Bug Summary

File:clang/lib/CodeGen/CGCUDANV.cpp
Warning:line 1032, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGCUDANV.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/lib/CodeGen -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-05-202135-9119-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp

/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp

1//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides a class for CUDA code generation targeting the NVIDIA CUDA
10// runtime library.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "clang/AST/Decl.h"
19#include "clang/Basic/Cuda.h"
20#include "clang/CodeGen/CodeGenABITypes.h"
21#include "clang/CodeGen/ConstantInitBuilder.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/ReplaceConstant.h"
26#include "llvm/Support/Format.h"
27
28using namespace clang;
29using namespace CodeGen;
30
31namespace {
32constexpr unsigned CudaFatMagic = 0x466243b1;
33constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
34
35class CGNVCUDARuntime : public CGCUDARuntime {
36
37private:
38 llvm::IntegerType *IntTy, *SizeTy;
39 llvm::Type *VoidTy;
40 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
41
42 /// Convenience reference to LLVM Context
43 llvm::LLVMContext &Context;
44 /// Convenience reference to the current module
45 llvm::Module &TheModule;
46 /// Keeps track of kernel launch stubs and handles emitted in this module
47 struct KernelInfo {
48 llvm::Function *Kernel; // stub function to help launch kernel
49 const Decl *D;
50 };
51 llvm::SmallVector<KernelInfo, 16> EmittedKernels;
52 // Map a device stub function to a symbol for identifying kernel in host code.
53 // For CUDA, the symbol for identifying the kernel is the same as the device
54 // stub function. For HIP, they are different.
55 llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
56 // Map a kernel handle to the kernel stub.
57 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
58 struct VarInfo {
59 llvm::GlobalVariable *Var;
60 const VarDecl *D;
61 DeviceVarFlags Flags;
62 };
63 llvm::SmallVector<VarInfo, 16> DeviceVars;
64 /// Keeps track of variable containing handle of GPU binary. Populated by
65 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
66 /// ModuleDtorFunction()
67 llvm::GlobalVariable *GpuBinaryHandle = nullptr;
68 /// Whether we generate relocatable device code.
69 bool RelocatableDeviceCode;
70 /// Mangle context for device.
71 std::unique_ptr<MangleContext> DeviceMC;
72
73 llvm::FunctionCallee getSetupArgumentFn() const;
74 llvm::FunctionCallee getLaunchFn() const;
75
76 llvm::FunctionType *getRegisterGlobalsFnTy() const;
77 llvm::FunctionType *getCallbackFnTy() const;
78 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
79 std::string addPrefixToName(StringRef FuncName) const;
80 std::string addUnderscoredPrefixToName(StringRef FuncName) const;
81
82 /// Creates a function to register all kernel stubs generated in this module.
83 llvm::Function *makeRegisterGlobalsFn();
84
85 /// Helper function that generates a constant string and returns a pointer to
86 /// the start of the string. The result of this function can be used anywhere
87 /// where the C code specifies const char*.
88 llvm::Constant *makeConstantString(const std::string &Str,
89 const std::string &Name = "",
90 const std::string &SectionName = "",
91 unsigned Alignment = 0) {
92 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
93 llvm::ConstantInt::get(SizeTy, 0)};
94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
95 llvm::GlobalVariable *GV =
96 cast<llvm::GlobalVariable>(ConstStr.getPointer());
97 if (!SectionName.empty()) {
98 GV->setSection(SectionName);
99 // Mark the address as used which make sure that this section isn't
100 // merged and we will really have it in the object file.
101 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
102 }
103 if (Alignment)
104 GV->setAlignment(llvm::Align(Alignment));
105
106 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
107 ConstStr.getPointer(), Zeros);
108 }
109
110 /// Helper function that generates an empty dummy function returning void.
111 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
112 assert(FnTy->getReturnType()->isVoidTy() &&((FnTy->getReturnType()->isVoidTy() && "Can only generate dummy functions returning void!"
) ? static_cast<void> (0) : __assert_fail ("FnTy->getReturnType()->isVoidTy() && \"Can only generate dummy functions returning void!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 113, __PRETTY_FUNCTION__))
113 "Can only generate dummy functions returning void!")((FnTy->getReturnType()->isVoidTy() && "Can only generate dummy functions returning void!"
) ? static_cast<void> (0) : __assert_fail ("FnTy->getReturnType()->isVoidTy() && \"Can only generate dummy functions returning void!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 113, __PRETTY_FUNCTION__))
;
114 llvm::Function *DummyFunc = llvm::Function::Create(
115 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
116
117 llvm::BasicBlock *DummyBlock =
118 llvm::BasicBlock::Create(Context, "", DummyFunc);
119 CGBuilderTy FuncBuilder(CGM, Context);
120 FuncBuilder.SetInsertPoint(DummyBlock);
121 FuncBuilder.CreateRetVoid();
122
123 return DummyFunc;
124 }
125
126 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
127 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
128 std::string getDeviceSideName(const NamedDecl *ND) override;
129
130 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
131 bool Extern, bool Constant) {
132 DeviceVars.push_back({&Var,
133 VD,
134 {DeviceVarFlags::Variable, Extern, Constant,
135 VD->hasAttr<HIPManagedAttr>(),
136 /*Normalized*/ false, 0}});
137 }
138 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
139 bool Extern, int Type) {
140 DeviceVars.push_back({&Var,
141 VD,
142 {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
143 /*Managed*/ false,
144 /*Normalized*/ false, Type}});
145 }
146 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
147 bool Extern, int Type, bool Normalized) {
148 DeviceVars.push_back({&Var,
149 VD,
150 {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
151 /*Managed*/ false, Normalized, Type}});
152 }
153
154 /// Creates module constructor function
155 llvm::Function *makeModuleCtorFunction();
156 /// Creates module destructor function
157 llvm::Function *makeModuleDtorFunction();
158 /// Transform managed variables for device compilation.
159 void transformManagedVars();
160
161public:
162 CGNVCUDARuntime(CodeGenModule &CGM);
163
164 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
165 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
166 auto Loc = KernelStubs.find(Handle);
167 assert(Loc != KernelStubs.end())((Loc != KernelStubs.end()) ? static_cast<void> (0) : __assert_fail
("Loc != KernelStubs.end()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 167, __PRETTY_FUNCTION__))
;
168 return Loc->second;
169 }
170 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
171 void handleVarRegistration(const VarDecl *VD,
172 llvm::GlobalVariable &Var) override;
173 void
174 internalizeDeviceSideVar(const VarDecl *D,
175 llvm::GlobalValue::LinkageTypes &Linkage) override;
176
177 llvm::Function *finalizeModule() override;
178};
179
180}
181
182std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
183 if (CGM.getLangOpts().HIP)
184 return ((Twine("hip") + Twine(FuncName)).str());
185 return ((Twine("cuda") + Twine(FuncName)).str());
186}
187std::string
188CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
189 if (CGM.getLangOpts().HIP)
190 return ((Twine("__hip") + Twine(FuncName)).str());
191 return ((Twine("__cuda") + Twine(FuncName)).str());
192}
193
194CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
195 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
196 TheModule(CGM.getModule()),
197 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
198 DeviceMC(CGM.getContext().createMangleContext(
199 CGM.getContext().getAuxTargetInfo())) {
200 CodeGen::CodeGenTypes &Types = CGM.getTypes();
201 ASTContext &Ctx = CGM.getContext();
202
203 IntTy = CGM.IntTy;
204 SizeTy = CGM.SizeTy;
205 VoidTy = CGM.VoidTy;
206
207 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
208 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
209 VoidPtrPtrTy = VoidPtrTy->getPointerTo();
210 if (CGM.getContext().getAuxTargetInfo()) {
211 // If the host and device have different C++ ABIs, mark it as the device
212 // mangle context so that the mangling needs to retrieve the additonal
213 // device lambda mangling number instead of the regular host one.
214 DeviceMC->setDeviceMangleContext(
215 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
216 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily());
217 }
218}
219
220llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
221 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
222 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
223 return CGM.CreateRuntimeFunction(
224 llvm::FunctionType::get(IntTy, Params, false),
225 addPrefixToName("SetupArgument"));
226}
227
228llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
229 if (CGM.getLangOpts().HIP) {
230 // hipError_t hipLaunchByPtr(char *);
231 return CGM.CreateRuntimeFunction(
232 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
233 } else {
234 // cudaError_t cudaLaunch(char *);
235 return CGM.CreateRuntimeFunction(
236 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
237 }
238}
239
240llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
241 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
242}
243
244llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
245 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
246}
247
248llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
249 auto CallbackFnTy = getCallbackFnTy();
250 auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
251 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
252 VoidPtrTy, CallbackFnTy->getPointerTo()};
253 return llvm::FunctionType::get(VoidTy, Params, false);
254}
255
256std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
257 GlobalDecl GD;
258 // D could be either a kernel or a variable.
259 if (auto *FD = dyn_cast<FunctionDecl>(ND))
260 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
261 else
262 GD = GlobalDecl(ND);
263 std::string DeviceSideName;
264 MangleContext *MC;
265 if (CGM.getLangOpts().CUDAIsDevice)
266 MC = &CGM.getCXXABI().getMangleContext();
267 else
268 MC = DeviceMC.get();
269 if (MC->shouldMangleDeclName(ND)) {
270 SmallString<256> Buffer;
271 llvm::raw_svector_ostream Out(Buffer);
272 MC->mangleName(GD, Out);
273 DeviceSideName = std::string(Out.str());
274 } else
275 DeviceSideName = std::string(ND->getIdentifier()->getName());
276
277 // Make unique name for device side static file-scope variable for HIP.
278 if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
279 CGM.getLangOpts().GPURelocatableDeviceCode &&
280 !CGM.getLangOpts().CUID.empty()) {
281 SmallString<256> Buffer;
282 llvm::raw_svector_ostream Out(Buffer);
283 Out << DeviceSideName;
284 CGM.printPostfixForExternalizedStaticVar(Out);
285 DeviceSideName = std::string(Out.str());
286 }
287 return DeviceSideName;
288}
289
290void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
291 FunctionArgList &Args) {
292 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
293 if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
294 GV->setLinkage(CGF.CurFn->getLinkage());
295 GV->setInitializer(CGF.CurFn);
296 }
297 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
298 CudaFeature::CUDA_USES_NEW_LAUNCH) ||
299 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
300 emitDeviceStubBodyNew(CGF, Args);
301 else
302 emitDeviceStubBodyLegacy(CGF, Args);
303}
304
305// CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
306// array and kernels are launched using cudaLaunchKernel().
307void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
308 FunctionArgList &Args) {
309 // Build the shadow stack entry at the very start of the function.
310
311 // Calculate amount of space we will need for all arguments. If we have no
312 // args, allocate a single pointer so we still have a valid pointer to the
313 // argument array that we can pass to runtime, even if it will be unused.
314 Address KernelArgs = CGF.CreateTempAlloca(
315 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
316 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
317 // Store pointers to the arguments in a locally allocated launch_args.
318 for (unsigned i = 0; i < Args.size(); ++i) {
319 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
320 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
321 CGF.Builder.CreateDefaultAlignedStore(
322 VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i));
323 }
324
325 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
326
327 // Lookup cudaLaunchKernel/hipLaunchKernel function.
328 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
329 // void **args, size_t sharedMem,
330 // cudaStream_t stream);
331 // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
332 // void **args, size_t sharedMem,
333 // hipStream_t stream);
334 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
335 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
336 auto LaunchKernelName = addPrefixToName("LaunchKernel");
337 IdentifierInfo &cudaLaunchKernelII =
338 CGM.getContext().Idents.get(LaunchKernelName);
339 FunctionDecl *cudaLaunchKernelFD = nullptr;
340 for (const auto &Result : DC->lookup(&cudaLaunchKernelII)) {
341 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
342 cudaLaunchKernelFD = FD;
343 }
344
345 if (cudaLaunchKernelFD == nullptr) {
346 CGM.Error(CGF.CurFuncDecl->getLocation(),
347 "Can't find declaration for " + LaunchKernelName);
348 return;
349 }
350 // Create temporary dim3 grid_dim, block_dim.
351 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
352 QualType Dim3Ty = GridDimParam->getType();
353 Address GridDim =
354 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
355 Address BlockDim =
356 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
357 Address ShmemSize =
358 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
359 Address Stream =
360 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
361 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
362 llvm::FunctionType::get(IntTy,
363 {/*gridDim=*/GridDim.getType(),
364 /*blockDim=*/BlockDim.getType(),
365 /*ShmemSize=*/ShmemSize.getType(),
366 /*Stream=*/Stream.getType()},
367 /*isVarArg=*/false),
368 addUnderscoredPrefixToName("PopCallConfiguration"));
369
370 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
371 {GridDim.getPointer(), BlockDim.getPointer(),
372 ShmemSize.getPointer(), Stream.getPointer()});
373
374 // Emit the call to cudaLaunch
375 llvm::Value *Kernel =
376 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
377 CallArgList LaunchKernelArgs;
378 LaunchKernelArgs.add(RValue::get(Kernel),
379 cudaLaunchKernelFD->getParamDecl(0)->getType());
380 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
381 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
382 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
383 cudaLaunchKernelFD->getParamDecl(3)->getType());
384 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
385 cudaLaunchKernelFD->getParamDecl(4)->getType());
386 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
387 cudaLaunchKernelFD->getParamDecl(5)->getType());
388
389 QualType QT = cudaLaunchKernelFD->getType();
390 QualType CQT = QT.getCanonicalType();
391 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
392 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty);
393
394 const CGFunctionInfo &FI =
395 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
396 llvm::FunctionCallee cudaLaunchKernelFn =
397 CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
398 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
399 LaunchKernelArgs);
400 CGF.EmitBranch(EndBlock);
401
402 CGF.EmitBlock(EndBlock);
403}
404
405void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
406 FunctionArgList &Args) {
407 // Emit a call to cudaSetupArgument for each arg in Args.
408 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
409 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
410 CharUnits Offset = CharUnits::Zero();
411 for (const VarDecl *A : Args) {
412 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
413 Offset = Offset.alignTo(TInfo.Align);
414 llvm::Value *Args[] = {
415 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
416 VoidPtrTy),
417 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
418 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
419 };
420 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
421 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
422 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
423 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
424 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
425 CGF.EmitBlock(NextBlock);
426 Offset += TInfo.Width;
427 }
428
429 // Emit the call to cudaLaunch
430 llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
431 llvm::Value *Arg =
432 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
433 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
434 CGF.EmitBranch(EndBlock);
435
436 CGF.EmitBlock(EndBlock);
437}
438
439// Replace the original variable Var with the address loaded from variable
440// ManagedVar populated by HIP runtime.
441static void replaceManagedVar(llvm::GlobalVariable *Var,
442 llvm::GlobalVariable *ManagedVar) {
443 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
444 for (auto &&VarUse : Var->uses()) {
445 WorkList.push_back({VarUse.getUser()});
446 }
447 while (!WorkList.empty()) {
448 auto &&WorkItem = WorkList.pop_back_val();
449 auto *U = WorkItem.back();
450 if (isa<llvm::ConstantExpr>(U)) {
451 for (auto &&UU : U->uses()) {
452 WorkItem.push_back(UU.getUser());
453 WorkList.push_back(WorkItem);
454 WorkItem.pop_back();
455 }
456 continue;
457 }
458 if (auto *I = dyn_cast<llvm::Instruction>(U)) {
459 llvm::Value *OldV = Var;
460 llvm::Instruction *NewV =
461 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
462 llvm::Align(Var->getAlignment()), I);
463 WorkItem.pop_back();
464 // Replace constant expressions directly or indirectly using the managed
465 // variable with instructions.
466 for (auto &&Op : WorkItem) {
467 auto *CE = cast<llvm::ConstantExpr>(Op);
468 auto *NewInst = llvm::createReplacementInstr(CE, I);
469 NewInst->replaceUsesOfWith(OldV, NewV);
470 OldV = CE;
471 NewV = NewInst;
472 }
473 I->replaceUsesOfWith(OldV, NewV);
474 } else {
475 llvm_unreachable("Invalid use of managed variable")::llvm::llvm_unreachable_internal("Invalid use of managed variable"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 475)
;
476 }
477 }
478}
479
480/// Creates a function that sets up state on the host side for CUDA objects that
481/// have a presence on both the host and device sides. Specifically, registers
482/// the host side of kernel functions and device global variables with the CUDA
483/// runtime.
484/// \code
485/// void __cuda_register_globals(void** GpuBinaryHandle) {
486/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
487/// ...
488/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
489/// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
490/// ...
491/// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
492/// }
493/// \endcode
494llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
495 // No need to register anything
496 if (EmittedKernels.empty() && DeviceVars.empty())
497 return nullptr;
498
499 llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
500 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
501 addUnderscoredPrefixToName("_register_globals"), &TheModule);
502 llvm::BasicBlock *EntryBB =
503 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
504 CGBuilderTy Builder(CGM, Context);
505 Builder.SetInsertPoint(EntryBB);
506
507 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
508 // int, uint3*, uint3*, dim3*, dim3*, int*)
509 llvm::Type *RegisterFuncParams[] = {
510 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
511 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
512 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
513 llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
514 addUnderscoredPrefixToName("RegisterFunction"));
515
516 // Extract GpuBinaryHandle passed as the first argument passed to
517 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
518 // each emitted kernel.
