Bug Summary

File:clang/lib/CodeGen/CGDebugInfo.cpp
Warning:line 1597, column 19
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGDebugInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/CodeGen -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/CodeGen/CGDebugInfo.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/CodeGen/CGDebugInfo.cpp

1//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the debug information generation while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGBlocks.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/DeclFriend.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/Expr.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/Basic/CodeGenOptions.h"
29#include "clang/Basic/FileManager.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/Version.h"
32#include "clang/Frontend/FrontendOptions.h"
33#include "clang/Lex/HeaderSearchOptions.h"
34#include "clang/Lex/ModuleMap.h"
35#include "clang/Lex/PreprocessorOptions.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringExtras.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/Metadata.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/FileSystem.h"
47#include "llvm/Support/MD5.h"
48#include "llvm/Support/Path.h"
49#include "llvm/Support/TimeProfiler.h"
50using namespace clang;
51using namespace clang::CodeGen;
52
53static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) {
54 auto TI = Ctx.getTypeInfo(Ty);
55 return TI.isAlignRequired() ? TI.Align : 0;
56}
57
58static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) {
59 return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx);
60}
61
62static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) {
63 return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0;
64}
65
66CGDebugInfo::CGDebugInfo(CodeGenModule &CGM)
67 : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()),
68 DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs),
69 DBuilder(CGM.getModule()) {
70 for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap)
71 DebugPrefixMap[KV.first] = KV.second;
72 CreateCompileUnit();
73}
74
75CGDebugInfo::~CGDebugInfo() {
76 assert(LexicalBlockStack.empty() &&(static_cast<void> (0))
77 "Region stack mismatch, stack not empty!")(static_cast<void> (0));
78}
79
80ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
81 SourceLocation TemporaryLocation)
82 : CGF(&CGF) {
83 init(TemporaryLocation);
84}
85
86ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
87 bool DefaultToEmpty,
88 SourceLocation TemporaryLocation)
89 : CGF(&CGF) {
90 init(TemporaryLocation, DefaultToEmpty);
91}
92
93void ApplyDebugLocation::init(SourceLocation TemporaryLocation,
94 bool DefaultToEmpty) {
95 auto *DI = CGF->getDebugInfo();
96 if (!DI) {
97 CGF = nullptr;
98 return;
99 }
100
101 OriginalLocation = CGF->Builder.getCurrentDebugLocation();
102
103 if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled())
104 return;
105
106 if (TemporaryLocation.isValid()) {
107 DI->EmitLocation(CGF->Builder, TemporaryLocation);
108 return;
109 }
110
111 if (DefaultToEmpty) {
112 CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc());
113 return;
114 }
115
116 // Construct a location that has a valid scope, but no line info.
117 assert(!DI->LexicalBlockStack.empty())(static_cast<void> (0));
118 CGF->Builder.SetCurrentDebugLocation(
119 llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0,
120 DI->LexicalBlockStack.back(), DI->getInlinedAt()));
121}
122
123ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E)
124 : CGF(&CGF) {
125 init(E->getExprLoc());
126}
127
128ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc)
129 : CGF(&CGF) {
130 if (!CGF.getDebugInfo()) {
131 this->CGF = nullptr;
132 return;
133 }
134 OriginalLocation = CGF.Builder.getCurrentDebugLocation();
135 if (Loc)
136 CGF.Builder.SetCurrentDebugLocation(std::move(Loc));
137}
138
139ApplyDebugLocation::~ApplyDebugLocation() {
140 // Query CGF so the location isn't overwritten when location updates are
141 // temporarily disabled (for C++ default function arguments)
142 if (CGF)
143 CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation));
144}
145
146ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF,
147 GlobalDecl InlinedFn)
148 : CGF(&CGF) {
149 if (!CGF.getDebugInfo()) {
150 this->CGF = nullptr;
151 return;
152 }
153 auto &DI = *CGF.getDebugInfo();
154 SavedLocation = DI.getLocation();
155 assert((DI.getInlinedAt() ==(static_cast<void> (0))
156 CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) &&(static_cast<void> (0))
157 "CGDebugInfo and IRBuilder are out of sync")(static_cast<void> (0));
158
159 DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn);
160}
161
162ApplyInlineDebugLocation::~ApplyInlineDebugLocation() {
163 if (!CGF)
164 return;
165 auto &DI = *CGF->getDebugInfo();
166 DI.EmitInlineFunctionEnd(CGF->Builder);
167 DI.EmitLocation(CGF->Builder, SavedLocation);
168}
169
170void CGDebugInfo::setLocation(SourceLocation Loc) {
171 // If the new location isn't valid return.
172 if (Loc.isInvalid())
173 return;
174
175 CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc);
176
177 // If we've changed files in the middle of a lexical scope go ahead
178 // and create a new lexical scope with file node if it's different
179 // from the one in the scope.
180 if (LexicalBlockStack.empty())
181 return;
182
183 SourceManager &SM = CGM.getContext().getSourceManager();
184 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
185 PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc);
186 if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc))
187 return;
188
189 if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) {
190 LexicalBlockStack.pop_back();
191 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile(
192 LBF->getScope(), getOrCreateFile(CurLoc)));
193 } else if (isa<llvm::DILexicalBlock>(Scope) ||
194 isa<llvm::DISubprogram>(Scope)) {
195 LexicalBlockStack.pop_back();
196 LexicalBlockStack.emplace_back(
197 DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc)));
198 }
199}
200
201llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) {
202 llvm::DIScope *Mod = getParentModuleOrNull(D);
203 return getContextDescriptor(cast<Decl>(D->getDeclContext()),
204 Mod ? Mod : TheCU);
205}
206
207llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context,
208 llvm::DIScope *Default) {
209 if (!Context)
210 return Default;
211
212 auto I = RegionMap.find(Context);
213 if (I != RegionMap.end()) {
214 llvm::Metadata *V = I->second;
215 return dyn_cast_or_null<llvm::DIScope>(V);
216 }
217
218 // Check namespace.
219 if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context))
220 return getOrCreateNamespace(NSDecl);
221
222 if (const auto *RDecl = dyn_cast<RecordDecl>(Context))
223 if (!RDecl->isDependentType())
224 return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl),
225 TheCU->getFile());
226 return Default;
227}
228
229PrintingPolicy CGDebugInfo::getPrintingPolicy() const {
230 PrintingPolicy PP = CGM.getContext().getPrintingPolicy();
231
232 // If we're emitting codeview, it's important to try to match MSVC's naming so
233 // that visualizers written for MSVC will trigger for our class names. In
234 // particular, we can't have spaces between arguments of standard templates
235 // like basic_string and vector, but we must have spaces between consecutive
236 // angle brackets that close nested template argument lists.
237 if (CGM.getCodeGenOpts().EmitCodeView) {
238 PP.MSVCFormatting = true;
239 PP.SplitTemplateClosers = true;
240 } else {
241 // For DWARF, printing rules are underspecified.
242 // SplitTemplateClosers yields better interop with GCC and GDB (PR46052).
243 PP.SplitTemplateClosers = true;
244 }
245
246 // Apply -fdebug-prefix-map.
247 PP.Callbacks = &PrintCB;
248 return PP;
249}
250
251StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) {
252 return internString(GetName(FD));
253}
254
255StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) {
256 SmallString<256> MethodName;
257 llvm::raw_svector_ostream OS(MethodName);
258 OS << (OMD->isInstanceMethod() ? '-' : '+') << '[';
259 const DeclContext *DC = OMD->getDeclContext();
260 if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) {
261 OS << OID->getName();
262 } else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) {
263 OS << OID->getName();
264 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) {
265 if (OC->IsClassExtension()) {
266 OS << OC->getClassInterface()->getName();
267 } else {
268 OS << OC->getIdentifier()->getNameStart() << '('
269 << OC->getIdentifier()->getNameStart() << ')';
270 }
271 } else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) {
272 OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')';
273 }
274 OS << ' ' << OMD->getSelector().getAsString() << ']';
275
276 return internString(OS.str());
277}
278
279StringRef CGDebugInfo::getSelectorName(Selector S) {
280 return internString(S.getAsString());
281}
282
283StringRef CGDebugInfo::getClassName(const RecordDecl *RD) {
284 if (isa<ClassTemplateSpecializationDecl>(RD)) {
285 // Copy this name on the side and use its reference.
286 return internString(GetName(RD));
287 }
288
289 // quick optimization to avoid having to intern strings that are already
290 // stored reliably elsewhere
291 if (const IdentifierInfo *II = RD->getIdentifier())
292 return II->getName();
293
294 // The CodeView printer in LLVM wants to see the names of unnamed types
295 // because they need to have a unique identifier.
296 // These names are used to reconstruct the fully qualified type names.
297 if (CGM.getCodeGenOpts().EmitCodeView) {
298 if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) {
299 assert(RD->getDeclContext() == D->getDeclContext() &&(static_cast<void> (0))
300 "Typedef should not be in another decl context!")(static_cast<void> (0));
301 assert(D->getDeclName().getAsIdentifierInfo() &&(static_cast<void> (0))
302 "Typedef was not named!")(static_cast<void> (0));
303 return D->getDeclName().getAsIdentifierInfo()->getName();
304 }
305
306 if (CGM.getLangOpts().CPlusPlus) {
307 StringRef Name;
308
309 ASTContext &Context = CGM.getContext();
310 if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD))
311 // Anonymous types without a name for linkage purposes have their
312 // declarator mangled in if they have one.
313 Name = DD->getName();
314 else if (const TypedefNameDecl *TND =
315 Context.getTypedefNameForUnnamedTagDecl(RD))
316 // Anonymous types without a name for linkage purposes have their
317 // associate typedef mangled in if they have one.
318 Name = TND->getName();
319
320 // Give lambdas a display name based on their name mangling.
321 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
322 if (CXXRD->isLambda())
323 return internString(
324 CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD));
325
326 if (!Name.empty()) {
327 SmallString<256> UnnamedType("<unnamed-type-");
328 UnnamedType += Name;
329 UnnamedType += '>';
330 return internString(UnnamedType);
331 }
332 }
333 }
334
335 return StringRef();
336}
337
338Optional<llvm::DIFile::ChecksumKind>
339CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const {
340 Checksum.clear();
341
342 if (!CGM.getCodeGenOpts().EmitCodeView &&
343 CGM.getCodeGenOpts().DwarfVersion < 5)
344 return None;
345
346 SourceManager &SM = CGM.getContext().getSourceManager();
347 Optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID);
348 if (!MemBuffer)
349 return None;
350
351 llvm::MD5 Hash;
352 llvm::MD5::MD5Result Result;
353
354 Hash.update(MemBuffer->getBuffer());
355 Hash.final(Result);
356
357 Hash.stringifyResult(Result, Checksum);
358 return llvm::DIFile::CSK_MD5;
359}
360
361Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM,
362 FileID FID) {
363 if (!CGM.getCodeGenOpts().EmbedSource)
364 return None;
365
366 bool SourceInvalid = false;
367 StringRef Source = SM.getBufferData(FID, &SourceInvalid);
368
369 if (SourceInvalid)
370 return None;
371
372 return Source;
373}
374
375llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) {
376 SourceManager &SM = CGM.getContext().getSourceManager();
377 StringRef FileName;
378 FileID FID;
379
380 if (Loc.isInvalid()) {
381 // The DIFile used by the CU is distinct from the main source file. Call
382 // createFile() below for canonicalization if the source file was specified
383 // with an absolute path.
384 FileName = TheCU->getFile()->getFilename();
385 } else {
386 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
387 FileName = PLoc.getFilename();
388
389 if (FileName.empty()) {
390 FileName = TheCU->getFile()->getFilename();
391 } else {
392 FileName = PLoc.getFilename();
393 }
394 FID = PLoc.getFileID();
395 }
396
397 // Cache the results.
398 auto It = DIFileCache.find(FileName.data());
399 if (It != DIFileCache.end()) {
400 // Verify that the information still exists.
401 if (llvm::Metadata *V = It->second)
402 return cast<llvm::DIFile>(V);
403 }
404
405 SmallString<32> Checksum;
406
407 Optional<llvm::DIFile::ChecksumKind> CSKind = computeChecksum(FID, Checksum);
408 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
409 if (CSKind)
410 CSInfo.emplace(*CSKind, Checksum);
411 return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc)));
412}
413
414llvm::DIFile *
415CGDebugInfo::createFile(StringRef FileName,
416 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo,
417 Optional<StringRef> Source) {
418 StringRef Dir;
419 StringRef File;
420 std::string RemappedFile = remapDIPath(FileName);
421 std::string CurDir = remapDIPath(getCurrentDirname());
422 SmallString<128> DirBuf;
423 SmallString<128> FileBuf;
424 if (llvm::sys::path::is_absolute(RemappedFile)) {
425 // Strip the common prefix (if it is more than just "/") from current
426 // directory and FileName for a more space-efficient encoding.
427 auto FileIt = llvm::sys::path::begin(RemappedFile);
428 auto FileE = llvm::sys::path::end(RemappedFile);
429 auto CurDirIt = llvm::sys::path::begin(CurDir);
430 auto CurDirE = llvm::sys::path::end(CurDir);
431 for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt)
432 llvm::sys::path::append(DirBuf, *CurDirIt);
433 if (std::distance(llvm::sys::path::begin(CurDir), CurDirIt) == 1) {
434 // Don't strip the common prefix if it is only the root "/"
435 // since that would make LLVM diagnostic locations confusing.
436 Dir = {};
437 File = RemappedFile;
438 } else {
439 for (; FileIt != FileE; ++FileIt)
440 llvm::sys::path::append(FileBuf, *FileIt);
441 Dir = DirBuf;
442 File = FileBuf;
443 }
444 } else {
445 Dir = CurDir;
446 File = RemappedFile;
447 }
448 llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source);
449 DIFileCache[FileName.data()].reset(F);
450 return F;
451}
452
453std::string CGDebugInfo::remapDIPath(StringRef Path) const {
454 if (DebugPrefixMap.empty())
455 return Path.str();
456
457 SmallString<256> P = Path;
458 for (const auto &Entry : DebugPrefixMap)
459 if (llvm::sys::path::replace_path_prefix(P, Entry.first, Entry.second))
460 break;
461 return P.str().str();
462}
463
464unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) {
465 if (Loc.isInvalid())
466 return 0;
467 SourceManager &SM = CGM.getContext().getSourceManager();
468 return SM.getPresumedLoc(Loc).getLine();
469}
470
471unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) {
472 // We may not want column information at all.
473 if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo)
474 return 0;
475
476 // If the location is invalid then use the current column.
477 if (Loc.isInvalid() && CurLoc.isInvalid())
478 return 0;
479 SourceManager &SM = CGM.getContext().getSourceManager();
480 PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
481 return PLoc.isValid() ? PLoc.getColumn() : 0;
482}
483
484StringRef CGDebugInfo::getCurrentDirname() {
485 if (!CGM.getCodeGenOpts().DebugCompilationDir.empty())
486 return CGM.getCodeGenOpts().DebugCompilationDir;
487
488 if (!CWDName.empty())
489 return CWDName;
490 SmallString<256> CWD;
491 llvm::sys::fs::current_path(CWD);
492 return CWDName = internString(CWD);
493}
494
495void CGDebugInfo::CreateCompileUnit() {
496 SmallString<32> Checksum;
497 Optional<llvm::DIFile::ChecksumKind> CSKind;
498 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
499
500 // Should we be asking the SourceManager for the main file name, instead of
501 // accepting it as an argument? This just causes the main file name to
502 // mismatch with source locations and create extra lexical scopes or
503 // mismatched debug info (a CU with a DW_AT_file of "-", because that's what
504 // the driver passed, but functions/other things have DW_AT_file of "<stdin>"
505 // because that's what the SourceManager says)
506
507 // Get absolute path name.
508 SourceManager &SM = CGM.getContext().getSourceManager();
509 std::string MainFileName = CGM.getCodeGenOpts().MainFileName;
510 if (MainFileName.empty())
511 MainFileName = "<stdin>";
512
513 // The main file name provided via the "-main-file-name" option contains just
514 // the file name itself with no path information. This file name may have had
515 // a relative path, so we look into the actual file entry for the main
516 // file to determine the real absolute path for the file.
517 std::string MainFileDir;
518 if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
519 MainFileDir = std::string(MainFile->getDir()->getName());
520 if (!llvm::sys::path::is_absolute(MainFileName)) {
521 llvm::SmallString<1024> MainFileDirSS(MainFileDir);
522 llvm::sys::path::append(MainFileDirSS, MainFileName);
523 MainFileName =
524 std::string(llvm::sys::path::remove_leading_dotslash(MainFileDirSS));
525 }
526 // If the main file name provided is identical to the input file name, and
527 // if the input file is a preprocessed source, use the module name for
528 // debug info. The module name comes from the name specified in the first
529 // linemarker if the input is a preprocessed source.
530 if (MainFile->getName() == MainFileName &&
531 FrontendOptions::getInputKindForExtension(
532 MainFile->getName().rsplit('.').second)
533 .isPreprocessed())
534 MainFileName = CGM.getModule().getName().str();
535
536 CSKind = computeChecksum(SM.getMainFileID(), Checksum);
537 }
538
539 llvm::dwarf::SourceLanguage LangTag;
540 const LangOptions &LO = CGM.getLangOpts();
541 if (LO.CPlusPlus) {
542 if (LO.ObjC)
543 LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus;
544 else if (LO.CPlusPlus14 && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
545 CGM.getCodeGenOpts().DwarfVersion >= 5))
546 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14;
547 else if (LO.CPlusPlus11 && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
548 CGM.getCodeGenOpts().DwarfVersion >= 5))
549 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11;
550 else
551 LangTag = llvm::dwarf::DW_LANG_C_plus_plus;
552 } else if (LO.ObjC) {
553 LangTag = llvm::dwarf::DW_LANG_ObjC;
554 } else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
555 CGM.getCodeGenOpts().DwarfVersion >= 5)) {
556 LangTag = llvm::dwarf::DW_LANG_OpenCL;
557 } else if (LO.RenderScript) {
558 LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript;
559 } else if (LO.C99) {
560 LangTag = llvm::dwarf::DW_LANG_C99;
561 } else {
562 LangTag = llvm::dwarf::DW_LANG_C89;
563 }
564
565 std::string Producer = getClangFullVersion();
566
567 // Figure out which version of the ObjC runtime we have.
568 unsigned RuntimeVers = 0;
569 if (LO.ObjC)
570 RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1;
571
572 llvm::DICompileUnit::DebugEmissionKind EmissionKind;
573 switch (DebugKind) {
574 case codegenoptions::NoDebugInfo:
575 case codegenoptions::LocTrackingOnly:
576 EmissionKind = llvm::DICompileUnit::NoDebug;
577 break;
578 case codegenoptions::DebugLineTablesOnly:
579 EmissionKind = llvm::DICompileUnit::LineTablesOnly;
580 break;
581 case codegenoptions::DebugDirectivesOnly:
582 EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly;
583 break;
584 case codegenoptions::DebugInfoConstructor:
585 case codegenoptions::LimitedDebugInfo:
586 case codegenoptions::FullDebugInfo:
587 case codegenoptions::UnusedTypeInfo:
588 EmissionKind = llvm::DICompileUnit::FullDebug;
589 break;
590 }
591
592 uint64_t DwoId = 0;
593 auto &CGOpts = CGM.getCodeGenOpts();
594 // The DIFile used by the CU is distinct from the main source
595 // file. Its directory part specifies what becomes the
596 // DW_AT_comp_dir (the compilation directory), even if the source
597 // file was specified with an absolute path.
598 if (CSKind)
599 CSInfo.emplace(*CSKind, Checksum);
600 llvm::DIFile *CUFile = DBuilder.createFile(
601 remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo,
602 getSource(SM, SM.getMainFileID()));
603
604 StringRef Sysroot, SDK;
605 if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) {
606 Sysroot = CGM.getHeaderSearchOpts().Sysroot;
607 auto B = llvm::sys::path::rbegin(Sysroot);
608 auto E = llvm::sys::path::rend(Sysroot);
609 auto It = std::find_if(B, E, [](auto SDK) { return SDK.endswith(".sdk"); });
610 if (It != E)
611 SDK = *It;
612 }
613
614 // Create new compile unit.
615 TheCU = DBuilder.createCompileUnit(
616 LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "",
617 LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO,
618 CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind,
619 DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling,
620 CGM.getTarget().getTriple().isNVPTX()
621 ? llvm::DICompileUnit::DebugNameTableKind::None
622 : static_cast<llvm::DICompileUnit::DebugNameTableKind>(
623 CGOpts.DebugNameTable),
624 CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK);
625}
626
627llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) {
628 llvm::dwarf::TypeKind Encoding;
629 StringRef BTName;
630 switch (BT->getKind()) {
631#define BUILTIN_TYPE(Id, SingletonId)
632#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
633#include "clang/AST/BuiltinTypes.def"
634 case BuiltinType::Dependent:
635 llvm_unreachable("Unexpected builtin type")__builtin_unreachable();
636 case BuiltinType::NullPtr:
637 return DBuilder.createNullPtrType();
638 case BuiltinType::Void:
639 return nullptr;
640 case BuiltinType::ObjCClass:
641 if (!ClassTy)
642 ClassTy =
643 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
644 "objc_class", TheCU, TheCU->getFile(), 0);
645 return ClassTy;
646 case BuiltinType::ObjCId: {
647 // typedef struct objc_class *Class;
648 // typedef struct objc_object {
649 // Class isa;
650 // } *id;
651
652 if (ObjTy)
653 return ObjTy;
654
655 if (!ClassTy)
656 ClassTy =
657 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
658 "objc_class", TheCU, TheCU->getFile(), 0);
659
660 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
661
662 auto *ISATy = DBuilder.createPointerType(ClassTy, Size);
663
664 ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0,
665 0, 0, llvm::DINode::FlagZero, nullptr,
666 llvm::DINodeArray());
667
668 DBuilder.replaceArrays(
669 ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType(
670 ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0,
671 llvm::DINode::FlagZero, ISATy)));
672 return ObjTy;
673 }
674 case BuiltinType::ObjCSel: {
675 if (!SelTy)
676 SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
677 "objc_selector", TheCU,
678 TheCU->getFile(), 0);
679 return SelTy;
680 }
681
682#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
683 case BuiltinType::Id: \
684 return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \
685 SingletonId);
686#include "clang/Basic/OpenCLImageTypes.def"
687 case BuiltinType::OCLSampler:
688 return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy);
689 case BuiltinType::OCLEvent:
690 return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy);
691 case BuiltinType::OCLClkEvent:
692 return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy);
693 case BuiltinType::OCLQueue:
694 return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy);
695 case BuiltinType::OCLReserveID:
696 return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy);
697#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
698 case BuiltinType::Id: \
699 return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty);
700#include "clang/Basic/OpenCLExtensionTypes.def"
701
702#define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
703#include "clang/Basic/AArch64SVEACLETypes.def"
704 {
705 ASTContext::BuiltinVectorTypeInfo Info =
706 CGM.getContext().getBuiltinVectorTypeInfo(BT);
707 unsigned NumElemsPerVG = (Info.EC.getKnownMinValue() * Info.NumVectors) / 2;
708
709 // Debuggers can't extract 1bit from a vector, so will display a
710 // bitpattern for svbool_t instead.
711 if (Info.ElementType == CGM.getContext().BoolTy) {
712 NumElemsPerVG /= 8;
713 Info.ElementType = CGM.getContext().UnsignedCharTy;
714 }
715
716 auto *LowerBound =
717 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
718 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0));
719 SmallVector<int64_t, 9> Expr(
720 {llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx,
721 /* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul,
722 llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus});
723 auto *UpperBound = DBuilder.createExpression(Expr);
724
725 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(
726 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr);
727 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
728 llvm::DIType *ElemTy =
729 getOrCreateType(Info.ElementType, TheCU->getFile());
730 auto Align = getTypeAlignIfRequired(BT, CGM.getContext());
731 return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy,
732 SubscriptArray);
733 }
734 // It doesn't make sense to generate debug info for PowerPC MMA vector types.
735 // So we return a safe type here to avoid generating an error.
736#define PPC_VECTOR_TYPE(Name, Id, size) \
737 case BuiltinType::Id:
738#include "clang/Basic/PPCTypes.def"
739 return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy));
740
741#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
742#include "clang/Basic/RISCVVTypes.def"
743 {
744 ASTContext::BuiltinVectorTypeInfo Info =
745 CGM.getContext().getBuiltinVectorTypeInfo(BT);
746
747 unsigned ElementCount = Info.EC.getKnownMinValue();
748 unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType);
749
750 bool Fractional = false;
751 unsigned LMUL;
752 unsigned FixedSize = ElementCount * SEW;
753 if (Info.ElementType == CGM.getContext().BoolTy) {
754 // Mask type only occupies one vector register.
755 LMUL = 1;
756 } else if (FixedSize < 64) {
757 // In RVV scalable vector types, we encode 64 bits in the fixed part.
758 Fractional = true;
759 LMUL = 64 / FixedSize;
760 } else {
761 LMUL = FixedSize / 64;
762 }
763
764 // Element count = (VLENB / SEW) x LMUL
765 SmallVector<int64_t, 9> Expr(
766 // The DW_OP_bregx operation has two operands: a register which is
767 // specified by an unsigned LEB128 number, followed by a signed LEB128
768 // offset.
769 {llvm::dwarf::DW_OP_bregx, // Read the contents of a register.
770 4096 + 0xC22, // RISC-V VLENB CSR register.
771 0, // Offset for DW_OP_bregx. It is dummy here.
772 llvm::dwarf::DW_OP_constu,
773 SEW / 8, // SEW is in bits.
774 llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL});
775 if (Fractional)
776 Expr.push_back(llvm::dwarf::DW_OP_div);
777 else
778 Expr.push_back(llvm::dwarf::DW_OP_mul);
779
780 auto *LowerBound =
781 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
782 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0));
783 auto *UpperBound = DBuilder.createExpression(Expr);
784 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(
785 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr);
786 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
787 llvm::DIType *ElemTy =
788 getOrCreateType(Info.ElementType, TheCU->getFile());
789
790 auto Align = getTypeAlignIfRequired(BT, CGM.getContext());
791 return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy,
792 SubscriptArray);
793 }
794 case BuiltinType::UChar:
795 case BuiltinType::Char_U:
796 Encoding = llvm::dwarf::DW_ATE_unsigned_char;
797 break;
798 case BuiltinType::Char_S:
799 case BuiltinType::SChar:
800 Encoding = llvm::dwarf::DW_ATE_signed_char;
801 break;
802 case BuiltinType::Char8:
803 case BuiltinType::Char16:
804 case BuiltinType::Char32:
805 Encoding = llvm::dwarf::DW_ATE_UTF;
806 break;
807 case BuiltinType::UShort:
808 case BuiltinType::UInt:
809 case BuiltinType::UInt128:
810 case BuiltinType::ULong:
811 case BuiltinType::WChar_U:
812 case BuiltinType::ULongLong:
813 Encoding = llvm::dwarf::DW_ATE_unsigned;
814 break;
815 case BuiltinType::Short:
816 case BuiltinType::Int:
817 case BuiltinType::Int128:
818 case BuiltinType::Long:
819 case BuiltinType::WChar_S:
820 case BuiltinType::LongLong:
821 Encoding = llvm::dwarf::DW_ATE_signed;
822 break;
823 case BuiltinType::Bool:
824 Encoding = llvm::dwarf::DW_ATE_boolean;
825 break;
826 case BuiltinType::Half:
827 case BuiltinType::Float:
828 case BuiltinType::LongDouble:
829 case BuiltinType::Float16:
830 case BuiltinType::BFloat16:
831 case BuiltinType::Float128:
832 case BuiltinType::Double:
833 // FIXME: For targets where long double and __float128 have the same size,
834 // they are currently indistinguishable in the debugger without some
835 // special treatment. However, there is currently no consensus on encoding
836 // and this should be updated once a DWARF encoding exists for distinct
837 // floating point types of the same size.
838 Encoding = llvm::dwarf::DW_ATE_float;
839 break;
840 case BuiltinType::ShortAccum:
841 case BuiltinType::Accum:
842 case BuiltinType::LongAccum:
843 case BuiltinType::ShortFract:
844 case BuiltinType::Fract:
845 case BuiltinType::LongFract:
846 case BuiltinType::SatShortFract:
847 case BuiltinType::SatFract:
848 case BuiltinType::SatLongFract:
849 case BuiltinType::SatShortAccum:
850 case BuiltinType::SatAccum:
851 case BuiltinType::SatLongAccum:
852 Encoding = llvm::dwarf::DW_ATE_signed_fixed;
853 break;
854 case BuiltinType::UShortAccum:
855 case BuiltinType::UAccum:
856 case BuiltinType::ULongAccum:
857 case BuiltinType::UShortFract:
858 case BuiltinType::UFract:
859 case BuiltinType::ULongFract:
860 case BuiltinType::SatUShortAccum:
861 case BuiltinType::SatUAccum:
862 case BuiltinType::SatULongAccum:
863 case BuiltinType::SatUShortFract:
864 case BuiltinType::SatUFract:
865 case BuiltinType::SatULongFract:
866 Encoding = llvm::dwarf::DW_ATE_unsigned_fixed;
867 break;
868 }
869
870 switch (BT->getKind()) {
871 case BuiltinType::Long:
872 BTName = "long int";
873 break;
874 case BuiltinType::LongLong:
875 BTName = "long long int";
876 break;
877 case BuiltinType::ULong:
878 BTName = "long unsigned int";
879 break;
880 case BuiltinType::ULongLong:
881 BTName = "long long unsigned int";
882 break;
883 default:
884 BTName = BT->getName(CGM.getLangOpts());
885 break;
886 }
887 // Bit size and offset of the type.
888 uint64_t Size = CGM.getContext().getTypeSize(BT);
889 return DBuilder.createBasicType(BTName, Size, Encoding);
890}
891
892llvm::DIType *CGDebugInfo::CreateType(const AutoType *Ty) {
893 return DBuilder.createUnspecifiedType("auto");
894}
895
896llvm::DIType *CGDebugInfo::CreateType(const ExtIntType *Ty) {
897
898 StringRef Name = Ty->isUnsigned() ? "unsigned _ExtInt" : "_ExtInt";
899 llvm::dwarf::TypeKind Encoding = Ty->isUnsigned()
900 ? llvm::dwarf::DW_ATE_unsigned
901 : llvm::dwarf::DW_ATE_signed;
902
903 return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty),
904 Encoding);
905}
906
907llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) {
908 // Bit size and offset of the type.
909 llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float;
910 if (Ty->isComplexIntegerType())
911 Encoding = llvm::dwarf::DW_ATE_lo_user;
912
913 uint64_t Size = CGM.getContext().getTypeSize(Ty);
914 return DBuilder.createBasicType("complex", Size, Encoding);
915}
916
917llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty,
918 llvm::DIFile *Unit) {
919 QualifierCollector Qc;
920 const Type *T = Qc.strip(Ty);
921
922 // Ignore these qualifiers for now.
923 Qc.removeObjCGCAttr();
924 Qc.removeAddressSpace();
925 Qc.removeObjCLifetime();
926
927 // We will create one Derived type for one qualifier and recurse to handle any
928 // additional ones.
929 llvm::dwarf::Tag Tag;
930 if (Qc.hasConst()) {
931 Tag = llvm::dwarf::DW_TAG_const_type;
932 Qc.removeConst();
933 } else if (Qc.hasVolatile()) {
934 Tag = llvm::dwarf::DW_TAG_volatile_type;
935 Qc.removeVolatile();
936 } else if (Qc.hasRestrict()) {
937 Tag = llvm::dwarf::DW_TAG_restrict_type;
938 Qc.removeRestrict();
939 } else {
940 assert(Qc.empty() && "Unknown type qualifier for debug info")(static_cast<void> (0));
941 return getOrCreateType(QualType(T, 0), Unit);
942 }
943
944 auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit);
945
946 // No need to fill in the Name, Line, Size, Alignment, Offset in case of
947 // CVR derived types.
948 return DBuilder.createQualifiedType(Tag, FromTy);
949}
950
951llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty,
952 llvm::DIFile *Unit) {
953
954 // The frontend treats 'id' as a typedef to an ObjCObjectType,
955 // whereas 'id<protocol>' is treated as an ObjCPointerType. For the
956 // debug info, we want to emit 'id' in both cases.
957 if (Ty->isObjCQualifiedIdType())
958 return getOrCreateType(CGM.getContext().getObjCIdType(), Unit);
959
960 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
961 Ty->getPointeeType(), Unit);
962}
963
964llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty,
965 llvm::DIFile *Unit) {
966 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
967 Ty->getPointeeType(), Unit);
968}
969
970/// \return whether a C++ mangling exists for the type defined by TD.
971static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) {
972 switch (TheCU->getSourceLanguage()) {
973 case llvm::dwarf::DW_LANG_C_plus_plus:
974 case llvm::dwarf::DW_LANG_C_plus_plus_11:
975 case llvm::dwarf::DW_LANG_C_plus_plus_14:
976 return true;
977 case llvm::dwarf::DW_LANG_ObjC_plus_plus:
978 return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD);
979 default:
980 return false;
981 }
982}
983
984// Determines if the debug info for this tag declaration needs a type
985// identifier. The purpose of the unique identifier is to deduplicate type
986// information for identical types across TUs. Because of the C++ one definition
987// rule (ODR), it is valid to assume that the type is defined the same way in
988// every TU and its debug info is equivalent.
989//
990// C does not have the ODR, and it is common for codebases to contain multiple
991// different definitions of a struct with the same name in different TUs.
992// Therefore, if the type doesn't have a C++ mangling, don't give it an
993// identifer. Type information in C is smaller and simpler than C++ type
994// information, so the increase in debug info size is negligible.
995//
996// If the type is not externally visible, it should be unique to the current TU,
997// and should not need an identifier to participate in type deduplication.
998// However, when emitting CodeView, the format internally uses these
999// unique type name identifers for references between debug info. For example,
1000// the method of a class in an anonymous namespace uses the identifer to refer
1001// to its parent class. The Microsoft C++ ABI attempts to provide unique names
1002// for such types, so when emitting CodeView, always use identifiers for C++
1003// types. This may create problems when attempting to emit CodeView when the MS
1004// C++ ABI is not in use.
1005static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM,
1006 llvm::DICompileUnit *TheCU) {
1007 // We only add a type identifier for types with C++ name mangling.
1008 if (!hasCXXMangling(TD, TheCU))
1009 return false;
1010
1011 // Externally visible types with C++ mangling need a type identifier.
1012 if (TD->isExternallyVisible())
1013 return true;
1014
1015 // CodeView types with C++ mangling need a type identifier.
1016 if (CGM.getCodeGenOpts().EmitCodeView)
1017 return true;
1018
1019 return false;
1020}
1021
1022// Returns a unique type identifier string if one exists, or an empty string.
1023static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM,
1024 llvm::DICompileUnit *TheCU) {
1025 SmallString<256> Identifier;
1026 const TagDecl *TD = Ty->getDecl();
1027
1028 if (!needsTypeIdentifier(TD, CGM, TheCU))
1029 return Identifier;
1030 if (const auto *RD = dyn_cast<CXXRecordDecl>(TD))
1031 if (RD->getDefinition())
1032 if (RD->isDynamicClass() &&
1033 CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage)
1034 return Identifier;
1035
1036 // TODO: This is using the RTTI name. Is there a better way to get
1037 // a unique string for a type?
1038 llvm::raw_svector_ostream Out(Identifier);
1039 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out);
1040 return Identifier;
1041}
1042
1043/// \return the appropriate DWARF tag for a composite type.
1044static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) {
1045 llvm::dwarf::Tag Tag;
1046 if (RD->isStruct() || RD->isInterface())
1047 Tag = llvm::dwarf::DW_TAG_structure_type;
1048 else if (RD->isUnion())
1049 Tag = llvm::dwarf::DW_TAG_union_type;
1050 else {
1051 // FIXME: This could be a struct type giving a default visibility different
1052 // than C++ class type, but needs llvm metadata changes first.
1053 assert(RD->isClass())(static_cast<void> (0));
1054 Tag = llvm::dwarf::DW_TAG_class_type;
1055 }
1056 return Tag;
1057}
1058
1059llvm::DICompositeType *
1060CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty,
1061 llvm::DIScope *Ctx) {
1062 const RecordDecl *RD = Ty->getDecl();
1063 if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD)))
1064 return cast<llvm::DICompositeType>(T);
1065 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
1066 const unsigned Line =
1067 getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc);
1068 StringRef RDName = getClassName(RD);
1069
1070 uint64_t Size = 0;
1071 uint32_t Align = 0;
1072
1073 const RecordDecl *D = RD->getDefinition();
1074 if (D && D->isCompleteDefinition())
1075 Size = CGM.getContext().getTypeSize(Ty);
1076
1077 llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl;
1078
1079 // Add flag to nontrivial forward declarations. To be consistent with MSVC,
1080 // add the flag if a record has no definition because we don't know whether
1081 // it will be trivial or not.
1082 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1083 if (!CXXRD->hasDefinition() ||
1084 (CXXRD->hasDefinition() && !CXXRD->isTrivial()))
1085 Flags |= llvm::DINode::FlagNonTrivial;
1086
1087 // Create the type.
1088 SmallString<256> Identifier;
1089 // Don't include a linkage name in line tables only.
1090 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
1091 Identifier = getTypeIdentifier(Ty, CGM, TheCU);
1092 llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType(
1093 getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags,
1094 Identifier);
1095 if (CGM.getCodeGenOpts().DebugFwdTemplateParams)
1096 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
1097 DBuilder.replaceArrays(RetTy, llvm::DINodeArray(),
1098 CollectCXXTemplateParams(TSpecial, DefUnit));
1099 ReplaceMap.emplace_back(
1100 std::piecewise_construct, std::make_tuple(Ty),
1101 std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
1102 return RetTy;
1103}
1104
1105llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag,
1106 const Type *Ty,
1107 QualType PointeeTy,
1108 llvm::DIFile *Unit) {
1109 // Bit size, align and offset of the type.
1110 // Size is always the size of a pointer. We can't use getTypeSize here
1111 // because that does not return the correct value for references.
1112 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy);
1113 uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace);
1114 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
1115 Optional<unsigned> DWARFAddressSpace =
1116 CGM.getTarget().getDWARFAddressSpace(AddressSpace);
1117
1118 if (Tag == llvm::dwarf::DW_TAG_reference_type ||
1119 Tag == llvm::dwarf::DW_TAG_rvalue_reference_type)
1120 return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit),
1121 Size, Align, DWARFAddressSpace);
1122 else
1123 return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size,
1124 Align, DWARFAddressSpace);
1125}
1126
1127llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name,
1128 llvm::DIType *&Cache) {
1129 if (Cache)
1130 return Cache;
1131 Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name,
1132 TheCU, TheCU->getFile(), 0);
1133 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
1134 Cache = DBuilder.createPointerType(Cache, Size);
1135 return Cache;
1136}
1137
1138uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer(
1139 const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy,
1140 unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) {
1141 QualType FType;
1142
1143 // Advanced by calls to CreateMemberType in increments of FType, then
1144 // returned as the overall size of the default elements.
1145 uint64_t FieldOffset = 0;
1146
1147 // Blocks in OpenCL have unique constraints which make the standard fields
1148 // redundant while requiring size and align fields for enqueue_kernel. See
1149 // initializeForBlockHeader in CGBlocks.cpp
1150 if (CGM.getLangOpts().OpenCL) {
1151 FType = CGM.getContext().IntTy;
1152 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
1153 EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset));
1154 } else {
1155 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
1156 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
1157 FType = CGM.getContext().IntTy;
1158 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
1159 EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset));
1160 FType = CGM.getContext().getPointerType(Ty->getPointeeType());
1161 EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset));
1162 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
1163 uint64_t FieldSize = CGM.getContext().getTypeSize(Ty);
1164 uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty);
1165 EltTys.push_back(DBuilder.createMemberType(
1166 Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign,
1167 FieldOffset, llvm::DINode::FlagZero, DescTy));
1168 FieldOffset += FieldSize;
1169 }
1170
1171 return FieldOffset;
1172}
1173
1174llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty,
1175 llvm::DIFile *Unit) {
1176 SmallVector<llvm::Metadata *, 8> EltTys;
1177 QualType FType;
1178 uint64_t FieldOffset;
1179 llvm::DINodeArray Elements;
1180
1181 FieldOffset = 0;
1182 FType = CGM.getContext().UnsignedLongTy;
1183 EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset));
1184 EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset));
1185
1186 Elements = DBuilder.getOrCreateArray(EltTys);
1187 EltTys.clear();
1188
1189 llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock;
1190
1191 auto *EltTy =
1192 DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0,
1193 FieldOffset, 0, Flags, nullptr, Elements);
1194
1195 // Bit size, align and offset of the type.
1196 uint64_t Size = CGM.getContext().getTypeSize(Ty);
1197
1198 auto *DescTy = DBuilder.createPointerType(EltTy, Size);
1199
1200 FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy,
1201 0, EltTys);
1202
1203 Elements = DBuilder.getOrCreateArray(EltTys);
1204
1205 // The __block_literal_generic structs are marked with a special
1206 // DW_AT_APPLE_BLOCK attribute and are an implementation detail only
1207 // the debugger needs to know about. To allow type uniquing, emit
1208 // them without a name or a location.
1209 EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0,
1210 Flags, nullptr, Elements);
1211
1212 return DBuilder.createPointerType(EltTy, Size);
1213}
1214
1215llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty,
1216 llvm::DIFile *Unit) {
1217 assert(Ty->isTypeAlias())(static_cast<void> (0));
1218 llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit);
1219
1220 auto *AliasDecl =
1221 cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl())
1222 ->getTemplatedDecl();
1223
1224 if (AliasDecl->hasAttr<NoDebugAttr>())
1225 return Src;
1226
1227 SmallString<128> NS;
1228 llvm::raw_svector_ostream OS(NS);
1229 Ty->getTemplateName().print(OS, getPrintingPolicy(),
1230 TemplateName::Qualified::None);
1231 printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy());
1232
1233 SourceLocation Loc = AliasDecl->getLocation();
1234 return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc),
1235 getLineNumber(Loc),
1236 getDeclContextDescriptor(AliasDecl));
1237}
1238
1239llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty,
1240 llvm::DIFile *Unit) {
1241 llvm::DIType *Underlying =
1242 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit);
1243
1244 if (Ty->getDecl()->hasAttr<NoDebugAttr>())
1245 return Underlying;
1246
1247 // We don't set size information, but do specify where the typedef was
1248 // declared.
1249 SourceLocation Loc = Ty->getDecl()->getLocation();
1250
1251 uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext());
1252 // Typedefs are derived from some other type.
1253 return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(),
1254 getOrCreateFile(Loc), getLineNumber(Loc),
1255 getDeclContextDescriptor(Ty->getDecl()), Align);
1256}
1257
1258static unsigned getDwarfCC(CallingConv CC) {
1259 switch (CC) {
1260 case CC_C:
1261 // Avoid emitting DW_AT_calling_convention if the C convention was used.
1262 return 0;
1263
1264 case CC_X86StdCall:
1265 return llvm::dwarf::DW_CC_BORLAND_stdcall;
1266 case CC_X86FastCall:
1267 return llvm::dwarf::DW_CC_BORLAND_msfastcall;
1268 case CC_X86ThisCall:
1269 return llvm::dwarf::DW_CC_BORLAND_thiscall;
1270 case CC_X86VectorCall:
1271 return llvm::dwarf::DW_CC_LLVM_vectorcall;
1272 case CC_X86Pascal:
1273 return llvm::dwarf::DW_CC_BORLAND_pascal;
1274 case CC_Win64:
1275 return llvm::dwarf::DW_CC_LLVM_Win64;
1276 case CC_X86_64SysV:
1277 return llvm::dwarf::DW_CC_LLVM_X86_64SysV;
1278 case CC_AAPCS:
1279 case CC_AArch64VectorCall:
1280 return llvm::dwarf::DW_CC_LLVM_AAPCS;
1281 case CC_AAPCS_VFP:
1282 return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP;
1283 case CC_IntelOclBicc:
1284 return llvm::dwarf::DW_CC_LLVM_IntelOclBicc;
1285 case CC_SpirFunction:
1286 return llvm::dwarf::DW_CC_LLVM_SpirFunction;
1287 case CC_OpenCLKernel:
1288 return llvm::dwarf::DW_CC_LLVM_OpenCLKernel;
1289 case CC_Swift:
1290 return llvm::dwarf::DW_CC_LLVM_Swift;
1291 case CC_SwiftAsync:
1292 // [FIXME: swiftasynccc] Update to SwiftAsync once LLVM support lands.
1293 return llvm::dwarf::DW_CC_LLVM_Swift;
1294 case CC_PreserveMost:
1295 return llvm::dwarf::DW_CC_LLVM_PreserveMost;
1296 case CC_PreserveAll:
1297 return llvm::dwarf::DW_CC_LLVM_PreserveAll;
1298 case CC_X86RegCall:
1299 return llvm::dwarf::DW_CC_LLVM_X86RegCall;
1300 }
1301 return 0;
1302}
1303
1304llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty,
1305 llvm::DIFile *Unit) {
1306 SmallVector<llvm::Metadata *, 16> EltTys;
1307
1308 // Add the result type at least.
1309 EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit));
1310
1311 // Set up remainder of arguments if there is a prototype.
1312 // otherwise emit it as a variadic function.
1313 if (isa<FunctionNoProtoType>(Ty))
1314 EltTys.push_back(DBuilder.createUnspecifiedParameter());
1315 else if (const auto *FPT = dyn_cast<FunctionProtoType>(Ty)) {
1316 for (const QualType &ParamType : FPT->param_types())
1317 EltTys.push_back(getOrCreateType(ParamType, Unit));
1318 if (FPT->isVariadic())
1319 EltTys.push_back(DBuilder.createUnspecifiedParameter());
1320 }
1321
1322 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
1323 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
1324 getDwarfCC(Ty->getCallConv()));
1325}
1326
1327/// Convert an AccessSpecifier into the corresponding DINode flag.
1328/// As an optimization, return 0 if the access specifier equals the
1329/// default for the containing type.
1330static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access,
1331 const RecordDecl *RD) {
1332 AccessSpecifier Default = clang::AS_none;
1333 if (RD && RD->isClass())
1334 Default = clang::AS_private;
1335 else if (RD && (RD->isStruct() || RD->isUnion()))
1336 Default = clang::AS_public;
1337
1338 if (Access == Default)
1339 return llvm::DINode::FlagZero;
1340
1341 switch (Access) {
1342 case clang::AS_private:
1343 return llvm::DINode::FlagPrivate;
1344 case clang::AS_protected:
1345 return llvm::DINode::FlagProtected;
1346 case clang::AS_public:
1347 return llvm::DINode::FlagPublic;
1348 case clang::AS_none:
1349 return llvm::DINode::FlagZero;
1350 }
1351 llvm_unreachable("unexpected access enumerator")__builtin_unreachable();
1352}
1353
1354llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl,
1355 llvm::DIScope *RecordTy,
1356 const RecordDecl *RD) {
1357 StringRef Name = BitFieldDecl->getName();
1358 QualType Ty = BitFieldDecl->getType();
1359 SourceLocation Loc = BitFieldDecl->getLocation();
1360 llvm::DIFile *VUnit = getOrCreateFile(Loc);
1361 llvm::DIType *DebugType = getOrCreateType(Ty, VUnit);
1362
1363 // Get the location for the field.
1364 llvm::DIFile *File = getOrCreateFile(Loc);
1365 unsigned Line = getLineNumber(Loc);
1366
1367 const CGBitFieldInfo &BitFieldInfo =
1368 CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl);
1369 uint64_t SizeInBits = BitFieldInfo.Size;
1370 assert(SizeInBits > 0 && "found named 0-width bitfield")(static_cast<void> (0));
1371 uint64_t StorageOffsetInBits =
1372 CGM.getContext().toBits(BitFieldInfo.StorageOffset);
1373 uint64_t Offset = BitFieldInfo.Offset;
1374 // The bit offsets for big endian machines are reversed for big
1375 // endian target, compensate for that as the DIDerivedType requires
1376 // un-reversed offsets.
1377 if (CGM.getDataLayout().isBigEndian())
1378 Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset;
1379 uint64_t OffsetInBits = StorageOffsetInBits + Offset;
1380 llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD);
1381 llvm::DINodeArray Annotations = CollectBTFTagAnnotations(BitFieldDecl);
1382 return DBuilder.createBitFieldMemberType(
1383 RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits,
1384 Flags, DebugType, Annotations);
1385}
1386
1387llvm::DIType *CGDebugInfo::createFieldType(
1388 StringRef name, QualType type, SourceLocation loc, AccessSpecifier AS,
1389 uint64_t offsetInBits, uint32_t AlignInBits, llvm::DIFile *tunit,
1390 llvm::DIScope *scope, const RecordDecl *RD, llvm::DINodeArray Annotations) {
1391 llvm::DIType *debugType = getOrCreateType(type, tunit);
1392
1393 // Get the location for the field.
1394 llvm::DIFile *file = getOrCreateFile(loc);
1395 const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc);
1396
1397 uint64_t SizeInBits = 0;
1398 auto Align = AlignInBits;
1399 if (!type->isIncompleteArrayType()) {
1400 TypeInfo TI = CGM.getContext().getTypeInfo(type);
1401 SizeInBits = TI.Width;
1402 if (!Align)
1403 Align = getTypeAlignIfRequired(type, CGM.getContext());
1404 }
1405
1406 llvm::DINode::DIFlags flags = getAccessFlag(AS, RD);
1407 return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align,
1408 offsetInBits, flags, debugType, Annotations);
1409}
1410
1411void CGDebugInfo::CollectRecordLambdaFields(
1412 const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements,
1413 llvm::DIType *RecordTy) {
1414 // For C++11 Lambdas a Field will be the same as a Capture, but the Capture
1415 // has the name and the location of the variable so we should iterate over
1416 // both concurrently.
1417 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl);
1418 RecordDecl::field_iterator Field = CXXDecl->field_begin();
1419 unsigned fieldno = 0;
1420 for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(),
1421 E = CXXDecl->captures_end();
1422 I != E; ++I, ++Field, ++fieldno) {
1423 const LambdaCapture &C = *I;
1424 if (C.capturesVariable()) {
1425 SourceLocation Loc = C.getLocation();
1426 assert(!Field->isBitField() && "lambdas don't have bitfield members!")(static_cast<void> (0));
1427 VarDecl *V = C.getCapturedVar();
1428 StringRef VName = V->getName();
1429 llvm::DIFile *VUnit = getOrCreateFile(Loc);
1430 auto Align = getDeclAlignIfRequired(V, CGM.getContext());
1431 llvm::DIType *FieldType = createFieldType(
1432 VName, Field->getType(), Loc, Field->getAccess(),
1433 layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl);
1434 elements.push_back(FieldType);
1435 } else if (C.capturesThis()) {
1436 // TODO: Need to handle 'this' in some way by probably renaming the
1437 // this of the lambda class and having a field member of 'this' or
1438 // by using AT_object_pointer for the function and having that be
1439 // used as 'this' for semantic references.
1440 FieldDecl *f = *Field;
1441 llvm::DIFile *VUnit = getOrCreateFile(f->getLocation());
1442 QualType type = f->getType();
1443 llvm::DIType *fieldType = createFieldType(
1444 "this", type, f->getLocation(), f->getAccess(),
1445 layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl);
1446
1447 elements.push_back(fieldType);
1448 }
1449 }
1450}
1451
1452llvm::DIDerivedType *
1453CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy,
1454 const RecordDecl *RD) {
1455 // Create the descriptor for the static variable, with or without
1456 // constant initializers.
