_atom_or_gen_i:
18233 case NVPTX::BI__nvvm_atom_or_gen_l:
18234 case NVPTX::BI__nvvm_atom_or_gen_ll:
18235 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
18236
18237 case NVPTX::BI__nvvm_atom_xor_gen_i:
18238 case NVPTX::BI__nvvm_atom_xor_gen_l:
18239 case NVPTX::BI__nvvm_atom_xor_gen_ll:
18240 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
18241
18242 case NVPTX::BI__nvvm_atom_xchg_gen_i:
18243 case NVPTX::BI__nvvm_atom_xchg_gen_l:
18244 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
18245 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
18246
18247 case NVPTX::BI__nvvm_atom_max_gen_i:
18248 case NVPTX::BI__nvvm_atom_max_gen_l:
18249 case NVPTX::BI__nvvm_atom_max_gen_ll:
18250 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
18251
18252 case NVPTX::BI__nvvm_atom_max_gen_ui:
18253 case NVPTX::BI__nvvm_atom_max_gen_ul:
18254 case NVPTX::BI__nvvm_atom_max_gen_ull:
18255 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
18256
18257 case NVPTX::BI__nvvm_atom_min_gen_i:
18258 case NVPTX::BI__nvvm_atom_min_gen_l:
18259 case NVPTX::BI__nvvm_atom_min_gen_ll:
18260 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
18261
18262 case NVPTX::BI__nvvm_atom_min_gen_ui:
18263 case NVPTX::BI__nvvm_atom_min_gen_ul:
18264 case NVPTX::BI__nvvm_atom_min_gen_ull:
18265 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
18266
18267 case NVPTX::BI__nvvm_atom_cas_gen_i:
18268 case NVPTX::BI__nvvm_atom_cas_gen_l:
18269 case NVPTX::BI__nvvm_atom_cas_gen_ll:
18270 // __nvvm_atom_cas_gen_* should return the old value rather than the
18271 // success flag.
18272 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
18273
18274 case NVPTX::BI__nvvm_atom_add_gen_f:
18275 case NVPTX::BI__nvvm_atom_add_gen_d: {
18276 Value *Ptr = EmitScalarExpr(E->getArg(0));
18277 Value *Val = EmitScalarExpr(E->getArg(1));
18278 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
18279 AtomicOrdering::SequentiallyConsistent);
18280 }
18281
18282 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
18283 Value *Ptr = EmitScalarExpr(E->getArg(0));
18284 Value *Val = EmitScalarExpr(E->getArg(1));
18285 Function *FnALI32 =
18286 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
18287 return Builder.CreateCall(FnALI32, {Ptr, Val});
18288 }
18289
18290 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
18291 Value *Ptr = EmitScalarExpr(E->getArg(0));
18292 Value *Val = EmitScalarExpr(E->getArg(1));
18293 Function *FnALD32 =
18294 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
18295 return Builder.CreateCall(FnALD32, {Ptr, Val});
18296 }
18297
18298 case NVPTX::BI__nvvm_ldg_c:
18299 case NVPTX::BI__nvvm_ldg_c2:
18300 case NVPTX::BI__nvvm_ldg_c4:
18301 case NVPTX::BI__nvvm_ldg_s:
18302 case NVPTX::BI__nvvm_ldg_s2:
18303 case NVPTX::BI__nvvm_ldg_s4:
18304 case NVPTX::BI__nvvm_ldg_i:
18305 case NVPTX::BI__nvvm_ldg_i2:
18306 case NVPTX::BI__nvvm_ldg_i4:
18307 case NVPTX::BI__nvvm_ldg_l:
18308 case NVPTX::BI__nvvm_ldg_ll:
18309 case NVPTX::BI__nvvm_ldg_ll2:
18310 case NVPTX::BI__nvvm_ldg_uc:
18311 case NVPTX::BI__nvvm_ldg_uc2:
18312 case NVPTX::BI__nvvm_ldg_uc4:
18313 case NVPTX::BI__nvvm_ldg_us:
18314 case NVPTX::BI__nvvm_ldg_us2:
18315 case NVPTX::BI__nvvm_ldg_us4:
18316 case NVPTX::BI__nvvm_ldg_ui:
18317 case NVPTX::BI__nvvm_ldg_ui2:
18318 case NVPTX::BI__nvvm_ldg_ui4:
18319 case NVPTX::BI__nvvm_ldg_ul:
18320 case NVPTX::BI__nvvm_ldg_ull:
18321 case NVPTX::BI__nvvm_ldg_ull2:
18322 // PTX Interoperability section 2.2: "For a vector with an even number of
18323 // elements, its alignment is set to number of elements times the alignment
18324 // of its member: n*alignof(t)."
18325 return MakeLdgLdu(Intrinsic::nvvm_ldg_global_i, *this, E);
18326 case NVPTX::BI__nvvm_ldg_f:
18327 case NVPTX::BI__nvvm_ldg_f2:
18328 case NVPTX::BI__nvvm_ldg_f4:
18329 case NVPTX::BI__nvvm_ldg_d:
18330 case NVPTX::BI__nvvm_ldg_d2:
18331 return MakeLdgLdu(Intrinsic::nvvm_ldg_global_f, *this, E);
18332
18333 case NVPTX::BI__nvvm_ldu_c:
18334 case NVPTX::BI__nvvm_ldu_c2:
18335 case NVPTX::BI__nvvm_ldu_c4:
18336 case NVPTX::BI__nvvm_ldu_s:
18337 case NVPTX::BI__nvvm_ldu_s2:
18338 case NVPTX::BI__nvvm_ldu_s4:
18339 case NVPTX::BI__nvvm_ldu_i:
18340 case NVPTX::BI__nvvm_ldu_i2:
18341 case NVPTX::BI__nvvm_ldu_i4:
18342 case NVPTX::BI__nvvm_ldu_l:
18343 case NVPTX::BI__nvvm_ldu_ll:
18344 case NVPTX::BI__nvvm_ldu_ll2:
18345 case NVPTX::BI__nvvm_ldu_uc:
18346 case NVPTX::BI__nvvm_ldu_uc2:
18347 case NVPTX::BI__nvvm_ldu_uc4:
18348 case NVPTX::BI__nvvm_ldu_us:
18349 case NVPTX::BI__nvvm_ldu_us2:
18350 case NVPTX::BI__nvvm_ldu_us4:
18351 case NVPTX::BI__nvvm_ldu_ui:
18352 case NVPTX::BI__nvvm_ldu_ui2:
18353 case NVPTX::BI__nvvm_ldu_ui4:
18354 case NVPTX::BI__nvvm_ldu_ul:
18355 case NVPTX::BI__nvvm_ldu_ull:
18356 case NVPTX::BI__nvvm_ldu_ull2:
18357 return MakeLdgLdu(Intrinsic::nvvm_ldu_global_i, *this, E);
18358 case NVPTX::BI__nvvm_ldu_f:
18359 case NVPTX::BI__nvvm_ldu_f2:
18360 case NVPTX::BI__nvvm_ldu_f4:
18361 case NVPTX::BI__nvvm_ldu_d:
18362 case NVPTX::BI__nvvm_ldu_d2:
18363 return MakeLdgLdu(Intrinsic::nvvm_ldu_global_f, *this, E);
18364
18365 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
18366 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
18367 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
18368 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta, *this, E);
18369 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
18370 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
18371 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
18372 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys, *this, E);
18373 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
18374 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
18375 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta, *this, E);
18376 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
18377 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
18378 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys, *this, E);
18379 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
18380 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
18381 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
18382 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta, *this, E);
18383 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
18384 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
18385 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
18386 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys, *this, E);
18387 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
18388 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
18389 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
18390 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
18391 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
18392 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
18393 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta, *this, E);
18394 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
18395 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
18396 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
18397 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
18398 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
18399 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
18400 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys, *this, E);
18401 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
18402 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
18403 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
18404 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
18405 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
18406 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
18407 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta, *this, E);
18408 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
18409 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
18410 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
18411 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
18412 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
18413 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
18414 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys, *this, E);
18415 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
18416 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta, *this, E);
18417 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
18418 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta, *this, E);
18419 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
18420 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys, *this, E);
18421 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
18422 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys, *this, E);
18423 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
18424 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
18425 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
18426 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta, *this, E);
18427 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
18428 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
18429 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
18430 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys, *this, E);
18431 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
18432 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
18433 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
18434 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta, *this, E);
18435 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
18436 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
18437 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
18438 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys, *this, E);
18439 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
18440 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
18441 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
18442 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta, *this, E);
18443 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
18444 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
18445 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
18446 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys, *this, E);
18447 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
18448 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
18449 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
18450 Value *Ptr = EmitScalarExpr(E->getArg(0));
18451 llvm::Type *ElemTy =
18452 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
18453 return Builder.CreateCall(
18454 CGM.getIntrinsic(
18455 Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
18456 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
18457 }
18458 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
18459 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
18460 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
18461 Value *Ptr = EmitScalarExpr(E->getArg(0));
18462 llvm::Type *ElemTy =
18463 ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
18464 return Builder.CreateCall(
18465 CGM.getIntrinsic(
18466 Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
18467 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
18468 }
18469 case NVPTX::BI__nvvm_match_all_sync_i32p:
18470 case NVPTX::BI__nvvm_match_all_sync_i64p: {
18471 Value *Mask = EmitScalarExpr(E->getArg(0));
18472 Value *Val = EmitScalarExpr(E->getArg(1));
18473 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
18474 Value *ResultPair = Builder.CreateCall(
18475 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
18476 ? Intrinsic::nvvm_match_all_sync_i32p
18477 : Intrinsic::nvvm_match_all_sync_i64p),
18478 {Mask, Val});
18479 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
18480 PredOutPtr.getElementType());
18481 Builder.CreateStore(Pred, PredOutPtr);
18482 return Builder.CreateExtractValue(ResultPair, 0);
18483 }
18484
18485 // FP MMA loads
18486 case NVPTX::BI__hmma_m16n16k16_ld_a:
18487 case NVPTX::BI__hmma_m16n16k16_ld_b:
18488 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
18489 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
18490 case NVPTX::BI__hmma_m32n8k16_ld_a:
18491 case NVPTX::BI__hmma_m32n8k16_ld_b:
18492 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
18493 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
18494 case NVPTX::BI__hmma_m8n32k16_ld_a:
18495 case NVPTX::BI__hmma_m8n32k16_ld_b:
18496 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
18497 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
18498 // Integer MMA loads.