519 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
520 for (auto &&I : EmittedKernels) {
521 llvm::Constant *KernelName =
522 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
523 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
524 llvm::Value *Args[] = {
525 &GpuBinaryHandlePtr,
526 Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
527 KernelName,
528 KernelName,
529 llvm::ConstantInt::get(IntTy, -1),
530 NullPtr,
531 NullPtr,
532 NullPtr,
533 NullPtr,
534 llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
535 Builder.CreateCall(RegisterFunc, Args);
536 }
537
538 llvm::Type *VarSizeTy = IntTy;
539 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
540 if (CGM.getLangOpts().HIP ||
541 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
542 VarSizeTy = SizeTy;
543
544 // void __cudaRegisterVar(void **, char *, char *, const char *,
545 // int, int, int, int)
546 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
547 CharPtrTy, IntTy, VarSizeTy,
548 IntTy, IntTy};
549 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
550 llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
551 addUnderscoredPrefixToName("RegisterVar"));
552 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
553 // size_t, unsigned)
554 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
555 CharPtrTy, VarSizeTy, IntTy};
556 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
557 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
558 addUnderscoredPrefixToName("RegisterManagedVar"));
559 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
560 // const void **, const char *, int, int);
561 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
562 llvm::FunctionType::get(
563 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
564 false),
565 addUnderscoredPrefixToName("RegisterSurface"));
566 // void __cudaRegisterTexture(void **, const struct textureReference *,
567 // const void **, const char *, int, int, int)
568 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
569 llvm::FunctionType::get(
570 VoidTy,
571 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
572 false),
573 addUnderscoredPrefixToName("RegisterTexture"));
574 for (auto &&Info : DeviceVars) {
575 llvm::GlobalVariable *Var = Info.Var;
576 assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&(((!Var->isDeclaration() || Info.Flags.isManaged()) &&
"External variables should not show up here, except HIP managed "
"variables") ? static_cast<void> (0) : __assert_fail (
"(!Var->isDeclaration() || Info.Flags.isManaged()) && \"External variables should not show up here, except HIP managed \" \"variables\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 578, __PRETTY_FUNCTION__))
577 "External variables should not show up here, except HIP managed "(((!Var->isDeclaration() || Info.Flags.isManaged()) &&
"External variables should not show up here, except HIP managed "
"variables") ? static_cast<void> (0) : __assert_fail (
"(!Var->isDeclaration() || Info.Flags.isManaged()) && \"External variables should not show up here, except HIP managed \" \"variables\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 578, __PRETTY_FUNCTION__))
578 "variables")(((!Var->isDeclaration() || Info.Flags.isManaged()) &&
"External variables should not show up here, except HIP managed "
"variables") ? static_cast<void> (0) : __assert_fail (
"(!Var->isDeclaration() || Info.Flags.isManaged()) && \"External variables should not show up here, except HIP managed \" \"variables\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 578, __PRETTY_FUNCTION__))
;
579 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
580 switch (Info.Flags.getKind()) {
581 case DeviceVarFlags::Variable: {
582 uint64_t VarSize =
583 CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
584 if (Info.Flags.isManaged()) {
585 auto ManagedVar = new llvm::GlobalVariable(
586 CGM.getModule(), Var->getType(),
587 /*isConstant=*/false, Var->getLinkage(),
588 /*Init=*/Var->isDeclaration()
589 ? nullptr
590 : llvm::ConstantPointerNull::get(Var->getType()),
591 /*Name=*/"", /*InsertBefore=*/nullptr,
592 llvm::GlobalVariable::NotThreadLocal);
593 ManagedVar->setDSOLocal(Var->isDSOLocal());
594 ManagedVar->setVisibility(Var->getVisibility());
595 ManagedVar->setExternallyInitialized(true);
596 ManagedVar->takeName(Var);
597 Var->setName(Twine(ManagedVar->getName() + ".managed"));
598 replaceManagedVar(Var, ManagedVar);
599 llvm::Value *Args[] = {
600 &GpuBinaryHandlePtr,
601 Builder.CreateBitCast(ManagedVar, VoidPtrTy),
602 Builder.CreateBitCast(Var, VoidPtrTy),
603 VarName,
604 llvm::ConstantInt::get(VarSizeTy, VarSize),
605 llvm::ConstantInt::get(IntTy, Var->getAlignment())};
606 if (!Var->isDeclaration())
607 Builder.CreateCall(RegisterManagedVar, Args);
608 } else {
609 llvm::Value *Args[] = {
610 &GpuBinaryHandlePtr,
611 Builder.CreateBitCast(Var, VoidPtrTy),
612 VarName,
613 VarName,
614 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
615 llvm::ConstantInt::get(VarSizeTy, VarSize),
616 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
617 llvm::ConstantInt::get(IntTy, 0)};
618 Builder.CreateCall(RegisterVar, Args);
619 }
620 break;
621 }
622 case DeviceVarFlags::Surface:
623 Builder.CreateCall(
624 RegisterSurf,
625 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
626 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
627 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
628 break;
629 case DeviceVarFlags::Texture:
630 Builder.CreateCall(
631 RegisterTex,
632 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
633 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
634 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
635 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
636 break;
637 }
638 }
639
640 Builder.CreateRetVoid();
641 return RegisterKernelsFunc;
642}
643
644/// Creates a global constructor function for the module:
645///
646/// For CUDA:
647/// \code
648/// void __cuda_module_ctor(void*) {
649/// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
650/// __cuda_register_globals(Handle);
651/// }
652/// \endcode
653///
654/// For HIP:
655/// \code
656/// void __hip_module_ctor(void*) {
657/// if (__hip_gpubin_handle == 0) {
658/// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
659/// __hip_register_globals(__hip_gpubin_handle);
660/// }
661/// }
662/// \endcode
663llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
664 bool IsHIP = CGM.getLangOpts().HIP;
665 bool IsCUDA = CGM.getLangOpts().CUDA;
666 // No need to generate ctors/dtors if there is no GPU binary.
667 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
668 if (CudaGpuBinaryFileName.empty() && !IsHIP)
669 return nullptr;
670 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
671 DeviceVars.empty())
672 return nullptr;
673
674 // void __{cuda|hip}_register_globals(void* handle);
675 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
676 // We always need a function to pass in as callback. Create a dummy
677 // implementation if we don't need to register anything.
678 if (RelocatableDeviceCode && !RegisterGlobalsFunc)
679 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
680
681 // void ** __{cuda|hip}RegisterFatBinary(void *);
682 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
683 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
684 addUnderscoredPrefixToName("RegisterFatBinary"));
685 // struct { int magic, int version, void * gpu_binary, void * dont_care };
686 llvm::StructType *FatbinWrapperTy =
687 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
688
689 // Register GPU binary with the CUDA runtime, store returned handle in a
690 // global variable and save a reference in GpuBinaryHandle to be cleaned up
691 // in destructor on exit. Then associate all known kernels with the GPU binary
692 // handle so CUDA runtime can figure out what to call on the GPU side.
693 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
694 if (!CudaGpuBinaryFileName.empty()) {
695 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
696 llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
697 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
698 CGM.getDiags().Report(diag::err_cannot_open_file)
699 << CudaGpuBinaryFileName << EC.message();
700 return nullptr;
701 }
702 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
703 }
704
705 llvm::Function *ModuleCtorFunc = llvm::Function::Create(
706 llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
707 llvm::GlobalValue::InternalLinkage,
708 addUnderscoredPrefixToName("_module_ctor"), &TheModule);
709 llvm::BasicBlock *CtorEntryBB =
710 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
711 CGBuilderTy CtorBuilder(CGM, Context);
712
713 CtorBuilder.SetInsertPoint(CtorEntryBB);
714
715 const char *FatbinConstantName;
716 const char *FatbinSectionName;
717 const char *ModuleIDSectionName;
718 StringRef ModuleIDPrefix;
719 llvm::Constant *FatBinStr;
720 unsigned FatMagic;
721 if (IsHIP) {
722 FatbinConstantName = ".hip_fatbin";
723 FatbinSectionName = ".hipFatBinSegment";
724
725 ModuleIDSectionName = "__hip_module_id";
726 ModuleIDPrefix = "__hip_";
727
728 if (CudaGpuBinary) {
729 // If fatbin is available from early finalization, create a string
730 // literal containing the fat binary loaded from the given file.
731 const unsigned HIPCodeObjectAlign = 4096;
732 FatBinStr =
733 makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
734 FatbinConstantName, HIPCodeObjectAlign);
735 } else {
736 // If fatbin is not available, create an external symbol
737 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
738 // to contain the fat binary but will be populated somewhere else,
739 // e.g. by lld through link script.
740 FatBinStr = new llvm::GlobalVariable(
741 CGM.getModule(), CGM.Int8Ty,
742 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
743 "__hip_fatbin", nullptr,
744 llvm::GlobalVariable::NotThreadLocal);
745 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
746 }
747
748 FatMagic = HIPFatMagic;
749 } else {
750 if (RelocatableDeviceCode)
751 FatbinConstantName = CGM.getTriple().isMacOSX()
752 ? "__NV_CUDA,__nv_relfatbin"
753 : "__nv_relfatbin";
754 else
755 FatbinConstantName =
756 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
757 // NVIDIA's cuobjdump looks for fatbins in this section.
758 FatbinSectionName =
759 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
760
761 ModuleIDSectionName = CGM.getTriple().isMacOSX()
762 ? "__NV_CUDA,__nv_module_id"
763 : "__nv_module_id";
764 ModuleIDPrefix = "__nv_";
765
766 // For CUDA, create a string literal containing the fat binary loaded from
767 // the given file.
768 FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
769 FatbinConstantName, 8);
770 FatMagic = CudaFatMagic;
771 }
772
773 // Create initialized wrapper structure that points to the loaded GPU binary
774 ConstantInitBuilder Builder(CGM);
775 auto Values = Builder.beginStruct(FatbinWrapperTy);
776 // Fatbin wrapper magic.
777 Values.addInt(IntTy, FatMagic);
778 // Fatbin version.
779 Values.addInt(IntTy, 1);
780 // Data.
781 Values.add(FatBinStr);
782 // Unused in fatbin v1.
783 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
784 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
785 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
786 /*constant*/ true);
787 FatbinWrapper->setSection(FatbinSectionName);
788
789 // There is only one HIP fat binary per linked module, however there are
790 // multiple constructor functions. Make sure the fat binary is registered
791 // only once. The constructor functions are executed by the dynamic loader
792 // before the program gains control. The dynamic loader cannot execute the
793 // constructor functions concurrently since doing that would not guarantee
794 // thread safety of the loaded program. Therefore we can assume sequential
795 // execution of constructor functions here.
796 if (IsHIP) {
797 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
798 llvm::GlobalValue::LinkOnceAnyLinkage;
799 llvm::BasicBlock *IfBlock =
800 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
801 llvm::BasicBlock *ExitBlock =
802 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
803 // The name, size, and initialization pattern of this variable is part
804 // of HIP ABI.
805 GpuBinaryHandle = new llvm::GlobalVariable(
806 TheModule, VoidPtrPtrTy, /*isConstant=*/false,
807 Linkage,
808 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
809 "__hip_gpubin_handle");
810 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
811 // Prevent the weak symbol in different shared libraries being merged.
812 if (Linkage != llvm::GlobalValue::InternalLinkage)
813 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
814 Address GpuBinaryAddr(
815 GpuBinaryHandle,
816 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
817 {
818 auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
819 llvm::Constant *Zero =
820 llvm::Constant::getNullValue(HandleValue->getType());
821 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
822 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
823 }
824 {
825 CtorBuilder.SetInsertPoint(IfBlock);
826 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
827 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
828 RegisterFatbinFunc,
829 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
830 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
831 CtorBuilder.CreateBr(ExitBlock);
832 }
833 {
834 CtorBuilder.SetInsertPoint(ExitBlock);
835 // Call __hip_register_globals(GpuBinaryHandle);
836 if (RegisterGlobalsFunc) {
837 auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
838 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
839 }
840 }
841 } else if (!RelocatableDeviceCode) {
842 // Register binary with CUDA runtime. This is substantially different in
843 // default mode vs. separate compilation!
844 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
845 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
846 RegisterFatbinFunc,
847 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
848 GpuBinaryHandle = new llvm::GlobalVariable(
849 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
850 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
851 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
852 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
853 CGM.getPointerAlign());
854
855 // Call __cuda_register_globals(GpuBinaryHandle);
856 if (RegisterGlobalsFunc)
857 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
858
859 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
860 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
861 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
862 // void __cudaRegisterFatBinaryEnd(void **);
863 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
864 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
865 "__cudaRegisterFatBinaryEnd");
866 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
867 }
868 } else {
869 // Generate a unique module ID.
870 SmallString<64> ModuleID;
871 llvm::raw_svector_ostream OS(ModuleID);
872 OS << ModuleIDPrefix << llvm::format("%" PRIx64"l" "x", FatbinWrapper->getGUID());
873 llvm::Constant *ModuleIDConstant = makeConstantString(
874 std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
875
876 // Create an alias for the FatbinWrapper that nvcc will look for.
877 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
878 Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
879
880 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
881 // void *, void (*)(void **))
882 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
883 RegisterLinkedBinaryName += ModuleID;
884 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
885 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
886
887 assert(RegisterGlobalsFunc && "Expecting at least dummy function!")((RegisterGlobalsFunc && "Expecting at least dummy function!"
) ? static_cast<void> (0) : __assert_fail ("RegisterGlobalsFunc && \"Expecting at least dummy function!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 887, __PRETTY_FUNCTION__))
;
888 llvm::Value *Args[] = {RegisterGlobalsFunc,
889 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
890 ModuleIDConstant,
891 makeDummyFunction(getCallbackFnTy())};
892 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
893 }
894
895 // Create destructor and register it with atexit() the way NVCC does it. Doing
896 // it during regular destructor phase worked in CUDA before 9.2 but results in
897 // double-free in 9.2.
898 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
899 // extern "C" int atexit(void (*f)(void));
900 llvm::FunctionType *AtExitTy =
901 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
902 llvm::FunctionCallee AtExitFunc =
903 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
904 /*Local=*/true);
905 CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
906 }
907
908 CtorBuilder.CreateRetVoid();
909 return ModuleCtorFunc;
910}
911
912/// Creates a global destructor function that unregisters the GPU code blob
913/// registered by constructor.
914///
915/// For CUDA:
916/// \code
917/// void __cuda_module_dtor(void*) {
918/// __cudaUnregisterFatBinary(Handle);
919/// }
920/// \endcode
921///
922/// For HIP:
923/// \code
924/// void __hip_module_dtor(void*) {
925/// if (__hip_gpubin_handle) {
926/// __hipUnregisterFatBinary(__hip_gpubin_handle);
927/// __hip_gpubin_handle = 0;
928/// }
929/// }
930/// \endcode
931llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
932 // No need for destructor if we don't have a handle to unregister.
933 if (!GpuBinaryHandle)
934 return nullptr;
935
936 // void __cudaUnregisterFatBinary(void ** handle);
937 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
938 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
939 addUnderscoredPrefixToName("UnregisterFatBinary"));
940
941 llvm::Function *ModuleDtorFunc = llvm::Function::Create(
942 llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
943 llvm::GlobalValue::InternalLinkage,
944 addUnderscoredPrefixToName("_module_dtor"), &TheModule);
945
946 llvm::BasicBlock *DtorEntryBB =
947 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
948 CGBuilderTy DtorBuilder(CGM, Context);
949 DtorBuilder.SetInsertPoint(DtorEntryBB);
950
951 Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
952 GpuBinaryHandle->getAlignment()));
953 auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
954 // There is only one HIP fat binary per linked module, however there are
955 // multiple destructor functions. Make sure the fat binary is unregistered
956 // only once.
957 if (CGM.getLangOpts().HIP) {
958 llvm::BasicBlock *IfBlock =
959 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
960 llvm::BasicBlock *ExitBlock =
961 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
962 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
963 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
964 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
965
966 DtorBuilder.SetInsertPoint(IfBlock);
967 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
968 DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
969 DtorBuilder.CreateBr(ExitBlock);
970
971 DtorBuilder.SetInsertPoint(ExitBlock);
972 } else {
973 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
974 }
975 DtorBuilder.CreateRetVoid();
976 return ModuleDtorFunc;
977}
978
979CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
980 return new CGNVCUDARuntime(CGM);
981}
982
983void CGNVCUDARuntime::internalizeDeviceSideVar(
984 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
985 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
986 // global variables become internal definitions. These have to be internal in
987 // order to prevent name conflicts with global host variables with the same
988 // name in a different TUs.
989 //
990 // For -fgpu-rdc, the shadow variables should not be internalized because
991 // they may be accessed by different TU.
992 if (CGM.getLangOpts().GPURelocatableDeviceCode)
993 return;
994
995 // __shared__ variables are odd. Shadows do get created, but
996 // they are not registered with the CUDA runtime, so they
997 // can't really be used to access their device-side
998 // counterparts. It's not clear yet whether it's nvcc's bug or
999 // a feature, but we've got to do the same for compatibility.
1000 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1001 D->hasAttr<CUDASharedAttr>() ||
1002 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1003 D->getType()->isCUDADeviceBuiltinTextureType()) {
1004 Linkage = llvm::GlobalValue::InternalLinkage;
1005 }
1006}
1007
1008void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1009 llvm::GlobalVariable &GV) {
1010 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1
Calling 'Decl::hasAttr'
4
Returning from 'Decl::hasAttr'
5
Calling 'Decl::hasAttr'
7
Returning from 'Decl::hasAttr'
8
Taking false branch
1011 // Shadow variables and their properties must be registered with CUDA
1012 // runtime. Skip Extern global variables, which will be registered in
1013 // the TU where they are defined.
1014 //
1015 // Don't register a C++17 inline variable. The local symbol can be
1016 // discarded and referencing a discarded local symbol from outside the
1017 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1018 // TODO: Reject __device__ constexpr and __device__ inline in Sema.
1019 // HIP managed variables need to be always recorded in device and host
1020 // compilations for transformation.