1457 Var = Var->getCanonicalDecl();
1458 llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation());
1459 llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit);
1460
1461 unsigned LineNumber = getLineNumber(Var->getLocation());
1462 StringRef VName = Var->getName();
1463 llvm::Constant *C = nullptr;
1464 if (Var->getInit()) {
1465 const APValue *Value = Var->evaluateValue();
1466 if (Value) {
1467 if (Value->isInt())
1468 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt());
1469 if (Value->isFloat())
1470 C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat());
1471 }
1472 }
1473
1474 llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD);
1475 auto Align = getDeclAlignIfRequired(Var, CGM.getContext());
1476 llvm::DIDerivedType *GV = DBuilder.createStaticMemberType(
1477 RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align);
1478 StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV);
1479 return GV;
1480}
1481
1482void CGDebugInfo::CollectRecordNormalField(
1483 const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit,
1484 SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy,
1485 const RecordDecl *RD) {
1486 StringRef name = field->getName();
1487 QualType type = field->getType();
1488
1489 // Ignore unnamed fields unless they're anonymous structs/unions.
1490 if (name.empty() && !type->isRecordType())
1491 return;
1492
1493 llvm::DIType *FieldType;
1494 if (field->isBitField()) {
1495 FieldType = createBitFieldType(field, RecordTy, RD);
1496 } else {
1497 auto Align = getDeclAlignIfRequired(field, CGM.getContext());
1498 llvm::DINodeArray Annotations = CollectBTFTagAnnotations(field);
1499 FieldType =
1500 createFieldType(name, type, field->getLocation(), field->getAccess(),
1501 OffsetInBits, Align, tunit, RecordTy, RD, Annotations);
1502 }
1503
1504 elements.push_back(FieldType);
1505}
1506
1507void CGDebugInfo::CollectRecordNestedType(
1508 const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) {
1509 QualType Ty = CGM.getContext().getTypeDeclType(TD);
1510 // Injected class names are not considered nested records.
1511 if (isa<InjectedClassNameType>(Ty))
1512 return;
1513 SourceLocation Loc = TD->getLocation();
1514 llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc));
1515 elements.push_back(nestedType);
1516}
1517
1518void CGDebugInfo::CollectRecordFields(
1519 const RecordDecl *record, llvm::DIFile *tunit,
1520 SmallVectorImpl<llvm::Metadata *> &elements,
1521 llvm::DICompositeType *RecordTy) {
1522 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record);
1523
1524 if (CXXDecl && CXXDecl->isLambda())
1525 CollectRecordLambdaFields(CXXDecl, elements, RecordTy);
1526 else {
1527 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record);
1528
1529 // Field number for non-static fields.
1530 unsigned fieldNo = 0;
1531
1532 // Static and non-static members should appear in the same order as
1533 // the corresponding declarations in the source program.
1534 for (const auto *I : record->decls())
1535 if (const auto *V = dyn_cast<VarDecl>(I)) {
1536 if (V->hasAttr<NoDebugAttr>())
1537 continue;
1538
1539 // Skip variable template specializations when emitting CodeView. MSVC
1540 // doesn't emit them.
1541 if (CGM.getCodeGenOpts().EmitCodeView &&
1542 isa<VarTemplateSpecializationDecl>(V))
1543 continue;
1544
1545 if (isa<VarTemplatePartialSpecializationDecl>(V))
1546 continue;
1547
1548 // Reuse the existing static member declaration if one exists
1549 auto MI = StaticDataMemberCache.find(V->getCanonicalDecl());
1550 if (MI != StaticDataMemberCache.end()) {
1551 assert(MI->second &&(static_cast<void> (0))
1552 "Static data member declaration should still exist")(static_cast<void> (0));
1553 elements.push_back(MI->second);
1554 } else {
1555 auto Field = CreateRecordStaticField(V, RecordTy, record);
1556 elements.push_back(Field);
1557 }
1558 } else if (const auto *field = dyn_cast<FieldDecl>(I)) {
1559 CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit,
1560 elements, RecordTy, record);
1561
1562 // Bump field number for next field.
1563 ++fieldNo;
1564 } else if (CGM.getCodeGenOpts().EmitCodeView) {
1565 // Debug info for nested types is included in the member list only for
1566 // CodeView.
1567 if (const auto *nestedType = dyn_cast<TypeDecl>(I))
1568 if (!nestedType->isImplicit() &&
1569 nestedType->getDeclContext() == record)
1570 CollectRecordNestedType(nestedType, elements);
1571 }
1572 }
1573}
1574
1575llvm::DISubroutineType *
1576CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method,
1577 llvm::DIFile *Unit, bool decl) {
1578 const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>();
1579 if (Method->isStatic())
1580 return cast_or_null<llvm::DISubroutineType>(
1581 getOrCreateType(QualType(Func, 0), Unit));
1582 return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit, decl);
1583}
1584
1585llvm::DISubroutineType *
1586CGDebugInfo::getOrCreateInstanceMethodType(QualType ThisPtr,
1587 const FunctionProtoType *Func,
1588 llvm::DIFile *Unit, bool decl) {
1589 // Add "this" pointer.
1590 llvm::DITypeRefArray Args(
1591 cast<llvm::DISubroutineType>(getOrCreateType(QualType(Func, 0), Unit))
22
The object is a 'DISubroutineType'
1592 ->getTypeArray());
1593 assert(Args.size() && "Invalid number of arguments!")(static_cast<void> (0));
1594
1595 SmallVector<llvm::Metadata *, 16> Elts;
1596 // First element is always return type. For 'void' functions it is NULL.
1597 QualType temp = Func->getReturnType();
23
Called C++ object pointer is null
1598 if (temp->getTypeClass() == Type::Auto && decl)
1599 Elts.push_back(CreateType(cast<AutoType>(temp)));
1600 else
1601 Elts.push_back(Args[0]);
1602
1603 // "this" pointer is always first argument.
1604 const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl();
1605 if (isa<ClassTemplateSpecializationDecl>(RD)) {
1606 // Create pointer type directly in this case.
1607 const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr);
1608 QualType PointeeTy = ThisPtrTy->getPointeeType();
1609 unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy);
1610 uint64_t Size = CGM.getTarget().getPointerWidth(AS);
1611 auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext());
1612 llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit);
1613 llvm::DIType *ThisPtrType =
1614 DBuilder.createPointerType(PointeeType, Size, Align);
1615 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
1616 // TODO: This and the artificial type below are misleading, the
1617 // types aren't artificial the argument is, but the current
1618 // metadata doesn't represent that.
1619 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
1620 Elts.push_back(ThisPtrType);
1621 } else {
1622 llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit);
1623 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
1624 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
1625 Elts.push_back(ThisPtrType);
1626 }
1627
1628 // Copy rest of the arguments.
1629 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1630 Elts.push_back(Args[i]);
1631
1632 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
1633
1634 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
1635 if (Func->getExtProtoInfo().RefQualifier == RQ_LValue)
1636 Flags |= llvm::DINode::FlagLValueReference;
1637 if (Func->getExtProtoInfo().RefQualifier == RQ_RValue)
1638 Flags |= llvm::DINode::FlagRValueReference;
1639
1640 return DBuilder.createSubroutineType(EltTypeArray, Flags,
1641 getDwarfCC(Func->getCallConv()));
1642}
1643
1644/// isFunctionLocalClass - Return true if CXXRecordDecl is defined
1645/// inside a function.
1646static bool isFunctionLocalClass(const CXXRecordDecl *RD) {
1647 if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext()))
1648 return isFunctionLocalClass(NRD);
1649 if (isa<FunctionDecl>(RD->getDeclContext()))
1650 return true;
1651 return false;
1652}
1653
1654llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction(
1655 const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) {
1656 bool IsCtorOrDtor =
1657 isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method);
1658
1659 StringRef MethodName = getFunctionName(Method);
1660 llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit, true);
1661
1662 // Since a single ctor/dtor corresponds to multiple functions, it doesn't
1663 // make sense to give a single ctor/dtor a linkage name.
1664 StringRef MethodLinkageName;
1665 // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional
1666 // property to use here. It may've been intended to model "is non-external
1667 // type" but misses cases of non-function-local but non-external classes such
1668 // as those in anonymous namespaces as well as the reverse - external types
1669 // that are function local, such as those in (non-local) inline functions.
1670 if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent()))
1671 MethodLinkageName = CGM.getMangledName(Method);
1672
1673 // Get the location for the method.
1674 llvm::DIFile *MethodDefUnit = nullptr;
1675 unsigned MethodLine = 0;
1676 if (!Method->isImplicit()) {
1677 MethodDefUnit = getOrCreateFile(Method->getLocation());
1678 MethodLine = getLineNumber(Method->getLocation());
1679 }
1680
1681 // Collect virtual method info.
1682 llvm::DIType *ContainingType = nullptr;
1683 unsigned VIndex = 0;
1684 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
1685 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
1686 int ThisAdjustment = 0;
1687
1688 if (Method->isVirtual()) {
1689 if (Method->isPure())
1690 SPFlags |= llvm::DISubprogram::SPFlagPureVirtual;
1691 else
1692 SPFlags |= llvm::DISubprogram::SPFlagVirtual;
1693
1694 if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
1695 // It doesn't make sense to give a virtual destructor a vtable index,
1696 // since a single destructor has two entries in the vtable.
1697 if (!isa<CXXDestructorDecl>(Method))
1698 VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method);
1699 } else {
1700 // Emit MS ABI vftable information. There is only one entry for the
1701 // deleting dtor.
1702 const auto *DD = dyn_cast<CXXDestructorDecl>(Method);
1703 GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method);
1704 MethodVFTableLocation ML =
1705 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1706 VIndex = ML.Index;
1707
1708 // CodeView only records the vftable offset in the class that introduces
1709 // the virtual method. This is possible because, unlike Itanium, the MS
1710 // C++ ABI does not include all virtual methods from non-primary bases in
1711 // the vtable for the most derived class. For example, if C inherits from
1712 // A and B, C's primary vftable will not include B's virtual methods.
1713 if (Method->size_overridden_methods() == 0)
1714 Flags |= llvm::DINode::FlagIntroducedVirtual;
1715
1716 // The 'this' adjustment accounts for both the virtual and non-virtual
1717 // portions of the adjustment. Presumably the debugger only uses it when
1718 // it knows the dynamic type of an object.
1719 ThisAdjustment = CGM.getCXXABI()
1720 .getVirtualFunctionPrologueThisAdjustment(GD)
1721 .getQuantity();
1722 }
1723 ContainingType = RecordTy;
1724 }
1725
1726 // We're checking for deleted C++ special member functions
1727 // [Ctors,Dtors, Copy/Move]
1728 auto checkAttrDeleted = [&](const auto *Method) {
1729 if (Method->getCanonicalDecl()->isDeleted())
1730 SPFlags |= llvm::DISubprogram::SPFlagDeleted;
1731 };
1732
1733 switch (Method->getKind()) {
1734
1735 case Decl::CXXConstructor:
1736 case Decl::CXXDestructor:
1737 checkAttrDeleted(Method);
1738 break;
1739 case Decl::CXXMethod:
1740 if (Method->isCopyAssignmentOperator() ||
1741 Method->isMoveAssignmentOperator())
1742 checkAttrDeleted(Method);
1743 break;
1744 default:
1745 break;
1746 }
1747
1748 if (Method->isNoReturn())
1749 Flags |= llvm::DINode::FlagNoReturn;
1750
1751 if (Method->isStatic())
1752 Flags |= llvm::DINode::FlagStaticMember;
1753 if (Method->isImplicit())
1754 Flags |= llvm::DINode::FlagArtificial;
1755 Flags |= getAccessFlag(Method->getAccess(), Method->getParent());
1756 if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) {
1757 if (CXXC->isExplicit())
1758 Flags |= llvm::DINode::FlagExplicit;
1759 } else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) {
1760 if (CXXC->isExplicit())
1761 Flags |= llvm::DINode::FlagExplicit;
1762 }
1763 if (Method->hasPrototype())
1764 Flags |= llvm::DINode::FlagPrototyped;
1765 if (Method->getRefQualifier() == RQ_LValue)
1766 Flags |= llvm::DINode::FlagLValueReference;
1767 if (Method->getRefQualifier() == RQ_RValue)
1768 Flags |= llvm::DINode::FlagRValueReference;
1769 if (!Method->isExternallyVisible())
1770 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
1771 if (CGM.getLangOpts().Optimize)
1772 SPFlags |= llvm::DISubprogram::SPFlagOptimized;
1773
1774 // In this debug mode, emit type info for a class when its constructor type
1775 // info is emitted.
1776 if (DebugKind == codegenoptions::DebugInfoConstructor)
1777 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1778 completeUnusedClass(*CD->getParent());
1779
1780 llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit);
1781 llvm::DISubprogram *SP = DBuilder.createMethod(
1782 RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine,
1783 MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags,
1784 TParamsArray.get());
1785
1786 SPCache[Method->getCanonicalDecl()].reset(SP);
1787
1788 return SP;
1789}
1790
1791void CGDebugInfo::CollectCXXMemberFunctions(
1792 const CXXRecordDecl *RD, llvm::DIFile *Unit,
1793 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) {
1794
1795 // Since we want more than just the individual member decls if we
1796 // have templated functions iterate over every declaration to gather
1797 // the functions.
1798 for (const auto *I : RD->decls()) {
1799 const auto *Method = dyn_cast<CXXMethodDecl>(I);
1800 // If the member is implicit, don't add it to the member list. This avoids
1801 // the member being added to type units by LLVM, while still allowing it
1802 // to be emitted into the type declaration/reference inside the compile
1803 // unit.
1804 // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp.
1805 // FIXME: Handle Using(Shadow?)Decls here to create
1806 // DW_TAG_imported_declarations inside the class for base decls brought into
1807 // derived classes. GDB doesn't seem to notice/leverage these when I tried
1808 // it, so I'm not rushing to fix this. (GCC seems to produce them, if
1809 // referenced)
1810 if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>())
1811 continue;
1812
1813 if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType())
1814 continue;
1815
1816 // Reuse the existing member function declaration if it exists.
1817 // It may be associated with the declaration of the type & should be
1818 // reused as we're building the definition.
1819 //
1820 // This situation can arise in the vtable-based debug info reduction where
1821 // implicit members are emitted in a non-vtable TU.
1822 auto MI = SPCache.find(Method->getCanonicalDecl());
1823 EltTys.push_back(MI == SPCache.end()
1824 ? CreateCXXMemberFunction(Method, Unit, RecordTy)
1825 : static_cast<llvm::Metadata *>(MI->second));
1826 }
1827}
1828
1829void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit,
1830 SmallVectorImpl<llvm::Metadata *> &EltTys,
1831 llvm::DIType *RecordTy) {
1832 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes;
1833 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes,
1834 llvm::DINode::FlagZero);
1835
1836 // If we are generating CodeView debug info, we also need to emit records for
1837 // indirect virtual base classes.
1838 if (CGM.getCodeGenOpts().EmitCodeView) {
1839 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes,
1840 llvm::DINode::FlagIndirectVirtualBase);
1841 }
1842}
1843
1844void CGDebugInfo::CollectCXXBasesAux(
1845 const CXXRecordDecl *RD, llvm::DIFile *Unit,
1846 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy,
1847 const CXXRecordDecl::base_class_const_range &Bases,
1848 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes,
1849 llvm::DINode::DIFlags StartingFlags) {
1850 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
1851 for (const auto &BI : Bases) {
1852 const auto *Base =
1853 cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl());
1854 if (!SeenTypes.insert(Base).second)
1855 continue;
1856 auto *BaseTy = getOrCreateType(BI.getType(), Unit);
1857 llvm::DINode::DIFlags BFlags = StartingFlags;
1858 uint64_t BaseOffset;
1859 uint32_t VBPtrOffset = 0;
1860
1861 if (BI.isVirtual()) {
1862 if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
1863 // virtual base offset offset is -ve. The code generator emits dwarf
1864 // expression where it expects +ve number.
1865 BaseOffset = 0 - CGM.getItaniumVTableContext()
1866 .getVirtualBaseOffsetOffset(RD, Base)
1867 .getQuantity();
1868 } else {
1869 // In the MS ABI, store the vbtable offset, which is analogous to the
1870 // vbase offset offset in Itanium.
1871 BaseOffset =
1872 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base);
1873 VBPtrOffset = CGM.getContext()
1874 .getASTRecordLayout(RD)
1875 .getVBPtrOffset()
1876 .getQuantity();
1877 }
1878 BFlags |= llvm::DINode::FlagVirtual;
1879 } else
1880 BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base));
1881 // FIXME: Inconsistent units for BaseOffset. It is in bytes when
1882 // BI->isVirtual() and bits when not.
1883
1884 BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD);
1885 llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset,
1886 VBPtrOffset, BFlags);
1887 EltTys.push_back(DTy);
1888 }
1889}
1890
1891llvm::DINodeArray
1892CGDebugInfo::CollectTemplateParams(Optional<TemplateArgs> OArgs,
1893 llvm::DIFile *Unit) {
1894 if (!OArgs)
1895 return llvm::DINodeArray();
1896 TemplateArgs &Args = *OArgs;
1897 SmallVector<llvm::Metadata *, 16> TemplateParams;
1898 for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) {
1899 const TemplateArgument &TA = Args.Args[i];
1900 StringRef Name;
1901 bool defaultParameter = false;
1902 if (Args.TList)
1903 Name = Args.TList->getParam(i)->getName();
1904 switch (TA.getKind()) {
1905 case TemplateArgument::Type: {
1906 llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit);
1907
1908 if (Args.TList)
1909 if (auto *templateType =
1910 dyn_cast_or_null<TemplateTypeParmDecl>(Args.TList->getParam(i)))
1911 if (templateType->hasDefaultArgument())
1912 defaultParameter =
1913 templateType->getDefaultArgument() == TA.getAsType();
1914
1915 TemplateParams.push_back(DBuilder.createTemplateTypeParameter(
1916 TheCU, Name, TTy, defaultParameter));
1917
1918 } break;
1919 case TemplateArgument::Integral: {
1920 llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit);
1921 if (Args.TList && CGM.getCodeGenOpts().DwarfVersion >= 5)
1922 if (auto *templateType = dyn_cast_or_null<NonTypeTemplateParmDecl>(
1923 Args.TList->getParam(i)))
1924 if (templateType->hasDefaultArgument() &&
1925 !templateType->getDefaultArgument()->isValueDependent())
1926 defaultParameter = llvm::APSInt::isSameValue(
1927 templateType->getDefaultArgument()->EvaluateKnownConstInt(
1928 CGM.getContext()),
1929 TA.getAsIntegral());
1930
1931 TemplateParams.push_back(DBuilder.createTemplateValueParameter(
1932 TheCU, Name, TTy, defaultParameter,
1933 llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral())));
1934 } break;
1935 case TemplateArgument::Declaration: {
1936 const ValueDecl *D = TA.getAsDecl();
1937 QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext());
1938 llvm::DIType *TTy = getOrCreateType(T, Unit);
1939 llvm::Constant *V = nullptr;
1940 // Skip retrieve the value if that template parameter has cuda device
1941 // attribute, i.e. that value is not available at the host side.
1942 if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice ||
1943 !D->hasAttr<CUDADeviceAttr>()) {
1944 const CXXMethodDecl *MD;
1945 // Variable pointer template parameters have a value that is the address
1946 // of the variable.
1947 if (const auto *VD = dyn_cast<VarDecl>(D))
1948 V = CGM.GetAddrOfGlobalVar(VD);
1949 // Member function pointers have special support for building them,
1950 // though this is currently unsupported in LLVM CodeGen.
1951 else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance())
1952 V = CGM.getCXXABI().EmitMemberFunctionPointer(MD);
1953 else if (const auto *FD = dyn_cast<FunctionDecl>(D))
1954 V = CGM.GetAddrOfFunction(FD);
1955 // Member data pointers have special handling too to compute the fixed
1956 // offset within the object.
1957 else if (const auto *MPT =
1958 dyn_cast<MemberPointerType>(T.getTypePtr())) {
1959 // These five lines (& possibly the above member function pointer
1960 // handling) might be able to be refactored to use similar code in
1961 // CodeGenModule::getMemberPointerConstant
1962 uint64_t fieldOffset = CGM.getContext().getFieldOffset(D);
1963 CharUnits chars =
1964 CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset);
1965 V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars);
1966 } else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) {
1967 V = CGM.GetAddrOfMSGuidDecl(GD).getPointer();
1968 } else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
1969 if (T->isRecordType())
1970 V = ConstantEmitter(CGM).emitAbstract(
1971 SourceLocation(), TPO->getValue(), TPO->getType());
1972 else
1973 V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer();
1974 }
1975 assert(V && "Failed to find template parameter pointer")(static_cast<void> (0));
1976 V = V->stripPointerCasts();
1977 }
1978 TemplateParams.push_back(DBuilder.createTemplateValueParameter(
1979 TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V)));
1980 } break;
1981 case TemplateArgument::NullPtr: {
1982 QualType T = TA.getNullPtrType();
1983 llvm::DIType *TTy = getOrCreateType(T, Unit);
1984 llvm::Constant *V = nullptr;
1985 // Special case member data pointer null values since they're actually -1
1986 // instead of zero.
1987 if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr()))
1988 // But treat member function pointers as simple zero integers because
1989 // it's easier than having a special case in LLVM's CodeGen. If LLVM
1990 // CodeGen grows handling for values of non-null member function
1991 // pointers then perhaps we could remove this special case and rely on
1992 // EmitNullMemberPointer for member function pointers.
1993 if (MPT->isMemberDataPointer())
1994 V = CGM.getCXXABI().EmitNullMemberPointer(MPT);
1995 if (!V)
1996 V = llvm::ConstantInt::get(CGM.Int8Ty, 0);
1997 TemplateParams.push_back(DBuilder.createTemplateValueParameter(
1998 TheCU, Name, TTy, defaultParameter, V));
1999 } break;
2000 case TemplateArgument::Template:
2001 TemplateParams.push_back(DBuilder.createTemplateTemplateParameter(
2002 TheCU, Name, nullptr,
2003 TA.getAsTemplate().getAsTemplateDecl()->getQualifiedNameAsString()));
2004 break;
2005 case TemplateArgument::Pack:
2006 TemplateParams.push_back(DBuilder.createTemplateParameterPack(
2007 TheCU, Name, nullptr,
2008 CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit)));
2009 break;
2010 case TemplateArgument::Expression: {
2011 const Expr *E = TA.getAsExpr();
2012 QualType T = E->getType();
2013 if (E->isGLValue())
2014 T = CGM.getContext().getLValueReferenceType(T);
2015 llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T);
2016 assert(V && "Expression in template argument isn't constant")(static_cast<void> (0));
2017 llvm::DIType *TTy = getOrCreateType(T, Unit);
2018 TemplateParams.push_back(DBuilder.createTemplateValueParameter(
2019 TheCU, Name, TTy, defaultParameter, V->stripPointerCasts()));
2020 } break;
2021 // And the following should never occur:
2022 case TemplateArgument::TemplateExpansion:
2023 case TemplateArgument::Null:
2024 llvm_unreachable(__builtin_unreachable()
2025 "These argument types shouldn't exist in concrete types")__builtin_unreachable();
2026 }
2027 }
2028 return DBuilder.getOrCreateArray(TemplateParams);
2029}
2030
2031Optional<CGDebugInfo::TemplateArgs>
2032CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const {
2033 if (FD->getTemplatedKind() ==
2034 FunctionDecl::TK_FunctionTemplateSpecialization) {
2035 const TemplateParameterList *TList = FD->getTemplateSpecializationInfo()
2036 ->getTemplate()
2037 ->getTemplateParameters();
2038 return {{TList, FD->getTemplateSpecializationArgs()->asArray()}};
2039 }
2040 return None;
2041}
2042Optional<CGDebugInfo::TemplateArgs>
2043CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const {
2044 // Always get the full list of parameters, not just the ones from the
2045 // specialization. A partial specialization may have fewer parameters than
2046 // there are arguments.
2047 auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD);
2048 if (!TS)
2049 return None;
2050 VarTemplateDecl *T = TS->getSpecializedTemplate();
2051 const TemplateParameterList *TList = T->getTemplateParameters();
2052 auto TA = TS->getTemplateArgs().asArray();
2053 return {{TList, TA}};
2054}
2055Optional<CGDebugInfo::TemplateArgs>
2056CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const {
2057 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
2058 // Always get the full list of parameters, not just the ones from the
2059 // specialization. A partial specialization may have fewer parameters than
2060 // there are arguments.
2061 TemplateParameterList *TPList =
2062 TSpecial->getSpecializedTemplate()->getTemplateParameters();
2063 const TemplateArgumentList &TAList = TSpecial->getTemplateArgs();
2064 return {{TPList, TAList.asArray()}};
2065 }
2066 return None;
2067}
2068
2069llvm::DINodeArray
2070CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD,
2071 llvm::DIFile *Unit) {
2072 return CollectTemplateParams(GetTemplateArgs(FD), Unit);
2073}
2074
2075llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL,
2076 llvm::DIFile *Unit) {
2077 return CollectTemplateParams(GetTemplateArgs(VL), Unit);
2078}
2079
2080llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD,
2081 llvm::DIFile *Unit) {
2082 return CollectTemplateParams(GetTemplateArgs(RD), Unit);
2083}
2084
2085llvm::DINodeArray CGDebugInfo::CollectBTFTagAnnotations(const Decl *D) {
2086 if (!D->hasAttr<BTFTagAttr>())
2087 return nullptr;
2088
2089 SmallVector<llvm::Metadata *, 4> Annotations;
2090 for (const auto *I : D->specific_attrs<BTFTagAttr>()) {
2091 llvm::Metadata *Ops[2] = {
2092 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_tag")),
2093 llvm::MDString::get(CGM.getLLVMContext(), I->getBTFTag())};
2094 Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2095 }
2096 return DBuilder.getOrCreateArray(Annotations);
2097}
2098
2099llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) {
2100 if (VTablePtrType)
2101 return VTablePtrType;
2102
2103 ASTContext &Context = CGM.getContext();
2104
2105 /* Function type */
2106 llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit);
2107 llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy);
2108 llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements);
2109 unsigned Size = Context.getTypeSize(Context.VoidPtrTy);
2110 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
2111 Optional<unsigned> DWARFAddressSpace =
2112 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
2113
2114 llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType(
2115 SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type");
2116 VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size);
2117 return VTablePtrType;
2118}
2119
2120StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) {
2121 // Copy the gdb compatible name on the side and use its reference.
2122 return internString("_vptr$", RD->getNameAsString());
2123}
2124
2125StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD,
2126 DynamicInitKind StubKind,
2127 llvm::Function *InitFn) {
2128 // If we're not emitting codeview, use the mangled name. For Itanium, this is
2129 // arbitrary.
2130 if (!CGM.getCodeGenOpts().EmitCodeView ||
2131 StubKind == DynamicInitKind::GlobalArrayDestructor)
2132 return InitFn->getName();
2133
2134 // Print the normal qualified name for the variable, then break off the last
2135 // NNS, and add the appropriate other text. Clang always prints the global
2136 // variable name without template arguments, so we can use rsplit("::") and
2137 // then recombine the pieces.
2138 SmallString<128> QualifiedGV;
2139 StringRef Quals;
2140 StringRef GVName;
2141 {
2142 llvm::raw_svector_ostream OS(QualifiedGV);
2143 VD->printQualifiedName(OS, getPrintingPolicy());
2144 std::tie(Quals, GVName) = OS.str().rsplit("::");
2145 if (GVName.empty())
2146 std::swap(Quals, GVName);
2147 }
2148
2149 SmallString<128> InitName;
2150 llvm::raw_svector_ostream OS(InitName);
2151 if (!Quals.empty())
2152 OS << Quals << "::";
2153
2154 switch (StubKind) {
2155 case DynamicInitKind::NoStub:
2156 case DynamicInitKind::GlobalArrayDestructor:
2157 llvm_unreachable("not an initializer")__builtin_unreachable();
2158 case DynamicInitKind::Initializer:
2159 OS << "`dynamic initializer for '";
2160 break;
2161 case DynamicInitKind::AtExit:
2162 OS << "`dynamic atexit destructor for '";
2163 break;
2164 }
2165
2166 OS << GVName;
2167
2168 // Add any template specialization args.
2169 if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2170 printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(),
2171 getPrintingPolicy());
2172 }
2173
2174 OS << '\'';
2175
2176 return internString(OS.str());
2177}
2178
2179void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit,
2180 SmallVectorImpl<llvm::Metadata *> &EltTys) {
2181 // If this class is not dynamic then there is not any vtable info to collect.
2182 if (!RD->isDynamicClass())
2183 return;
2184
2185 // Don't emit any vtable shape or vptr info if this class doesn't have an
2186 // extendable vfptr. This can happen if the class doesn't have virtual
2187 // methods, or in the MS ABI if those virtual methods only come from virtually
2188 // inherited bases.
2189 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2190 if (!RL.hasExtendableVFPtr())
2191 return;
2192
2193 // CodeView needs to know how large the vtable of every dynamic class is, so
2194 // emit a special named pointer type into the element list. The vptr type
2195 // points to this type as well.
2196 llvm::DIType *VPtrTy = nullptr;
2197 bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView &&
2198 CGM.getTarget().getCXXABI().isMicrosoft();
2199 if (NeedVTableShape) {
2200 uint64_t PtrWidth =
2201 CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
2202 const VTableLayout &VFTLayout =
2203 CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero());
2204 unsigned VSlotCount =
2205 VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData;
2206 unsigned VTableWidth = PtrWidth * VSlotCount;
2207 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
2208 Optional<unsigned> DWARFAddressSpace =
2209 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
2210
2211 // Create a very wide void* type and insert it directly in the element list.
2212 llvm::DIType *VTableType = DBuilder.createPointerType(
2213 nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type");
2214 EltTys.push_back(VTableType);
2215
2216 // The vptr is a pointer to this special vtable type.
2217 VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth);
2218 }
2219
2220 // If there is a primary base then the artificial vptr member lives there.
2221 if (RL.getPrimaryBase())
2222 return;
2223
2224 if (!VPtrTy)
2225 VPtrTy = getOrCreateVTablePtrType(Unit);
2226
2227 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
2228 llvm::DIType *VPtrMember =
2229 DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0,
2230 llvm::DINode::FlagArtificial, VPtrTy);
2231 EltTys.push_back(VPtrMember);
2232}
2233
2234llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy,
2235 SourceLocation Loc) {
2236 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
2237 llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc));
2238 return T;
2239}
2240
2241llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D,
2242 SourceLocation Loc) {
2243 return getOrCreateStandaloneType(D, Loc);
2244}
2245
2246llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D,
2247 SourceLocation Loc) {
2248 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
2249 assert(!D.isNull() && "null type")(static_cast<void> (0));
2250 llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc));
2251 assert(T && "could not create debug info for type")(static_cast<void> (0));
2252
2253 RetainedTypes.push_back(D.getAsOpaquePtr());
2254 return T;
2255}
2256
2257void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI,
2258 QualType AllocatedTy,
2259 SourceLocation Loc) {
2260 if (CGM.getCodeGenOpts().getDebugInfo() <=
2261 codegenoptions::DebugLineTablesOnly)
2262 return;
2263 llvm::MDNode *node;
2264 if (AllocatedTy->isVoidType())
2265 node = llvm::MDNode::get(CGM.getLLVMContext(), None);
2266 else
2267 node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc));
2268
2269 CI->setMetadata("heapallocsite", node);
2270}
2271
2272void CGDebugInfo::completeType(const EnumDecl *ED) {
2273 if (DebugKind <= codegenoptions::DebugLineTablesOnly)
2274 return;
2275 QualType Ty = CGM.getContext().getEnumType(ED);
2276 void *TyPtr = Ty.getAsOpaquePtr();
2277 auto I = TypeCache.find(TyPtr);
2278 if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl())
2279 return;
2280 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>());
2281 assert(!Res->isForwardDecl())(static_cast<void> (0));
2282 TypeCache[TyPtr].reset(Res);
2283}
2284
2285void CGDebugInfo::completeType(const RecordDecl *RD) {
2286 if (DebugKind > codegenoptions::LimitedDebugInfo ||
2287 !CGM.getLangOpts().CPlusPlus)
2288 completeRequiredType(RD);
2289}
2290
2291/// Return true if the class or any of its methods are marked dllimport.
2292static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) {
2293 if (RD->hasAttr<DLLImportAttr>())
2294 return true;
2295 for (const CXXMethodDecl *MD : RD->methods())
2296 if (MD->hasAttr<DLLImportAttr>())
2297 return true;
2298 return false;
2299}
2300
2301/// Does a type definition exist in an imported clang module?
2302static bool isDefinedInClangModule(const RecordDecl *RD) {
2303 // Only definitions that where imported from an AST file come from a module.
2304 if (!RD || !RD->isFromASTFile())
2305 return false;
2306 // Anonymous entities cannot be addressed. Treat them as not from module.
2307 if (!RD->isExternallyVisible() && RD->getName().empty())
2308 return false;
2309 if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) {
2310 if (!CXXDecl->isCompleteDefinition())
2311 return false;
2312 // Check wether RD is a template.
2313 auto TemplateKind = CXXDecl->getTemplateSpecializationKind();
2314 if (TemplateKind != TSK_Undeclared) {
2315 // Unfortunately getOwningModule() isn't accurate enough to find the
2316 // owning module of a ClassTemplateSpecializationDecl that is inside a
2317 // namespace spanning multiple modules.
2318 bool Explicit = false;
2319 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl))
2320 Explicit = TD->isExplicitInstantiationOrSpecialization();
2321 if (!Explicit && CXXDecl->getEnclosingNamespaceContext())
2322 return false;
2323 // This is a template, check the origin of the first member.
2324 if (CXXDecl->field_begin() == CXXDecl->field_end())
2325 return TemplateKind == TSK_ExplicitInstantiationDeclaration;
2326 if (!CXXDecl->field_begin()->isFromASTFile())
2327 return false;
2328 }
2329 }
2330 return true;
2331}
2332
2333void CGDebugInfo::completeClassData(const RecordDecl *RD) {
2334 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
2335 if (CXXRD->isDynamicClass() &&
2336 CGM.getVTableLinkage(CXXRD) ==
2337 llvm::GlobalValue::AvailableExternallyLinkage &&
2338 !isClassOrMethodDLLImport(CXXRD))
2339 return;
2340
2341 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
2342 return;
2343
2344 completeClass(RD);
2345}
2346
2347void CGDebugInfo::completeClass(const RecordDecl *RD) {
2348 if (DebugKind <= codegenoptions::DebugLineTablesOnly)
2349 return;
2350 QualType Ty = CGM.getContext().getRecordType(RD);
2351 void *TyPtr = Ty.getAsOpaquePtr();
2352 auto I = TypeCache.find(TyPtr);
2353 if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl())
2354 return;
2355 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>());
2356 assert(!Res->isForwardDecl())(static_cast<void> (0));
2357 TypeCache[TyPtr].reset(Res);
2358}
2359
2360static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I,
2361 CXXRecordDecl::method_iterator End) {
2362 for (CXXMethodDecl *MD : llvm::make_range(I, End))
2363 if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction())
2364 if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() &&
2365 !MD->getMemberSpecializationInfo()->isExplicitSpecialization())
2366 return true;
2367 return false;
2368}
2369
2370static bool canUseCtorHoming(const CXXRecordDecl *RD) {
2371 // Constructor homing can be used for classes that cannnot be constructed
2372 // without emitting code for one of their constructors. This is classes that
2373 // don't have trivial or constexpr constructors, or can be created from
2374 // aggregate initialization. Also skip lambda objects because they don't call
2375 // constructors.
2376
2377 // Skip this optimization if the class or any of its methods are marked
2378 // dllimport.
2379 if (isClassOrMethodDLLImport(RD))
2380 return false;
2381
2382 return !RD->isLambda() && !RD->isAggregate() &&
2383 !RD->hasTrivialDefaultConstructor() &&
2384 !RD->hasConstexprNonCopyMoveConstructor();
2385}
2386
2387static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind,
2388 bool DebugTypeExtRefs, const RecordDecl *RD,
2389 const LangOptions &LangOpts) {
2390 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
2391 return true;
2392
2393 if (auto *ES = RD->getASTContext().getExternalSource())
2394 if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always)
2395 return true;
2396
2397 // Only emit forward declarations in line tables only to keep debug info size
2398 // small. This only applies to CodeView, since we don't emit types in DWARF
2399 // line tables only.
2400 if (DebugKind == codegenoptions::DebugLineTablesOnly)
2401 return true;
2402
2403 if (DebugKind > codegenoptions::LimitedDebugInfo ||
2404 RD->hasAttr<StandaloneDebugAttr>())
2405 return false;
2406
2407 if (!LangOpts.CPlusPlus)
2408 return false;
2409
2410 if (!RD->isCompleteDefinitionRequired())
2411 return true;
2412
2413 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
2414
2415 if (!CXXDecl)
2416 return false;
2417
2418 // Only emit complete debug info for a dynamic class when its vtable is
2419 // emitted. However, Microsoft debuggers don't resolve type information
2420 // across DLL boundaries, so skip this optimization if the class or any of its
2421 // methods are marked dllimport. This isn't a complete solution, since objects
2422 // without any dllimport methods can be used in one DLL and constructed in
2423 // another, but it is the current behavior of LimitedDebugInfo.
2424 if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() &&
2425 !isClassOrMethodDLLImport(CXXDecl))
2426 return true;
2427
2428 TemplateSpecializationKind Spec = TSK_Undeclared;
2429 if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD))
2430 Spec = SD->getSpecializationKind();
2431
2432 if (Spec == TSK_ExplicitInstantiationDeclaration &&
2433 hasExplicitMemberDefinition(CXXDecl->method_begin(),
2434 CXXDecl->method_end()))
2435 return true;
2436
2437 // In constructor homing mode, only emit complete debug info for a class
2438 // when its constructor is emitted.
2439 if ((DebugKind == codegenoptions::DebugInfoConstructor) &&
2440 canUseCtorHoming(CXXDecl))
2441 return true;
2442
2443 return false;
2444}
2445
2446void CGDebugInfo::completeRequiredType(const RecordDecl *RD) {
2447 if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts()))
2448 return;
2449
2450 QualType Ty = CGM.getContext().getRecordType(RD);
2451 llvm::DIType *T = getTypeOrNull(Ty);
2452 if (T && T->isForwardDecl())
2453 completeClassData(RD);
2454}
2455
2456llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) {
2457 RecordDecl *RD = Ty->getDecl();
2458 llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0)));
2459 if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD,
2460 CGM.getLangOpts())) {
2461 if (!T)
2462 T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD));
2463 return T;
2464 }
2465
2466 return CreateTypeDefinition(Ty);
2467}
2468
2469llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) {
2470 RecordDecl *RD = Ty->getDecl();
2471
2472 // Get overall information about the record type for the debug info.
2473 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
2474
2475 // Records and classes and unions can all be recursive. To handle them, we
2476 // first generate a debug descriptor for the struct as a forward declaration.
2477 // Then (if it is a definition) we go through and get debug info for all of
2478 // its members. Finally, we create a descriptor for the complete type (which
2479 // may refer to the forward decl if the struct is recursive) and replace all
2480 // uses of the forward declaration with the final definition.
2481 llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty);
2482
2483 const RecordDecl *D = RD->getDefinition();
2484 if (!D || !D->isCompleteDefinition())
2485 return FwdDecl;
2486
2487 if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD))
2488 CollectContainingType(CXXDecl, FwdDecl);
2489
2490 // Push the struct on region stack.
2491 LexicalBlockStack.emplace_back(&*FwdDecl);
2492 RegionMap[Ty->getDecl()].reset(FwdDecl);
2493
2494 // Convert all the elements.
2495 SmallVector<llvm::Metadata *, 16> EltTys;
2496 // what about nested types?
2497
2498 // Note: The split of CXXDecl information here is intentional, the
2499 // gdb tests will depend on a certain ordering at printout. The debug
2500 // information offsets are still correct if we merge them all together
2501 // though.
2502 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
2503 if (CXXDecl) {
2504 CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl);
2505 CollectVTableInfo(CXXDecl, DefUnit, EltTys);
2506 }
2507
2508 // Collect data fields (including static variables and any initializers).
2509 CollectRecordFields(RD, DefUnit, EltTys, FwdDecl);
2510 if (CXXDecl)
2511 CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl);
2512
2513 LexicalBlockStack.pop_back();
2514 RegionMap.erase(Ty->getDecl());
2515
2516 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
2517 DBuilder.replaceArrays(FwdDecl, Elements);
2518
2519 if (FwdDecl->isTemporary())
2520 FwdDecl =
2521 llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl));
2522
2523 RegionMap[Ty->getDecl()].reset(FwdDecl);
2524 return FwdDecl;
2525}
2526
2527llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty,
2528 llvm::DIFile *Unit) {
2529 // Ignore protocols.
2530 return getOrCreateType(Ty->getBaseType(), Unit);
2531}
2532
2533llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty,
2534 llvm::DIFile *Unit) {
2535 // Ignore protocols.
2536 SourceLocation Loc = Ty->getDecl()->getLocation();
2537
2538 // Use Typedefs to represent ObjCTypeParamType.
2539 return DBuilder.createTypedef(
2540 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit),
2541 Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc),
2542 getDeclContextDescriptor(Ty->getDecl()));
2543}
2544
2545/// \return true if Getter has the default name for the property PD.
2546static bool hasDefaultGetterName(const ObjCPropertyDecl *PD,
2547 const ObjCMethodDecl *Getter) {
2548 assert(PD)(static_cast<void> (0));
2549 if (!Getter)
2550 return true;
2551
2552 assert(Getter->getDeclName().isObjCZeroArgSelector())(static_cast<void> (0));
2553 return PD->getName() ==
2554 Getter->getDeclName().getObjCSelector().getNameForSlot(0);
2555}
2556
2557/// \return true if Setter has the default name for the property PD.
2558static bool hasDefaultSetterName(const ObjCPropertyDecl *PD,
2559 const ObjCMethodDecl *Setter) {
2560 assert(PD)(static_cast<void> (0));
2561 if (!Setter)
2562 return true;
2563
2564 assert(Setter->getDeclName().isObjCOneArgSelector())(static_cast<void> (0));
2565 return SelectorTable::constructSetterName(PD->getName()) ==
2566 Setter->getDeclName().getObjCSelector().getNameForSlot(0);
2567}
2568
2569llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty,
2570 llvm::DIFile *Unit) {
2571 ObjCInterfaceDecl *ID = Ty->getDecl();
2572 if (!ID)
2573 return nullptr;
2574
2575 // Return a forward declaration if this type was imported from a clang module,
2576 // and this is not the compile unit with the implementation of the type (which
2577 // may contain hidden ivars).
2578 if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() &&
2579 !ID->getImplementation())
2580 return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
2581 ID->getName(),
2582 getDeclContextDescriptor(ID), Unit, 0);
2583
2584 // Get overall information about the record type for the debug info.
2585 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
2586 unsigned Line = getLineNumber(ID->getLocation());
2587 auto RuntimeLang =
2588 static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage());
2589
2590 // If this is just a forward declaration return a special forward-declaration
2591 // debug type since we won't be able to lay out the entire type.
2592 ObjCInterfaceDecl *Def = ID->getDefinition();
2593 if (!Def || !Def->getImplementation()) {
2594 llvm::DIScope *Mod = getParentModuleOrNull(ID);
2595 llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType(
2596 llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU,
2597 DefUnit, Line, RuntimeLang);
2598 ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit));
2599 return FwdDecl;
2600 }
2601
2602 return CreateTypeDefinition(Ty, Unit);
2603}
2604
2605llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod,
2606 bool CreateSkeletonCU) {
2607 // Use the Module pointer as the key into the cache. This is a
2608 // nullptr if the "Module" is a PCH, which is safe because we don't
2609 // support chained PCH debug info, so there can only be a single PCH.
2610 const Module *M = Mod.getModuleOrNull();
2611 auto ModRef = ModuleCache.find(M);
2612 if (ModRef != ModuleCache.end())
2613 return cast<llvm::DIModule>(ModRef->second);
2614
2615 // Macro definitions that were defined with "-D" on the command line.
2616 SmallString<128> ConfigMacros;
2617 {
2618 llvm::raw_svector_ostream OS(ConfigMacros);
2619 const auto &PPOpts = CGM.getPreprocessorOpts();
2620 unsigned I = 0;
2621 // Translate the macro definitions back into a command line.
2622 for (auto &M : PPOpts.Macros) {
2623 if (++I > 1)
2624 OS << " ";
2625 const std::string &Macro = M.first;
2626 bool Undef = M.second;
2627 OS << "\"-" << (Undef ? 'U' : 'D');
2628 for (char c : Macro)
2629 switch (c) {
2630 case '\\':
2631 OS << "\\\\";
2632 break;
2633 case '"':
2634 OS << "\\\"";
2635 break;
2636 default:
2637 OS << c;
2638 }
2639 OS << '\"';
2640 }
2641 }
2642
2643 bool IsRootModule = M ? !M->Parent : true;
2644 // When a module name is specified as -fmodule-name, that module gets a
2645 // clang::Module object, but it won't actually be built or imported; it will
2646 // be textual.
2647 if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M)
2648 assert(StringRef(M->Name).startswith(CGM.getLangOpts().ModuleName) &&(static_cast<void> (0))
2649 "clang module without ASTFile must be specified by -fmodule-name")(static_cast<void> (0));
2650
2651 // Return a StringRef to the remapped Path.
2652 auto RemapPath = [this](StringRef Path) -> std::string {
2653 std::string Remapped = remapDIPath(Path);
2654 StringRef Relative(Remapped);
2655 StringRef CompDir = TheCU->getDirectory();
2656 if (Relative.consume_front(CompDir))
2657 Relative.consume_front(llvm::sys::path::get_separator());
2658
2659 return Relative.str();
2660 };
2661
2662 if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) {
2663 // PCH files don't have a signature field in the control block,
2664 // but LLVM detects skeleton CUs by looking for a non-zero DWO id.
2665 // We use the lower 64 bits for debug info.
2666
2667 uint64_t Signature = 0;
2668 if (const auto &ModSig = Mod.getSignature())
2669 Signature = ModSig.truncatedValue();
2670 else
2671 Signature = ~1ULL;
2672
2673 llvm::DIBuilder DIB(CGM.getModule());
2674 SmallString<0> PCM;
2675 if (!llvm::sys::path::is_absolute(Mod.getASTFile()))
2676 PCM = Mod.getPath();
2677 llvm::sys::path::append(PCM, Mod.getASTFile());
2678 DIB.createCompileUnit(
2679 TheCU->getSourceLanguage(),
2680 // TODO: Support "Source" from external AST providers?
2681 DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()),
2682 TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM),
2683 llvm::DICompileUnit::FullDebug, Signature);
2684 DIB.finalize();
2685 }
2686
2687 llvm::DIModule *Parent =
2688 IsRootModule ? nullptr
2689 : getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent),
2690 CreateSkeletonCU);
2691 std::string IncludePath = Mod.getPath().str();
2692 llvm::DIModule *DIMod =
2693 DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros,
2694 RemapPath(IncludePath));
2695 ModuleCache[M].reset(DIMod);
2696 return DIMod;
2697}
2698
2699llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty,
2700 llvm::DIFile *Unit) {
2701 ObjCInterfaceDecl *ID = Ty->getDecl();
2702 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
2703 unsigned Line = getLineNumber(ID->getLocation());
2704 unsigned RuntimeLang = TheCU->getSourceLanguage();
2705
2706 // Bit size, align and offset of the type.
2707 uint64_t Size = CGM.getContext().getTypeSize(Ty);
2708 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
2709
2710 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
2711 if (ID->getImplementation())
2712 Flags |= llvm::DINode::FlagObjcClassComplete;
2713
2714 llvm::DIScope *Mod = getParentModuleOrNull(ID);
2715 llvm::DICompositeType *RealDecl = DBuilder.createStructType(
2716 Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags,
2717 nullptr, llvm::DINodeArray(), RuntimeLang);
2718
2719 QualType QTy(Ty, 0);
2720 TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl);
2721
2722 // Push the struct on region stack.
2723 LexicalBlockStack.emplace_back(RealDecl);
2724 RegionMap[Ty->getDecl()].reset(RealDecl);
2725
2726 // Convert all the elements.
2727 SmallVector<llvm::Metadata *, 16> EltTys;
2728
2729 ObjCInterfaceDecl *SClass = ID->getSuperClass();
2730 if (SClass) {
2731 llvm::DIType *SClassTy =
2732 getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit);
2733 if (!SClassTy)
2734 return nullptr;
2735
2736 llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0,
2737 llvm::DINode::FlagZero);
2738 EltTys.push_back(InhTag);
2739 }
2740
2741 // Create entries for all of the properties.
2742 auto AddProperty = [&](const ObjCPropertyDecl *PD) {
2743 SourceLocation Loc = PD->getLocation();
2744 llvm::DIFile *PUnit = getOrCreateFile(Loc);
2745 unsigned PLine = getLineNumber(Loc);
2746 ObjCMethodDecl *Getter = PD->getGetterMethodDecl();
2747 ObjCMethodDecl *Setter = PD->getSetterMethodDecl();
2748 llvm::MDNode *PropertyNode = DBuilder.createObjCProperty(
2749 PD->getName(), PUnit, PLine,
2750 hasDefaultGetterName(PD, Getter) ? ""
2751 : getSelectorName(PD->getGetterName()),
2752 hasDefaultSetterName(PD, Setter) ? ""
2753 : getSelectorName(PD->getSetterName()),
2754 PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit));
2755 EltTys.push_back(PropertyNode);
2756 };
2757 {
2758 // Use 'char' for the isClassProperty bit as DenseSet requires space for
2759 // empty/tombstone keys in the data type (and bool is too small for that).
2760 typedef std::pair<char, const IdentifierInfo *> IsClassAndIdent;
2761 /// List of already emitted properties. Two distinct class and instance
2762 /// properties can share the same identifier (but not two instance
2763 /// properties or two class properties).
2764 llvm::DenseSet<IsClassAndIdent> PropertySet;
2765 /// Returns the IsClassAndIdent key for the given property.
2766 auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) {
2767 return std::make_pair(PD->isClassProperty(), PD->getIdentifier());
2768 };
2769 for (const ObjCCategoryDecl *ClassExt : ID->known_extensions())
2770 for (auto *PD : ClassExt->properties()) {
2771 PropertySet.insert(GetIsClassAndIdent(PD));
2772 AddProperty(PD);
2773 }
2774 for (const auto *PD : ID->properties()) {
2775 // Don't emit duplicate metadata for properties that were already in a
2776 // class extension.
2777 if (!PropertySet.insert(GetIsClassAndIdent(PD)).second)
2778 continue;
2779 AddProperty(PD);
2780 }
2781 }
2782
2783 const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID);
2784 unsigned FieldNo = 0;
2785 for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field;
2786 Field = Field->getNextIvar(), ++FieldNo) {
2787 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
2788 if (!FieldTy)
2789 return nullptr;
2790
2791 StringRef FieldName = Field->getName();
2792
2793 // Ignore unnamed fields.
2794 if (FieldName.empty())
2795 continue;
2796
2797 // Get the location for the field.
2798 llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation());
2799 unsigned FieldLine = getLineNumber(Field->getLocation());
2800 QualType FType = Field->getType();
2801 uint64_t FieldSize = 0;
2802 uint32_t FieldAlign = 0;
2803
2804 if (!FType->isIncompleteArrayType()) {
2805
2806 // Bit size, align and offset of the type.
2807 FieldSize = Field->isBitField()
2808 ? Field->getBitWidthValue(CGM.getContext())
2809 : CGM.getContext().getTypeSize(FType);
2810 FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext());
2811 }
2812
2813 uint64_t FieldOffset;
2814 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2815 // We don't know the runtime offset of an ivar if we're using the
2816 // non-fragile ABI. For bitfields, use the bit offset into the first
2817 // byte of storage of the bitfield. For other fields, use zero.
