Bug Summary

File:tools/clang/lib/CodeGen/CGExpr.cpp
Warning:line 2233, column 17
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExpr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp

1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCall.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CGOpenMPRuntime.h"
19#include "CGRecordLayout.h"
20#include "CodeGenFunction.h"
21#include "CodeGenModule.h"
22#include "ConstantEmitter.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/NSAPI.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CodeGenOptions.h"
30#include "llvm/ADT/Hashing.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/Support/ConvertUTF.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Path.h"
39#include "llvm/Transforms/Utils/SanitizerStats.h"
40
41#include <string>
42
43using namespace clang;
44using namespace CodeGen;
45
46//===--------------------------------------------------------------------===//
47// Miscellaneous Helper Methods
48//===--------------------------------------------------------------------===//
49
50llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51 unsigned addressSpace =
52 cast<llvm::PointerType>(value->getType())->getAddressSpace();
53
54 llvm::PointerType *destType = Int8PtrTy;
55 if (addressSpace)
56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57
58 if (value->getType() == destType) return value;
59 return Builder.CreateBitCast(value, destType);
60}
61
62/// CreateTempAlloca - This creates a alloca and inserts it into the entry
63/// block.
64Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65 CharUnits Align,
66 const Twine &Name,
67 llvm::Value *ArraySize) {
68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69 Alloca->setAlignment(llvm::MaybeAlign(Align.getQuantity()));
70 return Address(Alloca, Align);
71}
72
73/// CreateTempAlloca - This creates a alloca and inserts it into the entry
74/// block. The alloca is casted to default address space if necessary.
75Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76 const Twine &Name,
77 llvm::Value *ArraySize,
78 Address *AllocaAddr) {
79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80 if (AllocaAddr)
81 *AllocaAddr = Alloca;
82 llvm::Value *V = Alloca.getPointer();
83 // Alloca always returns a pointer in alloca address space, which may
84 // be different from the type defined by the language. For example,
85 // in C++ the auto variables are in the default address space. Therefore
86 // cast alloca to the default address space when necessary.
87 if (getASTAllocaAddressSpace() != LangAS::Default) {
88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91 // otherwise alloca is inserted at the current insertion point of the
92 // builder.
93 if (!ArraySize)
94 Builder.SetInsertPoint(AllocaInsertPt);
95 V = getTargetHooks().performAddrSpaceCast(
96 *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98 }
99
100 return Address(V, Align);
101}
102
103/// CreateTempAlloca - This creates an alloca and inserts it into the entry
104/// block if \p ArraySize is nullptr, otherwise inserts it at the current
105/// insertion point of the builder.
106llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107 const Twine &Name,
108 llvm::Value *ArraySize) {
109 if (ArraySize)
110 return Builder.CreateAlloca(Ty, ArraySize, Name);
111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112 ArraySize, Name, AllocaInsertPt);
113}
114
115/// CreateDefaultAlignTempAlloca - This creates an alloca with the
116/// default alignment of the corresponding LLVM type, which is *not*
117/// guaranteed to be related in any way to the expected alignment of
118/// an AST type that might have been lowered to Ty.
119Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120 const Twine &Name) {
121 CharUnits Align =
122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123 return CreateTempAlloca(Ty, Align, Name);
124}
125
126void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127 assert(isa<llvm::AllocaInst>(Var.getPointer()))((isa<llvm::AllocaInst>(Var.getPointer())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::AllocaInst>(Var.getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 127, __PRETTY_FUNCTION__))
;
128 auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129 Store->setAlignment(Var.getAlignment().getQuantity());
130 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132}
133
134Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135 CharUnits Align = getContext().getTypeAlignInChars(Ty);
136 return CreateTempAlloca(ConvertType(Ty), Align, Name);
137}
138
139Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140 Address *Alloca) {
141 // FIXME: Should we prefer the preferred type alignment here?
142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143}
144
145Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146 const Twine &Name, Address *Alloca) {
147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148 /*ArraySize=*/nullptr, Alloca);
149}
150
151Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152 const Twine &Name) {
153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154}
155
156Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157 const Twine &Name) {
158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159 Name);
160}
161
162/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163/// expression and compare the result against zero, returning an Int1Ty value.
164llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165 PGO.setCurrentStmt(E);
166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167 llvm::Value *MemPtr = EmitScalarExpr(E);
168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169 }
170
171 QualType BoolTy = getContext().BoolTy;
172 SourceLocation Loc = E->getExprLoc();
173 if (!E->getType()->isAnyComplexType())
174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175
176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177 Loc);
178}
179
180/// EmitIgnoredExpr - Emit code to compute the specified expression,
181/// ignoring the result.
182void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183 if (E->isRValue())
9
Taking false branch
184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185
186 // Just emit it as an l-value and drop the result.
187 EmitLValue(E);
10
Calling 'CodeGenFunction::EmitLValue'
188}
189
190/// EmitAnyExpr - Emit code to compute the specified expression which
191/// can have any type. The result is returned as an RValue struct.
192/// If this is an aggregate expression, AggSlot indicates where the
193/// result should be returned.
194RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195 AggValueSlot aggSlot,
196 bool ignoreResult) {
197 switch (getEvaluationKind(E->getType())) {
198 case TEK_Scalar:
199 return RValue::get(EmitScalarExpr(E, ignoreResult));
200 case TEK_Complex:
201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202 case TEK_Aggregate:
203 if (!ignoreResult && aggSlot.isIgnored())
204 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205 EmitAggExpr(E, aggSlot);
206 return aggSlot.asRValue();
207 }
208 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 208)
;
209}
210
211/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212/// always be accessible even if no aggregate location is provided.
213RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214 AggValueSlot AggSlot = AggValueSlot::ignored();
215
216 if (hasAggregateEvaluationKind(E->getType()))
217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218 return EmitAnyExpr(E, AggSlot);
219}
220
221/// EmitAnyExprToMem - Evaluate an expression into a given memory
222/// location.
223void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224 Address Location,
225 Qualifiers Quals,
226 bool IsInit) {
227 // FIXME: This function should take an LValue as an argument.
228 switch (getEvaluationKind(E->getType())) {
229 case TEK_Complex:
230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231 /*isInit*/ false);
232 return;
233
234 case TEK_Aggregate: {
235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236 AggValueSlot::IsDestructed_t(IsInit),
237 AggValueSlot::DoesNotNeedGCBarriers,
238 AggValueSlot::IsAliased_t(!IsInit),
239 AggValueSlot::MayOverlap));
240 return;
241 }
242
243 case TEK_Scalar: {
244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245 LValue LV = MakeAddrLValue(Location, E->getType());
246 EmitStoreThroughLValue(RV, LV);
247 return;
248 }
249 }
250 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 250)
;
251}
252
253static void
254pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255 const Expr *E, Address ReferenceTemporary) {
256 // Objective-C++ ARC:
257 // If we are binding a reference to a temporary that has ownership, we
258 // need to perform retain/release operations on the temporary.
259 //
260 // FIXME: This should be looking at E, not M.
261 if (auto Lifetime = M->getType().getObjCLifetime()) {
262 switch (Lifetime) {
263 case Qualifiers::OCL_None:
264 case Qualifiers::OCL_ExplicitNone:
265 // Carry on to normal cleanup handling.
266 break;
267
268 case Qualifiers::OCL_Autoreleasing:
269 // Nothing to do; cleaned up by an autorelease pool.
270 return;
271
272 case Qualifiers::OCL_Strong:
273 case Qualifiers::OCL_Weak:
274 switch (StorageDuration Duration = M->getStorageDuration()) {
275 case SD_Static:
276 // Note: we intentionally do not register a cleanup to release
277 // the object on program termination.
278 return;
279
280 case SD_Thread:
281 // FIXME: We should probably register a cleanup in this case.
282 return;
283
284 case SD_Automatic:
285 case SD_FullExpression:
286 CodeGenFunction::Destroyer *Destroy;
287 CleanupKind CleanupKind;
288 if (Lifetime == Qualifiers::OCL_Strong) {
289 const ValueDecl *VD = M->getExtendingDecl();
290 bool Precise =
291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292 CleanupKind = CGF.getARCCleanupKind();
293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294 : &CodeGenFunction::destroyARCStrongImprecise;
295 } else {
296 // __weak objects always get EH cleanups; otherwise, exceptions
297 // could cause really nasty crashes instead of mere leaks.
298 CleanupKind = NormalAndEHCleanup;
299 Destroy = &CodeGenFunction::destroyARCWeak;
300 }
301 if (Duration == SD_FullExpression)
302 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303 M->getType(), *Destroy,
304 CleanupKind & EHCleanup);
305 else
306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307 M->getType(),
308 *Destroy, CleanupKind & EHCleanup);
309 return;
310
311 case SD_Dynamic:
312 llvm_unreachable("temporary cannot have dynamic storage duration")::llvm::llvm_unreachable_internal("temporary cannot have dynamic storage duration"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 312)
;
313 }
314 llvm_unreachable("unknown storage duration")::llvm::llvm_unreachable_internal("unknown storage duration",
"/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 314)
;
315 }
316 }
317
318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319 if (const RecordType *RT =
320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321 // Get the destructor for the reference temporary.
322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323 if (!ClassDecl->hasTrivialDestructor())
324 ReferenceTemporaryDtor = ClassDecl->getDestructor();
325 }
326
327 if (!ReferenceTemporaryDtor)
328 return;
329
330 // Call the destructor for the temporary.
331 switch (M->getStorageDuration()) {
332 case SD_Static:
333 case SD_Thread: {
334 llvm::FunctionCallee CleanupFn;
335 llvm::Constant *CleanupArg;
336 if (E->getType()->isArrayType()) {
337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338 ReferenceTemporary, E->getType(),
339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342 } else {
343 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346 }
347 CGF.CGM.getCXXABI().registerGlobalDtor(
348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349 break;
350 }
351
352 case SD_FullExpression:
353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354 CodeGenFunction::destroyCXXObject,
355 CGF.getLangOpts().Exceptions);
356 break;
357
358 case SD_Automatic:
359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360 ReferenceTemporary, E->getType(),
361 CodeGenFunction::destroyCXXObject,
362 CGF.getLangOpts().Exceptions);
363 break;
364
365 case SD_Dynamic:
366 llvm_unreachable("temporary cannot have dynamic storage duration")::llvm::llvm_unreachable_internal("temporary cannot have dynamic storage duration"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 366)
;
367 }
368}
369
370static Address createReferenceTemporary(CodeGenFunction &CGF,
371 const MaterializeTemporaryExpr *M,
372 const Expr *Inner,
373 Address *Alloca = nullptr) {
374 auto &TCG = CGF.getTargetHooks();
375 switch (M->getStorageDuration()) {
376 case SD_FullExpression:
377 case SD_Automatic: {
378 // If we have a constant temporary array or record try to promote it into a
379 // constant global under the same rules a normal constant would've been
380 // promoted. This is easier on the optimizer and generally emits fewer
381 // instructions.
382 QualType Ty = Inner->getType();
383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384 (Ty->isArrayType() || Ty->isRecordType()) &&
385 CGF.CGM.isTypeConstant(Ty, true))
386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388 auto AS = AddrSpace.getValue();
389 auto *GV = new llvm::GlobalVariable(
390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392 llvm::GlobalValue::NotThreadLocal,
393 CGF.getContext().getTargetAddressSpace(AS));
394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395 GV->setAlignment(alignment.getQuantity());
396 llvm::Constant *C = GV;
397 if (AS != LangAS::Default)
398 C = TCG.performAddrSpaceCast(
399 CGF.CGM, GV, AS, LangAS::Default,
400 GV->getValueType()->getPointerTo(
401 CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402 // FIXME: Should we put the new global into a COMDAT?
403 return Address(C, alignment);
404 }
405 }
406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407 }
408 case SD_Thread:
409 case SD_Static:
410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411
412 case SD_Dynamic:
413 llvm_unreachable("temporary can't have dynamic storage duration")::llvm::llvm_unreachable_internal("temporary can't have dynamic storage duration"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 413)
;
414 }
415 llvm_unreachable("unknown storage duration")::llvm::llvm_unreachable_internal("unknown storage duration",
"/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 415)
;
416}
417
418LValue CodeGenFunction::
419EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420 const Expr *E = M->GetTemporaryExpr();
421
422 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||(((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl
()) || !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong
()) && "Reference should never be pseudo-strong!") ? static_cast
<void> (0) : __assert_fail ("(!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && \"Reference should never be pseudo-strong!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 424, __PRETTY_FUNCTION__))
423 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&(((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl
()) || !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong
()) && "Reference should never be pseudo-strong!") ? static_cast
<void> (0) : __assert_fail ("(!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && \"Reference should never be pseudo-strong!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 424, __PRETTY_FUNCTION__))
424 "Reference should never be pseudo-strong!")(((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl
()) || !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong
()) && "Reference should never be pseudo-strong!") ? static_cast
<void> (0) : __assert_fail ("(!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && \"Reference should never be pseudo-strong!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 424, __PRETTY_FUNCTION__))
;
425
426 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427 // as that will cause the lifetime adjustment to be lost for ARC
428 auto ownership = M->getType().getObjCLifetime();
429 if (ownership != Qualifiers::OCL_None &&
430 ownership != Qualifiers::OCL_ExplicitNone) {
431 Address Object = createReferenceTemporary(*this, M, E);
432 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433 Object = Address(llvm::ConstantExpr::getBitCast(Var,
434 ConvertTypeForMem(E->getType())
435 ->getPointerTo(Object.getAddressSpace())),
436 Object.getAlignment());
437
438 // createReferenceTemporary will promote the temporary to a global with a
439 // constant initializer if it can. It can only do this to a value of
440 // ARC-manageable type if the value is global and therefore "immune" to
441 // ref-counting operations. Therefore we have no need to emit either a
442 // dynamic initialization or a cleanup and we can just return the address
443 // of the temporary.
444 if (Var->hasInitializer())
445 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446
447 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448 }
449 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450 AlignmentSource::Decl);
451
452 switch (getEvaluationKind(E->getType())) {
453 default: llvm_unreachable("expected scalar or aggregate expression")::llvm::llvm_unreachable_internal("expected scalar or aggregate expression"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 453)
;
454 case TEK_Scalar:
455 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456 break;
457 case TEK_Aggregate: {
458 EmitAggExpr(E, AggValueSlot::forAddr(Object,
459 E->getType().getQualifiers(),
460 AggValueSlot::IsDestructed,
461 AggValueSlot::DoesNotNeedGCBarriers,
462 AggValueSlot::IsNotAliased,
463 AggValueSlot::DoesNotOverlap));
464 break;
465 }
466 }
467
468 pushTemporaryCleanup(*this, M, E, Object);
469 return RefTempDst;
470 }
471
472 SmallVector<const Expr *, 2> CommaLHSs;
473 SmallVector<SubobjectAdjustment, 2> Adjustments;
474 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475
476 for (const auto &Ignored : CommaLHSs)
477 EmitIgnoredExpr(Ignored);
478
479 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480 if (opaque->getType()->isRecordType()) {
481 assert(Adjustments.empty())((Adjustments.empty()) ? static_cast<void> (0) : __assert_fail
("Adjustments.empty()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 481, __PRETTY_FUNCTION__))
;
482 return EmitOpaqueValueLValue(opaque);
483 }
484 }
485
486 // Create and initialize the reference temporary.
487 Address Alloca = Address::invalid();
488 Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489 if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490 Object.getPointer()->stripPointerCasts())) {
491 Object = Address(llvm::ConstantExpr::getBitCast(
492 cast<llvm::Constant>(Object.getPointer()),
493 ConvertTypeForMem(E->getType())->getPointerTo()),
494 Object.getAlignment());
495 // If the temporary is a global and has a constant initializer or is a
496 // constant temporary that we promoted to a global, we may have already
497 // initialized it.
498 if (!Var->hasInitializer()) {
499 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501 }
502 } else {
503 switch (M->getStorageDuration()) {
504 case SD_Automatic:
505 if (auto *Size = EmitLifetimeStart(
506 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507 Alloca.getPointer())) {
508 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509 Alloca, Size);
510 }
511 break;
512
513 case SD_FullExpression: {
514 if (!ShouldEmitLifetimeMarkers)
515 break;
516
517 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518 // marker. Instead, start the lifetime of a conditional temporary earlier
519 // so that it's unconditional. Don't do this with sanitizers which need
520 // more precise lifetime marks.
521 ConditionalEvaluation *OldConditional = nullptr;
522 CGBuilderTy::InsertPoint OldIP;
523 if (isInConditionalBranch() && !E->getType().isDestructedType() &&
524 !SanOpts.has(SanitizerKind::HWAddress) &&
525 !SanOpts.has(SanitizerKind::Memory) &&
526 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527 OldConditional = OutermostConditional;
528 OutermostConditional = nullptr;
529
530 OldIP = Builder.saveIP();
531 llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532 Builder.restoreIP(CGBuilderTy::InsertPoint(
533 Block, llvm::BasicBlock::iterator(Block->back())));
534 }
535
536 if (auto *Size = EmitLifetimeStart(
537 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538 Alloca.getPointer())) {
539 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540 Size);
541 }
542
543 if (OldConditional) {
544 OutermostConditional = OldConditional;
545 Builder.restoreIP(OldIP);
546 }
547 break;
548 }
549
550 default:
551 break;
552 }
553 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554 }
555 pushTemporaryCleanup(*this, M, E, Object);
556
557 // Perform derived-to-base casts and/or field accesses, to get from the
558 // temporary object we created (and, potentially, for which we extended
559 // the lifetime) to the subobject we're binding the reference to.
560 for (unsigned I = Adjustments.size(); I != 0; --I) {
561 SubobjectAdjustment &Adjustment = Adjustments[I-1];
562 switch (Adjustment.Kind) {
563 case SubobjectAdjustment::DerivedToBaseAdjustment:
564 Object =
565 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566 Adjustment.DerivedToBase.BasePath->path_begin(),
567 Adjustment.DerivedToBase.BasePath->path_end(),
568 /*NullCheckValue=*/ false, E->getExprLoc());
569 break;
570
571 case SubobjectAdjustment::FieldAdjustment: {
572 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573 LV = EmitLValueForField(LV, Adjustment.Field);
574 assert(LV.isSimple() &&((LV.isSimple() && "materialized temporary field is not a simple lvalue"
) ? static_cast<void> (0) : __assert_fail ("LV.isSimple() && \"materialized temporary field is not a simple lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 575, __PRETTY_FUNCTION__))
575 "materialized temporary field is not a simple lvalue")((LV.isSimple() && "materialized temporary field is not a simple lvalue"
) ? static_cast<void> (0) : __assert_fail ("LV.isSimple() && \"materialized temporary field is not a simple lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 575, __PRETTY_FUNCTION__))
;
576 Object = LV.getAddress();
577 break;
578 }
579
580 case SubobjectAdjustment::MemberPointerAdjustment: {
581 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583 Adjustment.Ptr.MPT);
584 break;
585 }
586 }
587 }
588
589 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590}
591
592RValue
593CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594 // Emit the expression as an lvalue.