1021 if ((!D->hasExternalStorage() && !D->isInline()) ||
1022 D->hasAttr<HIPManagedAttr>()) {
1023 registerDeviceVar(D, GV, !D->hasDefinition(),
1024 D->hasAttr<CUDAConstantAttr>());
1025 }
1026 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
9
Assuming the condition is true
10
Taking true branch
1027 D->getType()->isCUDADeviceBuiltinTextureType()) {
1028 // Builtin surfaces and textures and their template arguments are
1029 // also registered with CUDA runtime.
1030 const ClassTemplateSpecializationDecl *TD =
1031 cast<ClassTemplateSpecializationDecl>(
1032 D->getType()->getAs<RecordType>()->getDecl());
11
Assuming the object is not a 'RecordType'
12
Called C++ object pointer is null
1033 const TemplateArgumentList &Args = TD->getTemplateArgs();
1034 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1035 assert(Args.size() == 2 &&((Args.size() == 2 && "Unexpected number of template arguments of CUDA device "
"builtin surface type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 2 && \"Unexpected number of template arguments of CUDA device \" \"builtin surface type.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1037, __PRETTY_FUNCTION__))
1036 "Unexpected number of template arguments of CUDA device "((Args.size() == 2 && "Unexpected number of template arguments of CUDA device "
"builtin surface type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 2 && \"Unexpected number of template arguments of CUDA device \" \"builtin surface type.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1037, __PRETTY_FUNCTION__))
1037 "builtin surface type.")((Args.size() == 2 && "Unexpected number of template arguments of CUDA device "
"builtin surface type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 2 && \"Unexpected number of template arguments of CUDA device \" \"builtin surface type.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1037, __PRETTY_FUNCTION__))
;
1038 auto SurfType = Args[1].getAsIntegral();
1039 if (!D->hasExternalStorage())
1040 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1041 } else {
1042 assert(Args.size() == 3 &&((Args.size() == 3 && "Unexpected number of template arguments of CUDA device "
"builtin texture type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 3 && \"Unexpected number of template arguments of CUDA device \" \"builtin texture type.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1044, __PRETTY_FUNCTION__))
1043 "Unexpected number of template arguments of CUDA device "((Args.size() == 3 && "Unexpected number of template arguments of CUDA device "
"builtin texture type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 3 && \"Unexpected number of template arguments of CUDA device \" \"builtin texture type.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1044, __PRETTY_FUNCTION__))
1044 "builtin texture type.")((Args.size() == 3 && "Unexpected number of template arguments of CUDA device "
"builtin texture type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 3 && \"Unexpected number of template arguments of CUDA device \" \"builtin texture type.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1044, __PRETTY_FUNCTION__))
;
1045 auto TexType = Args[1].getAsIntegral();
1046 auto Normalized = Args[2].getAsIntegral();
1047 if (!D->hasExternalStorage())
1048 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1049 Normalized.getZExtValue());
1050 }
1051 }
1052}
1053
1054// Transform managed variables to pointers to managed variables in device code.
1055// Each use of the original managed variable is replaced by a load from the
1056// transformed managed variable. The transformed managed variable contains
1057// the address of managed memory which will be allocated by the runtime.
1058void CGNVCUDARuntime::transformManagedVars() {
1059 for (auto &&Info : DeviceVars) {
1060 llvm::GlobalVariable *Var = Info.Var;
1061 if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1062 Info.Flags.isManaged()) {
1063 auto ManagedVar = new llvm::GlobalVariable(
1064 CGM.getModule(), Var->getType(),
1065 /*isConstant=*/false, Var->getLinkage(),
1066 /*Init=*/Var->isDeclaration()
1067 ? nullptr
1068 : llvm::ConstantPointerNull::get(Var->getType()),
1069 /*Name=*/"", /*InsertBefore=*/nullptr,
1070 llvm::GlobalVariable::NotThreadLocal,
1071 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1072 ManagedVar->setDSOLocal(Var->isDSOLocal());
1073 ManagedVar->setVisibility(Var->getVisibility());
1074 ManagedVar->setExternallyInitialized(true);
1075 replaceManagedVar(Var, ManagedVar);
1076 ManagedVar->takeName(Var);
1077 Var->setName(Twine(ManagedVar->getName()) + ".managed");
1078 // Keep managed variables even if they are not used in device code since
1079 // they need to be allocated by the runtime.
1080 if (!Var->isDeclaration()) {
1081 assert(!ManagedVar->isDeclaration())((!ManagedVar->isDeclaration()) ? static_cast<void> (
0) : __assert_fail ("!ManagedVar->isDeclaration()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/CodeGen/CGCUDANV.cpp"
, 1081, __PRETTY_FUNCTION__))
;
1082 CGM.addCompilerUsedGlobal(Var);
1083 CGM.addCompilerUsedGlobal(ManagedVar);
1084 }
1085 }
1086 }
1087}
1088
1089// Returns module constructor to be added.
1090llvm::Function *CGNVCUDARuntime::finalizeModule() {
1091 if (CGM.getLangOpts().CUDAIsDevice) {
1092 transformManagedVars();
1093 return nullptr;
1094 }
1095 return makeModuleCtorFunction();
1096}
1097
1098llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1099 GlobalDecl GD) {
1100 auto Loc = KernelHandles.find(F);
1101 if (Loc != KernelHandles.end())
1102 return Loc->second;
1103
1104 if (!CGM.getLangOpts().HIP) {
1105 KernelHandles[F] = F;
1106 KernelStubs[F] = F;
1107 return F;
1108 }
1109
1110 auto *Var = new llvm::GlobalVariable(
1111 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1112 /*Initializer=*/nullptr,
1113 CGM.getMangledName(
1114 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1115 Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1116 Var->setDSOLocal(F->isDSOLocal());
1117 Var->setVisibility(F->getVisibility());
1118 KernelHandles[F] = Var;
1119 KernelStubs[Var] = F;
1120 return Var;
1121}

/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h

1//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl and DeclContext interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLBASE_H
14#define LLVM_CLANG_AST_DECLBASE_H
15
16#include "clang/AST/ASTDumperUtils.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/DeclarationName.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "clang/Basic/Specifiers.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/PrettyStackTrace.h"
31#include "llvm/Support/VersionTuple.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <iterator>
36#include <string>
37#include <type_traits>
38#include <utility>
39
40namespace clang {
41
42class ASTContext;
43class ASTMutationListener;
44class Attr;
45class BlockDecl;
46class DeclContext;
47class ExternalSourceSymbolAttr;
48class FunctionDecl;
49class FunctionType;
50class IdentifierInfo;
51enum Linkage : unsigned char;
52class LinkageSpecDecl;
53class Module;
54class NamedDecl;
55class ObjCCategoryDecl;
56class ObjCCategoryImplDecl;
57class ObjCContainerDecl;
58class ObjCImplDecl;
59class ObjCImplementationDecl;
60class ObjCInterfaceDecl;
61class ObjCMethodDecl;
62class ObjCProtocolDecl;
63struct PrintingPolicy;
64class RecordDecl;
65class SourceManager;
66class Stmt;
67class StoredDeclsMap;
68class TemplateDecl;
69class TemplateParameterList;
70class TranslationUnitDecl;
71class UsingDirectiveDecl;
72
73/// Captures the result of checking the availability of a
74/// declaration.
75enum AvailabilityResult {
76 AR_Available = 0,
77 AR_NotYetIntroduced,
78 AR_Deprecated,
79 AR_Unavailable
80};
81
82/// Decl - This represents one declaration (or definition), e.g. a variable,
83/// typedef, function, struct, etc.
84///
85/// Note: There are objects tacked on before the *beginning* of Decl
86/// (and its subclasses) in its Decl::operator new(). Proper alignment
87/// of all subclasses (not requiring more than the alignment of Decl) is
88/// asserted in DeclBase.cpp.
89class alignas(8) Decl {
90public:
91 /// Lists the kind of concrete classes of Decl.
92 enum Kind {
93#define DECL(DERIVED, BASE) DERIVED,
94#define ABSTRACT_DECL(DECL)
95#define DECL_RANGE(BASE, START, END) \
96 first##BASE = START, last##BASE = END,
97#define LAST_DECL_RANGE(BASE, START, END) \
98 first##BASE = START, last##BASE = END
99#include "clang/AST/DeclNodes.inc"
100 };
101
102 /// A placeholder type used to construct an empty shell of a
103 /// decl-derived type that will be filled in later (e.g., by some
104 /// deserialization method).
105 struct EmptyShell {};
106
107 /// IdentifierNamespace - The different namespaces in which
108 /// declarations may appear. According to C99 6.2.3, there are
109 /// four namespaces, labels, tags, members and ordinary
110 /// identifiers. C++ describes lookup completely differently:
111 /// certain lookups merely "ignore" certain kinds of declarations,
112 /// usually based on whether the declaration is of a type, etc.
113 ///
114 /// These are meant as bitmasks, so that searches in
115 /// C++ can look into the "tag" namespace during ordinary lookup.
116 ///
117 /// Decl currently provides 15 bits of IDNS bits.
118 enum IdentifierNamespace {
119 /// Labels, declared with 'x:' and referenced with 'goto x'.
120 IDNS_Label = 0x0001,
121
122 /// Tags, declared with 'struct foo;' and referenced with
123 /// 'struct foo'. All tags are also types. This is what
124 /// elaborated-type-specifiers look for in C.
125 /// This also contains names that conflict with tags in the
126 /// same scope but that are otherwise ordinary names (non-type
127 /// template parameters and indirect field declarations).
128 IDNS_Tag = 0x0002,
129
130 /// Types, declared with 'struct foo', typedefs, etc.
131 /// This is what elaborated-type-specifiers look for in C++,
132 /// but note that it's ill-formed to find a non-tag.
133 IDNS_Type = 0x0004,
134
135 /// Members, declared with object declarations within tag
136 /// definitions. In C, these can only be found by "qualified"
137 /// lookup in member expressions. In C++, they're found by
138 /// normal lookup.
139 IDNS_Member = 0x0008,
140
141 /// Namespaces, declared with 'namespace foo {}'.
142 /// Lookup for nested-name-specifiers find these.
143 IDNS_Namespace = 0x0010,
144
145 /// Ordinary names. In C, everything that's not a label, tag,
146 /// member, or function-local extern ends up here.
147 IDNS_Ordinary = 0x0020,
148
149 /// Objective C \@protocol.
150 IDNS_ObjCProtocol = 0x0040,
151
152 /// This declaration is a friend function. A friend function
153 /// declaration is always in this namespace but may also be in
154 /// IDNS_Ordinary if it was previously declared.
155 IDNS_OrdinaryFriend = 0x0080,
156
157 /// This declaration is a friend class. A friend class
158 /// declaration is always in this namespace but may also be in
159 /// IDNS_Tag|IDNS_Type if it was previously declared.
160 IDNS_TagFriend = 0x0100,
161
162 /// This declaration is a using declaration. A using declaration
163 /// *introduces* a number of other declarations into the current
164 /// scope, and those declarations use the IDNS of their targets,
165 /// but the actual using declarations go in this namespace.
166 IDNS_Using = 0x0200,
167
168 /// This declaration is a C++ operator declared in a non-class
169 /// context. All such operators are also in IDNS_Ordinary.
170 /// C++ lexical operator lookup looks for these.
171 IDNS_NonMemberOperator = 0x0400,
172
173 /// This declaration is a function-local extern declaration of a
174 /// variable or function. This may also be IDNS_Ordinary if it
175 /// has been declared outside any function. These act mostly like
176 /// invisible friend declarations, but are also visible to unqualified
177 /// lookup within the scope of the declaring function.
178 IDNS_LocalExtern = 0x0800,
179
180 /// This declaration is an OpenMP user defined reduction construction.
181 IDNS_OMPReduction = 0x1000,
182
183 /// This declaration is an OpenMP user defined mapper.
184 IDNS_OMPMapper = 0x2000,
185 };
186
187 /// ObjCDeclQualifier - 'Qualifiers' written next to the return and
188 /// parameter types in method declarations. Other than remembering
189 /// them and mangling them into the method's signature string, these
190 /// are ignored by the compiler; they are consumed by certain
191 /// remote-messaging frameworks.
192 ///
193 /// in, inout, and out are mutually exclusive and apply only to
194 /// method parameters. bycopy and byref are mutually exclusive and
195 /// apply only to method parameters (?). oneway applies only to
196 /// results. All of these expect their corresponding parameter to
197 /// have a particular type. None of this is currently enforced by
198 /// clang.
199 ///
200 /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
201 enum ObjCDeclQualifier {
202 OBJC_TQ_None = 0x0,
203 OBJC_TQ_In = 0x1,
204 OBJC_TQ_Inout = 0x2,
205 OBJC_TQ_Out = 0x4,
206 OBJC_TQ_Bycopy = 0x8,
207 OBJC_TQ_Byref = 0x10,
208 OBJC_TQ_Oneway = 0x20,
209
210 /// The nullability qualifier is set when the nullability of the
211 /// result or parameter was expressed via a context-sensitive
212 /// keyword.
213 OBJC_TQ_CSNullability = 0x40
214 };
215
216 /// The kind of ownership a declaration has, for visibility purposes.
217 /// This enumeration is designed such that higher values represent higher
218 /// levels of name hiding.
219 enum class ModuleOwnershipKind : unsigned {
220 /// This declaration is not owned by a module.
221 Unowned,
222
223 /// This declaration has an owning module, but is globally visible
224 /// (typically because its owning module is visible and we know that
225 /// modules cannot later become hidden in this compilation).
226 /// After serialization and deserialization, this will be converted
227 /// to VisibleWhenImported.
228 Visible,
229
230 /// This declaration has an owning module, and is visible when that
231 /// module is imported.
232 VisibleWhenImported,
233
234 /// This declaration has an owning module, but is only visible to
235 /// lookups that occur within that module.
236 ModulePrivate
237 };
238
239protected:
240 /// The next declaration within the same lexical
241 /// DeclContext. These pointers form the linked list that is
242 /// traversed via DeclContext's decls_begin()/decls_end().
243 ///
244 /// The extra two bits are used for the ModuleOwnershipKind.
245 llvm::PointerIntPair<Decl *, 2, ModuleOwnershipKind> NextInContextAndBits;
246
247private:
248 friend class DeclContext;
249
250 struct MultipleDC {
251 DeclContext *SemanticDC;
252 DeclContext *LexicalDC;
253 };
254
255 /// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
256 /// For declarations that don't contain C++ scope specifiers, it contains
257 /// the DeclContext where the Decl was declared.
258 /// For declarations with C++ scope specifiers, it contains a MultipleDC*
259 /// with the context where it semantically belongs (SemanticDC) and the
260 /// context where it was lexically declared (LexicalDC).
261 /// e.g.:
262 ///
263 /// namespace A {
264 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
265 /// }
266 /// void A::f(); // SemanticDC == namespace 'A'
267 /// // LexicalDC == global namespace
268 llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
269
270 bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
271 bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
272
273 MultipleDC *getMultipleDC() const {
274 return DeclCtx.get<MultipleDC*>();
275 }
276
277 DeclContext *getSemanticDC() const {
278 return DeclCtx.get<DeclContext*>();
279 }
280
281 /// Loc - The location of this decl.
282 SourceLocation Loc;
283
284 /// DeclKind - This indicates which class this is.
285 unsigned DeclKind : 7;
286
287 /// InvalidDecl - This indicates a semantic error occurred.
288 unsigned InvalidDecl : 1;
289
290 /// HasAttrs - This indicates whether the decl has attributes or not.
291 unsigned HasAttrs : 1;
292
293 /// Implicit - Whether this declaration was implicitly generated by
294 /// the implementation rather than explicitly written by the user.
295 unsigned Implicit : 1;
296
297 /// Whether this declaration was "used", meaning that a definition is
298 /// required.
299 unsigned Used : 1;
300
301 /// Whether this declaration was "referenced".
302 /// The difference with 'Used' is whether the reference appears in a
303 /// evaluated context or not, e.g. functions used in uninstantiated templates
304 /// are regarded as "referenced" but not "used".
305 unsigned Referenced : 1;
306
307 /// Whether this declaration is a top-level declaration (function,
308 /// global variable, etc.) that is lexically inside an objc container
309 /// definition.
310 unsigned TopLevelDeclInObjCContainer : 1;
311
312 /// Whether statistic collection is enabled.
313 static bool StatisticsEnabled;
314
315protected:
316 friend class ASTDeclReader;
317 friend class ASTDeclWriter;
318 friend class ASTNodeImporter;
319 friend class ASTReader;
320 friend class CXXClassMemberWrapper;
321 friend class LinkageComputer;
322 template<typename decl_type> friend class Redeclarable;
323
324 /// Access - Used by C++ decls for the access specifier.
325 // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
326 unsigned Access : 2;
327
328 /// Whether this declaration was loaded from an AST file.
329 unsigned FromASTFile : 1;
330
331 /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
332 unsigned IdentifierNamespace : 14;
333
334 /// If 0, we have not computed the linkage of this declaration.
335 /// Otherwise, it is the linkage + 1.
336 mutable unsigned CacheValidAndLinkage : 3;
337
338 /// Allocate memory for a deserialized declaration.
339 ///
340 /// This routine must be used to allocate memory for any declaration that is
341 /// deserialized from a module file.
342 ///
343 /// \param Size The size of the allocated object.
344 /// \param Ctx The context in which we will allocate memory.
345 /// \param ID The global ID of the deserialized declaration.
346 /// \param Extra The amount of extra space to allocate after the object.
347 void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
348 std::size_t Extra = 0);
349
350 /// Allocate memory for a non-deserialized declaration.
351 void *operator new(std::size_t Size, const ASTContext &Ctx,
352 DeclContext *Parent, std::size_t Extra = 0);
353
354private:
355 bool AccessDeclContextSanity() const;
356
357 /// Get the module ownership kind to use for a local lexical child of \p DC,
358 /// which may be either a local or (rarely) an imported declaration.