2818 if (Field->isBitField()) {
2819 FieldOffset =
2820 CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field);
2821 FieldOffset %= CGM.getContext().getCharWidth();
2822 } else {
2823 FieldOffset = 0;
2824 }
2825 } else {
2826 FieldOffset = RL.getFieldOffset(FieldNo);
2827 }
2828
2829 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
2830 if (Field->getAccessControl() == ObjCIvarDecl::Protected)
2831 Flags = llvm::DINode::FlagProtected;
2832 else if (Field->getAccessControl() == ObjCIvarDecl::Private)
2833 Flags = llvm::DINode::FlagPrivate;
2834 else if (Field->getAccessControl() == ObjCIvarDecl::Public)
2835 Flags = llvm::DINode::FlagPublic;
2836
2837 llvm::MDNode *PropertyNode = nullptr;
2838 if (ObjCImplementationDecl *ImpD = ID->getImplementation()) {
2839 if (ObjCPropertyImplDecl *PImpD =
2840 ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) {
2841 if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) {
2842 SourceLocation Loc = PD->getLocation();
2843 llvm::DIFile *PUnit = getOrCreateFile(Loc);
2844 unsigned PLine = getLineNumber(Loc);
2845 ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl();
2846 ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl();
2847 PropertyNode = DBuilder.createObjCProperty(
2848 PD->getName(), PUnit, PLine,
2849 hasDefaultGetterName(PD, Getter)
2850 ? ""
2851 : getSelectorName(PD->getGetterName()),
2852 hasDefaultSetterName(PD, Setter)
2853 ? ""
2854 : getSelectorName(PD->getSetterName()),
2855 PD->getPropertyAttributes(),
2856 getOrCreateType(PD->getType(), PUnit));
2857 }
2858 }
2859 }
2860 FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine,
2861 FieldSize, FieldAlign, FieldOffset, Flags,
2862 FieldTy, PropertyNode);
2863 EltTys.push_back(FieldTy);
2864 }
2865
2866 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
2867 DBuilder.replaceArrays(RealDecl, Elements);
2868
2869 LexicalBlockStack.pop_back();
2870 return RealDecl;
2871}
2872
2873llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty,
2874 llvm::DIFile *Unit) {
2875 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit);
2876 int64_t Count = Ty->getNumElements();
2877
2878 llvm::Metadata *Subscript;
2879 QualType QTy(Ty, 0);
2880 auto SizeExpr = SizeExprCache.find(QTy);
2881 if (SizeExpr != SizeExprCache.end())
2882 Subscript = DBuilder.getOrCreateSubrange(
2883 SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/,
2884 nullptr /*upperBound*/, nullptr /*stride*/);
2885 else {
2886 auto *CountNode =
2887 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
2888 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1));
2889 Subscript = DBuilder.getOrCreateSubrange(
2890 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
2891 nullptr /*stride*/);
2892 }
2893 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
2894
2895 uint64_t Size = CGM.getContext().getTypeSize(Ty);
2896 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
2897
2898 return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray);
2899}
2900
2901llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty,
2902 llvm::DIFile *Unit) {
2903 // FIXME: Create another debug type for matrices
2904 // For the time being, it treats it like a nested ArrayType.
2905
2906 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit);
2907 uint64_t Size = CGM.getContext().getTypeSize(Ty);
2908 uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext());
2909
2910 // Create ranges for both dimensions.
2911 llvm::SmallVector<llvm::Metadata *, 2> Subscripts;
2912 auto *ColumnCountNode =
2913 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
2914 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns()));
2915 auto *RowCountNode =
2916 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
2917 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows()));
2918 Subscripts.push_back(DBuilder.getOrCreateSubrange(
2919 ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
2920 nullptr /*stride*/));
2921 Subscripts.push_back(DBuilder.getOrCreateSubrange(
2922 RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
2923 nullptr /*stride*/));
2924 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts);
2925 return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray);
2926}
2927
2928llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) {
2929 uint64_t Size;
2930 uint32_t Align;
2931
2932 // FIXME: make getTypeAlign() aware of VLAs and incomplete array types
2933 if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) {
2934 Size = 0;
2935 Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT),
2936 CGM.getContext());
2937 } else if (Ty->isIncompleteArrayType()) {
2938 Size = 0;
2939 if (Ty->getElementType()->isIncompleteType())
2940 Align = 0;
2941 else
2942 Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext());
2943 } else if (Ty->isIncompleteType()) {
2944 Size = 0;
2945 Align = 0;
2946 } else {
2947 // Size and align of the whole array, not the element type.
2948 Size = CGM.getContext().getTypeSize(Ty);
2949 Align = getTypeAlignIfRequired(Ty, CGM.getContext());
2950 }
2951
2952 // Add the dimensions of the array. FIXME: This loses CV qualifiers from
2953 // interior arrays, do we care? Why aren't nested arrays represented the
2954 // obvious/recursive way?
2955 SmallVector<llvm::Metadata *, 8> Subscripts;
2956 QualType EltTy(Ty, 0);
2957 while ((Ty = dyn_cast<ArrayType>(EltTy))) {
2958 // If the number of elements is known, then count is that number. Otherwise,
2959 // it's -1. This allows us to represent a subrange with an array of 0
2960 // elements, like this:
2961 //
2962 // struct foo {
2963 // int x[0];
2964 // };
2965 int64_t Count = -1; // Count == -1 is an unbounded array.
2966 if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty))
2967 Count = CAT->getSize().getZExtValue();
2968 else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) {
2969 if (Expr *Size = VAT->getSizeExpr()) {
2970 Expr::EvalResult Result;
2971 if (Size->EvaluateAsInt(Result, CGM.getContext()))
2972 Count = Result.Val.getInt().getExtValue();
2973 }
2974 }
2975
2976 auto SizeNode = SizeExprCache.find(EltTy);
2977 if (SizeNode != SizeExprCache.end())
2978 Subscripts.push_back(DBuilder.getOrCreateSubrange(
2979 SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/,
2980 nullptr /*upperBound*/, nullptr /*stride*/));
2981 else {
2982 auto *CountNode =
2983 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
2984 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count));
2985 Subscripts.push_back(DBuilder.getOrCreateSubrange(
2986 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
2987 nullptr /*stride*/));
2988 }
2989 EltTy = Ty->getElementType();
2990 }
2991
2992 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts);
2993
2994 return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit),
2995 SubscriptArray);
2996}
2997
2998llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty,
2999 llvm::DIFile *Unit) {
3000 return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty,
3001 Ty->getPointeeType(), Unit);
3002}
3003
3004llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty,
3005 llvm::DIFile *Unit) {
3006 llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type;
3007 // DW_TAG_rvalue_reference_type was introduced in DWARF 4.
3008 if (CGM.getCodeGenOpts().DebugStrictDwarf &&
3009 CGM.getCodeGenOpts().DwarfVersion < 4)
3010 Tag = llvm::dwarf::DW_TAG_reference_type;
3011
3012 return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit);
3013}
3014
3015llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty,
3016 llvm::DIFile *U) {
3017 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
3018 uint64_t Size = 0;
3019
3020 if (!Ty->isIncompleteType()) {
10
Assuming the condition is false
11
Taking false branch
3021 Size = CGM.getContext().getTypeSize(Ty);
3022
3023 // Set the MS inheritance model. There is no flag for the unspecified model.
3024 if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3025 switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) {
3026 case MSInheritanceModel::Single:
3027 Flags |= llvm::DINode::FlagSingleInheritance;
3028 break;
3029 case MSInheritanceModel::Multiple:
3030 Flags |= llvm::DINode::FlagMultipleInheritance;
3031 break;
3032 case MSInheritanceModel::Virtual:
3033 Flags |= llvm::DINode::FlagVirtualInheritance;
3034 break;
3035 case MSInheritanceModel::Unspecified:
3036 break;
3037 }
3038 }
3039 }
3040
3041 llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U);
3042 if (Ty->isMemberDataPointerType())
12
Calling 'Type::isMemberDataPointerType'
16
Returning from 'Type::isMemberDataPointerType'
17
Taking false branch
3043 return DBuilder.createMemberPointerType(
3044 getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0,
3045 Flags);
3046
3047 const FunctionProtoType *FPT =
19
'FPT' initialized to a null pointer value
3048 Ty->getPointeeType()->getAs<FunctionProtoType>();
18
Assuming the object is not a 'FunctionProtoType'
3049 return DBuilder.createMemberPointerType(
3050 getOrCreateInstanceMethodType(
21
Calling 'CGDebugInfo::getOrCreateInstanceMethodType'
3051 CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()),
3052 FPT, U, false),
20
Passing null pointer value via 2nd parameter 'Func'
3053 ClassType, Size, /*Align=*/0, Flags);
3054}
3055
3056llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) {
3057 auto *FromTy = getOrCreateType(Ty->getValueType(), U);
3058 return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy);
3059}
3060
3061llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) {
3062 return getOrCreateType(Ty->getElementType(), U);
3063}
3064
3065llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) {
3066 const EnumDecl *ED = Ty->getDecl();
3067
3068 uint64_t Size = 0;
3069 uint32_t Align = 0;
3070 if (!ED->getTypeForDecl()->isIncompleteType()) {
3071 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
3072 Align = getDeclAlignIfRequired(ED, CGM.getContext());
3073 }
3074
3075 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
3076
3077 bool isImportedFromModule =
3078 DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition();
3079
3080 // If this is just a forward declaration, construct an appropriately
3081 // marked node and just return it.
3082 if (isImportedFromModule || !ED->getDefinition()) {
3083 // Note that it is possible for enums to be created as part of
3084 // their own declcontext. In this case a FwdDecl will be created
3085 // twice. This doesn't cause a problem because both FwdDecls are
3086 // entered into the ReplaceMap: finalize() will replace the first
3087 // FwdDecl with the second and then replace the second with
3088 // complete type.
3089 llvm::DIScope *EDContext = getDeclContextDescriptor(ED);
3090 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
3091 llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType(
3092 llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0));
3093
3094 unsigned Line = getLineNumber(ED->getLocation());
3095 StringRef EDName = ED->getName();
3096 llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType(
3097 llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line,
3098 0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier);
3099
3100 ReplaceMap.emplace_back(
3101 std::piecewise_construct, std::make_tuple(Ty),
3102 std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
3103 return RetTy;
3104 }
3105
3106 return CreateTypeDefinition(Ty);
3107}
3108
3109llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) {
3110 const EnumDecl *ED = Ty->getDecl();
3111 uint64_t Size = 0;
3112 uint32_t Align = 0;
3113 if (!ED->getTypeForDecl()->isIncompleteType()) {
3114 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
3115 Align = getDeclAlignIfRequired(ED, CGM.getContext());
3116 }
3117
3118 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
3119
3120 SmallVector<llvm::Metadata *, 16> Enumerators;
3121 ED = ED->getDefinition();
3122 for (const auto *Enum : ED->enumerators()) {
3123 Enumerators.push_back(
3124 DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal()));
3125 }
3126
3127 // Return a CompositeType for the enum itself.
3128 llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators);
3129
3130 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
3131 unsigned Line = getLineNumber(ED->getLocation());
3132 llvm::DIScope *EnumContext = getDeclContextDescriptor(ED);
3133 llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit);
3134 return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit,
3135 Line, Size, Align, EltArray, ClassTy,
3136 Identifier, ED->isScoped());
3137}
3138
3139llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent,
3140 unsigned MType, SourceLocation LineLoc,
3141 StringRef Name, StringRef Value) {
3142 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc);
3143 return DBuilder.createMacro(Parent, Line, MType, Name, Value);
3144}
3145
3146llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent,
3147 SourceLocation LineLoc,
3148 SourceLocation FileLoc) {
3149 llvm::DIFile *FName = getOrCreateFile(FileLoc);
3150 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc);
3151 return DBuilder.createTempMacroFile(Parent, Line, FName);
3152}
3153
3154static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) {
3155 Qualifiers Quals;
3156 do {
3157 Qualifiers InnerQuals = T.getLocalQualifiers();
3158 // Qualifiers::operator+() doesn't like it if you add a Qualifier
3159 // that is already there.
3160 Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals);
3161 Quals += InnerQuals;
3162 QualType LastT = T;
3163 switch (T->getTypeClass()) {
3164 default:
3165 return C.getQualifiedType(T.getTypePtr(), Quals);
3166 case Type::TemplateSpecialization: {
3167 const auto *Spec = cast<TemplateSpecializationType>(T);
3168 if (Spec->isTypeAlias())
3169 return C.getQualifiedType(T.getTypePtr(), Quals);
3170 T = Spec->desugar();
3171 break;
3172 }
3173 case Type::TypeOfExpr:
3174 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType();
3175 break;
3176 case Type::TypeOf:
3177 T = cast<TypeOfType>(T)->getUnderlyingType();
3178 break;
3179 case Type::Decltype:
3180 T = cast<DecltypeType>(T)->getUnderlyingType();
3181 break;
3182 case Type::UnaryTransform:
3183 T = cast<UnaryTransformType>(T)->getUnderlyingType();
3184 break;
3185 case Type::Attributed:
3186 T = cast<AttributedType>(T)->getEquivalentType();
3187 break;
3188 case Type::Elaborated:
3189 T = cast<ElaboratedType>(T)->getNamedType();
3190 break;
3191 case Type::Paren:
3192 T = cast<ParenType>(T)->getInnerType();
3193 break;
3194 case Type::MacroQualified:
3195 T = cast<MacroQualifiedType>(T)->getUnderlyingType();
3196 break;
3197 case Type::SubstTemplateTypeParm:
3198 T = cast<SubstTemplateTypeParmType>(T)->getReplacementType();
3199 break;
3200 case Type::Auto:
3201 case Type::DeducedTemplateSpecialization: {
3202 QualType DT = cast<DeducedType>(T)->getDeducedType();
3203 assert(!DT.isNull() && "Undeduced types shouldn't reach here.")(static_cast<void> (0));
3204 T = DT;
3205 break;
3206 }
3207 case Type::Adjusted:
3208 case Type::Decayed:
3209 // Decayed and adjusted types use the adjusted type in LLVM and DWARF.
3210 T = cast<AdjustedType>(T)->getAdjustedType();
3211 break;
3212 }
3213
3214 assert(T != LastT && "Type unwrapping failed to unwrap!")(static_cast<void> (0));
3215 (void)LastT;
3216 } while (true);
3217}
3218
3219llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) {
3220 assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext()))(static_cast<void> (0));
3221 auto It = TypeCache.find(Ty.getAsOpaquePtr());
3222 if (It != TypeCache.end()) {
3223 // Verify that the debug info still exists.
3224 if (llvm::Metadata *V = It->second)
3225 return cast<llvm::DIType>(V);
3226 }
3227
3228 return nullptr;
3229}
3230
3231void CGDebugInfo::completeTemplateDefinition(
3232 const ClassTemplateSpecializationDecl &SD) {
3233 completeUnusedClass(SD);
3234}
3235
3236void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) {
3237 if (DebugKind <= codegenoptions::DebugLineTablesOnly)
3238 return;
3239
3240 completeClassData(&D);
3241 // In case this type has no member function definitions being emitted, ensure
3242 // it is retained
3243 RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr());
3244}
3245
3246llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) {
3247 if (Ty.isNull())
3
Taking false branch
3248 return nullptr;
3249
3250 llvm::TimeTraceScope TimeScope("DebugType", [&]() {
3251 std::string Name;
3252 llvm::raw_string_ostream OS(Name);
3253 Ty.print(OS, getPrintingPolicy());
3254 return Name;
3255 });
3256
3257 // Unwrap the type as needed for debug information.
3258 Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext());
3259
3260 if (auto *T
3.1
'T' is null
3.1
'T' is null
= getTypeOrNull(Ty))
4
Taking false branch
3261 return T;
3262
3263 llvm::DIType *Res = CreateTypeNode(Ty, Unit);
5
Calling 'CGDebugInfo::CreateTypeNode'
3264 void *TyPtr = Ty.getAsOpaquePtr();
3265
3266 // And update the type cache.
3267 TypeCache[TyPtr].reset(Res);
3268
3269 return Res;
3270}
3271
3272llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) {
3273 // A forward declaration inside a module header does not belong to the module.
3274 if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition())
3275 return nullptr;
3276 if (DebugTypeExtRefs && D->isFromASTFile()) {
3277 // Record a reference to an imported clang module or precompiled header.
3278 auto *Reader = CGM.getContext().getExternalSource();
3279 auto Idx = D->getOwningModuleID();
3280 auto Info = Reader->getSourceDescriptor(Idx);
3281 if (Info)
3282 return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true);
3283 } else if (ClangModuleMap) {
3284 // We are building a clang module or a precompiled header.
3285 //
3286 // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies
3287 // and it wouldn't be necessary to specify the parent scope
3288 // because the type is already unique by definition (it would look
3289 // like the output of -fno-standalone-debug). On the other hand,
3290 // the parent scope helps a consumer to quickly locate the object
3291 // file where the type's definition is located, so it might be
3292 // best to make this behavior a command line or debugger tuning
3293 // option.
3294 if (Module *M = D->getOwningModule()) {
3295 // This is a (sub-)module.
3296 auto Info = ASTSourceDescriptor(*M);
3297 return getOrCreateModuleRef(Info, /*SkeletonCU=*/false);
3298 } else {
3299 // This the precompiled header being built.
3300 return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false);
3301 }
3302 }
3303
3304 return nullptr;
3305}
3306
3307llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) {
3308 // Handle qualifiers, which recursively handles what they refer to.
3309 if (Ty.hasLocalQualifiers())
6
Assuming the condition is false
7
Taking false branch
3310 return CreateQualifiedType(Ty, Unit);
3311
3312 // Work out details of type.
3313 switch (Ty->getTypeClass()) {
8
Control jumps to 'case MemberPointer:' at line 3361
3314#define TYPE(Class, Base)
3315#define ABSTRACT_TYPE(Class, Base)
3316#define NON_CANONICAL_TYPE(Class, Base)
3317#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3318#include "clang/AST/TypeNodes.inc"
3319 llvm_unreachable("Dependent types cannot show up in debug information")__builtin_unreachable();
3320
3321 case Type::ExtVector:
3322 case Type::Vector:
3323 return CreateType(cast<VectorType>(Ty), Unit);
3324 case Type::ConstantMatrix:
3325 return CreateType(cast<ConstantMatrixType>(Ty), Unit);
3326 case Type::ObjCObjectPointer:
3327 return CreateType(cast<ObjCObjectPointerType>(Ty), Unit);
3328 case Type::ObjCObject:
3329 return CreateType(cast<ObjCObjectType>(Ty), Unit);
3330 case Type::ObjCTypeParam:
3331 return CreateType(cast<ObjCTypeParamType>(Ty), Unit);
3332 case Type::ObjCInterface:
3333 return CreateType(cast<ObjCInterfaceType>(Ty), Unit);
3334 case Type::Builtin:
3335 return CreateType(cast<BuiltinType>(Ty));
3336 case Type::Complex:
3337 return CreateType(cast<ComplexType>(Ty));
3338 case Type::Pointer:
3339 return CreateType(cast<PointerType>(Ty), Unit);
3340 case Type::BlockPointer:
3341 return CreateType(cast<BlockPointerType>(Ty), Unit);
3342 case Type::Typedef:
3343 return CreateType(cast<TypedefType>(Ty), Unit);
3344 case Type::Record:
3345 return CreateType(cast<RecordType>(Ty));
3346 case Type::Enum:
3347 return CreateEnumType(cast<EnumType>(Ty));
3348 case Type::FunctionProto:
3349 case Type::FunctionNoProto:
3350 return CreateType(cast<FunctionType>(Ty), Unit);
3351 case Type::ConstantArray:
3352 case Type::VariableArray:
3353 case Type::IncompleteArray:
3354 return CreateType(cast<ArrayType>(Ty), Unit);
3355
3356 case Type::LValueReference:
3357 return CreateType(cast<LValueReferenceType>(Ty), Unit);
3358 case Type::RValueReference:
3359 return CreateType(cast<RValueReferenceType>(Ty), Unit);
3360
3361 case Type::MemberPointer:
3362 return CreateType(cast<MemberPointerType>(Ty), Unit);
9
Calling 'CGDebugInfo::CreateType'
3363
3364 case Type::Atomic:
3365 return CreateType(cast<AtomicType>(Ty), Unit);
3366
3367 case Type::ExtInt:
3368 return CreateType(cast<ExtIntType>(Ty));
3369 case Type::Pipe:
3370 return CreateType(cast<PipeType>(Ty), Unit);
3371
3372 case Type::TemplateSpecialization:
3373 return CreateType(cast<TemplateSpecializationType>(Ty), Unit);
3374
3375 case Type::Auto:
3376 case Type::Attributed:
3377 case Type::Adjusted:
3378 case Type::Decayed:
3379 case Type::DeducedTemplateSpecialization:
3380 case Type::Elaborated:
3381 case Type::Paren:
3382 case Type::MacroQualified:
3383 case Type::SubstTemplateTypeParm:
3384 case Type::TypeOfExpr:
3385 case Type::TypeOf:
3386 case Type::Decltype:
3387 case Type::UnaryTransform:
3388 break;
3389 }
3390
3391 llvm_unreachable("type should have been unwrapped!")__builtin_unreachable();
3392}
3393
3394llvm::DICompositeType *
3395CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) {
3396 QualType QTy(Ty, 0);
3397
3398 auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy));
3399
3400 // We may have cached a forward decl when we could have created
3401 // a non-forward decl. Go ahead and create a non-forward decl
3402 // now.
3403 if (T && !T->isForwardDecl())
3404 return T;
3405
3406 // Otherwise create the type.
3407 llvm::DICompositeType *Res = CreateLimitedType(Ty);
3408
3409 // Propagate members from the declaration to the definition
3410 // CreateType(const RecordType*) will overwrite this with the members in the
3411 // correct order if the full type is needed.
3412 DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray());
3413
3414 // And update the type cache.
3415 TypeCache[QTy.getAsOpaquePtr()].reset(Res);
3416 return Res;
3417}
3418
3419// TODO: Currently used for context chains when limiting debug info.
3420llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) {
3421 RecordDecl *RD = Ty->getDecl();
3422
3423 // Get overall information about the record type for the debug info.
3424 StringRef RDName = getClassName(RD);
3425 const SourceLocation Loc = RD->getLocation();
3426 llvm::DIFile *DefUnit = nullptr;
3427 unsigned Line = 0;
3428 if (Loc.isValid()) {
3429 DefUnit = getOrCreateFile(Loc);
3430 Line = getLineNumber(Loc);
3431 }
3432
3433 llvm::DIScope *RDContext = getDeclContextDescriptor(RD);
3434
3435 // If we ended up creating the type during the context chain construction,
3436 // just return that.
3437 auto *T = cast_or_null<llvm::DICompositeType>(
3438 getTypeOrNull(CGM.getContext().getRecordType(RD)));
3439 if (T && (!T->isForwardDecl() || !RD->getDefinition()))
3440 return T;
3441
3442 // If this is just a forward or incomplete declaration, construct an
3443 // appropriately marked node and just return it.
3444 const RecordDecl *D = RD->getDefinition();
3445 if (!D || !D->isCompleteDefinition())
3446 return getOrCreateRecordFwdDecl(Ty, RDContext);
3447
3448 uint64_t Size = CGM.getContext().getTypeSize(Ty);
3449 auto Align = getDeclAlignIfRequired(D, CGM.getContext());
3450
3451 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
3452
3453 // Explicitly record the calling convention and export symbols for C++
3454 // records.
3455 auto Flags = llvm::DINode::FlagZero;
3456 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3457 if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect)
3458 Flags |= llvm::DINode::FlagTypePassByReference;
3459 else
3460 Flags |= llvm::DINode::FlagTypePassByValue;
3461
3462 // Record if a C++ record is non-trivial type.
3463 if (!CXXRD->isTrivial())
3464 Flags |= llvm::DINode::FlagNonTrivial;
3465
3466 // Record exports it symbols to the containing structure.
3467 if (CXXRD->isAnonymousStructOrUnion())
3468 Flags |= llvm::DINode::FlagExportSymbols;
3469 }
3470
3471 llvm::DINodeArray Annotations = CollectBTFTagAnnotations(D);
3472 llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType(
3473 getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align,
3474 Flags, Identifier, Annotations);
3475
3476 // Elements of composite types usually have back to the type, creating
3477 // uniquing cycles. Distinct nodes are more efficient.
3478 switch (RealDecl->getTag()) {
3479 default:
3480 llvm_unreachable("invalid composite type tag")__builtin_unreachable();
3481
3482 case llvm::dwarf::DW_TAG_array_type:
3483 case llvm::dwarf::DW_TAG_enumeration_type:
3484 // Array elements and most enumeration elements don't have back references,
3485 // so they don't tend to be involved in uniquing cycles and there is some
3486 // chance of merging them when linking together two modules. Only make
3487 // them distinct if they are ODR-uniqued.
3488 if (Identifier.empty())
3489 break;
3490 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3491
3492 case llvm::dwarf::DW_TAG_structure_type:
3493 case llvm::dwarf::DW_TAG_union_type:
3494 case llvm::dwarf::DW_TAG_class_type:
3495 // Immediately resolve to a distinct node.
3496 RealDecl =
3497 llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl));
3498 break;
3499 }
3500
3501 RegionMap[Ty->getDecl()].reset(RealDecl);
3502 TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl);
3503
3504 if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
3505 DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(),
3506 CollectCXXTemplateParams(TSpecial, DefUnit));
3507 return RealDecl;
3508}
3509
3510void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD,
3511 llvm::DICompositeType *RealDecl) {
3512 // A class's primary base or the class itself contains the vtable.
3513 llvm::DICompositeType *ContainingType = nullptr;
3514 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
3515 if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) {
3516 // Seek non-virtual primary base root.
3517 while (1) {
3518 const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase);
3519 const CXXRecordDecl *PBT = BRL.getPrimaryBase();
3520 if (PBT && !BRL.isPrimaryBaseVirtual())
3521 PBase = PBT;
3522 else
3523 break;
3524 }
3525 ContainingType = cast<llvm::DICompositeType>(
3526 getOrCreateType(QualType(PBase->getTypeForDecl(), 0),
3527 getOrCreateFile(RD->getLocation())));
3528 } else if (RD->isDynamicClass())
3529 ContainingType = RealDecl;
3530
3531 DBuilder.replaceVTableHolder(RealDecl, ContainingType);
3532}
3533
3534llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType,
3535 StringRef Name, uint64_t *Offset) {
3536 llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit);
3537 uint64_t FieldSize = CGM.getContext().getTypeSize(FType);
3538 auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext());
3539 llvm::DIType *Ty =
3540 DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign,
3541 *Offset, llvm::DINode::FlagZero, FieldTy);
3542 *Offset += FieldSize;
3543 return Ty;
3544}
3545
3546void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit,
3547 StringRef &Name,
3548 StringRef &LinkageName,
3549 llvm::DIScope *&FDContext,
3550 llvm::DINodeArray &TParamsArray,
3551 llvm::DINode::DIFlags &Flags) {
3552 const auto *FD = cast<FunctionDecl>(GD.getCanonicalDecl().getDecl());
3553 Name = getFunctionName(FD);
3554 // Use mangled name as linkage name for C/C++ functions.
3555 if (FD->getType()->getAs<FunctionProtoType>())
3556 LinkageName = CGM.getMangledName(GD);
3557 if (FD->hasPrototype())
3558 Flags |= llvm::DINode::FlagPrototyped;
3559 // No need to replicate the linkage name if it isn't different from the
3560 // subprogram name, no need to have it at all unless coverage is enabled or
3561 // debug is set to more than just line tables or extra debug info is needed.
3562 if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs &&
3563 !CGM.getCodeGenOpts().EmitGcovNotes &&
3564 !CGM.getCodeGenOpts().DebugInfoForProfiling &&
3565 !CGM.getCodeGenOpts().PseudoProbeForProfiling &&
3566 DebugKind <= codegenoptions::DebugLineTablesOnly))
3567 LinkageName = StringRef();
3568
3569 // Emit the function scope in line tables only mode (if CodeView) to
3570 // differentiate between function names.
3571 if (CGM.getCodeGenOpts().hasReducedDebugInfo() ||
3572 (DebugKind == codegenoptions::DebugLineTablesOnly &&
3573 CGM.getCodeGenOpts().EmitCodeView)) {
3574 if (const NamespaceDecl *NSDecl =
3575 dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext()))
3576 FDContext = getOrCreateNamespace(NSDecl);
3577 else if (const RecordDecl *RDecl =
3578 dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) {
3579 llvm::DIScope *Mod = getParentModuleOrNull(RDecl);
3580 FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU);
3581 }
3582 }
3583 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
3584 // Check if it is a noreturn-marked function
3585 if (FD->isNoReturn())
3586 Flags |= llvm::DINode::FlagNoReturn;
3587 // Collect template parameters.
3588 TParamsArray = CollectFunctionTemplateParams(FD, Unit);
3589 }
3590}
3591
3592void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit,
3593 unsigned &LineNo, QualType &T,
3594 StringRef &Name, StringRef &LinkageName,
3595 llvm::MDTuple *&TemplateParameters,
3596 llvm::DIScope *&VDContext) {
3597 Unit = getOrCreateFile(VD->getLocation());
3598 LineNo = getLineNumber(VD->getLocation());
3599
3600 setLocation(VD->getLocation());
3601
3602 T = VD->getType();
3603 if (T->isIncompleteArrayType()) {
3604 // CodeGen turns int[] into int[1] so we'll do the same here.
3605 llvm::APInt ConstVal(32, 1);
3606 QualType ET = CGM.getContext().getAsArrayType(T)->getElementType();
3607
3608 T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr,
3609 ArrayType::Normal, 0);
3610 }
3611
3612 Name = VD->getName();
3613 if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) &&
3614 !isa<ObjCMethodDecl>(VD->getDeclContext()))
3615 LinkageName = CGM.getMangledName(VD);
3616 if (LinkageName == Name)
3617 LinkageName = StringRef();
3618
3619 if (isa<VarTemplateSpecializationDecl>(VD)) {
3620 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit);
3621 TemplateParameters = parameterNodes.get();
3622 } else {
3623 TemplateParameters = nullptr;
3624 }
3625
3626 // Since we emit declarations (DW_AT_members) for static members, place the
3627 // definition of those static members in the namespace they were declared in
3628 // in the source code (the lexical decl context).
3629 // FIXME: Generalize this for even non-member global variables where the
3630 // declaration and definition may have different lexical decl contexts, once
3631 // we have support for emitting declarations of (non-member) global variables.
3632 const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext()
3633 : VD->getDeclContext();
3634 // When a record type contains an in-line initialization of a static data
3635 // member, and the record type is marked as __declspec(dllexport), an implicit
3636 // definition of the member will be created in the record context. DWARF
3637 // doesn't seem to have a nice way to describe this in a form that consumers
3638 // are likely to understand, so fake the "normal" situation of a definition
3639 // outside the class by putting it in the global scope.
3640 if (DC->isRecord())
3641 DC = CGM.getContext().getTranslationUnitDecl();
3642
3643 llvm::DIScope *Mod = getParentModuleOrNull(VD);
3644 VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU);
3645}
3646
3647llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD,
3648 bool Stub) {
3649 llvm::DINodeArray TParamsArray;
3650 StringRef Name, LinkageName;
3651 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
3652 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
3653 SourceLocation Loc = GD.getDecl()->getLocation();
3654 llvm::DIFile *Unit = getOrCreateFile(Loc);
3655 llvm::DIScope *DContext = Unit;
3656 unsigned Line = getLineNumber(Loc);
3657 collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray,
3658 Flags);
3659 auto *FD = cast<FunctionDecl>(GD.getDecl());
3660
3661 // Build function type.
3662 SmallVector<QualType, 16> ArgTypes;
3663 for (const ParmVarDecl *Parm : FD->parameters())
3664 ArgTypes.push_back(Parm->getType());
3665
3666 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
3667 QualType FnType = CGM.getContext().getFunctionType(
3668 FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
3669 if (!FD->isExternallyVisible())
3670 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
3671 if (CGM.getLangOpts().Optimize)
3672 SPFlags |= llvm::DISubprogram::SPFlagOptimized;
3673
3674 if (Stub) {
3675 Flags |= getCallSiteRelatedAttrs();
3676 SPFlags |= llvm::DISubprogram::SPFlagDefinition;
3677 return DBuilder.createFunction(
3678 DContext, Name, LinkageName, Unit, Line,
3679 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags,
3680 TParamsArray.get(), getFunctionDeclaration(FD));
3681 }
3682
3683 llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl(
3684 DContext, Name, LinkageName, Unit, Line,
3685 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags,
3686 TParamsArray.get(), getFunctionDeclaration(FD));
3687 const FunctionDecl *CanonDecl = FD->getCanonicalDecl();
3688 FwdDeclReplaceMap.emplace_back(std::piecewise_construct,
3689 std::make_tuple(CanonDecl),
3690 std::make_tuple(SP));
3691 return SP;
3692}
3693
3694llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) {
3695 return getFunctionFwdDeclOrStub(GD, /* Stub = */ false);
3696}
3697
3698llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) {
3699 return getFunctionFwdDeclOrStub(GD, /* Stub = */ true);
3700}
3701
3702llvm::DIGlobalVariable *
3703CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) {
3704 QualType T;
3705 StringRef Name, LinkageName;
3706 SourceLocation Loc = VD->getLocation();
3707 llvm::DIFile *Unit = getOrCreateFile(Loc);
3708 llvm::DIScope *DContext = Unit;
3709 unsigned Line = getLineNumber(Loc);
3710 llvm::MDTuple *TemplateParameters = nullptr;
3711
3712 collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters,
3713 DContext);
3714 auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
3715 auto *GV = DBuilder.createTempGlobalVariableFwdDecl(
3716 DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit),
3717 !VD->isExternallyVisible(), nullptr, TemplateParameters, Align);
3718 FwdDeclReplaceMap.emplace_back(
3719 std::piecewise_construct,
3720 std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())),
3721 std::make_tuple(static_cast<llvm::Metadata *>(GV)));
3722 return GV;
3723}
3724
3725llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) {
3726 // We only need a declaration (not a definition) of the type - so use whatever
3727 // we would otherwise do to get a type for a pointee. (forward declarations in
3728 // limited debug info, full definitions (if the type definition is available)
3729 // in unlimited debug info)
3730 if (const auto *TD = dyn_cast<TypeDecl>(D))
3731 return getOrCreateType(CGM.getContext().getTypeDeclType(TD),
3732 getOrCreateFile(TD->getLocation()));
3733 auto I = DeclCache.find(D->getCanonicalDecl());
3734
3735 if (I != DeclCache.end()) {
3736 auto N = I->second;
3737 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N))
3738 return GVE->getVariable();
3739 return dyn_cast_or_null<llvm::DINode>(N);
3740 }
3741
3742 // No definition for now. Emit a forward definition that might be
3743 // merged with a potential upcoming definition.
3744 if (const auto *FD = dyn_cast<FunctionDecl>(D))
3745 return getFunctionForwardDeclaration(FD);
3746 else if (const auto *VD = dyn_cast<VarDecl>(D))
3747 return getGlobalVariableForwardDeclaration(VD);
3748
3749 return nullptr;
3750}
3751
3752llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) {
3753 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly)
3754 return nullptr;
3755
3756 const auto *FD = dyn_cast<FunctionDecl>(D);
3757 if (!FD)
3758 return nullptr;
3759
3760 // Setup context.
3761 auto *S = getDeclContextDescriptor(D);
3762
3763 auto MI = SPCache.find(FD->getCanonicalDecl());
3764 if (MI == SPCache.end()) {
3765 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) {
3766 return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()),
3767 cast<llvm::DICompositeType>(S));
3768 }
3769 }
3770 if (MI != SPCache.end()) {
3771 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
3772 if (SP && !SP->isDefinition())
3773 return SP;
3774 }
3775
3776 for (auto NextFD : FD->redecls()) {
3777 auto MI = SPCache.find(NextFD->getCanonicalDecl());
3778 if (MI != SPCache.end()) {
3779 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
3780 if (SP && !SP->isDefinition())
3781 return SP;
3782 }
3783 }
3784 return nullptr;
3785}
3786
3787llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration(
3788 const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo,
3789 llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) {
3790 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly)
3791 return nullptr;
3792
3793 const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
3794 if (!OMD)
3795 return nullptr;
3796
3797 if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod())
3798 return nullptr;
3799
3800 if (OMD->isDirectMethod())
3801 SPFlags |= llvm::DISubprogram::SPFlagObjCDirect;
3802
3803 // Starting with DWARF V5 method declarations are emitted as children of
3804 // the interface type.
3805 auto *ID = dyn_cast_or_null<ObjCInterfaceDecl>(D->getDeclContext());
3806 if (!ID)
3807 ID = OMD->getClassInterface();
3808 if (!ID)
3809 return nullptr;
3810 QualType QTy(ID->getTypeForDecl(), 0);
3811 auto It = TypeCache.find(QTy.getAsOpaquePtr());
3812 if (It == TypeCache.end())
3813 return nullptr;
3814 auto *InterfaceType = cast<llvm::DICompositeType>(It->second);
3815 llvm::DISubprogram *FD = DBuilder.createFunction(
3816 InterfaceType, getObjCMethodName(OMD), StringRef(),
3817 InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags);
3818 DBuilder.finalizeSubprogram(FD);
3819 ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()});
3820 return FD;
3821}
3822
3823// getOrCreateFunctionType - Construct type. If it is a c++ method, include
3824// implicit parameter "this".
3825llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D,
3826 QualType FnType,
3827 llvm::DIFile *F) {
3828 // In CodeView, we emit the function types in line tables only because the
3829 // only way to distinguish between functions is by display name and type.
3830 if (!D || (DebugKind <= codegenoptions::DebugLineTablesOnly &&
3831 !CGM.getCodeGenOpts().EmitCodeView))
3832 // Create fake but valid subroutine type. Otherwise -verify would fail, and
3833 // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields.
3834 return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None));
3835
3836 if (const auto *Method = dyn_cast<CXXMethodDecl>(D))
3837 return getOrCreateMethodType(Method, F, false);
3838
3839 const auto *FTy = FnType->getAs<FunctionType>();
3840 CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C;
3841
3842 if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) {
3843 // Add "self" and "_cmd"
3844 SmallVector<llvm::Metadata *, 16> Elts;
3845
3846 // First element is always return type. For 'void' functions it is NULL.
3847 QualType ResultTy = OMethod->getReturnType();
3848
3849 // Replace the instancetype keyword with the actual type.
3850 if (ResultTy == CGM.getContext().getObjCInstanceType())
3851 ResultTy = CGM.getContext().getPointerType(
3852 QualType(OMethod->getClassInterface()->getTypeForDecl(), 0));
3853
3854 Elts.push_back(getOrCreateType(ResultTy, F));
3855 // "self" pointer is always first argument.
3856 QualType SelfDeclTy;
3857 if (auto *SelfDecl = OMethod->getSelfDecl())
3858 SelfDeclTy = SelfDecl->getType();
3859 else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType))
3860 if (FPT->getNumParams() > 1)
3861 SelfDeclTy = FPT->getParamType(0);
3862 if (!SelfDeclTy.isNull())
3863 Elts.push_back(
3864 CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F)));
3865 // "_cmd" pointer is always second argument.
3866 Elts.push_back(DBuilder.createArtificialType(
3867 getOrCreateType(CGM.getContext().getObjCSelType(), F)));
3868 // Get rest of the arguments.
3869 for (const auto *PI : OMethod->parameters())
3870 Elts.push_back(getOrCreateType(PI->getType(), F));
3871 // Variadic methods need a special marker at the end of the type list.
3872 if (OMethod->isVariadic())
3873 Elts.push_back(DBuilder.createUnspecifiedParameter());
3874
3875 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
3876 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
3877 getDwarfCC(CC));
3878 }
3879
3880 // Handle variadic function types; they need an additional
3881 // unspecified parameter.
3882 if (const auto *FD = dyn_cast<FunctionDecl>(D))
3883 if (FD->isVariadic()) {
3884 SmallVector<llvm::Metadata *, 16> EltTys;
3885 EltTys.push_back(getOrCreateType(FD->getReturnType(), F));
3886 if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType))
3887 for (QualType ParamType : FPT->param_types())
3888 EltTys.push_back(getOrCreateType(ParamType, F));
3889 EltTys.push_back(DBuilder.createUnspecifiedParameter());
3890 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
3891 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
3892 getDwarfCC(CC));
3893 }
3894
3895 return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F));
3896}
3897
3898void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc,
3899 SourceLocation ScopeLoc, QualType FnType,
3900 llvm::Function *Fn, bool CurFuncIsThunk) {
3901 StringRef Name;
3902 StringRef LinkageName;
3903
3904 FnBeginRegionCount.push_back(LexicalBlockStack.size());
3905
3906 const Decl *D = GD.getDecl();
3907 bool HasDecl = (D != nullptr);
3908
3909 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
3910 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
3911 llvm::DIFile *Unit = getOrCreateFile(Loc);
3912 llvm::DIScope *FDContext = Unit;
3913 llvm::DINodeArray TParamsArray;
3914 if (!HasDecl) {
3915 // Use llvm function name.
3916 LinkageName = Fn->getName();
3917 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3918 // If there is a subprogram for this function available then use it.
3919 auto FI = SPCache.find(FD->getCanonicalDecl());
3920 if (FI != SPCache.end()) {
3921 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
3922 if (SP && SP->isDefinition()) {
3923 LexicalBlockStack.emplace_back(SP);
3924 RegionMap[D].reset(SP);
3925 return;
3926 }
3927 }
3928 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
3929 TParamsArray, Flags);
3930 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) {
3931 Name = getObjCMethodName(OMD);
3932 Flags |= llvm::DINode::FlagPrototyped;
3933 } else if (isa<VarDecl>(D) &&
3934 GD.getDynamicInitKind() != DynamicInitKind::NoStub) {
3935 // This is a global initializer or atexit destructor for a global variable.
3936 Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(),
3937 Fn);
3938 } else {
3939 Name = Fn->getName();
3940
3941 if (isa<BlockDecl>(D))
3942 LinkageName = Name;
3943
3944 Flags |= llvm::DINode::FlagPrototyped;
3945 }
3946 if (Name.startswith("\01"))
3947 Name = Name.substr(1);
3948
3949 if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>() ||
3950 (isa<VarDecl>(D) && GD.getDynamicInitKind() != DynamicInitKind::NoStub)) {
3951 Flags |= llvm::DINode::FlagArtificial;
3952 // Artificial functions should not silently reuse CurLoc.
3953 CurLoc = SourceLocation();
3954 }
3955
3956 if (CurFuncIsThunk)
3957 Flags |= llvm::DINode::FlagThunk;
3958
3959 if (Fn->hasLocalLinkage())
3960 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
3961 if (CGM.getLangOpts().Optimize)
3962 SPFlags |= llvm::DISubprogram::SPFlagOptimized;
3963
3964 llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs();
3965 llvm::DISubprogram::DISPFlags SPFlagsForDef =
3966 SPFlags | llvm::DISubprogram::SPFlagDefinition;
3967
3968 const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc);
3969 unsigned ScopeLine = getLineNumber(ScopeLoc);
3970 llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit);
3971 llvm::DISubprogram *Decl = nullptr;
3972 llvm::DINodeArray Annotations = nullptr;
3973 if (D) {
3974 Decl = isa<ObjCMethodDecl>(D)
3975 ? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags)
3976 : getFunctionDeclaration(D);
3977 Annotations = CollectBTFTagAnnotations(D);
3978 }
3979
3980 // FIXME: The function declaration we're constructing here is mostly reusing
3981 // declarations from CXXMethodDecl and not constructing new ones for arbitrary
3982 // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for
3983 // all subprograms instead of the actual context since subprogram definitions
3984 // are emitted as CU level entities by the backend.
3985 llvm::DISubprogram *SP = DBuilder.createFunction(
3986 FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine,
3987 FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr,
3988 Annotations);
3989 Fn->setSubprogram(SP);
3990 // We might get here with a VarDecl in the case we're generating
3991 // code for the initialization of globals. Do not record these decls
3992 // as they will overwrite the actual VarDecl Decl in the cache.
3993 if (HasDecl && isa<FunctionDecl>(D))
3994 DeclCache[D->getCanonicalDecl()].reset(SP);
3995
3996 // Push the function onto the lexical block stack.
3997 LexicalBlockStack.emplace_back(SP);
3998
3999 if (HasDecl)
4000 RegionMap[D].reset(SP);
4001}
4002
4003void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc,
4004 QualType FnType, llvm::Function *Fn) {
4005 StringRef Name;
4006 StringRef LinkageName;
4007
4008 const Decl *D = GD.getDecl();
4009 if (!D)
4010 return;
4011
4012 llvm::TimeTraceScope TimeScope("DebugFunction", [&]() {
4013 return GetName(D, true);
4014 });
4015
4016 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
4017 llvm::DIFile *Unit = getOrCreateFile(Loc);
4018 bool IsDeclForCallSite = Fn ? true : false;
4019 llvm::DIScope *FDContext =
4020 IsDeclForCallSite ? Unit : getDeclContextDescriptor(D);
4021 llvm::DINodeArray TParamsArray;
4022 if (isa<FunctionDecl>(D)) {
4023 // If there is a DISubprogram for this function available then use it.
4024 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
4025 TParamsArray, Flags);
4026 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) {
4027 Name = getObjCMethodName(OMD);
4028 Flags |= llvm::DINode::FlagPrototyped;
4029 } else {
4030 llvm_unreachable("not a function or ObjC method")__builtin_unreachable();
4031 }
4032 if (!Name.empty() && Name[0] == '\01')
4033 Name = Name.substr(1);
4034
4035 if (D->isImplicit()) {
4036 Flags |= llvm::DINode::FlagArtificial;
4037 // Artificial functions without a location should not silently reuse CurLoc.
4038 if (Loc.isInvalid())
4039 CurLoc = SourceLocation();
4040 }
4041 unsigned LineNo = getLineNumber(Loc);
4042 unsigned ScopeLine = 0;
4043 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
4044 if (CGM.getLangOpts().Optimize)
4045 SPFlags |= llvm::DISubprogram::SPFlagOptimized;
4046
4047 llvm::DINodeArray Annotations = CollectBTFTagAnnotations(D);
4048 llvm::DISubprogram *SP = DBuilder.createFunction(
4049 FDContext, Name, LinkageName, Unit, LineNo,
4050 getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags,
4051 TParamsArray.get(), getFunctionDeclaration(D), nullptr, Annotations);
4052
4053 if (IsDeclForCallSite)
4054 Fn->setSubprogram(SP);
4055
4056 DBuilder.finalizeSubprogram(SP);
4057}
4058
4059void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke,
4060 QualType CalleeType,
4061 const FunctionDecl *CalleeDecl) {
4062 if (!CallOrInvoke)
4063 return;
4064 auto *Func = CallOrInvoke->getCalledFunction();
4065 if (!Func)
4066 return;
4067 if (Func->getSubprogram())
4068 return;
4069
4070 // Do not emit a declaration subprogram for a builtin, a function with nodebug
4071 // attribute, or if call site info isn't required. Also, elide declarations
4072 // for functions with reserved names, as call site-related features aren't
4073 // interesting in this case (& also, the compiler may emit calls to these
4074 // functions without debug locations, which makes the verifier complain).
4075 if (CalleeDecl->getBuiltinID() != 0 || CalleeDecl->hasAttr<NoDebugAttr>() ||
4076 getCallSiteRelatedAttrs() == llvm::DINode::FlagZero)
4077 return;
4078 if (CalleeDecl->isReserved(CGM.getLangOpts()) !=
4079 ReservedIdentifierStatus::NotReserved)
4080 return;
4081
4082 // If there is no DISubprogram attached to the function being called,
4083 // create the one describing the function in order to have complete
4084 // call site debug info.
4085 if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined())
4086 EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func);
4087}
4088
4089void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) {
4090 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4091 // If there is a subprogram for this function available then use it.
4092 auto FI = SPCache.find(FD->getCanonicalDecl());
4093 llvm::DISubprogram *SP = nullptr;
4094 if (FI != SPCache.end())
4095 SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
4096 if (!SP || !SP->isDefinition())
4097 SP = getFunctionStub(GD);
4098 FnBeginRegionCount.push_back(LexicalBlockStack.size());
4099 LexicalBlockStack.emplace_back(SP);
4100 setInlinedAt(Builder.getCurrentDebugLocation());
4101 EmitLocation(Builder, FD->getLocation());
4102}
4103
4104void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) {
4105 assert(CurInlinedAt && "unbalanced inline scope stack")(static_cast<void> (0));
4106 EmitFunctionEnd(Builder, nullptr);
4107 setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt());
4108}
4109
4110void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) {
4111 // Update our current location
4112 setLocation(Loc);
4113
4114 if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty())
4115 return;
4116
4117 llvm::MDNode *Scope = LexicalBlockStack.back();
4118 Builder.SetCurrentDebugLocation(
4119 llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc),
4120 getColumnNumber(CurLoc), Scope, CurInlinedAt));
4121}
4122
4123void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) {
4124 llvm::MDNode *Back = nullptr;
4125 if (!LexicalBlockStack.empty())
4126 Back = LexicalBlockStack.back().get();
4127 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock(
4128 cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc),
4129 getColumnNumber(CurLoc)));
4130}
4131
4132void CGDebugInfo::AppendAddressSpaceXDeref(
4133 unsigned AddressSpace, SmallVectorImpl<int64_t> &Expr) const {
4134 Optional<unsigned> DWARFAddressSpace =
4135 CGM.getTarget().getDWARFAddressSpace(AddressSpace);
4136 if (!DWARFAddressSpace)
4137 return;
4138
4139 Expr.push_back(llvm::dwarf::DW_OP_constu);
4140 Expr.push_back(DWARFAddressSpace.getValue());
4141 Expr.push_back(llvm::dwarf::DW_OP_swap);
4142 Expr.push_back(llvm::dwarf::DW_OP_xderef);
4143}
4144
4145void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder,
4146 SourceLocation Loc) {
4147 // Set our current location.
4148 setLocation(Loc);
4149
4150 // Emit a line table change for the current location inside the new scope.
4151 Builder.SetCurrentDebugLocation(llvm::DILocation::get(
4152 CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc),
4153 LexicalBlockStack.back(), CurInlinedAt));
4154
4155 if (DebugKind <= codegenoptions::DebugLineTablesOnly)
4156 return;
4157
4158 // Create a new lexical block and push it on the stack.
4159 CreateLexicalBlock(Loc);
4160}
4161
4162void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder,
4163 SourceLocation Loc) {
4164 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!")(static_cast<void> (0));
4165
4166 // Provide an entry in the line table for the end of the block.
4167 EmitLocation(Builder, Loc);
4168
4169 if (DebugKind <= codegenoptions::DebugLineTablesOnly)
4170 return;
4171
4172 LexicalBlockStack.pop_back();
4173}
4174
4175void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) {
4176 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!")(static_cast<void> (0));
4177 unsigned RCount = FnBeginRegionCount.back();
4178 assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch")(static_cast<void> (0));
4179
4180 // Pop all regions for this function.
4181 while (LexicalBlockStack.size() != RCount) {
4182 // Provide an entry in the line table for the end of the block.