595 LValue LV = EmitLValue(E);
596 assert(LV.isSimple())((LV.isSimple()) ? static_cast<void> (0) : __assert_fail
("LV.isSimple()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 596, __PRETTY_FUNCTION__))
;
597 llvm::Value *Value = LV.getPointer();
598
599 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600 // C++11 [dcl.ref]p5 (as amended by core issue 453):
601 // If a glvalue to which a reference is directly bound designates neither
602 // an existing object or function of an appropriate type nor a region of
603 // storage of suitable size and alignment to contain an object of the
604 // reference's type, the behavior is undefined.
605 QualType Ty = E->getType();
606 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607 }
608
609 return RValue::get(Value);
610}
611
612
613/// getAccessedFieldNo - Given an encoded value and a result number, return the
614/// input field number being accessed.
615unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616 const llvm::Constant *Elts) {
617 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618 ->getZExtValue();
619}
620
621/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623 llvm::Value *High) {
624 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625 llvm::Value *K47 = Builder.getInt64(47);
626 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630 return Builder.CreateMul(B1, KMul);
631}
632
633bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636}
637
638bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640 return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644}
645
646bool CodeGenFunction::sanitizePerformTypeCheck() const {
647 return SanOpts.has(SanitizerKind::Null) |
648 SanOpts.has(SanitizerKind::Alignment) |
649 SanOpts.has(SanitizerKind::ObjectSize) |
650 SanOpts.has(SanitizerKind::Vptr);
651}
652
653void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654 llvm::Value *Ptr, QualType Ty,
655 CharUnits Alignment,
656 SanitizerSet SkippedChecks,
657 llvm::Value *ArraySize) {
658 if (!sanitizePerformTypeCheck())
659 return;
660
661 // Don't check pointers outside the default address space. The null check
662 // isn't correct, the object-size check isn't supported by LLVM, and we can't
663 // communicate the addresses to the runtime handler for the vptr check.
664 if (Ptr->getType()->getPointerAddressSpace())
665 return;
666
667 // Don't check pointers to volatile data. The behavior here is implementation-
668 // defined.
669 if (Ty.isVolatileQualified())
670 return;
671
672 SanitizerScope SanScope(this);
673
674 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675 llvm::BasicBlock *Done = nullptr;
676
677 // Quickly determine whether we have a pointer to an alloca. It's possible
678 // to skip null checks, and some alignment checks, for these pointers. This
679 // can reduce compile-time significantly.
680 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681
682 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683 llvm::Value *IsNonNull = nullptr;
684 bool IsGuaranteedNonNull =
685 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686 bool AllowNullPointers = isNullPointerAllowed(TCK);
687 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688 !IsGuaranteedNonNull) {
689 // The glvalue must not be an empty glvalue.
690 IsNonNull = Builder.CreateIsNotNull(Ptr);
691
692 // The IR builder can constant-fold the null check if the pointer points to
693 // a constant.
694 IsGuaranteedNonNull = IsNonNull == True;
695
696 // Skip the null check if the pointer is known to be non-null.
697 if (!IsGuaranteedNonNull) {
698 if (AllowNullPointers) {
699 // When performing pointer casts, it's OK if the value is null.
700 // Skip the remaining checks in that case.
701 Done = createBasicBlock("null");
702 llvm::BasicBlock *Rest = createBasicBlock("not.null");
703 Builder.CreateCondBr(IsNonNull, Rest, Done);
704 EmitBlock(Rest);
705 } else {
706 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707 }
708 }
709 }
710
711 if (SanOpts.has(SanitizerKind::ObjectSize) &&
712 !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713 !Ty->isIncompleteType()) {
714 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716 if (ArraySize)
717 Size = Builder.CreateMul(Size, ArraySize);
718
719 // Degenerate case: new X[0] does not need an objectsize check.
720 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721 if (!ConstantSize || !ConstantSize->isNullValue()) {
722 // The glvalue must refer to a large enough storage region.
723 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724 // to check this.
725 // FIXME: Get object address space
726 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728 llvm::Value *Min = Builder.getFalse();
729 llvm::Value *NullIsUnknown = Builder.getFalse();
730 llvm::Value *Dynamic = Builder.getFalse();
731 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732 llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735 }
736 }
737
738 uint64_t AlignVal = 0;
739 llvm::Value *PtrAsInt = nullptr;
740
741 if (SanOpts.has(SanitizerKind::Alignment) &&
742 !SkippedChecks.has(SanitizerKind::Alignment)) {
743 AlignVal = Alignment.getQuantity();
744 if (!Ty->isIncompleteType() && !AlignVal)
745 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746
747 // The glvalue must be suitably aligned.
748 if (AlignVal > 1 &&
749 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751 llvm::Value *Align = Builder.CreateAnd(
752 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753 llvm::Value *Aligned =
754 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755 if (Aligned != True)
756 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757 }
758 }
759
760 if (Checks.size() > 0) {
761 // Make sure we're not losing information. Alignment needs to be a power of
762 // 2
763 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal)((!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) ==
AlignVal) ? static_cast<void> (0) : __assert_fail ("!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 763, __PRETTY_FUNCTION__))
;
764 llvm::Constant *StaticData[] = {
765 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767 llvm::ConstantInt::get(Int8Ty, TCK)};
768 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769 PtrAsInt ? PtrAsInt : Ptr);
770 }
771
772 // If possible, check that the vptr indicates that there is a subobject of
773 // type Ty at offset zero within this object.
774 //
775 // C++11 [basic.life]p5,6:
776 // [For storage which does not refer to an object within its lifetime]
777 // The program has undefined behavior if:
778 // -- the [pointer or glvalue] is used to access a non-static data member
779 // or call a non-static member function
780 if (SanOpts.has(SanitizerKind::Vptr) &&
781 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782 // Ensure that the pointer is non-null before loading it. If there is no
783 // compile-time guarantee, reuse the run-time null check or emit a new one.
784 if (!IsGuaranteedNonNull) {
785 if (!IsNonNull)
786 IsNonNull = Builder.CreateIsNotNull(Ptr);
787 if (!Done)
788 Done = createBasicBlock("vptr.null");
789 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791 EmitBlock(VptrNotNull);
792 }
793
794 // Compute a hash of the mangled name of the type.
795 //
796 // FIXME: This is not guaranteed to be deterministic! Move to a
797 // fingerprinting mechanism once LLVM provides one. For the time
798 // being the implementation happens to be deterministic.
799 SmallString<64> MangledName;
800 llvm::raw_svector_ostream Out(MangledName);
801 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802 Out);
803
804 // Blacklist based on the mangled type.
805 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806 SanitizerKind::Vptr, Out.str())) {
807 llvm::hash_code TypeHash = hash_value(Out.str());
808
809 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815
816 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818
819 // Look the hash up in our cache.
820 const int CacheSize = 128;
821 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823 "__ubsan_vptr_type_cache");
824 llvm::Value *Slot = Builder.CreateAnd(Hash,
825 llvm::ConstantInt::get(IntPtrTy,
826 CacheSize-1));
827 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828 llvm::Value *CacheVal =
829 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830 getPointerAlign());
831
832 // If the hash isn't in the cache, call a runtime handler to perform the
833 // hard work of checking whether the vptr is for an object of the right
834 // type. This will either fill in the cache and return, or produce a
835 // diagnostic.
836 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837 llvm::Constant *StaticData[] = {
838 EmitCheckSourceLocation(Loc),
839 EmitCheckTypeDescriptor(Ty),
840 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841 llvm::ConstantInt::get(Int8Ty, TCK)
842 };
843 llvm::Value *DynamicData[] = { Ptr, Hash };
844 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846 DynamicData);
847 }
848 }
849
850 if (Done) {
851 Builder.CreateBr(Done);
852 EmitBlock(Done);
853 }
854}
855
856/// Determine whether this expression refers to a flexible array member in a
857/// struct. We disable array bounds checks for such members.
858static bool isFlexibleArrayMemberExpr(const Expr *E) {
859 // For compatibility with existing code, we treat arrays of length 0 or
860 // 1 as flexible array members.
861 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863 if (CAT->getSize().ugt(1))
864 return false;
865 } else if (!isa<IncompleteArrayType>(AT))
866 return false;
867
868 E = E->IgnoreParens();
869
870 // A flexible array member must be the last member in the class.
871 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872 // FIXME: If the base type of the member expr is not FD->getParent(),
873 // this should not be treated as a flexible array member access.
874 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875 RecordDecl::field_iterator FI(
876 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877 return ++FI == FD->getParent()->field_end();
878 }
879 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880 return IRE->getDecl()->getNextIvar() == nullptr;
881 }
882
883 return false;
884}
885
886llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887 QualType EltTy) {
888 ASTContext &C = getContext();
889 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890 if (!EltSize)
891 return nullptr;
892
893 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894 if (!ArrayDeclRef)
895 return nullptr;
896
897 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898 if (!ParamDecl)
899 return nullptr;
900
901 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902 if (!POSAttr)
903 return nullptr;
904
905 // Don't load the size if it's a lower bound.
906 int POSType = POSAttr->getType();
907 if (POSType != 0 && POSType != 1)
908 return nullptr;
909
910 // Find the implicit size parameter.
911 auto PassedSizeIt = SizeArguments.find(ParamDecl);
912 if (PassedSizeIt == SizeArguments.end())
913 return nullptr;
914
915 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable")((LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"
) ? static_cast<void> (0) : __assert_fail ("LocalDeclMap.count(PassedSizeDecl) && \"Passed size not loadable\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 916, __PRETTY_FUNCTION__))
;
917 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919 C.getSizeType(), E->getExprLoc());
920 llvm::Value *SizeOfElement =
921 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922 return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923}
924
925/// If Base is known to point to the start of an array, return the length of
926/// that array. Return 0 if the length cannot be determined.
927static llvm::Value *getArrayIndexingBound(
928 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929 // For the vector indexing extension, the bound is the number of elements.
930 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931 IndexedType = Base->getType();
932 return CGF.Builder.getInt32(VT->getNumElements());
933 }
934
935 Base = Base->IgnoreParens();
936
937 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939 !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940 IndexedType = CE->getSubExpr()->getType();
941 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943 return CGF.Builder.getInt(CAT->getSize());
944 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945 return CGF.getVLASize(VAT).NumElts;
946 // Ignore pass_object_size here. It's not applicable on decayed pointers.
947 }
948 }
949
950 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952 IndexedType = Base->getType();
953 return POS;
954 }
955
956 return nullptr;
957}
958
959void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960 llvm::Value *Index, QualType IndexType,
961 bool Accessed) {
962 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&((SanOpts.has(SanitizerKind::ArrayBounds) && "should not be called unless adding bounds checks"
) ? static_cast<void> (0) : __assert_fail ("SanOpts.has(SanitizerKind::ArrayBounds) && \"should not be called unless adding bounds checks\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 963, __PRETTY_FUNCTION__))
963 "should not be called unless adding bounds checks")((SanOpts.has(SanitizerKind::ArrayBounds) && "should not be called unless adding bounds checks"
) ? static_cast<void> (0) : __assert_fail ("SanOpts.has(SanitizerKind::ArrayBounds) && \"should not be called unless adding bounds checks\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 963, __PRETTY_FUNCTION__))
;
964 SanitizerScope SanScope(this);
965
966 QualType IndexedType;
967 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968 if (!Bound)
969 return;
970
971 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974
975 llvm::Constant *StaticData[] = {
976 EmitCheckSourceLocation(E->getExprLoc()),
977 EmitCheckTypeDescriptor(IndexedType),
978 EmitCheckTypeDescriptor(IndexType)
979 };
980 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981 : Builder.CreateICmpULE(IndexVal, BoundVal);
982 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983 SanitizerHandler::OutOfBounds, StaticData, Index);
984}
985
986
987CodeGenFunction::ComplexPairTy CodeGenFunction::
988EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989 bool isInc, bool isPre) {
990 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991
992 llvm::Value *NextVal;
993 if (isa<llvm::IntegerType>(InVal.first->getType())) {
994 uint64_t AmountVal = isInc ? 1 : -1;
995 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996
997 // Add the inc/dec to the real part.
998 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999 } else {
1000 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002 if (!isInc)
1003 FVal.changeSign();
1004 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005
1006 // Add the inc/dec to the real part.
1007 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008 }
1009
1010 ComplexPairTy IncVal(NextVal, InVal.second);
1011
1012 // Store the updated result through the lvalue.
1013 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014
1015 // If this is a postinc, return the value read from memory, otherwise use the
1016 // updated value.
1017 return isPre ? IncVal : InVal;
1018}
1019
1020void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021 CodeGenFunction *CGF) {
1022 // Bind VLAs in the cast type.
1023 if (CGF && E->getType()->isVariablyModifiedType())
1024 CGF->EmitVariablyModifiedType(E->getType());
1025
1026 if (CGDebugInfo *DI = getModuleDebugInfo())
1027 DI->EmitExplicitCastType(E->getType());
1028}
1029
1030//===----------------------------------------------------------------------===//
1031// LValue Expression Emission
1032//===----------------------------------------------------------------------===//
1033
1034/// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035/// derive a more accurate bound on the alignment of the pointer.
1036Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037 LValueBaseInfo *BaseInfo,
1038 TBAAAccessInfo *TBAAInfo) {
1039 // We allow this with ObjC object pointers because of fragile ABIs.
1040 assert(E->getType()->isPointerType() ||((E->getType()->isPointerType() || E->getType()->
isObjCObjectPointerType()) ? static_cast<void> (0) : __assert_fail
("E->getType()->isPointerType() || E->getType()->isObjCObjectPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1041, __PRETTY_FUNCTION__))
1041 E->getType()->isObjCObjectPointerType())((E->getType()->isPointerType() || E->getType()->
isObjCObjectPointerType()) ? static_cast<void> (0) : __assert_fail
("E->getType()->isPointerType() || E->getType()->isObjCObjectPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1041, __PRETTY_FUNCTION__))
;
1042 E = E->IgnoreParens();
1043
1044 // Casts:
1045 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047 CGM.EmitExplicitCastExprType(ECE, this);
1048
1049 switch (CE->getCastKind()) {
1050 // Non-converting casts (but not C's implicit conversion from void*).
1051 case CK_BitCast:
1052 case CK_NoOp:
1053 case CK_AddressSpaceConversion:
1054 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055 if (PtrTy->getPointeeType()->isVoidType())
1056 break;
1057
1058 LValueBaseInfo InnerBaseInfo;
1059 TBAAAccessInfo InnerTBAAInfo;
1060 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061 &InnerBaseInfo,
1062 &InnerTBAAInfo);
1063 if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065
1066 if (isa<ExplicitCastExpr>(CE)) {
1067 LValueBaseInfo TargetTypeBaseInfo;
1068 TBAAAccessInfo TargetTypeTBAAInfo;
1069 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070 &TargetTypeBaseInfo,
1071 &TargetTypeTBAAInfo);
1072 if (TBAAInfo)
1073 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074 TargetTypeTBAAInfo);
1075 // If the source l-value is opaque, honor the alignment of the
1076 // casted-to type.
1077 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078 if (BaseInfo)
1079 BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080 Addr = Address(Addr.getPointer(), Align);
1081 }
1082 }
1083
1084 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085 CE->getCastKind() == CK_BitCast) {
1086 if (auto PT = E->getType()->getAs<PointerType>())
1087 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088 /*MayBeNull=*/true,
1089 CodeGenFunction::CFITCK_UnrelatedCast,
1090 CE->getBeginLoc());
1091 }
1092 return CE->getCastKind() != CK_AddressSpaceConversion
1093 ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094 : Builder.CreateAddrSpaceCast(Addr,
1095 ConvertType(E->getType()));
1096 }
1097 break;
1098
1099 // Array-to-pointer decay.
1100 case CK_ArrayToPointerDecay:
1101 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102
1103 // Derived-to-base conversions.
1104 case CK_UncheckedDerivedToBase:
1105 case CK_DerivedToBase: {
1106 // TODO: Support accesses to members of base classes in TBAA. For now, we
1107 // conservatively pretend that the complete object is of the base class
1108 // type.
1109 if (TBAAInfo)
1110 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113 return GetAddressOfBaseClass(Addr, Derived,
1114 CE->path_begin(), CE->path_end(),
1115 ShouldNullCheckClassCastValue(CE),
1116 CE->getExprLoc());
1117 }
1118
1119 // TODO: Is there any reason to treat base-to-derived conversions
1120 // specially?
1121 default:
1122 break;
1123 }
1124 }
1125
1126 // Unary &.
1127 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128 if (UO->getOpcode() == UO_AddrOf) {
1129 LValue LV = EmitLValue(UO->getSubExpr());
1130 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132 return LV.getAddress();
1133 }
1134 }
1135
1136 // TODO: conditional operators, comma.
1137
1138 // Otherwise, use the alignment of the type.
1139 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140 TBAAInfo);
1141 return Address(EmitScalarExpr(E), Align);
1142}
1143
1144RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145 if (Ty->isVoidType())
1146 return RValue::get(nullptr);
1147
1148 switch (getEvaluationKind(Ty)) {
1149 case TEK_Complex: {
1150 llvm::Type *EltTy =
1151 ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152 llvm::Value *U = llvm::UndefValue::get(EltTy);
1153 return RValue::getComplex(std::make_pair(U, U));
1154 }
1155
1156 // If this is a use of an undefined aggregate type, the aggregate must have an
1157 // identifiable address. Just because the contents of the value are undefined
1158 // doesn't mean that the address can't be taken and compared.
1159 case TEK_Aggregate: {
1160 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161 return RValue::getAggregate(DestPtr);
1162 }
1163
1164 case TEK_Scalar:
1165 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166 }
1167 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1167)
;
1168}
1169
1170RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171 const char *Name) {
1172 ErrorUnsupported(E, Name);
1173 return GetUndefRValue(E->getType());
1174}
1175
1176LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177 const char *Name) {
1178 ErrorUnsupported(E, Name);
1179 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181 E->getType());
1182}
1183
1184bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185 const Expr *Base = Obj;
1186 while (!isa<CXXThisExpr>(Base)) {
1187 // The result of a dynamic_cast can be null.
1188 if (isa<CXXDynamicCastExpr>(Base))
1189 return false;
1190
1191 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192 Base = CE->getSubExpr();
1193 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194 Base = PE->getSubExpr();
1195 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196 if (UO->getOpcode() == UO_Extension)
1197 Base = UO->getSubExpr();
1198 else
1199 return false;
1200 } else {
1201 return false;
1202 }
1203 }
1204 return true;
1205}
1206
1207LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208 LValue LV;
1209 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211 else
1212 LV = EmitLValue(E);
1213 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214 SanitizerSet SkippedChecks;
1215 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217 if (IsBaseCXXThis)
1218 SkippedChecks.set(SanitizerKind::Alignment, true);
1219 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220 SkippedChecks.set(SanitizerKind::Null, true);
1221 }
1222 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223 E->getType(), LV.getAlignment(), SkippedChecks);
1224 }
1225 return LV;
1226}
1227
1228/// EmitLValue - Emit code to compute a designator that specifies the location
1229/// of the expression.
1230///
1231/// This can return one of two things: a simple address or a bitfield reference.
1232/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233/// an LLVM pointer type.
1234///
1235/// If this returns a bitfield reference, nothing about the pointee type of the
1236/// LLVM value is known: For example, it may not be a pointer to an integer.
1237///
1238/// If this returns a normal address, and if the lvalue's C type is fixed size,
1239/// this method guarantees that the returned pointer type will point to an LLVM
1240/// type of the same size of the lvalue's type. If the lvalue has a variable
1241/// length type, this is not possible.