359 static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) {
360 if (DC) {
361 auto *D = cast<Decl>(DC);
362 auto MOK = D->getModuleOwnershipKind();
363 if (MOK != ModuleOwnershipKind::Unowned &&
364 (!D->isFromASTFile() || D->hasLocalOwningModuleStorage()))
365 return MOK;
366 // If D is not local and we have no local module storage, then we don't
367 // need to track module ownership at all.
368 }
369 return ModuleOwnershipKind::Unowned;
370 }
371
372public:
373 Decl() = delete;
374 Decl(const Decl&) = delete;
375 Decl(Decl &&) = delete;
376 Decl &operator=(const Decl&) = delete;
377 Decl &operator=(Decl&&) = delete;
378
379protected:
380 Decl(Kind DK, DeclContext *DC, SourceLocation L)
381 : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)),
382 DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false),
383 Implicit(false), Used(false), Referenced(false),
384 TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0),
385 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
386 CacheValidAndLinkage(0) {
387 if (StatisticsEnabled) add(DK);
388 }
389
390 Decl(Kind DK, EmptyShell Empty)
391 : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false),
392 Used(false), Referenced(false), TopLevelDeclInObjCContainer(false),
393 Access(AS_none), FromASTFile(0),
394 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
395 CacheValidAndLinkage(0) {
396 if (StatisticsEnabled) add(DK);
397 }
398
399 virtual ~Decl();
400
401 /// Update a potentially out-of-date declaration.
402 void updateOutOfDate(IdentifierInfo &II) const;
403
404 Linkage getCachedLinkage() const {
405 return Linkage(CacheValidAndLinkage - 1);
406 }
407
408 void setCachedLinkage(Linkage L) const {
409 CacheValidAndLinkage = L + 1;
410 }
411
412 bool hasCachedLinkage() const {
413 return CacheValidAndLinkage;
414 }
415
416public:
417 /// Source range that this declaration covers.
418 virtual SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
419 return SourceRange(getLocation(), getLocation());
420 }
421
422 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
423 return getSourceRange().getBegin();
424 }
425
426 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
427 return getSourceRange().getEnd();
428 }
429
430 SourceLocation getLocation() const { return Loc; }
431 void setLocation(SourceLocation L) { Loc = L; }
432
433 Kind getKind() const { return static_cast<Kind>(DeclKind); }
434 const char *getDeclKindName() const;
435
436 Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
437 const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
438
439 DeclContext *getDeclContext() {
440 if (isInSemaDC())
441 return getSemanticDC();
442 return getMultipleDC()->SemanticDC;
443 }
444 const DeclContext *getDeclContext() const {
445 return const_cast<Decl*>(this)->getDeclContext();
446 }
447
448 /// Find the innermost non-closure ancestor of this declaration,
449 /// walking up through blocks, lambdas, etc. If that ancestor is
450 /// not a code context (!isFunctionOrMethod()), returns null.
451 ///
452 /// A declaration may be its own non-closure context.
453 Decl *getNonClosureContext();
454 const Decl *getNonClosureContext() const {
455 return const_cast<Decl*>(this)->getNonClosureContext();
456 }
457
458 TranslationUnitDecl *getTranslationUnitDecl();
459 const TranslationUnitDecl *getTranslationUnitDecl() const {
460 return const_cast<Decl*>(this)->getTranslationUnitDecl();
461 }
462
463 bool isInAnonymousNamespace() const;
464
465 bool isInStdNamespace() const;
466
467 ASTContext &getASTContext() const LLVM_READONLY__attribute__((__pure__));
468
469 /// Helper to get the language options from the ASTContext.
470 /// Defined out of line to avoid depending on ASTContext.h.
471 const LangOptions &getLangOpts() const LLVM_READONLY__attribute__((__pure__));
472
473 void setAccess(AccessSpecifier AS) {
474 Access = AS;
475 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 475, __PRETTY_FUNCTION__))
;
476 }
477
478 AccessSpecifier getAccess() const {
479 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 479, __PRETTY_FUNCTION__))
;
480 return AccessSpecifier(Access);
481 }
482
483 /// Retrieve the access specifier for this declaration, even though
484 /// it may not yet have been properly set.
485 AccessSpecifier getAccessUnsafe() const {
486 return AccessSpecifier(Access);
487 }
488
489 bool hasAttrs() const { return HasAttrs; }
490
491 void setAttrs(const AttrVec& Attrs) {
492 return setAttrsImpl(Attrs, getASTContext());
493 }
494
495 AttrVec &getAttrs() {
496 return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
497 }
498
499 const AttrVec &getAttrs() const;
500 void dropAttrs();
501 void addAttr(Attr *A);
502
503 using attr_iterator = AttrVec::const_iterator;
504 using attr_range = llvm::iterator_range<attr_iterator>;
505
506 attr_range attrs() const {
507 return attr_range(attr_begin(), attr_end());
508 }
509
510 attr_iterator attr_begin() const {
511 return hasAttrs() ? getAttrs().begin() : nullptr;
512 }
513 attr_iterator attr_end() const {
514 return hasAttrs() ? getAttrs().end() : nullptr;
515 }
516
517 template <typename T>
518 void dropAttr() {
519 if (!HasAttrs) return;
520
521 AttrVec &Vec = getAttrs();
522 llvm::erase_if(Vec, [](Attr *A) { return isa<T>(A); });
523
524 if (Vec.empty())
525 HasAttrs = false;
526 }
527
528 template <typename T>
529 llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
530 return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
531 }
532
533 template <typename T>
534 specific_attr_iterator<T> specific_attr_begin() const {
535 return specific_attr_iterator<T>(attr_begin());
536 }
537
538 template <typename T>
539 specific_attr_iterator<T> specific_attr_end() const {
540 return specific_attr_iterator<T>(attr_end());
541 }
542
543 template<typename T> T *getAttr() const {
544 return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
545 }
546
547 template<typename T> bool hasAttr() const {
548 return hasAttrs() && hasSpecificAttr<T>(getAttrs());
2
Assuming the condition is false
3
Returning zero, which participates in a condition later
6
Returning zero, which participates in a condition later
549 }
550
551 /// getMaxAlignment - return the maximum alignment specified by attributes
552 /// on this decl, 0 if there are none.
553 unsigned getMaxAlignment() const;
554
555 /// setInvalidDecl - Indicates the Decl had a semantic error. This
556 /// allows for graceful error recovery.
557 void setInvalidDecl(bool Invalid = true);
558 bool isInvalidDecl() const { return (bool) InvalidDecl; }
559
560 /// isImplicit - Indicates whether the declaration was implicitly
561 /// generated by the implementation. If false, this declaration
562 /// was written explicitly in the source code.
563 bool isImplicit() const { return Implicit; }
564 void setImplicit(bool I = true) { Implicit = I; }
565
566 /// Whether *any* (re-)declaration of the entity was used, meaning that
567 /// a definition is required.
568 ///
569 /// \param CheckUsedAttr When true, also consider the "used" attribute
570 /// (in addition to the "used" bit set by \c setUsed()) when determining
571 /// whether the function is used.
572 bool isUsed(bool CheckUsedAttr = true) const;
573
574 /// Set whether the declaration is used, in the sense of odr-use.
575 ///
576 /// This should only be used immediately after creating a declaration.
577 /// It intentionally doesn't notify any listeners.
578 void setIsUsed() { getCanonicalDecl()->Used = true; }
579
580 /// Mark the declaration used, in the sense of odr-use.
581 ///
582 /// This notifies any mutation listeners in addition to setting a bit
583 /// indicating the declaration is used.
584 void markUsed(ASTContext &C);
585
586 /// Whether any declaration of this entity was referenced.
587 bool isReferenced() const;
588
589 /// Whether this declaration was referenced. This should not be relied
590 /// upon for anything other than debugging.
591 bool isThisDeclarationReferenced() const { return Referenced; }
592
593 void setReferenced(bool R = true) { Referenced = R; }
594
595 /// Whether this declaration is a top-level declaration (function,
596 /// global variable, etc.) that is lexically inside an objc container
597 /// definition.
598 bool isTopLevelDeclInObjCContainer() const {
599 return TopLevelDeclInObjCContainer;
600 }
601
602 void setTopLevelDeclInObjCContainer(bool V = true) {
603 TopLevelDeclInObjCContainer = V;
604 }
605
606 /// Looks on this and related declarations for an applicable
607 /// external source symbol attribute.
608 ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const;
609
610 /// Whether this declaration was marked as being private to the
611 /// module in which it was defined.
612 bool isModulePrivate() const {
613 return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate;
614 }
615
616 /// Return true if this declaration has an attribute which acts as
617 /// definition of the entity, such as 'alias' or 'ifunc'.
618 bool hasDefiningAttr() const;
619
620 /// Return this declaration's defining attribute if it has one.
621 const Attr *getDefiningAttr() const;
622
623protected:
624 /// Specify that this declaration was marked as being private
625 /// to the module in which it was defined.
626 void setModulePrivate() {
627 // The module-private specifier has no effect on unowned declarations.
628 // FIXME: We should track this in some way for source fidelity.
629 if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned)
630 return;
631 setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate);
632 }
633
634public:
635 /// Set the FromASTFile flag. This indicates that this declaration
636 /// was deserialized and not parsed from source code and enables
637 /// features such as module ownership information.
638 void setFromASTFile() {
639 FromASTFile = true;
640 }
641
642 /// Set the owning module ID. This may only be called for
643 /// deserialized Decls.
644 void setOwningModuleID(unsigned ID) {
645 assert(isFromASTFile() && "Only works on a deserialized declaration")((isFromASTFile() && "Only works on a deserialized declaration"
) ? static_cast<void> (0) : __assert_fail ("isFromASTFile() && \"Only works on a deserialized declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 645, __PRETTY_FUNCTION__))
;
646 *((unsigned*)this - 2) = ID;
647 }
648
649public:
650 /// Determine the availability of the given declaration.
651 ///
652 /// This routine will determine the most restrictive availability of
653 /// the given declaration (e.g., preferring 'unavailable' to
654 /// 'deprecated').
655 ///
656 /// \param Message If non-NULL and the result is not \c
657 /// AR_Available, will be set to a (possibly empty) message
658 /// describing why the declaration has not been introduced, is
659 /// deprecated, or is unavailable.
660 ///
661 /// \param EnclosingVersion The version to compare with. If empty, assume the
662 /// deployment target version.
663 ///
664 /// \param RealizedPlatform If non-NULL and the availability result is found
665 /// in an available attribute it will set to the platform which is written in
666 /// the available attribute.
667 AvailabilityResult
668 getAvailability(std::string *Message = nullptr,
669 VersionTuple EnclosingVersion = VersionTuple(),
670 StringRef *RealizedPlatform = nullptr) const;
671
672 /// Retrieve the version of the target platform in which this
673 /// declaration was introduced.
674 ///
675 /// \returns An empty version tuple if this declaration has no 'introduced'
676 /// availability attributes, or the version tuple that's specified in the
677 /// attribute otherwise.
678 VersionTuple getVersionIntroduced() const;
679
680 /// Determine whether this declaration is marked 'deprecated'.
681 ///
682 /// \param Message If non-NULL and the declaration is deprecated,
683 /// this will be set to the message describing why the declaration
684 /// was deprecated (which may be empty).
685 bool isDeprecated(std::string *Message = nullptr) const {
686 return getAvailability(Message) == AR_Deprecated;
687 }
688
689 /// Determine whether this declaration is marked 'unavailable'.
690 ///
691 /// \param Message If non-NULL and the declaration is unavailable,
692 /// this will be set to the message describing why the declaration
693 /// was made unavailable (which may be empty).
694 bool isUnavailable(std::string *Message = nullptr) const {
695 return getAvailability(Message) == AR_Unavailable;
696 }
697
698 /// Determine whether this is a weak-imported symbol.
699 ///
700 /// Weak-imported symbols are typically marked with the
701 /// 'weak_import' attribute, but may also be marked with an
702 /// 'availability' attribute where we're targing a platform prior to
703 /// the introduction of this feature.
704 bool isWeakImported() const;
705
706 /// Determines whether this symbol can be weak-imported,
707 /// e.g., whether it would be well-formed to add the weak_import
708 /// attribute.
709 ///
710 /// \param IsDefinition Set to \c true to indicate that this
711 /// declaration cannot be weak-imported because it has a definition.
712 bool canBeWeakImported(bool &IsDefinition) const;
713
714 /// Determine whether this declaration came from an AST file (such as
715 /// a precompiled header or module) rather than having been parsed.
716 bool isFromASTFile() const { return FromASTFile; }
717
718 /// Retrieve the global declaration ID associated with this
719 /// declaration, which specifies where this Decl was loaded from.
720 unsigned getGlobalID() const {
721 if (isFromASTFile())
722 return *((const unsigned*)this - 1);
723 return 0;
724 }
725
726 /// Retrieve the global ID of the module that owns this particular
727 /// declaration.
728 unsigned getOwningModuleID() const {
729 if (isFromASTFile())
730 return *((const unsigned*)this - 2);
731 return 0;
732 }
733
734private:
735 Module *getOwningModuleSlow() const;
736
737protected:
738 bool hasLocalOwningModuleStorage() const;
739
740public:
741 /// Get the imported owning module, if this decl is from an imported
742 /// (non-local) module.
743 Module *getImportedOwningModule() const {
744 if (!isFromASTFile() || !hasOwningModule())
745 return nullptr;
746
747 return getOwningModuleSlow();
748 }
749
750 /// Get the local owning module, if known. Returns nullptr if owner is
751 /// not yet known or declaration is not from a module.
752 Module *getLocalOwningModule() const {
753 if (isFromASTFile() || !hasOwningModule())
754 return nullptr;
755
756 assert(hasLocalOwningModuleStorage() &&((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 757, __PRETTY_FUNCTION__))
757 "owned local decl but no local module storage")((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 757, __PRETTY_FUNCTION__))
;
758 return reinterpret_cast<Module *const *>(this)[-1];
759 }
760 void setLocalOwningModule(Module *M) {
761 assert(!isFromASTFile() && hasOwningModule() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 763, __PRETTY_FUNCTION__))
762 hasLocalOwningModuleStorage() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 763, __PRETTY_FUNCTION__))
763 "should not have a cached owning module")((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 763, __PRETTY_FUNCTION__))
;
764 reinterpret_cast<Module **>(this)[-1] = M;
765 }
766
767 /// Is this declaration owned by some module?
768 bool hasOwningModule() const {
769 return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned;
770 }
771
772 /// Get the module that owns this declaration (for visibility purposes).
773 Module *getOwningModule() const {
774 return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule();
775 }
776
777 /// Get the module that owns this declaration for linkage purposes.
778 /// There only ever is such a module under the C++ Modules TS.
779 ///
780 /// \param IgnoreLinkage Ignore the linkage of the entity; assume that
781 /// all declarations in a global module fragment are unowned.
782 Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const;
783
784 /// Determine whether this declaration is definitely visible to name lookup,
785 /// independent of whether the owning module is visible.
786 /// Note: The declaration may be visible even if this returns \c false if the
787 /// owning module is visible within the query context. This is a low-level
788 /// helper function; most code should be calling Sema::isVisible() instead.
789 bool isUnconditionallyVisible() const {
790 return (int)getModuleOwnershipKind() <= (int)ModuleOwnershipKind::Visible;
791 }
792
793 /// Set that this declaration is globally visible, even if it came from a
794 /// module that is not visible.
795 void setVisibleDespiteOwningModule() {
796 if (!isUnconditionallyVisible())
797 setModuleOwnershipKind(ModuleOwnershipKind::Visible);
798 }
799
800 /// Get the kind of module ownership for this declaration.
801 ModuleOwnershipKind getModuleOwnershipKind() const {
802 return NextInContextAndBits.getInt();
803 }
804
805 /// Set whether this declaration is hidden from name lookup.
806 void setModuleOwnershipKind(ModuleOwnershipKind MOK) {
807 assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
808 MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
809 !hasLocalOwningModuleStorage()) &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
810 "no storage available for owning module for this declaration")((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
;
811 NextInContextAndBits.setInt(MOK);
812 }
813
814 unsigned getIdentifierNamespace() const {
815 return IdentifierNamespace;
816 }
817
818 bool isInIdentifierNamespace(unsigned NS) const {
819 return getIdentifierNamespace() & NS;
820 }
821
822 static unsigned getIdentifierNamespaceForKind(Kind DK);
823
824 bool hasTagIdentifierNamespace() const {
825 return isTagIdentifierNamespace(getIdentifierNamespace());
826 }
827
828 static bool isTagIdentifierNamespace(unsigned NS) {
829 // TagDecls have Tag and Type set and may also have TagFriend.
830 return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
831 }
832
833 /// getLexicalDeclContext - The declaration context where this Decl was
834 /// lexically declared (LexicalDC). May be different from
835 /// getDeclContext() (SemanticDC).
836 /// e.g.:
837 ///
838 /// namespace A {
839 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
840 /// }
841 /// void A::f(); // SemanticDC == namespace 'A'
842 /// // LexicalDC == global namespace
843 DeclContext *getLexicalDeclContext() {
844 if (isInSemaDC())
845 return getSemanticDC();
846 return getMultipleDC()->LexicalDC;
847 }
848 const DeclContext *getLexicalDeclContext() const {
849 return const_cast<Decl*>(this)->getLexicalDeclContext();
850 }
851
852 /// Determine whether this declaration is declared out of line (outside its
853 /// semantic context).
854 virtual bool isOutOfLine() const;
855
856 /// setDeclContext - Set both the semantic and lexical DeclContext
857 /// to DC.
858 void setDeclContext(DeclContext *DC);
859
860 void setLexicalDeclContext(DeclContext *DC);
861
862 /// Determine whether this declaration is a templated entity (whether it is
863 // within the scope of a template parameter).
864 bool isTemplated() const;
865
866 /// Determine the number of levels of template parameter surrounding this
867 /// declaration.