4183 EmitLocation(Builder, CurLoc);
4184 LexicalBlockStack.pop_back();
4185 }
4186 FnBeginRegionCount.pop_back();
4187
4188 if (Fn && Fn->getSubprogram())
4189 DBuilder.finalizeSubprogram(Fn->getSubprogram());
4190}
4191
4192CGDebugInfo::BlockByRefType
4193CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD,
4194 uint64_t *XOffset) {
4195 SmallVector<llvm::Metadata *, 5> EltTys;
4196 QualType FType;
4197 uint64_t FieldSize, FieldOffset;
4198 uint32_t FieldAlign;
4199
4200 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
4201 QualType Type = VD->getType();
4202
4203 FieldOffset = 0;
4204 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
4205 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
4206 EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset));
4207 FType = CGM.getContext().IntTy;
4208 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
4209 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
4210
4211 bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD);
4212 if (HasCopyAndDispose) {
4213 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
4214 EltTys.push_back(
4215 CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset));
4216 EltTys.push_back(
4217 CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset));
4218 }
4219 bool HasByrefExtendedLayout;
4220 Qualifiers::ObjCLifetime Lifetime;
4221 if (CGM.getContext().getByrefLifetime(Type, Lifetime,
4222 HasByrefExtendedLayout) &&
4223 HasByrefExtendedLayout) {
4224 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
4225 EltTys.push_back(
4226 CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset));
4227 }
4228
4229 CharUnits Align = CGM.getContext().getDeclAlign(VD);
4230 if (Align > CGM.getContext().toCharUnitsFromBits(
4231 CGM.getTarget().getPointerAlign(0))) {
4232 CharUnits FieldOffsetInBytes =
4233 CGM.getContext().toCharUnitsFromBits(FieldOffset);
4234 CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align);
4235 CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes;
4236
4237 if (NumPaddingBytes.isPositive()) {
4238 llvm::APInt pad(32, NumPaddingBytes.getQuantity());
4239 FType = CGM.getContext().getConstantArrayType(
4240 CGM.getContext().CharTy, pad, nullptr, ArrayType::Normal, 0);
4241 EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset));
4242 }
4243 }
4244
4245 FType = Type;
4246 llvm::DIType *WrappedTy = getOrCreateType(FType, Unit);
4247 FieldSize = CGM.getContext().getTypeSize(FType);
4248 FieldAlign = CGM.getContext().toBits(Align);
4249
4250 *XOffset = FieldOffset;
4251 llvm::DIType *FieldTy = DBuilder.createMemberType(
4252 Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset,
4253 llvm::DINode::FlagZero, WrappedTy);
4254 EltTys.push_back(FieldTy);
4255 FieldOffset += FieldSize;
4256
4257 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
4258 return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0,
4259 llvm::DINode::FlagZero, nullptr, Elements),
4260 WrappedTy};
4261}
4262
4263llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD,
4264 llvm::Value *Storage,
4265 llvm::Optional<unsigned> ArgNo,
4266 CGBuilderTy &Builder,
4267 const bool UsePointerValue) {
4268 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4269 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!")(static_cast<void> (0));
4270 if (VD->hasAttr<NoDebugAttr>())
4271 return nullptr;
4272
4273 bool Unwritten =
4274 VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) &&
4275 cast<Decl>(VD->getDeclContext())->isImplicit());
4276 llvm::DIFile *Unit = nullptr;
4277 if (!Unwritten)
4278 Unit = getOrCreateFile(VD->getLocation());
4279 llvm::DIType *Ty;
4280 uint64_t XOffset = 0;
4281 if (VD->hasAttr<BlocksAttr>())
4282 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType;
4283 else
4284 Ty = getOrCreateType(VD->getType(), Unit);
4285
4286 // If there is no debug info for this type then do not emit debug info
4287 // for this variable.
4288 if (!Ty)
4289 return nullptr;
4290
4291 // Get location information.
4292 unsigned Line = 0;
4293 unsigned Column = 0;
4294 if (!Unwritten) {
4295 Line = getLineNumber(VD->getLocation());
4296 Column = getColumnNumber(VD->getLocation());
4297 }
4298 SmallVector<int64_t, 13> Expr;
4299 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
4300 if (VD->isImplicit())
4301 Flags |= llvm::DINode::FlagArtificial;
4302
4303 auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
4304
4305 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(VD->getType());
4306 AppendAddressSpaceXDeref(AddressSpace, Expr);
4307
4308 // If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an
4309 // object pointer flag.
4310 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) {
4311 if (IPD->getParameterKind() == ImplicitParamDecl::CXXThis ||
4312 IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf)
4313 Flags |= llvm::DINode::FlagObjectPointer;
4314 }
4315
4316 // Note: Older versions of clang used to emit byval references with an extra
4317 // DW_OP_deref, because they referenced the IR arg directly instead of
4318 // referencing an alloca. Newer versions of LLVM don't treat allocas
4319 // differently from other function arguments when used in a dbg.declare.
4320 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
4321 StringRef Name = VD->getName();
4322 if (!Name.empty()) {
4323 // __block vars are stored on the heap if they are captured by a block that
4324 // can escape the local scope.
4325 if (VD->isEscapingByref()) {
4326 // Here, we need an offset *into* the alloca.
4327 CharUnits offset = CharUnits::fromQuantity(32);
4328 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
4329 // offset of __forwarding field
4330 offset = CGM.getContext().toCharUnitsFromBits(
4331 CGM.getTarget().getPointerWidth(0));
4332 Expr.push_back(offset.getQuantity());
4333 Expr.push_back(llvm::dwarf::DW_OP_deref);
4334 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
4335 // offset of x field
4336 offset = CGM.getContext().toCharUnitsFromBits(XOffset);
4337 Expr.push_back(offset.getQuantity());
4338 }
4339 } else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) {
4340 // If VD is an anonymous union then Storage represents value for
4341 // all union fields.
4342 const RecordDecl *RD = RT->getDecl();
4343 if (RD->isUnion() && RD->isAnonymousStructOrUnion()) {
4344 // GDB has trouble finding local variables in anonymous unions, so we emit
4345 // artificial local variables for each of the members.
4346 //
4347 // FIXME: Remove this code as soon as GDB supports this.
4348 // The debug info verifier in LLVM operates based on the assumption that a
4349 // variable has the same size as its storage and we had to disable the
4350 // check for artificial variables.
4351 for (const auto *Field : RD->fields()) {
4352 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
4353 StringRef FieldName = Field->getName();
4354
4355 // Ignore unnamed fields. Do not ignore unnamed records.
4356 if (FieldName.empty() && !isa<RecordType>(Field->getType()))
4357 continue;
4358
4359 // Use VarDecl's Tag, Scope and Line number.
4360 auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext());
4361 auto *D = DBuilder.createAutoVariable(
4362 Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize,
4363 Flags | llvm::DINode::FlagArtificial, FieldAlign);
4364
4365 // Insert an llvm.dbg.declare into the current block.
4366 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
4367 llvm::DILocation::get(CGM.getLLVMContext(), Line,
4368 Column, Scope,
4369 CurInlinedAt),
4370 Builder.GetInsertBlock());
4371 }
4372 }
4373 }
4374
4375 // Clang stores the sret pointer provided by the caller in a static alloca.
4376 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as
4377 // the address of the variable.
4378 if (UsePointerValue) {
4379 assert(std::find(Expr.begin(), Expr.end(), llvm::dwarf::DW_OP_deref) ==(static_cast<void> (0))
4380 Expr.end() &&(static_cast<void> (0))
4381 "Debug info already contains DW_OP_deref.")(static_cast<void> (0));
4382 Expr.push_back(llvm::dwarf::DW_OP_deref);
4383 }
4384
4385 // Create the descriptor for the variable.
4386 llvm::DILocalVariable *D = nullptr;
4387 if (ArgNo) {
4388 llvm::DINodeArray Annotations = CollectBTFTagAnnotations(VD);
4389 D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty,
4390 CGM.getLangOpts().Optimize, Flags,
4391 Annotations);
4392 } else {
4393 // For normal local variable, we will try to find out whether 'VD' is the
4394 // copy parameter of coroutine.
4395 // If yes, we are going to use DIVariable of the origin parameter instead
4396 // of creating the new one.
4397 // If no, it might be a normal alloc, we just create a new one for it.
4398
4399 // Check whether the VD is move parameters.
4400 auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * {
4401 // The scope of parameter and move-parameter should be distinct
4402 // DISubprogram.
4403 if (!isa<llvm::DISubprogram>(Scope) || !Scope->isDistinct())
4404 return nullptr;
4405
4406 auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) {
4407 Stmt *StmtPtr = const_cast<Stmt *>(Pair.second);
4408 if (DeclStmt *DeclStmtPtr = dyn_cast<DeclStmt>(StmtPtr)) {
4409 DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup();
4410 Decl *Decl = DeclGroup.getSingleDecl();
4411 if (VD == dyn_cast_or_null<VarDecl>(Decl))
4412 return true;
4413 }
4414 return false;
4415 });
4416
4417 if (Iter != CoroutineParameterMappings.end()) {
4418 ParmVarDecl *PD = const_cast<ParmVarDecl *>(Iter->first);
4419 auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) {
4420 return DbgPair.first == PD && DbgPair.second->getScope() == Scope;
4421 });
4422 if (Iter2 != ParamDbgMappings.end())
4423 return const_cast<llvm::DILocalVariable *>(Iter2->second);
4424 }
4425 return nullptr;
4426 };
4427
4428 // If we couldn't find a move param DIVariable, create a new one.
4429 D = RemapCoroArgToLocalVar();
4430 // Or we will create a new DIVariable for this Decl if D dose not exists.
4431 if (!D)
4432 D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty,
4433 CGM.getLangOpts().Optimize, Flags, Align);
4434 }
4435 // Insert an llvm.dbg.declare into the current block.
4436 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
4437 llvm::DILocation::get(CGM.getLLVMContext(), Line,
4438 Column, Scope, CurInlinedAt),
4439 Builder.GetInsertBlock());
4440
4441 return D;
4442}
4443
4444llvm::DILocalVariable *
4445CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage,
4446 CGBuilderTy &Builder,
4447 const bool UsePointerValue) {
4448 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4449 return EmitDeclare(VD, Storage, llvm::None, Builder, UsePointerValue);
4450}
4451
4452void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) {
4453 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4454 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!")(static_cast<void> (0));
4455
4456 if (D->hasAttr<NoDebugAttr>())
4457 return;
4458
4459 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
4460 llvm::DIFile *Unit = getOrCreateFile(D->getLocation());
4461
4462 // Get location information.
4463 unsigned Line = getLineNumber(D->getLocation());
4464 unsigned Column = getColumnNumber(D->getLocation());
4465
4466 StringRef Name = D->getName();
4467
4468 // Create the descriptor for the label.
4469 auto *L =
4470 DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize);
4471
4472 // Insert an llvm.dbg.label into the current block.
4473 DBuilder.insertLabel(L,
4474 llvm::DILocation::get(CGM.getLLVMContext(), Line, Column,
4475 Scope, CurInlinedAt),
4476 Builder.GetInsertBlock());
4477}
4478
4479llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy,
4480 llvm::DIType *Ty) {
4481 llvm::DIType *CachedTy = getTypeOrNull(QualTy);
4482 if (CachedTy)
4483 Ty = CachedTy;
4484 return DBuilder.createObjectPointerType(Ty);
4485}
4486
4487void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable(
4488 const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder,
4489 const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) {
4490 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4491 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!")(static_cast<void> (0));
4492
4493 if (Builder.GetInsertBlock() == nullptr)
4494 return;
4495 if (VD->hasAttr<NoDebugAttr>())
4496 return;
4497
4498 bool isByRef = VD->hasAttr<BlocksAttr>();
4499
4500 uint64_t XOffset = 0;
4501 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
4502 llvm::DIType *Ty;
4503 if (isByRef)
4504 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType;
4505 else
4506 Ty = getOrCreateType(VD->getType(), Unit);
4507
4508 // Self is passed along as an implicit non-arg variable in a
4509 // block. Mark it as the object pointer.
4510 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD))
4511 if (IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf)
4512 Ty = CreateSelfType(VD->getType(), Ty);
4513
4514 // Get location information.
4515 const unsigned Line =
4516 getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc);
4517 unsigned Column = getColumnNumber(VD->getLocation());
4518
4519 const llvm::DataLayout &target = CGM.getDataLayout();
4520
4521 CharUnits offset = CharUnits::fromQuantity(
4522 target.getStructLayout(blockInfo.StructureType)
4523 ->getElementOffset(blockInfo.getCapture(VD).getIndex()));
4524
4525 SmallVector<int64_t, 9> addr;
4526 addr.push_back(llvm::dwarf::DW_OP_deref);
4527 addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
4528 addr.push_back(offset.getQuantity());
4529 if (isByRef) {
4530 addr.push_back(llvm::dwarf::DW_OP_deref);
4531 addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
4532 // offset of __forwarding field
4533 offset =
4534 CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0));
4535 addr.push_back(offset.getQuantity());
4536 addr.push_back(llvm::dwarf::DW_OP_deref);
4537 addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
4538 // offset of x field
4539 offset = CGM.getContext().toCharUnitsFromBits(XOffset);
4540 addr.push_back(offset.getQuantity());
4541 }
4542
4543 // Create the descriptor for the variable.
4544 auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
4545 auto *D = DBuilder.createAutoVariable(
4546 cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit,
4547 Line, Ty, false, llvm::DINode::FlagZero, Align);
4548
4549 // Insert an llvm.dbg.declare into the current block.
4550 auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column,
4551 LexicalBlockStack.back(), CurInlinedAt);
4552 auto *Expr = DBuilder.createExpression(addr);
4553 if (InsertPoint)
4554 DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint);
4555 else
4556 DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock());
4557}
4558
4559llvm::DILocalVariable *
4560CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI,
4561 unsigned ArgNo, CGBuilderTy &Builder) {
4562 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4563 return EmitDeclare(VD, AI, ArgNo, Builder);
4564}
4565
4566namespace {
4567struct BlockLayoutChunk {
4568 uint64_t OffsetInBits;
4569 const BlockDecl::Capture *Capture;
4570};
4571bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) {
4572 return l.OffsetInBits < r.OffsetInBits;
4573}
4574} // namespace
4575
4576void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare(
4577 const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc,
4578 const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit,
4579 SmallVectorImpl<llvm::Metadata *> &Fields) {
4580 // Blocks in OpenCL have unique constraints which make the standard fields
4581 // redundant while requiring size and align fields for enqueue_kernel. See
4582 // initializeForBlockHeader in CGBlocks.cpp
4583 if (CGM.getLangOpts().OpenCL) {
4584 Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public,
4585 BlockLayout.getElementOffsetInBits(0),
4586 Unit, Unit));
4587 Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public,
4588 BlockLayout.getElementOffsetInBits(1),
4589 Unit, Unit));
4590 } else {
4591 Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public,
4592 BlockLayout.getElementOffsetInBits(0),
4593 Unit, Unit));
4594 Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public,
4595 BlockLayout.getElementOffsetInBits(1),
4596 Unit, Unit));
4597 Fields.push_back(
4598 createFieldType("__reserved", Context.IntTy, Loc, AS_public,
4599 BlockLayout.getElementOffsetInBits(2), Unit, Unit));
4600 auto *FnTy = Block.getBlockExpr()->getFunctionType();
4601 auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar());
4602 Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public,
4603 BlockLayout.getElementOffsetInBits(3),
4604 Unit, Unit));
4605 Fields.push_back(createFieldType(
4606 "__descriptor",
4607 Context.getPointerType(Block.NeedsCopyDispose
4608 ? Context.getBlockDescriptorExtendedType()
4609 : Context.getBlockDescriptorType()),
4610 Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit));
4611 }
4612}
4613
4614void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block,
4615 StringRef Name,
4616 unsigned ArgNo,
4617 llvm::AllocaInst *Alloca,
4618 CGBuilderTy &Builder) {
4619 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4620 ASTContext &C = CGM.getContext();
4621 const BlockDecl *blockDecl = block.getBlockDecl();
4622
4623 // Collect some general information about the block's location.
4624 SourceLocation loc = blockDecl->getCaretLocation();
4625 llvm::DIFile *tunit = getOrCreateFile(loc);
4626 unsigned line = getLineNumber(loc);
4627 unsigned column = getColumnNumber(loc);
4628
4629 // Build the debug-info type for the block literal.
4630 getDeclContextDescriptor(blockDecl);
4631
4632 const llvm::StructLayout *blockLayout =
4633 CGM.getDataLayout().getStructLayout(block.StructureType);
4634
4635 SmallVector<llvm::Metadata *, 16> fields;
4636 collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit,
4637 fields);
4638
4639 // We want to sort the captures by offset, not because DWARF
4640 // requires this, but because we're paranoid about debuggers.
4641 SmallVector<BlockLayoutChunk, 8> chunks;
4642
4643 // 'this' capture.
4644 if (blockDecl->capturesCXXThis()) {
4645 BlockLayoutChunk chunk;
4646 chunk.OffsetInBits =
4647 blockLayout->getElementOffsetInBits(block.CXXThisIndex);
4648 chunk.Capture = nullptr;
4649 chunks.push_back(chunk);
4650 }
4651
4652 // Variable captures.
4653 for (const auto &capture : blockDecl->captures()) {
4654 const VarDecl *variable = capture.getVariable();
4655 const CGBlockInfo::Capture &captureInfo = block.getCapture(variable);
4656
4657 // Ignore constant captures.
4658 if (captureInfo.isConstant())
4659 continue;
4660
4661 BlockLayoutChunk chunk;
4662 chunk.OffsetInBits =
4663 blockLayout->getElementOffsetInBits(captureInfo.getIndex());
4664 chunk.Capture = &capture;
4665 chunks.push_back(chunk);
4666 }
4667
4668 // Sort by offset.
4669 llvm::array_pod_sort(chunks.begin(), chunks.end());
4670
4671 for (const BlockLayoutChunk &Chunk : chunks) {
4672 uint64_t offsetInBits = Chunk.OffsetInBits;
4673 const BlockDecl::Capture *capture = Chunk.Capture;
4674
4675 // If we have a null capture, this must be the C++ 'this' capture.
4676 if (!capture) {
4677 QualType type;
4678 if (auto *Method =
4679 cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext()))
4680 type = Method->getThisType();
4681 else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent()))
4682 type = QualType(RDecl->getTypeForDecl(), 0);
4683 else
4684 llvm_unreachable("unexpected block declcontext")__builtin_unreachable();
4685
4686 fields.push_back(createFieldType("this", type, loc, AS_public,
4687 offsetInBits, tunit, tunit));
4688 continue;
4689 }
4690
4691 const VarDecl *variable = capture->getVariable();
4692 StringRef name = variable->getName();
4693
4694 llvm::DIType *fieldType;
4695 if (capture->isByRef()) {
4696 TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy);
4697 auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0;
4698 // FIXME: This recomputes the layout of the BlockByRefWrapper.
4699 uint64_t xoffset;
4700 fieldType =
4701 EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper;
4702 fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width);
4703 fieldType = DBuilder.createMemberType(tunit, name, tunit, line,
4704 PtrInfo.Width, Align, offsetInBits,
4705 llvm::DINode::FlagZero, fieldType);
4706 } else {
4707 auto Align = getDeclAlignIfRequired(variable, CGM.getContext());
4708 fieldType = createFieldType(name, variable->getType(), loc, AS_public,
4709 offsetInBits, Align, tunit, tunit);
4710 }
4711 fields.push_back(fieldType);
4712 }
4713
4714 SmallString<36> typeName;
4715 llvm::raw_svector_ostream(typeName)
4716 << "__block_literal_" << CGM.getUniqueBlockCount();
4717
4718 llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields);
4719
4720 llvm::DIType *type =
4721 DBuilder.createStructType(tunit, typeName.str(), tunit, line,
4722 CGM.getContext().toBits(block.BlockSize), 0,
4723 llvm::DINode::FlagZero, nullptr, fieldsArray);
4724 type = DBuilder.createPointerType(type, CGM.PointerWidthInBits);
4725
4726 // Get overall information about the block.
4727 llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial;
4728 auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back());
4729
4730 // Create the descriptor for the parameter.
4731 auto *debugVar = DBuilder.createParameterVariable(
4732 scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags);
4733
4734 // Insert an llvm.dbg.declare into the current block.
4735 DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(),
4736 llvm::DILocation::get(CGM.getLLVMContext(), line,
4737 column, scope, CurInlinedAt),
4738 Builder.GetInsertBlock());
4739}
4740
4741llvm::DIDerivedType *
4742CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) {
4743 if (!D || !D->isStaticDataMember())
4744 return nullptr;
4745
4746 auto MI = StaticDataMemberCache.find(D->getCanonicalDecl());
4747 if (MI != StaticDataMemberCache.end()) {
4748 assert(MI->second && "Static data member declaration should still exist")(static_cast<void> (0));
4749 return MI->second;
4750 }
4751
4752 // If the member wasn't found in the cache, lazily construct and add it to the
4753 // type (used when a limited form of the type is emitted).
4754 auto DC = D->getDeclContext();
4755 auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D));
4756 return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC));
4757}
4758
4759llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls(
4760 const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo,
4761 StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) {
4762 llvm::DIGlobalVariableExpression *GVE = nullptr;
4763
4764 for (const auto *Field : RD->fields()) {
4765 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
4766 StringRef FieldName = Field->getName();
4767
4768 // Ignore unnamed fields, but recurse into anonymous records.
4769 if (FieldName.empty()) {
4770 if (const auto *RT = dyn_cast<RecordType>(Field->getType()))
4771 GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName,
4772 Var, DContext);
4773 continue;
4774 }
4775 // Use VarDecl's Tag, Scope and Line number.
4776 GVE = DBuilder.createGlobalVariableExpression(
4777 DContext, FieldName, LinkageName, Unit, LineNo, FieldTy,
4778 Var->hasLocalLinkage());
4779 Var->addDebugInfo(GVE);
4780 }
4781 return GVE;
4782}
4783
4784std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const {
4785 std::string Name;
4786 llvm::raw_string_ostream OS(Name);
4787 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
4788 PrintingPolicy PP = getPrintingPolicy();
4789 PP.PrintCanonicalTypes = true;
4790 PP.SuppressInlineNamespace = false;
4791 ND->getNameForDiagnostic(OS, PP, Qualified);
4792 }
4793 return Name;
4794}
4795
4796void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var,
4797 const VarDecl *D) {
4798 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4799 if (D->hasAttr<NoDebugAttr>())
4800 return;
4801
4802 llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() {
4803 return GetName(D, true);
4804 });
4805
4806 // If we already created a DIGlobalVariable for this declaration, just attach
4807 // it to the llvm::GlobalVariable.
4808 auto Cached = DeclCache.find(D->getCanonicalDecl());
4809 if (Cached != DeclCache.end())
4810 return Var->addDebugInfo(
4811 cast<llvm::DIGlobalVariableExpression>(Cached->second));
4812
4813 // Create global variable debug descriptor.
4814 llvm::DIFile *Unit = nullptr;
4815 llvm::DIScope *DContext = nullptr;
4816 unsigned LineNo;
4817 StringRef DeclName, LinkageName;
4818 QualType T;
4819 llvm::MDTuple *TemplateParameters = nullptr;
4820 collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName,
4821 TemplateParameters, DContext);
4822
4823 // Attempt to store one global variable for the declaration - even if we
4824 // emit a lot of fields.
4825 llvm::DIGlobalVariableExpression *GVE = nullptr;
4826
4827 // If this is an anonymous union then we'll want to emit a global
4828 // variable for each member of the anonymous union so that it's possible
4829 // to find the name of any field in the union.
4830 if (T->isUnionType() && DeclName.empty()) {
4831 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
4832 assert(RD->isAnonymousStructOrUnion() &&(static_cast<void> (0))
4833 "unnamed non-anonymous struct or union?")(static_cast<void> (0));
4834 GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext);
4835 } else {
4836 auto Align = getDeclAlignIfRequired(D, CGM.getContext());
4837
4838 SmallVector<int64_t, 4> Expr;
4839 unsigned AddressSpace =
4840 CGM.getContext().getTargetAddressSpace(D->getType());
4841 if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) {
4842 if (D->hasAttr<CUDASharedAttr>())
4843 AddressSpace =
4844 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared);
4845 else if (D->hasAttr<CUDAConstantAttr>())
4846 AddressSpace =
4847 CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
4848 }
4849 AppendAddressSpaceXDeref(AddressSpace, Expr);
4850
4851 llvm::DINodeArray Annotations = CollectBTFTagAnnotations(D);
4852 GVE = DBuilder.createGlobalVariableExpression(
4853 DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit),
4854 Var->hasLocalLinkage(), true,
4855 Expr.empty() ? nullptr : DBuilder.createExpression(Expr),
4856 getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters,
4857 Align, Annotations);
4858 Var->addDebugInfo(GVE);
4859 }
4860 DeclCache[D->getCanonicalDecl()].reset(GVE);
4861}
4862
4863void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) {
4864 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4865 if (VD->hasAttr<NoDebugAttr>())
4866 return;
4867 llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() {
4868 return GetName(VD, true);
4869 });
4870
4871 auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
4872 // Create the descriptor for the variable.
4873 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
4874 StringRef Name = VD->getName();
4875 llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit);
4876
4877 if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) {
4878 const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
4879 assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?")(static_cast<void> (0));
4880
4881 if (CGM.getCodeGenOpts().EmitCodeView) {
4882 // If CodeView, emit enums as global variables, unless they are defined
4883 // inside a class. We do this because MSVC doesn't emit S_CONSTANTs for
4884 // enums in classes, and because it is difficult to attach this scope
4885 // information to the global variable.
4886 if (isa<RecordDecl>(ED->getDeclContext()))
4887 return;
4888 } else {
4889 // If not CodeView, emit DW_TAG_enumeration_type if necessary. For
4890 // example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the
4891 // first time `ZERO` is referenced in a function.
4892 llvm::DIType *EDTy =
4893 getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit);
4894 assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type)(static_cast<void> (0));
4895 (void)EDTy;
4896 return;
4897 }
4898 }
4899
4900 // Do not emit separate definitions for function local consts.
4901 if (isa<FunctionDecl>(VD->getDeclContext()))
4902 return;
4903
4904 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4905 auto *VarD = dyn_cast<VarDecl>(VD);
4906 if (VarD && VarD->isStaticDataMember()) {
4907 auto *RD = cast<RecordDecl>(VarD->getDeclContext());
4908 getDeclContextDescriptor(VarD);
4909 // Ensure that the type is retained even though it's otherwise unreferenced.
4910 //
4911 // FIXME: This is probably unnecessary, since Ty should reference RD
4912 // through its scope.
4913 RetainedTypes.push_back(
4914 CGM.getContext().getRecordType(RD).getAsOpaquePtr());
4915
4916 return;
4917 }
4918 llvm::DIScope *DContext = getDeclContextDescriptor(VD);
4919
4920 auto &GV = DeclCache[VD];
4921 if (GV)
4922 return;
4923 llvm::DIExpression *InitExpr = nullptr;
4924 if (CGM.getContext().getTypeSize(VD->getType()) <= 64) {
4925 // FIXME: Add a representation for integer constants wider than 64 bits.
4926 if (Init.isInt())
4927 InitExpr =
4928 DBuilder.createConstantValueExpression(Init.getInt().getExtValue());
4929 else if (Init.isFloat())
4930 InitExpr = DBuilder.createConstantValueExpression(
4931 Init.getFloat().bitcastToAPInt().getZExtValue());
4932 }
4933
4934 llvm::MDTuple *TemplateParameters = nullptr;
4935
4936 if (isa<VarTemplateSpecializationDecl>(VD))
4937 if (VarD) {
4938 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit);
4939 TemplateParameters = parameterNodes.get();
4940 }
4941
4942 GV.reset(DBuilder.createGlobalVariableExpression(
4943 DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty,
4944 true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD),
4945 TemplateParameters, Align));
4946}
4947
4948void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var,
4949 const VarDecl *D) {
4950 assert(CGM.getCodeGenOpts().hasReducedDebugInfo())(static_cast<void> (0));
4951 if (D->hasAttr<NoDebugAttr>())
4952 return;
4953
4954 auto Align = getDeclAlignIfRequired(D, CGM.getContext());
4955 llvm::DIFile *Unit = getOrCreateFile(D->getLocation());
4956 StringRef Name = D->getName();
4957 llvm::DIType *Ty = getOrCreateType(D->getType(), Unit);
4958
4959 llvm::DIScope *DContext = getDeclContextDescriptor(D);
4960 llvm::DIGlobalVariableExpression *GVE =
4961 DBuilder.createGlobalVariableExpression(
4962 DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()),
4963 Ty, false, false, nullptr, nullptr, nullptr, Align);
4964 Var->addDebugInfo(GVE);
4965}
4966
4967llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) {
4968 if (!LexicalBlockStack.empty())
4969 return LexicalBlockStack.back();
4970 llvm::DIScope *Mod = getParentModuleOrNull(D);
4971 return getContextDescriptor(D, Mod ? Mod : TheCU);
4972}
4973
4974void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) {
4975 if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
4976 return;
4977 const NamespaceDecl *NSDecl = UD.getNominatedNamespace();
4978 if (!NSDecl->isAnonymousNamespace() ||
4979 CGM.getCodeGenOpts().DebugExplicitImport) {
4980 auto Loc = UD.getLocation();
4981 if (!Loc.isValid())
4982 Loc = CurLoc;
4983 DBuilder.createImportedModule(
4984 getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())),
4985 getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc));
4986 }
4987}
4988
4989void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) {
4990 if (llvm::DINode *Target =
4991 getDeclarationOrDefinition(USD.getUnderlyingDecl())) {
4992 auto Loc = USD.getLocation();
4993 DBuilder.createImportedDeclaration(
4994 getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target,
4995 getOrCreateFile(Loc), getLineNumber(Loc));
4996 }
4997}
4998
4999void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) {
5000 if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
5001 return;
5002 assert(UD.shadow_size() &&(static_cast<void> (0))
5003 "We shouldn't be codegening an invalid UsingDecl containing no decls")(static_cast<void> (0));
5004
5005 for (const auto *USD : UD.shadows()) {
5006 // FIXME: Skip functions with undeduced auto return type for now since we
5007 // don't currently have the plumbing for separate declarations & definitions
5008 // of free functions and mismatched types (auto in the declaration, concrete
5009 // return type in the definition)
5010 if (const auto *FD = dyn_cast<FunctionDecl>(USD->getUnderlyingDecl()))
5011 if (const auto *AT = FD->getType()
5012 ->castAs<FunctionProtoType>()
5013 ->getContainedAutoType())
5014 if (AT->getDeducedType().isNull())
5015 continue;
5016
5017 EmitUsingShadowDecl(*USD);
5018 // Emitting one decl is sufficient - debuggers can detect that this is an
5019 // overloaded name & provide lookup for all the overloads.
5020 break;
5021 }
5022}
5023
5024void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) {
5025 if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
5026 return;
5027 assert(UD.shadow_size() &&(static_cast<void> (0))
5028 "We shouldn't be codegening an invalid UsingEnumDecl"(static_cast<void> (0))
5029 " containing no decls")(static_cast<void> (0));
5030
5031 for (const auto *USD : UD.shadows())
5032 EmitUsingShadowDecl(*USD);
5033}
5034
5035void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) {
5036 if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB)
5037 return;
5038 if (Module *M = ID.getImportedModule()) {
5039 auto Info = ASTSourceDescriptor(*M);
5040 auto Loc = ID.getLocation();
5041 DBuilder.createImportedDeclaration(
5042 getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())),
5043 getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc),
5044 getLineNumber(Loc));
5045 }
5046}
5047
5048llvm::DIImportedEntity *
5049CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) {
5050 if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
5051 return nullptr;
5052 auto &VH = NamespaceAliasCache[&NA];
5053 if (VH)
5054 return cast<llvm::DIImportedEntity>(VH);
5055 llvm::DIImportedEntity *R;
5056 auto Loc = NA.getLocation();
5057 if (const auto *Underlying =
5058 dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace()))
5059 // This could cache & dedup here rather than relying on metadata deduping.
5060 R = DBuilder.createImportedDeclaration(
5061 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
5062 EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc),
5063 getLineNumber(Loc), NA.getName());
5064 else
5065 R = DBuilder.createImportedDeclaration(
5066 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
5067 getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())),
5068 getOrCreateFile(Loc), getLineNumber(Loc), NA.getName());
5069 VH.reset(R);
5070 return R;
5071}
5072
5073llvm::DINamespace *
5074CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) {
5075 // Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued
5076 // if necessary, and this way multiple declarations of the same namespace in
5077 // different parent modules stay distinct.
5078 auto I = NamespaceCache.find(NSDecl);
5079 if (I != NamespaceCache.end())
5080 return cast<llvm::DINamespace>(I->second);
5081
5082 llvm::DIScope *Context = getDeclContextDescriptor(NSDecl);
5083 // Don't trust the context if it is a DIModule (see comment above).
5084 llvm::DINamespace *NS =
5085 DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline());
5086 NamespaceCache[NSDecl].reset(NS);
5087 return NS;
5088}
5089
5090void CGDebugInfo::setDwoId(uint64_t Signature) {
5091 assert(TheCU && "no main compile unit")(static_cast<void> (0));
5092 TheCU->setDWOId(Signature);
5093}
5094
5095void CGDebugInfo::finalize() {
5096 // Creating types might create further types - invalidating the current
5097 // element and the size(), so don't cache/reference them.
5098 for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) {
5099 ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i];
5100 llvm::DIType *Ty = E.Type->getDecl()->getDefinition()
5101 ? CreateTypeDefinition(E.Type, E.Unit)
5102 : E.Decl;
5103 DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty);
5104 }
5105
5106 // Add methods to interface.
5107 for (const auto &P : ObjCMethodCache) {
5108 if (P.second.empty())
5109 continue;
5110
5111 QualType QTy(P.first->getTypeForDecl(), 0);
5112 auto It = TypeCache.find(QTy.getAsOpaquePtr());
5113 assert(It != TypeCache.end())(static_cast<void> (0));
5114
5115 llvm::DICompositeType *InterfaceDecl =
5116 cast<llvm::DICompositeType>(It->second);
5117
5118 auto CurElts = InterfaceDecl->getElements();
5119 SmallVector<llvm::Metadata *, 16> EltTys(CurElts.begin(), CurElts.end());
5120
5121 // For DWARF v4 or earlier, only add objc_direct methods.
5122 for (auto &SubprogramDirect : P.second)
5123 if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt())
5124 EltTys.push_back(SubprogramDirect.getPointer());
5125
5126 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
5127 DBuilder.replaceArrays(InterfaceDecl, Elements);
5128 }
5129
5130 for (const auto &P : ReplaceMap) {
5131 assert(P.second)(static_cast<void> (0));
5132 auto *Ty = cast<llvm::DIType>(P.second);
5133 assert(Ty->isForwardDecl())(static_cast<void> (0));
5134
5135 auto It = TypeCache.find(P.first);
5136 assert(It != TypeCache.end())(static_cast<void> (0));
5137 assert(It->second)(static_cast<void> (0));
5138
5139 DBuilder.replaceTemporary(llvm::TempDIType(Ty),
5140 cast<llvm::DIType>(It->second));
5141 }
5142
5143 for (const auto &P : FwdDeclReplaceMap) {
5144 assert(P.second)(static_cast<void> (0));
5145 llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second));
5146 llvm::Metadata *Repl;
5147
5148 auto It = DeclCache.find(P.first);
5149 // If there has been no definition for the declaration, call RAUW
5150 // with ourselves, that will destroy the temporary MDNode and
5151 // replace it with a standard one, avoiding leaking memory.
5152 if (It == DeclCache.end())
5153 Repl = P.second;
5154 else
5155 Repl = It->second;
5156
5157 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl))
5158 Repl = GVE->getVariable();
5159 DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl));
5160 }
5161
5162 // We keep our own list of retained types, because we need to look
5163 // up the final type in the type cache.
5164 for (auto &RT : RetainedTypes)
5165 if (auto MD = TypeCache[RT])
5166 DBuilder.retainType(cast<llvm::DIType>(MD));
5167
5168 DBuilder.finalize();
5169}
5170
5171// Don't ignore in case of explicit cast where it is referenced indirectly.
5172void CGDebugInfo::EmitExplicitCastType(QualType Ty) {
5173 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
5174 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile()))
5175 DBuilder.retainType(DieTy);
5176}
5177
5178void CGDebugInfo::EmitAndRetainType(QualType Ty) {
5179 if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo())
1
Taking true branch
5180 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile()))
2
Calling 'CGDebugInfo::getOrCreateType'
5181 DBuilder.retainType(DieTy);
5182}
5183
5184llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) {
5185 if (LexicalBlockStack.empty())
5186 return llvm::DebugLoc();
5187
5188 llvm::MDNode *Scope = LexicalBlockStack.back();
5189 return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc),
5190 getColumnNumber(Loc), Scope);
5191}
5192
5193llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const {
5194 // Call site-related attributes are only useful in optimized programs, and
5195 // when there's a possibility of debugging backtraces.
5196 if (!CGM.getLangOpts().Optimize || DebugKind == codegenoptions::NoDebugInfo ||
5197 DebugKind == codegenoptions::LocTrackingOnly)
5198 return llvm::DINode::FlagZero;
5199
5200 // Call site-related attributes are available in DWARF v5. Some debuggers,
5201 // while not fully DWARF v5-compliant, may accept these attributes as if they
5202 // were part of DWARF v4.
5203 bool SupportsDWARFv4Ext =
5204 CGM.getCodeGenOpts().DwarfVersion == 4 &&
5205 (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB ||
5206 CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB);
5207
5208 if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5)
5209 return llvm::DINode::FlagZero;
5210
5211 return llvm::DINode::FlagAllCallsDescribed;
5212}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast<void> (0));
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast<void> (0));
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast<void> (0));
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast<void> (0));
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)(static_cast<void> (0));
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)(static_cast<void> (0));
344 assert(!hasObjCLifetime())(static_cast<void> (0));
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast<void> (0));
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(static_cast<void> (0));
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)(static_cast<void> (0));
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast<void> (0));
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast<void> (0));
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast<void> (0));
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast<void> (0))
463 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast<void> (0));
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast<void> (0))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast<void> (0));
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast<void> (0))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast<void> (0));
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
490 B == LangAS::sycl_global_host)) ||
491 // Consider pointer size address spaces to be equivalent to default.
492 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
493 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
494 // Default is a superset of SYCL address spaces.
495 (A == LangAS::Default &&
496 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
497 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
498 B == LangAS::sycl_global_host)) ||
499 // In HIP device compilation, any cuda address space is allowed
500 // to implicitly cast into the default address space.
501 (A == LangAS::Default &&
502 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
503 B == LangAS::cuda_shared));
504 }
505
506 /// Returns true if the address space in these qualifiers is equal to or
507 /// a superset of the address space in the argument qualifiers.
508 bool isAddressSpaceSupersetOf(Qualifiers other) const {
509 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
510 }
511
512 /// Determines if these qualifiers compatibly include another set.
513 /// Generally this answers the question of whether an object with the other
514 /// qualifiers can be safely used as an object with these qualifiers.
515 bool compatiblyIncludes(Qualifiers other) const {
516 return isAddressSpaceSupersetOf(other) &&
517 // ObjC GC qualifiers can match, be added, or be removed, but can't
518 // be changed.
519 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
520 !other.hasObjCGCAttr()) &&
521 // ObjC lifetime qualifiers must match exactly.
522 getObjCLifetime() == other.getObjCLifetime() &&
523 // CVR qualifiers may subset.
524 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
525 // U qualifier may superset.
526 (!other.hasUnaligned() || hasUnaligned());
527 }
528
529 /// Determines if these qualifiers compatibly include another set of
530 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
531 ///
532 /// One set of Objective-C lifetime qualifiers compatibly includes the other
533 /// if the lifetime qualifiers match, or if both are non-__weak and the
534 /// including set also contains the 'const' qualifier, or both are non-__weak
535 /// and one is None (which can only happen in non-ARC modes).
536 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
537 if (getObjCLifetime() == other.getObjCLifetime())
538 return true;
539
540 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
541 return false;
542
543 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
544 return true;
545
546 return hasConst();
547 }
548
549 /// Determine whether this set of qualifiers is a strict superset of
550 /// another set of qualifiers, not considering qualifier compatibility.
551 bool isStrictSupersetOf(Qualifiers Other) const;
552
553 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
554 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
555
556 explicit operator bool() const { return hasQualifiers(); }
557
558 Qualifiers &operator+=(Qualifiers R) {
559 addQualifiers(R);
560 return *this;
561 }
562
563 // Union two qualifier sets. If an enumerated qualifier appears
564 // in both sets, use the one from the right.
565 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
566 L += R;
567 return L;
568 }
569
570 Qualifiers &operator-=(Qualifiers R) {
571 removeQualifiers(R);
572 return *this;
573 }
574
575 /// Compute the difference between two qualifier sets.
576 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
577 L -= R;
578 return L;
579 }
580
581 std::string getAsString() const;
582 std::string getAsString(const PrintingPolicy &Policy) const;
583
584 static std::string getAddrSpaceAsString(LangAS AS);
585
586 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
587 void print(raw_ostream &OS, const PrintingPolicy &Policy,
588 bool appendSpaceIfNonEmpty = false) const;
589
590 void Profile(llvm::FoldingSetNodeID &ID) const {
591 ID.AddInteger(Mask);
592 }
593
594private:
595 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
596 // |C R V|U|GCAttr|Lifetime|AddressSpace|
597 uint32_t Mask = 0;
598
599 static const uint32_t UMask = 0x8;
600 static const uint32_t UShift = 3;
601 static const uint32_t GCAttrMask = 0x30;
602 static const uint32_t GCAttrShift = 4;
603 static const uint32_t LifetimeMask = 0x1C0;
604 static const uint32_t LifetimeShift = 6;
605 static const uint32_t AddressSpaceMask =
606 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
607 static const uint32_t AddressSpaceShift = 9;
608};
609
610/// A std::pair-like structure for storing a qualified type split
611/// into its local qualifiers and its locally-unqualified type.
612struct SplitQualType {
613 /// The locally-unqualified type.
614 const Type *Ty = nullptr;
615
616 /// The local qualifiers.
617 Qualifiers Quals;
618
619 SplitQualType() = default;
620 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
621
622 SplitQualType getSingleStepDesugaredType() const; // end of this file
623
624 // Make std::tie work.
625 std::pair<const Type *,Qualifiers> asPair() const {
626 return std::pair<const Type *, Qualifiers>(Ty, Quals);
627 }
628
629 friend bool operator==(SplitQualType a, SplitQualType b) {
630 return a.Ty == b.Ty && a.Quals == b.Quals;
631 }
632 friend bool operator!=(SplitQualType a, SplitQualType b) {
633 return a.Ty != b.Ty || a.Quals != b.Quals;
634 }
635};
636
637/// The kind of type we are substituting Objective-C type arguments into.
638///
639/// The kind of substitution affects the replacement of type parameters when
640/// no concrete type information is provided, e.g., when dealing with an
641/// unspecialized type.
642enum class ObjCSubstitutionContext {
643 /// An ordinary type.
644 Ordinary,
645
646 /// The result type of a method or function.
647 Result,
648
649 /// The parameter type of a method or function.
650 Parameter,
651
652 /// The type of a property.
653 Property,
654
655 /// The superclass of a type.
656 Superclass,
657};
658
659/// A (possibly-)qualified type.
660///
661/// For efficiency, we don't store CV-qualified types as nodes on their
662/// own: instead each reference to a type stores the qualifiers. This
663/// greatly reduces the number of nodes we need to allocate for types (for
664/// example we only need one for 'int', 'const int', 'volatile int',
665/// 'const volatile int', etc).
666///
667/// As an added efficiency bonus, instead of making this a pair, we
668/// just store the two bits we care about in the low bits of the
669/// pointer. To handle the packing/unpacking, we make QualType be a
670/// simple wrapper class that acts like a smart pointer. A third bit
671/// indicates whether there are extended qualifiers present, in which
672/// case the pointer points to a special structure.
673class QualType {
674 friend class QualifierCollector;
675
676 // Thankfully, these are efficiently composable.
677 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
678 Qualifiers::FastWidth> Value;
679
680 const ExtQuals *getExtQualsUnsafe() const {
681 return Value.getPointer().get<const ExtQuals*>();
682 }
683
684 const Type *getTypePtrUnsafe() const {
685 return Value.getPointer().get<const Type*>();
686 }
687
688 const ExtQualsTypeCommonBase *getCommonPtr() const {
689 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast<void> (0));
690 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
691 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
692 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
693 }
694
695public:
696 QualType() = default;
697 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
698 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699
700 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
701 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
702
703 /// Retrieves a pointer to the underlying (unqualified) type.
704 ///
705 /// This function requires that the type not be NULL. If the type might be
706 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
707 const Type *getTypePtr() const;
708
709 const Type *getTypePtrOrNull() const;
710
711 /// Retrieves a pointer to the name of the base type.
712 const IdentifierInfo *getBaseTypeIdentifier() const;
713
714 /// Divides a QualType into its unqualified type and a set of local
715 /// qualifiers.
716 SplitQualType split() const;
717
718 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
719
720 static QualType getFromOpaquePtr(const void *Ptr) {
721 QualType T;
722 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
723 return T;
724 }
725
726 const Type &operator*() const {
727 return *getTypePtr();
728 }
729
730 const Type *operator->() const {
731 return getTypePtr();
732 }
733
734 bool isCanonical() const;
735 bool isCanonicalAsParam() const;
736
737 /// Return true if this QualType doesn't point to a type yet.
738 bool isNull() const {
739 return Value.getPointer().isNull();
740 }
741
742 /// Determine whether this particular QualType instance has the
743 /// "const" qualifier set, without looking through typedefs that may have
744 /// added "const" at a different level.
745 bool isLocalConstQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Const);
747 }
748
749 /// Determine whether this type is const-qualified.
750 bool isConstQualified() const;
751
752 /// Determine whether this particular QualType instance has the
753 /// "restrict" qualifier set, without looking through typedefs that may have
754 /// added "restrict" at a different level.
755 bool isLocalRestrictQualified() const {
756 return (getLocalFastQualifiers() & Qualifiers::Restrict);
757 }
758
759 /// Determine whether this type is restrict-qualified.
760 bool isRestrictQualified() const;
761
762 /// Determine whether this particular QualType instance has the
763 /// "volatile" qualifier set, without looking through typedefs that may have
764 /// added "volatile" at a different level.
765 bool isLocalVolatileQualified() const {
766 return (getLocalFastQualifiers() & Qualifiers::Volatile);
767 }
768
769 /// Determine whether this type is volatile-qualified.
770 bool isVolatileQualified() const;
771
772 /// Determine whether this particular QualType instance has any
773 /// qualifiers, without looking through any typedefs that might add
774 /// qualifiers at a different level.
775 bool hasLocalQualifiers() const {
776 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
777 }
778
779 /// Determine whether this type has any qualifiers.
780 bool hasQualifiers() const;
781
782 /// Determine whether this particular QualType instance has any
783 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
784 /// instance.
785 bool hasLocalNonFastQualifiers() const {
786 return Value.getPointer().is<const ExtQuals*>();
787 }
788
789 /// Retrieve the set of qualifiers local to this particular QualType
790 /// instance, not including any qualifiers acquired through typedefs or
791 /// other sugar.
792 Qualifiers getLocalQualifiers() const;
793
794 /// Retrieve the set of qualifiers applied to this type.
795 Qualifiers getQualifiers() const;
796
797 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
798 /// local to this particular QualType instance, not including any qualifiers
799 /// acquired through typedefs or other sugar.
800 unsigned getLocalCVRQualifiers() const {
801 return getLocalFastQualifiers();
802 }
803
804 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
805 /// applied to this type.
806 unsigned getCVRQualifiers() const;
807
808 bool isConstant(const ASTContext& Ctx) const {
809 return QualType::isConstant(*this, Ctx);
810 }
811
812 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
813 bool isPODType(const ASTContext &Context) const;
814
815 /// Return true if this is a POD type according to the rules of the C++98
816 /// standard, regardless of the current compilation's language.
817 bool isCXX98PODType(const ASTContext &Context) const;
818
819 /// Return true if this is a POD type according to the more relaxed rules
820 /// of the C++11 standard, regardless of the current compilation's language.
821 /// (C++0x [basic.types]p9). Note that, unlike
822 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
823 bool isCXX11PODType(const ASTContext &Context) const;
824
825 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
826 bool isTrivialType(const ASTContext &Context) const;
827
828 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
829 bool isTriviallyCopyableType(const ASTContext &Context) const;
830
831
832 /// Returns true if it is a class and it might be dynamic.
833 bool mayBeDynamicClass() const;
834
835 /// Returns true if it is not a class or if the class might not be dynamic.
836 bool mayBeNotDynamicClass() const;
837
838 // Don't promise in the API that anything besides 'const' can be
839 // easily added.
840
841 /// Add the `const` type qualifier to this QualType.
842 void addConst() {
843 addFastQualifiers(Qualifiers::Const);
844 }
845 QualType withConst() const {
846 return withFastQualifiers(Qualifiers::Const);
847 }
848
849 /// Add the `volatile` type qualifier to this QualType.
850 void addVolatile() {
851 addFastQualifiers(Qualifiers::Volatile);
852 }
853 QualType withVolatile() const {
854 return withFastQualifiers(Qualifiers::Volatile);
855 }
856
857 /// Add the `restrict` qualifier to this QualType.
858 void addRestrict() {
859 addFastQualifiers(Qualifiers::Restrict);
860 }
861 QualType withRestrict() const {
862 return withFastQualifiers(Qualifiers::Restrict);
863 }
864
865 QualType withCVRQualifiers(unsigned CVR) const {
866 return withFastQualifiers(CVR);
867 }
868
869 void addFastQualifiers(unsigned TQs) {
870 assert(!(TQs & ~Qualifiers::FastMask)(static_cast<void> (0))
871 && "non-fast qualifier bits set in mask!")(static_cast<void> (0));
872 Value.setInt(Value.getInt() | TQs);
873 }
874
875 void removeLocalConst();
876 void removeLocalVolatile();
877 void removeLocalRestrict();
878 void removeLocalCVRQualifiers(unsigned Mask);
879
880 void removeLocalFastQualifiers() { Value.setInt(0); }
881 void removeLocalFastQualifiers(unsigned Mask) {
882 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast<void> (0));
883 Value.setInt(Value.getInt() & ~Mask);
884 }
885
886 // Creates a type with the given qualifiers in addition to any
887 // qualifiers already on this type.
888 QualType withFastQualifiers(unsigned TQs) const {
889 QualType T = *this;
890 T.addFastQualifiers(TQs);
891 return T;
892 }
893
894 // Creates a type with exactly the given fast qualifiers, removing
895 // any existing fast qualifiers.
896 QualType withExactLocalFastQualifiers(unsigned TQs) const {
897 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
898 }
899
900 // Removes fast qualifiers, but leaves any extended qualifiers in place.
901 QualType withoutLocalFastQualifiers() const {
902 QualType T = *this;
903 T.removeLocalFastQualifiers();
904 return T;
905 }
906
907 QualType getCanonicalType() const;
908
909 /// Return this type with all of the instance-specific qualifiers
910 /// removed, but without removing any qualifiers that may have been applied
911 /// through typedefs.
912 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
913
914 /// Retrieve the unqualified variant of the given type,
915 /// removing as little sugar as possible.
916 ///
917 /// This routine looks through various kinds of sugar to find the
918 /// least-desugared type that is unqualified. For example, given:
919 ///
920 /// \code
921 /// typedef int Integer;
922 /// typedef const Integer CInteger;
923 /// typedef CInteger DifferenceType;
924 /// \endcode
925 ///
926 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
927 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
928 ///
929 /// The resulting type might still be qualified if it's sugar for an array
930 /// type. To strip qualifiers even from within a sugared array type, use
931 /// ASTContext::getUnqualifiedArrayType.
932 inline QualType getUnqualifiedType() const;
933
934 /// Retrieve the unqualified variant of the given type, removing as little
935 /// sugar as possible.
936 ///
937 /// Like getUnqualifiedType(), but also returns the set of
938 /// qualifiers that were built up.