1242///
1243LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244 ApplyDebugLocation DL(*this, E);
1245 switch (E->getStmtClass()) {
11
Control jumps to 'case MemberExprClass:' at line 1345
1246 default: return EmitUnsupportedLValue(E, "l-value expression");
1247
1248 case Expr::ObjCPropertyRefExprClass:
1249 llvm_unreachable("cannot emit a property reference directly")::llvm::llvm_unreachable_internal("cannot emit a property reference directly"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1249)
;
1250
1251 case Expr::ObjCSelectorExprClass:
1252 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253 case Expr::ObjCIsaExprClass:
1254 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255 case Expr::BinaryOperatorClass:
1256 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257 case Expr::CompoundAssignOperatorClass: {
1258 QualType Ty = E->getType();
1259 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260 Ty = AT->getValueType();
1261 if (!Ty->isAnyComplexType())
1262 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264 }
1265 case Expr::CallExprClass:
1266 case Expr::CXXMemberCallExprClass:
1267 case Expr::CXXOperatorCallExprClass:
1268 case Expr::UserDefinedLiteralClass:
1269 return EmitCallExprLValue(cast<CallExpr>(E));
1270 case Expr::VAArgExprClass:
1271 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272 case Expr::DeclRefExprClass:
1273 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274 case Expr::ConstantExprClass:
1275 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276 case Expr::ParenExprClass:
1277 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278 case Expr::GenericSelectionExprClass:
1279 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280 case Expr::PredefinedExprClass:
1281 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282 case Expr::StringLiteralClass:
1283 return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284 case Expr::ObjCEncodeExprClass:
1285 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286 case Expr::PseudoObjectExprClass:
1287 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288 case Expr::InitListExprClass:
1289 return EmitInitListLValue(cast<InitListExpr>(E));
1290 case Expr::CXXTemporaryObjectExprClass:
1291 case Expr::CXXConstructExprClass:
1292 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293 case Expr::CXXBindTemporaryExprClass:
1294 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295 case Expr::CXXUuidofExprClass:
1296 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297 case Expr::LambdaExprClass:
1298 return EmitAggExprToLValue(E);
1299
1300 case Expr::ExprWithCleanupsClass: {
1301 const auto *cleanups = cast<ExprWithCleanups>(E);
1302 enterFullExpression(cleanups);
1303 RunCleanupsScope Scope(*this);
1304 LValue LV = EmitLValue(cleanups->getSubExpr());
1305 if (LV.isSimple()) {
1306 // Defend against branches out of gnu statement expressions surrounded by
1307 // cleanups.
1308 llvm::Value *V = LV.getPointer();
1309 Scope.ForceCleanup({&V});
1310 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1311 getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1312 }
1313 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1314 // bitfield lvalue or some other non-simple lvalue?
1315 return LV;
1316 }
1317
1318 case Expr::CXXDefaultArgExprClass: {
1319 auto *DAE = cast<CXXDefaultArgExpr>(E);
1320 CXXDefaultArgExprScope Scope(*this, DAE);
1321 return EmitLValue(DAE->getExpr());
1322 }
1323 case Expr::CXXDefaultInitExprClass: {
1324 auto *DIE = cast<CXXDefaultInitExpr>(E);
1325 CXXDefaultInitExprScope Scope(*this, DIE);
1326 return EmitLValue(DIE->getExpr());
1327 }
1328 case Expr::CXXTypeidExprClass:
1329 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1330
1331 case Expr::ObjCMessageExprClass:
1332 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1333 case Expr::ObjCIvarRefExprClass:
1334 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1335 case Expr::StmtExprClass:
1336 return EmitStmtExprLValue(cast<StmtExpr>(E));
1337 case Expr::UnaryOperatorClass:
1338 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1339 case Expr::ArraySubscriptExprClass:
1340 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1341 case Expr::OMPArraySectionExprClass:
1342 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1343 case Expr::ExtVectorElementExprClass:
1344 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1345 case Expr::MemberExprClass:
1346 return EmitMemberExpr(cast<MemberExpr>(E));
12
'E' is a 'MemberExpr'
13
Calling 'CodeGenFunction::EmitMemberExpr'
1347 case Expr::CompoundLiteralExprClass:
1348 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1349 case Expr::ConditionalOperatorClass:
1350 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1351 case Expr::BinaryConditionalOperatorClass:
1352 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1353 case Expr::ChooseExprClass:
1354 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1355 case Expr::OpaqueValueExprClass:
1356 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1357 case Expr::SubstNonTypeTemplateParmExprClass:
1358 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1359 case Expr::ImplicitCastExprClass:
1360 case Expr::CStyleCastExprClass:
1361 case Expr::CXXFunctionalCastExprClass:
1362 case Expr::CXXStaticCastExprClass:
1363 case Expr::CXXDynamicCastExprClass:
1364 case Expr::CXXReinterpretCastExprClass:
1365 case Expr::CXXConstCastExprClass:
1366 case Expr::ObjCBridgedCastExprClass:
1367 return EmitCastLValue(cast<CastExpr>(E));
1368
1369 case Expr::MaterializeTemporaryExprClass:
1370 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1371
1372 case Expr::CoawaitExprClass:
1373 return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1374 case Expr::CoyieldExprClass:
1375 return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1376 }
1377}
1378
1379/// Given an object of the given canonical type, can we safely copy a
1380/// value out of it based on its initializer?
1381static bool isConstantEmittableObjectType(QualType type) {
1382 assert(type.isCanonical())((type.isCanonical()) ? static_cast<void> (0) : __assert_fail
("type.isCanonical()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1382, __PRETTY_FUNCTION__))
;
1383 assert(!type->isReferenceType())((!type->isReferenceType()) ? static_cast<void> (0) :
__assert_fail ("!type->isReferenceType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1383, __PRETTY_FUNCTION__))
;
1384
1385 // Must be const-qualified but non-volatile.
1386 Qualifiers qs = type.getLocalQualifiers();
1387 if (!qs.hasConst() || qs.hasVolatile()) return false;
1388
1389 // Otherwise, all object types satisfy this except C++ classes with
1390 // mutable subobjects or non-trivial copy/destroy behavior.
1391 if (const auto *RT = dyn_cast<RecordType>(type))
1392 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1393 if (RD->hasMutableFields() || !RD->isTrivial())
1394 return false;
1395
1396 return true;
1397}
1398
1399/// Can we constant-emit a load of a reference to a variable of the
1400/// given type? This is different from predicates like
1401/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1402/// in situations that don't necessarily satisfy the language's rules
1403/// for this (e.g. C++'s ODR-use rules). For example, we want to able
1404/// to do this with const float variables even if those variables
1405/// aren't marked 'constexpr'.
1406enum ConstantEmissionKind {
1407 CEK_None,
1408 CEK_AsReferenceOnly,
1409 CEK_AsValueOrReference,
1410 CEK_AsValueOnly
1411};
1412static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1413 type = type.getCanonicalType();
1414 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1415 if (isConstantEmittableObjectType(ref->getPointeeType()))
1416 return CEK_AsValueOrReference;
1417 return CEK_AsReferenceOnly;
1418 }
1419 if (isConstantEmittableObjectType(type))
1420 return CEK_AsValueOnly;
1421 return CEK_None;
1422}
1423
1424/// Try to emit a reference to the given value without producing it as
1425/// an l-value. This is just an optimization, but it avoids us needing
1426/// to emit global copies of variables if they're named without triggering
1427/// a formal use in a context where we can't emit a direct reference to them,
1428/// for instance if a block or lambda or a member of a local class uses a
1429/// const int variable or constexpr variable from an enclosing function.
1430CodeGenFunction::ConstantEmission
1431CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1432 ValueDecl *value = refExpr->getDecl();
1433
1434 // The value needs to be an enum constant or a constant variable.
1435 ConstantEmissionKind CEK;
1436 if (isa<ParmVarDecl>(value)) {
1437 CEK = CEK_None;
1438 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1439 CEK = checkVarTypeForConstantEmission(var->getType());
1440 } else if (isa<EnumConstantDecl>(value)) {
1441 CEK = CEK_AsValueOnly;
1442 } else {
1443 CEK = CEK_None;
1444 }
1445 if (CEK == CEK_None) return ConstantEmission();
1446
1447 Expr::EvalResult result;
1448 bool resultIsReference;
1449 QualType resultType;
1450
1451 // It's best to evaluate all the way as an r-value if that's permitted.
1452 if (CEK != CEK_AsReferenceOnly &&
1453 refExpr->EvaluateAsRValue(result, getContext())) {
1454 resultIsReference = false;
1455 resultType = refExpr->getType();
1456
1457 // Otherwise, try to evaluate as an l-value.
1458 } else if (CEK != CEK_AsValueOnly &&
1459 refExpr->EvaluateAsLValue(result, getContext())) {
1460 resultIsReference = true;
1461 resultType = value->getType();
1462
1463 // Failure.
1464 } else {
1465 return ConstantEmission();
1466 }
1467
1468 // In any case, if the initializer has side-effects, abandon ship.
1469 if (result.HasSideEffects)
1470 return ConstantEmission();
1471
1472 // Emit as a constant.
1473 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1474 result.Val, resultType);
1475
1476 // Make sure we emit a debug reference to the global variable.
1477 // This should probably fire even for
1478 if (isa<VarDecl>(value)) {
1479 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1480 EmitDeclRefExprDbgValue(refExpr, result.Val);
1481 } else {
1482 assert(isa<EnumConstantDecl>(value))((isa<EnumConstantDecl>(value)) ? static_cast<void>
(0) : __assert_fail ("isa<EnumConstantDecl>(value)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1482, __PRETTY_FUNCTION__))
;
1483 EmitDeclRefExprDbgValue(refExpr, result.Val);
1484 }
1485
1486 // If we emitted a reference constant, we need to dereference that.
1487 if (resultIsReference)
1488 return ConstantEmission::forReference(C);
1489
1490 return ConstantEmission::forValue(C);
1491}
1492
1493static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1494 const MemberExpr *ME) {
1495 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1496 // Try to emit static variable member expressions as DREs.
1497 return DeclRefExpr::Create(
1498 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1499 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1500 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1501 }
1502 return nullptr;
1503}
1504
1505CodeGenFunction::ConstantEmission
1506CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1507 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1508 return tryEmitAsConstant(DRE);
1509 return ConstantEmission();
1510}
1511
1512llvm::Value *CodeGenFunction::emitScalarConstant(
1513 const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1514 assert(Constant && "not a constant")((Constant && "not a constant") ? static_cast<void
> (0) : __assert_fail ("Constant && \"not a constant\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1514, __PRETTY_FUNCTION__))
;
1515 if (Constant.isReference())
1516 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1517 E->getExprLoc())
1518 .getScalarVal();
1519 return Constant.getValue();
1520}
1521
1522llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1523 SourceLocation Loc) {
1524 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1525 lvalue.getType(), Loc, lvalue.getBaseInfo(),
1526 lvalue.getTBAAInfo(), lvalue.isNontemporal());
1527}
1528
1529static bool hasBooleanRepresentation(QualType Ty) {
1530 if (Ty->isBooleanType())
1531 return true;
1532
1533 if (const EnumType *ET = Ty->getAs<EnumType>())
1534 return ET->getDecl()->getIntegerType()->isBooleanType();
1535
1536 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1537 return hasBooleanRepresentation(AT->getValueType());
1538
1539 return false;
1540}
1541
1542static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1543 llvm::APInt &Min, llvm::APInt &End,
1544 bool StrictEnums, bool IsBool) {
1545 const EnumType *ET = Ty->getAs<EnumType>();
1546 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1547 ET && !ET->getDecl()->isFixed();
1548 if (!IsBool && !IsRegularCPlusPlusEnum)
1549 return false;
1550
1551 if (IsBool) {
1552 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1553 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1554 } else {
1555 const EnumDecl *ED = ET->getDecl();
1556 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1557 unsigned Bitwidth = LTy->getScalarSizeInBits();
1558 unsigned NumNegativeBits = ED->getNumNegativeBits();
1559 unsigned NumPositiveBits = ED->getNumPositiveBits();
1560
1561 if (NumNegativeBits) {
1562 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1563 assert(NumBits <= Bitwidth)((NumBits <= Bitwidth) ? static_cast<void> (0) : __assert_fail
("NumBits <= Bitwidth", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1563, __PRETTY_FUNCTION__))
;
1564 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1565 Min = -End;
1566 } else {
1567 assert(NumPositiveBits <= Bitwidth)((NumPositiveBits <= Bitwidth) ? static_cast<void> (
0) : __assert_fail ("NumPositiveBits <= Bitwidth", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1567, __PRETTY_FUNCTION__))
;
1568 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1569 Min = llvm::APInt(Bitwidth, 0);
1570 }
1571 }
1572 return true;
1573}
1574
1575llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1576 llvm::APInt Min, End;
1577 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1578 hasBooleanRepresentation(Ty)))
1579 return nullptr;
1580
1581 llvm::MDBuilder MDHelper(getLLVMContext());
1582 return MDHelper.createRange(Min, End);
1583}
1584
1585bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1586 SourceLocation Loc) {
1587 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1588 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1589 if (!HasBoolCheck && !HasEnumCheck)
1590 return false;
1591
1592 bool IsBool = hasBooleanRepresentation(Ty) ||
1593 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1594 bool NeedsBoolCheck = HasBoolCheck && IsBool;
1595 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1596 if (!NeedsBoolCheck && !NeedsEnumCheck)
1597 return false;
1598
1599 // Single-bit booleans don't need to be checked. Special-case this to avoid
1600 // a bit width mismatch when handling bitfield values. This is handled by
1601 // EmitFromMemory for the non-bitfield case.
1602 if (IsBool &&
1603 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1604 return false;
1605
1606 llvm::APInt Min, End;
1607 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1608 return true;
1609
1610 auto &Ctx = getLLVMContext();
1611 SanitizerScope SanScope(this);
1612 llvm::Value *Check;
1613 --End;
1614 if (!Min) {
1615 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1616 } else {
1617 llvm::Value *Upper =
1618 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1619 llvm::Value *Lower =
1620 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1621 Check = Builder.CreateAnd(Upper, Lower);
1622 }
1623 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1624 EmitCheckTypeDescriptor(Ty)};
1625 SanitizerMask Kind =
1626 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1627 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1628 StaticArgs, EmitCheckValue(Value));
1629 return true;
1630}
1631
1632llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1633 QualType Ty,
1634 SourceLocation Loc,
1635 LValueBaseInfo BaseInfo,
1636 TBAAAccessInfo TBAAInfo,
1637 bool isNontemporal) {
1638 if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1639 // For better performance, handle vector loads differently.
1640 if (Ty->isVectorType()) {
1641 const llvm::Type *EltTy = Addr.getElementType();
1642
1643 const auto *VTy = cast<llvm::VectorType>(EltTy);
1644
1645 // Handle vectors of size 3 like size 4 for better performance.
1646 if (VTy->getNumElements() == 3) {
1647
1648 // Bitcast to vec4 type.
1649 llvm::VectorType *vec4Ty =
1650 llvm::VectorType::get(VTy->getElementType(), 4);
1651 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1652 // Now load value.
1653 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1654
1655 // Shuffle vector to get vec3.
1656 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1657 {0, 1, 2}, "extractVec");
1658 return EmitFromMemory(V, Ty);
1659 }
1660 }
1661 }
1662
1663 // Atomic operations have to be done on integral types.
1664 LValue AtomicLValue =
1665 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1666 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1667 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1668 }
1669
1670 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1671 if (isNontemporal) {
1672 llvm::MDNode *Node = llvm::MDNode::get(
1673 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1674 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1675 }
1676
1677 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1678
1679 if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1680 // In order to prevent the optimizer from throwing away the check, don't
1681 // attach range metadata to the load.
1682 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1683 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1684 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1685
1686 return EmitFromMemory(Load, Ty);
1687}
1688
1689llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1690 // Bool has a different representation in memory than in registers.
1691 if (hasBooleanRepresentation(Ty)) {
1692 // This should really always be an i1, but sometimes it's already
1693 // an i8, and it's awkward to track those cases down.
1694 if (Value->getType()->isIntegerTy(1))
1695 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1696 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&((Value->getType()->isIntegerTy(getContext().getTypeSize
(Ty)) && "wrong value rep of bool") ? static_cast<
void> (0) : __assert_fail ("Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && \"wrong value rep of bool\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1697, __PRETTY_FUNCTION__))
1697 "wrong value rep of bool")((Value->getType()->isIntegerTy(getContext().getTypeSize
(Ty)) && "wrong value rep of bool") ? static_cast<
void> (0) : __assert_fail ("Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && \"wrong value rep of bool\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1697, __PRETTY_FUNCTION__))
;
1698 }
1699
1700 return Value;
1701}
1702
1703llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1704 // Bool has a different representation in memory than in registers.
1705 if (hasBooleanRepresentation(Ty)) {
1706 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&((Value->getType()->isIntegerTy(getContext().getTypeSize
(Ty)) && "wrong value rep of bool") ? static_cast<
void> (0) : __assert_fail ("Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && \"wrong value rep of bool\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1707, __PRETTY_FUNCTION__))
1707 "wrong value rep of bool")((Value->getType()->isIntegerTy(getContext().getTypeSize
(Ty)) && "wrong value rep of bool") ? static_cast<
void> (0) : __assert_fail ("Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && \"wrong value rep of bool\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1707, __PRETTY_FUNCTION__))
;
1708 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1709 }
1710
1711 return Value;
1712}
1713
1714void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1715 bool Volatile, QualType Ty,
1716 LValueBaseInfo BaseInfo,
1717 TBAAAccessInfo TBAAInfo,
1718 bool isInit, bool isNontemporal) {
1719 if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1720 // Handle vectors differently to get better performance.
1721 if (Ty->isVectorType()) {
1722 llvm::Type *SrcTy = Value->getType();
1723 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1724 // Handle vec3 special.
1725 if (VecTy && VecTy->getNumElements() == 3) {
1726 // Our source is a vec3, do a shuffle vector to make it a vec4.
1727 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1728 Builder.getInt32(2),
1729 llvm::UndefValue::get(Builder.getInt32Ty())};
1730 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1731 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1732 MaskV, "extractVec");
1733 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1734 }
1735 if (Addr.getElementType() != SrcTy) {
1736 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1737 }
1738 }
1739 }
1740
1741 Value = EmitToMemory(Value, Ty);
1742
1743 LValue AtomicLValue =
1744 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1745 if (Ty->isAtomicType() ||
1746 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1747 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1748 return;
1749 }
1750
1751 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1752 if (isNontemporal) {
1753 llvm::MDNode *Node =
1754 llvm::MDNode::get(Store->getContext(),
1755 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1756 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1757 }
1758
1759 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1760}
1761
1762void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1763 bool isInit) {
1764 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1765 lvalue.getType(), lvalue.getBaseInfo(),
1766 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1767}
1768
1769/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1770/// method emits the address of the lvalue, then loads the result as an rvalue,
1771/// returning the rvalue.
1772RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1773 if (LV.isObjCWeak()) {
1774 // load of a __weak object.