18499 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
18500 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
18501 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
18502 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
18503 case NVPTX::BI__imma_m16n16k16_ld_c:
18504 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
18505 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
18506 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
18507 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
18508 case NVPTX::BI__imma_m32n8k16_ld_c:
18509 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
18510 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
18511 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
18512 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
18513 case NVPTX::BI__imma_m8n32k16_ld_c:
18514 // Sub-integer MMA loads.
18515 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
18516 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
18517 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
18518 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
18519 case NVPTX::BI__imma_m8n8k32_ld_c:
18520 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
18521 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
18522 case NVPTX::BI__bmma_m8n8k128_ld_c:
18523 // Double MMA loads.
18524 case NVPTX::BI__dmma_m8n8k4_ld_a:
18525 case NVPTX::BI__dmma_m8n8k4_ld_b:
18526 case NVPTX::BI__dmma_m8n8k4_ld_c:
18527 // Alternate float MMA loads.
18528 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
18529 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
18530 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
18531 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
18532 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
18533 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
18534 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
18535 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
18536 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
18537 Address Dst = EmitPointerWithAlignment(E->getArg(0));
18538 Value *Src = EmitScalarExpr(E->getArg(1));
18539 Value *Ldm = EmitScalarExpr(E->getArg(2));
18540 std::optional<llvm::APSInt> isColMajorArg =
18541 E->getArg(3)->getIntegerConstantExpr(getContext());
18542 if (!isColMajorArg)
18543 return nullptr;
18544 bool isColMajor = isColMajorArg->getSExtValue();
18545 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18546 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18547 if (IID == 0)
18548 return nullptr;
18549
18550 Value *Result =
18551 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
18552
18553 // Save returned values.
18554 assert(II.NumResults)(static_cast <bool> (II.NumResults) ? void (0) : __assert_fail
("II.NumResults", "clang/lib/CodeGen/CGBuiltin.cpp", 18554, __extension__
__PRETTY_FUNCTION__))
;
18555 if (II.NumResults == 1) {
18556 Builder.CreateAlignedStore(Result, Dst.getPointer(),
18557 CharUnits::fromQuantity(4));
18558 } else {
18559 for (unsigned i = 0; i < II.NumResults; ++i) {
18560 Builder.CreateAlignedStore(
18561 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
18562 Dst.getElementType()),
18563 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18564 llvm::ConstantInt::get(IntTy, i)),
18565 CharUnits::fromQuantity(4));
18566 }
18567 }
18568 return Result;
18569 }
18570
18571 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
18572 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
18573 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
18574 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
18575 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
18576 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
18577 case NVPTX::BI__imma_m16n16k16_st_c_i32:
18578 case NVPTX::BI__imma_m32n8k16_st_c_i32:
18579 case NVPTX::BI__imma_m8n32k16_st_c_i32:
18580 case NVPTX::BI__imma_m8n8k32_st_c_i32:
18581 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
18582 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
18583 case NVPTX::BI__mma_m16n16k8_st_c_f32: {
18584 Value *Dst = EmitScalarExpr(E->getArg(0));
18585 Address Src = EmitPointerWithAlignment(E->getArg(1));
18586 Value *Ldm = EmitScalarExpr(E->getArg(2));
18587 std::optional<llvm::APSInt> isColMajorArg =
18588 E->getArg(3)->getIntegerConstantExpr(getContext());
18589 if (!isColMajorArg)
18590 return nullptr;
18591 bool isColMajor = isColMajorArg->getSExtValue();
18592 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18593 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18594 if (IID == 0)
18595 return nullptr;
18596 Function *Intrinsic =
18597 CGM.getIntrinsic(IID, Dst->getType());
18598 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
18599 SmallVector<Value *, 10> Values = {Dst};
18600 for (unsigned i = 0; i < II.NumResults; ++i) {
18601 Value *V = Builder.CreateAlignedLoad(
18602 Src.getElementType(),
18603 Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
18604 llvm::ConstantInt::get(IntTy, i)),
18605 CharUnits::fromQuantity(4));
18606 Values.push_back(Builder.CreateBitCast(V, ParamType));
18607 }
18608 Values.push_back(Ldm);
18609 Value *Result = Builder.CreateCall(Intrinsic, Values);
18610 return Result;
18611 }
18612
18613 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
18614 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
18615 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
18616 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
18617 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
18618 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
18619 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
18620 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
18621 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
18622 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
18623 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
18624 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
18625 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
18626 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
18627 case NVPTX::BI__imma_m16n16k16_mma_s8:
18628 case NVPTX::BI__imma_m16n16k16_mma_u8:
18629 case NVPTX::BI__imma_m32n8k16_mma_s8:
18630 case NVPTX::BI__imma_m32n8k16_mma_u8:
18631 case NVPTX::BI__imma_m8n32k16_mma_s8:
18632 case NVPTX::BI__imma_m8n32k16_mma_u8:
18633 case NVPTX::BI__imma_m8n8k32_mma_s4:
18634 case NVPTX::BI__imma_m8n8k32_mma_u4:
18635 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
18636 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
18637 case NVPTX::BI__dmma_m8n8k4_mma_f64:
18638 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
18639 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
18640 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
18641 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
18642 Address Dst = EmitPointerWithAlignment(E->getArg(0));
18643 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
18644 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
18645 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
18646 std::optional<llvm::APSInt> LayoutArg =
18647 E->getArg(4)->getIntegerConstantExpr(getContext());
18648 if (!LayoutArg)
18649 return nullptr;
18650 int Layout = LayoutArg->getSExtValue();
18651 if (Layout < 0 || Layout > 3)
18652 return nullptr;
18653 llvm::APSInt SatfArg;
18654 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
18655 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
18656 SatfArg = 0; // .b1 does not have satf argument.
18657 else if (std::optional<llvm::APSInt> OptSatfArg =
18658 E->getArg(5)->getIntegerConstantExpr(getContext()))
18659 SatfArg = *OptSatfArg;
18660 else
18661 return nullptr;
18662 bool Satf = SatfArg.getSExtValue();
18663 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
18664 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
18665 if (IID == 0) // Unsupported combination of Layout/Satf.