939 ///
940 /// The resulting type might still be qualified if it's sugar for an array
941 /// type. To strip qualifiers even from within a sugared array type, use
942 /// ASTContext::getUnqualifiedArrayType.
943 inline SplitQualType getSplitUnqualifiedType() const;
944
945 /// Determine whether this type is more qualified than the other
946 /// given type, requiring exact equality for non-CVR qualifiers.
947 bool isMoreQualifiedThan(QualType Other) const;
948
949 /// Determine whether this type is at least as qualified as the other
950 /// given type, requiring exact equality for non-CVR qualifiers.
951 bool isAtLeastAsQualifiedAs(QualType Other) const;
952
953 QualType getNonReferenceType() const;
954
955 /// Determine the type of a (typically non-lvalue) expression with the
956 /// specified result type.
957 ///
958 /// This routine should be used for expressions for which the return type is
959 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
960 /// an lvalue. It removes a top-level reference (since there are no
961 /// expressions of reference type) and deletes top-level cvr-qualifiers
962 /// from non-class types (in C++) or all types (in C).
963 QualType getNonLValueExprType(const ASTContext &Context) const;
964
965 /// Remove an outer pack expansion type (if any) from this type. Used as part
966 /// of converting the type of a declaration to the type of an expression that
967 /// references that expression. It's meaningless for an expression to have a
968 /// pack expansion type.
969 QualType getNonPackExpansionType() const;
970
971 /// Return the specified type with any "sugar" removed from
972 /// the type. This takes off typedefs, typeof's etc. If the outer level of
973 /// the type is already concrete, it returns it unmodified. This is similar
974 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
975 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
976 /// concrete.
977 ///
978 /// Qualifiers are left in place.
979 QualType getDesugaredType(const ASTContext &Context) const {
980 return getDesugaredType(*this, Context);
981 }
982
983 SplitQualType getSplitDesugaredType() const {
984 return getSplitDesugaredType(*this);
985 }
986
987 /// Return the specified type with one level of "sugar" removed from
988 /// the type.
989 ///
990 /// This routine takes off the first typedef, typeof, etc. If the outer level
991 /// of the type is already concrete, it returns it unmodified.
992 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
993 return getSingleStepDesugaredTypeImpl(*this, Context);
994 }
995
996 /// Returns the specified type after dropping any
997 /// outer-level parentheses.
998 QualType IgnoreParens() const {
999 if (isa<ParenType>(*this))
1000 return QualType::IgnoreParens(*this);
1001 return *this;
1002 }
1003
1004 /// Indicate whether the specified types and qualifiers are identical.
1005 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1006 return LHS.Value == RHS.Value;
1007 }
1008 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1009 return LHS.Value != RHS.Value;
1010 }
1011 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1012 return LHS.Value < RHS.Value;
1013 }
1014
1015 static std::string getAsString(SplitQualType split,
1016 const PrintingPolicy &Policy) {
1017 return getAsString(split.Ty, split.Quals, Policy);
1018 }
1019 static std::string getAsString(const Type *ty, Qualifiers qs,
1020 const PrintingPolicy &Policy);
1021
1022 std::string getAsString() const;
1023 std::string getAsString(const PrintingPolicy &Policy) const;
1024
1025 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1026 const Twine &PlaceHolder = Twine(),
1027 unsigned Indentation = 0) const;
1028
1029 static void print(SplitQualType split, raw_ostream &OS,
1030 const PrintingPolicy &policy, const Twine &PlaceHolder,
1031 unsigned Indentation = 0) {
1032 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1033 }
1034
1035 static void print(const Type *ty, Qualifiers qs,
1036 raw_ostream &OS, const PrintingPolicy &policy,
1037 const Twine &PlaceHolder,
1038 unsigned Indentation = 0);
1039
1040 void getAsStringInternal(std::string &Str,
1041 const PrintingPolicy &Policy) const;
1042
1043 static void getAsStringInternal(SplitQualType split, std::string &out,
1044 const PrintingPolicy &policy) {
1045 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1046 }
1047
1048 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1049 std::string &out,
1050 const PrintingPolicy &policy);
1051
1052 class StreamedQualTypeHelper {
1053 const QualType &T;
1054 const PrintingPolicy &Policy;
1055 const Twine &PlaceHolder;
1056 unsigned Indentation;
1057
1058 public:
1059 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder, unsigned Indentation)
1061 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1062 Indentation(Indentation) {}
1063
1064 friend raw_ostream &operator<<(raw_ostream &OS,
1065 const StreamedQualTypeHelper &SQT) {
1066 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1067 return OS;
1068 }
1069 };
1070
1071 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1072 const Twine &PlaceHolder = Twine(),
1073 unsigned Indentation = 0) const {
1074 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1075 }
1076
1077 void dump(const char *s) const;
1078 void dump() const;
1079 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1080
1081 void Profile(llvm::FoldingSetNodeID &ID) const {
1082 ID.AddPointer(getAsOpaquePtr());
1083 }
1084
1085 /// Check if this type has any address space qualifier.
1086 inline bool hasAddressSpace() const;
1087
1088 /// Return the address space of this type.
1089 inline LangAS getAddressSpace() const;
1090
1091 /// Returns true if address space qualifiers overlap with T address space
1092 /// qualifiers.
1093 /// OpenCL C defines conversion rules for pointers to different address spaces
1094 /// and notion of overlapping address spaces.
1095 /// CL1.1 or CL1.2:
1096 /// address spaces overlap iff they are they same.
1097 /// OpenCL C v2.0 s6.5.5 adds:
1098 /// __generic overlaps with any address space except for __constant.
1099 bool isAddressSpaceOverlapping(QualType T) const {
1100 Qualifiers Q = getQualifiers();
1101 Qualifiers TQ = T.getQualifiers();
1102 // Address spaces overlap if at least one of them is a superset of another
1103 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1104 }
1105
1106 /// Returns gc attribute of this type.
1107 inline Qualifiers::GC getObjCGCAttr() const;
1108
1109 /// true when Type is objc's weak.
1110 bool isObjCGCWeak() const {
1111 return getObjCGCAttr() == Qualifiers::Weak;
1112 }
1113
1114 /// true when Type is objc's strong.
1115 bool isObjCGCStrong() const {
1116 return getObjCGCAttr() == Qualifiers::Strong;
1117 }
1118
1119 /// Returns lifetime attribute of this type.
1120 Qualifiers::ObjCLifetime getObjCLifetime() const {
1121 return getQualifiers().getObjCLifetime();
1122 }
1123
1124 bool hasNonTrivialObjCLifetime() const {
1125 return getQualifiers().hasNonTrivialObjCLifetime();
1126 }
1127
1128 bool hasStrongOrWeakObjCLifetime() const {
1129 return getQualifiers().hasStrongOrWeakObjCLifetime();
1130 }
1131
1132 // true when Type is objc's weak and weak is enabled but ARC isn't.
1133 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1134
1135 enum PrimitiveDefaultInitializeKind {
1136 /// The type does not fall into any of the following categories. Note that
1137 /// this case is zero-valued so that values of this enum can be used as a
1138 /// boolean condition for non-triviality.
1139 PDIK_Trivial,
1140
1141 /// The type is an Objective-C retainable pointer type that is qualified
1142 /// with the ARC __strong qualifier.
1143 PDIK_ARCStrong,
1144
1145 /// The type is an Objective-C retainable pointer type that is qualified
1146 /// with the ARC __weak qualifier.
1147 PDIK_ARCWeak,
1148
1149 /// The type is a struct containing a field whose type is not PCK_Trivial.
1150 PDIK_Struct
1151 };
1152
1153 /// Functions to query basic properties of non-trivial C struct types.
1154
1155 /// Check if this is a non-trivial type that would cause a C struct
1156 /// transitively containing this type to be non-trivial to default initialize
1157 /// and return the kind.
1158 PrimitiveDefaultInitializeKind
1159 isNonTrivialToPrimitiveDefaultInitialize() const;
1160
1161 enum PrimitiveCopyKind {
1162 /// The type does not fall into any of the following categories. Note that
1163 /// this case is zero-valued so that values of this enum can be used as a
1164 /// boolean condition for non-triviality.
1165 PCK_Trivial,
1166
1167 /// The type would be trivial except that it is volatile-qualified. Types
1168 /// that fall into one of the other non-trivial cases may additionally be
1169 /// volatile-qualified.
1170 PCK_VolatileTrivial,
1171
1172 /// The type is an Objective-C retainable pointer type that is qualified
1173 /// with the ARC __strong qualifier.
1174 PCK_ARCStrong,
1175
1176 /// The type is an Objective-C retainable pointer type that is qualified
1177 /// with the ARC __weak qualifier.
1178 PCK_ARCWeak,
1179
1180 /// The type is a struct containing a field whose type is neither
1181 /// PCK_Trivial nor PCK_VolatileTrivial.
1182 /// Note that a C++ struct type does not necessarily match this; C++ copying
1183 /// semantics are too complex to express here, in part because they depend
1184 /// on the exact constructor or assignment operator that is chosen by
1185 /// overload resolution to do the copy.
1186 PCK_Struct
1187 };
1188
1189 /// Check if this is a non-trivial type that would cause a C struct
1190 /// transitively containing this type to be non-trivial to copy and return the
1191 /// kind.
1192 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1193
1194 /// Check if this is a non-trivial type that would cause a C struct
1195 /// transitively containing this type to be non-trivial to destructively
1196 /// move and return the kind. Destructive move in this context is a C++-style
1197 /// move in which the source object is placed in a valid but unspecified state
1198 /// after it is moved, as opposed to a truly destructive move in which the
1199 /// source object is placed in an uninitialized state.
1200 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1201
1202 enum DestructionKind {
1203 DK_none,
1204 DK_cxx_destructor,
1205 DK_objc_strong_lifetime,
1206 DK_objc_weak_lifetime,
1207 DK_nontrivial_c_struct
1208 };
1209
1210 /// Returns a nonzero value if objects of this type require
1211 /// non-trivial work to clean up after. Non-zero because it's
1212 /// conceivable that qualifiers (objc_gc(weak)?) could make
1213 /// something require destruction.
1214 DestructionKind isDestructedType() const {
1215 return isDestructedTypeImpl(*this);
1216 }
1217
1218 /// Check if this is or contains a C union that is non-trivial to
1219 /// default-initialize, which is a union that has a member that is non-trivial
1220 /// to default-initialize. If this returns true,
1221 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1222 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1223
1224 /// Check if this is or contains a C union that is non-trivial to destruct,
1225 /// which is a union that has a member that is non-trivial to destruct. If
1226 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1227 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1228
1229 /// Check if this is or contains a C union that is non-trivial to copy, which
1230 /// is a union that has a member that is non-trivial to copy. If this returns
1231 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1232 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1233
1234 /// Determine whether expressions of the given type are forbidden
1235 /// from being lvalues in C.
1236 ///
1237 /// The expression types that are forbidden to be lvalues are:
1238 /// - 'void', but not qualified void
1239 /// - function types
1240 ///
1241 /// The exact rule here is C99 6.3.2.1:
1242 /// An lvalue is an expression with an object type or an incomplete
1243 /// type other than void.
1244 bool isCForbiddenLValueType() const;
1245
1246 /// Substitute type arguments for the Objective-C type parameters used in the
1247 /// subject type.
1248 ///
1249 /// \param ctx ASTContext in which the type exists.
1250 ///
1251 /// \param typeArgs The type arguments that will be substituted for the
1252 /// Objective-C type parameters in the subject type, which are generally
1253 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1254 /// parameters will be replaced with their bounds or id/Class, as appropriate
1255 /// for the context.
1256 ///
1257 /// \param context The context in which the subject type was written.
1258 ///
1259 /// \returns the resulting type.
1260 QualType substObjCTypeArgs(ASTContext &ctx,
1261 ArrayRef<QualType> typeArgs,
1262 ObjCSubstitutionContext context) const;
1263
1264 /// Substitute type arguments from an object type for the Objective-C type
1265 /// parameters used in the subject type.
1266 ///
1267 /// This operation combines the computation of type arguments for
1268 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1269 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1270 /// callers that need to perform a single substitution in isolation.
1271 ///
1272 /// \param objectType The type of the object whose member type we're
1273 /// substituting into. For example, this might be the receiver of a message
1274 /// or the base of a property access.
1275 ///
1276 /// \param dc The declaration context from which the subject type was
1277 /// retrieved, which indicates (for example) which type parameters should
1278 /// be substituted.
1279 ///
1280 /// \param context The context in which the subject type was written.
1281 ///
1282 /// \returns the subject type after replacing all of the Objective-C type
1283 /// parameters with their corresponding arguments.
1284 QualType substObjCMemberType(QualType objectType,
1285 const DeclContext *dc,
1286 ObjCSubstitutionContext context) const;
1287
1288 /// Strip Objective-C "__kindof" types from the given type.
1289 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1290
1291 /// Remove all qualifiers including _Atomic.
1292 QualType getAtomicUnqualifiedType() const;
1293
1294private:
1295 // These methods are implemented in a separate translation unit;
1296 // "static"-ize them to avoid creating temporary QualTypes in the
1297 // caller.
1298 static bool isConstant(QualType T, const ASTContext& Ctx);
1299 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1300 static SplitQualType getSplitDesugaredType(QualType T);
1301 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1302 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1303 const ASTContext &C);
1304 static QualType IgnoreParens(QualType T);
1305 static DestructionKind isDestructedTypeImpl(QualType type);
1306
1307 /// Check if \param RD is or contains a non-trivial C union.
1308 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1309 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1311};
1312
1313} // namespace clang
1314
1315namespace llvm {
1316
1317/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1318/// to a specific Type class.
1319template<> struct simplify_type< ::clang::QualType> {
1320 using SimpleType = const ::clang::Type *;
1321
1322 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1323 return Val.getTypePtr();
1324 }
1325};
1326
1327// Teach SmallPtrSet that QualType is "basically a pointer".
1328template<>
1329struct PointerLikeTypeTraits<clang::QualType> {
1330 static inline void *getAsVoidPointer(clang::QualType P) {
1331 return P.getAsOpaquePtr();
1332 }
1333
1334 static inline clang::QualType getFromVoidPointer(void *P) {
1335 return clang::QualType::getFromOpaquePtr(P);
1336 }
1337
1338 // Various qualifiers go in low bits.
1339 static constexpr int NumLowBitsAvailable = 0;
1340};
1341
1342} // namespace llvm
1343
1344namespace clang {
1345
1346/// Base class that is common to both the \c ExtQuals and \c Type
1347/// classes, which allows \c QualType to access the common fields between the
1348/// two.
1349class ExtQualsTypeCommonBase {
1350 friend class ExtQuals;
1351 friend class QualType;
1352 friend class Type;
1353
1354 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1355 /// a self-referential pointer (for \c Type).
1356 ///
1357 /// This pointer allows an efficient mapping from a QualType to its
1358 /// underlying type pointer.
1359 const Type *const BaseType;
1360
1361 /// The canonical type of this type. A QualType.
1362 QualType CanonicalType;
1363
1364 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1365 : BaseType(baseType), CanonicalType(canon) {}
1366};
1367
1368/// We can encode up to four bits in the low bits of a
1369/// type pointer, but there are many more type qualifiers that we want
1370/// to be able to apply to an arbitrary type. Therefore we have this
1371/// struct, intended to be heap-allocated and used by QualType to
1372/// store qualifiers.
1373///
1374/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1375/// in three low bits on the QualType pointer; a fourth bit records whether
1376/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1377/// Objective-C GC attributes) are much more rare.
1378class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1379 // NOTE: changing the fast qualifiers should be straightforward as
1380 // long as you don't make 'const' non-fast.
1381 // 1. Qualifiers:
1382 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1383 // Fast qualifiers must occupy the low-order bits.
1384 // b) Update Qualifiers::FastWidth and FastMask.
1385 // 2. QualType:
1386 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1387 // b) Update remove{Volatile,Restrict}, defined near the end of
1388 // this header.
1389 // 3. ASTContext:
1390 // a) Update get{Volatile,Restrict}Type.
1391
1392 /// The immutable set of qualifiers applied by this node. Always contains
1393 /// extended qualifiers.
1394 Qualifiers Quals;
1395
1396 ExtQuals *this_() { return this; }
1397
1398public:
1399 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1400 : ExtQualsTypeCommonBase(baseType,
1401 canon.isNull() ? QualType(this_(), 0) : canon),
1402 Quals(quals) {
1403 assert(Quals.hasNonFastQualifiers()(static_cast<void> (0))
1404 && "ExtQuals created with no fast qualifiers")(static_cast<void> (0));
1405 assert(!Quals.hasFastQualifiers()(static_cast<void> (0))
1406 && "ExtQuals created with fast qualifiers")(static_cast<void> (0));
1407 }
1408
1409 Qualifiers getQualifiers() const { return Quals; }
1410
1411 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1412 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1413
1414 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1415 Qualifiers::ObjCLifetime getObjCLifetime() const {
1416 return Quals.getObjCLifetime();
1417 }
1418
1419 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1420 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1421
1422 const Type *getBaseType() const { return BaseType; }
1423
1424public:
1425 void Profile(llvm::FoldingSetNodeID &ID) const {
1426 Profile(ID, getBaseType(), Quals);
1427 }
1428
1429 static void Profile(llvm::FoldingSetNodeID &ID,
1430 const Type *BaseType,
1431 Qualifiers Quals) {
1432 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast<void> (0));
1433 ID.AddPointer(BaseType);
1434 Quals.Profile(ID);
1435 }
1436};
1437
1438/// The kind of C++11 ref-qualifier associated with a function type.
1439/// This determines whether a member function's "this" object can be an
1440/// lvalue, rvalue, or neither.
1441enum RefQualifierKind {
1442 /// No ref-qualifier was provided.
1443 RQ_None = 0,
1444
1445 /// An lvalue ref-qualifier was provided (\c &).
1446 RQ_LValue,
1447
1448 /// An rvalue ref-qualifier was provided (\c &&).
1449 RQ_RValue
1450};
1451
1452/// Which keyword(s) were used to create an AutoType.
1453enum class AutoTypeKeyword {
1454 /// auto
1455 Auto,
1456
1457 /// decltype(auto)
1458 DecltypeAuto,
1459
1460 /// __auto_type (GNU extension)
1461 GNUAutoType
1462};
1463
1464/// The base class of the type hierarchy.
1465///
1466/// A central concept with types is that each type always has a canonical
1467/// type. A canonical type is the type with any typedef names stripped out
1468/// of it or the types it references. For example, consider:
1469///
1470/// typedef int foo;
1471/// typedef foo* bar;
1472/// 'int *' 'foo *' 'bar'
1473///
1474/// There will be a Type object created for 'int'. Since int is canonical, its
1475/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1476/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1477/// there is a PointerType that represents 'int*', which, like 'int', is
1478/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1479/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1480/// is also 'int*'.
1481///
1482/// Non-canonical types are useful for emitting diagnostics, without losing
1483/// information about typedefs being used. Canonical types are useful for type
1484/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1485/// about whether something has a particular form (e.g. is a function type),
1486/// because they implicitly, recursively, strip all typedefs out of a type.
1487///
1488/// Types, once created, are immutable.
1489///
1490class alignas(8) Type : public ExtQualsTypeCommonBase {
1491public:
1492 enum TypeClass {
1493#define TYPE(Class, Base) Class,
1494#define LAST_TYPE(Class) TypeLast = Class
1495#define ABSTRACT_TYPE(Class, Base)
1496#include "clang/AST/TypeNodes.inc"
1497 };
1498
1499private:
1500 /// Bitfields required by the Type class.
1501 class TypeBitfields {
1502 friend class Type;
1503 template <class T> friend class TypePropertyCache;
1504
1505 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1506 unsigned TC : 8;
1507
1508 /// Store information on the type dependency.
1509 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1510
1511 /// True if the cache (i.e. the bitfields here starting with
1512 /// 'Cache') is valid.
1513 mutable unsigned CacheValid : 1;
1514
1515 /// Linkage of this type.
1516 mutable unsigned CachedLinkage : 3;
1517
1518 /// Whether this type involves and local or unnamed types.
1519 mutable unsigned CachedLocalOrUnnamed : 1;
1520
1521 /// Whether this type comes from an AST file.
1522 mutable unsigned FromAST : 1;
1523
1524 bool isCacheValid() const {
1525 return CacheValid;
1526 }
1527
1528 Linkage getLinkage() const {
1529 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast<void> (0));
1530 return static_cast<Linkage>(CachedLinkage);
1531 }
1532
1533 bool hasLocalOrUnnamedType() const {
1534 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast<void> (0));
1535 return CachedLocalOrUnnamed;
1536 }
1537 };
1538 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1539
1540protected:
1541 // These classes allow subclasses to somewhat cleanly pack bitfields
1542 // into Type.
1543
1544 class ArrayTypeBitfields {
1545 friend class ArrayType;
1546
1547 unsigned : NumTypeBits;
1548
1549 /// CVR qualifiers from declarations like
1550 /// 'int X[static restrict 4]'. For function parameters only.
1551 unsigned IndexTypeQuals : 3;
1552
1553 /// Storage class qualifiers from declarations like
1554 /// 'int X[static restrict 4]'. For function parameters only.
1555 /// Actually an ArrayType::ArraySizeModifier.
1556 unsigned SizeModifier : 3;
1557 };
1558
1559 class ConstantArrayTypeBitfields {
1560 friend class ConstantArrayType;
1561
1562 unsigned : NumTypeBits + 3 + 3;
1563
1564 /// Whether we have a stored size expression.
1565 unsigned HasStoredSizeExpr : 1;
1566 };
1567
1568 class BuiltinTypeBitfields {
1569 friend class BuiltinType;
1570
1571 unsigned : NumTypeBits;
1572
1573 /// The kind (BuiltinType::Kind) of builtin type this is.
1574 unsigned Kind : 8;
1575 };
1576
1577 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1578 /// Only common bits are stored here. Additional uncommon bits are stored
1579 /// in a trailing object after FunctionProtoType.
1580 class FunctionTypeBitfields {
1581 friend class FunctionProtoType;
1582 friend class FunctionType;
1583
1584 unsigned : NumTypeBits;
1585
1586 /// Extra information which affects how the function is called, like
1587 /// regparm and the calling convention.
1588 unsigned ExtInfo : 13;
1589
1590 /// The ref-qualifier associated with a \c FunctionProtoType.
1591 ///
1592 /// This is a value of type \c RefQualifierKind.
1593 unsigned RefQualifier : 2;
1594
1595 /// Used only by FunctionProtoType, put here to pack with the
1596 /// other bitfields.
1597 /// The qualifiers are part of FunctionProtoType because...
1598 ///
1599 /// C++ 8.3.5p4: The return type, the parameter type list and the
1600 /// cv-qualifier-seq, [...], are part of the function type.
1601 unsigned FastTypeQuals : Qualifiers::FastWidth;
1602 /// Whether this function has extended Qualifiers.
1603 unsigned HasExtQuals : 1;
1604
1605 /// The number of parameters this function has, not counting '...'.
1606 /// According to [implimits] 8 bits should be enough here but this is
1607 /// somewhat easy to exceed with metaprogramming and so we would like to
1608 /// keep NumParams as wide as reasonably possible.
1609 unsigned NumParams : 16;
1610
1611 /// The type of exception specification this function has.
1612 unsigned ExceptionSpecType : 4;
1613
1614 /// Whether this function has extended parameter information.
1615 unsigned HasExtParameterInfos : 1;
1616
1617 /// Whether the function is variadic.
1618 unsigned Variadic : 1;
1619
1620 /// Whether this function has a trailing return type.
1621 unsigned HasTrailingReturn : 1;
1622 };
1623
1624 class ObjCObjectTypeBitfields {
1625 friend class ObjCObjectType;
1626
1627 unsigned : NumTypeBits;
1628
1629 /// The number of type arguments stored directly on this object type.
1630 unsigned NumTypeArgs : 7;
1631
1632 /// The number of protocols stored directly on this object type.
1633 unsigned NumProtocols : 6;
1634
1635 /// Whether this is a "kindof" type.
1636 unsigned IsKindOf : 1;
1637 };
1638
1639 class ReferenceTypeBitfields {
1640 friend class ReferenceType;
1641
1642 unsigned : NumTypeBits;
1643
1644 /// True if the type was originally spelled with an lvalue sigil.
1645 /// This is never true of rvalue references but can also be false
1646 /// on lvalue references because of C++0x [dcl.typedef]p9,
1647 /// as follows:
1648 ///
1649 /// typedef int &ref; // lvalue, spelled lvalue
1650 /// typedef int &&rvref; // rvalue
1651 /// ref &a; // lvalue, inner ref, spelled lvalue
1652 /// ref &&a; // lvalue, inner ref
1653 /// rvref &a; // lvalue, inner ref, spelled lvalue
1654 /// rvref &&a; // rvalue, inner ref
1655 unsigned SpelledAsLValue : 1;
1656
1657 /// True if the inner type is a reference type. This only happens
1658 /// in non-canonical forms.
1659 unsigned InnerRef : 1;
1660 };
1661
1662 class TypeWithKeywordBitfields {
1663 friend class TypeWithKeyword;
1664
1665 unsigned : NumTypeBits;
1666
1667 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1668 unsigned Keyword : 8;
1669 };
1670
1671 enum { NumTypeWithKeywordBits = 8 };
1672
1673 class ElaboratedTypeBitfields {
1674 friend class ElaboratedType;
1675
1676 unsigned : NumTypeBits;
1677 unsigned : NumTypeWithKeywordBits;
1678
1679 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1680 unsigned HasOwnedTagDecl : 1;
1681 };
1682
1683 class VectorTypeBitfields {
1684 friend class VectorType;
1685 friend class DependentVectorType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// The kind of vector, either a generic vector type or some
1690 /// target-specific vector type such as for AltiVec or Neon.
1691 unsigned VecKind : 3;
1692 /// The number of elements in the vector.
1693 uint32_t NumElements;
1694 };
1695
1696 class AttributedTypeBitfields {
1697 friend class AttributedType;
1698
1699 unsigned : NumTypeBits;
1700
1701 /// An AttributedType::Kind
1702 unsigned AttrKind : 32 - NumTypeBits;
1703 };
1704
1705 class AutoTypeBitfields {
1706 friend class AutoType;
1707
1708 unsigned : NumTypeBits;
1709
1710 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1711 /// or '__auto_type'? AutoTypeKeyword value.
1712 unsigned Keyword : 2;
1713
1714 /// The number of template arguments in the type-constraints, which is
1715 /// expected to be able to hold at least 1024 according to [implimits].
1716 /// However as this limit is somewhat easy to hit with template
1717 /// metaprogramming we'd prefer to keep it as large as possible.
1718 /// At the moment it has been left as a non-bitfield since this type
1719 /// safely fits in 64 bits as an unsigned, so there is no reason to
1720 /// introduce the performance impact of a bitfield.
1721 unsigned NumArgs;
1722 };
1723
1724 class SubstTemplateTypeParmPackTypeBitfields {
1725 friend class SubstTemplateTypeParmPackType;
1726
1727 unsigned : NumTypeBits;
1728
1729 /// The number of template arguments in \c Arguments, which is
1730 /// expected to be able to hold at least 1024 according to [implimits].
1731 /// However as this limit is somewhat easy to hit with template
1732 /// metaprogramming we'd prefer to keep it as large as possible.
1733 /// At the moment it has been left as a non-bitfield since this type
1734 /// safely fits in 64 bits as an unsigned, so there is no reason to
1735 /// introduce the performance impact of a bitfield.
1736 unsigned NumArgs;
1737 };
1738
1739 class TemplateSpecializationTypeBitfields {
1740 friend class TemplateSpecializationType;
1741
1742 unsigned : NumTypeBits;
1743
1744 /// Whether this template specialization type is a substituted type alias.
1745 unsigned TypeAlias : 1;
1746
1747 /// The number of template arguments named in this class template
1748 /// specialization, which is expected to be able to hold at least 1024
1749 /// according to [implimits]. However, as this limit is somewhat easy to
1750 /// hit with template metaprogramming we'd prefer to keep it as large
1751 /// as possible. At the moment it has been left as a non-bitfield since
1752 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1753 /// to introduce the performance impact of a bitfield.
1754 unsigned NumArgs;
1755 };
1756
1757 class DependentTemplateSpecializationTypeBitfields {
1758 friend class DependentTemplateSpecializationType;
1759
1760 unsigned : NumTypeBits;
1761 unsigned : NumTypeWithKeywordBits;
1762
1763 /// The number of template arguments named in this class template
1764 /// specialization, which is expected to be able to hold at least 1024
1765 /// according to [implimits]. However, as this limit is somewhat easy to
1766 /// hit with template metaprogramming we'd prefer to keep it as large
1767 /// as possible. At the moment it has been left as a non-bitfield since
1768 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1769 /// to introduce the performance impact of a bitfield.
1770 unsigned NumArgs;
1771 };
1772
1773 class PackExpansionTypeBitfields {
1774 friend class PackExpansionType;
1775
1776 unsigned : NumTypeBits;
1777
1778 /// The number of expansions that this pack expansion will
1779 /// generate when substituted (+1), which is expected to be able to
1780 /// hold at least 1024 according to [implimits]. However, as this limit
1781 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1782 /// keep it as large as possible. At the moment it has been left as a
1783 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1784 /// there is no reason to introduce the performance impact of a bitfield.
1785 ///
1786 /// This field will only have a non-zero value when some of the parameter
1787 /// packs that occur within the pattern have been substituted but others
1788 /// have not.
1789 unsigned NumExpansions;
1790 };
1791
1792 union {
1793 TypeBitfields TypeBits;
1794 ArrayTypeBitfields ArrayTypeBits;
1795 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1796 AttributedTypeBitfields AttributedTypeBits;
1797 AutoTypeBitfields AutoTypeBits;
1798 BuiltinTypeBitfields BuiltinTypeBits;
1799 FunctionTypeBitfields FunctionTypeBits;
1800 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1801 ReferenceTypeBitfields ReferenceTypeBits;
1802 TypeWithKeywordBitfields TypeWithKeywordBits;
1803 ElaboratedTypeBitfields ElaboratedTypeBits;
1804 VectorTypeBitfields VectorTypeBits;
1805 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1806 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1807 DependentTemplateSpecializationTypeBitfields
1808 DependentTemplateSpecializationTypeBits;
1809 PackExpansionTypeBitfields PackExpansionTypeBits;
1810 };
1811
1812private:
1813 template <class T> friend class TypePropertyCache;
1814
1815 /// Set whether this type comes from an AST file.
1816 void setFromAST(bool V = true) const {
1817 TypeBits.FromAST = V;
1818 }
1819
1820protected:
1821 friend class ASTContext;
1822
1823 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1827 "changing bitfields changed sizeof(Type)!");
1828 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1829 "Insufficient alignment!");
1830 TypeBits.TC = tc;
1831 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1832 TypeBits.CacheValid = false;
1833 TypeBits.CachedLocalOrUnnamed = false;
1834 TypeBits.CachedLinkage = NoLinkage;
1835 TypeBits.FromAST = false;
1836 }
1837
1838 // silence VC++ warning C4355: 'this' : used in base member initializer list
1839 Type *this_() { return this; }
1840
1841 void setDependence(TypeDependence D) {
1842 TypeBits.Dependence = static_cast<unsigned>(D);
1843 }
1844
1845 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1846
1847public:
1848 friend class ASTReader;
1849 friend class ASTWriter;
1850 template <class T> friend class serialization::AbstractTypeReader;
1851 template <class T> friend class serialization::AbstractTypeWriter;
1852
1853 Type(const Type &) = delete;
1854 Type(Type &&) = delete;
1855 Type &operator=(const Type &) = delete;
1856 Type &operator=(Type &&) = delete;
1857
1858 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1859
1860 /// Whether this type comes from an AST file.
1861 bool isFromAST() const { return TypeBits.FromAST; }
1862
1863 /// Whether this type is or contains an unexpanded parameter
1864 /// pack, used to support C++0x variadic templates.
1865 ///
1866 /// A type that contains a parameter pack shall be expanded by the
1867 /// ellipsis operator at some point. For example, the typedef in the
1868 /// following example contains an unexpanded parameter pack 'T':
1869 ///
1870 /// \code
1871 /// template<typename ...T>
1872 /// struct X {
1873 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1874 /// };
1875 /// \endcode
1876 ///
1877 /// Note that this routine does not specify which
1878 bool containsUnexpandedParameterPack() const {
1879 return getDependence() & TypeDependence::UnexpandedPack;
1880 }
1881
1882 /// Determines if this type would be canonical if it had no further
1883 /// qualification.
1884 bool isCanonicalUnqualified() const {
1885 return CanonicalType == QualType(this, 0);
1886 }
1887
1888 /// Pull a single level of sugar off of this locally-unqualified type.
1889 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1890 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1891 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1892
1893 /// As an extension, we classify types as one of "sized" or "sizeless";
1894 /// every type is one or the other. Standard types are all sized;
1895 /// sizeless types are purely an extension.
1896 ///
1897 /// Sizeless types contain data with no specified size, alignment,
1898 /// or layout.
1899 bool isSizelessType() const;
1900 bool isSizelessBuiltinType() const;
1901
1902 /// Determines if this is a sizeless type supported by the
1903 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1904 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1905 bool isVLSTBuiltinType() const;
1906
1907 /// Returns the representative type for the element of an SVE builtin type.
1908 /// This is used to represent fixed-length SVE vectors created with the
1909 /// 'arm_sve_vector_bits' type attribute as VectorType.
1910 QualType getSveEltType(const ASTContext &Ctx) const;
1911
1912 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1913 /// object types, function types, and incomplete types.
1914
1915 /// Return true if this is an incomplete type.
1916 /// A type that can describe objects, but which lacks information needed to
1917 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1918 /// routine will need to determine if the size is actually required.
1919 ///
1920 /// Def If non-null, and the type refers to some kind of declaration
1921 /// that can be completed (such as a C struct, C++ class, or Objective-C
1922 /// class), will be set to the declaration.
1923 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1924
1925 /// Return true if this is an incomplete or object
1926 /// type, in other words, not a function type.
1927 bool isIncompleteOrObjectType() const {
1928 return !isFunctionType();
1929 }
1930
1931 /// Determine whether this type is an object type.
1932 bool isObjectType() const {
1933 // C++ [basic.types]p8:
1934 // An object type is a (possibly cv-qualified) type that is not a
1935 // function type, not a reference type, and not a void type.
1936 return !isReferenceType() && !isFunctionType() && !isVoidType();
1937 }
1938
1939 /// Return true if this is a literal type
1940 /// (C++11 [basic.types]p10)
1941 bool isLiteralType(const ASTContext &Ctx) const;
1942
1943 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1944 bool isStructuralType() const;
1945
1946 /// Test if this type is a standard-layout type.
1947 /// (C++0x [basic.type]p9)
1948 bool isStandardLayoutType() const;
1949
1950 /// Helper methods to distinguish type categories. All type predicates
1951 /// operate on the canonical type, ignoring typedefs and qualifiers.
1952
1953 /// Returns true if the type is a builtin type.
1954 bool isBuiltinType() const;
1955
1956 /// Test for a particular builtin type.
1957 bool isSpecificBuiltinType(unsigned K) const;
1958
1959 /// Test for a type which does not represent an actual type-system type but
1960 /// is instead used as a placeholder for various convenient purposes within
1961 /// Clang. All such types are BuiltinTypes.
1962 bool isPlaceholderType() const;
1963 const BuiltinType *getAsPlaceholderType() const;
1964
1965 /// Test for a specific placeholder type.
1966 bool isSpecificPlaceholderType(unsigned K) const;
1967
1968 /// Test for a placeholder type other than Overload; see
1969 /// BuiltinType::isNonOverloadPlaceholderType.
1970 bool isNonOverloadPlaceholderType() const;
1971
1972 /// isIntegerType() does *not* include complex integers (a GCC extension).
1973 /// isComplexIntegerType() can be used to test for complex integers.
1974 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1975 bool isEnumeralType() const;
1976
1977 /// Determine whether this type is a scoped enumeration type.
1978 bool isScopedEnumeralType() const;
1979 bool isBooleanType() const;
1980 bool isCharType() const;
1981 bool isWideCharType() const;
1982 bool isChar8Type() const;
1983 bool isChar16Type() const;
1984 bool isChar32Type() const;
1985 bool isAnyCharacterType() const;
1986 bool isIntegralType(const ASTContext &Ctx) const;
1987
1988 /// Determine whether this type is an integral or enumeration type.
1989 bool isIntegralOrEnumerationType() const;
1990
1991 /// Determine whether this type is an integral or unscoped enumeration type.
1992 bool isIntegralOrUnscopedEnumerationType() const;
1993 bool isUnscopedEnumerationType() const;
1994
1995 /// Floating point categories.
1996 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1997 /// isComplexType() does *not* include complex integers (a GCC extension).
1998 /// isComplexIntegerType() can be used to test for complex integers.
1999 bool isComplexType() const; // C99 6.2.5p11 (complex)
2000 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2001 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2002 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2003 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2004 bool isBFloat16Type() const;
2005 bool isFloat128Type() const;
2006 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2007 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2008 bool isVoidType() const; // C99 6.2.5p19
2009 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2010 bool isAggregateType() const;
2011 bool isFundamentalType() const;
2012 bool isCompoundType() const;
2013
2014 // Type Predicates: Check to see if this type is structurally the specified
2015 // type, ignoring typedefs and qualifiers.
2016 bool isFunctionType() const;
2017 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2018 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2019 bool isPointerType() const;
2020 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2021 bool isBlockPointerType() const;
2022 bool isVoidPointerType() const;
2023 bool isReferenceType() const;
2024 bool isLValueReferenceType() const;
2025 bool isRValueReferenceType() const;
2026 bool isObjectPointerType() const;
2027 bool isFunctionPointerType() const;
2028 bool isFunctionReferenceType() const;
2029 bool isMemberPointerType() const;
2030 bool isMemberFunctionPointerType() const;
2031 bool isMemberDataPointerType() const;
2032 bool isArrayType() const;
2033 bool isConstantArrayType() const;
2034 bool isIncompleteArrayType() const;
2035 bool isVariableArrayType() const;
2036 bool isDependentSizedArrayType() const;
2037 bool isRecordType() const;
2038 bool isClassType() const;
2039 bool isStructureType() const;
2040 bool isObjCBoxableRecordType() const;
2041 bool isInterfaceType() const;
2042 bool isStructureOrClassType() const;
2043 bool isUnionType() const;
2044 bool isComplexIntegerType() const; // GCC _Complex integer type.
2045 bool isVectorType() const; // GCC vector type.
2046 bool isExtVectorType() const; // Extended vector type.
2047 bool isMatrixType() const; // Matrix type.
2048 bool isConstantMatrixType() const; // Constant matrix type.
2049 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2050 bool isObjCObjectPointerType() const; // pointer to ObjC object
2051 bool isObjCRetainableType() const; // ObjC object or block pointer
2052 bool isObjCLifetimeType() const; // (array of)* retainable type
2053 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2054 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2055 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2056 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2057 // for the common case.
2058 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2059 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2060 bool isObjCQualifiedIdType() const; // id<foo>
2061 bool isObjCQualifiedClassType() const; // Class<foo>
2062 bool isObjCObjectOrInterfaceType() const;
2063 bool isObjCIdType() const; // id
2064 bool isDecltypeType() const;
2065 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2066 /// qualifier?
2067 ///
2068 /// This approximates the answer to the following question: if this
2069 /// translation unit were compiled in ARC, would this type be qualified
2070 /// with __unsafe_unretained?
2071 bool isObjCInertUnsafeUnretainedType() const {
2072 return hasAttr(attr::ObjCInertUnsafeUnretained);
2073 }
2074
2075 /// Whether the type is Objective-C 'id' or a __kindof type of an
2076 /// object type, e.g., __kindof NSView * or __kindof id
2077 /// <NSCopying>.
2078 ///
2079 /// \param bound Will be set to the bound on non-id subtype types,
2080 /// which will be (possibly specialized) Objective-C class type, or
2081 /// null for 'id.
2082 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2083 const ObjCObjectType *&bound) const;
2084
2085 bool isObjCClassType() const; // Class
2086
2087 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2088 /// Class type, e.g., __kindof Class <NSCopying>.
2089 ///
2090 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2091 /// here because Objective-C's type system cannot express "a class
2092 /// object for a subclass of NSFoo".
2093 bool isObjCClassOrClassKindOfType() const;
2094
2095 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2096 bool isObjCSelType() const; // Class
2097 bool isObjCBuiltinType() const; // 'id' or 'Class'
2098 bool isObjCARCBridgableType() const;
2099 bool isCARCBridgableType() const;
2100 bool isTemplateTypeParmType() const; // C++ template type parameter
2101 bool isNullPtrType() const; // C++11 std::nullptr_t
2102 bool isNothrowT() const; // C++ std::nothrow_t
2103 bool isAlignValT() const; // C++17 std::align_val_t
2104 bool isStdByteType() const; // C++17 std::byte
2105 bool isAtomicType() const; // C11 _Atomic()
2106 bool isUndeducedAutoType() const; // C++11 auto or
2107 // C++14 decltype(auto)
2108 bool isTypedefNameType() const; // typedef or alias template
2109
2110#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLImageTypes.def"
2113
2114 bool isImageType() const; // Any OpenCL image type
2115
2116 bool isSamplerT() const; // OpenCL sampler_t
2117 bool isEventT() const; // OpenCL event_t
2118 bool isClkEventT() const; // OpenCL clk_event_t
2119 bool isQueueT() const; // OpenCL queue_t
2120 bool isReserveIDT() const; // OpenCL reserve_id_t
2121
2122#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2123 bool is##Id##Type() const;
2124#include "clang/Basic/OpenCLExtensionTypes.def"
2125 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2126 bool isOCLIntelSubgroupAVCType() const;
2127 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2128
2129 bool isPipeType() const; // OpenCL pipe type
2130 bool isExtIntType() const; // Extended Int Type
2131 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2132
2133 /// Determines if this type, which must satisfy
2134 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2135 /// than implicitly __strong.
2136 bool isObjCARCImplicitlyUnretainedType() const;
2137
2138 /// Check if the type is the CUDA device builtin surface type.
2139 bool isCUDADeviceBuiltinSurfaceType() const;
2140 /// Check if the type is the CUDA device builtin texture type.
2141 bool isCUDADeviceBuiltinTextureType() const;
2142
2143 /// Return the implicit lifetime for this type, which must not be dependent.
2144 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2145
2146 enum ScalarTypeKind {
2147 STK_CPointer,
2148 STK_BlockPointer,
2149 STK_ObjCObjectPointer,
2150 STK_MemberPointer,
2151 STK_Bool,
2152 STK_Integral,
2153 STK_Floating,
2154 STK_IntegralComplex,
2155 STK_FloatingComplex,
2156 STK_FixedPoint
2157 };
2158
2159 /// Given that this is a scalar type, classify it.
2160 ScalarTypeKind getScalarTypeKind() const;
2161
2162 TypeDependence getDependence() const {
2163 return static_cast<TypeDependence>(TypeBits.Dependence);
2164 }
2165
2166 /// Whether this type is an error type.
2167 bool containsErrors() const {
2168 return getDependence() & TypeDependence::Error;
2169 }
2170
2171 /// Whether this type is a dependent type, meaning that its definition
2172 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2173 bool isDependentType() const {
2174 return getDependence() & TypeDependence::Dependent;
2175 }
2176
2177 /// Determine whether this type is an instantiation-dependent type,
2178 /// meaning that the type involves a template parameter (even if the
2179 /// definition does not actually depend on the type substituted for that
2180 /// template parameter).
2181 bool isInstantiationDependentType() const {
2182 return getDependence() & TypeDependence::Instantiation;
2183 }
2184
2185 /// Determine whether this type is an undeduced type, meaning that
2186 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2187 /// deduced.
2188 bool isUndeducedType() const;
2189
2190 /// Whether this type is a variably-modified type (C99 6.7.5).
2191 bool isVariablyModifiedType() const {
2192 return getDependence() & TypeDependence::VariablyModified;
2193 }
2194
2195 /// Whether this type involves a variable-length array type
2196 /// with a definite size.
2197 bool hasSizedVLAType() const;
2198
2199 /// Whether this type is or contains a local or unnamed type.
2200 bool hasUnnamedOrLocalType() const;
2201
2202 bool isOverloadableType() const;
2203
2204 /// Determine wither this type is a C++ elaborated-type-specifier.
2205 bool isElaboratedTypeSpecifier() const;
2206
2207 bool canDecayToPointerType() const;
2208
2209 /// Whether this type is represented natively as a pointer. This includes
2210 /// pointers, references, block pointers, and Objective-C interface,
2211 /// qualified id, and qualified interface types, as well as nullptr_t.
2212 bool hasPointerRepresentation() const;
2213
2214 /// Whether this type can represent an objective pointer type for the
2215 /// purpose of GC'ability
2216 bool hasObjCPointerRepresentation() const;
2217
2218 /// Determine whether this type has an integer representation
2219 /// of some sort, e.g., it is an integer type or a vector.
2220 bool hasIntegerRepresentation() const;
2221
2222 /// Determine whether this type has an signed integer representation
2223 /// of some sort, e.g., it is an signed integer type or a vector.
2224 bool hasSignedIntegerRepresentation() const;
2225
2226 /// Determine whether this type has an unsigned integer representation
2227 /// of some sort, e.g., it is an unsigned integer type or a vector.
2228 bool hasUnsignedIntegerRepresentation() const;
2229
2230 /// Determine whether this type has a floating-point representation
2231 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2232 bool hasFloatingRepresentation() const;
2233
2234 // Type Checking Functions: Check to see if this type is structurally the
2235 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2236 // the best type we can.
2237 const RecordType *getAsStructureType() const;
2238 /// NOTE: getAs*ArrayType are methods on ASTContext.
2239 const RecordType *getAsUnionType() const;
2240 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2241 const ObjCObjectType *getAsObjCInterfaceType() const;
2242
2243 // The following is a convenience method that returns an ObjCObjectPointerType
2244 // for object declared using an interface.
2245 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2246 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2247 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2248 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2249
2250 /// Retrieves the CXXRecordDecl that this type refers to, either
2251 /// because the type is a RecordType or because it is the injected-class-name
2252 /// type of a class template or class template partial specialization.
2253 CXXRecordDecl *getAsCXXRecordDecl() const;
2254
2255 /// Retrieves the RecordDecl this type refers to.
2256 RecordDecl *getAsRecordDecl() const;
2257
2258 /// Retrieves the TagDecl that this type refers to, either
2259 /// because the type is a TagType or because it is the injected-class-name
2260 /// type of a class template or class template partial specialization.
2261 TagDecl *getAsTagDecl() const;
2262
2263 /// If this is a pointer or reference to a RecordType, return the
2264 /// CXXRecordDecl that the type refers to.
2265 ///
2266 /// If this is not a pointer or reference, or the type being pointed to does
2267 /// not refer to a CXXRecordDecl, returns NULL.
2268 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2269
2270 /// Get the DeducedType whose type will be deduced for a variable with
2271 /// an initializer of this type. This looks through declarators like pointer
2272 /// types, but not through decltype or typedefs.
2273 DeducedType *getContainedDeducedType() const;
2274
2275 /// Get the AutoType whose type will be deduced for a variable with
2276 /// an initializer of this type. This looks through declarators like pointer
2277 /// types, but not through decltype or typedefs.
2278 AutoType *getContainedAutoType() const {
2279 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2280 }
2281
2282 /// Determine whether this type was written with a leading 'auto'
2283 /// corresponding to a trailing return type (possibly for a nested
2284 /// function type within a pointer to function type or similar).
2285 bool hasAutoForTrailingReturnType() const;
2286
2287 /// Member-template getAs<specific type>'. Look through sugar for
2288 /// an instance of \<specific type>. This scheme will eventually
2289 /// replace the specific getAsXXXX methods above.
2290 ///
2291 /// There are some specializations of this member template listed
2292 /// immediately following this class.
2293 template <typename T> const T *getAs() const;
2294
2295 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2296 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2297 /// This is used when you need to walk over sugar nodes that represent some
2298 /// kind of type adjustment from a type that was written as a \<specific type>
2299 /// to another type that is still canonically a \<specific type>.
2300 template <typename T> const T *getAsAdjusted() const;
2301
2302 /// A variant of getAs<> for array types which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *getAsArrayTypeUnsafe() const;
2305
2306 /// Member-template castAs<specific type>. Look through sugar for
2307 /// the underlying instance of \<specific type>.
2308 ///
2309 /// This method has the same relationship to getAs<T> as cast<T> has
2310 /// to dyn_cast<T>; which is to say, the underlying type *must*
2311 /// have the intended type, and this method will never return null.
2312 template <typename T> const T *castAs() const;
2313
2314 /// A variant of castAs<> for array type which silently discards
2315 /// qualifiers from the outermost type.
2316 const ArrayType *castAsArrayTypeUnsafe() const;
2317
2318 /// Determine whether this type had the specified attribute applied to it
2319 /// (looking through top-level type sugar).
2320 bool hasAttr(attr::Kind AK) const;
2321
2322 /// Get the base element type of this type, potentially discarding type
2323 /// qualifiers. This should never be used when type qualifiers
2324 /// are meaningful.
2325 const Type *getBaseElementTypeUnsafe() const;
2326
2327 /// If this is an array type, return the element type of the array,
2328 /// potentially with type qualifiers missing.
2329 /// This should never be used when type qualifiers are meaningful.
2330 const Type *getArrayElementTypeNoTypeQual() const;
2331
2332 /// If this is a pointer type, return the pointee type.
2333 /// If this is an array type, return the array element type.
2334 /// This should never be used when type qualifiers are meaningful.
2335 const Type *getPointeeOrArrayElementType() const;
2336
2337 /// If this is a pointer, ObjC object pointer, or block
2338 /// pointer, this returns the respective pointee.
2339 QualType getPointeeType() const;
2340
2341 /// Return the specified type with any "sugar" removed from the type,
2342 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2343 const Type *getUnqualifiedDesugaredType() const;
2344
2345 /// More type predicates useful for type checking/promotion
2346 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2347
2348 /// Return true if this is an integer type that is
2349 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2350 /// or an enum decl which has a signed representation.
2351 bool isSignedIntegerType() const;
2352
2353 /// Return true if this is an integer type that is
2354 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2355 /// or an enum decl which has an unsigned representation.
2356 bool isUnsignedIntegerType() const;
2357
2358 /// Determines whether this is an integer type that is signed or an
2359 /// enumeration types whose underlying type is a signed integer type.
2360 bool isSignedIntegerOrEnumerationType() const;
2361
2362 /// Determines whether this is an integer type that is unsigned or an
2363 /// enumeration types whose underlying type is a unsigned integer type.
2364 bool isUnsignedIntegerOrEnumerationType() const;
2365
2366 /// Return true if this is a fixed point type according to
2367 /// ISO/IEC JTC1 SC22 WG14 N1169.
2368 bool isFixedPointType() const;
2369
2370 /// Return true if this is a fixed point or integer type.
2371 bool isFixedPointOrIntegerType() const;
2372
2373 /// Return true if this is a saturated fixed point type according to
2374 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2375 bool isSaturatedFixedPointType() const;
2376
2377 /// Return true if this is a saturated fixed point type according to
2378 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2379 bool isUnsaturatedFixedPointType() const;
2380
2381 /// Return true if this is a fixed point type that is signed according
2382 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2383 bool isSignedFixedPointType() const;
2384
2385 /// Return true if this is a fixed point type that is unsigned according
2386 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2387 bool isUnsignedFixedPointType() const;
2388
2389 /// Return true if this is not a variable sized type,
2390 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2391 /// incomplete types.
2392 bool isConstantSizeType() const;
2393
2394 /// Returns true if this type can be represented by some
2395 /// set of type specifiers.
2396 bool isSpecifierType() const;
2397
2398 /// Determine the linkage of this type.