1775 Address AddrWeakObj = LV.getAddress();
1776 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1777 AddrWeakObj));
1778 }
1779 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1780 // In MRC mode, we do a load+autorelease.
1781 if (!getLangOpts().ObjCAutoRefCount) {
1782 return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1783 }
1784
1785 // In ARC mode, we load retained and then consume the value.
1786 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1787 Object = EmitObjCConsumeObject(LV.getType(), Object);
1788 return RValue::get(Object);
1789 }
1790
1791 if (LV.isSimple()) {
1792 assert(!LV.getType()->isFunctionType())((!LV.getType()->isFunctionType()) ? static_cast<void>
(0) : __assert_fail ("!LV.getType()->isFunctionType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1792, __PRETTY_FUNCTION__))
;
1793
1794 // Everything needs a load.
1795 return RValue::get(EmitLoadOfScalar(LV, Loc));
1796 }
1797
1798 if (LV.isVectorElt()) {
1799 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1800 LV.isVolatileQualified());
1801 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1802 "vecext"));
1803 }
1804
1805 // If this is a reference to a subset of the elements of a vector, either
1806 // shuffle the input or extract/insert them as appropriate.
1807 if (LV.isExtVectorElt())
1808 return EmitLoadOfExtVectorElementLValue(LV);
1809
1810 // Global Register variables always invoke intrinsics
1811 if (LV.isGlobalReg())
1812 return EmitLoadOfGlobalRegLValue(LV);
1813
1814 assert(LV.isBitField() && "Unknown LValue type!")((LV.isBitField() && "Unknown LValue type!") ? static_cast
<void> (0) : __assert_fail ("LV.isBitField() && \"Unknown LValue type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1814, __PRETTY_FUNCTION__))
;
1815 return EmitLoadOfBitfieldLValue(LV, Loc);
1816}
1817
1818RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1819 SourceLocation Loc) {
1820 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1821
1822 // Get the output type.
1823 llvm::Type *ResLTy = ConvertType(LV.getType());
1824
1825 Address Ptr = LV.getBitFieldAddress();
1826 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1827
1828 if (Info.IsSigned) {
1829 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize)((static_cast<unsigned>(Info.Offset + Info.Size) <= Info
.StorageSize) ? static_cast<void> (0) : __assert_fail (
"static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1829, __PRETTY_FUNCTION__))
;
1830 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1831 if (HighBits)
1832 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1833 if (Info.Offset + HighBits)
1834 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1835 } else {
1836 if (Info.Offset)
1837 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1838 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1839 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1840 Info.Size),
1841 "bf.clear");
1842 }
1843 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1844 EmitScalarRangeCheck(Val, LV.getType(), Loc);
1845 return RValue::get(Val);
1846}
1847
1848// If this is a reference to a subset of the elements of a vector, create an
1849// appropriate shufflevector.
1850RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1851 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1852 LV.isVolatileQualified());
1853
1854 const llvm::Constant *Elts = LV.getExtVectorElts();
1855
1856 // If the result of the expression is a non-vector type, we must be extracting
1857 // a single element. Just codegen as an extractelement.
1858 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1859 if (!ExprVT) {
1860 unsigned InIdx = getAccessedFieldNo(0, Elts);
1861 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1862 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1863 }
1864
1865 // Always use shuffle vector to try to retain the original program structure
1866 unsigned NumResultElts = ExprVT->getNumElements();
1867
1868 SmallVector<llvm::Constant*, 4> Mask;
1869 for (unsigned i = 0; i != NumResultElts; ++i)
1870 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1871
1872 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1873 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1874 MaskV);
1875 return RValue::get(Vec);
1876}
1877
1878/// Generates lvalue for partial ext_vector access.
1879Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1880 Address VectorAddress = LV.getExtVectorAddress();
1881 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1882 QualType EQT = ExprVT->getElementType();
1883 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1884
1885 Address CastToPointerElement =
1886 Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1887 "conv.ptr.element");
1888
1889 const llvm::Constant *Elts = LV.getExtVectorElts();
1890 unsigned ix = getAccessedFieldNo(0, Elts);
1891
1892 Address VectorBasePtrPlusIx =
1893 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1894 "vector.elt");
1895
1896 return VectorBasePtrPlusIx;
1897}
1898
1899/// Load of global gamed gegisters are always calls to intrinsics.
1900RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1901 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&(((LV.getType()->isIntegerType() || LV.getType()->isPointerType
()) && "Bad type for register variable") ? static_cast
<void> (0) : __assert_fail ("(LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && \"Bad type for register variable\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1902, __PRETTY_FUNCTION__))
1902 "Bad type for register variable")(((LV.getType()->isIntegerType() || LV.getType()->isPointerType
()) && "Bad type for register variable") ? static_cast
<void> (0) : __assert_fail ("(LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && \"Bad type for register variable\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1902, __PRETTY_FUNCTION__))
;
1903 llvm::MDNode *RegName = cast<llvm::MDNode>(
1904 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1905
1906 // We accept integer and pointer types only
1907 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1908 llvm::Type *Ty = OrigTy;
1909 if (OrigTy->isPointerTy())
1910 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1911 llvm::Type *Types[] = { Ty };
1912
1913 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1914 llvm::Value *Call = Builder.CreateCall(
1915 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1916 if (OrigTy->isPointerTy())
1917 Call = Builder.CreateIntToPtr(Call, OrigTy);
1918 return RValue::get(Call);
1919}
1920
1921
1922/// EmitStoreThroughLValue - Store the specified rvalue into the specified
1923/// lvalue, where both are guaranteed to the have the same type, and that type
1924/// is 'Ty'.
1925void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1926 bool isInit) {
1927 if (!Dst.isSimple()) {
1928 if (Dst.isVectorElt()) {
1929 // Read/modify/write the vector, inserting the new element.
1930 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1931 Dst.isVolatileQualified());
1932 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1933 Dst.getVectorIdx(), "vecins");
1934 Builder.CreateStore(Vec, Dst.getVectorAddress(),
1935 Dst.isVolatileQualified());
1936 return;
1937 }
1938
1939 // If this is an update of extended vector elements, insert them as
1940 // appropriate.
1941 if (Dst.isExtVectorElt())
1942 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1943
1944 if (Dst.isGlobalReg())
1945 return EmitStoreThroughGlobalRegLValue(Src, Dst);
1946
1947 assert(Dst.isBitField() && "Unknown LValue type")((Dst.isBitField() && "Unknown LValue type") ? static_cast
<void> (0) : __assert_fail ("Dst.isBitField() && \"Unknown LValue type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1947, __PRETTY_FUNCTION__))
;
1948 return EmitStoreThroughBitfieldLValue(Src, Dst);
1949 }
1950
1951 // There's special magic for assigning into an ARC-qualified l-value.
1952 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1953 switch (Lifetime) {
1954 case Qualifiers::OCL_None:
1955 llvm_unreachable("present but none")::llvm::llvm_unreachable_internal("present but none", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1955)
;
1956
1957 case Qualifiers::OCL_ExplicitNone:
1958 // nothing special
1959 break;
1960
1961 case Qualifiers::OCL_Strong:
1962 if (isInit) {
1963 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1964 break;
1965 }
1966 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1967 return;
1968
1969 case Qualifiers::OCL_Weak:
1970 if (isInit)
1971 // Initialize and then skip the primitive store.
1972 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1973 else
1974 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1975 return;
1976
1977 case Qualifiers::OCL_Autoreleasing:
1978 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1979 Src.getScalarVal()));
1980 // fall into the normal path
1981 break;
1982 }
1983 }
1984
1985 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1986 // load of a __weak object.
1987 Address LvalueDst = Dst.getAddress();
1988 llvm::Value *src = Src.getScalarVal();
1989 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1990 return;
1991 }
1992
1993 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1994 // load of a __strong object.
1995 Address LvalueDst = Dst.getAddress();
1996 llvm::Value *src = Src.getScalarVal();
1997 if (Dst.isObjCIvar()) {
1998 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL")((Dst.getBaseIvarExp() && "BaseIvarExp is NULL") ? static_cast
<void> (0) : __assert_fail ("Dst.getBaseIvarExp() && \"BaseIvarExp is NULL\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 1998, __PRETTY_FUNCTION__))
;
1999 llvm::Type *ResultType = IntPtrTy;
2000 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2001 llvm::Value *RHS = dst.getPointer();
2002 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2003 llvm::Value *LHS =
2004 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2005 "sub.ptr.lhs.cast");
2006 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2007 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2008 BytesBetween);
2009 } else if (Dst.isGlobalObjCRef()) {
2010 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2011 Dst.isThreadLocalRef());
2012 }
2013 else
2014 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2015 return;
2016 }
2017
2018 assert(Src.isScalar() && "Can't emit an agg store with this method")((Src.isScalar() && "Can't emit an agg store with this method"
) ? static_cast<void> (0) : __assert_fail ("Src.isScalar() && \"Can't emit an agg store with this method\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2018, __PRETTY_FUNCTION__))
;
2019 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2020}
2021
2022void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2023 llvm::Value **Result) {
2024 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2025 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2026 Address Ptr = Dst.getBitFieldAddress();
2027
2028 // Get the source value, truncated to the width of the bit-field.
2029 llvm::Value *SrcVal = Src.getScalarVal();
2030
2031 // Cast the source to the storage type and shift it into place.
2032 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2033 /*isSigned=*/false);
2034 llvm::Value *MaskedVal = SrcVal;
2035
2036 // See if there are other bits in the bitfield's storage we'll need to load
2037 // and mask together with source before storing.
2038 if (Info.StorageSize != Info.Size) {
2039 assert(Info.StorageSize > Info.Size && "Invalid bitfield size.")((Info.StorageSize > Info.Size && "Invalid bitfield size."
) ? static_cast<void> (0) : __assert_fail ("Info.StorageSize > Info.Size && \"Invalid bitfield size.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2039, __PRETTY_FUNCTION__))
;
2040 llvm::Value *Val =
2041 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2042
2043 // Mask the source value as needed.
2044 if (!hasBooleanRepresentation(Dst.getType()))
2045 SrcVal = Builder.CreateAnd(SrcVal,
2046 llvm::APInt::getLowBitsSet(Info.StorageSize,
2047 Info.Size),
2048 "bf.value");
2049 MaskedVal = SrcVal;
2050 if (Info.Offset)
2051 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2052
2053 // Mask out the original value.
2054 Val = Builder.CreateAnd(Val,
2055 ~llvm::APInt::getBitsSet(Info.StorageSize,
2056 Info.Offset,
2057 Info.Offset + Info.Size),
2058 "bf.clear");
2059
2060 // Or together the unchanged values and the source value.
2061 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2062 } else {
2063 assert(Info.Offset == 0)((Info.Offset == 0) ? static_cast<void> (0) : __assert_fail
("Info.Offset == 0", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2063, __PRETTY_FUNCTION__))
;
2064 }
2065
2066 // Write the new value back out.
2067 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2068
2069 // Return the new value of the bit-field, if requested.
2070 if (Result) {
2071 llvm::Value *ResultVal = MaskedVal;
2072
2073 // Sign extend the value if needed.
2074 if (Info.IsSigned) {
2075 assert(Info.Size <= Info.StorageSize)((Info.Size <= Info.StorageSize) ? static_cast<void>
(0) : __assert_fail ("Info.Size <= Info.StorageSize", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2075, __PRETTY_FUNCTION__))
;
2076 unsigned HighBits = Info.StorageSize - Info.Size;
2077 if (HighBits) {
2078 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2079 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2080 }
2081 }
2082
2083 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2084 "bf.result.cast");
2085 *Result = EmitFromMemory(ResultVal, Dst.getType());
2086 }
2087}
2088
2089void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2090 LValue Dst) {
2091 // This access turns into a read/modify/write of the vector. Load the input
2092 // value now.
2093 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2094 Dst.isVolatileQualified());
2095 const llvm::Constant *Elts = Dst.getExtVectorElts();
2096
2097 llvm::Value *SrcVal = Src.getScalarVal();
2098
2099 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2100 unsigned NumSrcElts = VTy->getNumElements();
2101 unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2102 if (NumDstElts == NumSrcElts) {
2103 // Use shuffle vector is the src and destination are the same number of
2104 // elements and restore the vector mask since it is on the side it will be
2105 // stored.
2106 SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2107 for (unsigned i = 0; i != NumSrcElts; ++i)
2108 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2109
2110 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2111 Vec = Builder.CreateShuffleVector(SrcVal,
2112 llvm::UndefValue::get(Vec->getType()),
2113 MaskV);
2114 } else if (NumDstElts > NumSrcElts) {
2115 // Extended the source vector to the same length and then shuffle it
2116 // into the destination.
2117 // FIXME: since we're shuffling with undef, can we just use the indices
2118 // into that? This could be simpler.
2119 SmallVector<llvm::Constant*, 4> ExtMask;
2120 for (unsigned i = 0; i != NumSrcElts; ++i)
2121 ExtMask.push_back(Builder.getInt32(i));
2122 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2123 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2124 llvm::Value *ExtSrcVal =
2125 Builder.CreateShuffleVector(SrcVal,
2126 llvm::UndefValue::get(SrcVal->getType()),
2127 ExtMaskV);
2128 // build identity
2129 SmallVector<llvm::Constant*, 4> Mask;
2130 for (unsigned i = 0; i != NumDstElts; ++i)
2131 Mask.push_back(Builder.getInt32(i));
2132
2133 // When the vector size is odd and .odd or .hi is used, the last element
2134 // of the Elts constant array will be one past the size of the vector.
2135 // Ignore the last element here, if it is greater than the mask size.
2136 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2137 NumSrcElts--;
2138
2139 // modify when what gets shuffled in
2140 for (unsigned i = 0; i != NumSrcElts; ++i)
2141 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2142 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2143 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2144 } else {
2145 // We should never shorten the vector
2146 llvm_unreachable("unexpected shorten vector length")::llvm::llvm_unreachable_internal("unexpected shorten vector length"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2146)
;
2147 }
2148 } else {
2149 // If the Src is a scalar (not a vector) it must be updating one element.
2150 unsigned InIdx = getAccessedFieldNo(0, Elts);
2151 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2152 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2153 }
2154
2155 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2156 Dst.isVolatileQualified());
2157}
2158
2159/// Store of global named registers are always calls to intrinsics.
2160void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2161 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&(((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType
()) && "Bad type for register variable") ? static_cast
<void> (0) : __assert_fail ("(Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && \"Bad type for register variable\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2162, __PRETTY_FUNCTION__))
2162 "Bad type for register variable")(((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType
()) && "Bad type for register variable") ? static_cast
<void> (0) : __assert_fail ("(Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && \"Bad type for register variable\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2162, __PRETTY_FUNCTION__))
;
2163 llvm::MDNode *RegName = cast<llvm::MDNode>(
2164 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2165 assert(RegName && "Register LValue is not metadata")((RegName && "Register LValue is not metadata") ? static_cast
<void> (0) : __assert_fail ("RegName && \"Register LValue is not metadata\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2165, __PRETTY_FUNCTION__))
;
2166
2167 // We accept integer and pointer types only
2168 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2169 llvm::Type *Ty = OrigTy;
2170 if (OrigTy->isPointerTy())
2171 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2172 llvm::Type *Types[] = { Ty };
2173
2174 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2175 llvm::Value *Value = Src.getScalarVal();
2176 if (OrigTy->isPointerTy())
2177 Value = Builder.CreatePtrToInt(Value, Ty);
2178 Builder.CreateCall(
2179 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2180}
2181
2182// setObjCGCLValueClass - sets class of the lvalue for the purpose of
2183// generating write-barries API. It is currently a global, ivar,
2184// or neither.
2185static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2186 LValue &LV,
2187 bool IsMemberAccess=false) {
2188 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
20
Assuming the condition is false
21
Taking false branch
2189 return;
2190
2191 if (isa<ObjCIvarRefExpr>(E)) {
22
Assuming 'E' is not a 'ObjCIvarRefExpr'
23
Taking false branch
2192 QualType ExpTy = E->getType();
2193 if (IsMemberAccess && ExpTy->isPointerType()) {
2194 // If ivar is a structure pointer, assigning to field of
2195 // this struct follows gcc's behavior and makes it a non-ivar
2196 // writer-barrier conservatively.
2197 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2198 if (ExpTy->isRecordType()) {
2199 LV.setObjCIvar(false);
2200 return;
2201 }
2202 }
2203 LV.setObjCIvar(true);
2204 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2205 LV.setBaseIvarExp(Exp->getBase());
2206 LV.setObjCArray(E->getType()->isArrayType());
2207 return;
2208 }
2209
2210 if (const auto *Exp
24.1
'Exp' is null
24.1
'Exp' is null
= dyn_cast<DeclRefExpr>(E)) {
24
Assuming 'E' is not a 'DeclRefExpr'
25
Taking false branch
2211 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2212 if (VD->hasGlobalStorage()) {
2213 LV.setGlobalObjCRef(true);
2214 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2215 }
2216 }
2217 LV.setObjCArray(E->getType()->isArrayType());
2218 return;
2219 }
2220
2221 if (const auto *Exp
26.1
'Exp' is null
26.1
'Exp' is null
= dyn_cast<UnaryOperator>(E)) {
26
Assuming 'E' is not a 'UnaryOperator'
27
Taking false branch
2222 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2223 return;
2224 }
2225
2226 if (const auto *Exp
28.1
'Exp' is non-null
28.1
'Exp' is non-null
= dyn_cast<ParenExpr>(E)) {
28
Assuming 'E' is a 'ParenExpr'
29
Taking true branch
2227 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2228 if (LV.isObjCIvar()) {
30
Assuming the condition is true
31
Taking true branch
2229 // If cast is to a structure pointer, follow gcc's behavior and make it
2230 // a non-ivar write-barrier.
2231 QualType ExpTy = E->getType();
2232 if (ExpTy->isPointerType())
32
Calling 'Type::isPointerType'
35
Returning from 'Type::isPointerType'
36
Taking true branch
2233 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
37
Assuming the object is not a 'PointerType'
38
Called C++ object pointer is null
2234 if (ExpTy->isRecordType())
2235 LV.setObjCIvar(false);
2236 }
2237 return;
2238 }
2239
2240 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2241 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2242 return;
2243 }
2244
2245 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2246 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2247 return;
2248 }
2249
2250 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2252 return;
2253 }
2254
2255 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2256 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2257 return;
2258 }
2259
2260 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2261 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2262 if (LV.isObjCIvar() && !LV.isObjCArray())
2263 // Using array syntax to assigning to what an ivar points to is not
2264 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2265 LV.setObjCIvar(false);
2266 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2267 // Using array syntax to assigning to what global points to is not
2268 // same as assigning to the global itself. {id *G;} G[i] = 0;
2269 LV.setGlobalObjCRef(false);
2270 return;
2271 }
2272
2273 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2274 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2275 // We don't know if member is an 'ivar', but this flag is looked at
2276 // only in the context of LV.isObjCIvar().
2277 LV.setObjCArray(E->getType()->isArrayType());
2278 return;
2279 }
2280}
2281
2282static llvm::Value *
2283EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2284 llvm::Value *V, llvm::Type *IRType,
2285 StringRef Name = StringRef()) {
2286 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2287 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2288}
2289
2290static LValue EmitThreadPrivateVarDeclLValue(
2291 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2292 llvm::Type *RealVarTy, SourceLocation Loc) {
2293 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2294 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2295 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2296}
2297
2298static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2299 const VarDecl *VD, QualType T) {
2300 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2301 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2302 // Return an invalid address if variable is MT_To and unified
2303 // memory is not enabled. For all other cases: MT_Link and
2304 // MT_To with unified memory, return a valid address.