868 unsigned getTemplateDepth() const;
869
870 /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
871 /// scoped decl is defined outside the current function or method. This is
872 /// roughly global variables and functions, but also handles enums (which
873 /// could be defined inside or outside a function etc).
874 bool isDefinedOutsideFunctionOrMethod() const {
875 return getParentFunctionOrMethod() == nullptr;
876 }
877
878 /// Determine whether a substitution into this declaration would occur as
879 /// part of a substitution into a dependent local scope. Such a substitution
880 /// transitively substitutes into all constructs nested within this
881 /// declaration.
882 ///
883 /// This recognizes non-defining declarations as well as members of local
884 /// classes and lambdas:
885 /// \code
886 /// template<typename T> void foo() { void bar(); }
887 /// template<typename T> void foo2() { class ABC { void bar(); }; }
888 /// template<typename T> inline int x = [](){ return 0; }();
889 /// \endcode
890 bool isInLocalScopeForInstantiation() const;
891
892 /// If this decl is defined inside a function/method/block it returns
893 /// the corresponding DeclContext, otherwise it returns null.
894 const DeclContext *getParentFunctionOrMethod() const;
895 DeclContext *getParentFunctionOrMethod() {
896 return const_cast<DeclContext*>(
897 const_cast<const Decl*>(this)->getParentFunctionOrMethod());
898 }
899
900 /// Retrieves the "canonical" declaration of the given declaration.
901 virtual Decl *getCanonicalDecl() { return this; }
902 const Decl *getCanonicalDecl() const {
903 return const_cast<Decl*>(this)->getCanonicalDecl();
904 }
905
906 /// Whether this particular Decl is a canonical one.
907 bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
908
909protected:
910 /// Returns the next redeclaration or itself if this is the only decl.
911 ///
912 /// Decl subclasses that can be redeclared should override this method so that
913 /// Decl::redecl_iterator can iterate over them.
914 virtual Decl *getNextRedeclarationImpl() { return this; }
915
916 /// Implementation of getPreviousDecl(), to be overridden by any
917 /// subclass that has a redeclaration chain.
918 virtual Decl *getPreviousDeclImpl() { return nullptr; }
919
920 /// Implementation of getMostRecentDecl(), to be overridden by any
921 /// subclass that has a redeclaration chain.
922 virtual Decl *getMostRecentDeclImpl() { return this; }
923
924public:
925 /// Iterates through all the redeclarations of the same decl.
926 class redecl_iterator {
927 /// Current - The current declaration.
928 Decl *Current = nullptr;
929 Decl *Starter;
930
931 public:
932 using value_type = Decl *;
933 using reference = const value_type &;
934 using pointer = const value_type *;
935 using iterator_category = std::forward_iterator_tag;
936 using difference_type = std::ptrdiff_t;
937
938 redecl_iterator() = default;
939 explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {}
940
941 reference operator*() const { return Current; }
942 value_type operator->() const { return Current; }
943
944 redecl_iterator& operator++() {
945 assert(Current && "Advancing while iterator has reached end")((Current && "Advancing while iterator has reached end"
) ? static_cast<void> (0) : __assert_fail ("Current && \"Advancing while iterator has reached end\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 945, __PRETTY_FUNCTION__))
;
946 // Get either previous decl or latest decl.
947 Decl *Next = Current->getNextRedeclarationImpl();
948 assert(Next && "Should return next redeclaration or itself, never null!")((Next && "Should return next redeclaration or itself, never null!"
) ? static_cast<void> (0) : __assert_fail ("Next && \"Should return next redeclaration or itself, never null!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 948, __PRETTY_FUNCTION__))
;
949 Current = (Next != Starter) ? Next : nullptr;
950 return *this;
951 }
952
953 redecl_iterator operator++(int) {
954 redecl_iterator tmp(*this);
955 ++(*this);
956 return tmp;
957 }
958
959 friend bool operator==(redecl_iterator x, redecl_iterator y) {
960 return x.Current == y.Current;
961 }
962
963 friend bool operator!=(redecl_iterator x, redecl_iterator y) {
964 return x.Current != y.Current;
965 }
966 };
967
968 using redecl_range = llvm::iterator_range<redecl_iterator>;
969
970 /// Returns an iterator range for all the redeclarations of the same
971 /// decl. It will iterate at least once (when this decl is the only one).
972 redecl_range redecls() const {
973 return redecl_range(redecls_begin(), redecls_end());
974 }
975
976 redecl_iterator redecls_begin() const {
977 return redecl_iterator(const_cast<Decl *>(this));
978 }
979
980 redecl_iterator redecls_end() const { return redecl_iterator(); }
981
982 /// Retrieve the previous declaration that declares the same entity
983 /// as this declaration, or NULL if there is no previous declaration.
984 Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
985
986 /// Retrieve the previous declaration that declares the same entity
987 /// as this declaration, or NULL if there is no previous declaration.
988 const Decl *getPreviousDecl() const {
989 return const_cast<Decl *>(this)->getPreviousDeclImpl();
990 }
991
992 /// True if this is the first declaration in its redeclaration chain.
993 bool isFirstDecl() const {
994 return getPreviousDecl() == nullptr;
995 }
996
997 /// Retrieve the most recent declaration that declares the same entity
998 /// as this declaration (which may be this declaration).
999 Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
1000
1001 /// Retrieve the most recent declaration that declares the same entity
1002 /// as this declaration (which may be this declaration).
1003 const Decl *getMostRecentDecl() const {
1004 return const_cast<Decl *>(this)->getMostRecentDeclImpl();
1005 }
1006
1007 /// getBody - If this Decl represents a declaration for a body of code,
1008 /// such as a function or method definition, this method returns the
1009 /// top-level Stmt* of that body. Otherwise this method returns null.
1010 virtual Stmt* getBody() const { return nullptr; }
1011
1012 /// Returns true if this \c Decl represents a declaration for a body of
1013 /// code, such as a function or method definition.
1014 /// Note that \c hasBody can also return true if any redeclaration of this
1015 /// \c Decl represents a declaration for a body of code.
1016 virtual bool hasBody() const { return getBody() != nullptr; }
1017
1018 /// getBodyRBrace - Gets the right brace of the body, if a body exists.
1019 /// This works whether the body is a CompoundStmt or a CXXTryStmt.
1020 SourceLocation getBodyRBrace() const;
1021
1022 // global temp stats (until we have a per-module visitor)
1023 static void add(Kind k);
1024 static void EnableStatistics();
1025 static void PrintStats();
1026
1027 /// isTemplateParameter - Determines whether this declaration is a
1028 /// template parameter.
1029 bool isTemplateParameter() const;
1030
1031 /// isTemplateParameter - Determines whether this declaration is a
1032 /// template parameter pack.
1033 bool isTemplateParameterPack() const;
1034
1035 /// Whether this declaration is a parameter pack.
1036 bool isParameterPack() const;
1037
1038 /// returns true if this declaration is a template
1039 bool isTemplateDecl() const;
1040
1041 /// Whether this declaration is a function or function template.
1042 bool isFunctionOrFunctionTemplate() const {
1043 return (DeclKind >= Decl::firstFunction &&
1044 DeclKind <= Decl::lastFunction) ||
1045 DeclKind == FunctionTemplate;
1046 }
1047
1048 /// If this is a declaration that describes some template, this
1049 /// method returns that template declaration.
1050 ///
1051 /// Note that this returns nullptr for partial specializations, because they
1052 /// are not modeled as TemplateDecls. Use getDescribedTemplateParams to handle
1053 /// those cases.
1054 TemplateDecl *getDescribedTemplate() const;
1055
1056 /// If this is a declaration that describes some template or partial
1057 /// specialization, this returns the corresponding template parameter list.
1058 const TemplateParameterList *getDescribedTemplateParams() const;
1059
1060 /// Returns the function itself, or the templated function if this is a
1061 /// function template.
1062 FunctionDecl *getAsFunction() LLVM_READONLY__attribute__((__pure__));
1063
1064 const FunctionDecl *getAsFunction() const {
1065 return const_cast<Decl *>(this)->getAsFunction();
1066 }
1067
1068 /// Changes the namespace of this declaration to reflect that it's
1069 /// a function-local extern declaration.
1070 ///
1071 /// These declarations appear in the lexical context of the extern
1072 /// declaration, but in the semantic context of the enclosing namespace
1073 /// scope.
1074 void setLocalExternDecl() {
1075 Decl *Prev = getPreviousDecl();
1076 IdentifierNamespace &= ~IDNS_Ordinary;
1077
1078 // It's OK for the declaration to still have the "invisible friend" flag or
1079 // the "conflicts with tag declarations in this scope" flag for the outer
1080 // scope.
1081 assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 &&(((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag
)) == 0 && "namespace is not ordinary") ? static_cast
<void> (0) : __assert_fail ("(IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && \"namespace is not ordinary\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1082, __PRETTY_FUNCTION__))
1082 "namespace is not ordinary")(((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag
)) == 0 && "namespace is not ordinary") ? static_cast
<void> (0) : __assert_fail ("(IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && \"namespace is not ordinary\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1082, __PRETTY_FUNCTION__))
;
1083
1084 IdentifierNamespace |= IDNS_LocalExtern;
1085 if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
1086 IdentifierNamespace |= IDNS_Ordinary;
1087 }
1088
1089 /// Determine whether this is a block-scope declaration with linkage.
1090 /// This will either be a local variable declaration declared 'extern', or a
1091 /// local function declaration.
1092 bool isLocalExternDecl() {
1093 return IdentifierNamespace & IDNS_LocalExtern;
1094 }
1095
1096 /// Changes the namespace of this declaration to reflect that it's
1097 /// the object of a friend declaration.
1098 ///
1099 /// These declarations appear in the lexical context of the friending
1100 /// class, but in the semantic context of the actual entity. This property
1101 /// applies only to a specific decl object; other redeclarations of the
1102 /// same entity may not (and probably don't) share this property.
1103 void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
1104 unsigned OldNS = IdentifierNamespace;
1105 assert((OldNS & (IDNS_Tag | IDNS_Ordinary |(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
1106 IDNS_TagFriend | IDNS_OrdinaryFriend |(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
1107 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
1108 "namespace includes neither ordinary nor tag")(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
;
1109 assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
1110 IDNS_TagFriend | IDNS_OrdinaryFriend |((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
1111 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
1112 "namespace includes other than ordinary or tag")((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
;
1113
1114 Decl *Prev = getPreviousDecl();
1115 IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
1116
1117 if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
1118 IdentifierNamespace |= IDNS_TagFriend;
1119 if (PerformFriendInjection ||
1120 (Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
1121 IdentifierNamespace |= IDNS_Tag | IDNS_Type;
1122 }
1123
1124 if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend |
1125 IDNS_LocalExtern | IDNS_NonMemberOperator)) {
1126 IdentifierNamespace |= IDNS_OrdinaryFriend;
1127 if (PerformFriendInjection ||
1128 (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
1129 IdentifierNamespace |= IDNS_Ordinary;
1130 }
1131 }
1132
1133 enum FriendObjectKind {
1134 FOK_None, ///< Not a friend object.
1135 FOK_Declared, ///< A friend of a previously-declared entity.
1136 FOK_Undeclared ///< A friend of a previously-undeclared entity.
1137 };
1138
1139 /// Determines whether this declaration is the object of a
1140 /// friend declaration and, if so, what kind.
1141 ///
1142 /// There is currently no direct way to find the associated FriendDecl.
1143 FriendObjectKind getFriendObjectKind() const {
1144 unsigned mask =
1145 (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
1146 if (!mask) return FOK_None;
1147 return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
1148 : FOK_Undeclared);
1149 }
1150
1151 /// Specifies that this declaration is a C++ overloaded non-member.
1152 void setNonMemberOperator() {
1153 assert(getKind() == Function || getKind() == FunctionTemplate)((getKind() == Function || getKind() == FunctionTemplate) ? static_cast
<void> (0) : __assert_fail ("getKind() == Function || getKind() == FunctionTemplate"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1153, __PRETTY_FUNCTION__))
;
1154 assert((IdentifierNamespace & IDNS_Ordinary) &&(((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"
) ? static_cast<void> (0) : __assert_fail ("(IdentifierNamespace & IDNS_Ordinary) && \"visible non-member operators should be in ordinary namespace\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1155, __PRETTY_FUNCTION__))
1155 "visible non-member operators should be in ordinary namespace")(((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"
) ? static_cast<void> (0) : __assert_fail ("(IdentifierNamespace & IDNS_Ordinary) && \"visible non-member operators should be in ordinary namespace\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1155, __PRETTY_FUNCTION__))
;
1156 IdentifierNamespace |= IDNS_NonMemberOperator;
1157 }
1158
1159 static bool classofKind(Kind K) { return true; }
1160 static DeclContext *castToDeclContext(const Decl *);
1161 static Decl *castFromDeclContext(const DeclContext *);
1162
1163 void print(raw_ostream &Out, unsigned Indentation = 0,
1164 bool PrintInstantiation = false) const;
1165 void print(raw_ostream &Out, const PrintingPolicy &Policy,
1166 unsigned Indentation = 0, bool PrintInstantiation = false) const;
1167 static void printGroup(Decl** Begin, unsigned NumDecls,
1168 raw_ostream &Out, const PrintingPolicy &Policy,
1169 unsigned Indentation = 0);
1170
1171 // Debuggers don't usually respect default arguments.
1172 void dump() const;
1173
1174 // Same as dump(), but forces color printing.
1175 void dumpColor() const;
1176
1177 void dump(raw_ostream &Out, bool Deserialize = false,
1178 ASTDumpOutputFormat OutputFormat = ADOF_Default) const;
1179
1180 /// \return Unique reproducible object identifier
1181 int64_t getID() const;
1182
1183 /// Looks through the Decl's underlying type to extract a FunctionType
1184 /// when possible. Will return null if the type underlying the Decl does not
1185 /// have a FunctionType.
1186 const FunctionType *getFunctionType(bool BlocksToo = true) const;
1187
1188private:
1189 void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
1190 void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
1191 ASTContext &Ctx);
1192
1193protected:
1194 ASTMutationListener *getASTMutationListener() const;
1195};
1196
1197/// Determine whether two declarations declare the same entity.
1198inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
1199 if (!D1 || !D2)
1200 return false;
1201
1202 if (D1 == D2)
1203 return true;
1204
1205 return D1->getCanonicalDecl() == D2->getCanonicalDecl();
1206}
1207
1208/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
1209/// doing something to a specific decl.
1210class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
1211 const Decl *TheDecl;
1212 SourceLocation Loc;
1213 SourceManager &SM;
1214 const char *Message;
1215
1216public:
1217 PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
1218 SourceManager &sm, const char *Msg)
1219 : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
1220
1221 void print(raw_ostream &OS) const override;
1222};
1223} // namespace clang
1224
1225// Required to determine the layout of the PointerUnion<NamedDecl*> before
1226// seeing the NamedDecl definition being first used in DeclListNode::operator*.
1227namespace llvm {
1228 template <> struct PointerLikeTypeTraits<::clang::NamedDecl *> {
1229 static inline void *getAsVoidPointer(::clang::NamedDecl *P) { return P; }
1230 static inline ::clang::NamedDecl *getFromVoidPointer(void *P) {
1231 return static_cast<::clang::NamedDecl *>(P);
1232 }
1233 static constexpr int NumLowBitsAvailable = 3;
1234 };
1235}
1236
1237namespace clang {
1238/// A list storing NamedDecls in the lookup tables.
1239class DeclListNode {
1240 friend class ASTContext; // allocate, deallocate nodes.
1241 friend class StoredDeclsList;
1242public:
1243 using Decls = llvm::PointerUnion<NamedDecl*, DeclListNode*>;
1244 class iterator {
1245 friend class DeclContextLookupResult;
1246 friend class StoredDeclsList;
1247
1248 Decls Ptr;
1249 iterator(Decls Node) : Ptr(Node) { }
1250 public:
1251 using difference_type = ptrdiff_t;
1252 using value_type = NamedDecl*;
1253 using pointer = void;
1254 using reference = value_type;
1255 using iterator_category = std::forward_iterator_tag;
1256
1257 iterator() = default;
1258
1259 reference operator*() const {
1260 assert(Ptr && "dereferencing end() iterator")((Ptr && "dereferencing end() iterator") ? static_cast
<void> (0) : __assert_fail ("Ptr && \"dereferencing end() iterator\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1260, __PRETTY_FUNCTION__))
;
1261 if (DeclListNode *CurNode = Ptr.dyn_cast<DeclListNode*>())
1262 return CurNode->D;
1263 return Ptr.get<NamedDecl*>();
1264 }
1265 void operator->() const { } // Unsupported.
1266 bool operator==(const iterator &X) const { return Ptr == X.Ptr; }
1267 bool operator!=(const iterator &X) const { return Ptr != X.Ptr; }
1268 inline iterator &operator++() { // ++It
1269 assert(!Ptr.isNull() && "Advancing empty iterator")((!Ptr.isNull() && "Advancing empty iterator") ? static_cast
<void> (0) : __assert_fail ("!Ptr.isNull() && \"Advancing empty iterator\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 1269, __PRETTY_FUNCTION__))
;
1270
1271 if (DeclListNode *CurNode = Ptr.dyn_cast<DeclListNode*>())
1272 Ptr = CurNode->Rest;
1273 else
1274 Ptr = nullptr;
1275 return *this;
1276 }
1277 iterator operator++(int) { // It++
1278 iterator temp = *this;
1279 ++(*this);
1280 return temp;
1281 }
1282 // Enables the pattern for (iterator I =..., E = I.end(); I != E; ++I)
1283 iterator end() { return iterator(); }
1284 };
1285private:
1286 NamedDecl *D = nullptr;
1287 Decls Rest = nullptr;
1288 DeclListNode(NamedDecl *ND) : D(ND) {}
1289};
1290
1291/// The results of name lookup within a DeclContext.