2399 Linkage getLinkage() const;
2400
2401 /// Determine the visibility of this type.
2402 Visibility getVisibility() const {
2403 return getLinkageAndVisibility().getVisibility();
2404 }
2405
2406 /// Return true if the visibility was explicitly set is the code.
2407 bool isVisibilityExplicit() const {
2408 return getLinkageAndVisibility().isVisibilityExplicit();
2409 }
2410
2411 /// Determine the linkage and visibility of this type.
2412 LinkageInfo getLinkageAndVisibility() const;
2413
2414 /// True if the computed linkage is valid. Used for consistency
2415 /// checking. Should always return true.
2416 bool isLinkageValid() const;
2417
2418 /// Determine the nullability of the given type.
2419 ///
2420 /// Note that nullability is only captured as sugar within the type
2421 /// system, not as part of the canonical type, so nullability will
2422 /// be lost by canonicalization and desugaring.
2423 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2424
2425 /// Determine whether the given type can have a nullability
2426 /// specifier applied to it, i.e., if it is any kind of pointer type.
2427 ///
2428 /// \param ResultIfUnknown The value to return if we don't yet know whether
2429 /// this type can have nullability because it is dependent.
2430 bool canHaveNullability(bool ResultIfUnknown = true) const;
2431
2432 /// Retrieve the set of substitutions required when accessing a member
2433 /// of the Objective-C receiver type that is declared in the given context.
2434 ///
2435 /// \c *this is the type of the object we're operating on, e.g., the
2436 /// receiver for a message send or the base of a property access, and is
2437 /// expected to be of some object or object pointer type.
2438 ///
2439 /// \param dc The declaration context for which we are building up a
2440 /// substitution mapping, which should be an Objective-C class, extension,
2441 /// category, or method within.
2442 ///
2443 /// \returns an array of type arguments that can be substituted for
2444 /// the type parameters of the given declaration context in any type described
2445 /// within that context, or an empty optional to indicate that no
2446 /// substitution is required.
2447 Optional<ArrayRef<QualType>>
2448 getObjCSubstitutions(const DeclContext *dc) const;
2449
2450 /// Determines if this is an ObjC interface type that may accept type
2451 /// parameters.
2452 bool acceptsObjCTypeParams() const;
2453
2454 const char *getTypeClassName() const;
2455
2456 QualType getCanonicalTypeInternal() const {
2457 return CanonicalType;
2458 }
2459
2460 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2461 void dump() const;
2462 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2463};
2464
2465/// This will check for a TypedefType by removing any existing sugar
2466/// until it reaches a TypedefType or a non-sugared type.
2467template <> const TypedefType *Type::getAs() const;
2468
2469/// This will check for a TemplateSpecializationType by removing any
2470/// existing sugar until it reaches a TemplateSpecializationType or a
2471/// non-sugared type.
2472template <> const TemplateSpecializationType *Type::getAs() const;
2473
2474/// This will check for an AttributedType by removing any existing sugar
2475/// until it reaches an AttributedType or a non-sugared type.
2476template <> const AttributedType *Type::getAs() const;
2477
2478// We can do canonical leaf types faster, because we don't have to
2479// worry about preserving child type decoration.
2480#define TYPE(Class, Base)
2481#define LEAF_TYPE(Class) \
2482template <> inline const Class##Type *Type::getAs() const { \
2483 return dyn_cast<Class##Type>(CanonicalType); \
2484} \
2485template <> inline const Class##Type *Type::castAs() const { \
2486 return cast<Class##Type>(CanonicalType); \
2487}
2488#include "clang/AST/TypeNodes.inc"
2489
2490/// This class is used for builtin types like 'int'. Builtin
2491/// types are always canonical and have a literal name field.
2492class BuiltinType : public Type {
2493public:
2494 enum Kind {
2495// OpenCL image types
2496#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2497#include "clang/Basic/OpenCLImageTypes.def"
2498// OpenCL extension types
2499#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2500#include "clang/Basic/OpenCLExtensionTypes.def"
2501// SVE Types
2502#define SVE_TYPE(Name, Id, SingletonId) Id,
2503#include "clang/Basic/AArch64SVEACLETypes.def"
2504// PPC MMA Types
2505#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2506#include "clang/Basic/PPCTypes.def"
2507// RVV Types
2508#define RVV_TYPE(Name, Id, SingletonId) Id,
2509#include "clang/Basic/RISCVVTypes.def"
2510// All other builtin types
2511#define BUILTIN_TYPE(Id, SingletonId) Id,
2512#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2513#include "clang/AST/BuiltinTypes.def"
2514 };
2515
2516private:
2517 friend class ASTContext; // ASTContext creates these.
2518
2519 BuiltinType(Kind K)
2520 : Type(Builtin, QualType(),
2521 K == Dependent ? TypeDependence::DependentInstantiation
2522 : TypeDependence::None) {
2523 BuiltinTypeBits.Kind = K;
2524 }
2525
2526public:
2527 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2528 StringRef getName(const PrintingPolicy &Policy) const;
2529
2530 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2531 // The StringRef is null-terminated.
2532 StringRef str = getName(Policy);
2533 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast<void> (0));
2534 return str.data();
2535 }
2536
2537 bool isSugared() const { return false; }
2538 QualType desugar() const { return QualType(this, 0); }
2539
2540 bool isInteger() const {
2541 return getKind() >= Bool && getKind() <= Int128;
2542 }
2543
2544 bool isSignedInteger() const {
2545 return getKind() >= Char_S && getKind() <= Int128;
2546 }
2547
2548 bool isUnsignedInteger() const {
2549 return getKind() >= Bool && getKind() <= UInt128;
2550 }
2551
2552 bool isFloatingPoint() const {
2553 return getKind() >= Half && getKind() <= Float128;
2554 }
2555
2556 /// Determines whether the given kind corresponds to a placeholder type.
2557 static bool isPlaceholderTypeKind(Kind K) {
2558 return K >= Overload;
2559 }
2560
2561 /// Determines whether this type is a placeholder type, i.e. a type
2562 /// which cannot appear in arbitrary positions in a fully-formed
2563 /// expression.
2564 bool isPlaceholderType() const {
2565 return isPlaceholderTypeKind(getKind());
2566 }
2567
2568 /// Determines whether this type is a placeholder type other than
2569 /// Overload. Most placeholder types require only syntactic
2570 /// information about their context in order to be resolved (e.g.
2571 /// whether it is a call expression), which means they can (and
2572 /// should) be resolved in an earlier "phase" of analysis.
2573 /// Overload expressions sometimes pick up further information
2574 /// from their context, like whether the context expects a
2575 /// specific function-pointer type, and so frequently need
2576 /// special treatment.
2577 bool isNonOverloadPlaceholderType() const {
2578 return getKind() > Overload;
2579 }
2580
2581 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2582};
2583
2584/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2585/// types (_Complex float etc) as well as the GCC integer complex extensions.
2586class ComplexType : public Type, public llvm::FoldingSetNode {
2587 friend class ASTContext; // ASTContext creates these.
2588
2589 QualType ElementType;
2590
2591 ComplexType(QualType Element, QualType CanonicalPtr)
2592 : Type(Complex, CanonicalPtr, Element->getDependence()),
2593 ElementType(Element) {}
2594
2595public:
2596 QualType getElementType() const { return ElementType; }
2597
2598 bool isSugared() const { return false; }
2599 QualType desugar() const { return QualType(this, 0); }
2600
2601 void Profile(llvm::FoldingSetNodeID &ID) {
2602 Profile(ID, getElementType());
2603 }
2604
2605 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2606 ID.AddPointer(Element.getAsOpaquePtr());
2607 }
2608
2609 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2610};
2611
2612/// Sugar for parentheses used when specifying types.
2613class ParenType : public Type, public llvm::FoldingSetNode {
2614 friend class ASTContext; // ASTContext creates these.
2615
2616 QualType Inner;
2617
2618 ParenType(QualType InnerType, QualType CanonType)
2619 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2620
2621public:
2622 QualType getInnerType() const { return Inner; }
2623
2624 bool isSugared() const { return true; }
2625 QualType desugar() const { return getInnerType(); }
2626
2627 void Profile(llvm::FoldingSetNodeID &ID) {
2628 Profile(ID, getInnerType());
2629 }
2630
2631 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2632 Inner.Profile(ID);
2633 }
2634
2635 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2636};
2637
2638/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2639class PointerType : public Type, public llvm::FoldingSetNode {
2640 friend class ASTContext; // ASTContext creates these.
2641
2642 QualType PointeeType;
2643
2644 PointerType(QualType Pointee, QualType CanonicalPtr)
2645 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2646 PointeeType(Pointee) {}
2647
2648public:
2649 QualType getPointeeType() const { return PointeeType; }
2650
2651 bool isSugared() const { return false; }
2652 QualType desugar() const { return QualType(this, 0); }
2653
2654 void Profile(llvm::FoldingSetNodeID &ID) {
2655 Profile(ID, getPointeeType());
2656 }
2657
2658 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2659 ID.AddPointer(Pointee.getAsOpaquePtr());
2660 }
2661
2662 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2663};
2664
2665/// Represents a type which was implicitly adjusted by the semantic
2666/// engine for arbitrary reasons. For example, array and function types can
2667/// decay, and function types can have their calling conventions adjusted.
2668class AdjustedType : public Type, public llvm::FoldingSetNode {
2669 QualType OriginalTy;
2670 QualType AdjustedTy;
2671
2672protected:
2673 friend class ASTContext; // ASTContext creates these.
2674
2675 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2676 QualType CanonicalPtr)
2677 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2678 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2679
2680public:
2681 QualType getOriginalType() const { return OriginalTy; }
2682 QualType getAdjustedType() const { return AdjustedTy; }
2683
2684 bool isSugared() const { return true; }
2685 QualType desugar() const { return AdjustedTy; }
2686
2687 void Profile(llvm::FoldingSetNodeID &ID) {
2688 Profile(ID, OriginalTy, AdjustedTy);
2689 }
2690
2691 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2692 ID.AddPointer(Orig.getAsOpaquePtr());
2693 ID.AddPointer(New.getAsOpaquePtr());
2694 }
2695
2696 static bool classof(const Type *T) {
2697 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2698 }
2699};
2700
2701/// Represents a pointer type decayed from an array or function type.
2702class DecayedType : public AdjustedType {
2703 friend class ASTContext; // ASTContext creates these.
2704
2705 inline
2706 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2707
2708public:
2709 QualType getDecayedType() const { return getAdjustedType(); }
2710
2711 inline QualType getPointeeType() const;
2712
2713 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2714};
2715
2716/// Pointer to a block type.
2717/// This type is to represent types syntactically represented as
2718/// "void (^)(int)", etc. Pointee is required to always be a function type.
2719class BlockPointerType : public Type, public llvm::FoldingSetNode {
2720 friend class ASTContext; // ASTContext creates these.
2721
2722 // Block is some kind of pointer type
2723 QualType PointeeType;
2724
2725 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2726 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2727 PointeeType(Pointee) {}
2728
2729public:
2730 // Get the pointee type. Pointee is required to always be a function type.
2731 QualType getPointeeType() const { return PointeeType; }
2732
2733 bool isSugared() const { return false; }
2734 QualType desugar() const { return QualType(this, 0); }
2735
2736 void Profile(llvm::FoldingSetNodeID &ID) {
2737 Profile(ID, getPointeeType());
2738 }
2739
2740 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2741 ID.AddPointer(Pointee.getAsOpaquePtr());
2742 }
2743
2744 static bool classof(const Type *T) {
2745 return T->getTypeClass() == BlockPointer;
2746 }
2747};
2748
2749/// Base for LValueReferenceType and RValueReferenceType
2750class ReferenceType : public Type, public llvm::FoldingSetNode {
2751 QualType PointeeType;
2752
2753protected:
2754 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2755 bool SpelledAsLValue)
2756 : Type(tc, CanonicalRef, Referencee->getDependence()),
2757 PointeeType(Referencee) {
2758 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2759 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2760 }
2761
2762public:
2763 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2764 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2765
2766 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2767
2768 QualType getPointeeType() const {
2769 // FIXME: this might strip inner qualifiers; okay?
2770 const ReferenceType *T = this;
2771 while (T->isInnerRef())
2772 T = T->PointeeType->castAs<ReferenceType>();
2773 return T->PointeeType;
2774 }
2775
2776 void Profile(llvm::FoldingSetNodeID &ID) {
2777 Profile(ID, PointeeType, isSpelledAsLValue());
2778 }
2779
2780 static void Profile(llvm::FoldingSetNodeID &ID,
2781 QualType Referencee,
2782 bool SpelledAsLValue) {
2783 ID.AddPointer(Referencee.getAsOpaquePtr());
2784 ID.AddBoolean(SpelledAsLValue);
2785 }
2786
2787 static bool classof(const Type *T) {
2788 return T->getTypeClass() == LValueReference ||
2789 T->getTypeClass() == RValueReference;
2790 }
2791};
2792
2793/// An lvalue reference type, per C++11 [dcl.ref].
2794class LValueReferenceType : public ReferenceType {
2795 friend class ASTContext; // ASTContext creates these
2796
2797 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2798 bool SpelledAsLValue)
2799 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2800 SpelledAsLValue) {}
2801
2802public:
2803 bool isSugared() const { return false; }
2804 QualType desugar() const { return QualType(this, 0); }
2805
2806 static bool classof(const Type *T) {
2807 return T->getTypeClass() == LValueReference;
2808 }
2809};
2810
2811/// An rvalue reference type, per C++11 [dcl.ref].
2812class RValueReferenceType : public ReferenceType {
2813 friend class ASTContext; // ASTContext creates these
2814
2815 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2816 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2817
2818public:
2819 bool isSugared() const { return false; }
2820 QualType desugar() const { return QualType(this, 0); }
2821
2822 static bool classof(const Type *T) {
2823 return T->getTypeClass() == RValueReference;
2824 }
2825};
2826
2827/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2828///
2829/// This includes both pointers to data members and pointer to member functions.
2830class MemberPointerType : public Type, public llvm::FoldingSetNode {
2831 friend class ASTContext; // ASTContext creates these.
2832
2833 QualType PointeeType;
2834
2835 /// The class of which the pointee is a member. Must ultimately be a
2836 /// RecordType, but could be a typedef or a template parameter too.
2837 const Type *Class;
2838
2839 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2840 : Type(MemberPointer, CanonicalPtr,
2841 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2842 Pointee->getDependence()),
2843 PointeeType(Pointee), Class(Cls) {}
2844
2845public:
2846 QualType getPointeeType() const { return PointeeType; }
2847
2848 /// Returns true if the member type (i.e. the pointee type) is a
2849 /// function type rather than a data-member type.
2850 bool isMemberFunctionPointer() const {
2851 return PointeeType->isFunctionProtoType();
2852 }
2853
2854 /// Returns true if the member type (i.e. the pointee type) is a
2855 /// data type rather than a function type.
2856 bool isMemberDataPointer() const {
2857 return !PointeeType->isFunctionProtoType();
2858 }
2859
2860 const Type *getClass() const { return Class; }
2861 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2862
2863 bool isSugared() const { return false; }
2864 QualType desugar() const { return QualType(this, 0); }
2865
2866 void Profile(llvm::FoldingSetNodeID &ID) {
2867 Profile(ID, getPointeeType(), getClass());
2868 }
2869
2870 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2871 const Type *Class) {
2872 ID.AddPointer(Pointee.getAsOpaquePtr());
2873 ID.AddPointer(Class);
2874 }
2875
2876 static bool classof(const Type *T) {
2877 return T->getTypeClass() == MemberPointer;
2878 }
2879};
2880
2881/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2882class ArrayType : public Type, public llvm::FoldingSetNode {
2883public:
2884 /// Capture whether this is a normal array (e.g. int X[4])
2885 /// an array with a static size (e.g. int X[static 4]), or an array
2886 /// with a star size (e.g. int X[*]).
2887 /// 'static' is only allowed on function parameters.
2888 enum ArraySizeModifier {
2889 Normal, Static, Star
2890 };
2891
2892private:
2893 /// The element type of the array.
2894 QualType ElementType;
2895
2896protected:
2897 friend class ASTContext; // ASTContext creates these.
2898
2899 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2900 unsigned tq, const Expr *sz = nullptr);
2901
2902public:
2903 QualType getElementType() const { return ElementType; }
2904
2905 ArraySizeModifier getSizeModifier() const {
2906 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2907 }
2908
2909 Qualifiers getIndexTypeQualifiers() const {
2910 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2911 }
2912
2913 unsigned getIndexTypeCVRQualifiers() const {
2914 return ArrayTypeBits.IndexTypeQuals;
2915 }
2916
2917 static bool classof(const Type *T) {
2918 return T->getTypeClass() == ConstantArray ||
2919 T->getTypeClass() == VariableArray ||
2920 T->getTypeClass() == IncompleteArray ||
2921 T->getTypeClass() == DependentSizedArray;
2922 }
2923};
2924
2925/// Represents the canonical version of C arrays with a specified constant size.
2926/// For example, the canonical type for 'int A[4 + 4*100]' is a
2927/// ConstantArrayType where the element type is 'int' and the size is 404.
2928class ConstantArrayType final
2929 : public ArrayType,
2930 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2931 friend class ASTContext; // ASTContext creates these.
2932 friend TrailingObjects;
2933
2934 llvm::APInt Size; // Allows us to unique the type.
2935
2936 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2937 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2938 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2939 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2940 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2941 assert(!can.isNull() && "canonical constant array should not have size")(static_cast<void> (0));
2942 *getTrailingObjects<const Expr*>() = sz;
2943 }
2944 }
2945
2946 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2947 return ConstantArrayTypeBits.HasStoredSizeExpr;
2948 }
2949
2950public:
2951 const llvm::APInt &getSize() const { return Size; }
2952 const Expr *getSizeExpr() const {
2953 return ConstantArrayTypeBits.HasStoredSizeExpr
2954 ? *getTrailingObjects<const Expr *>()
2955 : nullptr;
2956 }
2957 bool isSugared() const { return false; }
2958 QualType desugar() const { return QualType(this, 0); }
2959
2960 /// Determine the number of bits required to address a member of
2961 // an array with the given element type and number of elements.
2962 static unsigned getNumAddressingBits(const ASTContext &Context,
2963 QualType ElementType,
2964 const llvm::APInt &NumElements);
2965
2966 /// Determine the maximum number of active bits that an array's size
2967 /// can require, which limits the maximum size of the array.
2968 static unsigned getMaxSizeBits(const ASTContext &Context);
2969
2970 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2971 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2972 getSizeModifier(), getIndexTypeCVRQualifiers());
2973 }
2974
2975 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2976 QualType ET, const llvm::APInt &ArraySize,
2977 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2978 unsigned TypeQuals);
2979
2980 static bool classof(const Type *T) {
2981 return T->getTypeClass() == ConstantArray;
2982 }
2983};
2984
2985/// Represents a C array with an unspecified size. For example 'int A[]' has
2986/// an IncompleteArrayType where the element type is 'int' and the size is
2987/// unspecified.
2988class IncompleteArrayType : public ArrayType {
2989 friend class ASTContext; // ASTContext creates these.
2990
2991 IncompleteArrayType(QualType et, QualType can,
2992 ArraySizeModifier sm, unsigned tq)
2993 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2994
2995public:
2996 friend class StmtIteratorBase;
2997
2998 bool isSugared() const { return false; }
2999 QualType desugar() const { return QualType(this, 0); }
3000
3001 static bool classof(const Type *T) {
3002 return T->getTypeClass() == IncompleteArray;
3003 }
3004
3005 void Profile(llvm::FoldingSetNodeID &ID) {
3006 Profile(ID, getElementType(), getSizeModifier(),
3007 getIndexTypeCVRQualifiers());
3008 }
3009
3010 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3011 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3012 ID.AddPointer(ET.getAsOpaquePtr());
3013 ID.AddInteger(SizeMod);
3014 ID.AddInteger(TypeQuals);
3015 }
3016};
3017
3018/// Represents a C array with a specified size that is not an
3019/// integer-constant-expression. For example, 'int s[x+foo()]'.
3020/// Since the size expression is an arbitrary expression, we store it as such.
3021///
3022/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3023/// should not be: two lexically equivalent variable array types could mean
3024/// different things, for example, these variables do not have the same type
3025/// dynamically:
3026///
3027/// void foo(int x) {
3028/// int Y[x];
3029/// ++x;
3030/// int Z[x];
3031/// }
3032class VariableArrayType : public ArrayType {
3033 friend class ASTContext; // ASTContext creates these.
3034
3035 /// An assignment-expression. VLA's are only permitted within
3036 /// a function block.
3037 Stmt *SizeExpr;
3038
3039 /// The range spanned by the left and right array brackets.
3040 SourceRange Brackets;
3041
3042 VariableArrayType(QualType et, QualType can, Expr *e,
3043 ArraySizeModifier sm, unsigned tq,
3044 SourceRange brackets)
3045 : ArrayType(VariableArray, et, can, sm, tq, e),
3046 SizeExpr((Stmt*) e), Brackets(brackets) {}
3047
3048public:
3049 friend class StmtIteratorBase;
3050
3051 Expr *getSizeExpr() const {
3052 // We use C-style casts instead of cast<> here because we do not wish
3053 // to have a dependency of Type.h on Stmt.h/Expr.h.
3054 return (Expr*) SizeExpr;
3055 }
3056
3057 SourceRange getBracketsRange() const { return Brackets; }
3058 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3059 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3060
3061 bool isSugared() const { return false; }
3062 QualType desugar() const { return QualType(this, 0); }
3063
3064 static bool classof(const Type *T) {
3065 return T->getTypeClass() == VariableArray;
3066 }
3067
3068 void Profile(llvm::FoldingSetNodeID &ID) {
3069 llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable();
3070 }
3071};
3072
3073/// Represents an array type in C++ whose size is a value-dependent expression.
3074///
3075/// For example:
3076/// \code
3077/// template<typename T, int Size>
3078/// class array {
3079/// T data[Size];
3080/// };
3081/// \endcode
3082///
3083/// For these types, we won't actually know what the array bound is
3084/// until template instantiation occurs, at which point this will
3085/// become either a ConstantArrayType or a VariableArrayType.
3086class DependentSizedArrayType : public ArrayType {
3087 friend class ASTContext; // ASTContext creates these.
3088
3089 const ASTContext &Context;
3090
3091 /// An assignment expression that will instantiate to the
3092 /// size of the array.
3093 ///
3094 /// The expression itself might be null, in which case the array
3095 /// type will have its size deduced from an initializer.
3096 Stmt *SizeExpr;
3097
3098 /// The range spanned by the left and right array brackets.
3099 SourceRange Brackets;
3100
3101 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3102 Expr *e, ArraySizeModifier sm, unsigned tq,
3103 SourceRange brackets);
3104
3105public:
3106 friend class StmtIteratorBase;
3107
3108 Expr *getSizeExpr() const {
3109 // We use C-style casts instead of cast<> here because we do not wish
3110 // to have a dependency of Type.h on Stmt.h/Expr.h.
3111 return (Expr*) SizeExpr;
3112 }
3113
3114 SourceRange getBracketsRange() const { return Brackets; }
3115 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3116 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3117
3118 bool isSugared() const { return false; }
3119 QualType desugar() const { return QualType(this, 0); }
3120
3121 static bool classof(const Type *T) {
3122 return T->getTypeClass() == DependentSizedArray;
3123 }
3124
3125 void Profile(llvm::FoldingSetNodeID &ID) {
3126 Profile(ID, Context, getElementType(),
3127 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3128 }
3129
3130 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3131 QualType ET, ArraySizeModifier SizeMod,
3132 unsigned TypeQuals, Expr *E);
3133};
3134
3135/// Represents an extended address space qualifier where the input address space
3136/// value is dependent. Non-dependent address spaces are not represented with a
3137/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3138///
3139/// For example:
3140/// \code
3141/// template<typename T, int AddrSpace>
3142/// class AddressSpace {
3143/// typedef T __attribute__((address_space(AddrSpace))) type;
3144/// }
3145/// \endcode
3146class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3147 friend class ASTContext;
3148
3149 const ASTContext &Context;
3150 Expr *AddrSpaceExpr;
3151 QualType PointeeType;
3152 SourceLocation loc;
3153
3154 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3155 QualType can, Expr *AddrSpaceExpr,
3156 SourceLocation loc);
3157
3158public:
3159 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3160 QualType getPointeeType() const { return PointeeType; }
3161 SourceLocation getAttributeLoc() const { return loc; }
3162
3163 bool isSugared() const { return false; }
3164 QualType desugar() const { return QualType(this, 0); }
3165
3166 static bool classof(const Type *T) {
3167 return T->getTypeClass() == DependentAddressSpace;
3168 }
3169
3170 void Profile(llvm::FoldingSetNodeID &ID) {
3171 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3172 }
3173
3174 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3175 QualType PointeeType, Expr *AddrSpaceExpr);
3176};
3177
3178/// Represents an extended vector type where either the type or size is
3179/// dependent.
3180///
3181/// For example:
3182/// \code
3183/// template<typename T, int Size>
3184/// class vector {
3185/// typedef T __attribute__((ext_vector_type(Size))) type;
3186/// }
3187/// \endcode
3188class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3189 friend class ASTContext;
3190
3191 const ASTContext &Context;
3192 Expr *SizeExpr;
3193
3194 /// The element type of the array.
3195 QualType ElementType;
3196
3197 SourceLocation loc;
3198
3199 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3200 QualType can, Expr *SizeExpr, SourceLocation loc);
3201
3202public:
3203 Expr *getSizeExpr() const { return SizeExpr; }
3204 QualType getElementType() const { return ElementType; }
3205 SourceLocation getAttributeLoc() const { return loc; }
3206
3207 bool isSugared() const { return false; }
3208 QualType desugar() const { return QualType(this, 0); }
3209
3210 static bool classof(const Type *T) {
3211 return T->getTypeClass() == DependentSizedExtVector;
3212 }
3213
3214 void Profile(llvm::FoldingSetNodeID &ID) {
3215 Profile(ID, Context, getElementType(), getSizeExpr());
3216 }
3217
3218 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3219 QualType ElementType, Expr *SizeExpr);
3220};
3221
3222
3223/// Represents a GCC generic vector type. This type is created using
3224/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3225/// bytes; or from an Altivec __vector or vector declaration.
3226/// Since the constructor takes the number of vector elements, the
3227/// client is responsible for converting the size into the number of elements.
3228class VectorType : public Type, public llvm::FoldingSetNode {
3229public:
3230 enum VectorKind {
3231 /// not a target-specific vector type
3232 GenericVector,
3233
3234 /// is AltiVec vector
3235 AltiVecVector,
3236
3237 /// is AltiVec 'vector Pixel'
3238 AltiVecPixel,
3239
3240 /// is AltiVec 'vector bool ...'
3241 AltiVecBool,
3242
3243 /// is ARM Neon vector
3244 NeonVector,
3245
3246 /// is ARM Neon polynomial vector
3247 NeonPolyVector,
3248
3249 /// is AArch64 SVE fixed-length data vector
3250 SveFixedLengthDataVector,
3251
3252 /// is AArch64 SVE fixed-length predicate vector
3253 SveFixedLengthPredicateVector
3254 };
3255
3256protected:
3257 friend class ASTContext; // ASTContext creates these.
3258
3259 /// The element type of the vector.
3260 QualType ElementType;
3261
3262 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3263 VectorKind vecKind);
3264
3265 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3266 QualType canonType, VectorKind vecKind);
3267
3268public:
3269 QualType getElementType() const { return ElementType; }
3270 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3271
3272 bool isSugared() const { return false; }
3273 QualType desugar() const { return QualType(this, 0); }
3274
3275 VectorKind getVectorKind() const {
3276 return VectorKind(VectorTypeBits.VecKind);
3277 }
3278
3279 void Profile(llvm::FoldingSetNodeID &ID) {
3280 Profile(ID, getElementType(), getNumElements(),
3281 getTypeClass(), getVectorKind());
3282 }
3283
3284 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3285 unsigned NumElements, TypeClass TypeClass,
3286 VectorKind VecKind) {
3287 ID.AddPointer(ElementType.getAsOpaquePtr());
3288 ID.AddInteger(NumElements);
3289 ID.AddInteger(TypeClass);
3290 ID.AddInteger(VecKind);
3291 }
3292
3293 static bool classof(const Type *T) {
3294 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3295 }
3296};
3297
3298/// Represents a vector type where either the type or size is dependent.
3299////
3300/// For example:
3301/// \code
3302/// template<typename T, int Size>
3303/// class vector {
3304/// typedef T __attribute__((vector_size(Size))) type;
3305/// }
3306/// \endcode
3307class DependentVectorType : public Type, public llvm::FoldingSetNode {
3308 friend class ASTContext;
3309
3310 const ASTContext &Context;
3311 QualType ElementType;
3312 Expr *SizeExpr;
3313 SourceLocation Loc;
3314
3315 DependentVectorType(const ASTContext &Context, QualType ElementType,
3316 QualType CanonType, Expr *SizeExpr,
3317 SourceLocation Loc, VectorType::VectorKind vecKind);
3318
3319public:
3320 Expr *getSizeExpr() const { return SizeExpr; }
3321 QualType getElementType() const { return ElementType; }
3322 SourceLocation getAttributeLoc() const { return Loc; }
3323 VectorType::VectorKind getVectorKind() const {
3324 return VectorType::VectorKind(VectorTypeBits.VecKind);
3325 }
3326
3327 bool isSugared() const { return false; }
3328 QualType desugar() const { return QualType(this, 0); }
3329
3330 static bool classof(const Type *T) {
3331 return T->getTypeClass() == DependentVector;
3332 }
3333
3334 void Profile(llvm::FoldingSetNodeID &ID) {
3335 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3336 }
3337
3338 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3339 QualType ElementType, const Expr *SizeExpr,
3340 VectorType::VectorKind VecKind);
3341};
3342
3343/// ExtVectorType - Extended vector type. This type is created using
3344/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3345/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3346/// class enables syntactic extensions, like Vector Components for accessing
3347/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3348/// Shading Language).
3349class ExtVectorType : public VectorType {
3350 friend class ASTContext; // ASTContext creates these.
3351
3352 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3353 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3354
3355public:
3356 static int getPointAccessorIdx(char c) {
3357 switch (c) {
3358 default: return -1;
3359 case 'x': case 'r': return 0;
3360 case 'y': case 'g': return 1;
3361 case 'z': case 'b': return 2;
3362 case 'w': case 'a': return 3;
3363 }
3364 }
3365
3366 static int getNumericAccessorIdx(char c) {
3367 switch (c) {
3368 default: return -1;
3369 case '0': return 0;
3370 case '1': return 1;
3371 case '2': return 2;
3372 case '3': return 3;
3373 case '4': return 4;
3374 case '5': return 5;
3375 case '6': return 6;
3376 case '7': return 7;
3377 case '8': return 8;
3378 case '9': return 9;
3379 case 'A':
3380 case 'a': return 10;
3381 case 'B':
3382 case 'b': return 11;
3383 case 'C':
3384 case 'c': return 12;
3385 case 'D':
3386 case 'd': return 13;
3387 case 'E':
3388 case 'e': return 14;
3389 case 'F':
3390 case 'f': return 15;
3391 }
3392 }
3393
3394 static int getAccessorIdx(char c, bool isNumericAccessor) {
3395 if (isNumericAccessor)
3396 return getNumericAccessorIdx(c);
3397 else
3398 return getPointAccessorIdx(c);
3399 }
3400
3401 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3402 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3403 return unsigned(idx-1) < getNumElements();
3404 return false;
3405 }
3406
3407 bool isSugared() const { return false; }
3408 QualType desugar() const { return QualType(this, 0); }
3409
3410 static bool classof(const Type *T) {
3411 return T->getTypeClass() == ExtVector;
3412 }
3413};
3414
3415/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3416/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3417/// number of rows and "columns" specifies the number of columns.
3418class MatrixType : public Type, public llvm::FoldingSetNode {
3419protected:
3420 friend class ASTContext;
3421
3422 /// The element type of the matrix.
3423 QualType ElementType;
3424
3425 MatrixType(QualType ElementTy, QualType CanonElementTy);
3426
3427 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3428 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3429
3430public:
3431 /// Returns type of the elements being stored in the matrix
3432 QualType getElementType() const { return ElementType; }
3433
3434 /// Valid elements types are the following:
3435 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3436 /// and _Bool
3437 /// * the standard floating types float or double
3438 /// * a half-precision floating point type, if one is supported on the target
3439 static bool isValidElementType(QualType T) {
3440 return T->isDependentType() ||
3441 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3442 }
3443
3444 bool isSugared() const { return false; }
3445 QualType desugar() const { return QualType(this, 0); }
3446
3447 static bool classof(const Type *T) {
3448 return T->getTypeClass() == ConstantMatrix ||
3449 T->getTypeClass() == DependentSizedMatrix;
3450 }
3451};
3452
3453/// Represents a concrete matrix type with constant number of rows and columns
3454class ConstantMatrixType final : public MatrixType {
3455protected:
3456 friend class ASTContext;
3457
3458 /// Number of rows and columns.
3459 unsigned NumRows;
3460 unsigned NumColumns;
3461
3462 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3463
3464 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3465 unsigned NColumns, QualType CanonElementType);
3466
3467 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3468 unsigned NColumns, QualType CanonElementType);
3469
3470public:
3471 /// Returns the number of rows in the matrix.
3472 unsigned getNumRows() const { return NumRows; }
3473
3474 /// Returns the number of columns in the matrix.
3475 unsigned getNumColumns() const { return NumColumns; }
3476
3477 /// Returns the number of elements required to embed the matrix into a vector.
3478 unsigned getNumElementsFlattened() const {
3479 return getNumRows() * getNumColumns();
3480 }
3481
3482 /// Returns true if \p NumElements is a valid matrix dimension.
3483 static constexpr bool isDimensionValid(size_t NumElements) {
3484 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3485 }
3486
3487 /// Returns the maximum number of elements per dimension.
3488 static constexpr unsigned getMaxElementsPerDimension() {
3489 return MaxElementsPerDimension;
3490 }
3491
3492 void Profile(llvm::FoldingSetNodeID &ID) {
3493 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3494 getTypeClass());
3495 }
3496
3497 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3498 unsigned NumRows, unsigned NumColumns,
3499 TypeClass TypeClass) {
3500 ID.AddPointer(ElementType.getAsOpaquePtr());
3501 ID.AddInteger(NumRows);
3502 ID.AddInteger(NumColumns);
3503 ID.AddInteger(TypeClass);
3504 }
3505
3506 static bool classof(const Type *T) {
3507 return T->getTypeClass() == ConstantMatrix;
3508 }
3509};
3510
3511/// Represents a matrix type where the type and the number of rows and columns
3512/// is dependent on a template.
3513class DependentSizedMatrixType final : public MatrixType {
3514 friend class ASTContext;
3515
3516 const ASTContext &Context;
3517 Expr *RowExpr;
3518 Expr *ColumnExpr;
3519
3520 SourceLocation loc;
3521
3522 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3523 QualType CanonicalType, Expr *RowExpr,
3524 Expr *ColumnExpr, SourceLocation loc);
3525
3526public:
3527 Expr *getRowExpr() const { return RowExpr; }
3528 Expr *getColumnExpr() const { return ColumnExpr; }
3529 SourceLocation getAttributeLoc() const { return loc; }
3530
3531 static bool classof(const Type *T) {
3532 return T->getTypeClass() == DependentSizedMatrix;
3533 }
3534
3535 void Profile(llvm::FoldingSetNodeID &ID) {
3536 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3537 }
3538
3539 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3540 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3541};
3542
3543/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3544/// class of FunctionNoProtoType and FunctionProtoType.
3545class FunctionType : public Type {
3546 // The type returned by the function.
3547 QualType ResultType;
3548
3549public:
3550 /// Interesting information about a specific parameter that can't simply
3551 /// be reflected in parameter's type. This is only used by FunctionProtoType
3552 /// but is in FunctionType to make this class available during the
3553 /// specification of the bases of FunctionProtoType.
3554 ///
3555 /// It makes sense to model language features this way when there's some
3556 /// sort of parameter-specific override (such as an attribute) that
3557 /// affects how the function is called. For example, the ARC ns_consumed
3558 /// attribute changes whether a parameter is passed at +0 (the default)
3559 /// or +1 (ns_consumed). This must be reflected in the function type,
3560 /// but isn't really a change to the parameter type.
3561 ///
3562 /// One serious disadvantage of modelling language features this way is
3563 /// that they generally do not work with language features that attempt
3564 /// to destructure types. For example, template argument deduction will
3565 /// not be able to match a parameter declared as
3566 /// T (*)(U)
3567 /// against an argument of type
3568 /// void (*)(__attribute__((ns_consumed)) id)
3569 /// because the substitution of T=void, U=id into the former will
3570 /// not produce the latter.
3571 class ExtParameterInfo {
3572 enum {
3573 ABIMask = 0x0F,
3574 IsConsumed = 0x10,
3575 HasPassObjSize = 0x20,
3576 IsNoEscape = 0x40,
3577 };
3578 unsigned char Data = 0;
3579
3580 public:
3581 ExtParameterInfo() = default;
3582
3583 /// Return the ABI treatment of this parameter.
3584 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3585 ExtParameterInfo withABI(ParameterABI kind) const {
3586 ExtParameterInfo copy = *this;
3587 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3588 return copy;
3589 }
3590
3591 /// Is this parameter considered "consumed" by Objective-C ARC?
3592 /// Consumed parameters must have retainable object type.
3593 bool isConsumed() const { return (Data & IsConsumed); }
3594 ExtParameterInfo withIsConsumed(bool consumed) const {
3595 ExtParameterInfo copy = *this;
3596 if (consumed)
3597 copy.Data |= IsConsumed;
3598 else
3599 copy.Data &= ~IsConsumed;
3600 return copy;
3601 }
3602
3603 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3604 ExtParameterInfo withHasPassObjectSize() const {
3605 ExtParameterInfo Copy = *this;
3606 Copy.Data |= HasPassObjSize;
3607 return Copy;
3608 }
3609
3610 bool isNoEscape() const { return Data & IsNoEscape; }
3611 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3612 ExtParameterInfo Copy = *this;
3613 if (NoEscape)
3614 Copy.Data |= IsNoEscape;
3615 else
3616 Copy.Data &= ~IsNoEscape;
3617 return Copy;
3618 }
3619
3620 unsigned char getOpaqueValue() const { return Data; }
3621 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3622 ExtParameterInfo result;
3623 result.Data = data;
3624 return result;
3625 }
3626
3627 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3628 return lhs.Data == rhs.Data;
3629 }
3630
3631 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3632 return lhs.Data != rhs.Data;
3633 }
3634 };
3635
3636 /// A class which abstracts out some details necessary for
3637 /// making a call.
3638 ///
3639 /// It is not actually used directly for storing this information in
3640 /// a FunctionType, although FunctionType does currently use the
3641 /// same bit-pattern.
3642 ///
3643 // If you add a field (say Foo), other than the obvious places (both,
3644 // constructors, compile failures), what you need to update is
3645 // * Operator==
3646 // * getFoo
3647 // * withFoo
3648 // * functionType. Add Foo, getFoo.
3649 // * ASTContext::getFooType
3650 // * ASTContext::mergeFunctionTypes
3651 // * FunctionNoProtoType::Profile
3652 // * FunctionProtoType::Profile
3653 // * TypePrinter::PrintFunctionProto
3654 // * AST read and write
3655 // * Codegen
3656 class ExtInfo {
3657 friend class FunctionType;
3658
3659 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3660 // adjust the Bits field below, and if you add bits, you'll need to adjust
3661 // Type::FunctionTypeBitfields::ExtInfo as well.
3662
3663 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3664 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3665 //
3666 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3667 enum { CallConvMask = 0x1F };
3668 enum { NoReturnMask = 0x20 };
3669 enum { ProducesResultMask = 0x40 };
3670 enum { NoCallerSavedRegsMask = 0x80 };
3671 enum {
3672 RegParmMask = 0x700,
3673 RegParmOffset = 8
3674 };
3675 enum { NoCfCheckMask = 0x800 };
3676 enum { CmseNSCallMask = 0x1000 };
3677 uint16_t Bits = CC_C;
3678
3679 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3680
3681 public:
3682 // Constructor with no defaults. Use this when you know that you
3683 // have all the elements (when reading an AST file for example).
3684 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3685 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3686 bool cmseNSCall) {
3687 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast<void> (0));
3688 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3689 (producesResult ? ProducesResultMask : 0) |
3690 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3691 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3692 (NoCfCheck ? NoCfCheckMask : 0) |
3693 (cmseNSCall ? CmseNSCallMask : 0);
3694 }
3695
3696 // Constructor with all defaults. Use when for example creating a
3697 // function known to use defaults.
3698 ExtInfo() = default;
3699
3700 // Constructor with just the calling convention, which is an important part
3701 // of the canonical type.
3702 ExtInfo(CallingConv CC) : Bits(CC) {}
3703
3704 bool getNoReturn() const { return Bits & NoReturnMask; }
3705 bool getProducesResult() const { return Bits & ProducesResultMask; }
3706 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3707 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3708 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3709 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3710
3711 unsigned getRegParm() const {
3712 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3713 if (RegParm > 0)
3714 --RegParm;
3715 return RegParm;
3716 }
3717
3718 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3719
3720 bool operator==(ExtInfo Other) const {
3721 return Bits == Other.Bits;
3722 }
3723 bool operator!=(ExtInfo Other) const {
3724 return Bits != Other.Bits;
3725 }
3726
3727 // Note that we don't have setters. That is by design, use
3728 // the following with methods instead of mutating these objects.
3729
3730 ExtInfo withNoReturn(bool noReturn) const {
3731 if (noReturn)
3732 return ExtInfo(Bits | NoReturnMask);
3733 else
3734 return ExtInfo(Bits & ~NoReturnMask);
3735 }
3736
3737 ExtInfo withProducesResult(bool producesResult) const {
3738 if (producesResult)
3739 return ExtInfo(Bits | ProducesResultMask);
3740 else
3741 return ExtInfo(Bits & ~ProducesResultMask);
3742 }
3743
3744 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3745 if (cmseNSCall)
3746 return ExtInfo(Bits | CmseNSCallMask);
3747 else
3748 return ExtInfo(Bits & ~CmseNSCallMask);
3749 }
3750
3751 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3752 if (noCallerSavedRegs)
3753 return ExtInfo(Bits | NoCallerSavedRegsMask);
3754 else
3755 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3756 }
3757
3758 ExtInfo withNoCfCheck(bool noCfCheck) const {
3759 if (noCfCheck)
3760 return ExtInfo(Bits | NoCfCheckMask);
3761 else
3762 return ExtInfo(Bits & ~NoCfCheckMask);
3763 }
3764
3765 ExtInfo withRegParm(unsigned RegParm) const {
3766 assert(RegParm < 7 && "Invalid regparm value")(static_cast<void> (0));
3767 return ExtInfo((Bits & ~RegParmMask) |
3768 ((RegParm + 1) << RegParmOffset));
3769 }
3770
3771 ExtInfo withCallingConv(CallingConv cc) const {
3772 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3773 }
3774
3775 void Profile(llvm::FoldingSetNodeID &ID) const {
3776 ID.AddInteger(Bits);
3777 }
3778 };
3779
3780 /// A simple holder for a QualType representing a type in an
3781 /// exception specification. Unfortunately needed by FunctionProtoType
3782 /// because TrailingObjects cannot handle repeated types.
3783 struct ExceptionType { QualType Type; };
3784
3785 /// A simple holder for various uncommon bits which do not fit in
3786 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3787 /// alignment of subsequent objects in TrailingObjects. You must update
3788 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3789 struct alignas(void *) FunctionTypeExtraBitfields {
3790 /// The number of types in the exception specification.
3791 /// A whole unsigned is not needed here and according to
3792 /// [implimits] 8 bits would be enough here.
3793 unsigned NumExceptionType;
3794 };
3795
3796protected:
3797 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3798 TypeDependence Dependence, ExtInfo Info)
3799 : Type(tc, Canonical, Dependence), ResultType(res) {
3800 FunctionTypeBits.ExtInfo = Info.Bits;
3801 }
3802
3803 Qualifiers getFastTypeQuals() const {
3804 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3805 }
3806
3807public:
3808 QualType getReturnType() const { return ResultType; }
3809
3810 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3811 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3812
3813 /// Determine whether this function type includes the GNU noreturn
3814 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3815 /// type.
3816 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3817
3818 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3819 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3820 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3821
3822 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3823 "Const, volatile and restrict are assumed to be a subset of "
3824 "the fast qualifiers.");
3825
3826 bool isConst() const { return getFastTypeQuals().hasConst(); }
3827 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3828 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3829
3830 /// Determine the type of an expression that calls a function of
3831 /// this type.
3832 QualType getCallResultType(const ASTContext &Context) const {
3833 return getReturnType().getNonLValueExprType(Context);
3834 }
3835
3836 static StringRef getNameForCallConv(CallingConv CC);
3837
3838 static bool classof(const Type *T) {
3839 return T->getTypeClass() == FunctionNoProto ||
3840 T->getTypeClass() == FunctionProto;
3841 }
3842};
3843
3844/// Represents a K&R-style 'int foo()' function, which has
3845/// no information available about its arguments.
3846class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3847 friend class ASTContext; // ASTContext creates these.
3848
3849 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3850 : FunctionType(FunctionNoProto, Result, Canonical,
3851 Result->getDependence() &
3852 ~(TypeDependence::DependentInstantiation |
3853 TypeDependence::UnexpandedPack),
3854 Info) {}
3855
3856public:
3857 // No additional state past what FunctionType provides.
3858
3859 bool isSugared() const { return false; }
3860 QualType desugar() const { return QualType(this, 0); }
3861
3862 void Profile(llvm::FoldingSetNodeID &ID) {
3863 Profile(ID, getReturnType(), getExtInfo());
3864 }
3865
3866 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3867 ExtInfo Info) {
3868 Info.Profile(ID);
3869 ID.AddPointer(ResultType.getAsOpaquePtr());
3870 }
3871
3872 static bool classof(const Type *T) {
3873 return T->getTypeClass() == FunctionNoProto;
3874 }
3875};
3876
3877/// Represents a prototype with parameter type info, e.g.
3878/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3879/// parameters, not as having a single void parameter. Such a type can have
3880/// an exception specification, but this specification is not part of the
3881/// canonical type. FunctionProtoType has several trailing objects, some of
3882/// which optional. For more information about the trailing objects see
3883/// the first comment inside FunctionProtoType.
3884class FunctionProtoType final
3885 : public FunctionType,
3886 public llvm::FoldingSetNode,
3887 private llvm::TrailingObjects<
3888 FunctionProtoType, QualType, SourceLocation,
3889 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3890 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3891 friend class ASTContext; // ASTContext creates these.
3892 friend TrailingObjects;
3893
3894 // FunctionProtoType is followed by several trailing objects, some of
3895 // which optional. They are in order:
3896 //
3897 // * An array of getNumParams() QualType holding the parameter types.
3898 // Always present. Note that for the vast majority of FunctionProtoType,
3899 // these will be the only trailing objects.
3900 //
3901 // * Optionally if the function is variadic, the SourceLocation of the
3902 // ellipsis.
3903 //
3904 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3905 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3906 // a single FunctionTypeExtraBitfields. Present if and only if
3907 // hasExtraBitfields() is true.
3908 //
3909 // * Optionally exactly one of:
3910 // * an array of getNumExceptions() ExceptionType,
3911 // * a single Expr *,
3912 // * a pair of FunctionDecl *,
3913 // * a single FunctionDecl *
3914 // used to store information about the various types of exception
3915 // specification. See getExceptionSpecSize for the details.
3916 //
3917 // * Optionally an array of getNumParams() ExtParameterInfo holding
3918 // an ExtParameterInfo for each of the parameters. Present if and
3919 // only if hasExtParameterInfos() is true.
3920 //
3921 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3922 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3923 // if hasExtQualifiers() is true.
3924 //
3925 // The optional FunctionTypeExtraBitfields has to be before the data
3926 // related to the exception specification since it contains the number
3927 // of exception types.
3928 //
3929 // We put the ExtParameterInfos last. If all were equal, it would make
3930 // more sense to put these before the exception specification, because
3931 // it's much easier to skip past them compared to the elaborate switch
3932 // required to skip the exception specification. However, all is not
3933 // equal; ExtParameterInfos are used to model very uncommon features,
3934 // and it's better not to burden the more common paths.
3935
3936public:
3937 /// Holds information about the various types of exception specification.
3938 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3939 /// used to group together the various bits of information about the
3940 /// exception specification.
3941 struct ExceptionSpecInfo {
3942 /// The kind of exception specification this is.
3943 ExceptionSpecificationType Type = EST_None;
3944
3945 /// Explicitly-specified list of exception types.
3946 ArrayRef<QualType> Exceptions;
3947
3948 /// Noexcept expression, if this is a computed noexcept specification.
3949 Expr *NoexceptExpr = nullptr;
3950
3951 /// The function whose exception specification this is, for
3952 /// EST_Unevaluated and EST_Uninstantiated.
3953 FunctionDecl *SourceDecl = nullptr;
3954
3955 /// The function template whose exception specification this is instantiated
3956 /// from, for EST_Uninstantiated.
3957 FunctionDecl *SourceTemplate = nullptr;
3958
3959 ExceptionSpecInfo() = default;
3960
3961 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3962 };
3963
3964 /// Extra information about a function prototype. ExtProtoInfo is not
3965 /// stored as such in FunctionProtoType but is used to group together
3966 /// the various bits of extra information about a function prototype.
3967 struct ExtProtoInfo {
3968 FunctionType::ExtInfo ExtInfo;
3969 bool Variadic : 1;
3970 bool HasTrailingReturn : 1;
3971 Qualifiers TypeQuals;
3972 RefQualifierKind RefQualifier = RQ_None;
3973 ExceptionSpecInfo ExceptionSpec;
3974 const ExtParameterInfo *ExtParameterInfos = nullptr;
3975 SourceLocation EllipsisLoc;
3976
3977 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3978
3979 ExtProtoInfo(CallingConv CC)
3980 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3981
3982 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3983 ExtProtoInfo Result(*this);
3984 Result.ExceptionSpec = ESI;
3985 return Result;
3986 }
3987 };
3988
3989private:
3990 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3991 return getNumParams();
3992 }
3993
3994 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3995 return isVariadic();
3996 }
3997
3998 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3999 return hasExtraBitfields();
4000 }
4001
4002 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4003 return getExceptionSpecSize().NumExceptionType;
4004 }
4005
4006 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4007 return getExceptionSpecSize().NumExprPtr;
4008 }
4009
4010 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4011 return getExceptionSpecSize().NumFunctionDeclPtr;
4012 }
4013
4014 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4015 return hasExtParameterInfos() ? getNumParams() : 0;
4016 }
4017
4018 /// Determine whether there are any argument types that
4019 /// contain an unexpanded parameter pack.
4020 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4021 unsigned numArgs) {
4022 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4023 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4024 return true;
4025
4026 return false;
4027 }
4028
4029 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4030 QualType canonical, const ExtProtoInfo &epi);
4031
4032 /// This struct is returned by getExceptionSpecSize and is used to
4033 /// translate an ExceptionSpecificationType to the number and kind
4034 /// of trailing objects related to the exception specification.
4035 struct ExceptionSpecSizeHolder {
4036 unsigned NumExceptionType;
4037 unsigned NumExprPtr;
4038 unsigned NumFunctionDeclPtr;
4039 };
4040
4041 /// Return the number and kind of trailing objects
4042 /// related to the exception specification.