2305 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2306 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2307 return Address::invalid();
2308 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory
())) && "Expected link clause OR to clause with unified memory enabled."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && \"Expected link clause OR to clause with unified memory enabled.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2311, __PRETTY_FUNCTION__))
2309 (*Res == OMPDeclareTargetDeclAttr::MT_To &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory
())) && "Expected link clause OR to clause with unified memory enabled."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && \"Expected link clause OR to clause with unified memory enabled.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2311, __PRETTY_FUNCTION__))
2310 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory
())) && "Expected link clause OR to clause with unified memory enabled."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && \"Expected link clause OR to clause with unified memory enabled.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2311, __PRETTY_FUNCTION__))
2311 "Expected link clause OR to clause with unified memory enabled.")((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory
())) && "Expected link clause OR to clause with unified memory enabled."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && \"Expected link clause OR to clause with unified memory enabled.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2311, __PRETTY_FUNCTION__))
;
2312 QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2313 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2314 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2315}
2316
2317Address
2318CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2319 LValueBaseInfo *PointeeBaseInfo,
2320 TBAAAccessInfo *PointeeTBAAInfo) {
2321 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2322 RefLVal.isVolatile());
2323 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2324
2325 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2326 PointeeBaseInfo, PointeeTBAAInfo,
2327 /* forPointeeType= */ true);
2328 return Address(Load, Align);
2329}
2330
2331LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2332 LValueBaseInfo PointeeBaseInfo;
2333 TBAAAccessInfo PointeeTBAAInfo;
2334 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2335 &PointeeTBAAInfo);
2336 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2337 PointeeBaseInfo, PointeeTBAAInfo);
2338}
2339
2340Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2341 const PointerType *PtrTy,
2342 LValueBaseInfo *BaseInfo,
2343 TBAAAccessInfo *TBAAInfo) {
2344 llvm::Value *Addr = Builder.CreateLoad(Ptr);
2345 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2346 BaseInfo, TBAAInfo,
2347 /*forPointeeType=*/true));
2348}
2349
2350LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2351 const PointerType *PtrTy) {
2352 LValueBaseInfo BaseInfo;
2353 TBAAAccessInfo TBAAInfo;
2354 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2355 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2356}
2357
2358static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2359 const Expr *E, const VarDecl *VD) {
2360 QualType T = E->getType();
2361
2362 // If it's thread_local, emit a call to its wrapper function instead.
2363 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2364 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2365 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2366 // Check if the variable is marked as declare target with link clause in
2367 // device codegen.
2368 if (CGF.getLangOpts().OpenMPIsDevice) {
2369 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2370 if (Addr.isValid())
2371 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2372 }
2373
2374 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2375 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2376 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2377 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2378 Address Addr(V, Alignment);
2379 // Emit reference to the private copy of the variable if it is an OpenMP
2380 // threadprivate variable.
2381 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2382 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2383 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2384 E->getExprLoc());
2385 }
2386 LValue LV = VD->getType()->isReferenceType() ?
2387 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2388 AlignmentSource::Decl) :
2389 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2390 setObjCGCLValueClass(CGF.getContext(), E, LV);
2391 return LV;
2392}
2393
2394static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2395 const FunctionDecl *FD) {
2396 if (FD->hasAttr<WeakRefAttr>()) {
2397 ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2398 return aliasee.getPointer();
2399 }
2400
2401 llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2402 if (!FD->hasPrototype()) {
2403 if (const FunctionProtoType *Proto =
2404 FD->getType()->getAs<FunctionProtoType>()) {
2405 // Ugly case: for a K&R-style definition, the type of the definition
2406 // isn't the same as the type of a use. Correct for this with a
2407 // bitcast.
2408 QualType NoProtoType =
2409 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2410 NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2411 V = llvm::ConstantExpr::getBitCast(V,
2412 CGM.getTypes().ConvertType(NoProtoType));
2413 }
2414 }
2415 return V;
2416}
2417
2418static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2419 const Expr *E, const FunctionDecl *FD) {
2420 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2421 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2422 return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2423 AlignmentSource::Decl);
2424}
2425
2426static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2427 llvm::Value *ThisValue) {
2428 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2429 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2430 return CGF.EmitLValueForField(LV, FD);
2431}
2432
2433/// Named Registers are named metadata pointing to the register name
2434/// which will be read from/written to as an argument to the intrinsic
2435/// @llvm.read/write_register.
2436/// So far, only the name is being passed down, but other options such as
2437/// register type, allocation type or even optimization options could be
2438/// passed down via the metadata node.
2439static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2440 SmallString<64> Name("llvm.named.register.");
2441 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2442 assert(Asm->getLabel().size() < 64-Name.size() &&((Asm->getLabel().size() < 64-Name.size() && "Register name too big"
) ? static_cast<void> (0) : __assert_fail ("Asm->getLabel().size() < 64-Name.size() && \"Register name too big\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2443, __PRETTY_FUNCTION__))
2443 "Register name too big")((Asm->getLabel().size() < 64-Name.size() && "Register name too big"
) ? static_cast<void> (0) : __assert_fail ("Asm->getLabel().size() < 64-Name.size() && \"Register name too big\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2443, __PRETTY_FUNCTION__))
;
2444 Name.append(Asm->getLabel());
2445 llvm::NamedMDNode *M =
2446 CGM.getModule().getOrInsertNamedMetadata(Name);
2447 if (M->getNumOperands() == 0) {
2448 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2449 Asm->getLabel());
2450 llvm::Metadata *Ops[] = {Str};
2451 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2452 }
2453
2454 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2455
2456 llvm::Value *Ptr =
2457 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2458 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2459}
2460
2461/// Determine whether we can emit a reference to \p VD from the current
2462/// context, despite not necessarily having seen an odr-use of the variable in
2463/// this context.
2464static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2465 const DeclRefExpr *E,
2466 const VarDecl *VD,
2467 bool IsConstant) {
2468 // For a variable declared in an enclosing scope, do not emit a spurious
2469 // reference even if we have a capture, as that will emit an unwarranted
2470 // reference to our capture state, and will likely generate worse code than
2471 // emitting a local copy.
2472 if (E->refersToEnclosingVariableOrCapture())
2473 return false;
2474
2475 // For a local declaration declared in this function, we can always reference
2476 // it even if we don't have an odr-use.
2477 if (VD->hasLocalStorage()) {
2478 return VD->getDeclContext() ==
2479 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2480 }
2481
2482 // For a global declaration, we can emit a reference to it if we know
2483 // for sure that we are able to emit a definition of it.
2484 VD = VD->getDefinition(CGF.getContext());
2485 if (!VD)
2486 return false;
2487
2488 // Don't emit a spurious reference if it might be to a variable that only
2489 // exists on a different device / target.
2490 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2491 // cross-target reference.
2492 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2493 CGF.getLangOpts().OpenCL) {
2494 return false;
2495 }
2496
2497 // We can emit a spurious reference only if the linkage implies that we'll
2498 // be emitting a non-interposable symbol that will be retained until link
2499 // time.
2500 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2501 case llvm::GlobalValue::ExternalLinkage:
2502 case llvm::GlobalValue::LinkOnceODRLinkage:
2503 case llvm::GlobalValue::WeakODRLinkage:
2504 case llvm::GlobalValue::InternalLinkage:
2505 case llvm::GlobalValue::PrivateLinkage:
2506 return true;
2507 default:
2508 return false;
2509 }
2510}
2511
2512LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2513 const NamedDecl *ND = E->getDecl();
2514 QualType T = E->getType();
2515
2516 assert(E->isNonOdrUse() != NOUR_Unevaluated &&((E->isNonOdrUse() != NOUR_Unevaluated && "should not emit an unevaluated operand"
) ? static_cast<void> (0) : __assert_fail ("E->isNonOdrUse() != NOUR_Unevaluated && \"should not emit an unevaluated operand\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2517, __PRETTY_FUNCTION__))
2517 "should not emit an unevaluated operand")((E->isNonOdrUse() != NOUR_Unevaluated && "should not emit an unevaluated operand"
) ? static_cast<void> (0) : __assert_fail ("E->isNonOdrUse() != NOUR_Unevaluated && \"should not emit an unevaluated operand\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2517, __PRETTY_FUNCTION__))
;
2518
2519 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2520 // Global Named registers access via intrinsics only
2521 if (VD->getStorageClass() == SC_Register &&
2522 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2523 return EmitGlobalNamedRegister(VD, CGM);
2524
2525 // If this DeclRefExpr does not constitute an odr-use of the variable,
2526 // we're not permitted to emit a reference to it in general, and it might
2527 // not be captured if capture would be necessary for a use. Emit the
2528 // constant value directly instead.
2529 if (E->isNonOdrUse() == NOUR_Constant &&
2530 (VD->getType()->isReferenceType() ||
2531 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2532 VD->getAnyInitializer(VD);
2533 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2534 E->getLocation(), *VD->evaluateValue(), VD->getType());
2535 assert(Val && "failed to emit constant expression")((Val && "failed to emit constant expression") ? static_cast
<void> (0) : __assert_fail ("Val && \"failed to emit constant expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2535, __PRETTY_FUNCTION__))
;
2536
2537 Address Addr = Address::invalid();
2538 if (!VD->getType()->isReferenceType()) {
2539 // Spill the constant value to a global.
2540 Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2541 getContext().getDeclAlign(VD));
2542 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2543 auto *PTy = llvm::PointerType::get(
2544 VarTy, getContext().getTargetAddressSpace(VD->getType()));
2545 if (PTy != Addr.getType())
2546 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2547 } else {
2548 // Should we be using the alignment of the constant pointer we emitted?
2549 CharUnits Alignment =
2550 getNaturalTypeAlignment(E->getType(),
2551 /* BaseInfo= */ nullptr,
2552 /* TBAAInfo= */ nullptr,
2553 /* forPointeeType= */ true);
2554 Addr = Address(Val, Alignment);
2555 }
2556 return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2557 }
2558
2559 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2560
2561 // Check for captured variables.
2562 if (E->refersToEnclosingVariableOrCapture()) {
2563 VD = VD->getCanonicalDecl();
2564 if (auto *FD = LambdaCaptureFields.lookup(VD))
2565 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2566 else if (CapturedStmtInfo) {
2567 auto I = LocalDeclMap.find(VD);
2568 if (I != LocalDeclMap.end()) {
2569 if (VD->getType()->isReferenceType())
2570 return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2571 AlignmentSource::Decl);
2572 return MakeAddrLValue(I->second, T);
2573 }
2574 LValue CapLVal =
2575 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2576 CapturedStmtInfo->getContextValue());
2577 return MakeAddrLValue(
2578 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2579 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2580 CapLVal.getTBAAInfo());
2581 }
2582
2583 assert(isa<BlockDecl>(CurCodeDecl))((isa<BlockDecl>(CurCodeDecl)) ? static_cast<void>
(0) : __assert_fail ("isa<BlockDecl>(CurCodeDecl)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2583, __PRETTY_FUNCTION__))
;
2584 Address addr = GetAddrOfBlockDecl(VD);
2585 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2586 }
2587 }
2588
2589 // FIXME: We should be able to assert this for FunctionDecls as well!
2590 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2591 // those with a valid source location.
2592 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||(((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse
() || !E->getLocation().isValid()) && "Should not use decl without marking it used!"
) ? static_cast<void> (0) : __assert_fail ("(ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || !E->getLocation().isValid()) && \"Should not use decl without marking it used!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2594, __PRETTY_FUNCTION__))
2593 !E->getLocation().isValid()) &&(((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse
() || !E->getLocation().isValid()) && "Should not use decl without marking it used!"
) ? static_cast<void> (0) : __assert_fail ("(ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || !E->getLocation().isValid()) && \"Should not use decl without marking it used!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2594, __PRETTY_FUNCTION__))
2594 "Should not use decl without marking it used!")(((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse
() || !E->getLocation().isValid()) && "Should not use decl without marking it used!"
) ? static_cast<void> (0) : __assert_fail ("(ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || !E->getLocation().isValid()) && \"Should not use decl without marking it used!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2594, __PRETTY_FUNCTION__))
;
2595
2596 if (ND->hasAttr<WeakRefAttr>()) {
2597 const auto *VD = cast<ValueDecl>(ND);
2598 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2599 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2600 }
2601
2602 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2603 // Check if this is a global variable.
2604 if (VD->hasLinkage() || VD->isStaticDataMember())
2605 return EmitGlobalVarDeclLValue(*this, E, VD);
2606
2607 Address addr = Address::invalid();
2608
2609 // The variable should generally be present in the local decl map.
2610 auto iter = LocalDeclMap.find(VD);
2611 if (iter != LocalDeclMap.end()) {
2612 addr = iter->second;
2613
2614 // Otherwise, it might be static local we haven't emitted yet for
2615 // some reason; most likely, because it's in an outer function.
2616 } else if (VD->isStaticLocal()) {
2617 addr = Address(CGM.getOrCreateStaticVarDecl(
2618 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2619 getContext().getDeclAlign(VD));
2620
2621 // No other cases for now.
2622 } else {
2623 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?")::llvm::llvm_unreachable_internal("DeclRefExpr for Decl not entered in LocalDeclMap?"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2623)
;
2624 }
2625
2626
2627 // Check for OpenMP threadprivate variables.
2628 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2629 VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2630 return EmitThreadPrivateVarDeclLValue(
2631 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2632 E->getExprLoc());
2633 }
2634
2635 // Drill into block byref variables.
2636 bool isBlockByref = VD->isEscapingByref();
2637 if (isBlockByref) {
2638 addr = emitBlockByrefAddress(addr, VD);
2639 }
2640
2641 // Drill into reference types.
2642 LValue LV = VD->getType()->isReferenceType() ?
2643 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2644 MakeAddrLValue(addr, T, AlignmentSource::Decl);
2645
2646 bool isLocalStorage = VD->hasLocalStorage();
2647
2648 bool NonGCable = isLocalStorage &&
2649 !VD->getType()->isReferenceType() &&
2650 !isBlockByref;
2651 if (NonGCable) {
2652 LV.getQuals().removeObjCGCAttr();
2653 LV.setNonGC(true);
2654 }
2655
2656 bool isImpreciseLifetime =
2657 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2658 if (isImpreciseLifetime)
2659 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2660 setObjCGCLValueClass(getContext(), E, LV);
2661 return LV;
2662 }
2663
2664 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2665 return EmitFunctionDeclLValue(*this, E, FD);
2666
2667 // FIXME: While we're emitting a binding from an enclosing scope, all other
2668 // DeclRefExprs we see should be implicitly treated as if they also refer to
2669 // an enclosing scope.
2670 if (const auto *BD = dyn_cast<BindingDecl>(ND))
2671 return EmitLValue(BD->getBinding());
2672
2673 llvm_unreachable("Unhandled DeclRefExpr")::llvm::llvm_unreachable_internal("Unhandled DeclRefExpr", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2673)
;
2674}
2675
2676LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2677 // __extension__ doesn't affect lvalue-ness.
2678 if (E->getOpcode() == UO_Extension)
2679 return EmitLValue(E->getSubExpr());
2680
2681 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2682 switch (E->getOpcode()) {
2683 default: llvm_unreachable("Unknown unary operator lvalue!")::llvm::llvm_unreachable_internal("Unknown unary operator lvalue!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2683)
;
2684 case UO_Deref: {
2685 QualType T = E->getSubExpr()->getType()->getPointeeType();
2686 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type")((!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"CodeGenFunction::EmitUnaryOpLValue: Illegal type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2686, __PRETTY_FUNCTION__))
;
2687
2688 LValueBaseInfo BaseInfo;
2689 TBAAAccessInfo TBAAInfo;
2690 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2691 &TBAAInfo);
2692 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2693 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2694
2695 // We should not generate __weak write barrier on indirect reference
2696 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2697 // But, we continue to generate __strong write barrier on indirect write
2698 // into a pointer to object.
2699 if (getLangOpts().ObjC &&
2700 getLangOpts().getGC() != LangOptions::NonGC &&
2701 LV.isObjCWeak())
2702 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2703 return LV;
2704 }
2705 case UO_Real:
2706 case UO_Imag: {
2707 LValue LV = EmitLValue(E->getSubExpr());
2708 assert(LV.isSimple() && "real/imag on non-ordinary l-value")((LV.isSimple() && "real/imag on non-ordinary l-value"
) ? static_cast<void> (0) : __assert_fail ("LV.isSimple() && \"real/imag on non-ordinary l-value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2708, __PRETTY_FUNCTION__))
;
2709
2710 // __real is valid on scalars. This is a faster way of testing that.
2711 // __imag can only produce an rvalue on scalars.
2712 if (E->getOpcode() == UO_Real &&
2713 !LV.getAddress().getElementType()->isStructTy()) {
2714 assert(E->getSubExpr()->getType()->isArithmeticType())((E->getSubExpr()->getType()->isArithmeticType()) ? static_cast
<void> (0) : __assert_fail ("E->getSubExpr()->getType()->isArithmeticType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2714, __PRETTY_FUNCTION__))
;
2715 return LV;
2716 }
2717
2718 QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2719
2720 Address Component =
2721 (E->getOpcode() == UO_Real
2722 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2723 : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2724 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2725 CGM.getTBAAInfoForSubobject(LV, T));
2726 ElemLV.getQuals().addQualifiers(LV.getQuals());
2727 return ElemLV;
2728 }
2729 case UO_PreInc:
2730 case UO_PreDec: {
2731 LValue LV = EmitLValue(E->getSubExpr());
2732 bool isInc = E->getOpcode() == UO_PreInc;
2733
2734 if (E->getType()->isAnyComplexType())
2735 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2736 else
2737 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2738 return LV;
2739 }
2740 }
2741}
2742
2743LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2744 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2745 E->getType(), AlignmentSource::Decl);
2746}
2747
2748LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2749 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2750 E->getType(), AlignmentSource::Decl);
2751}
2752
2753LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2754 auto SL = E->getFunctionName();
2755 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr")((SL != nullptr && "No StringLiteral name in PredefinedExpr"
) ? static_cast<void> (0) : __assert_fail ("SL != nullptr && \"No StringLiteral name in PredefinedExpr\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2755, __PRETTY_FUNCTION__))
;
2756 StringRef FnName = CurFn->getName();
2757 if (FnName.startswith("\01"))
2758 FnName = FnName.substr(1);
2759 StringRef NameItems[] = {
2760 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2761 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2762 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2763 std::string Name = SL->getString();
2764 if (!Name.empty()) {
2765 unsigned Discriminator =
2766 CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2767 if (Discriminator)
2768 Name += "_" + Twine(Discriminator + 1).str();
2769 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2770 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2771 } else {
2772 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2773 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2774 }
2775 }
2776 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2777 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2778}
2779
2780/// Emit a type description suitable for use by a runtime sanitizer library. The
2781/// format of a type descriptor is
2782///
2783/// \code
2784/// { i16 TypeKind, i16 TypeInfo }
2785/// \endcode
2786///
2787/// followed by an array of i8 containing the type name. TypeKind is 0 for an
2788/// integer, 1 for a floating point value, and -1 for anything else.