18666 return nullptr;
18667
18668 SmallVector<Value *, 24> Values;
18669 Function *Intrinsic = CGM.getIntrinsic(IID);
18670 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
18671 // Load A
18672 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
18673 Value *V = Builder.CreateAlignedLoad(
18674 SrcA.getElementType(),
18675 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
18676 llvm::ConstantInt::get(IntTy, i)),
18677 CharUnits::fromQuantity(4));
18678 Values.push_back(Builder.CreateBitCast(V, AType));
18679 }
18680 // Load B
18681 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
18682 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
18683 Value *V = Builder.CreateAlignedLoad(
18684 SrcB.getElementType(),
18685 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
18686 llvm::ConstantInt::get(IntTy, i)),
18687 CharUnits::fromQuantity(4));
18688 Values.push_back(Builder.CreateBitCast(V, BType));
18689 }
18690 // Load C
18691 llvm::Type *CType =
18692 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
18693 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
18694 Value *V = Builder.CreateAlignedLoad(
18695 SrcC.getElementType(),
18696 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
18697 llvm::ConstantInt::get(IntTy, i)),
18698 CharUnits::fromQuantity(4));
18699 Values.push_back(Builder.CreateBitCast(V, CType));
18700 }
18701 Value *Result = Builder.CreateCall(Intrinsic, Values);
18702 llvm::Type *DType = Dst.getElementType();
18703 for (unsigned i = 0; i < MI.NumEltsD; ++i)
18704 Builder.CreateAlignedStore(
18705 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
18706 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18707 llvm::ConstantInt::get(IntTy, i)),
18708 CharUnits::fromQuantity(4));
18709 return Result;
18710 }
18711 // The following builtins require half type support
18712 case NVPTX::BI__nvvm_ex2_approx_f16:
18713 return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16, BuiltinID, E, *this);
18714 case NVPTX::BI__nvvm_ex2_approx_f16x2:
18715 return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2, BuiltinID, E, *this);
18716 case NVPTX::BI__nvvm_ff2f16x2_rn:
18717 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn, BuiltinID, E, *this);
18718 case NVPTX::BI__nvvm_ff2f16x2_rn_relu:
18719 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu, BuiltinID, E, *this);
18720 case NVPTX::BI__nvvm_ff2f16x2_rz:
18721 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz, BuiltinID, E, *this);
18722 case NVPTX::BI__nvvm_ff2f16x2_rz_relu:
18723 return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu, BuiltinID, E, *this);
18724 case NVPTX::BI__nvvm_fma_rn_f16:
18725 return MakeHalfType(Intrinsic::nvvm_fma_rn_f16, BuiltinID, E, *this);
18726 case NVPTX::BI__nvvm_fma_rn_f16x2:
18727 return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2, BuiltinID, E, *this);
18728 case NVPTX::BI__nvvm_fma_rn_ftz_f16:
18729 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16, BuiltinID, E, *this);
18730 case NVPTX::BI__nvvm_fma_rn_ftz_f16x2:
18731 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2, BuiltinID, E, *this);
18732 case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16:
18733 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16, BuiltinID, E,
18734 *this);
18735 case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2:
18736 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2, BuiltinID, E,
18737 *this);
18738 case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16:
18739 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16, BuiltinID, E,
18740 *this);
18741 case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2:
18742 return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2, BuiltinID, E,
18743 *this);
18744 case NVPTX::BI__nvvm_fma_rn_relu_f16:
18745 return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16, BuiltinID, E, *this);
18746 case NVPTX::BI__nvvm_fma_rn_relu_f16x2:
18747 return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2, BuiltinID, E, *this);
18748 case NVPTX::BI__nvvm_fma_rn_sat_f16:
18749 return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16, BuiltinID, E, *this);
18750 case NVPTX::BI__nvvm_fma_rn_sat_f16x2:
18751 return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2, BuiltinID, E, *this);
18752 case NVPTX::BI__nvvm_fmax_f16:
18753 return MakeHalfType(Intrinsic::nvvm_fmax_f16, BuiltinID, E, *this);
18754 case NVPTX::BI__nvvm_fmax_f16x2:
18755 return MakeHalfType(Intrinsic::nvvm_fmax_f16x2, BuiltinID, E, *this);
18756 case NVPTX::BI__nvvm_fmax_ftz_f16:
18757 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16, BuiltinID, E, *this);
18758 case NVPTX::BI__nvvm_fmax_ftz_f16x2:
18759 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2, BuiltinID, E, *this);
18760 case NVPTX::BI__nvvm_fmax_ftz_nan_f16:
18761 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16, BuiltinID, E, *this);
18762 case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2:
18763 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2, BuiltinID, E,
18764 *this);
18765 case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16:
18766 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16, BuiltinID,
18767 E, *this);
18768 case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2:
18769 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2,
18770 BuiltinID, E, *this);
18771 case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16:
18772 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16, BuiltinID, E,
18773 *this);
18774 case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2:
18775 return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2, BuiltinID,
18776 E, *this);
18777 case NVPTX::BI__nvvm_fmax_nan_f16:
18778 return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16, BuiltinID, E, *this);
18779 case NVPTX::BI__nvvm_fmax_nan_f16x2:
18780 return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2, BuiltinID, E, *this);
18781 case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16:
18782 return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16, BuiltinID, E,
18783 *this);
18784 case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2:
18785 return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2, BuiltinID,
18786 E, *this);
18787 case NVPTX::BI__nvvm_fmax_xorsign_abs_f16:
18788 return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16, BuiltinID, E,
18789 *this);
18790 case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2:
18791 return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2, BuiltinID, E,
18792 *this);
18793 case NVPTX::BI__nvvm_fmin_f16:
18794 return MakeHalfType(Intrinsic::nvvm_fmin_f16, BuiltinID, E, *this);
18795 case NVPTX::BI__nvvm_fmin_f16x2:
18796 return MakeHalfType(Intrinsic::nvvm_fmin_f16x2, BuiltinID, E, *this);
18797 case NVPTX::BI__nvvm_fmin_ftz_f16:
18798 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16, BuiltinID, E, *this);
18799 case NVPTX::BI__nvvm_fmin_ftz_f16x2:
18800 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2, BuiltinID, E, *this);
18801 case NVPTX::BI__nvvm_fmin_ftz_nan_f16:
18802 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16, BuiltinID, E, *this);
18803 case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2:
18804 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2, BuiltinID, E,
18805 *this);
18806 case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16:
18807 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16, BuiltinID,
18808 E, *this);
18809 case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2:
18810 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2,
18811 BuiltinID, E, *this);
18812 case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16:
18813 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16, BuiltinID, E,
18814 *this);
18815 case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2:
18816 return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2, BuiltinID,
18817 E, *this);
18818 case NVPTX::BI__nvvm_fmin_nan_f16:
18819 return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16, BuiltinID, E, *this);
18820 case NVPTX::BI__nvvm_fmin_nan_f16x2:
18821 return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2, BuiltinID, E, *this);
18822 case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16:
18823 return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16, BuiltinID, E,
18824 *this);
18825 case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2:
18826 return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2, BuiltinID,
18827 E, *this);
18828 case NVPTX::BI__nvvm_fmin_xorsign_abs_f16:
18829 return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16, BuiltinID, E,
18830 *this);
18831 case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2:
18832 return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2, BuiltinID, E,
18833 *this);
18834 case NVPTX::BI__nvvm_ldg_h:
18835 return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
18836 case NVPTX::BI__nvvm_ldg_h2:
18837 return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
18838 case NVPTX::BI__nvvm_ldu_h:
18839 return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
18840 case NVPTX::BI__nvvm_ldu_h2: {
18841 return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
18842 }
18843 default:
18844 return nullptr;
18845 }
18846}
18847
18848namespace {
18849struct BuiltinAlignArgs {
18850 llvm::Value *Src = nullptr;
18851 llvm::Type *SrcType = nullptr;
18852 llvm::Value *Alignment = nullptr;
18853 llvm::Value *Mask = nullptr;
18854 llvm::IntegerType *IntType = nullptr;
18855
18856 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
18857 QualType AstType = E->getArg(0)->getType();
18858 if (AstType->isArrayType())
18859 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
18860 else
18861 Src = CGF.EmitScalarExpr(E->getArg(0));
18862 SrcType = Src->getType();
18863 if (SrcType->isPointerTy()) {
18864 IntType = IntegerType::get(
18865 CGF.getLLVMContext(),
18866 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
18867 } else {
18868 assert(SrcType->isIntegerTy())(static_cast <bool> (SrcType->isIntegerTy()) ? void (
0) : __assert_fail ("SrcType->isIntegerTy()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18868, __extension__ __PRETTY_FUNCTION__))
;
18869 IntType = cast<llvm::IntegerType>(SrcType);
18870 }
18871 Alignment = CGF.EmitScalarExpr(E->getArg(1));
18872 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
18873 auto *One = llvm::ConstantInt::get(IntType, 1);
18874 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
18875 }
18876};
18877} // namespace
18878
18879/// Generate (x & (y-1)) == 0.
18880RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
18881 BuiltinAlignArgs Args(E, *this);
18882 llvm::Value *SrcAddress = Args.Src;
18883 if (Args.SrcType->isPointerTy())
18884 SrcAddress =
18885 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
18886 return RValue::get(Builder.CreateICmpEQ(
18887 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
18888 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
18889}
18890
18891/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
18892/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
18893/// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
18894/// TODO: actually use ptrmask once most optimization passes know about it.
18895RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
18896 BuiltinAlignArgs Args(E, *this);
18897 llvm::Value *SrcAddr = Args.Src;
18898 if (Args.Src->getType()->isPointerTy())
18899 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
18900 llvm::Value *SrcForMask = SrcAddr;
18901 if (AlignUp) {
18902 // When aligning up we have to first add the mask to ensure we go over the
18903 // next alignment value and then align down to the next valid multiple.
18904 // By adding the mask, we ensure that align_up on an already aligned
18905 // value will not change the value.
18906 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
18907 }
18908 // Invert the mask to only clear the lower bits.
18909 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
18910 llvm::Value *Result =
18911 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
18912 if (Args.Src->getType()->isPointerTy()) {
18913 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
18914 // Result = Builder.CreateIntrinsic(
18915 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
18916 // {SrcForMask, NegatedMask}, nullptr, "aligned_result");
18917 Result->setName("aligned_intptr");
18918 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
18919 // The result must point to the same underlying allocation. This means we
18920 // can use an inbounds GEP to enable better optimization.
18921 Value *Base = EmitCastToVoidPtr(Args.Src);
18922 if (getLangOpts().isSignedOverflowDefined())
18923 Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
18924 else
18925 Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
18926 /*SignedIndices=*/true,
18927 /*isSubtraction=*/!AlignUp,
18928 E->getExprLoc(), "aligned_result");
18929 Result = Builder.CreatePointerCast(Result, Args.SrcType);
18930 // Emit an alignment assumption to ensure that the new alignment is
18931 // propagated to loads/stores, etc.