1292class DeclContextLookupResult {
1293 using Decls = DeclListNode::Decls;
1294
1295 /// When in collection form, this is what the Data pointer points to.
1296 Decls Result;
1297
1298public:
1299 DeclContextLookupResult() = default;
1300 DeclContextLookupResult(Decls Result) : Result(Result) {}
1301
1302 using iterator = DeclListNode::iterator;
1303 using const_iterator = iterator;
1304 using reference = iterator::reference;
1305
1306 iterator begin() { return iterator(Result); }
1307 iterator end() { return iterator(); }
1308 const_iterator begin() const {
1309 return const_cast<DeclContextLookupResult*>(this)->begin();
1310 }
1311 const_iterator end() const { return iterator(); }
1312
1313 bool empty() const { return Result.isNull(); }
1314 bool isSingleResult() const { return Result.dyn_cast<NamedDecl*>(); }
1315 reference front() const { return *begin(); }
1316
1317 // Find the first declaration of the given type in the list. Note that this
1318 // is not in general the earliest-declared declaration, and should only be
1319 // used when it's not possible for there to be more than one match or where
1320 // it doesn't matter which one is found.
1321 template<class T> T *find_first() const {
1322 for (auto *D : *this)
1323 if (T *Decl = dyn_cast<T>(D))
1324 return Decl;
1325
1326 return nullptr;
1327 }
1328};
1329
1330/// DeclContext - This is used only as base class of specific decl types that
1331/// can act as declaration contexts. These decls are (only the top classes
1332/// that directly derive from DeclContext are mentioned, not their subclasses):
1333///
1334/// TranslationUnitDecl
1335/// ExternCContext
1336/// NamespaceDecl
1337/// TagDecl
1338/// OMPDeclareReductionDecl
1339/// OMPDeclareMapperDecl
1340/// FunctionDecl
1341/// ObjCMethodDecl
1342/// ObjCContainerDecl
1343/// LinkageSpecDecl
1344/// ExportDecl
1345/// BlockDecl
1346/// CapturedDecl
1347class DeclContext {
1348 /// For makeDeclVisibleInContextImpl
1349 friend class ASTDeclReader;
1350 /// For reconcileExternalVisibleStorage, CreateStoredDeclsMap,
1351 /// hasNeedToReconcileExternalVisibleStorage
1352 friend class ExternalASTSource;
1353 /// For CreateStoredDeclsMap
1354 friend class DependentDiagnostic;
1355 /// For hasNeedToReconcileExternalVisibleStorage,
1356 /// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups
1357 friend class ASTWriter;
1358
1359 // We use uint64_t in the bit-fields below since some bit-fields
1360 // cross the unsigned boundary and this breaks the packing.
1361
1362 /// Stores the bits used by DeclContext.
1363 /// If modified NumDeclContextBit, the ctor of DeclContext and the accessor
1364 /// methods in DeclContext should be updated appropriately.
1365 class DeclContextBitfields {
1366 friend class DeclContext;
1367 /// DeclKind - This indicates which class this is.
1368 uint64_t DeclKind : 7;
1369
1370 /// Whether this declaration context also has some external
1371 /// storage that contains additional declarations that are lexically
1372 /// part of this context.
1373 mutable uint64_t ExternalLexicalStorage : 1;
1374
1375 /// Whether this declaration context also has some external
1376 /// storage that contains additional declarations that are visible
1377 /// in this context.
1378 mutable uint64_t ExternalVisibleStorage : 1;
1379
1380 /// Whether this declaration context has had externally visible
1381 /// storage added since the last lookup. In this case, \c LookupPtr's
1382 /// invariant may not hold and needs to be fixed before we perform
1383 /// another lookup.
1384 mutable uint64_t NeedToReconcileExternalVisibleStorage : 1;
1385
1386 /// If \c true, this context may have local lexical declarations
1387 /// that are missing from the lookup table.
1388 mutable uint64_t HasLazyLocalLexicalLookups : 1;
1389
1390 /// If \c true, the external source may have lexical declarations
1391 /// that are missing from the lookup table.
1392 mutable uint64_t HasLazyExternalLexicalLookups : 1;
1393
1394 /// If \c true, lookups should only return identifier from
1395 /// DeclContext scope (for example TranslationUnit). Used in
1396 /// LookupQualifiedName()
1397 mutable uint64_t UseQualifiedLookup : 1;
1398 };
1399
1400 /// Number of bits in DeclContextBitfields.
1401 enum { NumDeclContextBits = 13 };
1402
1403 /// Stores the bits used by TagDecl.
1404 /// If modified NumTagDeclBits and the accessor
1405 /// methods in TagDecl should be updated appropriately.
1406 class TagDeclBitfields {
1407 friend class TagDecl;
1408 /// For the bits in DeclContextBitfields
1409 uint64_t : NumDeclContextBits;
1410
1411 /// The TagKind enum.
1412 uint64_t TagDeclKind : 3;
1413
1414 /// True if this is a definition ("struct foo {};"), false if it is a
1415 /// declaration ("struct foo;"). It is not considered a definition
1416 /// until the definition has been fully processed.
1417 uint64_t IsCompleteDefinition : 1;
1418
1419 /// True if this is currently being defined.
1420 uint64_t IsBeingDefined : 1;
1421
1422 /// True if this tag declaration is "embedded" (i.e., defined or declared
1423 /// for the very first time) in the syntax of a declarator.
1424 uint64_t IsEmbeddedInDeclarator : 1;
1425
1426 /// True if this tag is free standing, e.g. "struct foo;".
1427 uint64_t IsFreeStanding : 1;
1428
1429 /// Indicates whether it is possible for declarations of this kind
1430 /// to have an out-of-date definition.
1431 ///
1432 /// This option is only enabled when modules are enabled.
1433 uint64_t MayHaveOutOfDateDef : 1;
1434
1435 /// Has the full definition of this type been required by a use somewhere in
1436 /// the TU.
1437 uint64_t IsCompleteDefinitionRequired : 1;
1438 };
1439
1440 /// Number of non-inherited bits in TagDeclBitfields.
1441 enum { NumTagDeclBits = 9 };
1442
1443 /// Stores the bits used by EnumDecl.
1444 /// If modified NumEnumDeclBit and the accessor
1445 /// methods in EnumDecl should be updated appropriately.
1446 class EnumDeclBitfields {
1447 friend class EnumDecl;
1448 /// For the bits in DeclContextBitfields.
1449 uint64_t : NumDeclContextBits;
1450 /// For the bits in TagDeclBitfields.
1451 uint64_t : NumTagDeclBits;
1452
1453 /// Width in bits required to store all the non-negative
1454 /// enumerators of this enum.
1455 uint64_t NumPositiveBits : 8;
1456
1457 /// Width in bits required to store all the negative
1458 /// enumerators of this enum.
1459 uint64_t NumNegativeBits : 8;
1460
1461 /// True if this tag declaration is a scoped enumeration. Only
1462 /// possible in C++11 mode.
1463 uint64_t IsScoped : 1;
1464
1465 /// If this tag declaration is a scoped enum,
1466 /// then this is true if the scoped enum was declared using the class
1467 /// tag, false if it was declared with the struct tag. No meaning is
1468 /// associated if this tag declaration is not a scoped enum.
1469 uint64_t IsScopedUsingClassTag : 1;
1470
1471 /// True if this is an enumeration with fixed underlying type. Only
1472 /// possible in C++11, Microsoft extensions, or Objective C mode.
1473 uint64_t IsFixed : 1;
1474
1475 /// True if a valid hash is stored in ODRHash.
1476 uint64_t HasODRHash : 1;
1477 };
1478
1479 /// Number of non-inherited bits in EnumDeclBitfields.
1480 enum { NumEnumDeclBits = 20 };
1481
1482 /// Stores the bits used by RecordDecl.
1483 /// If modified NumRecordDeclBits and the accessor
1484 /// methods in RecordDecl should be updated appropriately.
1485 class RecordDeclBitfields {
1486 friend class RecordDecl;
1487 /// For the bits in DeclContextBitfields.
1488 uint64_t : NumDeclContextBits;
1489 /// For the bits in TagDeclBitfields.
1490 uint64_t : NumTagDeclBits;
1491
1492 /// This is true if this struct ends with a flexible
1493 /// array member (e.g. int X[]) or if this union contains a struct that does.
1494 /// If so, this cannot be contained in arrays or other structs as a member.
1495 uint64_t HasFlexibleArrayMember : 1;
1496
1497 /// Whether this is the type of an anonymous struct or union.
1498 uint64_t AnonymousStructOrUnion : 1;
1499
1500 /// This is true if this struct has at least one member
1501 /// containing an Objective-C object pointer type.
1502 uint64_t HasObjectMember : 1;
1503
1504 /// This is true if struct has at least one member of
1505 /// 'volatile' type.
1506 uint64_t HasVolatileMember : 1;
1507
1508 /// Whether the field declarations of this record have been loaded
1509 /// from external storage. To avoid unnecessary deserialization of
1510 /// methods/nested types we allow deserialization of just the fields
1511 /// when needed.
1512 mutable uint64_t LoadedFieldsFromExternalStorage : 1;
1513
1514 /// Basic properties of non-trivial C structs.
1515 uint64_t NonTrivialToPrimitiveDefaultInitialize : 1;
1516 uint64_t NonTrivialToPrimitiveCopy : 1;
1517 uint64_t NonTrivialToPrimitiveDestroy : 1;
1518
1519 /// The following bits indicate whether this is or contains a C union that
1520 /// is non-trivial to default-initialize, destruct, or copy. These bits
1521 /// imply the associated basic non-triviality predicates declared above.
1522 uint64_t HasNonTrivialToPrimitiveDefaultInitializeCUnion : 1;
1523 uint64_t HasNonTrivialToPrimitiveDestructCUnion : 1;
1524 uint64_t HasNonTrivialToPrimitiveCopyCUnion : 1;
1525
1526 /// Indicates whether this struct is destroyed in the callee.
1527 uint64_t ParamDestroyedInCallee : 1;
1528
1529 /// Represents the way this type is passed to a function.
1530 uint64_t ArgPassingRestrictions : 2;
1531 };
1532
1533 /// Number of non-inherited bits in RecordDeclBitfields.
1534 enum { NumRecordDeclBits = 14 };
1535
1536 /// Stores the bits used by OMPDeclareReductionDecl.
1537 /// If modified NumOMPDeclareReductionDeclBits and the accessor
1538 /// methods in OMPDeclareReductionDecl should be updated appropriately.
1539 class OMPDeclareReductionDeclBitfields {
1540 friend class OMPDeclareReductionDecl;
1541 /// For the bits in DeclContextBitfields
1542 uint64_t : NumDeclContextBits;
1543
1544 /// Kind of initializer,
1545 /// function call or omp_priv<init_expr> initializtion.
1546 uint64_t InitializerKind : 2;
1547 };
1548
1549 /// Number of non-inherited bits in OMPDeclareReductionDeclBitfields.
1550 enum { NumOMPDeclareReductionDeclBits = 2 };
1551
1552 /// Stores the bits used by FunctionDecl.
1553 /// If modified NumFunctionDeclBits and the accessor
1554 /// methods in FunctionDecl and CXXDeductionGuideDecl
1555 /// (for IsCopyDeductionCandidate) should be updated appropriately.
1556 class FunctionDeclBitfields {
1557 friend class FunctionDecl;
1558 /// For IsCopyDeductionCandidate
1559 friend class CXXDeductionGuideDecl;
1560 /// For the bits in DeclContextBitfields.
1561 uint64_t : NumDeclContextBits;
1562
1563 uint64_t SClass : 3;
1564 uint64_t IsInline : 1;
1565 uint64_t IsInlineSpecified : 1;
1566
1567 uint64_t IsVirtualAsWritten : 1;
1568 uint64_t IsPure : 1;
1569 uint64_t HasInheritedPrototype : 1;
1570 uint64_t HasWrittenPrototype : 1;
1571 uint64_t IsDeleted : 1;
1572 /// Used by CXXMethodDecl
1573 uint64_t IsTrivial : 1;
1574
1575 /// This flag indicates whether this function is trivial for the purpose of
1576 /// calls. This is meaningful only when this function is a copy/move
1577 /// constructor or a destructor.
1578 uint64_t IsTrivialForCall : 1;
1579
1580 uint64_t IsDefaulted : 1;
1581 uint64_t IsExplicitlyDefaulted : 1;
1582 uint64_t HasDefaultedFunctionInfo : 1;
1583 uint64_t HasImplicitReturnZero : 1;
1584 uint64_t IsLateTemplateParsed : 1;
1585
1586 /// Kind of contexpr specifier as defined by ConstexprSpecKind.
1587 uint64_t ConstexprKind : 2;
1588 uint64_t InstantiationIsPending : 1;
1589
1590 /// Indicates if the function uses __try.
1591 uint64_t UsesSEHTry : 1;
1592
1593 /// Indicates if the function was a definition
1594 /// but its body was skipped.
1595 uint64_t HasSkippedBody : 1;
1596
1597 /// Indicates if the function declaration will
1598 /// have a body, once we're done parsing it.
1599 uint64_t WillHaveBody : 1;
1600
1601 /// Indicates that this function is a multiversioned
1602 /// function using attribute 'target'.
1603 uint64_t IsMultiVersion : 1;
1604
1605 /// [C++17] Only used by CXXDeductionGuideDecl. Indicates that
1606 /// the Deduction Guide is the implicitly generated 'copy
1607 /// deduction candidate' (is used during overload resolution).
1608 uint64_t IsCopyDeductionCandidate : 1;
1609
1610 /// Store the ODRHash after first calculation.
1611 uint64_t HasODRHash : 1;
1612
1613 /// Indicates if the function uses Floating Point Constrained Intrinsics
1614 uint64_t UsesFPIntrin : 1;
1615 };
1616
1617 /// Number of non-inherited bits in FunctionDeclBitfields.
1618 enum { NumFunctionDeclBits = 27 };
1619
1620 /// Stores the bits used by CXXConstructorDecl. If modified
1621 /// NumCXXConstructorDeclBits and the accessor
1622 /// methods in CXXConstructorDecl should be updated appropriately.
1623 class CXXConstructorDeclBitfields {
1624 friend class CXXConstructorDecl;
1625 /// For the bits in DeclContextBitfields.
1626 uint64_t : NumDeclContextBits;
1627 /// For the bits in FunctionDeclBitfields.
1628 uint64_t : NumFunctionDeclBits;
1629
1630 /// 24 bits to fit in the remaining available space.
1631 /// Note that this makes CXXConstructorDeclBitfields take
1632 /// exactly 64 bits and thus the width of NumCtorInitializers
1633 /// will need to be shrunk if some bit is added to NumDeclContextBitfields,
1634 /// NumFunctionDeclBitfields or CXXConstructorDeclBitfields.
1635 uint64_t NumCtorInitializers : 21;
1636 uint64_t IsInheritingConstructor : 1;
1637
1638 /// Whether this constructor has a trail-allocated explicit specifier.
1639 uint64_t HasTrailingExplicitSpecifier : 1;
1640 /// If this constructor does't have a trail-allocated explicit specifier.
1641 /// Whether this constructor is explicit specified.
1642 uint64_t IsSimpleExplicit : 1;
1643 };
1644
1645 /// Number of non-inherited bits in CXXConstructorDeclBitfields.
1646 enum {
1647 NumCXXConstructorDeclBits = 64 - NumDeclContextBits - NumFunctionDeclBits
1648 };
1649
1650 /// Stores the bits used by ObjCMethodDecl.
1651 /// If modified NumObjCMethodDeclBits and the accessor
1652 /// methods in ObjCMethodDecl should be updated appropriately.
1653 class ObjCMethodDeclBitfields {
1654 friend class ObjCMethodDecl;
1655
1656 /// For the bits in DeclContextBitfields.
1657 uint64_t : NumDeclContextBits;
1658
1659 /// The conventional meaning of this method; an ObjCMethodFamily.
1660 /// This is not serialized; instead, it is computed on demand and
1661 /// cached.
1662 mutable uint64_t Family : ObjCMethodFamilyBitWidth;
1663
1664 /// instance (true) or class (false) method.
1665 uint64_t IsInstance : 1;
1666 uint64_t IsVariadic : 1;
1667
1668 /// True if this method is the getter or setter for an explicit property.
1669 uint64_t IsPropertyAccessor : 1;
1670
1671 /// True if this method is a synthesized property accessor stub.
1672 uint64_t IsSynthesizedAccessorStub : 1;
1673
1674 /// Method has a definition.
1675 uint64_t IsDefined : 1;
1676
1677 /// Method redeclaration in the same interface.
1678 uint64_t IsRedeclaration : 1;
1679
1680 /// Is redeclared in the same interface.
1681 mutable uint64_t HasRedeclaration : 1;
1682
1683 /// \@required/\@optional
1684 uint64_t DeclImplementation : 2;
1685
1686 /// in, inout, etc.
1687 uint64_t objcDeclQualifier : 7;
1688
1689 /// Indicates whether this method has a related result type.
1690 uint64_t RelatedResultType : 1;
1691
1692 /// Whether the locations of the selector identifiers are in a
1693 /// "standard" position, a enum SelectorLocationsKind.
1694 uint64_t SelLocsKind : 2;
1695
1696 /// Whether this method overrides any other in the class hierarchy.
1697 ///
1698 /// A method is said to override any method in the class's
1699 /// base classes, its protocols, or its categories' protocols, that has
1700 /// the same selector and is of the same kind (class or instance).
1701 /// A method in an implementation is not considered as overriding the same
1702 /// method in the interface or its categories.
1703 uint64_t IsOverriding : 1;
1704
1705 /// Indicates if the method was a definition but its body was skipped.