2789llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2790 // Only emit each type's descriptor once.
2791 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2792 return C;
2793
2794 uint16_t TypeKind = -1;
2795 uint16_t TypeInfo = 0;
2796
2797 if (T->isIntegerType()) {
2798 TypeKind = 0;
2799 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2800 (T->isSignedIntegerType() ? 1 : 0);
2801 } else if (T->isFloatingType()) {
2802 TypeKind = 1;
2803 TypeInfo = getContext().getTypeSize(T);
2804 }
2805
2806 // Format the type name as if for a diagnostic, including quotes and
2807 // optionally an 'aka'.
2808 SmallString<32> Buffer;
2809 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2810 (intptr_t)T.getAsOpaquePtr(),
2811 StringRef(), StringRef(), None, Buffer,
2812 None);
2813
2814 llvm::Constant *Components[] = {
2815 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2816 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2817 };
2818 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2819
2820 auto *GV = new llvm::GlobalVariable(
2821 CGM.getModule(), Descriptor->getType(),
2822 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2823 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2824 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2825
2826 // Remember the descriptor for this type.
2827 CGM.setTypeDescriptorInMap(T, GV);
2828
2829 return GV;
2830}
2831
2832llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2833 llvm::Type *TargetTy = IntPtrTy;
2834
2835 if (V->getType() == TargetTy)
2836 return V;
2837
2838 // Floating-point types which fit into intptr_t are bitcast to integers
2839 // and then passed directly (after zero-extension, if necessary).
2840 if (V->getType()->isFloatingPointTy()) {
2841 unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2842 if (Bits <= TargetTy->getIntegerBitWidth())
2843 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2844 Bits));
2845 }
2846
2847 // Integers which fit in intptr_t are zero-extended and passed directly.
2848 if (V->getType()->isIntegerTy() &&
2849 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2850 return Builder.CreateZExt(V, TargetTy);
2851
2852 // Pointers are passed directly, everything else is passed by address.
2853 if (!V->getType()->isPointerTy()) {
2854 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2855 Builder.CreateStore(V, Ptr);
2856 V = Ptr.getPointer();
2857 }
2858 return Builder.CreatePtrToInt(V, TargetTy);
2859}
2860
2861/// Emit a representation of a SourceLocation for passing to a handler
2862/// in a sanitizer runtime library. The format for this data is:
2863/// \code
2864/// struct SourceLocation {
2865/// const char *Filename;
2866/// int32_t Line, Column;
2867/// };
2868/// \endcode
2869/// For an invalid SourceLocation, the Filename pointer is null.
2870llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2871 llvm::Constant *Filename;
2872 int Line, Column;
2873
2874 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2875 if (PLoc.isValid()) {
2876 StringRef FilenameString = PLoc.getFilename();
2877
2878 int PathComponentsToStrip =
2879 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2880 if (PathComponentsToStrip < 0) {
2881 assert(PathComponentsToStrip != INT_MIN)((PathComponentsToStrip != (-2147483647 -1)) ? static_cast<
void> (0) : __assert_fail ("PathComponentsToStrip != INT_MIN"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2881, __PRETTY_FUNCTION__))
;
2882 int PathComponentsToKeep = -PathComponentsToStrip;
2883 auto I = llvm::sys::path::rbegin(FilenameString);
2884 auto E = llvm::sys::path::rend(FilenameString);
2885 while (I != E && --PathComponentsToKeep)
2886 ++I;
2887
2888 FilenameString = FilenameString.substr(I - E);
2889 } else if (PathComponentsToStrip > 0) {
2890 auto I = llvm::sys::path::begin(FilenameString);
2891 auto E = llvm::sys::path::end(FilenameString);
2892 while (I != E && PathComponentsToStrip--)
2893 ++I;
2894
2895 if (I != E)
2896 FilenameString =
2897 FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2898 else
2899 FilenameString = llvm::sys::path::filename(FilenameString);
2900 }
2901
2902 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2903 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2904 cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2905 Filename = FilenameGV.getPointer();
2906 Line = PLoc.getLine();
2907 Column = PLoc.getColumn();
2908 } else {
2909 Filename = llvm::Constant::getNullValue(Int8PtrTy);
2910 Line = Column = 0;
2911 }
2912
2913 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2914 Builder.getInt32(Column)};
2915
2916 return llvm::ConstantStruct::getAnon(Data);
2917}
2918
2919namespace {
2920/// Specify under what conditions this check can be recovered
2921enum class CheckRecoverableKind {
2922 /// Always terminate program execution if this check fails.
2923 Unrecoverable,
2924 /// Check supports recovering, runtime has both fatal (noreturn) and
2925 /// non-fatal handlers for this check.
2926 Recoverable,
2927 /// Runtime conditionally aborts, always need to support recovery.
2928 AlwaysRecoverable
2929};
2930}
2931
2932static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2933 assert(Kind.countPopulation() == 1)((Kind.countPopulation() == 1) ? static_cast<void> (0) :
__assert_fail ("Kind.countPopulation() == 1", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2933, __PRETTY_FUNCTION__))
;
2934 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2935 return CheckRecoverableKind::AlwaysRecoverable;
2936 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2937 return CheckRecoverableKind::Unrecoverable;
2938 else
2939 return CheckRecoverableKind::Recoverable;
2940}
2941
2942namespace {
2943struct SanitizerHandlerInfo {
2944 char const *const Name;
2945 unsigned Version;
2946};
2947}
2948
2949const SanitizerHandlerInfo SanitizerHandlers[] = {
2950#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2951 LIST_SANITIZER_CHECKSSANITIZER_CHECK(AddOverflow, add_overflow, 0) SANITIZER_CHECK
(BuiltinUnreachable, builtin_unreachable, 0) SANITIZER_CHECK(
CFICheckFail, cfi_check_fail, 0) SANITIZER_CHECK(DivremOverflow
, divrem_overflow, 0) SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss
, 0) SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0
) SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch
, 1) SANITIZER_CHECK(ImplicitConversion, implicit_conversion,
0) SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) SANITIZER_CHECK
(LoadInvalidValue, load_invalid_value, 0) SANITIZER_CHECK(MissingReturn
, missing_return, 0) SANITIZER_CHECK(MulOverflow, mul_overflow
, 0) SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) SANITIZER_CHECK
(NullabilityArg, nullability_arg, 0) SANITIZER_CHECK(NullabilityReturn
, nullability_return, 1) SANITIZER_CHECK(NonnullArg, nonnull_arg
, 0) SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) SANITIZER_CHECK
(OutOfBounds, out_of_bounds, 0) SANITIZER_CHECK(PointerOverflow
, pointer_overflow, 0) SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds
, 0) SANITIZER_CHECK(SubOverflow, sub_overflow, 0) SANITIZER_CHECK
(TypeMismatch, type_mismatch, 1) SANITIZER_CHECK(AlignmentAssumption
, alignment_assumption, 0) SANITIZER_CHECK(VLABoundNotPositive
, vla_bound_not_positive, 0)
2952#undef SANITIZER_CHECK
2953};
2954
2955static void emitCheckHandlerCall(CodeGenFunction &CGF,
2956 llvm::FunctionType *FnType,
2957 ArrayRef<llvm::Value *> FnArgs,
2958 SanitizerHandler CheckHandler,
2959 CheckRecoverableKind RecoverKind, bool IsFatal,
2960 llvm::BasicBlock *ContBB) {
2961 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable)((IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable
) ? static_cast<void> (0) : __assert_fail ("IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 2961, __PRETTY_FUNCTION__))
;
2962 Optional<ApplyDebugLocation> DL;
2963 if (!CGF.Builder.getCurrentDebugLocation()) {
2964 // Ensure that the call has at least an artificial debug location.
2965 DL.emplace(CGF, SourceLocation());
2966 }
2967 bool NeedsAbortSuffix =
2968 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2969 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2970 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2971 const StringRef CheckName = CheckInfo.Name;
2972 std::string FnName = "__ubsan_handle_" + CheckName.str();
2973 if (CheckInfo.Version && !MinimalRuntime)
2974 FnName += "_v" + llvm::utostr(CheckInfo.Version);
2975 if (MinimalRuntime)
2976 FnName += "_minimal";
2977 if (NeedsAbortSuffix)
2978 FnName += "_abort";
2979 bool MayReturn =
2980 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2981
2982 llvm::AttrBuilder B;
2983 if (!MayReturn) {
2984 B.addAttribute(llvm::Attribute::NoReturn)
2985 .addAttribute(llvm::Attribute::NoUnwind);
2986 }
2987 B.addAttribute(llvm::Attribute::UWTable);
2988
2989 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2990 FnType, FnName,
2991 llvm::AttributeList::get(CGF.getLLVMContext(),
2992 llvm::AttributeList::FunctionIndex, B),
2993 /*Local=*/true);
2994 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2995 if (!MayReturn) {
2996 HandlerCall->setDoesNotReturn();
2997 CGF.Builder.CreateUnreachable();
2998 } else {
2999 CGF.Builder.CreateBr(ContBB);
3000 }
3001}
3002
3003void CodeGenFunction::EmitCheck(
3004 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3005 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3006 ArrayRef<llvm::Value *> DynamicArgs) {
3007 assert(IsSanitizerScope)((IsSanitizerScope) ? static_cast<void> (0) : __assert_fail
("IsSanitizerScope", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3007, __PRETTY_FUNCTION__))
;
3008 assert(Checked.size() > 0)((Checked.size() > 0) ? static_cast<void> (0) : __assert_fail
("Checked.size() > 0", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3008, __PRETTY_FUNCTION__))
;
3009 assert(CheckHandler >= 0 &&((CheckHandler >= 0 && size_t(CheckHandler) < llvm
::array_lengthof(SanitizerHandlers)) ? static_cast<void>
(0) : __assert_fail ("CheckHandler >= 0 && size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3010, __PRETTY_FUNCTION__))
3010 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers))((CheckHandler >= 0 && size_t(CheckHandler) < llvm
::array_lengthof(SanitizerHandlers)) ? static_cast<void>
(0) : __assert_fail ("CheckHandler >= 0 && size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3010, __PRETTY_FUNCTION__))
;
3011 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3012
3013 llvm::Value *FatalCond = nullptr;
3014 llvm::Value *RecoverableCond = nullptr;
3015 llvm::Value *TrapCond = nullptr;
3016 for (int i = 0, n = Checked.size(); i < n; ++i) {
3017 llvm::Value *Check = Checked[i].first;
3018 // -fsanitize-trap= overrides -fsanitize-recover=.
3019 llvm::Value *&Cond =
3020 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3021 ? TrapCond
3022 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3023 ? RecoverableCond
3024 : FatalCond;
3025 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3026 }
3027
3028 if (TrapCond)
3029 EmitTrapCheck(TrapCond);
3030 if (!FatalCond && !RecoverableCond)
3031 return;
3032
3033 llvm::Value *JointCond;
3034 if (FatalCond && RecoverableCond)
3035 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3036 else
3037 JointCond = FatalCond ? FatalCond : RecoverableCond;
3038 assert(JointCond)((JointCond) ? static_cast<void> (0) : __assert_fail ("JointCond"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3038, __PRETTY_FUNCTION__))
;
3039
3040 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3041 assert(SanOpts.has(Checked[0].second))((SanOpts.has(Checked[0].second)) ? static_cast<void> (
0) : __assert_fail ("SanOpts.has(Checked[0].second)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3041, __PRETTY_FUNCTION__))
;
3042#ifndef NDEBUG
3043 for (int i = 1, n = Checked.size(); i < n; ++i) {
3044 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&((RecoverKind == getRecoverableKind(Checked[i].second) &&
"All recoverable kinds in a single check must be same!") ? static_cast
<void> (0) : __assert_fail ("RecoverKind == getRecoverableKind(Checked[i].second) && \"All recoverable kinds in a single check must be same!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3045, __PRETTY_FUNCTION__))
3045 "All recoverable kinds in a single check must be same!")((RecoverKind == getRecoverableKind(Checked[i].second) &&
"All recoverable kinds in a single check must be same!") ? static_cast
<void> (0) : __assert_fail ("RecoverKind == getRecoverableKind(Checked[i].second) && \"All recoverable kinds in a single check must be same!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3045, __PRETTY_FUNCTION__))
;
3046 assert(SanOpts.has(Checked[i].second))((SanOpts.has(Checked[i].second)) ? static_cast<void> (
0) : __assert_fail ("SanOpts.has(Checked[i].second)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3046, __PRETTY_FUNCTION__))
;
3047 }
3048#endif
3049
3050 llvm::BasicBlock *Cont = createBasicBlock("cont");
3051 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3052 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3053 // Give hint that we very much don't expect to execute the handler
3054 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3055 llvm::MDBuilder MDHelper(getLLVMContext());
3056 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3057 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3058 EmitBlock(Handlers);
3059
3060 // Handler functions take an i8* pointing to the (handler-specific) static
3061 // information block, followed by a sequence of intptr_t arguments
3062 // representing operand values.
3063 SmallVector<llvm::Value *, 4> Args;
3064 SmallVector<llvm::Type *, 4> ArgTypes;
3065 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3066 Args.reserve(DynamicArgs.size() + 1);
3067 ArgTypes.reserve(DynamicArgs.size() + 1);
3068
3069 // Emit handler arguments and create handler function type.
3070 if (!StaticArgs.empty()) {
3071 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3072 auto *InfoPtr =
3073 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3074 llvm::GlobalVariable::PrivateLinkage, Info);
3075 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3076 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3077 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3078 ArgTypes.push_back(Int8PtrTy);
3079 }
3080
3081 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3082 Args.push_back(EmitCheckValue(DynamicArgs[i]));
3083 ArgTypes.push_back(IntPtrTy);
3084 }
3085 }
3086
3087 llvm::FunctionType *FnType =
3088 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3089
3090 if (!FatalCond || !RecoverableCond) {
3091 // Simple case: we need to generate a single handler call, either
3092 // fatal, or non-fatal.
3093 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3094 (FatalCond != nullptr), Cont);
3095 } else {
3096 // Emit two handler calls: first one for set of unrecoverable checks,
3097 // another one for recoverable.
3098 llvm::BasicBlock *NonFatalHandlerBB =
3099 createBasicBlock("non_fatal." + CheckName);
3100 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3101 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3102 EmitBlock(FatalHandlerBB);
3103 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3104 NonFatalHandlerBB);
3105 EmitBlock(NonFatalHandlerBB);
3106 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3107 Cont);
3108 }
3109
3110 EmitBlock(Cont);
3111}
3112
3113void CodeGenFunction::EmitCfiSlowPathCheck(
3114 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3115 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3116 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3117
3118 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3119 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3120
3121 llvm::MDBuilder MDHelper(getLLVMContext());
3122 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3123 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3124
3125 EmitBlock(CheckBB);
3126
3127 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3128
3129 llvm::CallInst *CheckCall;
3130 llvm::FunctionCallee SlowPathFn;
3131 if (WithDiag) {
3132 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3133 auto *InfoPtr =
3134 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3135 llvm::GlobalVariable::PrivateLinkage, Info);
3136 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3137 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3138
3139 SlowPathFn = CGM.getModule().getOrInsertFunction(
3140 "__cfi_slowpath_diag",
3141 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3142 false));
3143 CheckCall = Builder.CreateCall(
3144 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3145 } else {
3146 SlowPathFn = CGM.getModule().getOrInsertFunction(
3147 "__cfi_slowpath",
3148 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3149 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3150 }
3151
3152 CGM.setDSOLocal(
3153 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3154 CheckCall->setDoesNotThrow();
3155
3156 EmitBlock(Cont);
3157}
3158
3159// Emit a stub for __cfi_check function so that the linker knows about this
3160// symbol in LTO mode.
3161void CodeGenFunction::EmitCfiCheckStub() {
3162 llvm::Module *M = &CGM.getModule();
3163 auto &Ctx = M->getContext();
3164 llvm::Function *F = llvm::Function::Create(
3165 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3166 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3167 CGM.setDSOLocal(F);
3168 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3169 // FIXME: consider emitting an intrinsic call like
3170 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3171 // which can be lowered in CrossDSOCFI pass to the actual contents of
3172 // __cfi_check. This would allow inlining of __cfi_check calls.
3173 llvm::CallInst::Create(
3174 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3175 llvm::ReturnInst::Create(Ctx, nullptr, BB);
3176}
3177
3178// This function is basically a switch over the CFI failure kind, which is
3179// extracted from CFICheckFailData (1st function argument). Each case is either
3180// llvm.trap or a call to one of the two runtime handlers, based on
3181// -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3182// failure kind) traps, but this should really never happen. CFICheckFailData
3183// can be nullptr if the calling module has -fsanitize-trap behavior for this
3184// check kind; in this case __cfi_check_fail traps as well.
3185void CodeGenFunction::EmitCfiCheckFail() {
3186 SanitizerScope SanScope(this);
3187 FunctionArgList Args;
3188 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3189 ImplicitParamDecl::Other);
3190 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3191 ImplicitParamDecl::Other);
3192 Args.push_back(&ArgData);
3193 Args.push_back(&ArgAddr);
3194
3195 const CGFunctionInfo &FI =
3196 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3197
3198 llvm::Function *F = llvm::Function::Create(
3199 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3200 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3201 F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3202
3203 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3204 SourceLocation());
3205
3206 // This function should not be affected by blacklist. This function does
3207 // not have a source location, but "src:*" would still apply. Revert any
3208 // changes to SanOpts made in StartFunction.
3209 SanOpts = CGM.getLangOpts().Sanitize;
3210
3211 llvm::Value *Data =
3212 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3213 CGM.getContext().VoidPtrTy, ArgData.getLocation());
3214 llvm::Value *Addr =
3215 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3216 CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3217
3218 // Data == nullptr means the calling module has trap behaviour for this check.
3219 llvm::Value *DataIsNotNullPtr =
3220 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3221 EmitTrapCheck(DataIsNotNullPtr);
3222
3223 llvm::StructType *SourceLocationTy =
3224 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3225 llvm::StructType *CfiCheckFailDataTy =
3226 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3227
3228 llvm::Value *V = Builder.CreateConstGEP2_32(
3229 CfiCheckFailDataTy,
3230 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3231 0);
3232 Address CheckKindAddr(V, getIntAlign());
3233 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3234
3235 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3236 CGM.getLLVMContext(),
3237 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3238 llvm::Value *ValidVtable = Builder.CreateZExt(
3239 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3240 {Addr, AllVtables}),
3241 IntPtrTy);
3242
3243 const std::pair<int, SanitizerMask> CheckKinds[] = {
3244 {CFITCK_VCall, SanitizerKind::CFIVCall},
3245 {CFITCK_NVCall, SanitizerKind::CFINVCall},
3246 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3247 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3248 {CFITCK_ICall, SanitizerKind::CFIICall}};
3249
3250 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3251 for (auto CheckKindMaskPair : CheckKinds) {
3252 int Kind = CheckKindMaskPair.first;
3253 SanitizerMask Mask = CheckKindMaskPair.second;
3254 llvm::Value *Cond =
3255 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3256 if (CGM.getLangOpts().Sanitize.has(Mask))
3257 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3258 {Data, Addr, ValidVtable});
3259 else
3260 EmitTrapCheck(Cond);
3261 }
3262
3263 FinishFunction();
3264 // The only reference to this function will be created during LTO link.