18932 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
18933 }
18934 assert(Result->getType() == Args.SrcType)(static_cast <bool> (Result->getType() == Args.SrcType
) ? void (0) : __assert_fail ("Result->getType() == Args.SrcType"
, "clang/lib/CodeGen/CGBuiltin.cpp", 18934, __extension__ __PRETTY_FUNCTION__
))
;
18935 return RValue::get(Result);
18936}
18937
18938Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
18939 const CallExpr *E) {
18940 switch (BuiltinID) {
18941 case WebAssembly::BI__builtin_wasm_memory_size: {
18942 llvm::Type *ResultType = ConvertType(E->getType());
18943 Value *I = EmitScalarExpr(E->getArg(0));
18944 Function *Callee =
18945 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
18946 return Builder.CreateCall(Callee, I);
18947 }
18948 case WebAssembly::BI__builtin_wasm_memory_grow: {
18949 llvm::Type *ResultType = ConvertType(E->getType());
18950 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
18951 EmitScalarExpr(E->getArg(1))};
18952 Function *Callee =
18953 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
18954 return Builder.CreateCall(Callee, Args);
18955 }
18956 case WebAssembly::BI__builtin_wasm_tls_size: {
18957 llvm::Type *ResultType = ConvertType(E->getType());
18958 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
18959 return Builder.CreateCall(Callee);
18960 }
18961 case WebAssembly::BI__builtin_wasm_tls_align: {
18962 llvm::Type *ResultType = ConvertType(E->getType());
18963 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
18964 return Builder.CreateCall(Callee);
18965 }
18966 case WebAssembly::BI__builtin_wasm_tls_base: {
18967 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
18968 return Builder.CreateCall(Callee);
18969 }
18970 case WebAssembly::BI__builtin_wasm_throw: {
18971 Value *Tag = EmitScalarExpr(E->getArg(0));
18972 Value *Obj = EmitScalarExpr(E->getArg(1));
18973 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
18974 return Builder.CreateCall(Callee, {Tag, Obj});
18975 }
18976 case WebAssembly::BI__builtin_wasm_rethrow: {
18977 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
18978 return Builder.CreateCall(Callee);
18979 }
18980 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
18981 Value *Addr = EmitScalarExpr(E->getArg(0));
18982 Value *Expected = EmitScalarExpr(E->getArg(1));
18983 Value *Timeout = EmitScalarExpr(E->getArg(2));
18984 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
18985 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18986 }
18987 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
18988 Value *Addr = EmitScalarExpr(E->getArg(0));
18989 Value *Expected = EmitScalarExpr(E->getArg(1));
18990 Value *Timeout = EmitScalarExpr(E->getArg(2));
18991 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
18992 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18993 }
18994 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
18995 Value *Addr = EmitScalarExpr(E->getArg(0));
18996 Value *Count = EmitScalarExpr(E->getArg(1));
18997 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
18998 return Builder.CreateCall(Callee, {Addr, Count});
18999 }
19000 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
19001 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
19002 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
19003 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
19004 Value *Src = EmitScalarExpr(E->getArg(0));
19005 llvm::Type *ResT = ConvertType(E->getType());
19006 Function *Callee =
19007 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
19008 return Builder.CreateCall(Callee, {Src});
19009 }
19010 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
19011 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
19012 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
19013 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
19014 Value *Src = EmitScalarExpr(E->getArg(0));
19015 llvm::Type *ResT = ConvertType(E->getType());
19016 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
19017 {ResT, Src->getType()});
19018 return Builder.CreateCall(Callee, {Src});
19019 }
19020 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
19021 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
19022 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
19023 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
19024 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
19025 Value *Src = EmitScalarExpr(E->getArg(0));
19026 llvm::Type *ResT = ConvertType(E->getType());
19027 Function *Callee =
19028 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
19029 return Builder.CreateCall(Callee, {Src});
19030 }
19031 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
19032 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
19033 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
19034 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
19035 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
19036 Value *Src = EmitScalarExpr(E->getArg(0));
19037 llvm::Type *ResT = ConvertType(E->getType());
19038 Function *Callee =
19039 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
19040 return Builder.CreateCall(Callee, {Src});
19041 }
19042 case WebAssembly::BI__builtin_wasm_min_f32:
19043 case WebAssembly::BI__builtin_wasm_min_f64:
19044 case WebAssembly::BI__builtin_wasm_min_f32x4:
19045 case WebAssembly::BI__builtin_wasm_min_f64x2: {
19046 Value *LHS = EmitScalarExpr(E->getArg(0));
19047 Value *RHS = EmitScalarExpr(E->getArg(1));
19048 Function *Callee =
19049 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
19050 return Builder.CreateCall(Callee, {LHS, RHS});
19051 }
19052 case WebAssembly::BI__builtin_wasm_max_f32:
19053 case WebAssembly::BI__builtin_wasm_max_f64:
19054 case WebAssembly::BI__builtin_wasm_max_f32x4:
19055 case WebAssembly::BI__builtin_wasm_max_f64x2: {
19056 Value *LHS = EmitScalarExpr(E->getArg(0));
19057 Value *RHS = EmitScalarExpr(E->getArg(1));
19058 Function *Callee =
19059 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
19060 return Builder.CreateCall(Callee, {LHS, RHS});
19061 }
19062 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
19063 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
19064 Value *LHS = EmitScalarExpr(E->getArg(0));
19065 Value *RHS = EmitScalarExpr(E->getArg(1));
19066 Function *Callee =
19067 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
19068 return Builder.CreateCall(Callee, {LHS, RHS});
19069 }
19070 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
19071 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
19072 Value *LHS = EmitScalarExpr(E->getArg(0));
19073 Value *RHS = EmitScalarExpr(E->getArg(1));
19074 Function *Callee =
19075 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
19076 return Builder.CreateCall(Callee, {LHS, RHS});
19077 }
19078 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
19079 case WebAssembly::BI__builtin_wasm_floor_f32x4:
19080 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
19081 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
19082 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
19083 case WebAssembly::BI__builtin_wasm_floor_f64x2:
19084 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
19085 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
19086 unsigned IntNo;
19087 switch (BuiltinID) {
19088 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
19089 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
19090 IntNo = Intrinsic::ceil;
19091 break;
19092 case WebAssembly::BI__builtin_wasm_floor_f32x4:
19093 case WebAssembly::BI__builtin_wasm_floor_f64x2:
19094 IntNo = Intrinsic::floor;
19095 break;
19096 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
19097 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
19098 IntNo = Intrinsic::trunc;
19099 break;
19100 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
19101 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
19102 IntNo = Intrinsic::nearbyint;
19103 break;
19104 default:
19105 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19105)
;
19106 }
19107 Value *Value = EmitScalarExpr(E->getArg(0));
19108 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
19109 return Builder.CreateCall(Callee, Value);
19110 }
19111 case WebAssembly::BI__builtin_wasm_ref_null_extern: {
19112 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_extern);
19113 return Builder.CreateCall(Callee);
19114 }
19115 case WebAssembly::BI__builtin_wasm_ref_null_func: {
19116 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_func);
19117 return Builder.CreateCall(Callee);
19118 }
19119 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
19120 Value *Src = EmitScalarExpr(E->getArg(0));
19121 Value *Indices = EmitScalarExpr(E->getArg(1));
19122 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
19123 return Builder.CreateCall(Callee, {Src, Indices});
19124 }
19125 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
19126 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
19127 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
19128 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
19129 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
19130 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
19131 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
19132 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
19133 unsigned IntNo;
19134 switch (BuiltinID) {
19135 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
19136 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
19137 IntNo = Intrinsic::sadd_sat;
19138 break;
19139 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
19140 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
19141 IntNo = Intrinsic::uadd_sat;
19142 break;
19143 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
19144 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
19145 IntNo = Intrinsic::wasm_sub_sat_signed;
19146 break;
19147 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
19148 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
19149 IntNo = Intrinsic::wasm_sub_sat_unsigned;
19150 break;
19151 default:
19152 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19152)
;
19153 }
19154 Value *LHS = EmitScalarExpr(E->getArg(0));
19155 Value *RHS = EmitScalarExpr(E->getArg(1));
19156 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
19157 return Builder.CreateCall(Callee, {LHS, RHS});
19158 }
19159 case WebAssembly::BI__builtin_wasm_abs_i8x16:
19160 case WebAssembly::BI__builtin_wasm_abs_i16x8:
19161 case WebAssembly::BI__builtin_wasm_abs_i32x4:
19162 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
19163 Value *Vec = EmitScalarExpr(E->getArg(0));
19164 Value *Neg = Builder.CreateNeg(Vec, "neg");
19165 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
19166 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
19167 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
19168 }
19169 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
19170 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
19171 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
19172 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
19173 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
19174 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
19175 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
19176 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
19177 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
19178 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
19179 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
19180 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
19181 Value *LHS = EmitScalarExpr(E->getArg(0));
19182 Value *RHS = EmitScalarExpr(E->getArg(1));
19183 Value *ICmp;
19184 switch (BuiltinID) {
19185 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
19186 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
19187 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
19188 ICmp = Builder.CreateICmpSLT(LHS, RHS);
19189 break;
19190 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
19191 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
19192 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
19193 ICmp = Builder.CreateICmpULT(LHS, RHS);
19194 break;
19195 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
19196 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
19197 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
19198 ICmp = Builder.CreateICmpSGT(LHS, RHS);
19199 break;
19200 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
19201 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
19202 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
19203 ICmp = Builder.CreateICmpUGT(LHS, RHS);
19204 break;
19205 default:
19206 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19206)
;
19207 }
19208 return Builder.CreateSelect(ICmp, LHS, RHS);
19209 }
19210 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
19211 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
19212 Value *LHS = EmitScalarExpr(E->getArg(0));
19213 Value *RHS = EmitScalarExpr(E->getArg(1));
19214 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
19215 ConvertType(E->getType()));
19216 return Builder.CreateCall(Callee, {LHS, RHS});
19217 }
19218 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
19219 Value *LHS = EmitScalarExpr(E->getArg(0));
19220 Value *RHS = EmitScalarExpr(E->getArg(1));
19221 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
19222 return Builder.CreateCall(Callee, {LHS, RHS});