1706 uint64_t HasSkippedBody : 1;
1707 };
1708
1709 /// Number of non-inherited bits in ObjCMethodDeclBitfields.
1710 enum { NumObjCMethodDeclBits = 24 };
1711
1712 /// Stores the bits used by ObjCContainerDecl.
1713 /// If modified NumObjCContainerDeclBits and the accessor
1714 /// methods in ObjCContainerDecl should be updated appropriately.
1715 class ObjCContainerDeclBitfields {
1716 friend class ObjCContainerDecl;
1717 /// For the bits in DeclContextBitfields
1718 uint32_t : NumDeclContextBits;
1719
1720 // Not a bitfield but this saves space.
1721 // Note that ObjCContainerDeclBitfields is full.
1722 SourceLocation AtStart;
1723 };
1724
1725 /// Number of non-inherited bits in ObjCContainerDeclBitfields.
1726 /// Note that here we rely on the fact that SourceLocation is 32 bits
1727 /// wide. We check this with the static_assert in the ctor of DeclContext.
1728 enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits };
1729
1730 /// Stores the bits used by LinkageSpecDecl.
1731 /// If modified NumLinkageSpecDeclBits and the accessor
1732 /// methods in LinkageSpecDecl should be updated appropriately.
1733 class LinkageSpecDeclBitfields {
1734 friend class LinkageSpecDecl;
1735 /// For the bits in DeclContextBitfields.
1736 uint64_t : NumDeclContextBits;
1737
1738 /// The language for this linkage specification with values
1739 /// in the enum LinkageSpecDecl::LanguageIDs.
1740 uint64_t Language : 3;
1741
1742 /// True if this linkage spec has braces.
1743 /// This is needed so that hasBraces() returns the correct result while the
1744 /// linkage spec body is being parsed. Once RBraceLoc has been set this is
1745 /// not used, so it doesn't need to be serialized.
1746 uint64_t HasBraces : 1;
1747 };
1748
1749 /// Number of non-inherited bits in LinkageSpecDeclBitfields.
1750 enum { NumLinkageSpecDeclBits = 4 };
1751
1752 /// Stores the bits used by BlockDecl.
1753 /// If modified NumBlockDeclBits and the accessor
1754 /// methods in BlockDecl should be updated appropriately.
1755 class BlockDeclBitfields {
1756 friend class BlockDecl;
1757 /// For the bits in DeclContextBitfields.
1758 uint64_t : NumDeclContextBits;
1759
1760 uint64_t IsVariadic : 1;
1761 uint64_t CapturesCXXThis : 1;
1762 uint64_t BlockMissingReturnType : 1;
1763 uint64_t IsConversionFromLambda : 1;
1764
1765 /// A bit that indicates this block is passed directly to a function as a
1766 /// non-escaping parameter.
1767 uint64_t DoesNotEscape : 1;
1768
1769 /// A bit that indicates whether it's possible to avoid coying this block to
1770 /// the heap when it initializes or is assigned to a local variable with
1771 /// automatic storage.
1772 uint64_t CanAvoidCopyToHeap : 1;
1773 };
1774
1775 /// Number of non-inherited bits in BlockDeclBitfields.
1776 enum { NumBlockDeclBits = 5 };
1777
1778 /// Pointer to the data structure used to lookup declarations
1779 /// within this context (or a DependentStoredDeclsMap if this is a
1780 /// dependent context). We maintain the invariant that, if the map
1781 /// contains an entry for a DeclarationName (and we haven't lazily
1782 /// omitted anything), then it contains all relevant entries for that
1783 /// name (modulo the hasExternalDecls() flag).
1784 mutable StoredDeclsMap *LookupPtr = nullptr;
1785
1786protected:
1787 /// This anonymous union stores the bits belonging to DeclContext and classes
1788 /// deriving from it. The goal is to use otherwise wasted
1789 /// space in DeclContext to store data belonging to derived classes.
1790 /// The space saved is especially significient when pointers are aligned
1791 /// to 8 bytes. In this case due to alignment requirements we have a
1792 /// little less than 8 bytes free in DeclContext which we can use.
1793 /// We check that none of the classes in this union is larger than
1794 /// 8 bytes with static_asserts in the ctor of DeclContext.
1795 union {
1796 DeclContextBitfields DeclContextBits;
1797 TagDeclBitfields TagDeclBits;
1798 EnumDeclBitfields EnumDeclBits;
1799 RecordDeclBitfields RecordDeclBits;
1800 OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits;
1801 FunctionDeclBitfields FunctionDeclBits;
1802 CXXConstructorDeclBitfields CXXConstructorDeclBits;
1803 ObjCMethodDeclBitfields ObjCMethodDeclBits;
1804 ObjCContainerDeclBitfields ObjCContainerDeclBits;
1805 LinkageSpecDeclBitfields LinkageSpecDeclBits;
1806 BlockDeclBitfields BlockDeclBits;
1807
1808 static_assert(sizeof(DeclContextBitfields) <= 8,
1809 "DeclContextBitfields is larger than 8 bytes!");
1810 static_assert(sizeof(TagDeclBitfields) <= 8,
1811 "TagDeclBitfields is larger than 8 bytes!");
1812 static_assert(sizeof(EnumDeclBitfields) <= 8,
1813 "EnumDeclBitfields is larger than 8 bytes!");
1814 static_assert(sizeof(RecordDeclBitfields) <= 8,
1815 "RecordDeclBitfields is larger than 8 bytes!");
1816 static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8,
1817 "OMPDeclareReductionDeclBitfields is larger than 8 bytes!");
1818 static_assert(sizeof(FunctionDeclBitfields) <= 8,
1819 "FunctionDeclBitfields is larger than 8 bytes!");
1820 static_assert(sizeof(CXXConstructorDeclBitfields) <= 8,
1821 "CXXConstructorDeclBitfields is larger than 8 bytes!");
1822 static_assert(sizeof(ObjCMethodDeclBitfields) <= 8,
1823 "ObjCMethodDeclBitfields is larger than 8 bytes!");
1824 static_assert(sizeof(ObjCContainerDeclBitfields) <= 8,
1825 "ObjCContainerDeclBitfields is larger than 8 bytes!");
1826 static_assert(sizeof(LinkageSpecDeclBitfields) <= 8,
1827 "LinkageSpecDeclBitfields is larger than 8 bytes!");
1828 static_assert(sizeof(BlockDeclBitfields) <= 8,
1829 "BlockDeclBitfields is larger than 8 bytes!");
1830 };
1831
1832 /// FirstDecl - The first declaration stored within this declaration
1833 /// context.
1834 mutable Decl *FirstDecl = nullptr;
1835
1836 /// LastDecl - The last declaration stored within this declaration
1837 /// context. FIXME: We could probably cache this value somewhere
1838 /// outside of the DeclContext, to reduce the size of DeclContext by
1839 /// another pointer.
1840 mutable Decl *LastDecl = nullptr;
1841
1842 /// Build up a chain of declarations.
1843 ///
1844 /// \returns the first/last pair of declarations.
1845 static std::pair<Decl *, Decl *>
1846 BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
1847
1848 DeclContext(Decl::Kind K);
1849
1850public:
1851 ~DeclContext();
1852
1853 Decl::Kind getDeclKind() const {
1854 return static_cast<Decl::Kind>(DeclContextBits.DeclKind);
1855 }
1856
1857 const char *getDeclKindName() const;
1858
1859 /// getParent - Returns the containing DeclContext.
1860 DeclContext *getParent() {
1861 return cast<Decl>(this)->getDeclContext();
1862 }
1863 const DeclContext *getParent() const {
1864 return const_cast<DeclContext*>(this)->getParent();
1865 }
1866
1867 /// getLexicalParent - Returns the containing lexical DeclContext. May be
1868 /// different from getParent, e.g.:
1869 ///
1870 /// namespace A {
1871 /// struct S;
1872 /// }
1873 /// struct A::S {}; // getParent() == namespace 'A'
1874 /// // getLexicalParent() == translation unit
1875 ///
1876 DeclContext *getLexicalParent() {
1877 return cast<Decl>(this)->getLexicalDeclContext();
1878 }
1879 const DeclContext *getLexicalParent() const {
1880 return const_cast<DeclContext*>(this)->getLexicalParent();
1881 }
1882
1883 DeclContext *getLookupParent();
1884
1885 const DeclContext *getLookupParent() const {
1886 return const_cast<DeclContext*>(this)->getLookupParent();
1887 }
1888
1889 ASTContext &getParentASTContext() const {
1890 return cast<Decl>(this)->getASTContext();
1891 }
1892
1893 bool isClosure() const { return getDeclKind() == Decl::Block; }
1894
1895 /// Return this DeclContext if it is a BlockDecl. Otherwise, return the
1896 /// innermost enclosing BlockDecl or null if there are no enclosing blocks.
1897 const BlockDecl *getInnermostBlockDecl() const;
1898
1899 bool isObjCContainer() const {
1900 switch (getDeclKind()) {
1901 case Decl::ObjCCategory:
1902 case Decl::ObjCCategoryImpl:
1903 case Decl::ObjCImplementation:
1904 case Decl::ObjCInterface:
1905 case Decl::ObjCProtocol:
1906 return true;
1907 default:
1908 return false;
1909 }
1910 }
1911
1912 bool isFunctionOrMethod() const {
1913 switch (getDeclKind()) {
1914 case Decl::Block:
1915 case Decl::Captured:
1916 case Decl::ObjCMethod:
1917 return true;
1918 default:
1919 return getDeclKind() >= Decl::firstFunction &&
1920 getDeclKind() <= Decl::lastFunction;
1921 }
1922 }
1923
1924 /// Test whether the context supports looking up names.
1925 bool isLookupContext() const {
1926 return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec &&
1927 getDeclKind() != Decl::Export;
1928 }
1929
1930 bool isFileContext() const {
1931 return getDeclKind() == Decl::TranslationUnit ||
1932 getDeclKind() == Decl::Namespace;
1933 }
1934
1935 bool isTranslationUnit() const {
1936 return getDeclKind() == Decl::TranslationUnit;
1937 }
1938
1939 bool isRecord() const {
1940 return getDeclKind() >= Decl::firstRecord &&
1941 getDeclKind() <= Decl::lastRecord;
1942 }
1943
1944 bool isNamespace() const { return getDeclKind() == Decl::Namespace; }
1945
1946 bool isStdNamespace() const;
1947
1948 bool isInlineNamespace() const;
1949
1950 /// Determines whether this context is dependent on a
1951 /// template parameter.
1952 bool isDependentContext() const;
1953
1954 /// isTransparentContext - Determines whether this context is a
1955 /// "transparent" context, meaning that the members declared in this
1956 /// context are semantically declared in the nearest enclosing
1957 /// non-transparent (opaque) context but are lexically declared in
1958 /// this context. For example, consider the enumerators of an
1959 /// enumeration type:
1960 /// @code
1961 /// enum E {
1962 /// Val1
1963 /// };
1964 /// @endcode
1965 /// Here, E is a transparent context, so its enumerator (Val1) will
1966 /// appear (semantically) that it is in the same context of E.
1967 /// Examples of transparent contexts include: enumerations (except for
1968 /// C++0x scoped enums), and C++ linkage specifications.
1969 bool isTransparentContext() const;
1970
1971 /// Determines whether this context or some of its ancestors is a
1972 /// linkage specification context that specifies C linkage.
1973 bool isExternCContext() const;
1974
1975 /// Retrieve the nearest enclosing C linkage specification context.
1976 const LinkageSpecDecl *getExternCContext() const;
1977
1978 /// Determines whether this context or some of its ancestors is a
1979 /// linkage specification context that specifies C++ linkage.
1980 bool isExternCXXContext() const;
1981
1982 /// Determine whether this declaration context is equivalent
1983 /// to the declaration context DC.
1984 bool Equals(const DeclContext *DC) const {
1985 return DC && this->getPrimaryContext() == DC->getPrimaryContext();
1986 }
1987
1988 /// Determine whether this declaration context encloses the
1989 /// declaration context DC.
1990 bool Encloses(const DeclContext *DC) const;
1991
1992 /// Find the nearest non-closure ancestor of this context,
1993 /// i.e. the innermost semantic parent of this context which is not
1994 /// a closure. A context may be its own non-closure ancestor.
1995 Decl *getNonClosureAncestor();
1996 const Decl *getNonClosureAncestor() const {
1997 return const_cast<DeclContext*>(this)->getNonClosureAncestor();
1998 }
1999
2000 /// getPrimaryContext - There may be many different
2001 /// declarations of the same entity (including forward declarations
2002 /// of classes, multiple definitions of namespaces, etc.), each with
2003 /// a different set of declarations. This routine returns the
2004 /// "primary" DeclContext structure, which will contain the
2005 /// information needed to perform name lookup into this context.
2006 DeclContext *getPrimaryContext();
2007 const DeclContext *getPrimaryContext() const {
2008 return const_cast<DeclContext*>(this)->getPrimaryContext();
2009 }
2010
2011 /// getRedeclContext - Retrieve the context in which an entity conflicts with
2012 /// other entities of the same name, or where it is a redeclaration if the
2013 /// two entities are compatible. This skips through transparent contexts.
2014 DeclContext *getRedeclContext();
2015 const DeclContext *getRedeclContext() const {
2016 return const_cast<DeclContext *>(this)->getRedeclContext();
2017 }
2018
2019 /// Retrieve the nearest enclosing namespace context.
2020 DeclContext *getEnclosingNamespaceContext();
2021 const DeclContext *getEnclosingNamespaceContext() const {
2022 return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
2023 }
2024
2025 /// Retrieve the outermost lexically enclosing record context.
2026 RecordDecl *getOuterLexicalRecordContext();
2027 const RecordDecl *getOuterLexicalRecordContext() const {
2028 return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
2029 }
2030
2031 /// Test if this context is part of the enclosing namespace set of
2032 /// the context NS, as defined in C++0x [namespace.def]p9. If either context
2033 /// isn't a namespace, this is equivalent to Equals().
2034 ///
2035 /// The enclosing namespace set of a namespace is the namespace and, if it is
2036 /// inline, its enclosing namespace, recursively.
2037 bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
2038
2039 /// Collects all of the declaration contexts that are semantically
2040 /// connected to this declaration context.
2041 ///
2042 /// For declaration contexts that have multiple semantically connected but
2043 /// syntactically distinct contexts, such as C++ namespaces, this routine
2044 /// retrieves the complete set of such declaration contexts in source order.
2045 /// For example, given:
2046 ///
2047 /// \code
2048 /// namespace N {
2049 /// int x;
2050 /// }
2051 /// namespace N {
2052 /// int y;
2053 /// }
2054 /// \endcode
2055 ///
2056 /// The \c Contexts parameter will contain both definitions of N.
2057 ///
2058 /// \param Contexts Will be cleared and set to the set of declaration
2059 /// contexts that are semanticaly connected to this declaration context,
2060 /// in source order, including this context (which may be the only result,
2061 /// for non-namespace contexts).
2062 void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
2063
2064 /// decl_iterator - Iterates through the declarations stored
2065 /// within this context.
2066 class decl_iterator {
2067 /// Current - The current declaration.
2068 Decl *Current = nullptr;
2069
2070 public:
2071 using value_type = Decl *;
2072 using reference = const value_type &;
2073 using pointer = const value_type *;
2074 using iterator_category = std::forward_iterator_tag;
2075 using difference_type = std::ptrdiff_t;
2076
2077 decl_iterator() = default;
2078 explicit decl_iterator(Decl *C) : Current(C) {}
2079
2080 reference operator*() const { return Current; }
2081
2082 // This doesn't meet the iterator requirements, but it's convenient
2083 value_type operator->() const { return Current; }
2084
2085 decl_iterator& operator++() {
2086 Current = Current->getNextDeclInContext();
2087 return *this;
2088 }
2089
2090 decl_iterator operator++(int) {
2091 decl_iterator tmp(*this);
2092 ++(*this);
2093 return tmp;
2094 }
2095
2096 friend bool operator==(decl_iterator x, decl_iterator y) {
2097 return x.Current == y.Current;
2098 }
2099
2100 friend bool operator!=(decl_iterator x, decl_iterator y) {
2101 return x.Current != y.Current;
2102 }
2103 };
2104
2105 using decl_range = llvm::iterator_range<decl_iterator>;
2106
2107 /// decls_begin/decls_end - Iterate over the declarations stored in
2108 /// this context.
2109 decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
2110 decl_iterator decls_begin() const;
2111 decl_iterator decls_end() const { return decl_iterator(); }
2112 bool decls_empty() const;
2113
2114 /// noload_decls_begin/end - Iterate over the declarations stored in this
2115 /// context that are currently loaded; don't attempt to retrieve anything
2116 /// from an external source.
2117 decl_range noload_decls() const {
2118 return decl_range(noload_decls_begin(), noload_decls_end());
2119 }
2120 decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
2121 decl_iterator noload_decls_end() const { return decl_iterator(); }
2122
2123 /// specific_decl_iterator - Iterates over a subrange of
2124 /// declarations stored in a DeclContext, providing only those that
2125 /// are of type SpecificDecl (or a class derived from it). This
2126 /// iterator is used, for example, to provide iteration over just
2127 /// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
2128 template<typename SpecificDecl>
2129 class specific_decl_iterator {
2130 /// Current - The current, underlying declaration iterator, which
2131 /// will either be NULL or will point to a declaration of
2132 /// type SpecificDecl.
2133 DeclContext::decl_iterator Current;
2134
2135 /// SkipToNextDecl - Advances the current position up to the next
2136 /// declaration of type SpecificDecl that also meets the criteria
2137 /// required by Acceptable.
2138 void SkipToNextDecl() {
2139 while (*Current && !isa<SpecificDecl>(*Current))
2140 ++Current;
2141 }
2142
2143 public:
2144 using value_type = SpecificDecl *;
2145 // TODO: Add reference and pointer types (with some appropriate proxy type)
2146 // if we ever have a need for them.