3265 // Make sure it survives until then.
3266 CGM.addUsedGlobal(F);
3267}
3268
3269void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3270 if (SanOpts.has(SanitizerKind::Unreachable)) {
3271 SanitizerScope SanScope(this);
3272 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3273 SanitizerKind::Unreachable),
3274 SanitizerHandler::BuiltinUnreachable,
3275 EmitCheckSourceLocation(Loc), None);
3276 }
3277 Builder.CreateUnreachable();
3278}
3279
3280void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3281 llvm::BasicBlock *Cont = createBasicBlock("cont");
3282
3283 // If we're optimizing, collapse all calls to trap down to just one per
3284 // function to save on code size.
3285 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3286 TrapBB = createBasicBlock("trap");
3287 Builder.CreateCondBr(Checked, Cont, TrapBB);
3288 EmitBlock(TrapBB);
3289 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3290 TrapCall->setDoesNotReturn();
3291 TrapCall->setDoesNotThrow();
3292 Builder.CreateUnreachable();
3293 } else {
3294 Builder.CreateCondBr(Checked, Cont, TrapBB);
3295 }
3296
3297 EmitBlock(Cont);
3298}
3299
3300llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3301 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3302
3303 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3304 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3305 CGM.getCodeGenOpts().TrapFuncName);
3306 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3307 }
3308
3309 return TrapCall;
3310}
3311
3312Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3313 LValueBaseInfo *BaseInfo,
3314 TBAAAccessInfo *TBAAInfo) {
3315 assert(E->getType()->isArrayType() &&((E->getType()->isArrayType() && "Array to pointer decay must have array source type!"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isArrayType() && \"Array to pointer decay must have array source type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3316, __PRETTY_FUNCTION__))
3316 "Array to pointer decay must have array source type!")((E->getType()->isArrayType() && "Array to pointer decay must have array source type!"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isArrayType() && \"Array to pointer decay must have array source type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3316, __PRETTY_FUNCTION__))
;
3317
3318 // Expressions of array type can't be bitfields or vector elements.
3319 LValue LV = EmitLValue(E);
3320 Address Addr = LV.getAddress();
3321
3322 // If the array type was an incomplete type, we need to make sure
3323 // the decay ends up being the right type.
3324 llvm::Type *NewTy = ConvertType(E->getType());
3325 Addr = Builder.CreateElementBitCast(Addr, NewTy);
3326
3327 // Note that VLA pointers are always decayed, so we don't need to do
3328 // anything here.
3329 if (!E->getType()->isVariableArrayType()) {
3330 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&((isa<llvm::ArrayType>(Addr.getElementType()) &&
"Expected pointer to array") ? static_cast<void> (0) :
__assert_fail ("isa<llvm::ArrayType>(Addr.getElementType()) && \"Expected pointer to array\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3331, __PRETTY_FUNCTION__))
3331 "Expected pointer to array")((isa<llvm::ArrayType>(Addr.getElementType()) &&
"Expected pointer to array") ? static_cast<void> (0) :
__assert_fail ("isa<llvm::ArrayType>(Addr.getElementType()) && \"Expected pointer to array\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3331, __PRETTY_FUNCTION__))
;
3332 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3333 }
3334
3335 // The result of this decay conversion points to an array element within the
3336 // base lvalue. However, since TBAA currently does not support representing
3337 // accesses to elements of member arrays, we conservatively represent accesses
3338 // to the pointee object as if it had no any base lvalue specified.
3339 // TODO: Support TBAA for member arrays.
3340 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3341 if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3342 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3343
3344 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3345}
3346
3347/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3348/// array to pointer, return the array subexpression.
3349static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3350 // If this isn't just an array->pointer decay, bail out.
3351 const auto *CE = dyn_cast<CastExpr>(E);
3352 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3353 return nullptr;
3354
3355 // If this is a decay from variable width array, bail out.
3356 const Expr *SubExpr = CE->getSubExpr();
3357 if (SubExpr->getType()->isVariableArrayType())
3358 return nullptr;
3359
3360 return SubExpr;
3361}
3362
3363static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3364 llvm::Value *ptr,
3365 ArrayRef<llvm::Value*> indices,
3366 bool inbounds,
3367 bool signedIndices,
3368 SourceLocation loc,
3369 const llvm::Twine &name = "arrayidx") {
3370 if (inbounds) {
3371 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3372 CodeGenFunction::NotSubtraction, loc,
3373 name);
3374 } else {
3375 return CGF.Builder.CreateGEP(ptr, indices, name);
3376 }
3377}
3378
3379static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3380 llvm::Value *idx,
3381 CharUnits eltSize) {
3382 // If we have a constant index, we can use the exact offset of the
3383 // element we're accessing.
3384 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3385 CharUnits offset = constantIdx->getZExtValue() * eltSize;
3386 return arrayAlign.alignmentAtOffset(offset);
3387
3388 // Otherwise, use the worst-case alignment for any element.
3389 } else {
3390 return arrayAlign.alignmentOfArrayElement(eltSize);
3391 }
3392}
3393
3394static QualType getFixedSizeElementType(const ASTContext &ctx,
3395 const VariableArrayType *vla) {
3396 QualType eltType;
3397 do {
3398 eltType = vla->getElementType();
3399 } while ((vla = ctx.getAsVariableArrayType(eltType)));
3400 return eltType;
3401}
3402
3403static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3404 ArrayRef<llvm::Value *> indices,
3405 QualType eltType, bool inbounds,
3406 bool signedIndices, SourceLocation loc,
3407 QualType *arrayType = nullptr,
3408 const llvm::Twine &name = "arrayidx") {
3409 // All the indices except that last must be zero.
3410#ifndef NDEBUG
3411 for (auto idx : indices.drop_back())
3412 assert(isa<llvm::ConstantInt>(idx) &&((isa<llvm::ConstantInt>(idx) && cast<llvm::
ConstantInt>(idx)->isZero()) ? static_cast<void> (
0) : __assert_fail ("isa<llvm::ConstantInt>(idx) && cast<llvm::ConstantInt>(idx)->isZero()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3413, __PRETTY_FUNCTION__))
3413 cast<llvm::ConstantInt>(idx)->isZero())((isa<llvm::ConstantInt>(idx) && cast<llvm::
ConstantInt>(idx)->isZero()) ? static_cast<void> (
0) : __assert_fail ("isa<llvm::ConstantInt>(idx) && cast<llvm::ConstantInt>(idx)->isZero()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3413, __PRETTY_FUNCTION__))
;
3414#endif
3415
3416 // Determine the element size of the statically-sized base. This is
3417 // the thing that the indices are expressed in terms of.
3418 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3419 eltType = getFixedSizeElementType(CGF.getContext(), vla);
3420 }
3421
3422 // We can use that to compute the best alignment of the element.
3423 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3424 CharUnits eltAlign =
3425 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3426
3427 llvm::Value *eltPtr;
3428 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3429 if (!CGF.IsInPreservedAIRegion || !LastIndex) {
3430 eltPtr = emitArraySubscriptGEP(
3431 CGF, addr.getPointer(), indices, inbounds, signedIndices,
3432 loc, name);
3433 } else {
3434 // Remember the original array subscript for bpf target
3435 unsigned idx = LastIndex->getZExtValue();
3436 llvm::DIType *DbgInfo = nullptr;
3437 if (arrayType)
3438 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3439 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getPointer(),
3440 indices.size() - 1,
3441 idx, DbgInfo);
3442 }
3443
3444 return Address(eltPtr, eltAlign);
3445}
3446
3447LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3448 bool Accessed) {
3449 // The index must always be an integer, which is not an aggregate. Emit it
3450 // in lexical order (this complexity is, sadly, required by C++17).
3451 llvm::Value *IdxPre =
3452 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3453 bool SignedIndices = false;
3454 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3455 auto *Idx = IdxPre;
3456 if (E->getLHS() != E->getIdx()) {
3457 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS")((E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"
) ? static_cast<void> (0) : __assert_fail ("E->getRHS() == E->getIdx() && \"index was neither LHS nor RHS\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3457, __PRETTY_FUNCTION__))
;
3458 Idx = EmitScalarExpr(E->getIdx());
3459 }
3460
3461 QualType IdxTy = E->getIdx()->getType();
3462 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3463 SignedIndices |= IdxSigned;
3464
3465 if (SanOpts.has(SanitizerKind::ArrayBounds))
3466 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3467
3468 // Extend or truncate the index type to 32 or 64-bits.
3469 if (Promote && Idx->getType() != IntPtrTy)
3470 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3471
3472 return Idx;
3473 };
3474 IdxPre = nullptr;
3475
3476 // If the base is a vector type, then we are forming a vector element lvalue
3477 // with this subscript.
3478 if (E->getBase()->getType()->isVectorType() &&
3479 !isa<ExtVectorElementExpr>(E->getBase())) {
3480 // Emit the vector as an lvalue to get its address.
3481 LValue LHS = EmitLValue(E->getBase());
3482 auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3483 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!")((LHS.isSimple() && "Can only subscript lvalue vectors here!"
) ? static_cast<void> (0) : __assert_fail ("LHS.isSimple() && \"Can only subscript lvalue vectors here!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3483, __PRETTY_FUNCTION__))
;
3484 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3485 LHS.getBaseInfo(), TBAAAccessInfo());
3486 }
3487
3488 // All the other cases basically behave like simple offsetting.
3489
3490 // Handle the extvector case we ignored above.
3491 if (isa<ExtVectorElementExpr>(E->getBase())) {
3492 LValue LV = EmitLValue(E->getBase());
3493 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3494 Address Addr = EmitExtVectorElementLValue(LV);
3495
3496 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3497 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3498 SignedIndices, E->getExprLoc());
3499 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3500 CGM.getTBAAInfoForSubobject(LV, EltType));
3501 }
3502
3503 LValueBaseInfo EltBaseInfo;
3504 TBAAAccessInfo EltTBAAInfo;
3505 Address Addr = Address::invalid();
3506 if (const VariableArrayType *vla =
3507 getContext().getAsVariableArrayType(E->getType())) {
3508 // The base must be a pointer, which is not an aggregate. Emit
3509 // it. It needs to be emitted first in case it's what captures
3510 // the VLA bounds.
3511 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3512 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3513
3514 // The element count here is the total number of non-VLA elements.
3515 llvm::Value *numElements = getVLASize(vla).NumElts;
3516
3517 // Effectively, the multiply by the VLA size is part of the GEP.
3518 // GEP indexes are signed, and scaling an index isn't permitted to
3519 // signed-overflow, so we use the same semantics for our explicit
3520 // multiply. We suppress this if overflow is not undefined behavior.
3521 if (getLangOpts().isSignedOverflowDefined()) {
3522 Idx = Builder.CreateMul(Idx, numElements);
3523 } else {
3524 Idx = Builder.CreateNSWMul(Idx, numElements);
3525 }
3526
3527 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3528 !getLangOpts().isSignedOverflowDefined(),
3529 SignedIndices, E->getExprLoc());
3530
3531 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3532 // Indexing over an interface, as in "NSString *P; P[4];"
3533
3534 // Emit the base pointer.
3535 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3536 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3537
3538 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3539 llvm::Value *InterfaceSizeVal =
3540 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3541
3542 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3543
3544 // We don't necessarily build correct LLVM struct types for ObjC
3545 // interfaces, so we can't rely on GEP to do this scaling
3546 // correctly, so we need to cast to i8*. FIXME: is this actually
3547 // true? A lot of other things in the fragile ABI would break...
3548 llvm::Type *OrigBaseTy = Addr.getType();
3549 Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3550
3551 // Do the GEP.
3552 CharUnits EltAlign =
3553 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3554 llvm::Value *EltPtr =
3555 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3556 SignedIndices, E->getExprLoc());
3557 Addr = Address(EltPtr, EltAlign);
3558
3559 // Cast back.
3560 Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3561 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3562 // If this is A[i] where A is an array, the frontend will have decayed the
3563 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3564 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3565 // "gep x, i" here. Emit one "gep A, 0, i".
3566 assert(Array->getType()->isArrayType() &&((Array->getType()->isArrayType() && "Array to pointer decay must have array source type!"
) ? static_cast<void> (0) : __assert_fail ("Array->getType()->isArrayType() && \"Array to pointer decay must have array source type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3567, __PRETTY_FUNCTION__))
3567 "Array to pointer decay must have array source type!")((Array->getType()->isArrayType() && "Array to pointer decay must have array source type!"
) ? static_cast<void> (0) : __assert_fail ("Array->getType()->isArrayType() && \"Array to pointer decay must have array source type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3567, __PRETTY_FUNCTION__))
;
3568 LValue ArrayLV;
3569 // For simple multidimensional array indexing, set the 'accessed' flag for
3570 // better bounds-checking of the base expression.
3571 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3572 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3573 else
3574 ArrayLV = EmitLValue(Array);
3575 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3576
3577 // Propagate the alignment from the array itself to the result.
3578 QualType arrayType = Array->getType();
3579 Addr = emitArraySubscriptGEP(
3580 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3581 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3582 E->getExprLoc(), &arrayType);
3583 EltBaseInfo = ArrayLV.getBaseInfo();
3584 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3585 } else {
3586 // The base must be a pointer; emit it with an estimate of its alignment.
3587 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3588 auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3589 QualType ptrType = E->getBase()->getType();
3590 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3591 !getLangOpts().isSignedOverflowDefined(),
3592 SignedIndices, E->getExprLoc(), &ptrType);
3593 }
3594
3595 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3596
3597 if (getLangOpts().ObjC &&
3598 getLangOpts().getGC() != LangOptions::NonGC) {
3599 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3600 setObjCGCLValueClass(getContext(), E, LV);
3601 }
3602 return LV;
3603}
3604
3605static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3606 LValueBaseInfo &BaseInfo,
3607 TBAAAccessInfo &TBAAInfo,
3608 QualType BaseTy, QualType ElTy,
3609 bool IsLowerBound) {
3610 LValue BaseLVal;
3611 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3612 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3613 if (BaseTy->isArrayType()) {
3614 Address Addr = BaseLVal.getAddress();
3615 BaseInfo = BaseLVal.getBaseInfo();
3616
3617 // If the array type was an incomplete type, we need to make sure
3618 // the decay ends up being the right type.
3619 llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3620 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3621
3622 // Note that VLA pointers are always decayed, so we don't need to do
3623 // anything here.
3624 if (!BaseTy->isVariableArrayType()) {
3625 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&((isa<llvm::ArrayType>(Addr.getElementType()) &&
"Expected pointer to array") ? static_cast<void> (0) :
__assert_fail ("isa<llvm::ArrayType>(Addr.getElementType()) && \"Expected pointer to array\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3626, __PRETTY_FUNCTION__))
3626 "Expected pointer to array")((isa<llvm::ArrayType>(Addr.getElementType()) &&
"Expected pointer to array") ? static_cast<void> (0) :
__assert_fail ("isa<llvm::ArrayType>(Addr.getElementType()) && \"Expected pointer to array\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3626, __PRETTY_FUNCTION__))
;
3627 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3628 }
3629
3630 return CGF.Builder.CreateElementBitCast(Addr,
3631 CGF.ConvertTypeForMem(ElTy));
3632 }
3633 LValueBaseInfo TypeBaseInfo;
3634 TBAAAccessInfo TypeTBAAInfo;
3635 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3636 &TypeTBAAInfo);
3637 BaseInfo.mergeForCast(TypeBaseInfo);
3638 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3639 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3640 }
3641 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3642}
3643
3644LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3645 bool IsLowerBound) {
3646 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3647 QualType ResultExprTy;
3648 if (auto *AT = getContext().getAsArrayType(BaseTy))
3649 ResultExprTy = AT->getElementType();
3650 else
3651 ResultExprTy = BaseTy->getPointeeType();
3652 llvm::Value *Idx = nullptr;
3653 if (IsLowerBound || E->getColonLoc().isInvalid()) {
3654 // Requesting lower bound or upper bound, but without provided length and
3655 // without ':' symbol for the default length -> length = 1.
3656 // Idx = LowerBound ?: 0;
3657 if (auto *LowerBound = E->getLowerBound()) {
3658 Idx = Builder.CreateIntCast(
3659 EmitScalarExpr(LowerBound), IntPtrTy,
3660 LowerBound->getType()->hasSignedIntegerRepresentation());
3661 } else
3662 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3663 } else {
3664 // Try to emit length or lower bound as constant. If this is possible, 1
3665 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3666 // IR (LB + Len) - 1.
3667 auto &C = CGM.getContext();
3668 auto *Length = E->getLength();
3669 llvm::APSInt ConstLength;
3670 if (Length) {
3671 // Idx = LowerBound + Length - 1;
3672 if (Length->isIntegerConstantExpr(ConstLength, C)) {
3673 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3674 Length = nullptr;
3675 }
3676 auto *LowerBound = E->getLowerBound();
3677 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3678 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3679 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3680 LowerBound = nullptr;
3681 }
3682 if (!Length)
3683 --ConstLength;
3684 else if (!LowerBound)
3685 --ConstLowerBound;
3686
3687 if (Length || LowerBound) {
3688 auto *LowerBoundVal =
3689 LowerBound
3690 ? Builder.CreateIntCast(
3691 EmitScalarExpr(LowerBound), IntPtrTy,
3692 LowerBound->getType()->hasSignedIntegerRepresentation())
3693 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3694 auto *LengthVal =
3695 Length
3696 ? Builder.CreateIntCast(
3697 EmitScalarExpr(Length), IntPtrTy,
3698 Length->getType()->hasSignedIntegerRepresentation())
3699 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3700 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3701 /*HasNUW=*/false,
3702 !getLangOpts().isSignedOverflowDefined());
3703 if (Length && LowerBound) {
3704 Idx = Builder.CreateSub(
3705 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3706 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3707 }
3708 } else
3709 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3710 } else {
3711 // Idx = ArraySize - 1;
3712 QualType ArrayTy = BaseTy->isPointerType()
3713 ? E->getBase()->IgnoreParenImpCasts()->getType()
3714 : BaseTy;
3715 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3716 Length = VAT->getSizeExpr();
3717 if (Length->isIntegerConstantExpr(ConstLength, C))
3718 Length = nullptr;
3719 } else {
3720 auto *CAT = C.getAsConstantArrayType(ArrayTy);
3721 ConstLength = CAT->getSize();
3722 }
3723 if (Length) {
3724 auto *LengthVal = Builder.CreateIntCast(
3725 EmitScalarExpr(Length), IntPtrTy,
3726 Length->getType()->hasSignedIntegerRepresentation());
3727 Idx = Builder.CreateSub(
3728 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3729 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3730 } else {
3731 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3732 --ConstLength;
3733 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3734 }
3735 }
3736 }
3737 assert(Idx)((Idx) ? static_cast<void> (0) : __assert_fail ("Idx", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3737, __PRETTY_FUNCTION__))
;
3738
3739 Address EltPtr = Address::invalid();
3740 LValueBaseInfo BaseInfo;
3741 TBAAAccessInfo TBAAInfo;
3742 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3743 // The base must be a pointer, which is not an aggregate. Emit
3744 // it. It needs to be emitted first in case it's what captures
3745 // the VLA bounds.