19223 }
19224 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
19225 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
19226 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
19227 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
19228 Value *Vec = EmitScalarExpr(E->getArg(0));
19229 unsigned IntNo;
19230 switch (BuiltinID) {
19231 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
19232 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
19233 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
19234 break;
19235 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
19236 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
19237 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
19238 break;
19239 default:
19240 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19240)
;
19241 }
19242
19243 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
19244 return Builder.CreateCall(Callee, Vec);
19245 }
19246 case WebAssembly::BI__builtin_wasm_bitselect: {
19247 Value *V1 = EmitScalarExpr(E->getArg(0));
19248 Value *V2 = EmitScalarExpr(E->getArg(1));
19249 Value *C = EmitScalarExpr(E->getArg(2));
19250 Function *Callee =
19251 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
19252 return Builder.CreateCall(Callee, {V1, V2, C});
19253 }
19254 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
19255 Value *LHS = EmitScalarExpr(E->getArg(0));
19256 Value *RHS = EmitScalarExpr(E->getArg(1));
19257 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
19258 return Builder.CreateCall(Callee, {LHS, RHS});
19259 }
19260 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
19261 Value *Vec = EmitScalarExpr(E->getArg(0));
19262 Function *Callee =
19263 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
19264 return Builder.CreateCall(Callee, {Vec});
19265 }
19266 case WebAssembly::BI__builtin_wasm_any_true_v128:
19267 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
19268 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
19269 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
19270 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
19271 unsigned IntNo;
19272 switch (BuiltinID) {
19273 case WebAssembly::BI__builtin_wasm_any_true_v128:
19274 IntNo = Intrinsic::wasm_anytrue;
19275 break;
19276 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
19277 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
19278 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
19279 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
19280 IntNo = Intrinsic::wasm_alltrue;
19281 break;
19282 default:
19283 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19283)
;
19284 }
19285 Value *Vec = EmitScalarExpr(E->getArg(0));
19286 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
19287 return Builder.CreateCall(Callee, {Vec});
19288 }
19289 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
19290 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
19291 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
19292 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
19293 Value *Vec = EmitScalarExpr(E->getArg(0));
19294 Function *Callee =
19295 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
19296 return Builder.CreateCall(Callee, {Vec});
19297 }
19298 case WebAssembly::BI__builtin_wasm_abs_f32x4:
19299 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
19300 Value *Vec = EmitScalarExpr(E->getArg(0));
19301 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
19302 return Builder.CreateCall(Callee, {Vec});
19303 }
19304 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
19305 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
19306 Value *Vec = EmitScalarExpr(E->getArg(0));
19307 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
19308 return Builder.CreateCall(Callee, {Vec});
19309 }
19310 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
19311 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
19312 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
19313 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
19314 Value *Low = EmitScalarExpr(E->getArg(0));
19315 Value *High = EmitScalarExpr(E->getArg(1));
19316 unsigned IntNo;
19317 switch (BuiltinID) {
19318 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
19319 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
19320 IntNo = Intrinsic::wasm_narrow_signed;
19321 break;
19322 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
19323 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
19324 IntNo = Intrinsic::wasm_narrow_unsigned;
19325 break;
19326 default:
19327 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19327)
;
19328 }
19329 Function *Callee =
19330 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
19331 return Builder.CreateCall(Callee, {Low, High});
19332 }
19333 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
19334 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
19335 Value *Vec = EmitScalarExpr(E->getArg(0));
19336 unsigned IntNo;
19337 switch (BuiltinID) {
19338 case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
19339 IntNo = Intrinsic::fptosi_sat;
19340 break;
19341 case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
19342 IntNo = Intrinsic::fptoui_sat;
19343 break;
19344 default:
19345 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19345)
;
19346 }
19347 llvm::Type *SrcT = Vec->getType();
19348 llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
19349 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
19350 Value *Trunc = Builder.CreateCall(Callee, Vec);
19351 Value *Splat = Constant::getNullValue(TruncT);
19352 return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
19353 }
19354 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
19355 Value *Ops[18];
19356 size_t OpIdx = 0;
19357 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
19358 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
19359 while (OpIdx < 18) {
19360 std::optional<llvm::APSInt> LaneConst =
19361 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
19362 assert(LaneConst && "Constant arg isn't actually constant?")(static_cast <bool> (LaneConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("LaneConst && \"Constant arg isn't actually constant?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 19362, __extension__ __PRETTY_FUNCTION__
))
;
19363 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
19364 }
19365 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
19366 return Builder.CreateCall(Callee, Ops);
19367 }
19368 case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
19369 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
19370 case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
19371 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: {
19372 Value *A = EmitScalarExpr(E->getArg(0));
19373 Value *B = EmitScalarExpr(E->getArg(1));
19374 Value *C = EmitScalarExpr(E->getArg(2));
19375 unsigned IntNo;
19376 switch (BuiltinID) {
19377 case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
19378 case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
19379 IntNo = Intrinsic::wasm_relaxed_madd;
19380 break;
19381 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
19382 case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2:
19383 IntNo = Intrinsic::wasm_relaxed_nmadd;
19384 break;
19385 default:
19386 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19386)
;
19387 }
19388 Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
19389 return Builder.CreateCall(Callee, {A, B, C});
19390 }
19391 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16:
19392 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8:
19393 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4:
19394 case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: {
19395 Value *A = EmitScalarExpr(E->getArg(0));
19396 Value *B = EmitScalarExpr(E->getArg(1));
19397 Value *C = EmitScalarExpr(E->getArg(2));
19398 Function *Callee =
19399 CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType());
19400 return Builder.CreateCall(Callee, {A, B, C});
19401 }
19402 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
19403 Value *Src = EmitScalarExpr(E->getArg(0));
19404 Value *Indices = EmitScalarExpr(E->getArg(1));
19405 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
19406 return Builder.CreateCall(Callee, {Src, Indices});
19407 }
19408 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
19409 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
19410 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
19411 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
19412 Value *LHS = EmitScalarExpr(E->getArg(0));
19413 Value *RHS = EmitScalarExpr(E->getArg(1));
19414 unsigned IntNo;
19415 switch (BuiltinID) {
19416 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
19417 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
19418 IntNo = Intrinsic::wasm_relaxed_min;
19419 break;
19420 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
19421 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
19422 IntNo = Intrinsic::wasm_relaxed_max;
19423 break;
19424 default:
19425 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19425)
;
19426 }
19427 Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
19428 return Builder.CreateCall(Callee, {LHS, RHS});
19429 }
19430 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
19431 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
19432 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
19433 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
19434 Value *Vec = EmitScalarExpr(E->getArg(0));
19435 unsigned IntNo;
19436 switch (BuiltinID) {
19437 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
19438 IntNo = Intrinsic::wasm_relaxed_trunc_signed;
19439 break;
19440 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
19441 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
19442 break;
19443 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
19444 IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
19445 break;
19446 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
19447 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
19448 break;
19449 default:
19450 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19450)
;
19451 }
19452 Function *Callee = CGM.getIntrinsic(IntNo);
19453 return Builder.CreateCall(Callee, {Vec});
19454 }
19455 case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
19456 Value *LHS = EmitScalarExpr(E->getArg(0));
19457 Value *RHS = EmitScalarExpr(E->getArg(1));
19458 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
19459 return Builder.CreateCall(Callee, {LHS, RHS});
19460 }
19461 case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: {
19462 Value *LHS = EmitScalarExpr(E->getArg(0));
19463 Value *RHS = EmitScalarExpr(E->getArg(1));
19464 Function *Callee =
19465 CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed);
19466 return Builder.CreateCall(Callee, {LHS, RHS});
19467 }
19468 case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: {
19469 Value *LHS = EmitScalarExpr(E->getArg(0));
19470 Value *RHS = EmitScalarExpr(E->getArg(1));
19471 Value *Acc = EmitScalarExpr(E->getArg(2));
19472 Function *Callee =
19473 CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed);
19474 return Builder.CreateCall(Callee, {LHS, RHS, Acc});
19475 }
19476 case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: {
19477 Value *LHS = EmitScalarExpr(E->getArg(0));
19478 Value *RHS = EmitScalarExpr(E->getArg(1));
19479 Value *Acc = EmitScalarExpr(E->getArg(2));
19480 Function *Callee =
19481 CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32);
19482 return Builder.CreateCall(Callee, {LHS, RHS, Acc});
19483 }
19484 default:
19485 return nullptr;
19486 }
19487}
19488
19489static std::pair<Intrinsic::ID, unsigned>
19490getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
19491 struct Info {
19492 unsigned BuiltinID;
19493 Intrinsic::ID IntrinsicID;
19494 unsigned VecLen;
19495 };
19496 static Info Infos[] = {
19497#define CUSTOM_BUILTIN_MAPPING(x,s) \
19498 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
19499 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
19500 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
19501 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
19502 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
19503 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
19504 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
19505 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
19506 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
19507 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
19508 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
19509 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
19510 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
19511 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
19512 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
19513 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
19514 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
19515 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
19516 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
19517 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
19518 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
19519 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
19520 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
19521 // Legacy builtins that take a vector in place of a vector predicate.