4043 static ExceptionSpecSizeHolder
4044 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4045 switch (EST) {
4046 case EST_None:
4047 case EST_DynamicNone:
4048 case EST_MSAny:
4049 case EST_BasicNoexcept:
4050 case EST_Unparsed:
4051 case EST_NoThrow:
4052 return {0, 0, 0};
4053
4054 case EST_Dynamic:
4055 return {NumExceptions, 0, 0};
4056
4057 case EST_DependentNoexcept:
4058 case EST_NoexceptFalse:
4059 case EST_NoexceptTrue:
4060 return {0, 1, 0};
4061
4062 case EST_Uninstantiated:
4063 return {0, 0, 2};
4064
4065 case EST_Unevaluated:
4066 return {0, 0, 1};
4067 }
4068 llvm_unreachable("bad exception specification kind")__builtin_unreachable();
4069 }
4070
4071 /// Return the number and kind of trailing objects
4072 /// related to the exception specification.
4073 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4074 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4075 }
4076
4077 /// Whether the trailing FunctionTypeExtraBitfields is present.
4078 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4079 // If the exception spec type is EST_Dynamic then we have > 0 exception
4080 // types and the exact number is stored in FunctionTypeExtraBitfields.
4081 return EST == EST_Dynamic;
4082 }
4083
4084 /// Whether the trailing FunctionTypeExtraBitfields is present.
4085 bool hasExtraBitfields() const {
4086 return hasExtraBitfields(getExceptionSpecType());
4087 }
4088
4089 bool hasExtQualifiers() const {
4090 return FunctionTypeBits.HasExtQuals;
4091 }
4092
4093public:
4094 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4095
4096 QualType getParamType(unsigned i) const {
4097 assert(i < getNumParams() && "invalid parameter index")(static_cast<void> (0));
4098 return param_type_begin()[i];
4099 }
4100
4101 ArrayRef<QualType> getParamTypes() const {
4102 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4103 }
4104
4105 ExtProtoInfo getExtProtoInfo() const {
4106 ExtProtoInfo EPI;
4107 EPI.ExtInfo = getExtInfo();
4108 EPI.Variadic = isVariadic();
4109 EPI.EllipsisLoc = getEllipsisLoc();
4110 EPI.HasTrailingReturn = hasTrailingReturn();
4111 EPI.ExceptionSpec = getExceptionSpecInfo();
4112 EPI.TypeQuals = getMethodQuals();
4113 EPI.RefQualifier = getRefQualifier();
4114 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4115 return EPI;
4116 }
4117
4118 /// Get the kind of exception specification on this function.
4119 ExceptionSpecificationType getExceptionSpecType() const {
4120 return static_cast<ExceptionSpecificationType>(
4121 FunctionTypeBits.ExceptionSpecType);
4122 }
4123
4124 /// Return whether this function has any kind of exception spec.
4125 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4126
4127 /// Return whether this function has a dynamic (throw) exception spec.
4128 bool hasDynamicExceptionSpec() const {
4129 return isDynamicExceptionSpec(getExceptionSpecType());
4130 }
4131
4132 /// Return whether this function has a noexcept exception spec.
4133 bool hasNoexceptExceptionSpec() const {
4134 return isNoexceptExceptionSpec(getExceptionSpecType());
4135 }
4136
4137 /// Return whether this function has a dependent exception spec.
4138 bool hasDependentExceptionSpec() const;
4139
4140 /// Return whether this function has an instantiation-dependent exception
4141 /// spec.
4142 bool hasInstantiationDependentExceptionSpec() const;
4143
4144 /// Return all the available information about this type's exception spec.
4145 ExceptionSpecInfo getExceptionSpecInfo() const {
4146 ExceptionSpecInfo Result;
4147 Result.Type = getExceptionSpecType();
4148 if (Result.Type == EST_Dynamic) {
4149 Result.Exceptions = exceptions();
4150 } else if (isComputedNoexcept(Result.Type)) {
4151 Result.NoexceptExpr = getNoexceptExpr();
4152 } else if (Result.Type == EST_Uninstantiated) {
4153 Result.SourceDecl = getExceptionSpecDecl();
4154 Result.SourceTemplate = getExceptionSpecTemplate();
4155 } else if (Result.Type == EST_Unevaluated) {
4156 Result.SourceDecl = getExceptionSpecDecl();
4157 }
4158 return Result;
4159 }
4160
4161 /// Return the number of types in the exception specification.
4162 unsigned getNumExceptions() const {
4163 return getExceptionSpecType() == EST_Dynamic
4164 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4165 ->NumExceptionType
4166 : 0;
4167 }
4168
4169 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4170 QualType getExceptionType(unsigned i) const {
4171 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast<void> (0));
4172 return exception_begin()[i];
4173 }
4174
4175 /// Return the expression inside noexcept(expression), or a null pointer
4176 /// if there is none (because the exception spec is not of this form).
4177 Expr *getNoexceptExpr() const {
4178 if (!isComputedNoexcept(getExceptionSpecType()))
4179 return nullptr;
4180 return *getTrailingObjects<Expr *>();
4181 }
4182
4183 /// If this function type has an exception specification which hasn't
4184 /// been determined yet (either because it has not been evaluated or because
4185 /// it has not been instantiated), this is the function whose exception
4186 /// specification is represented by this type.
4187 FunctionDecl *getExceptionSpecDecl() const {
4188 if (getExceptionSpecType() != EST_Uninstantiated &&
4189 getExceptionSpecType() != EST_Unevaluated)
4190 return nullptr;
4191 return getTrailingObjects<FunctionDecl *>()[0];
4192 }
4193
4194 /// If this function type has an uninstantiated exception
4195 /// specification, this is the function whose exception specification
4196 /// should be instantiated to find the exception specification for
4197 /// this type.
4198 FunctionDecl *getExceptionSpecTemplate() const {
4199 if (getExceptionSpecType() != EST_Uninstantiated)
4200 return nullptr;
4201 return getTrailingObjects<FunctionDecl *>()[1];
4202 }
4203
4204 /// Determine whether this function type has a non-throwing exception
4205 /// specification.
4206 CanThrowResult canThrow() const;
4207
4208 /// Determine whether this function type has a non-throwing exception
4209 /// specification. If this depends on template arguments, returns
4210 /// \c ResultIfDependent.
4211 bool isNothrow(bool ResultIfDependent = false) const {
4212 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4213 }
4214
4215 /// Whether this function prototype is variadic.
4216 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4217
4218 SourceLocation getEllipsisLoc() const {
4219 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4220 : SourceLocation();
4221 }
4222
4223 /// Determines whether this function prototype contains a
4224 /// parameter pack at the end.
4225 ///
4226 /// A function template whose last parameter is a parameter pack can be
4227 /// called with an arbitrary number of arguments, much like a variadic
4228 /// function.
4229 bool isTemplateVariadic() const;
4230
4231 /// Whether this function prototype has a trailing return type.
4232 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4233
4234 Qualifiers getMethodQuals() const {
4235 if (hasExtQualifiers())
4236 return *getTrailingObjects<Qualifiers>();
4237 else
4238 return getFastTypeQuals();
4239 }
4240
4241 /// Retrieve the ref-qualifier associated with this function type.
4242 RefQualifierKind getRefQualifier() const {
4243 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4244 }
4245
4246 using param_type_iterator = const QualType *;
4247 using param_type_range = llvm::iterator_range<param_type_iterator>;
4248
4249 param_type_range param_types() const {
4250 return param_type_range(param_type_begin(), param_type_end());
4251 }
4252
4253 param_type_iterator param_type_begin() const {
4254 return getTrailingObjects<QualType>();
4255 }
4256
4257 param_type_iterator param_type_end() const {
4258 return param_type_begin() + getNumParams();
4259 }
4260
4261 using exception_iterator = const QualType *;
4262
4263 ArrayRef<QualType> exceptions() const {
4264 return llvm::makeArrayRef(exception_begin(), exception_end());
4265 }
4266
4267 exception_iterator exception_begin() const {
4268 return reinterpret_cast<exception_iterator>(
4269 getTrailingObjects<ExceptionType>());
4270 }
4271
4272 exception_iterator exception_end() const {
4273 return exception_begin() + getNumExceptions();
4274 }
4275
4276 /// Is there any interesting extra information for any of the parameters
4277 /// of this function type?
4278 bool hasExtParameterInfos() const {
4279 return FunctionTypeBits.HasExtParameterInfos;
4280 }
4281
4282 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4283 assert(hasExtParameterInfos())(static_cast<void> (0));
4284 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4285 getNumParams());
4286 }
4287
4288 /// Return a pointer to the beginning of the array of extra parameter
4289 /// information, if present, or else null if none of the parameters
4290 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4291 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4292 if (!hasExtParameterInfos())
4293 return nullptr;
4294 return getTrailingObjects<ExtParameterInfo>();
4295 }
4296
4297 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4298 assert(I < getNumParams() && "parameter index out of range")(static_cast<void> (0));
4299 if (hasExtParameterInfos())
4300 return getTrailingObjects<ExtParameterInfo>()[I];
4301 return ExtParameterInfo();
4302 }
4303
4304 ParameterABI getParameterABI(unsigned I) const {
4305 assert(I < getNumParams() && "parameter index out of range")(static_cast<void> (0));
4306 if (hasExtParameterInfos())
4307 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4308 return ParameterABI::Ordinary;
4309 }
4310
4311 bool isParamConsumed(unsigned I) const {
4312 assert(I < getNumParams() && "parameter index out of range")(static_cast<void> (0));
4313 if (hasExtParameterInfos())
4314 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4315 return false;
4316 }
4317
4318 bool isSugared() const { return false; }
4319 QualType desugar() const { return QualType(this, 0); }
4320
4321 void printExceptionSpecification(raw_ostream &OS,
4322 const PrintingPolicy &Policy) const;
4323
4324 static bool classof(const Type *T) {
4325 return T->getTypeClass() == FunctionProto;
4326 }
4327
4328 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4329 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4330 param_type_iterator ArgTys, unsigned NumArgs,
4331 const ExtProtoInfo &EPI, const ASTContext &Context,
4332 bool Canonical);
4333};
4334
4335/// Represents the dependent type named by a dependently-scoped
4336/// typename using declaration, e.g.
4337/// using typename Base<T>::foo;
4338///
4339/// Template instantiation turns these into the underlying type.
4340class UnresolvedUsingType : public Type {
4341 friend class ASTContext; // ASTContext creates these.
4342
4343 UnresolvedUsingTypenameDecl *Decl;
4344
4345 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4346 : Type(UnresolvedUsing, QualType(),
4347 TypeDependence::DependentInstantiation),
4348 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4349
4350public:
4351 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4352
4353 bool isSugared() const { return false; }
4354 QualType desugar() const { return QualType(this, 0); }
4355
4356 static bool classof(const Type *T) {
4357 return T->getTypeClass() == UnresolvedUsing;
4358 }
4359
4360 void Profile(llvm::FoldingSetNodeID &ID) {
4361 return Profile(ID, Decl);
4362 }
4363
4364 static void Profile(llvm::FoldingSetNodeID &ID,
4365 UnresolvedUsingTypenameDecl *D) {
4366 ID.AddPointer(D);
4367 }
4368};
4369
4370class TypedefType : public Type {
4371 TypedefNameDecl *Decl;
4372
4373private:
4374 friend class ASTContext; // ASTContext creates these.
4375
4376 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4377 QualType can);
4378
4379public:
4380 TypedefNameDecl *getDecl() const { return Decl; }
4381
4382 bool isSugared() const { return true; }
4383 QualType desugar() const;
4384
4385 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4386};
4387
4388/// Sugar type that represents a type that was qualified by a qualifier written
4389/// as a macro invocation.
4390class MacroQualifiedType : public Type {
4391 friend class ASTContext; // ASTContext creates these.
4392
4393 QualType UnderlyingTy;
4394 const IdentifierInfo *MacroII;
4395
4396 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4397 const IdentifierInfo *MacroII)
4398 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4399 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4400 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast<void> (0))
4401 "Expected a macro qualified type to only wrap attributed types.")(static_cast<void> (0));
4402 }
4403
4404public:
4405 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4406 QualType getUnderlyingType() const { return UnderlyingTy; }
4407
4408 /// Return this attributed type's modified type with no qualifiers attached to
4409 /// it.
4410 QualType getModifiedType() const;
4411
4412 bool isSugared() const { return true; }
4413 QualType desugar() const;
4414
4415 static bool classof(const Type *T) {
4416 return T->getTypeClass() == MacroQualified;
4417 }
4418};
4419
4420/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4421class TypeOfExprType : public Type {
4422 Expr *TOExpr;
4423
4424protected:
4425 friend class ASTContext; // ASTContext creates these.
4426
4427 TypeOfExprType(Expr *E, QualType can = QualType());
4428
4429public:
4430 Expr *getUnderlyingExpr() const { return TOExpr; }
4431
4432 /// Remove a single level of sugar.
4433 QualType desugar() const;
4434
4435 /// Returns whether this type directly provides sugar.
4436 bool isSugared() const;
4437
4438 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4439};
4440
4441/// Internal representation of canonical, dependent
4442/// `typeof(expr)` types.
4443///
4444/// This class is used internally by the ASTContext to manage
4445/// canonical, dependent types, only. Clients will only see instances
4446/// of this class via TypeOfExprType nodes.
4447class DependentTypeOfExprType
4448 : public TypeOfExprType, public llvm::FoldingSetNode {
4449 const ASTContext &Context;
4450
4451public:
4452 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4453 : TypeOfExprType(E), Context(Context) {}
4454
4455 void Profile(llvm::FoldingSetNodeID &ID) {
4456 Profile(ID, Context, getUnderlyingExpr());
4457 }
4458
4459 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4460 Expr *E);
4461};
4462
4463/// Represents `typeof(type)`, a GCC extension.
4464class TypeOfType : public Type {
4465 friend class ASTContext; // ASTContext creates these.
4466
4467 QualType TOType;
4468
4469 TypeOfType(QualType T, QualType can)
4470 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4471 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast<void> (0));
4472 }
4473
4474public:
4475 QualType getUnderlyingType() const { return TOType; }
4476
4477 /// Remove a single level of sugar.
4478 QualType desugar() const { return getUnderlyingType(); }
4479
4480 /// Returns whether this type directly provides sugar.
4481 bool isSugared() const { return true; }
4482
4483 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4484};
4485
4486/// Represents the type `decltype(expr)` (C++11).
4487class DecltypeType : public Type {
4488 Expr *E;
4489 QualType UnderlyingType;
4490
4491protected:
4492 friend class ASTContext; // ASTContext creates these.
4493
4494 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4495
4496public:
4497 Expr *getUnderlyingExpr() const { return E; }
4498 QualType getUnderlyingType() const { return UnderlyingType; }
4499
4500 /// Remove a single level of sugar.
4501 QualType desugar() const;
4502
4503 /// Returns whether this type directly provides sugar.
4504 bool isSugared() const;
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4507};
4508
4509/// Internal representation of canonical, dependent
4510/// decltype(expr) types.
4511///
4512/// This class is used internally by the ASTContext to manage
4513/// canonical, dependent types, only. Clients will only see instances
4514/// of this class via DecltypeType nodes.
4515class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4516 const ASTContext &Context;
4517
4518public:
4519 DependentDecltypeType(const ASTContext &Context, Expr *E);
4520
4521 void Profile(llvm::FoldingSetNodeID &ID) {
4522 Profile(ID, Context, getUnderlyingExpr());
4523 }
4524
4525 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4526 Expr *E);
4527};
4528
4529/// A unary type transform, which is a type constructed from another.
4530class UnaryTransformType : public Type {
4531public:
4532 enum UTTKind {
4533 EnumUnderlyingType
4534 };
4535
4536private:
4537 /// The untransformed type.
4538 QualType BaseType;
4539
4540 /// The transformed type if not dependent, otherwise the same as BaseType.
4541 QualType UnderlyingType;
4542
4543 UTTKind UKind;
4544
4545protected:
4546 friend class ASTContext;
4547
4548 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4549 QualType CanonicalTy);
4550
4551public:
4552 bool isSugared() const { return !isDependentType(); }
4553 QualType desugar() const { return UnderlyingType; }
4554
4555 QualType getUnderlyingType() const { return UnderlyingType; }
4556 QualType getBaseType() const { return BaseType; }
4557
4558 UTTKind getUTTKind() const { return UKind; }
4559
4560 static bool classof(const Type *T) {
4561 return T->getTypeClass() == UnaryTransform;
4562 }
4563};
4564
4565/// Internal representation of canonical, dependent
4566/// __underlying_type(type) types.
4567///
4568/// This class is used internally by the ASTContext to manage
4569/// canonical, dependent types, only. Clients will only see instances
4570/// of this class via UnaryTransformType nodes.
4571class DependentUnaryTransformType : public UnaryTransformType,
4572 public llvm::FoldingSetNode {
4573public:
4574 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4575 UTTKind UKind);
4576
4577 void Profile(llvm::FoldingSetNodeID &ID) {
4578 Profile(ID, getBaseType(), getUTTKind());
4579 }
4580
4581 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4582 UTTKind UKind) {
4583 ID.AddPointer(BaseType.getAsOpaquePtr());
4584 ID.AddInteger((unsigned)UKind);
4585 }
4586};
4587
4588class TagType : public Type {
4589 friend class ASTReader;
4590 template <class T> friend class serialization::AbstractTypeReader;
4591
4592 /// Stores the TagDecl associated with this type. The decl may point to any
4593 /// TagDecl that declares the entity.
4594 TagDecl *decl;
4595
4596protected:
4597 TagType(TypeClass TC, const TagDecl *D, QualType can);
4598
4599public:
4600 TagDecl *getDecl() const;
4601
4602 /// Determines whether this type is in the process of being defined.
4603 bool isBeingDefined() const;
4604
4605 static bool classof(const Type *T) {
4606 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4607 }
4608};
4609
4610/// A helper class that allows the use of isa/cast/dyncast
4611/// to detect TagType objects of structs/unions/classes.
4612class RecordType : public TagType {
4613protected:
4614 friend class ASTContext; // ASTContext creates these.
4615
4616 explicit RecordType(const RecordDecl *D)
4617 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4618 explicit RecordType(TypeClass TC, RecordDecl *D)
4619 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4620
4621public:
4622 RecordDecl *getDecl() const {
4623 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4624 }
4625
4626 /// Recursively check all fields in the record for const-ness. If any field
4627 /// is declared const, return true. Otherwise, return false.
4628 bool hasConstFields() const;
4629
4630 bool isSugared() const { return false; }
4631 QualType desugar() const { return QualType(this, 0); }
4632
4633 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4634};
4635
4636/// A helper class that allows the use of isa/cast/dyncast
4637/// to detect TagType objects of enums.
4638class EnumType : public TagType {
4639 friend class ASTContext; // ASTContext creates these.
4640
4641 explicit EnumType(const EnumDecl *D)
4642 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4643
4644public:
4645 EnumDecl *getDecl() const {
4646 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4647 }
4648
4649 bool isSugared() const { return false; }
4650 QualType desugar() const { return QualType(this, 0); }
4651
4652 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4653};
4654
4655/// An attributed type is a type to which a type attribute has been applied.
4656///
4657/// The "modified type" is the fully-sugared type to which the attributed
4658/// type was applied; generally it is not canonically equivalent to the
4659/// attributed type. The "equivalent type" is the minimally-desugared type
4660/// which the type is canonically equivalent to.
4661///
4662/// For example, in the following attributed type:
4663/// int32_t __attribute__((vector_size(16)))
4664/// - the modified type is the TypedefType for int32_t
4665/// - the equivalent type is VectorType(16, int32_t)
4666/// - the canonical type is VectorType(16, int)
4667class AttributedType : public Type, public llvm::FoldingSetNode {
4668public:
4669 using Kind = attr::Kind;
4670
4671private:
4672 friend class ASTContext; // ASTContext creates these
4673
4674 QualType ModifiedType;
4675 QualType EquivalentType;
4676
4677 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4678 QualType equivalent)
4679 : Type(Attributed, canon, equivalent->getDependence()),
4680 ModifiedType(modified), EquivalentType(equivalent) {
4681 AttributedTypeBits.AttrKind = attrKind;
4682 }
4683
4684public:
4685 Kind getAttrKind() const {
4686 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4687 }
4688
4689 QualType getModifiedType() const { return ModifiedType; }
4690 QualType getEquivalentType() const { return EquivalentType; }
4691
4692 bool isSugared() const { return true; }
4693 QualType desugar() const { return getEquivalentType(); }
4694
4695 /// Does this attribute behave like a type qualifier?
4696 ///
4697 /// A type qualifier adjusts a type to provide specialized rules for
4698 /// a specific object, like the standard const and volatile qualifiers.
4699 /// This includes attributes controlling things like nullability,
4700 /// address spaces, and ARC ownership. The value of the object is still
4701 /// largely described by the modified type.
4702 ///
4703 /// In contrast, many type attributes "rewrite" their modified type to
4704 /// produce a fundamentally different type, not necessarily related in any
4705 /// formalizable way to the original type. For example, calling convention
4706 /// and vector attributes are not simple type qualifiers.
4707 ///
4708 /// Type qualifiers are often, but not always, reflected in the canonical
4709 /// type.
4710 bool isQualifier() const;
4711
4712 bool isMSTypeSpec() const;
4713
4714 bool isCallingConv() const;
4715
4716 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4717
4718 /// Retrieve the attribute kind corresponding to the given
4719 /// nullability kind.
4720 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4721 switch (kind) {
4722 case NullabilityKind::NonNull:
4723 return attr::TypeNonNull;
4724
4725 case NullabilityKind::Nullable:
4726 return attr::TypeNullable;
4727
4728 case NullabilityKind::NullableResult:
4729 return attr::TypeNullableResult;
4730
4731 case NullabilityKind::Unspecified:
4732 return attr::TypeNullUnspecified;
4733 }
4734 llvm_unreachable("Unknown nullability kind.")__builtin_unreachable();
4735 }
4736
4737 /// Strip off the top-level nullability annotation on the given
4738 /// type, if it's there.
4739 ///
4740 /// \param T The type to strip. If the type is exactly an
4741 /// AttributedType specifying nullability (without looking through
4742 /// type sugar), the nullability is returned and this type changed
4743 /// to the underlying modified type.
4744 ///
4745 /// \returns the top-level nullability, if present.
4746 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4747
4748 void Profile(llvm::FoldingSetNodeID &ID) {
4749 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4750 }
4751
4752 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4753 QualType modified, QualType equivalent) {
4754 ID.AddInteger(attrKind);
4755 ID.AddPointer(modified.getAsOpaquePtr());
4756 ID.AddPointer(equivalent.getAsOpaquePtr());
4757 }
4758
4759 static bool classof(const Type *T) {
4760 return T->getTypeClass() == Attributed;
4761 }
4762};
4763
4764class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4765 friend class ASTContext; // ASTContext creates these
4766
4767 // Helper data collector for canonical types.
4768 struct CanonicalTTPTInfo {
4769 unsigned Depth : 15;
4770 unsigned ParameterPack : 1;
4771 unsigned Index : 16;
4772 };
4773
4774 union {
4775 // Info for the canonical type.
4776 CanonicalTTPTInfo CanTTPTInfo;
4777
4778 // Info for the non-canonical type.
4779 TemplateTypeParmDecl *TTPDecl;
4780 };
4781
4782 /// Build a non-canonical type.
4783 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4784 : Type(TemplateTypeParm, Canon,
4785 TypeDependence::DependentInstantiation |
4786 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4787 TTPDecl(TTPDecl) {}
4788
4789 /// Build the canonical type.
4790 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4791 : Type(TemplateTypeParm, QualType(this, 0),
4792 TypeDependence::DependentInstantiation |
4793 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4794 CanTTPTInfo.Depth = D;
4795 CanTTPTInfo.Index = I;
4796 CanTTPTInfo.ParameterPack = PP;
4797 }
4798
4799 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4800 QualType Can = getCanonicalTypeInternal();
4801 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4802 }
4803
4804public:
4805 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4806 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4807 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4808
4809 TemplateTypeParmDecl *getDecl() const {
4810 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4811 }
4812
4813 IdentifierInfo *getIdentifier() const;
4814
4815 bool isSugared() const { return false; }
4816 QualType desugar() const { return QualType(this, 0); }
4817
4818 void Profile(llvm::FoldingSetNodeID &ID) {
4819 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4820 }
4821
4822 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4823 unsigned Index, bool ParameterPack,
4824 TemplateTypeParmDecl *TTPDecl) {
4825 ID.AddInteger(Depth);
4826 ID.AddInteger(Index);
4827 ID.AddBoolean(ParameterPack);
4828 ID.AddPointer(TTPDecl);
4829 }
4830
4831 static bool classof(const Type *T) {
4832 return T->getTypeClass() == TemplateTypeParm;
4833 }
4834};
4835
4836/// Represents the result of substituting a type for a template
4837/// type parameter.
4838///
4839/// Within an instantiated template, all template type parameters have
4840/// been replaced with these. They are used solely to record that a
4841/// type was originally written as a template type parameter;
4842/// therefore they are never canonical.
4843class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4844 friend class ASTContext;
4845
4846 // The original type parameter.
4847 const TemplateTypeParmType *Replaced;
4848
4849 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4850 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4851 Replaced(Param) {}
4852
4853public:
4854 /// Gets the template parameter that was substituted for.
4855 const TemplateTypeParmType *getReplacedParameter() const {
4856 return Replaced;
4857 }
4858
4859 /// Gets the type that was substituted for the template
4860 /// parameter.
4861 QualType getReplacementType() const {
4862 return getCanonicalTypeInternal();
4863 }
4864
4865 bool isSugared() const { return true; }
4866 QualType desugar() const { return getReplacementType(); }
4867
4868 void Profile(llvm::FoldingSetNodeID &ID) {
4869 Profile(ID, getReplacedParameter(), getReplacementType());
4870 }
4871
4872 static void Profile(llvm::FoldingSetNodeID &ID,
4873 const TemplateTypeParmType *Replaced,
4874 QualType Replacement) {
4875 ID.AddPointer(Replaced);
4876 ID.AddPointer(Replacement.getAsOpaquePtr());
4877 }
4878
4879 static bool classof(const Type *T) {
4880 return T->getTypeClass() == SubstTemplateTypeParm;
4881 }
4882};
4883
4884/// Represents the result of substituting a set of types for a template
4885/// type parameter pack.
4886///
4887/// When a pack expansion in the source code contains multiple parameter packs
4888/// and those parameter packs correspond to different levels of template
4889/// parameter lists, this type node is used to represent a template type
4890/// parameter pack from an outer level, which has already had its argument pack
4891/// substituted but that still lives within a pack expansion that itself
4892/// could not be instantiated. When actually performing a substitution into
4893/// that pack expansion (e.g., when all template parameters have corresponding
4894/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4895/// at the current pack substitution index.
4896class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4897 friend class ASTContext;
4898
4899 /// The original type parameter.
4900 const TemplateTypeParmType *Replaced;
4901
4902 /// A pointer to the set of template arguments that this
4903 /// parameter pack is instantiated with.
4904 const TemplateArgument *Arguments;
4905
4906 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4907 QualType Canon,
4908 const TemplateArgument &ArgPack);
4909
4910public:
4911 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4912
4913 /// Gets the template parameter that was substituted for.
4914 const TemplateTypeParmType *getReplacedParameter() const {
4915 return Replaced;
4916 }
4917
4918 unsigned getNumArgs() const {
4919 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4920 }
4921
4922 bool isSugared() const { return false; }
4923 QualType desugar() const { return QualType(this, 0); }
4924
4925 TemplateArgument getArgumentPack() const;
4926
4927 void Profile(llvm::FoldingSetNodeID &ID);
4928 static void Profile(llvm::FoldingSetNodeID &ID,
4929 const TemplateTypeParmType *Replaced,
4930 const TemplateArgument &ArgPack);
4931
4932 static bool classof(const Type *T) {
4933 return T->getTypeClass() == SubstTemplateTypeParmPack;
4934 }
4935};
4936
4937/// Common base class for placeholders for types that get replaced by
4938/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4939/// class template types, and constrained type names.
4940///
4941/// These types are usually a placeholder for a deduced type. However, before
4942/// the initializer is attached, or (usually) if the initializer is
4943/// type-dependent, there is no deduced type and the type is canonical. In
4944/// the latter case, it is also a dependent type.
4945class DeducedType : public Type {
4946protected:
4947 DeducedType(TypeClass TC, QualType DeducedAsType,
4948 TypeDependence ExtraDependence)
4949 : Type(TC,
4950 // FIXME: Retain the sugared deduced type?
4951 DeducedAsType.isNull() ? QualType(this, 0)
4952 : DeducedAsType.getCanonicalType(),
4953 ExtraDependence | (DeducedAsType.isNull()
4954 ? TypeDependence::None
4955 : DeducedAsType->getDependence() &
4956 ~TypeDependence::VariablyModified)) {}
4957
4958public:
4959 bool isSugared() const { return !isCanonicalUnqualified(); }
4960 QualType desugar() const { return getCanonicalTypeInternal(); }
4961
4962 /// Get the type deduced for this placeholder type, or null if it's
4963 /// either not been deduced or was deduced to a dependent type.
4964 QualType getDeducedType() const {
4965 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4966 }
4967 bool isDeduced() const {
4968 return !isCanonicalUnqualified() || isDependentType();
4969 }
4970
4971 static bool classof(const Type *T) {
4972 return T->getTypeClass() == Auto ||
4973 T->getTypeClass() == DeducedTemplateSpecialization;
4974 }
4975};
4976
4977/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4978/// by a type-constraint.
4979class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4980 friend class ASTContext; // ASTContext creates these
4981
4982 ConceptDecl *TypeConstraintConcept;
4983
4984 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4985 TypeDependence ExtraDependence, ConceptDecl *CD,
4986 ArrayRef<TemplateArgument> TypeConstraintArgs);
4987
4988 const TemplateArgument *getArgBuffer() const {
4989 return reinterpret_cast<const TemplateArgument*>(this+1);
4990 }
4991
4992 TemplateArgument *getArgBuffer() {
4993 return reinterpret_cast<TemplateArgument*>(this+1);
4994 }
4995
4996public:
4997 /// Retrieve the template arguments.
4998 const TemplateArgument *getArgs() const {
4999 return getArgBuffer();
5000 }
5001
5002 /// Retrieve the number of template arguments.
5003 unsigned getNumArgs() const {
5004 return AutoTypeBits.NumArgs;
5005 }
5006
5007 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5008
5009 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5010 return {getArgs(), getNumArgs()};
5011 }
5012
5013 ConceptDecl *getTypeConstraintConcept() const {
5014 return TypeConstraintConcept;
5015 }
5016
5017 bool isConstrained() const {
5018 return TypeConstraintConcept != nullptr;
5019 }
5020
5021 bool isDecltypeAuto() const {
5022 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5023 }
5024
5025 AutoTypeKeyword getKeyword() const {
5026 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5027 }
5028
5029 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5030 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5031 getTypeConstraintConcept(), getTypeConstraintArguments());
5032 }
5033
5034 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5035 QualType Deduced, AutoTypeKeyword Keyword,
5036 bool IsDependent, ConceptDecl *CD,
5037 ArrayRef<TemplateArgument> Arguments);
5038
5039 static bool classof(const Type *T) {
5040 return T->getTypeClass() == Auto;
5041 }
5042};
5043
5044/// Represents a C++17 deduced template specialization type.
5045class DeducedTemplateSpecializationType : public DeducedType,
5046 public llvm::FoldingSetNode {
5047 friend class ASTContext; // ASTContext creates these
5048
5049 /// The name of the template whose arguments will be deduced.
5050 TemplateName Template;
5051
5052 DeducedTemplateSpecializationType(TemplateName Template,
5053 QualType DeducedAsType,
5054 bool IsDeducedAsDependent)
5055 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5056 toTypeDependence(Template.getDependence()) |
5057 (IsDeducedAsDependent
5058 ? TypeDependence::DependentInstantiation
5059 : TypeDependence::None)),
5060 Template(Template) {}
5061
5062public:
5063 /// Retrieve the name of the template that we are deducing.
5064 TemplateName getTemplateName() const { return Template;}
5065
5066 void Profile(llvm::FoldingSetNodeID &ID) {
5067 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5068 }
5069
5070 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5071 QualType Deduced, bool IsDependent) {
5072 Template.Profile(ID);
5073 ID.AddPointer(Deduced.getAsOpaquePtr());
5074 ID.AddBoolean(IsDependent);
5075 }
5076
5077 static bool classof(const Type *T) {
5078 return T->getTypeClass() == DeducedTemplateSpecialization;
5079 }
5080};
5081
5082/// Represents a type template specialization; the template
5083/// must be a class template, a type alias template, or a template
5084/// template parameter. A template which cannot be resolved to one of
5085/// these, e.g. because it is written with a dependent scope
5086/// specifier, is instead represented as a
5087/// @c DependentTemplateSpecializationType.
5088///
5089/// A non-dependent template specialization type is always "sugar",
5090/// typically for a \c RecordType. For example, a class template
5091/// specialization type of \c vector<int> will refer to a tag type for
5092/// the instantiation \c std::vector<int, std::allocator<int>>
5093///
5094/// Template specializations are dependent if either the template or
5095/// any of the template arguments are dependent, in which case the
5096/// type may also be canonical.
5097///
5098/// Instances of this type are allocated with a trailing array of
5099/// TemplateArguments, followed by a QualType representing the
5100/// non-canonical aliased type when the template is a type alias
5101/// template.
5102class alignas(8) TemplateSpecializationType
5103 : public Type,
5104 public llvm::FoldingSetNode {
5105 friend class ASTContext; // ASTContext creates these
5106
5107 /// The name of the template being specialized. This is
5108 /// either a TemplateName::Template (in which case it is a
5109 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5110 /// TypeAliasTemplateDecl*), a
5111 /// TemplateName::SubstTemplateTemplateParmPack, or a
5112 /// TemplateName::SubstTemplateTemplateParm (in which case the
5113 /// replacement must, recursively, be one of these).
5114 TemplateName Template;
5115
5116 TemplateSpecializationType(TemplateName T,
5117 ArrayRef<TemplateArgument> Args,
5118 QualType Canon,
5119 QualType Aliased);
5120
5121public:
5122 /// Determine whether any of the given template arguments are dependent.
5123 ///
5124 /// The converted arguments should be supplied when known; whether an
5125 /// argument is dependent can depend on the conversions performed on it
5126 /// (for example, a 'const int' passed as a template argument might be
5127 /// dependent if the parameter is a reference but non-dependent if the
5128 /// parameter is an int).
5129 ///
5130 /// Note that the \p Args parameter is unused: this is intentional, to remind
5131 /// the caller that they need to pass in the converted arguments, not the
5132 /// specified arguments.
5133 static bool
5134 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5135 ArrayRef<TemplateArgument> Converted);
5136 static bool
5137 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5138 ArrayRef<TemplateArgument> Converted);
5139 static bool anyInstantiationDependentTemplateArguments(
5140 ArrayRef<TemplateArgumentLoc> Args);
5141
5142 /// True if this template specialization type matches a current
5143 /// instantiation in the context in which it is found.
5144 bool isCurrentInstantiation() const {
5145 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5146 }
5147
5148 /// Determine if this template specialization type is for a type alias
5149 /// template that has been substituted.
5150 ///
5151 /// Nearly every template specialization type whose template is an alias
5152 /// template will be substituted. However, this is not the case when
5153 /// the specialization contains a pack expansion but the template alias
5154 /// does not have a corresponding parameter pack, e.g.,
5155 ///
5156 /// \code
5157 /// template<typename T, typename U, typename V> struct S;
5158 /// template<typename T, typename U> using A = S<T, int, U>;
5159 /// template<typename... Ts> struct X {
5160 /// typedef A<Ts...> type; // not a type alias
5161 /// };
5162 /// \endcode
5163 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5164
5165 /// Get the aliased type, if this is a specialization of a type alias
5166 /// template.
5167 QualType getAliasedType() const {
5168 assert(isTypeAlias() && "not a type alias template specialization")(static_cast<void> (0));
5169 return *reinterpret_cast<const QualType*>(end());
5170 }
5171
5172 using iterator = const TemplateArgument *;
5173
5174 iterator begin() const { return getArgs(); }
5175 iterator end() const; // defined inline in TemplateBase.h
5176
5177 /// Retrieve the name of the template that we are specializing.
5178 TemplateName getTemplateName() const { return Template; }
5179
5180 /// Retrieve the template arguments.
5181 const TemplateArgument *getArgs() const {
5182 return reinterpret_cast<const TemplateArgument *>(this + 1);
5183 }
5184
5185 /// Retrieve the number of template arguments.
5186 unsigned getNumArgs() const {
5187 return TemplateSpecializationTypeBits.NumArgs;
5188 }
5189
5190 /// Retrieve a specific template argument as a type.
5191 /// \pre \c isArgType(Arg)
5192 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5193
5194 ArrayRef<TemplateArgument> template_arguments() const {
5195 return {getArgs(), getNumArgs()};
5196 }
5197
5198 bool isSugared() const {
5199 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5200 }
5201
5202 QualType desugar() const {
5203 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5204 }
5205
5206 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5207 Profile(ID, Template, template_arguments(), Ctx);
5208 if (isTypeAlias())
5209 getAliasedType().Profile(ID);
5210 }
5211
5212 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5213 ArrayRef<TemplateArgument> Args,
5214 const ASTContext &Context);
5215
5216 static bool classof(const Type *T) {
5217 return T->getTypeClass() == TemplateSpecialization;
5218 }
5219};
5220
5221/// Print a template argument list, including the '<' and '>'
5222/// enclosing the template arguments.
5223void printTemplateArgumentList(raw_ostream &OS,
5224 ArrayRef<TemplateArgument> Args,
5225 const PrintingPolicy &Policy,
5226 const TemplateParameterList *TPL = nullptr);
5227
5228void printTemplateArgumentList(raw_ostream &OS,
5229 ArrayRef<TemplateArgumentLoc> Args,
5230 const PrintingPolicy &Policy,
5231 const TemplateParameterList *TPL = nullptr);
5232
5233void printTemplateArgumentList(raw_ostream &OS,
5234 const TemplateArgumentListInfo &Args,
5235 const PrintingPolicy &Policy,
5236 const TemplateParameterList *TPL = nullptr);
5237
5238/// The injected class name of a C++ class template or class
5239/// template partial specialization. Used to record that a type was
5240/// spelled with a bare identifier rather than as a template-id; the
5241/// equivalent for non-templated classes is just RecordType.
5242///
5243/// Injected class name types are always dependent. Template
5244/// instantiation turns these into RecordTypes.
5245///
5246/// Injected class name types are always canonical. This works
5247/// because it is impossible to compare an injected class name type
5248/// with the corresponding non-injected template type, for the same
5249/// reason that it is impossible to directly compare template
5250/// parameters from different dependent contexts: injected class name
5251/// types can only occur within the scope of a particular templated
5252/// declaration, and within that scope every template specialization
5253/// will canonicalize to the injected class name (when appropriate
5254/// according to the rules of the language).
5255class InjectedClassNameType : public Type {
5256 friend class ASTContext; // ASTContext creates these.
5257 friend class ASTNodeImporter;
5258 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5259 // currently suitable for AST reading, too much
5260 // interdependencies.
5261 template <class T> friend class serialization::AbstractTypeReader;
5262
5263 CXXRecordDecl *Decl;
5264
5265 /// The template specialization which this type represents.
5266 /// For example, in
5267 /// template <class T> class A { ... };
5268 /// this is A<T>, whereas in
5269 /// template <class X, class Y> class A<B<X,Y> > { ... };
5270 /// this is A<B<X,Y> >.
5271 ///
5272 /// It is always unqualified, always a template specialization type,
5273 /// and always dependent.
5274 QualType InjectedType;
5275
5276 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5277 : Type(InjectedClassName, QualType(),
5278 TypeDependence::DependentInstantiation),
5279 Decl(D), InjectedType(TST) {
5280 assert(isa<TemplateSpecializationType>(TST))(static_cast<void> (0));
5281 assert(!TST.hasQualifiers())(static_cast<void> (0));
5282 assert(TST->isDependentType())(static_cast<void> (0));
5283 }
5284
5285public:
5286 QualType getInjectedSpecializationType() const { return InjectedType; }
5287
5288 const TemplateSpecializationType *getInjectedTST() const {
5289 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5290 }
5291
5292 TemplateName getTemplateName() const {
5293 return getInjectedTST()->getTemplateName();
5294 }
5295
5296 CXXRecordDecl *getDecl() const;
5297
5298 bool isSugared() const { return false; }
5299 QualType desugar() const { return QualType(this, 0); }
5300
5301 static bool classof(const Type *T) {
5302 return T->getTypeClass() == InjectedClassName;
5303 }
5304};
5305
5306/// The kind of a tag type.
5307enum TagTypeKind {
5308 /// The "struct" keyword.
5309 TTK_Struct,
5310
5311 /// The "__interface" keyword.
5312 TTK_Interface,
5313
5314 /// The "union" keyword.
5315 TTK_Union,
5316
5317 /// The "class" keyword.
5318 TTK_Class,
5319
5320 /// The "enum" keyword.
5321 TTK_Enum
5322};
5323
5324/// The elaboration keyword that precedes a qualified type name or
5325/// introduces an elaborated-type-specifier.
5326enum ElaboratedTypeKeyword {
5327 /// The "struct" keyword introduces the elaborated-type-specifier.
5328 ETK_Struct,
5329
5330 /// The "__interface" keyword introduces the elaborated-type-specifier.
5331 ETK_Interface,
5332
5333 /// The "union" keyword introduces the elaborated-type-specifier.
5334 ETK_Union,
5335
5336 /// The "class" keyword introduces the elaborated-type-specifier.
5337 ETK_Class,
5338
5339 /// The "enum" keyword introduces the elaborated-type-specifier.
5340 ETK_Enum,
5341
5342 /// The "typename" keyword precedes the qualified type name, e.g.,
5343 /// \c typename T::type.
5344 ETK_Typename,
5345
5346 /// No keyword precedes the qualified type name.
5347 ETK_None
5348};
5349
5350/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5351/// The keyword in stored in the free bits of the base class.
5352/// Also provides a few static helpers for converting and printing
5353/// elaborated type keyword and tag type kind enumerations.
5354class TypeWithKeyword : public Type {
5355protected:
5356 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5357 QualType Canonical, TypeDependence Dependence)
5358 : Type(tc, Canonical, Dependence) {
5359 TypeWithKeywordBits.Keyword = Keyword;
5360 }
5361
5362public:
5363 ElaboratedTypeKeyword getKeyword() const {
5364 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5365 }
5366
5367 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5368 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5369
5370 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5371 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5372 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5373
5374 /// Converts a TagTypeKind into an elaborated type keyword.
5375 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5376
5377 /// Converts an elaborated type keyword into a TagTypeKind.
5378 /// It is an error to provide an elaborated type keyword
5379 /// which *isn't* a tag kind here.
5380 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5381
5382 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5383
5384 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5385
5386 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5387 return getKeywordName(getKeywordForTagTypeKind(Kind));
5388 }
5389
5390 class CannotCastToThisType {};
5391 static CannotCastToThisType classof(const Type *);
5392};
5393
5394/// Represents a type that was referred to using an elaborated type
5395/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5396/// or both.
5397///
5398/// This type is used to keep track of a type name as written in the
5399/// source code, including tag keywords and any nested-name-specifiers.
5400/// The type itself is always "sugar", used to express what was written
5401/// in the source code but containing no additional semantic information.
5402class ElaboratedType final
5403 : public TypeWithKeyword,
5404 public llvm::FoldingSetNode,
5405 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5406 friend class ASTContext; // ASTContext creates these
5407 friend TrailingObjects;
5408
5409 /// The nested name specifier containing the qualifier.
5410 NestedNameSpecifier *NNS;
5411
5412 /// The type that this qualified name refers to.
5413 QualType NamedType;
5414
5415 /// The (re)declaration of this tag type owned by this occurrence is stored
5416 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5417 /// it, or obtain a null pointer if there is none.
5418
5419 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5420 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5421 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5422 // Any semantic dependence on the qualifier will have
5423 // been incorporated into NamedType. We still need to
5424 // track syntactic (instantiation / error / pack)
5425 // dependence on the qualifier.
5426 NamedType->getDependence() |
5427 (NNS ? toSyntacticDependence(
5428 toTypeDependence(NNS->getDependence()))
5429 : TypeDependence::None)),
5430 NNS(NNS), NamedType(NamedType) {
5431 ElaboratedTypeBits.HasOwnedTagDecl = false;
5432 if (OwnedTagDecl) {
5433 ElaboratedTypeBits.HasOwnedTagDecl = true;
5434 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5435 }
5436 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast<void> (0))
5437 "ElaboratedType cannot have elaborated type keyword "(static_cast<void> (0))
5438 "and name qualifier both null.")(static_cast<void> (0));
5439 }
5440
5441public:
5442 /// Retrieve the qualification on this type.
5443 NestedNameSpecifier *getQualifier() const { return NNS; }
5444
5445 /// Retrieve the type named by the qualified-id.
5446 QualType getNamedType() const { return NamedType; }
5447
5448 /// Remove a single level of sugar.
5449 QualType desugar() const { return getNamedType(); }
5450
5451 /// Returns whether this type directly provides sugar.
5452 bool isSugared() const { return true; }
5453
5454 /// Return the (re)declaration of this type owned by this occurrence of this
5455 /// type, or nullptr if there is none.
5456 TagDecl *getOwnedTagDecl() const {
5457 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5458 : nullptr;
5459 }
5460
5461 void Profile(llvm::FoldingSetNodeID &ID) {
5462 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5463 }
5464
5465 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5466 NestedNameSpecifier *NNS, QualType NamedType,
5467 TagDecl *OwnedTagDecl) {
5468 ID.AddInteger(Keyword);
5469 ID.AddPointer(NNS);
5470 NamedType.Profile(ID);
5471 ID.AddPointer(OwnedTagDecl);
5472 }
5473
5474 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5475};
5476
5477/// Represents a qualified type name for which the type name is
5478/// dependent.
5479///
5480/// DependentNameType represents a class of dependent types that involve a
5481/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5482/// name of a type. The DependentNameType may start with a "typename" (for a
5483/// typename-specifier), "class", "struct", "union", or "enum" (for a
5484/// dependent elaborated-type-specifier), or nothing (in contexts where we
5485/// know that we must be referring to a type, e.g., in a base class specifier).
5486/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5487/// mode, this type is used with non-dependent names to delay name lookup until
5488/// instantiation.
5489class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5490 friend class ASTContext; // ASTContext creates these
5491
5492 /// The nested name specifier containing the qualifier.
5493 NestedNameSpecifier *NNS;
5494
5495 /// The type that this typename specifier refers to.
5496 const IdentifierInfo *Name;
5497
5498 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5499 const IdentifierInfo *Name, QualType CanonType)
5500 : TypeWithKeyword(Keyword, DependentName, CanonType,
5501 TypeDependence::DependentInstantiation |
5502 toTypeDependence(NNS->getDependence())),
5503 NNS(NNS), Name(Name) {}
5504
5505public:
5506 /// Retrieve the qualification on this type.
5507 NestedNameSpecifier *getQualifier() const { return NNS; }
5508
5509 /// Retrieve the type named by the typename specifier as an identifier.
5510 ///
5511 /// This routine will return a non-NULL identifier pointer when the
5512 /// form of the original typename was terminated by an identifier,
5513 /// e.g., "typename T::type".
5514 const IdentifierInfo *getIdentifier() const {
5515 return Name;
5516 }
5517
5518 bool isSugared() const { return false; }
5519 QualType desugar() const { return QualType(this, 0); }
5520
5521 void Profile(llvm::FoldingSetNodeID &ID) {
5522 Profile(ID, getKeyword(), NNS, Name);
5523 }
5524
5525 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5526 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5527 ID.AddInteger(Keyword);
5528 ID.AddPointer(NNS);
5529 ID.AddPointer(Name);
5530 }
5531
5532 static bool classof(const Type *T) {
5533 return T->getTypeClass() == DependentName;
5534 }
5535};
5536
5537/// Represents a template specialization type whose template cannot be
5538/// resolved, e.g.
5539/// A<T>::template B<T>
5540class alignas(8) DependentTemplateSpecializationType
5541 : public TypeWithKeyword,
5542 public llvm::FoldingSetNode {
5543 friend class ASTContext; // ASTContext creates these
5544
5545 /// The nested name specifier containing the qualifier.
5546 NestedNameSpecifier *NNS;
5547
5548 /// The identifier of the template.
5549 const IdentifierInfo *Name;
5550
5551 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5552 NestedNameSpecifier *NNS,
5553 const IdentifierInfo *Name,
5554 ArrayRef<TemplateArgument> Args,
5555 QualType Canon);
5556
5557 const TemplateArgument *getArgBuffer() const {
5558 return reinterpret_cast<const TemplateArgument*>(this+1);
5559 }
5560
5561 TemplateArgument *getArgBuffer() {
5562 return reinterpret_cast<TemplateArgument*>(this+1);
5563 }
5564
5565public:
5566 NestedNameSpecifier *getQualifier() const { return NNS; }
5567 const IdentifierInfo *getIdentifier() const { return Name; }
5568
5569 /// Retrieve the template arguments.
5570 const TemplateArgument *getArgs() const {
5571 return getArgBuffer();
5572 }
5573
5574 /// Retrieve the number of template arguments.
5575 unsigned getNumArgs() const {
5576 return DependentTemplateSpecializationTypeBits.NumArgs;
5577 }
5578
5579 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5580
5581 ArrayRef<TemplateArgument> template_arguments() const {
5582 return {getArgs(), getNumArgs()};
5583 }
5584
5585 using iterator = const TemplateArgument *;
5586
5587 iterator begin() const { return getArgs(); }
5588 iterator end() const; // inline in TemplateBase.h
5589
5590 bool isSugared() const { return false; }
5591 QualType desugar() const { return QualType(this, 0); }
5592
5593 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5594 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5595 }
5596
5597 static void Profile(llvm::FoldingSetNodeID &ID,
5598 const ASTContext &Context,
5599 ElaboratedTypeKeyword Keyword,
5600 NestedNameSpecifier *Qualifier,
5601 const IdentifierInfo *Name,
5602 ArrayRef<TemplateArgument> Args);
5603
5604 static bool classof(const Type *T) {
5605 return T->getTypeClass() == DependentTemplateSpecialization;
5606 }
5607};
5608
5609/// Represents a pack expansion of types.
5610///
5611/// Pack expansions are part of C++11 variadic templates. A pack
5612/// expansion contains a pattern, which itself contains one or more
5613/// "unexpanded" parameter packs. When instantiated, a pack expansion
5614/// produces a series of types, each instantiated from the pattern of
5615/// the expansion, where the Ith instantiation of the pattern uses the
5616/// Ith arguments bound to each of the unexpanded parameter packs. The
5617/// pack expansion is considered to "expand" these unexpanded
5618/// parameter packs.
5619///
5620/// \code
5621/// template<typename ...Types> struct tuple;
5622///
5623/// template<typename ...Types>
5624/// struct tuple_of_references {
5625/// typedef tuple<Types&...> type;
5626/// };
5627/// \endcode
5628///
5629/// Here, the pack expansion \c Types&... is represented via a
5630/// PackExpansionType whose pattern is Types&.
5631class PackExpansionType : public Type, public llvm::FoldingSetNode {
5632 friend class ASTContext; // ASTContext creates these
5633
5634 /// The pattern of the pack expansion.
5635 QualType Pattern;
5636
5637 PackExpansionType(QualType Pattern, QualType Canon,
5638 Optional<unsigned> NumExpansions)
5639 : Type(PackExpansion, Canon,
5640 (Pattern->getDependence() | TypeDependence::Dependent |
5641 TypeDependence::Instantiation) &
5642 ~TypeDependence::UnexpandedPack),
5643 Pattern(Pattern) {
5644 PackExpansionTypeBits.NumExpansions =
5645 NumExpansions ? *NumExpansions + 1 : 0;
5646 }
5647
5648public:
5649 /// Retrieve the pattern of this pack expansion, which is the
5650 /// type that will be repeatedly instantiated when instantiating the
5651 /// pack expansion itself.