2147 using reference = void;
2148 using pointer = void;
2149 using difference_type =
2150 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2151 using iterator_category = std::forward_iterator_tag;
2152
2153 specific_decl_iterator() = default;
2154
2155 /// specific_decl_iterator - Construct a new iterator over a
2156 /// subset of the declarations the range [C,
2157 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2158 /// member function of SpecificDecl that should return true for
2159 /// all of the SpecificDecl instances that will be in the subset
2160 /// of iterators. For example, if you want Objective-C instance
2161 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2162 /// &ObjCMethodDecl::isInstanceMethod.
2163 explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2164 SkipToNextDecl();
2165 }
2166
2167 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2168
2169 // This doesn't meet the iterator requirements, but it's convenient
2170 value_type operator->() const { return **this; }
2171
2172 specific_decl_iterator& operator++() {
2173 ++Current;
2174 SkipToNextDecl();
2175 return *this;
2176 }
2177
2178 specific_decl_iterator operator++(int) {
2179 specific_decl_iterator tmp(*this);
2180 ++(*this);
2181 return tmp;
2182 }
2183
2184 friend bool operator==(const specific_decl_iterator& x,
2185 const specific_decl_iterator& y) {
2186 return x.Current == y.Current;
2187 }
2188
2189 friend bool operator!=(const specific_decl_iterator& x,
2190 const specific_decl_iterator& y) {
2191 return x.Current != y.Current;
2192 }
2193 };
2194
2195 /// Iterates over a filtered subrange of declarations stored
2196 /// in a DeclContext.
2197 ///
2198 /// This iterator visits only those declarations that are of type
2199 /// SpecificDecl (or a class derived from it) and that meet some
2200 /// additional run-time criteria. This iterator is used, for
2201 /// example, to provide access to the instance methods within an
2202 /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
2203 /// Acceptable = ObjCMethodDecl::isInstanceMethod).
2204 template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
2205 class filtered_decl_iterator {
2206 /// Current - The current, underlying declaration iterator, which
2207 /// will either be NULL or will point to a declaration of
2208 /// type SpecificDecl.
2209 DeclContext::decl_iterator Current;
2210
2211 /// SkipToNextDecl - Advances the current position up to the next
2212 /// declaration of type SpecificDecl that also meets the criteria
2213 /// required by Acceptable.
2214 void SkipToNextDecl() {
2215 while (*Current &&
2216 (!isa<SpecificDecl>(*Current) ||
2217 (Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
2218 ++Current;
2219 }
2220
2221 public:
2222 using value_type = SpecificDecl *;
2223 // TODO: Add reference and pointer types (with some appropriate proxy type)
2224 // if we ever have a need for them.
2225 using reference = void;
2226 using pointer = void;
2227 using difference_type =
2228 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2229 using iterator_category = std::forward_iterator_tag;
2230
2231 filtered_decl_iterator() = default;
2232
2233 /// filtered_decl_iterator - Construct a new iterator over a
2234 /// subset of the declarations the range [C,
2235 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2236 /// member function of SpecificDecl that should return true for
2237 /// all of the SpecificDecl instances that will be in the subset
2238 /// of iterators. For example, if you want Objective-C instance
2239 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2240 /// &ObjCMethodDecl::isInstanceMethod.
2241 explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2242 SkipToNextDecl();
2243 }
2244
2245 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2246 value_type operator->() const { return cast<SpecificDecl>(*Current); }
2247
2248 filtered_decl_iterator& operator++() {
2249 ++Current;
2250 SkipToNextDecl();
2251 return *this;
2252 }
2253
2254 filtered_decl_iterator operator++(int) {
2255 filtered_decl_iterator tmp(*this);
2256 ++(*this);
2257 return tmp;
2258 }
2259
2260 friend bool operator==(const filtered_decl_iterator& x,
2261 const filtered_decl_iterator& y) {
2262 return x.Current == y.Current;
2263 }
2264
2265 friend bool operator!=(const filtered_decl_iterator& x,
2266 const filtered_decl_iterator& y) {
2267 return x.Current != y.Current;
2268 }
2269 };
2270
2271 /// Add the declaration D into this context.
2272 ///
2273 /// This routine should be invoked when the declaration D has first
2274 /// been declared, to place D into the context where it was
2275 /// (lexically) defined. Every declaration must be added to one
2276 /// (and only one!) context, where it can be visited via
2277 /// [decls_begin(), decls_end()). Once a declaration has been added
2278 /// to its lexical context, the corresponding DeclContext owns the
2279 /// declaration.
2280 ///
2281 /// If D is also a NamedDecl, it will be made visible within its
2282 /// semantic context via makeDeclVisibleInContext.
2283 void addDecl(Decl *D);
2284
2285 /// Add the declaration D into this context, but suppress
2286 /// searches for external declarations with the same name.
2287 ///
2288 /// Although analogous in function to addDecl, this removes an
2289 /// important check. This is only useful if the Decl is being
2290 /// added in response to an external search; in all other cases,
2291 /// addDecl() is the right function to use.
2292 /// See the ASTImporter for use cases.
2293 void addDeclInternal(Decl *D);
2294
2295 /// Add the declaration D to this context without modifying
2296 /// any lookup tables.
2297 ///
2298 /// This is useful for some operations in dependent contexts where
2299 /// the semantic context might not be dependent; this basically
2300 /// only happens with friends.
2301 void addHiddenDecl(Decl *D);
2302
2303 /// Removes a declaration from this context.
2304 void removeDecl(Decl *D);
2305
2306 /// Checks whether a declaration is in this context.
2307 bool containsDecl(Decl *D) const;
2308
2309 /// Checks whether a declaration is in this context.
2310 /// This also loads the Decls from the external source before the check.
2311 bool containsDeclAndLoad(Decl *D) const;
2312
2313 using lookup_result = DeclContextLookupResult;
2314 using lookup_iterator = lookup_result::iterator;
2315
2316 /// lookup - Find the declarations (if any) with the given Name in
2317 /// this context. Returns a range of iterators that contains all of
2318 /// the declarations with this name, with object, function, member,
2319 /// and enumerator names preceding any tag name. Note that this
2320 /// routine will not look into parent contexts.
2321 lookup_result lookup(DeclarationName Name) const;
2322
2323 /// Find the declarations with the given name that are visible
2324 /// within this context; don't attempt to retrieve anything from an
2325 /// external source.
2326 lookup_result noload_lookup(DeclarationName Name);
2327
2328 /// A simplistic name lookup mechanism that performs name lookup
2329 /// into this declaration context without consulting the external source.
2330 ///
2331 /// This function should almost never be used, because it subverts the
2332 /// usual relationship between a DeclContext and the external source.
2333 /// See the ASTImporter for the (few, but important) use cases.
2334 ///
2335 /// FIXME: This is very inefficient; replace uses of it with uses of
2336 /// noload_lookup.
2337 void localUncachedLookup(DeclarationName Name,
2338 SmallVectorImpl<NamedDecl *> &Results);
2339
2340 /// Makes a declaration visible within this context.
2341 ///
2342 /// This routine makes the declaration D visible to name lookup
2343 /// within this context and, if this is a transparent context,
2344 /// within its parent contexts up to the first enclosing
2345 /// non-transparent context. Making a declaration visible within a
2346 /// context does not transfer ownership of a declaration, and a
2347 /// declaration can be visible in many contexts that aren't its
2348 /// lexical context.
2349 ///
2350 /// If D is a redeclaration of an existing declaration that is
2351 /// visible from this context, as determined by
2352 /// NamedDecl::declarationReplaces, the previous declaration will be
2353 /// replaced with D.
2354 void makeDeclVisibleInContext(NamedDecl *D);
2355
2356 /// all_lookups_iterator - An iterator that provides a view over the results
2357 /// of looking up every possible name.
2358 class all_lookups_iterator;
2359
2360 using lookups_range = llvm::iterator_range<all_lookups_iterator>;
2361
2362 lookups_range lookups() const;
2363 // Like lookups(), but avoids loading external declarations.
2364 // If PreserveInternalState, avoids building lookup data structures too.
2365 lookups_range noload_lookups(bool PreserveInternalState) const;
2366
2367 /// Iterators over all possible lookups within this context.
2368 all_lookups_iterator lookups_begin() const;
2369 all_lookups_iterator lookups_end() const;
2370
2371 /// Iterators over all possible lookups within this context that are
2372 /// currently loaded; don't attempt to retrieve anything from an external
2373 /// source.
2374 all_lookups_iterator noload_lookups_begin() const;
2375 all_lookups_iterator noload_lookups_end() const;
2376
2377 struct udir_iterator;
2378
2379 using udir_iterator_base =
2380 llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
2381 std::random_access_iterator_tag,
2382 UsingDirectiveDecl *>;
2383
2384 struct udir_iterator : udir_iterator_base {
2385 udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
2386
2387 UsingDirectiveDecl *operator*() const;
2388 };
2389
2390 using udir_range = llvm::iterator_range<udir_iterator>;
2391
2392 udir_range using_directives() const;
2393
2394 // These are all defined in DependentDiagnostic.h.
2395 class ddiag_iterator;
2396
2397 using ddiag_range = llvm::iterator_range<DeclContext::ddiag_iterator>;
2398
2399 inline ddiag_range ddiags() const;
2400
2401 // Low-level accessors
2402
2403 /// Mark that there are external lexical declarations that we need
2404 /// to include in our lookup table (and that are not available as external
2405 /// visible lookups). These extra lookup results will be found by walking
2406 /// the lexical declarations of this context. This should be used only if
2407 /// setHasExternalLexicalStorage() has been called on any decl context for
2408 /// which this is the primary context.
2409 void setMustBuildLookupTable() {
2410 assert(this == getPrimaryContext() &&((this == getPrimaryContext() && "should only be called on primary context"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"should only be called on primary context\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 2411, __PRETTY_FUNCTION__))
2411 "should only be called on primary context")((this == getPrimaryContext() && "should only be called on primary context"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"should only be called on primary context\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include/clang/AST/DeclBase.h"
, 2411, __PRETTY_FUNCTION__))
;
2412 DeclContextBits.HasLazyExternalLexicalLookups = true;
2413 }
2414
2415 /// Retrieve the internal representation of the lookup structure.
2416 /// This may omit some names if we are lazily building the structure.
2417 StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
2418
2419 /// Ensure the lookup structure is fully-built and return it.
2420 StoredDeclsMap *buildLookup();
2421
2422 /// Whether this DeclContext has external storage containing
2423 /// additional declarations that are lexically in this context.
2424 bool hasExternalLexicalStorage() const {
2425 return DeclContextBits.ExternalLexicalStorage;
2426 }
2427
2428 /// State whether this DeclContext has external storage for
2429 /// declarations lexically in this context.
2430 void setHasExternalLexicalStorage(bool ES = true) const {
2431 DeclContextBits.ExternalLexicalStorage = ES;
2432 }
2433
2434 /// Whether this DeclContext has external storage containing
2435 /// additional declarations that are visible in this context.
2436 bool hasExternalVisibleStorage() const {
2437 return DeclContextBits.ExternalVisibleStorage;
2438 }
2439
2440 /// State whether this DeclContext has external storage for
2441 /// declarations visible in this context.
2442 void setHasExternalVisibleStorage(bool ES = true) const {
2443 DeclContextBits.ExternalVisibleStorage = ES;
2444 if (ES && LookupPtr)
2445 DeclContextBits.NeedToReconcileExternalVisibleStorage = true;
2446 }
2447
2448 /// Determine whether the given declaration is stored in the list of
2449 /// declarations lexically within this context.
2450 bool isDeclInLexicalTraversal(const Decl *D) const {
2451 return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
2452 D == LastDecl);
2453 }
2454
2455 bool setUseQualifiedLookup(bool use = true) const {
2456 bool old_value = DeclContextBits.UseQualifiedLookup;
2457 DeclContextBits.UseQualifiedLookup = use;
2458 return old_value;
2459 }
2460
2461 bool shouldUseQualifiedLookup() const {
2462 return DeclContextBits.UseQualifiedLookup;
2463 }
2464
2465 static bool classof(const Decl *D);
2466 static bool classof(const DeclContext *D) { return true; }
2467
2468 void dumpDeclContext() const;
2469 void dumpLookups() const;
2470 void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false,
2471 bool Deserialize = false) const;
2472
2473private:
2474 /// Whether this declaration context has had externally visible
2475 /// storage added since the last lookup. In this case, \c LookupPtr's
2476 /// invariant may not hold and needs to be fixed before we perform
2477 /// another lookup.
2478 bool hasNeedToReconcileExternalVisibleStorage() const {
2479 return DeclContextBits.NeedToReconcileExternalVisibleStorage;
2480 }
2481
2482 /// State that this declaration context has had externally visible
2483 /// storage added since the last lookup. In this case, \c LookupPtr's
2484 /// invariant may not hold and needs to be fixed before we perform
2485 /// another lookup.
2486 void setNeedToReconcileExternalVisibleStorage(bool Need = true) const {
2487 DeclContextBits.NeedToReconcileExternalVisibleStorage = Need;
2488 }
2489
2490 /// If \c true, this context may have local lexical declarations
2491 /// that are missing from the lookup table.
2492 bool hasLazyLocalLexicalLookups() const {
2493 return DeclContextBits.HasLazyLocalLexicalLookups;
2494 }
2495
2496 /// If \c true, this context may have local lexical declarations
2497 /// that are missing from the lookup table.
2498 void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const {
2499 DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL;
2500 }
2501
2502 /// If \c true, the external source may have lexical declarations
2503 /// that are missing from the lookup table.
2504 bool hasLazyExternalLexicalLookups() const {
2505 return DeclContextBits.HasLazyExternalLexicalLookups;
2506 }
2507
2508 /// If \c true, the external source may have lexical declarations
2509 /// that are missing from the lookup table.
2510 void setHasLazyExternalLexicalLookups(bool HasLELL = true) const {
2511 DeclContextBits.HasLazyExternalLexicalLookups = HasLELL;
2512 }
2513
2514 void reconcileExternalVisibleStorage() const;
2515 bool LoadLexicalDeclsFromExternalStorage() const;
2516
2517 /// Makes a declaration visible within this context, but
2518 /// suppresses searches for external declarations with the same
2519 /// name.
2520 ///
2521 /// Analogous to makeDeclVisibleInContext, but for the exclusive
2522 /// use of addDeclInternal().
2523 void makeDeclVisibleInContextInternal(NamedDecl *D);
2524
2525 StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
2526
2527 void loadLazyLocalLexicalLookups();
2528 void buildLookupImpl(DeclContext *DCtx, bool Internal);
2529 void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
2530 bool Rediscoverable);
2531 void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
2532};
2533
2534inline bool Decl::isTemplateParameter() const {
2535 return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
2536 getKind() == TemplateTemplateParm;
2537}
2538
2539// Specialization selected when ToTy is not a known subclass of DeclContext.
2540template <class ToTy,
2541 bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
2542struct cast_convert_decl_context {
2543 static const ToTy *doit(const DeclContext *Val) {
2544 return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
2545 }
2546
2547 static ToTy *doit(DeclContext *Val) {
2548 return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
2549 }
2550};
2551
2552// Specialization selected when ToTy is a known subclass of DeclContext.
2553template <class ToTy>
2554struct cast_convert_decl_context<ToTy, true> {
2555 static const ToTy *doit(const DeclContext *Val) {
2556 return static_cast<const ToTy*>(Val);
2557 }
2558
2559 static ToTy *doit(DeclContext *Val) {
2560 return static_cast<ToTy*>(Val);
2561 }
2562};
2563
2564} // namespace clang
2565
2566namespace llvm {
2567
2568/// isa<T>(DeclContext*)
2569template <typename To>
2570struct isa_impl<To, ::clang::DeclContext> {
2571 static bool doit(const ::clang::DeclContext &Val) {
2572 return To::classofKind(Val.getDeclKind());
2573 }
2574};
2575
2576/// cast<T>(DeclContext*)
2577template<class ToTy>
2578struct cast_convert_val<ToTy,
2579 const ::clang::DeclContext,const ::clang::DeclContext> {
2580 static const ToTy &doit(const ::clang::DeclContext &Val) {
2581 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2582 }
2583};
2584
2585template<class ToTy>
2586struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
2587 static ToTy &doit(::clang::DeclContext &Val) {
2588 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2589 }
2590};
2591
2592template<class ToTy>
2593struct cast_convert_val<ToTy,
2594 const ::clang::DeclContext*, const ::clang::DeclContext*> {
2595 static const ToTy *doit(const ::clang::DeclContext *Val) {
2596 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2597 }
2598};
2599
2600template<class ToTy>
2601struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
2602 static ToTy *doit(::clang::DeclContext *Val) {
2603 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2604 }
2605};
2606
2607/// Implement cast_convert_val for Decl -> DeclContext conversions.
2608template<class FromTy>
2609struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
2610 static ::clang::DeclContext &doit(const FromTy &Val) {
2611 return *FromTy::castToDeclContext(&Val);
2612 }
2613};
2614
2615template<class FromTy>
2616struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
2617 static ::clang::DeclContext *doit(const FromTy *Val) {
2618 return FromTy::castToDeclContext(Val);
2619 }
2620};
2621
2622template<class FromTy>
2623struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
2624 static const ::clang::DeclContext &doit(const FromTy &Val) {
2625 return *FromTy::castToDeclContext(&Val);
2626 }
2627};
2628
2629template<class FromTy>
2630struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
2631 static const ::clang::DeclContext *doit(const FromTy *Val) {
2632 return FromTy::castToDeclContext(Val);
2633 }
2634};
2635
2636} // namespace llvm
2637
2638#endif // LLVM_CLANG_AST_DECLBASE_H