19522 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
19523 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
19524 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
19525 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
19526 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
19527 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
19528 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
19529 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
19530#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
19531#undef CUSTOM_BUILTIN_MAPPING
19532 };
19533
19534 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
19535 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
19536 (void)SortOnce;
19537
19538 const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo);
19539 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
19540 return {Intrinsic::not_intrinsic, 0};
19541
19542 return {F->IntrinsicID, F->VecLen};
19543}
19544
19545Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
19546 const CallExpr *E) {
19547 Intrinsic::ID ID;
19548 unsigned VecLen;
19549 std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
19550
19551 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
19552 // The base pointer is passed by address, so it needs to be loaded.
19553 Address A = EmitPointerWithAlignment(E->getArg(0));
19554 Address BP = Address(Builder.CreateBitCast(
19555 A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
19556 llvm::Value *Base = Builder.CreateLoad(BP);
19557 // The treatment of both loads and stores is the same: the arguments for
19558 // the builtin are the same as the arguments for the intrinsic.
19559 // Load:
19560 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
19561 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
19562 // Store:
19563 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
19564 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
19565 SmallVector<llvm::Value*,5> Ops = { Base };
19566 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
19567 Ops.push_back(EmitScalarExpr(E->getArg(i)));
19568
19569 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
19570 // The load intrinsics generate two results (Value, NewBase), stores
19571 // generate one (NewBase). The new base address needs to be stored.
19572 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
19573 : Result;
19574 llvm::Value *LV = Builder.CreateBitCast(
19575 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
19576 Address Dest = EmitPointerWithAlignment(E->getArg(0));
19577 llvm::Value *RetVal =
19578 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
19579 if (IsLoad)
19580 RetVal = Builder.CreateExtractValue(Result, 0);
19581 return RetVal;
19582 };
19583
19584 // Handle the conversion of bit-reverse load intrinsics to bit code.
19585 // The intrinsic call after this function only reads from memory and the
19586 // write to memory is dealt by the store instruction.
19587 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
19588 // The intrinsic generates one result, which is the new value for the base
19589 // pointer. It needs to be returned. The result of the load instruction is
19590 // passed to intrinsic by address, so the value needs to be stored.
19591 llvm::Value *BaseAddress =
19592 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
19593
19594 // Expressions like &(*pt++) will be incremented per evaluation.
19595 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
19596 // per call.
19597 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
19598 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
19599 Int8Ty, DestAddr.getAlignment());
19600 llvm::Value *DestAddress = DestAddr.getPointer();
19601
19602 // Operands are Base, Dest, Modifier.
19603 // The intrinsic format in LLVM IR is defined as
19604 // { ValueType, i8* } (i8*, i32).
19605 llvm::Value *Result = Builder.CreateCall(
19606 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
19607
19608 // The value needs to be stored as the variable is passed by reference.
19609 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
19610
19611 // The store needs to be truncated to fit the destination type.
19612 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
19613 // to be handled with stores of respective destination type.
19614 DestVal = Builder.CreateTrunc(DestVal, DestTy);
19615
19616 llvm::Value *DestForStore =
19617 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
19618 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
19619 // The updated value of the base pointer is returned.
19620 return Builder.CreateExtractValue(Result, 1);
19621 };
19622
19623 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
19624 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
19625 : Intrinsic::hexagon_V6_vandvrt;
19626 return Builder.CreateCall(CGM.getIntrinsic(ID),
19627 {Vec, Builder.getInt32(-1)});
19628 };
19629 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
19630 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
19631 : Intrinsic::hexagon_V6_vandqrt;
19632 return Builder.CreateCall(CGM.getIntrinsic(ID),
19633 {Pred, Builder.getInt32(-1)});
19634 };
19635
19636 switch (BuiltinID) {
19637 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
19638 // and the corresponding C/C++ builtins use loads/stores to update
19639 // the predicate.
19640 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
19641 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
19642 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
19643 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
19644 // Get the type from the 0-th argument.
19645 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
19646 Address PredAddr = Builder.CreateElementBitCast(
19647 EmitPointerWithAlignment(E->getArg(2)), VecType);
19648 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
19649 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
19650 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
19651
19652 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
19653 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
19654 PredAddr.getAlignment());
19655 return Builder.CreateExtractValue(Result, 0);
19656 }
19657 // These are identical to the builtins above, except they don't consume
19658 // input carry, only generate carry-out. Since they still produce two
19659 // outputs, generate the store of the predicate, but no load.
19660 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo:
19661 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B:
19662 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo:
19663 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: {
19664 // Get the type from the 0-th argument.
19665 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
19666 Address PredAddr = Builder.CreateElementBitCast(
19667 EmitPointerWithAlignment(E->getArg(2)), VecType);
19668 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
19669 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
19670
19671 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
19672 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
19673 PredAddr.getAlignment());
19674 return Builder.CreateExtractValue(Result, 0);
19675 }
19676
19677 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
19678 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
19679 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
19680 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
19681 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
19682 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
19683 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
19684 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
19685 SmallVector<llvm::Value*,4> Ops;
19686 const Expr *PredOp = E->getArg(0);
19687 // There will be an implicit cast to a boolean vector. Strip it.
19688 if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
19689 if (Cast->getCastKind() == CK_BitCast)
19690 PredOp = Cast->getSubExpr();
19691 Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
19692 }
19693 for (int i = 1, e = E->getNumArgs(); i != e; ++i)
19694 Ops.push_back(EmitScalarExpr(E->getArg(i)));
19695 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
19696 }
19697
19698 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
19699 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
19700 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
19701 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
19702 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
19703 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
19704 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
19705 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
19706 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
19707 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
19708 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
19709 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
19710 return MakeCircOp(ID, /*IsLoad=*/true);
19711 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
19712 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
19713 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
19714 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
19715 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
19716 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
19717 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
19718 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
19719 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
19720 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
19721 return MakeCircOp(ID, /*IsLoad=*/false);
19722 case Hexagon::BI__builtin_brev_ldub:
19723 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
19724 case Hexagon::BI__builtin_brev_ldb:
19725 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
19726 case Hexagon::BI__builtin_brev_lduh:
19727 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
19728 case Hexagon::BI__builtin_brev_ldh:
19729 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
19730 case Hexagon::BI__builtin_brev_ldw:
19731 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
19732 case Hexagon::BI__builtin_brev_ldd:
19733 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
19734 } // switch
19735
19736 return nullptr;
19737}
19738
19739Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
19740 const CallExpr *E,
19741 ReturnValueSlot ReturnValue) {
19742 SmallVector<Value *, 4> Ops;
19743 llvm::Type *ResultType = ConvertType(E->getType());
19744
19745 // Find out if any arguments are required to be integer constant expressions.
19746 unsigned ICEArguments = 0;
19747 ASTContext::GetBuiltinTypeError Error;
19748 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
19749 if (Error == ASTContext::GE_Missing_type) {
19750 // Vector intrinsics don't have a type string.
19751 assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&(static_cast <bool> (BuiltinID >= clang::RISCV::FirstRVVBuiltin
&& BuiltinID <= clang::RISCV::LastRVVBuiltin) ? void
(0) : __assert_fail ("BuiltinID >= clang::RISCV::FirstRVVBuiltin && BuiltinID <= clang::RISCV::LastRVVBuiltin"
, "clang/lib/CodeGen/CGBuiltin.cpp", 19752, __extension__ __PRETTY_FUNCTION__
))
19752 BuiltinID <= clang::RISCV::LastRVVBuiltin)(static_cast <bool> (BuiltinID >= clang::RISCV::FirstRVVBuiltin
&& BuiltinID <= clang::RISCV::LastRVVBuiltin) ? void
(0) : __assert_fail ("BuiltinID >= clang::RISCV::FirstRVVBuiltin && BuiltinID <= clang::RISCV::LastRVVBuiltin"
, "clang/lib/CodeGen/CGBuiltin.cpp", 19752, __extension__ __PRETTY_FUNCTION__
))
;
19753 ICEArguments = 0;
19754 if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
19755 BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
19756 ICEArguments = 1 << 1;
19757 } else {
19758 assert(Error == ASTContext::GE_None && "Unexpected error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Unexpected error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Unexpected error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 19758, __extension__ __PRETTY_FUNCTION__
))
;
19759 }
19760
19761 if (BuiltinID == RISCV::BI__builtin_riscv_ntl_load)
19762 ICEArguments |= (1 << 1);
19763 if (BuiltinID == RISCV::BI__builtin_riscv_ntl_store)
19764 ICEArguments |= (1 << 2);
19765
19766 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
19767 // If this is a normal argument, just emit it as a scalar.