5652 QualType getPattern() const { return Pattern; }
5653
5654 /// Retrieve the number of expansions that this pack expansion will
5655 /// generate, if known.
5656 Optional<unsigned> getNumExpansions() const {
5657 if (PackExpansionTypeBits.NumExpansions)
5658 return PackExpansionTypeBits.NumExpansions - 1;
5659 return None;
5660 }
5661
5662 bool isSugared() const { return false; }
5663 QualType desugar() const { return QualType(this, 0); }
5664
5665 void Profile(llvm::FoldingSetNodeID &ID) {
5666 Profile(ID, getPattern(), getNumExpansions());
5667 }
5668
5669 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5670 Optional<unsigned> NumExpansions) {
5671 ID.AddPointer(Pattern.getAsOpaquePtr());
5672 ID.AddBoolean(NumExpansions.hasValue());
5673 if (NumExpansions)
5674 ID.AddInteger(*NumExpansions);
5675 }
5676
5677 static bool classof(const Type *T) {
5678 return T->getTypeClass() == PackExpansion;
5679 }
5680};
5681
5682/// This class wraps the list of protocol qualifiers. For types that can
5683/// take ObjC protocol qualifers, they can subclass this class.
5684template <class T>
5685class ObjCProtocolQualifiers {
5686protected:
5687 ObjCProtocolQualifiers() = default;
5688
5689 ObjCProtocolDecl * const *getProtocolStorage() const {
5690 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5691 }
5692
5693 ObjCProtocolDecl **getProtocolStorage() {
5694 return static_cast<T*>(this)->getProtocolStorageImpl();
5695 }
5696
5697 void setNumProtocols(unsigned N) {
5698 static_cast<T*>(this)->setNumProtocolsImpl(N);
5699 }
5700
5701 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5702 setNumProtocols(protocols.size());
5703 assert(getNumProtocols() == protocols.size() &&(static_cast<void> (0))
5704 "bitfield overflow in protocol count")(static_cast<void> (0));
5705 if (!protocols.empty())
5706 memcpy(getProtocolStorage(), protocols.data(),
5707 protocols.size() * sizeof(ObjCProtocolDecl*));
5708 }
5709
5710public:
5711 using qual_iterator = ObjCProtocolDecl * const *;
5712 using qual_range = llvm::iterator_range<qual_iterator>;
5713
5714 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5715 qual_iterator qual_begin() const { return getProtocolStorage(); }
5716 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5717
5718 bool qual_empty() const { return getNumProtocols() == 0; }
5719
5720 /// Return the number of qualifying protocols in this type, or 0 if
5721 /// there are none.
5722 unsigned getNumProtocols() const {
5723 return static_cast<const T*>(this)->getNumProtocolsImpl();
5724 }
5725
5726 /// Fetch a protocol by index.
5727 ObjCProtocolDecl *getProtocol(unsigned I) const {
5728 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast<void> (0));
5729 return qual_begin()[I];
5730 }
5731
5732 /// Retrieve all of the protocol qualifiers.
5733 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5734 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5735 }
5736};
5737
5738/// Represents a type parameter type in Objective C. It can take
5739/// a list of protocols.
5740class ObjCTypeParamType : public Type,
5741 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5742 public llvm::FoldingSetNode {
5743 friend class ASTContext;
5744 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5745
5746 /// The number of protocols stored on this type.
5747 unsigned NumProtocols : 6;
5748
5749 ObjCTypeParamDecl *OTPDecl;
5750
5751 /// The protocols are stored after the ObjCTypeParamType node. In the
5752 /// canonical type, the list of protocols are sorted alphabetically
5753 /// and uniqued.
5754 ObjCProtocolDecl **getProtocolStorageImpl();
5755
5756 /// Return the number of qualifying protocols in this interface type,
5757 /// or 0 if there are none.
5758 unsigned getNumProtocolsImpl() const {
5759 return NumProtocols;
5760 }
5761
5762 void setNumProtocolsImpl(unsigned N) {
5763 NumProtocols = N;
5764 }
5765
5766 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5767 QualType can,
5768 ArrayRef<ObjCProtocolDecl *> protocols);
5769
5770public:
5771 bool isSugared() const { return true; }
5772 QualType desugar() const { return getCanonicalTypeInternal(); }
5773
5774 static bool classof(const Type *T) {
5775 return T->getTypeClass() == ObjCTypeParam;
5776 }
5777
5778 void Profile(llvm::FoldingSetNodeID &ID);
5779 static void Profile(llvm::FoldingSetNodeID &ID,
5780 const ObjCTypeParamDecl *OTPDecl,
5781 QualType CanonicalType,
5782 ArrayRef<ObjCProtocolDecl *> protocols);
5783
5784 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5785};
5786
5787/// Represents a class type in Objective C.
5788///
5789/// Every Objective C type is a combination of a base type, a set of
5790/// type arguments (optional, for parameterized classes) and a list of
5791/// protocols.
5792///
5793/// Given the following declarations:
5794/// \code
5795/// \@class C<T>;
5796/// \@protocol P;
5797/// \endcode
5798///
5799/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5800/// with base C and no protocols.
5801///
5802/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5803/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5804/// protocol list.
5805/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5806/// and protocol list [P].
5807///
5808/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5809/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5810/// and no protocols.
5811///
5812/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5813/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5814/// this should get its own sugar class to better represent the source.
5815class ObjCObjectType : public Type,
5816 public ObjCProtocolQualifiers<ObjCObjectType> {
5817 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5818
5819 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5820 // after the ObjCObjectPointerType node.
5821 // ObjCObjectType.NumProtocols - the number of protocols stored
5822 // after the type arguments of ObjCObjectPointerType node.
5823 //
5824 // These protocols are those written directly on the type. If
5825 // protocol qualifiers ever become additive, the iterators will need
5826 // to get kindof complicated.
5827 //
5828 // In the canonical object type, these are sorted alphabetically
5829 // and uniqued.
5830
5831 /// Either a BuiltinType or an InterfaceType or sugar for either.
5832 QualType BaseType;
5833
5834 /// Cached superclass type.
5835 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5836 CachedSuperClassType;
5837
5838 QualType *getTypeArgStorage();
5839 const QualType *getTypeArgStorage() const {
5840 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5841 }
5842
5843 ObjCProtocolDecl **getProtocolStorageImpl();
5844 /// Return the number of qualifying protocols in this interface type,
5845 /// or 0 if there are none.
5846 unsigned getNumProtocolsImpl() const {
5847 return ObjCObjectTypeBits.NumProtocols;
5848 }
5849 void setNumProtocolsImpl(unsigned N) {
5850 ObjCObjectTypeBits.NumProtocols = N;
5851 }
5852
5853protected:
5854 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5855
5856 ObjCObjectType(QualType Canonical, QualType Base,
5857 ArrayRef<QualType> typeArgs,
5858 ArrayRef<ObjCProtocolDecl *> protocols,
5859 bool isKindOf);
5860
5861 ObjCObjectType(enum Nonce_ObjCInterface)
5862 : Type(ObjCInterface, QualType(), TypeDependence::None),
5863 BaseType(QualType(this_(), 0)) {
5864 ObjCObjectTypeBits.NumProtocols = 0;
5865 ObjCObjectTypeBits.NumTypeArgs = 0;
5866 ObjCObjectTypeBits.IsKindOf = 0;
5867 }
5868
5869 void computeSuperClassTypeSlow() const;
5870
5871public:
5872 /// Gets the base type of this object type. This is always (possibly
5873 /// sugar for) one of:
5874 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5875 /// user, which is a typedef for an ObjCObjectPointerType)
5876 /// - the 'Class' builtin type (same caveat)
5877 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5878 QualType getBaseType() const { return BaseType; }
5879
5880 bool isObjCId() const {
5881 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5882 }
5883
5884 bool isObjCClass() const {
5885 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5886 }
5887
5888 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5889 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5890 bool isObjCUnqualifiedIdOrClass() const {
5891 if (!qual_empty()) return false;
5892 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5893 return T->getKind() == BuiltinType::ObjCId ||
5894 T->getKind() == BuiltinType::ObjCClass;
5895 return false;
5896 }
5897 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5898 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5899
5900 /// Gets the interface declaration for this object type, if the base type
5901 /// really is an interface.
5902 ObjCInterfaceDecl *getInterface() const;
5903
5904 /// Determine whether this object type is "specialized", meaning
5905 /// that it has type arguments.
5906 bool isSpecialized() const;
5907
5908 /// Determine whether this object type was written with type arguments.
5909 bool isSpecializedAsWritten() const {
5910 return ObjCObjectTypeBits.NumTypeArgs > 0;
5911 }
5912
5913 /// Determine whether this object type is "unspecialized", meaning
5914 /// that it has no type arguments.
5915 bool isUnspecialized() const { return !isSpecialized(); }
5916
5917 /// Determine whether this object type is "unspecialized" as
5918 /// written, meaning that it has no type arguments.
5919 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5920
5921 /// Retrieve the type arguments of this object type (semantically).
5922 ArrayRef<QualType> getTypeArgs() const;
5923
5924 /// Retrieve the type arguments of this object type as they were
5925 /// written.
5926 ArrayRef<QualType> getTypeArgsAsWritten() const {
5927 return llvm::makeArrayRef(getTypeArgStorage(),
5928 ObjCObjectTypeBits.NumTypeArgs);
5929 }
5930
5931 /// Whether this is a "__kindof" type as written.
5932 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5933
5934 /// Whether this ia a "__kindof" type (semantically).
5935 bool isKindOfType() const;
5936
5937 /// Retrieve the type of the superclass of this object type.
5938 ///
5939 /// This operation substitutes any type arguments into the
5940 /// superclass of the current class type, potentially producing a
5941 /// specialization of the superclass type. Produces a null type if
5942 /// there is no superclass.
5943 QualType getSuperClassType() const {
5944 if (!CachedSuperClassType.getInt())
5945 computeSuperClassTypeSlow();
5946
5947 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast<void> (0));
5948 return QualType(CachedSuperClassType.getPointer(), 0);
5949 }
5950
5951 /// Strip off the Objective-C "kindof" type and (with it) any
5952 /// protocol qualifiers.
5953 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5954
5955 bool isSugared() const { return false; }
5956 QualType desugar() const { return QualType(this, 0); }
5957
5958 static bool classof(const Type *T) {
5959 return T->getTypeClass() == ObjCObject ||
5960 T->getTypeClass() == ObjCInterface;
5961 }
5962};
5963
5964/// A class providing a concrete implementation
5965/// of ObjCObjectType, so as to not increase the footprint of
5966/// ObjCInterfaceType. Code outside of ASTContext and the core type
5967/// system should not reference this type.
5968class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5969 friend class ASTContext;
5970
5971 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5972 // will need to be modified.
5973
5974 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5975 ArrayRef<QualType> typeArgs,
5976 ArrayRef<ObjCProtocolDecl *> protocols,
5977 bool isKindOf)
5978 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5979
5980public:
5981 void Profile(llvm::FoldingSetNodeID &ID);
5982 static void Profile(llvm::FoldingSetNodeID &ID,
5983 QualType Base,
5984 ArrayRef<QualType> typeArgs,
5985 ArrayRef<ObjCProtocolDecl *> protocols,
5986 bool isKindOf);
5987};
5988
5989inline QualType *ObjCObjectType::getTypeArgStorage() {
5990 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5991}
5992
5993inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5994 return reinterpret_cast<ObjCProtocolDecl**>(
5995 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5996}
5997
5998inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5999 return reinterpret_cast<ObjCProtocolDecl**>(
6000 static_cast<ObjCTypeParamType*>(this)+1);
6001}
6002
6003/// Interfaces are the core concept in Objective-C for object oriented design.
6004/// They basically correspond to C++ classes. There are two kinds of interface
6005/// types: normal interfaces like `NSString`, and qualified interfaces, which
6006/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6007///
6008/// ObjCInterfaceType guarantees the following properties when considered
6009/// as a subtype of its superclass, ObjCObjectType:
6010/// - There are no protocol qualifiers. To reinforce this, code which
6011/// tries to invoke the protocol methods via an ObjCInterfaceType will
6012/// fail to compile.
6013/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6014/// T->getBaseType() == QualType(T, 0).
6015class ObjCInterfaceType : public ObjCObjectType {
6016 friend class ASTContext; // ASTContext creates these.
6017 friend class ASTReader;
6018 friend class ObjCInterfaceDecl;
6019 template <class T> friend class serialization::AbstractTypeReader;
6020
6021 mutable ObjCInterfaceDecl *Decl;
6022
6023 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6024 : ObjCObjectType(Nonce_ObjCInterface),
6025 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6026
6027public:
6028 /// Get the declaration of this interface.
6029 ObjCInterfaceDecl *getDecl() const { return Decl; }
6030
6031 bool isSugared() const { return false; }
6032 QualType desugar() const { return QualType(this, 0); }
6033
6034 static bool classof(const Type *T) {
6035 return T->getTypeClass() == ObjCInterface;
6036 }
6037
6038 // Nonsense to "hide" certain members of ObjCObjectType within this
6039 // class. People asking for protocols on an ObjCInterfaceType are
6040 // not going to get what they want: ObjCInterfaceTypes are
6041 // guaranteed to have no protocols.
6042 enum {
6043 qual_iterator,
6044 qual_begin,
6045 qual_end,
6046 getNumProtocols,
6047 getProtocol
6048 };
6049};
6050
6051inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6052 QualType baseType = getBaseType();
6053 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6054 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6055 return T->getDecl();
6056
6057 baseType = ObjT->getBaseType();
6058 }
6059
6060 return nullptr;
6061}
6062
6063/// Represents a pointer to an Objective C object.
6064///
6065/// These are constructed from pointer declarators when the pointee type is
6066/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6067/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6068/// and 'Class<P>' are translated into these.
6069///
6070/// Pointers to pointers to Objective C objects are still PointerTypes;
6071/// only the first level of pointer gets it own type implementation.
6072class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6073 friend class ASTContext; // ASTContext creates these.
6074
6075 QualType PointeeType;
6076
6077 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6078 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6079 PointeeType(Pointee) {}
6080
6081public:
6082 /// Gets the type pointed to by this ObjC pointer.
6083 /// The result will always be an ObjCObjectType or sugar thereof.
6084 QualType getPointeeType() const { return PointeeType; }
6085
6086 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6087 ///
6088 /// This method is equivalent to getPointeeType() except that
6089 /// it discards any typedefs (or other sugar) between this
6090 /// type and the "outermost" object type. So for:
6091 /// \code
6092 /// \@class A; \@protocol P; \@protocol Q;
6093 /// typedef A<P> AP;
6094 /// typedef A A1;
6095 /// typedef A1<P> A1P;
6096 /// typedef A1P<Q> A1PQ;
6097 /// \endcode
6098 /// For 'A*', getObjectType() will return 'A'.
6099 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6100 /// For 'AP*', getObjectType() will return 'A<P>'.
6101 /// For 'A1*', getObjectType() will return 'A'.
6102 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6103 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6104 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6105 /// adding protocols to a protocol-qualified base discards the
6106 /// old qualifiers (for now). But if it didn't, getObjectType()
6107 /// would return 'A1P<Q>' (and we'd have to make iterating over
6108 /// qualifiers more complicated).
6109 const ObjCObjectType *getObjectType() const {
6110 return PointeeType->castAs<ObjCObjectType>();
6111 }
6112
6113 /// If this pointer points to an Objective C
6114 /// \@interface type, gets the type for that interface. Any protocol
6115 /// qualifiers on the interface are ignored.
6116 ///
6117 /// \return null if the base type for this pointer is 'id' or 'Class'
6118 const ObjCInterfaceType *getInterfaceType() const;
6119
6120 /// If this pointer points to an Objective \@interface
6121 /// type, gets the declaration for that interface.
6122 ///
6123 /// \return null if the base type for this pointer is 'id' or 'Class'
6124 ObjCInterfaceDecl *getInterfaceDecl() const {
6125 return getObjectType()->getInterface();
6126 }
6127
6128 /// True if this is equivalent to the 'id' type, i.e. if
6129 /// its object type is the primitive 'id' type with no protocols.
6130 bool isObjCIdType() const {
6131 return getObjectType()->isObjCUnqualifiedId();
6132 }
6133
6134 /// True if this is equivalent to the 'Class' type,
6135 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6136 bool isObjCClassType() const {
6137 return getObjectType()->isObjCUnqualifiedClass();
6138 }
6139
6140 /// True if this is equivalent to the 'id' or 'Class' type,
6141 bool isObjCIdOrClassType() const {
6142 return getObjectType()->isObjCUnqualifiedIdOrClass();
6143 }
6144
6145 /// True if this is equivalent to 'id<P>' for some non-empty set of
6146 /// protocols.
6147 bool isObjCQualifiedIdType() const {
6148 return getObjectType()->isObjCQualifiedId();
6149 }
6150
6151 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6152 /// protocols.
6153 bool isObjCQualifiedClassType() const {
6154 return getObjectType()->isObjCQualifiedClass();
6155 }
6156
6157 /// Whether this is a "__kindof" type.
6158 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6159
6160 /// Whether this type is specialized, meaning that it has type arguments.
6161 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6162
6163 /// Whether this type is specialized, meaning that it has type arguments.
6164 bool isSpecializedAsWritten() const {
6165 return getObjectType()->isSpecializedAsWritten();
6166 }
6167
6168 /// Whether this type is unspecialized, meaning that is has no type arguments.
6169 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6170
6171 /// Determine whether this object type is "unspecialized" as
6172 /// written, meaning that it has no type arguments.
6173 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6174
6175 /// Retrieve the type arguments for this type.
6176 ArrayRef<QualType> getTypeArgs() const {
6177 return getObjectType()->getTypeArgs();
6178 }
6179
6180 /// Retrieve the type arguments for this type.
6181 ArrayRef<QualType> getTypeArgsAsWritten() const {
6182 return getObjectType()->getTypeArgsAsWritten();
6183 }
6184
6185 /// An iterator over the qualifiers on the object type. Provided
6186 /// for convenience. This will always iterate over the full set of
6187 /// protocols on a type, not just those provided directly.
6188 using qual_iterator = ObjCObjectType::qual_iterator;
6189 using qual_range = llvm::iterator_range<qual_iterator>;
6190
6191 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6192
6193 qual_iterator qual_begin() const {
6194 return getObjectType()->qual_begin();
6195 }
6196
6197 qual_iterator qual_end() const {
6198 return getObjectType()->qual_end();
6199 }
6200
6201 bool qual_empty() const { return getObjectType()->qual_empty(); }
6202
6203 /// Return the number of qualifying protocols on the object type.
6204 unsigned getNumProtocols() const {
6205 return getObjectType()->getNumProtocols();
6206 }
6207
6208 /// Retrieve a qualifying protocol by index on the object type.
6209 ObjCProtocolDecl *getProtocol(unsigned I) const {
6210 return getObjectType()->getProtocol(I);
6211 }
6212
6213 bool isSugared() const { return false; }
6214 QualType desugar() const { return QualType(this, 0); }
6215
6216 /// Retrieve the type of the superclass of this object pointer type.
6217 ///
6218 /// This operation substitutes any type arguments into the
6219 /// superclass of the current class type, potentially producing a
6220 /// pointer to a specialization of the superclass type. Produces a
6221 /// null type if there is no superclass.
6222 QualType getSuperClassType() const;
6223
6224 /// Strip off the Objective-C "kindof" type and (with it) any
6225 /// protocol qualifiers.
6226 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6227 const ASTContext &ctx) const;
6228
6229 void Profile(llvm::FoldingSetNodeID &ID) {
6230 Profile(ID, getPointeeType());
6231 }
6232
6233 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6234 ID.AddPointer(T.getAsOpaquePtr());
6235 }
6236
6237 static bool classof(const Type *T) {
6238 return T->getTypeClass() == ObjCObjectPointer;
6239 }
6240};
6241
6242class AtomicType : public Type, public llvm::FoldingSetNode {
6243 friend class ASTContext; // ASTContext creates these.
6244
6245 QualType ValueType;
6246
6247 AtomicType(QualType ValTy, QualType Canonical)
6248 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6249
6250public:
6251 /// Gets the type contained by this atomic type, i.e.
6252 /// the type returned by performing an atomic load of this atomic type.
6253 QualType getValueType() const { return ValueType; }
6254
6255 bool isSugared() const { return false; }
6256 QualType desugar() const { return QualType(this, 0); }
6257
6258 void Profile(llvm::FoldingSetNodeID &ID) {
6259 Profile(ID, getValueType());
6260 }
6261
6262 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6263 ID.AddPointer(T.getAsOpaquePtr());
6264 }
6265
6266 static bool classof(const Type *T) {
6267 return T->getTypeClass() == Atomic;
6268 }
6269};
6270
6271/// PipeType - OpenCL20.
6272class PipeType : public Type, public llvm::FoldingSetNode {
6273 friend class ASTContext; // ASTContext creates these.
6274
6275 QualType ElementType;
6276 bool isRead;
6277
6278 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6279 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6280 ElementType(elemType), isRead(isRead) {}
6281
6282public:
6283 QualType getElementType() const { return ElementType; }
6284
6285 bool isSugared() const { return false; }
6286
6287 QualType desugar() const { return QualType(this, 0); }
6288
6289 void Profile(llvm::FoldingSetNodeID &ID) {
6290 Profile(ID, getElementType(), isReadOnly());
6291 }
6292
6293 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6294 ID.AddPointer(T.getAsOpaquePtr());
6295 ID.AddBoolean(isRead);
6296 }
6297
6298 static bool classof(const Type *T) {
6299 return T->getTypeClass() == Pipe;
6300 }
6301
6302 bool isReadOnly() const { return isRead; }
6303};
6304
6305/// A fixed int type of a specified bitwidth.
6306class ExtIntType final : public Type, public llvm::FoldingSetNode {
6307 friend class ASTContext;
6308 unsigned IsUnsigned : 1;
6309 unsigned NumBits : 24;
6310
6311protected:
6312 ExtIntType(bool isUnsigned, unsigned NumBits);
6313
6314public:
6315 bool isUnsigned() const { return IsUnsigned; }
6316 bool isSigned() const { return !IsUnsigned; }
6317 unsigned getNumBits() const { return NumBits; }
6318
6319 bool isSugared() const { return false; }
6320 QualType desugar() const { return QualType(this, 0); }
6321
6322 void Profile(llvm::FoldingSetNodeID &ID) {
6323 Profile(ID, isUnsigned(), getNumBits());
6324 }
6325
6326 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6327 unsigned NumBits) {
6328 ID.AddBoolean(IsUnsigned);
6329 ID.AddInteger(NumBits);
6330 }
6331
6332 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6333};
6334
6335class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6336 friend class ASTContext;
6337 const ASTContext &Context;
6338 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6339
6340protected:
6341 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6342 Expr *NumBits);
6343
6344public:
6345 bool isUnsigned() const;
6346 bool isSigned() const { return !isUnsigned(); }
6347 Expr *getNumBitsExpr() const;
6348
6349 bool isSugared() const { return false; }
6350 QualType desugar() const { return QualType(this, 0); }
6351
6352 void Profile(llvm::FoldingSetNodeID &ID) {
6353 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6354 }
6355 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6356 bool IsUnsigned, Expr *NumBitsExpr);
6357
6358 static bool classof(const Type *T) {
6359 return T->getTypeClass() == DependentExtInt;
6360 }
6361};
6362
6363/// A qualifier set is used to build a set of qualifiers.
6364class QualifierCollector : public Qualifiers {
6365public:
6366 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6367
6368 /// Collect any qualifiers on the given type and return an
6369 /// unqualified type. The qualifiers are assumed to be consistent
6370 /// with those already in the type.
6371 const Type *strip(QualType type) {
6372 addFastQualifiers(type.getLocalFastQualifiers());
6373 if (!type.hasLocalNonFastQualifiers())
6374 return type.getTypePtrUnsafe();
6375
6376 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6377 addConsistentQualifiers(extQuals->getQualifiers());
6378 return extQuals->getBaseType();
6379 }
6380
6381 /// Apply the collected qualifiers to the given type.
6382 QualType apply(const ASTContext &Context, QualType QT) const;
6383
6384 /// Apply the collected qualifiers to the given type.
6385 QualType apply(const ASTContext &Context, const Type* T) const;
6386};
6387
6388/// A container of type source information.
6389///
6390/// A client can read the relevant info using TypeLoc wrappers, e.g:
6391/// @code
6392/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6393/// TL.getBeginLoc().print(OS, SrcMgr);
6394/// @endcode
6395class alignas(8) TypeSourceInfo {
6396 // Contains a memory block after the class, used for type source information,
6397 // allocated by ASTContext.
6398 friend class ASTContext;
6399
6400 QualType Ty;
6401
6402 TypeSourceInfo(QualType ty) : Ty(ty) {}
6403
6404public:
6405 /// Return the type wrapped by this type source info.
6406 QualType getType() const { return Ty; }
6407
6408 /// Return the TypeLoc wrapper for the type source info.
6409 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6410
6411 /// Override the type stored in this TypeSourceInfo. Use with caution!
6412 void overrideType(QualType T) { Ty = T; }
6413};
6414
6415// Inline function definitions.
6416
6417inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6418 SplitQualType desugar =
6419 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6420 desugar.Quals.addConsistentQualifiers(Quals);
6421 return desugar;
6422}
6423
6424inline const Type *QualType::getTypePtr() const {
6425 return getCommonPtr()->BaseType;
6426}
6427
6428inline const Type *QualType::getTypePtrOrNull() const {
6429 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6430}
6431
6432inline SplitQualType QualType::split() const {
6433 if (!hasLocalNonFastQualifiers())
6434 return SplitQualType(getTypePtrUnsafe(),
6435 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6436
6437 const ExtQuals *eq = getExtQualsUnsafe();
6438 Qualifiers qs = eq->getQualifiers();
6439 qs.addFastQualifiers(getLocalFastQualifiers());
6440 return SplitQualType(eq->getBaseType(), qs);
6441}
6442
6443inline Qualifiers QualType::getLocalQualifiers() const {
6444 Qualifiers Quals;
6445 if (hasLocalNonFastQualifiers())
6446 Quals = getExtQualsUnsafe()->getQualifiers();
6447 Quals.addFastQualifiers(getLocalFastQualifiers());
6448 return Quals;
6449}
6450
6451inline Qualifiers QualType::getQualifiers() const {
6452 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6453 quals.addFastQualifiers(getLocalFastQualifiers());
6454 return quals;
6455}
6456
6457inline unsigned QualType::getCVRQualifiers() const {
6458 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6459 cvr |= getLocalCVRQualifiers();
6460 return cvr;
6461}
6462
6463inline QualType QualType::getCanonicalType() const {
6464 QualType canon = getCommonPtr()->CanonicalType;
6465 return canon.withFastQualifiers(getLocalFastQualifiers());
6466}
6467
6468inline bool QualType::isCanonical() const {
6469 return getTypePtr()->isCanonicalUnqualified();
6470}
6471
6472inline bool QualType::isCanonicalAsParam() const {
6473 if (!isCanonical()) return false;
6474 if (hasLocalQualifiers()) return false;
6475
6476 const Type *T = getTypePtr();
6477 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6478 return false;
6479
6480 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6481}
6482
6483inline bool QualType::isConstQualified() const {
6484 return isLocalConstQualified() ||
6485 getCommonPtr()->CanonicalType.isLocalConstQualified();
6486}
6487
6488inline bool QualType::isRestrictQualified() const {
6489 return isLocalRestrictQualified() ||
6490 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6491}
6492
6493
6494inline bool QualType::isVolatileQualified() const {
6495 return isLocalVolatileQualified() ||
6496 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6497}
6498
6499inline bool QualType::hasQualifiers() const {
6500 return hasLocalQualifiers() ||
6501 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6502}
6503
6504inline QualType QualType::getUnqualifiedType() const {
6505 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6506 return QualType(getTypePtr(), 0);
6507
6508 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6509}
6510
6511inline SplitQualType QualType::getSplitUnqualifiedType() const {
6512 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6513 return split();
6514
6515 return getSplitUnqualifiedTypeImpl(*this);
6516}
6517
6518inline void QualType::removeLocalConst() {
6519 removeLocalFastQualifiers(Qualifiers::Const);
6520}
6521
6522inline void QualType::removeLocalRestrict() {
6523 removeLocalFastQualifiers(Qualifiers::Restrict);
6524}
6525
6526inline void QualType::removeLocalVolatile() {
6527 removeLocalFastQualifiers(Qualifiers::Volatile);
6528}
6529
6530inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6531 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast<void> (0));
6532 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6533 "Fast bits differ from CVR bits!");
6534
6535 // Fast path: we don't need to touch the slow qualifiers.
6536 removeLocalFastQualifiers(Mask);
6537}
6538
6539/// Check if this type has any address space qualifier.
6540inline bool QualType::hasAddressSpace() const {
6541 return getQualifiers().hasAddressSpace();
6542}
6543
6544/// Return the address space of this type.
6545inline LangAS QualType::getAddressSpace() const {
6546 return getQualifiers().getAddressSpace();
6547}
6548
6549/// Return the gc attribute of this type.
6550inline Qualifiers::GC QualType::getObjCGCAttr() const {
6551 return getQualifiers().getObjCGCAttr();
6552}
6553
6554inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6555 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6556 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6557 return false;
6558}
6559
6560inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6561 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6562 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6563 return false;
6564}
6565
6566inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6567 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6568 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6569 return false;
6570}
6571
6572inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6573 if (const auto *PT = t.getAs<PointerType>()) {
6574 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6575 return FT->getExtInfo();
6576 } else if (const auto *FT = t.getAs<FunctionType>())
6577 return FT->getExtInfo();
6578
6579 return FunctionType::ExtInfo();
6580}
6581
6582inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6583 return getFunctionExtInfo(*t);
6584}
6585
6586/// Determine whether this type is more
6587/// qualified than the Other type. For example, "const volatile int"
6588/// is more qualified than "const int", "volatile int", and
6589/// "int". However, it is not more qualified than "const volatile
6590/// int".
6591inline bool QualType::isMoreQualifiedThan(QualType other) const {
6592 Qualifiers MyQuals = getQualifiers();
6593 Qualifiers OtherQuals = other.getQualifiers();
6594 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6595}
6596
6597/// Determine whether this type is at last
6598/// as qualified as the Other type. For example, "const volatile
6599/// int" is at least as qualified as "const int", "volatile int",
6600/// "int", and "const volatile int".
6601inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6602 Qualifiers OtherQuals = other.getQualifiers();
6603
6604 // Ignore __unaligned qualifier if this type is a void.
6605 if (getUnqualifiedType()->isVoidType())
6606 OtherQuals.removeUnaligned();
6607
6608 return getQualifiers().compatiblyIncludes(OtherQuals);
6609}
6610
6611/// If Type is a reference type (e.g., const
6612/// int&), returns the type that the reference refers to ("const
6613/// int"). Otherwise, returns the type itself. This routine is used
6614/// throughout Sema to implement C++ 5p6:
6615///
6616/// If an expression initially has the type "reference to T" (8.3.2,
6617/// 8.5.3), the type is adjusted to "T" prior to any further
6618/// analysis, the expression designates the object or function
6619/// denoted by the reference, and the expression is an lvalue.
6620inline QualType QualType::getNonReferenceType() const {
6621 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6622 return RefType->getPointeeType();
6623 else
6624 return *this;
6625}
6626
6627inline bool QualType::isCForbiddenLValueType() const {
6628 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6629 getTypePtr()->isFunctionType());
6630}
6631
6632/// Tests whether the type is categorized as a fundamental type.
6633///
6634/// \returns True for types specified in C++0x [basic.fundamental].
6635inline bool Type::isFundamentalType() const {
6636 return isVoidType() ||
6637 isNullPtrType() ||
6638 // FIXME: It's really annoying that we don't have an
6639 // 'isArithmeticType()' which agrees with the standard definition.
6640 (isArithmeticType() && !isEnumeralType());
6641}
6642
6643/// Tests whether the type is categorized as a compound type.
6644///
6645/// \returns True for types specified in C++0x [basic.compound].
6646inline bool Type::isCompoundType() const {
6647 // C++0x [basic.compound]p1:
6648 // Compound types can be constructed in the following ways:
6649 // -- arrays of objects of a given type [...];
6650 return isArrayType() ||
6651 // -- functions, which have parameters of given types [...];
6652 isFunctionType() ||
6653 // -- pointers to void or objects or functions [...];
6654 isPointerType() ||
6655 // -- references to objects or functions of a given type. [...]
6656 isReferenceType() ||
6657 // -- classes containing a sequence of objects of various types, [...];
6658 isRecordType() ||
6659 // -- unions, which are classes capable of containing objects of different
6660 // types at different times;
6661 isUnionType() ||
6662 // -- enumerations, which comprise a set of named constant values. [...];
6663 isEnumeralType() ||
6664 // -- pointers to non-static class members, [...].
6665 isMemberPointerType();
6666}
6667
6668inline bool Type::isFunctionType() const {
6669 return isa<FunctionType>(CanonicalType);
6670}
6671
6672inline bool Type::isPointerType() const {
6673 return isa<PointerType>(CanonicalType);
6674}
6675
6676inline bool Type::isAnyPointerType() const {
6677 return isPointerType() || isObjCObjectPointerType();
6678}
6679
6680inline bool Type::isBlockPointerType() const {
6681 return isa<BlockPointerType>(CanonicalType);
6682}
6683
6684inline bool Type::isReferenceType() const {
6685 return isa<ReferenceType>(CanonicalType);
6686}
6687
6688inline bool Type::isLValueReferenceType() const {
6689 return isa<LValueReferenceType>(CanonicalType);
6690}
6691
6692inline bool Type::isRValueReferenceType() const {
6693 return isa<RValueReferenceType>(CanonicalType);
6694}
6695
6696inline bool Type::isObjectPointerType() const {
6697 // Note: an "object pointer type" is not the same thing as a pointer to an
6698 // object type; rather, it is a pointer to an object type or a pointer to cv
6699 // void.
6700 if (const auto *T = getAs<PointerType>())
6701 return !T->getPointeeType()->isFunctionType();
6702 else
6703 return false;
6704}
6705
6706inline bool Type::isFunctionPointerType() const {
6707 if (const auto *T = getAs<PointerType>())
6708 return T->getPointeeType()->isFunctionType();
6709 else
6710 return false;
6711}
6712
6713inline bool Type::isFunctionReferenceType() const {
6714 if (const auto *T = getAs<ReferenceType>())
6715 return T->getPointeeType()->isFunctionType();
6716 else
6717 return false;
6718}
6719
6720inline bool Type::isMemberPointerType() const {
6721 return isa<MemberPointerType>(CanonicalType);
6722}
6723
6724inline bool Type::isMemberFunctionPointerType() const {
6725 if (const auto *T = getAs<MemberPointerType>())
6726 return T->isMemberFunctionPointer();
6727 else
6728 return false;
6729}
6730
6731inline bool Type::isMemberDataPointerType() const {
6732 if (const auto *T
13.1
'T' is null
13.1
'T' is null
= getAs<MemberPointerType>())
13
Assuming the object is not a 'MemberPointerType'
14
Taking false branch
6733 return T->isMemberDataPointer();
6734 else
6735 return false;
15
Returning zero, which participates in a condition later
6736}
6737
6738inline bool Type::isArrayType() const {
6739 return isa<ArrayType>(CanonicalType);
6740}
6741
6742inline bool Type::isConstantArrayType() const {
6743 return isa<ConstantArrayType>(CanonicalType);
6744}
6745
6746inline bool Type::isIncompleteArrayType() const {
6747 return isa<IncompleteArrayType>(CanonicalType);
6748}
6749
6750inline bool Type::isVariableArrayType() const {
6751 return isa<VariableArrayType>(CanonicalType);
6752}
6753
6754inline bool Type::isDependentSizedArrayType() const {
6755 return isa<DependentSizedArrayType>(CanonicalType);
6756}
6757
6758inline bool Type::isBuiltinType() const {
6759 return isa<BuiltinType>(CanonicalType);
6760}
6761
6762inline bool Type::isRecordType() const {
6763 return isa<RecordType>(CanonicalType);
6764}
6765
6766inline bool Type::isEnumeralType() const {
6767 return isa<EnumType>(CanonicalType);
6768}
6769
6770inline bool Type::isAnyComplexType() const {
6771 return isa<ComplexType>(CanonicalType);
6772}
6773
6774inline bool Type::isVectorType() const {
6775 return isa<VectorType>(CanonicalType);
6776}
6777
6778inline bool Type::isExtVectorType() const {
6779 return isa<ExtVectorType>(CanonicalType);
6780}
6781
6782inline bool Type::isMatrixType() const {
6783 return isa<MatrixType>(CanonicalType);
6784}
6785
6786inline bool Type::isConstantMatrixType() const {
6787 return isa<ConstantMatrixType>(CanonicalType);
6788}
6789
6790inline bool Type::isDependentAddressSpaceType() const {
6791 return isa<DependentAddressSpaceType>(CanonicalType);
6792}
6793
6794inline bool Type::isObjCObjectPointerType() const {
6795 return isa<ObjCObjectPointerType>(CanonicalType);
6796}
6797
6798inline bool Type::isObjCObjectType() const {
6799 return isa<ObjCObjectType>(CanonicalType);
6800}
6801
6802inline bool Type::isObjCObjectOrInterfaceType() const {
6803 return isa<ObjCInterfaceType>(CanonicalType) ||
6804 isa<ObjCObjectType>(CanonicalType);
6805}
6806
6807inline bool Type::isAtomicType() const {
6808 return isa<AtomicType>(CanonicalType);
6809}
6810
6811inline bool Type::isUndeducedAutoType() const {
6812 return isa<AutoType>(CanonicalType);
6813}
6814
6815inline bool Type::isObjCQualifiedIdType() const {
6816 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6817 return OPT->isObjCQualifiedIdType();
6818 return false;
6819}
6820
6821inline bool Type::isObjCQualifiedClassType() const {
6822 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6823 return OPT->isObjCQualifiedClassType();
6824 return false;
6825}
6826
6827inline bool Type::isObjCIdType() const {
6828 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6829 return OPT->isObjCIdType();
6830 return false;
6831}
6832
6833inline bool Type::isObjCClassType() const {
6834 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6835 return OPT->isObjCClassType();
6836 return false;
6837}
6838
6839inline bool Type::isObjCSelType() const {
6840 if (const auto *OPT = getAs<PointerType>())
6841 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6842 return false;
6843}
6844
6845inline bool Type::isObjCBuiltinType() const {
6846 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6847}
6848
6849inline bool Type::isDecltypeType() const {
6850 return isa<DecltypeType>(this);
6851}
6852
6853#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6854 inline bool Type::is##Id##Type() const { \
6855 return isSpecificBuiltinType(BuiltinType::Id); \
6856 }
6857#include "clang/Basic/OpenCLImageTypes.def"
6858
6859inline bool Type::isSamplerT() const {
6860 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6861}
6862
6863inline bool Type::isEventT() const {
6864 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6865}
6866
6867inline bool Type::isClkEventT() const {
6868 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6869}
6870
6871inline bool Type::isQueueT() const {
6872 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6873}
6874
6875inline bool Type::isReserveIDT() const {
6876 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6877}
6878
6879inline bool Type::isImageType() const {
6880#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6881 return
6882#include "clang/Basic/OpenCLImageTypes.def"
6883 false; // end boolean or operation
6884}
6885
6886inline bool Type::isPipeType() const {
6887 return isa<PipeType>(CanonicalType);
6888}
6889
6890inline bool Type::isExtIntType() const {
6891 return isa<ExtIntType>(CanonicalType);
6892}
6893
6894#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6895 inline bool Type::is##Id##Type() const { \
6896 return isSpecificBuiltinType(BuiltinType::Id); \
6897 }
6898#include "clang/Basic/OpenCLExtensionTypes.def"
6899
6900inline bool Type::isOCLIntelSubgroupAVCType() const {
6901#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6902 isOCLIntelSubgroupAVC##Id##Type() ||
6903 return
6904#include "clang/Basic/OpenCLExtensionTypes.def"
6905 false; // end of boolean or operation
6906}
6907
6908inline bool Type::isOCLExtOpaqueType() const {
6909#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6910 return
6911#include "clang/Basic/OpenCLExtensionTypes.def"
6912 false; // end of boolean or operation
6913}
6914
6915inline bool Type::isOpenCLSpecificType() const {
6916 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6917 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6918}
6919
6920inline bool Type::isTemplateTypeParmType() const {
6921 return isa<TemplateTypeParmType>(CanonicalType);
6922}
6923
6924inline bool Type::isSpecificBuiltinType(unsigned K) const {
6925 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6926 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6927 }
6928 return false;
6929}
6930
6931inline bool Type::isPlaceholderType() const {
6932 if (const auto *BT = dyn_cast<BuiltinType>(this))
6933 return BT->isPlaceholderType();
6934 return false;
6935}
6936
6937inline const BuiltinType *Type::getAsPlaceholderType() const {
6938 if (const auto *BT = dyn_cast<BuiltinType>(this))
6939 if (BT->isPlaceholderType())
6940 return BT;
6941 return nullptr;
6942}
6943
6944inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6945 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast<void> (0));
6946 return isSpecificBuiltinType(K);
6947}
6948
6949inline bool Type::isNonOverloadPlaceholderType() const {
6950 if (const auto *BT = dyn_cast<BuiltinType>(this))
6951 return BT->isNonOverloadPlaceholderType();
6952 return false;
6953}
6954
6955inline bool Type::isVoidType() const {
6956 return isSpecificBuiltinType(BuiltinType::Void);
6957}
6958
6959inline bool Type::isHalfType() const {
6960 // FIXME: Should we allow complex __fp16? Probably not.
6961 return isSpecificBuiltinType(BuiltinType::Half);
6962}
6963
6964inline bool Type::isFloat16Type() const {
6965 return isSpecificBuiltinType(BuiltinType::Float16);
6966}
6967
6968inline bool Type::isBFloat16Type() const {
6969 return isSpecificBuiltinType(BuiltinType::BFloat16);
6970}
6971
6972inline bool Type::isFloat128Type() const {
6973 return isSpecificBuiltinType(BuiltinType::Float128);
6974}
6975
6976inline bool Type::isNullPtrType() const {
6977 return isSpecificBuiltinType(BuiltinType::NullPtr);
6978}
6979
6980bool IsEnumDeclComplete(EnumDecl *);
6981bool IsEnumDeclScoped(EnumDecl *);
6982
6983inline bool Type::isIntegerType() const {
6984 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6985 return BT->getKind() >= BuiltinType::Bool &&
6986 BT->getKind() <= BuiltinType::Int128;
6987 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6988 // Incomplete enum types are not treated as integer types.
6989 // FIXME: In C++, enum types are never integer types.
6990 return IsEnumDeclComplete(ET->getDecl()) &&
6991 !IsEnumDeclScoped(ET->getDecl());
6992 }
6993 return isExtIntType();
6994}
6995
6996inline bool Type::isFixedPointType() const {
6997 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6998 return BT->getKind() >= BuiltinType::ShortAccum &&
6999 BT->getKind() <= BuiltinType::SatULongFract;
7000 }
7001 return false;
7002}
7003
7004inline bool Type::isFixedPointOrIntegerType() const {
7005 return isFixedPointType() || isIntegerType();
7006}
7007
7008inline bool Type::isSaturatedFixedPointType() const {
7009 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7010 return BT->getKind() >= BuiltinType::SatShortAccum &&
7011 BT->getKind() <= BuiltinType::SatULongFract;
7012 }
7013 return false;
7014}
7015
7016inline bool Type::isUnsaturatedFixedPointType() const {
7017 return isFixedPointType() && !isSaturatedFixedPointType();
7018}
7019
7020inline bool Type::isSignedFixedPointType() const {
7021 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7022 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7023 BT->getKind() <= BuiltinType::LongAccum) ||
7024 (BT->getKind() >= BuiltinType::ShortFract &&
7025 BT->getKind() <= BuiltinType::LongFract) ||
7026 (BT->getKind() >= BuiltinType::SatShortAccum &&
7027 BT->getKind() <= BuiltinType::SatLongAccum) ||
7028 (BT->getKind() >= BuiltinType::SatShortFract &&
7029 BT->getKind() <= BuiltinType::SatLongFract));
7030 }
7031 return false;
7032}
7033
7034inline bool Type::isUnsignedFixedPointType() const {
7035 return isFixedPointType() && !isSignedFixedPointType();
7036}
7037
7038inline bool Type::isScalarType() const {
7039 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7040 return BT->getKind() > BuiltinType::Void &&
7041 BT->getKind() <= BuiltinType::NullPtr;
7042 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7043 // Enums are scalar types, but only if they are defined. Incomplete enums
7044 // are not treated as scalar types.
7045 return IsEnumDeclComplete(ET->getDecl());
7046 return isa<PointerType>(CanonicalType) ||
7047 isa<BlockPointerType>(CanonicalType) ||
7048 isa<MemberPointerType>(CanonicalType) ||
7049 isa<ComplexType>(CanonicalType) ||
7050 isa<ObjCObjectPointerType>(CanonicalType) ||
7051 isExtIntType();
7052}
7053
7054inline bool Type::isIntegralOrEnumerationType() const {
7055 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7056 return BT->getKind() >= BuiltinType::Bool &&
7057 BT->getKind() <= BuiltinType::Int128;
7058
7059 // Check for a complete enum type; incomplete enum types are not properly an
7060 // enumeration type in the sense required here.
7061 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7062 return IsEnumDeclComplete(ET->getDecl());
7063
7064 return isExtIntType();
7065}
7066
7067inline bool Type::isBooleanType() const {
7068 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7069 return BT->getKind() == BuiltinType::Bool;
7070 return false;
7071}
7072
7073inline bool Type::isUndeducedType() const {
7074 auto *DT = getContainedDeducedType();
7075 return DT && !DT->isDeduced();
7076}
7077
7078/// Determines whether this is a type for which one can define
7079/// an overloaded operator.
7080inline bool Type::isOverloadableType() const {
7081 return isDependentType() || isRecordType() || isEnumeralType();
7082}
7083
7084/// Determines whether this type is written as a typedef-name.
7085inline bool Type::isTypedefNameType() const {
7086 if (getAs<TypedefType>())
7087 return true;
7088 if (auto *TST = getAs<TemplateSpecializationType>())
7089 return TST->isTypeAlias();
7090 return false;
7091}
7092
7093/// Determines whether this type can decay to a pointer type.
7094inline bool Type::canDecayToPointerType() const {
7095 return isFunctionType() || isArrayType();
7096}
7097
7098inline bool Type::hasPointerRepresentation() const {
7099 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7100 isObjCObjectPointerType() || isNullPtrType());
7101}
7102
7103inline bool Type::hasObjCPointerRepresentation() const {
7104 return isObjCObjectPointerType();
7105}
7106
7107inline const Type *Type::getBaseElementTypeUnsafe() const {
7108 const Type *type = this;
7109 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7110 type = arrayType->getElementType().getTypePtr();
7111 return type;
7112}
7113
7114inline const Type *Type::getPointeeOrArrayElementType() const {
7115 const Type *type = this;
7116 if (type->isAnyPointerType())
7117 return type->getPointeeType().getTypePtr();
7118 else if (type->isArrayType())
7119 return type->getBaseElementTypeUnsafe();
7120 return type;
7121}
7122/// Insertion operator for partial diagnostics. This allows sending adress
7123/// spaces into a diagnostic with <<.
7124inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7125 LangAS AS) {
7126 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7127 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7128 return PD;
7129}
7130
7131/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7132/// into a diagnostic with <<.
7133inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7134 Qualifiers Q) {
7135 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7136 DiagnosticsEngine::ArgumentKind::ak_qual);
7137 return PD;
7138}
7139
7140/// Insertion operator for partial diagnostics. This allows sending QualType's
7141/// into a diagnostic with <<.
7142inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7143 QualType T) {
7144 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7145 DiagnosticsEngine::ak_qualtype);
7146 return PD;
7147}
7148
7149// Helper class template that is used by Type::getAs to ensure that one does
7150// not try to look through a qualified type to get to an array type.
7151template <typename T>
7152using TypeIsArrayType =
7153 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7154 std::is_base_of<ArrayType, T>::value>;
7155
7156// Member-template getAs<specific type>'.
7157template <typename T> const T *Type::getAs() const {
7158 static_assert(!TypeIsArrayType<T>::value,
7159 "ArrayType cannot be used with getAs!");
7160
7161 // If this is directly a T type, return it.
7162 if (const auto *Ty = dyn_cast<T>(this))
7163 return Ty;
7164
7165 // If the canonical form of this type isn't the right kind, reject it.
7166 if (!isa<T>(CanonicalType))
7167 return nullptr;
7168
7169 // If this is a typedef for the type, strip the typedef off without
7170 // losing all typedef information.
7171 return cast<T>(getUnqualifiedDesugaredType());
7172}
7173
7174template <typename T> const T *Type::getAsAdjusted() const {
7175 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7176
7177 // If this is directly a T type, return it.
7178 if (const auto *Ty = dyn_cast<T>(this))
7179 return Ty;
7180
7181 // If the canonical form of this type isn't the right kind, reject it.
7182 if (!isa<T>(CanonicalType))
7183 return nullptr;
7184
7185 // Strip off type adjustments that do not modify the underlying nature of the
7186 // type.
7187 const Type *Ty = this;
7188 while (Ty) {
7189 if (const auto *A = dyn_cast<AttributedType>(Ty))
7190 Ty = A->getModifiedType().getTypePtr();
7191 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7192 Ty = E->desugar().getTypePtr();
7193 else if (const auto *P = dyn_cast<ParenType>(Ty))
7194 Ty = P->desugar().getTypePtr();
7195 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7196 Ty = A->desugar().getTypePtr();
7197 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7198 Ty = M->desugar().getTypePtr();
7199 else
7200 break;
7201 }
7202
7203 // Just because the canonical type is correct does not mean we can use cast<>,
7204 // since we may not have stripped off all the sugar down to the base type.
7205 return dyn_cast<T>(Ty);
7206}
7207
7208inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7209 // If this is directly an array type, return it.
7210 if (const auto *arr = dyn_cast<ArrayType>(this))
7211 return arr;
7212
7213 // If the canonical form of this type isn't the right kind, reject it.
7214 if (!isa<ArrayType>(CanonicalType))
7215 return nullptr;
7216
7217 // If this is a typedef for the type, strip the typedef off without
7218 // losing all typedef information.
7219 return cast<ArrayType>(getUnqualifiedDesugaredType());
7220}
7221
7222template <typename T> const T *Type::castAs() const {
7223 static_assert(!TypeIsArrayType<T>::value,
7224 "ArrayType cannot be used with castAs!");
7225
7226 if (const auto *ty = dyn_cast<T>(this)) return ty;
7227 assert(isa<T>(CanonicalType))(static_cast<void> (0));
7228 return cast<T>(getUnqualifiedDesugaredType());
7229}
7230
7231inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7232 assert(isa<ArrayType>(CanonicalType))(static_cast<void> (0));
7233 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7234 return cast<ArrayType>(getUnqualifiedDesugaredType());
7235}
7236
7237DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7238 QualType CanonicalPtr)
7239 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7240#ifndef NDEBUG1
7241 QualType Adjusted = getAdjustedType();
7242 (void)AttributedType::stripOuterNullability(Adjusted);
7243 assert(isa<PointerType>(Adjusted))(static_cast<void> (0));
7244#endif
7245}
7246
7247QualType DecayedType::getPointeeType() const {
7248 QualType Decayed = getDecayedType();
7249 (void)AttributedType::stripOuterNullability(Decayed);
7250 return cast<PointerType>(Decayed)->getPointeeType();
7251}
7252
7253// Get the decimal string representation of a fixed point type, represented
7254// as a scaled integer.
7255// TODO: At some point, we should change the arguments to instead just accept an
7256// APFixedPoint instead of APSInt and scale.
7257void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7258 unsigned Scale);
7259
7260} // namespace clang
7261
7262#endif // LLVM_CLANG_AST_TYPE_H