19768 if ((ICEArguments & (1 << i)) == 0) {
19769 Ops.push_back(EmitScalarExpr(E->getArg(i)));
19770 continue;
19771 }
19772
19773 // If this is required to be a constant, constant fold it so that we know
19774 // that the generated intrinsic gets a ConstantInt.
19775 Ops.push_back(llvm::ConstantInt::get(
19776 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
19777 }
19778
19779 Intrinsic::ID ID = Intrinsic::not_intrinsic;
19780 unsigned NF = 1;
19781 // The 0th bit simulates the `vta` of RVV
19782 // The 1st bit simulates the `vma` of RVV
19783 constexpr unsigned RVV_VTA = 0x1;
19784 constexpr unsigned RVV_VMA = 0x2;
19785 int PolicyAttrs = 0;
19786 bool IsMasked = false;
19787
19788 // Required for overloaded intrinsics.
19789 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
19790 switch (BuiltinID) {
19791 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19791)
;
19792 case RISCV::BI__builtin_riscv_orc_b_32:
19793 case RISCV::BI__builtin_riscv_orc_b_64:
19794 case RISCV::BI__builtin_riscv_clz_32:
19795 case RISCV::BI__builtin_riscv_clz_64:
19796 case RISCV::BI__builtin_riscv_ctz_32:
19797 case RISCV::BI__builtin_riscv_ctz_64:
19798 case RISCV::BI__builtin_riscv_clmul:
19799 case RISCV::BI__builtin_riscv_clmulh:
19800 case RISCV::BI__builtin_riscv_clmulr:
19801 case RISCV::BI__builtin_riscv_xperm4:
19802 case RISCV::BI__builtin_riscv_xperm8:
19803 case RISCV::BI__builtin_riscv_brev8:
19804 case RISCV::BI__builtin_riscv_zip_32:
19805 case RISCV::BI__builtin_riscv_unzip_32: {
19806 switch (BuiltinID) {
19807 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 19807)
;
19808 // Zbb
19809 case RISCV::BI__builtin_riscv_orc_b_32:
19810 case RISCV::BI__builtin_riscv_orc_b_64:
19811 ID = Intrinsic::riscv_orc_b;
19812 break;
19813 case RISCV::BI__builtin_riscv_clz_32:
19814 case RISCV::BI__builtin_riscv_clz_64: {
19815 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
19816 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19817 }
19818 case RISCV::BI__builtin_riscv_ctz_32:
19819 case RISCV::BI__builtin_riscv_ctz_64: {
19820 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
19821 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19822 }
19823
19824 // Zbc
19825 case RISCV::BI__builtin_riscv_clmul:
19826 ID = Intrinsic::riscv_clmul;
19827 break;
19828 case RISCV::BI__builtin_riscv_clmulh:
19829 ID = Intrinsic::riscv_clmulh;
19830 break;
19831 case RISCV::BI__builtin_riscv_clmulr:
19832 ID = Intrinsic::riscv_clmulr;
19833 break;
19834
19835 // Zbkx
19836 case RISCV::BI__builtin_riscv_xperm8:
19837 ID = Intrinsic::riscv_xperm8;
19838 break;
19839 case RISCV::BI__builtin_riscv_xperm4:
19840 ID = Intrinsic::riscv_xperm4;
19841 break;
19842
19843 // Zbkb
19844 case RISCV::BI__builtin_riscv_brev8:
19845 ID = Intrinsic::riscv_brev8;
19846 break;
19847 case RISCV::BI__builtin_riscv_zip_32:
19848 ID = Intrinsic::riscv_zip;
19849 break;
19850 case RISCV::BI__builtin_riscv_unzip_32:
19851 ID = Intrinsic::riscv_unzip;
19852 break;
19853 }
19854
19855 IntrinsicTypes = {ResultType};
19856 break;
19857 }
19858
19859 // Zk builtins
19860
19861 // Zknd
19862 case RISCV::BI__builtin_riscv_aes32dsi_32:
19863 ID = Intrinsic::riscv_aes32dsi;
19864 break;
19865 case RISCV::BI__builtin_riscv_aes32dsmi_32:
19866 ID = Intrinsic::riscv_aes32dsmi;
19867 break;
19868 case RISCV::BI__builtin_riscv_aes64ds_64:
19869 ID = Intrinsic::riscv_aes64ds;
19870 break;
19871 case RISCV::BI__builtin_riscv_aes64dsm_64:
19872 ID = Intrinsic::riscv_aes64dsm;
19873 break;
19874 case RISCV::BI__builtin_riscv_aes64im_64:
19875 ID = Intrinsic::riscv_aes64im;
19876 break;
19877
19878 // Zkne
19879 case RISCV::BI__builtin_riscv_aes32esi_32:
19880 ID = Intrinsic::riscv_aes32esi;
19881 break;
19882 case RISCV::BI__builtin_riscv_aes32esmi_32:
19883 ID = Intrinsic::riscv_aes32esmi;
19884 break;
19885 case RISCV::BI__builtin_riscv_aes64es_64:
19886 ID = Intrinsic::riscv_aes64es;
19887 break;
19888 case RISCV::BI__builtin_riscv_aes64esm_64:
19889 ID = Intrinsic::riscv_aes64esm;
19890 break;
19891
19892 // Zknd & Zkne
19893 case RISCV::BI__builtin_riscv_aes64ks1i_64:
19894 ID = Intrinsic::riscv_aes64ks1i;
19895 break;
19896 case RISCV::BI__builtin_riscv_aes64ks2_64:
19897 ID = Intrinsic::riscv_aes64ks2;
19898 break;
19899
19900 // Zknh
19901 case RISCV::BI__builtin_riscv_sha256sig0:
19902 ID = Intrinsic::riscv_sha256sig0;
19903 IntrinsicTypes = {ResultType};
19904 break;
19905 case RISCV::BI__builtin_riscv_sha256sig1:
19906 ID = Intrinsic::riscv_sha256sig1;
19907 IntrinsicTypes = {ResultType};
19908 break;
19909 case RISCV::BI__builtin_riscv_sha256sum0:
19910 ID = Intrinsic::riscv_sha256sum0;
19911 IntrinsicTypes = {ResultType};
19912 break;
19913 case RISCV::BI__builtin_riscv_sha256sum1:
19914 ID = Intrinsic::riscv_sha256sum1;
19915 IntrinsicTypes = {ResultType};
19916 break;
19917 case RISCV::BI__builtin_riscv_sha512sig0_64:
19918 ID = Intrinsic::riscv_sha512sig0;
19919 break;
19920 case RISCV::BI__builtin_riscv_sha512sig0h_32:
19921 ID = Intrinsic::riscv_sha512sig0h;
19922 break;
19923 case RISCV::BI__builtin_riscv_sha512sig0l_32:
19924 ID = Intrinsic::riscv_sha512sig0l;
19925 break;
19926 case RISCV::BI__builtin_riscv_sha512sig1_64:
19927 ID = Intrinsic::riscv_sha512sig1;
19928 break;
19929 case RISCV::BI__builtin_riscv_sha512sig1h_32:
19930 ID = Intrinsic::riscv_sha512sig1h;
19931 break;
19932 case RISCV::BI__builtin_riscv_sha512sig1l_32:
19933 ID = Intrinsic::riscv_sha512sig1l;
19934 break;
19935 case RISCV::BI__builtin_riscv_sha512sum0_64:
19936 ID = Intrinsic::riscv_sha512sum0;
19937 break;
19938 case RISCV::BI__builtin_riscv_sha512sum0r_32:
19939 ID = Intrinsic::riscv_sha512sum0r;
19940 break;
19941 case RISCV::BI__builtin_riscv_sha512sum1_64:
19942 ID = Intrinsic::riscv_sha512sum1;
19943 break;
19944 case RISCV::BI__builtin_riscv_sha512sum1r_32:
19945 ID = Intrinsic::riscv_sha512sum1r;
19946 break;
19947
19948 // Zksed
19949 case RISCV::BI__builtin_riscv_sm4ks:
19950 ID = Intrinsic::riscv_sm4ks;
19951 IntrinsicTypes = {ResultType};
19952 break;
19953 case RISCV::BI__builtin_riscv_sm4ed:
19954 ID = Intrinsic::riscv_sm4ed;
19955 IntrinsicTypes = {ResultType};
19956 break;
19957
19958 // Zksh
19959 case RISCV::BI__builtin_riscv_sm3p0:
19960 ID = Intrinsic::riscv_sm3p0;
19961 IntrinsicTypes = {ResultType};
19962 break;
19963 case RISCV::BI__builtin_riscv_sm3p1:
19964 ID = Intrinsic::riscv_sm3p1;
19965 IntrinsicTypes = {ResultType};
19966 break;
19967
19968 // Zihintntl
19969 case RISCV::BI__builtin_riscv_ntl_load: {
19970 llvm::Type *ResTy = ConvertType(E->getType());
19971 ConstantInt *Mode = cast<ConstantInt>(Ops[1]);
19972
19973 llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
19974 getLLVMContext(),
19975 llvm::ConstantAsMetadata::get(Builder.getInt32(Mode->getZExtValue())));
19976 llvm::MDNode *NontemporalNode = llvm::MDNode::get(
19977 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
19978
19979 int Width;
19980 if(ResTy->isScalableTy()) {
19981 const ScalableVectorType *SVTy = cast<ScalableVectorType>(ResTy);
19982 llvm::Type *ScalarTy = ResTy->getScalarType();
19983 Width = ScalarTy->getPrimitiveSizeInBits() *
19984 SVTy->getElementCount().getKnownMinValue();
19985 } else
19986 Width = ResTy->getPrimitiveSizeInBits();
19987 LoadInst *Load = Builder.CreateLoad(
19988 Address(Ops[0], ResTy, CharUnits::fromQuantity(Width / 8)));
19989
19990 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"),
19991 NontemporalNode);
19992 Load->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
19993 RISCVDomainNode);
19994
19995 return Load;
19996 }
19997 case RISCV::BI__builtin_riscv_ntl_store: {
19998 ConstantInt *Mode = cast<ConstantInt>(Ops[2]);
19999
20000 llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
20001 getLLVMContext(),
20002 llvm::ConstantAsMetadata::get(Builder.getInt32(Mode->getZExtValue())));
20003 llvm::MDNode *NontemporalNode = llvm::MDNode::get(
20004 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
20005
20006 Value *BC = Builder.CreateBitCast(
20007 Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType()), "cast");
20008
20009 StoreInst *Store = Builder.CreateDefaultAlignedStore(Ops[1], BC);
20010 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"),
20011 NontemporalNode);
20012 Store->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
20013 RISCVDomainNode);
20014
20015 return Store;
20016 }
20017
20018 // Vector builtins are handled from here.
20019#include "clang/Basic/riscv_vector_builtin_cg.inc"
20020 // SiFive Vector builtins are handled from here.
20021#include "clang/Basic/riscv_sifive_vector_builtin_cg.inc"
20022 }
20023
20024 assert(ID != Intrinsic::not_intrinsic)(static_cast <bool> (ID != Intrinsic::not_intrinsic) ? void
(0) : __assert_fail ("ID != Intrinsic::not_intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 20024, __extension__ __PRETTY_FUNCTION__))
;
20025
20026 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
20027 return Builder.CreateCall(F, Ops, "");
20028}
20029
20030Value *CodeGenFunction::EmitLoongArchBuiltinExpr(unsigned BuiltinID,
20031 const CallExpr *E) {
20032 SmallVector<Value *, 4> Ops;
20033
20034 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
20035 Ops.push_back(EmitScalarExpr(E->getArg(i)));
20036
20037 Intrinsic::ID ID = Intrinsic::not_intrinsic;
20038
20039 switch (BuiltinID) {
20040 default:
20041 llvm_unreachable("unexpected builtin ID.")::llvm::llvm_unreachable_internal("unexpected builtin ID.", "clang/lib/CodeGen/CGBuiltin.cpp"
, 20041)
;
20042 case LoongArch::BI__builtin_loongarch_cacop_d:
20043 ID = Intrinsic::loongarch_cacop_d;
20044 break;
20045 case LoongArch::BI__builtin_loongarch_cacop_w:
20046 ID = Intrinsic::loongarch_cacop_w;
20047 break;
20048 case LoongArch::BI__builtin_loongarch_dbar:
20049 ID = Intrinsic::loongarch_dbar;
20050 break;
20051 case LoongArch::BI__builtin_loongarch_break:
20052 ID = Intrinsic::loongarch_break;
20053 break;
20054 case LoongArch::BI__builtin_loongarch_ibar:
20055 ID = Intrinsic::loongarch_ibar;
20056 break;
20057 case LoongArch::BI__builtin_loongarch_movfcsr2gr:
20058 ID = Intrinsic::loongarch_movfcsr2gr;
20059 break;
20060 case LoongArch::BI__builtin_loongarch_movgr2fcsr:
20061 ID = Intrinsic::loongarch_movgr2fcsr;
20062 break;
20063 case LoongArch::BI__builtin_loongarch_syscall:
20064 ID = Intrinsic::loongarch_syscall;
20065 break;
20066 case LoongArch::BI__builtin_loongarch_crc_w_b_w:
20067 ID = Intrinsic::loongarch_crc_w_b_w;
20068 break;
20069 case LoongArch::BI__builtin_loongarch_crc_w_h_w:
20070 ID = Intrinsic::loongarch_crc_w_h_w;
20071 break;
20072 case LoongArch::BI__builtin_loongarch_crc_w_w_w:
20073 ID = Intrinsic::loongarch_crc_w_w_w;
20074 break;
20075 case LoongArch::BI__builtin_loongarch_crc_w_d_w:
20076 ID = Intrinsic::loongarch_crc_w_d_w;
20077 break;
20078 case LoongArch::BI__builtin_loongarch_crcc_w_b_w:
20079 ID = Intrinsic::loongarch_crcc_w_b_w;
20080 break;
20081 case LoongArch::BI__builtin_loongarch_crcc_w_h_w:
20082 ID = Intrinsic::loongarch_crcc_w_h_w;
20083 break;
20084 case LoongArch::BI__builtin_loongarch_crcc_w_w_w:
20085 ID = Intrinsic::loongarch_crcc_w_w_w;
20086 break;
20087 case LoongArch::BI__builtin_loongarch_crcc_w_d_w:
20088 ID = Intrinsic::loongarch_crcc_w_d_w;
20089 break;
20090 case LoongArch::BI__builtin_loongarch_csrrd_w:
20091 ID = Intrinsic::loongarch_csrrd_w;
20092 break;
20093 case LoongArch::BI__builtin_loongarch_csrwr_w:
20094 ID = Intrinsic::loongarch_csrwr_w;
20095 break;
20096 case LoongArch::BI__builtin_loongarch_csrxchg_w:
20097 ID = Intrinsic::loongarch_csrxchg_w;
20098 break;
20099 case LoongArch::BI__builtin_loongarch_csrrd_d:
20100 ID = Intrinsic::loongarch_csrrd_d;
20101 break;
20102 case LoongArch::BI__builtin_loongarch_csrwr_d:
20103 ID = Intrinsic::loongarch_csrwr_d;
20104 break;
20105 case LoongArch::BI__builtin_loongarch_csrxchg_d:
20106 ID = Intrinsic::loongarch_csrxchg_d;
20107 break;
20108 case LoongArch::BI__builtin_loongarch_iocsrrd_b:
20109 ID = Intrinsic::loongarch_iocsrrd_b;
20110 break;
20111 case LoongArch::BI__builtin_loongarch_iocsrrd_h:
20112 ID = Intrinsic::loongarch_iocsrrd_h;
20113 break;
20114 case LoongArch::BI__builtin_loongarch_iocsrrd_w:
20115 ID = Intrinsic::loongarch_iocsrrd_w;
20116 break;
20117 case LoongArch::BI__builtin_loongarch_iocsrrd_d:
20118 ID = Intrinsic::loongarch_iocsrrd_d;
20119 break;
20120 case LoongArch::BI__builtin_loongarch_iocsrwr_b:
20121 ID = Intrinsic::loongarch_iocsrwr_b;
20122 break;
20123 case LoongArch::BI__builtin_loongarch_iocsrwr_h:
20124 ID = Intrinsic::loongarch_iocsrwr_h;
20125 break;
20126 case LoongArch::BI__builtin_loongarch_iocsrwr_w:
20127 ID = Intrinsic::loongarch_iocsrwr_w;
20128 break;
20129 case LoongArch::BI__builtin_loongarch_iocsrwr_d:
20130 ID = Intrinsic::loongarch_iocsrwr_d;
20131 break;
20132 case LoongArch::BI__builtin_loongarch_cpucfg:
20133 ID = Intrinsic::loongarch_cpucfg;
20134 break;
20135 case LoongArch::BI__builtin_loongarch_asrtle_d:
20136 ID = Intrinsic::loongarch_asrtle_d;
20137 break;
20138 case LoongArch::BI__builtin_loongarch_asrtgt_d:
20139 ID = Intrinsic::loongarch_asrtgt_d;
20140 break;
20141 case LoongArch::BI__builtin_loongarch_lddir_d:
20142 ID = Intrinsic::loongarch_lddir_d;
20143 break;
20144 case LoongArch::BI__builtin_loongarch_ldpte_d:
20145 ID = Intrinsic::loongarch_ldpte_d;
20146 break;
20147 // TODO: Support more Intrinsics.
20148 }
20149
20150 assert(ID != Intrinsic::not_intrinsic)(static_cast <bool> (ID != Intrinsic::not_intrinsic) ? void
(0) : __assert_fail ("ID != Intrinsic::not_intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 20150, __extension__ __PRETTY_FUNCTION__))
;
20151
20152 llvm::Function *F = CGM.getIntrinsic(ID);
20153 return Builder.CreateCall(F, Ops);
20154}