3746 Address Base =
3747 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3748 BaseTy, VLA->getElementType(), IsLowerBound);
3749 // The element count here is the total number of non-VLA elements.
3750 llvm::Value *NumElements = getVLASize(VLA).NumElts;
3751
3752 // Effectively, the multiply by the VLA size is part of the GEP.
3753 // GEP indexes are signed, and scaling an index isn't permitted to
3754 // signed-overflow, so we use the same semantics for our explicit
3755 // multiply. We suppress this if overflow is not undefined behavior.
3756 if (getLangOpts().isSignedOverflowDefined())
3757 Idx = Builder.CreateMul(Idx, NumElements);
3758 else
3759 Idx = Builder.CreateNSWMul(Idx, NumElements);
3760 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3761 !getLangOpts().isSignedOverflowDefined(),
3762 /*signedIndices=*/false, E->getExprLoc());
3763 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3764 // If this is A[i] where A is an array, the frontend will have decayed the
3765 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3766 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3767 // "gep x, i" here. Emit one "gep A, 0, i".
3768 assert(Array->getType()->isArrayType() &&((Array->getType()->isArrayType() && "Array to pointer decay must have array source type!"
) ? static_cast<void> (0) : __assert_fail ("Array->getType()->isArrayType() && \"Array to pointer decay must have array source type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3769, __PRETTY_FUNCTION__))
3769 "Array to pointer decay must have array source type!")((Array->getType()->isArrayType() && "Array to pointer decay must have array source type!"
) ? static_cast<void> (0) : __assert_fail ("Array->getType()->isArrayType() && \"Array to pointer decay must have array source type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3769, __PRETTY_FUNCTION__))
;
3770 LValue ArrayLV;
3771 // For simple multidimensional array indexing, set the 'accessed' flag for
3772 // better bounds-checking of the base expression.
3773 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3774 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3775 else
3776 ArrayLV = EmitLValue(Array);
3777
3778 // Propagate the alignment from the array itself to the result.
3779 EltPtr = emitArraySubscriptGEP(
3780 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3781 ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3782 /*signedIndices=*/false, E->getExprLoc());
3783 BaseInfo = ArrayLV.getBaseInfo();
3784 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3785 } else {
3786 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3787 TBAAInfo, BaseTy, ResultExprTy,
3788 IsLowerBound);
3789 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3790 !getLangOpts().isSignedOverflowDefined(),
3791 /*signedIndices=*/false, E->getExprLoc());
3792 }
3793
3794 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3795}
3796
3797LValue CodeGenFunction::
3798EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3799 // Emit the base vector as an l-value.
3800 LValue Base;
3801
3802 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3803 if (E->isArrow()) {
3804 // If it is a pointer to a vector, emit the address and form an lvalue with
3805 // it.
3806 LValueBaseInfo BaseInfo;
3807 TBAAAccessInfo TBAAInfo;
3808 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3809 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3810 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3811 Base.getQuals().removeObjCGCAttr();
3812 } else if (E->getBase()->isGLValue()) {
3813 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3814 // emit the base as an lvalue.
3815 assert(E->getBase()->getType()->isVectorType())((E->getBase()->getType()->isVectorType()) ? static_cast
<void> (0) : __assert_fail ("E->getBase()->getType()->isVectorType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3815, __PRETTY_FUNCTION__))
;
3816 Base = EmitLValue(E->getBase());
3817 } else {
3818 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3819 assert(E->getBase()->getType()->isVectorType() &&((E->getBase()->getType()->isVectorType() &&
"Result must be a vector") ? static_cast<void> (0) : __assert_fail
("E->getBase()->getType()->isVectorType() && \"Result must be a vector\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3820, __PRETTY_FUNCTION__))
3820 "Result must be a vector")((E->getBase()->getType()->isVectorType() &&
"Result must be a vector") ? static_cast<void> (0) : __assert_fail
("E->getBase()->getType()->isVectorType() && \"Result must be a vector\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3820, __PRETTY_FUNCTION__))
;
3821 llvm::Value *Vec = EmitScalarExpr(E->getBase());
3822
3823 // Store the vector to memory (because LValue wants an address).
3824 Address VecMem = CreateMemTemp(E->getBase()->getType());
3825 Builder.CreateStore(Vec, VecMem);
3826 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3827 AlignmentSource::Decl);
3828 }
3829
3830 QualType type =
3831 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3832
3833 // Encode the element access list into a vector of unsigned indices.
3834 SmallVector<uint32_t, 4> Indices;
3835 E->getEncodedElementAccess(Indices);
3836
3837 if (Base.isSimple()) {
3838 llvm::Constant *CV =
3839 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3840 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3841 Base.getBaseInfo(), TBAAAccessInfo());
3842 }
3843 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!")((Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"
) ? static_cast<void> (0) : __assert_fail ("Base.isExtVectorElt() && \"Can only subscript lvalue vec elts here!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3843, __PRETTY_FUNCTION__))
;
3844
3845 llvm::Constant *BaseElts = Base.getExtVectorElts();
3846 SmallVector<llvm::Constant *, 4> CElts;
3847
3848 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3849 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3850 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3851 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3852 Base.getBaseInfo(), TBAAAccessInfo());
3853}
3854
3855LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3856 if (DeclRefExpr *DRE
13.1
'DRE' is null
13.1
'DRE' is null
= tryToConvertMemberExprToDeclRefExpr(*this, E)) {
14
Taking false branch
3857 EmitIgnoredExpr(E->getBase());
3858 return EmitDeclRefLValue(DRE);
3859 }
3860
3861 Expr *BaseExpr = E->getBase();
3862 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3863 LValue BaseLV;
3864 if (E->isArrow()) {
15
Assuming the condition is false
16
Taking false branch
3865 LValueBaseInfo BaseInfo;
3866 TBAAAccessInfo TBAAInfo;
3867 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3868 QualType PtrTy = BaseExpr->getType()->getPointeeType();
3869 SanitizerSet SkippedChecks;
3870 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3871 if (IsBaseCXXThis)
3872 SkippedChecks.set(SanitizerKind::Alignment, true);
3873 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3874 SkippedChecks.set(SanitizerKind::Null, true);
3875 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3876 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3877 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3878 } else
3879 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3880
3881 NamedDecl *ND = E->getMemberDecl();
3882 if (auto *Field
17.1
'Field' is non-null
17.1
'Field' is non-null
= dyn_cast<FieldDecl>(ND)) {
17
Assuming 'ND' is a 'FieldDecl'
18
Taking true branch
3883 LValue LV = EmitLValueForField(BaseLV, Field);
3884 setObjCGCLValueClass(getContext(), E, LV);
19
Calling 'setObjCGCLValueClass'
3885 return LV;
3886 }
3887
3888 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3889 return EmitFunctionDeclLValue(*this, E, FD);
3890
3891 llvm_unreachable("Unhandled member declaration!")::llvm::llvm_unreachable_internal("Unhandled member declaration!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3891)
;
3892}
3893
3894/// Given that we are currently emitting a lambda, emit an l-value for
3895/// one of its members.
3896LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3897 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda())((cast<CXXMethodDecl>(CurCodeDecl)->getParent()->
isLambda()) ? static_cast<void> (0) : __assert_fail ("cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3897, __PRETTY_FUNCTION__))
;
3898 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent())((cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field
->getParent()) ? static_cast<void> (0) : __assert_fail
("cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 3898, __PRETTY_FUNCTION__))
;
3899 QualType LambdaTagType =
3900 getContext().getTagDeclType(Field->getParent());
3901 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3902 return EmitLValueForField(LambdaLV, Field);
3903}
3904
3905/// Get the field index in the debug info. The debug info structure/union
3906/// will ignore the unnamed bitfields.
3907unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3908 unsigned FieldIndex) {
3909 unsigned I = 0, Skipped = 0;
3910
3911 for (auto F : Rec->getDefinition()->fields()) {
3912 if (I == FieldIndex)
3913 break;
3914 if (F->isUnnamedBitfield())
3915 Skipped++;
3916 I++;
3917 }
3918
3919 return FieldIndex - Skipped;
3920}
3921
3922/// Get the address of a zero-sized field within a record. The resulting
3923/// address doesn't necessarily have the right type.
3924static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3925 const FieldDecl *Field) {
3926 CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
3927 CGF.getContext().getFieldOffset(Field));
3928 if (Offset.isZero())
3929 return Base;
3930 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
3931 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
3932}
3933
3934/// Drill down to the storage of a field without walking into
3935/// reference types.
3936///
3937/// The resulting address doesn't necessarily have the right type.
3938static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3939 const FieldDecl *field) {
3940 if (field->isZeroSize(CGF.getContext()))
3941 return emitAddrOfZeroSizeField(CGF, base, field);
3942
3943 const RecordDecl *rec = field->getParent();
3944
3945 unsigned idx =
3946 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3947
3948 return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3949}
3950
3951static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
3952 const FieldDecl *field) {
3953 const RecordDecl *rec = field->getParent();
3954 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
3955 CGF.getContext().getRecordType(rec), rec->getLocation());
3956
3957 unsigned idx =
3958 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3959
3960 return CGF.Builder.CreatePreserveStructAccessIndex(
3961 base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
3962}
3963
3964static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3965 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3966 if (!RD)
3967 return false;
3968
3969 if (RD->isDynamicClass())
3970 return true;
3971
3972 for (const auto &Base : RD->bases())
3973 if (hasAnyVptr(Base.getType(), Context))
3974 return true;
3975
3976 for (const FieldDecl *Field : RD->fields())
3977 if (hasAnyVptr(Field->getType(), Context))
3978 return true;
3979
3980 return false;
3981}
3982
3983LValue CodeGenFunction::EmitLValueForField(LValue base,
3984 const FieldDecl *field) {
3985 LValueBaseInfo BaseInfo = base.getBaseInfo();
3986
3987 if (field->isBitField()) {
3988 const CGRecordLayout &RL =
3989 CGM.getTypes().getCGRecordLayout(field->getParent());
3990 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3991 Address Addr = base.getAddress();
3992 unsigned Idx = RL.getLLVMFieldNo(field);
3993 if (Idx != 0)
3994 // For structs, we GEP to the field that the record layout suggests.
3995 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3996 // Get the access type.
3997 llvm::Type *FieldIntTy =
3998 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3999 if (Addr.getElementType() != FieldIntTy)
4000 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4001
4002 QualType fieldType =
4003 field->getType().withCVRQualifiers(base.getVRQualifiers());
4004 // TODO: Support TBAA for bit fields.
4005 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4006 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4007 TBAAAccessInfo());
4008 }
4009
4010 // Fields of may-alias structures are may-alias themselves.
4011 // FIXME: this should get propagated down through anonymous structs
4012 // and unions.
4013 QualType FieldType = field->getType();
4014 const RecordDecl *rec = field->getParent();
4015 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4016 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4017 TBAAAccessInfo FieldTBAAInfo;
4018 if (base.getTBAAInfo().isMayAlias() ||
4019 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4020 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4021 } else if (rec->isUnion()) {
4022 // TODO: Support TBAA for unions.
4023 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4024 } else {
4025 // If no base type been assigned for the base access, then try to generate
4026 // one for this base lvalue.
4027 FieldTBAAInfo = base.getTBAAInfo();
4028 if (!FieldTBAAInfo.BaseType) {
4029 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4030 assert(!FieldTBAAInfo.Offset &&((!FieldTBAAInfo.Offset && "Nonzero offset for an access with no base type!"
) ? static_cast<void> (0) : __assert_fail ("!FieldTBAAInfo.Offset && \"Nonzero offset for an access with no base type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4031, __PRETTY_FUNCTION__))
4031 "Nonzero offset for an access with no base type!")((!FieldTBAAInfo.Offset && "Nonzero offset for an access with no base type!"
) ? static_cast<void> (0) : __assert_fail ("!FieldTBAAInfo.Offset && \"Nonzero offset for an access with no base type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4031, __PRETTY_FUNCTION__))
;
4032 }
4033
4034 // Adjust offset to be relative to the base type.
4035 const ASTRecordLayout &Layout =
4036 getContext().getASTRecordLayout(field->getParent());
4037 unsigned CharWidth = getContext().getCharWidth();
4038 if (FieldTBAAInfo.BaseType)
4039 FieldTBAAInfo.Offset +=
4040 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4041
4042 // Update the final access type and size.
4043 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4044 FieldTBAAInfo.Size =
4045 getContext().getTypeSizeInChars(FieldType).getQuantity();
4046 }
4047
4048 Address addr = base.getAddress();
4049 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4050 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4051 ClassDef->isDynamicClass()) {
4052 // Getting to any field of dynamic object requires stripping dynamic
4053 // information provided by invariant.group. This is because accessing
4054 // fields may leak the real address of dynamic object, which could result
4055 // in miscompilation when leaked pointer would be compared.
4056 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4057 addr = Address(stripped, addr.getAlignment());
4058 }
4059 }
4060
4061 unsigned RecordCVR = base.getVRQualifiers();
4062 if (rec->isUnion()) {
4063 // For unions, there is no pointer adjustment.
4064 if (CGM.getCodeGenOpts().StrictVTablePointers &&
4065 hasAnyVptr(FieldType, getContext()))
4066 // Because unions can easily skip invariant.barriers, we need to add
4067 // a barrier every time CXXRecord field with vptr is referenced.
4068 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4069 addr.getAlignment());
4070
4071 if (IsInPreservedAIRegion) {
4072 // Remember the original union field index
4073 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4074 getContext().getRecordType(rec), rec->getLocation());
4075 addr = Address(
4076 Builder.CreatePreserveUnionAccessIndex(
4077 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4078 addr.getAlignment());
4079 }
4080
4081 if (FieldType->isReferenceType())
4082 addr = Builder.CreateElementBitCast(
4083 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4084 } else {
4085 if (!IsInPreservedAIRegion)
4086 // For structs, we GEP to the field that the record layout suggests.
4087 addr = emitAddrOfFieldStorage(*this, addr, field);
4088 else
4089 // Remember the original struct field index
4090 addr = emitPreserveStructAccess(*this, addr, field);
4091 }
4092
4093 // If this is a reference field, load the reference right now.
4094 if (FieldType->isReferenceType()) {
4095 LValue RefLVal =
4096 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4097 if (RecordCVR & Qualifiers::Volatile)
4098 RefLVal.getQuals().addVolatile();
4099 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4100
4101 // Qualifiers on the struct don't apply to the referencee.
4102 RecordCVR = 0;
4103 FieldType = FieldType->getPointeeType();
4104 }
4105
4106 // Make sure that the address is pointing to the right type. This is critical
4107 // for both unions and structs. A union needs a bitcast, a struct element
4108 // will need a bitcast if the LLVM type laid out doesn't match the desired
4109 // type.
4110 addr = Builder.CreateElementBitCast(
4111 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4112
4113 if (field->hasAttr<AnnotateAttr>())
4114 addr = EmitFieldAnnotations(field, addr);
4115
4116 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4117 LV.getQuals().addCVRQualifiers(RecordCVR);
4118
4119 // __weak attribute on a field is ignored.
4120 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4121 LV.getQuals().removeObjCGCAttr();
4122
4123 return LV;
4124}
4125
4126LValue
4127CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4128 const FieldDecl *Field) {
4129 QualType FieldType = Field->getType();
4130
4131 if (!FieldType->isReferenceType())
4132 return EmitLValueForField(Base, Field);
4133
4134 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4135
4136 // Make sure that the address is pointing to the right type.
4137 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4138 V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4139
4140 // TODO: Generate TBAA information that describes this access as a structure
4141 // member access and not just an access to an object of the field's type. This
4142 // should be similar to what we do in EmitLValueForField().
4143 LValueBaseInfo BaseInfo = Base.getBaseInfo();
4144 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4145 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4146 return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4147 CGM.getTBAAInfoForSubobject(Base, FieldType));
4148}
4149
4150LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4151 if (E->isFileScope()) {
4152 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4153 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4154 }
4155 if (E->getType()->isVariablyModifiedType())
4156 // make sure to emit the VLA size.
4157 EmitVariablyModifiedType(E->getType());
4158
4159 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4160 const Expr *InitExpr = E->getInitializer();
4161 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4162
4163 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4164 /*Init*/ true);
4165
4166 return Result;
4167}
4168
4169LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4170 if (!E->isGLValue())
4171 // Initializing an aggregate temporary in C++11: T{...}.
4172 return EmitAggExprToLValue(E);
4173
4174 // An lvalue initializer list must be initializing a reference.
4175 assert(E->isTransparent() && "non-transparent glvalue init list")((E->isTransparent() && "non-transparent glvalue init list"
) ? static_cast<void> (0) : __assert_fail ("E->isTransparent() && \"non-transparent glvalue init list\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4175, __PRETTY_FUNCTION__))
;
4176 return EmitLValue(E->getInit(0));
4177}
4178
4179/// Emit the operand of a glvalue conditional operator. This is either a glvalue
4180/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4181/// LValue is returned and the current block has been terminated.
4182static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4183 const Expr *Operand) {
4184 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4185 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4186 return None;
4187 }
4188
4189 return CGF.EmitLValue(Operand);
4190}
4191
4192LValue CodeGenFunction::
4193EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4194 if (!expr->isGLValue()) {
4195 // ?: here should be an aggregate.
4196 assert(hasAggregateEvaluationKind(expr->getType()) &&((hasAggregateEvaluationKind(expr->getType()) && "Unexpected conditional operator!"
) ? static_cast<void> (0) : __assert_fail ("hasAggregateEvaluationKind(expr->getType()) && \"Unexpected conditional operator!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4197, __PRETTY_FUNCTION__))
4197 "Unexpected conditional operator!")((hasAggregateEvaluationKind(expr->getType()) && "Unexpected conditional operator!"
) ? static_cast<void> (0) : __assert_fail ("hasAggregateEvaluationKind(expr->getType()) && \"Unexpected conditional operator!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4197, __PRETTY_FUNCTION__))
;
4198 return EmitAggExprToLValue(expr);
4199 }
4200
4201 OpaqueValueMapping binding(*this, expr);
4202
4203 const Expr *condExpr = expr->getCond();
4204 bool CondExprBool;
4205 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4206 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4207 if (!CondExprBool) std::swap(live, dead);
4208
4209 if (!ContainsLabel(dead)) {
4210 // If the true case is live, we need to track its region.
4211 if (CondExprBool)
4212 incrementProfileCounter(expr);
4213 return EmitLValue(live);
4214 }
4215 }
4216
4217 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4218 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4219 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4220
4221 ConditionalEvaluation eval(*this);
4222 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4223
4224 // Any temporaries created here are conditional.
4225 EmitBlock(lhsBlock);
4226 incrementProfileCounter(expr);
4227 eval.begin(*this);
4228 Optional<LValue> lhs =
4229 EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4230 eval.end(*this);
4231
4232 if (lhs && !lhs->isSimple())
4233 return EmitUnsupportedLValue(expr, "conditional operator");
4234
4235 lhsBlock = Builder.GetInsertBlock();
4236 if (lhs)
4237 Builder.CreateBr(contBlock);
4238
4239 // Any temporaries created here are conditional.
4240 EmitBlock(rhsBlock);
4241 eval.begin(*this);
4242 Optional<LValue> rhs =
4243 EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4244 eval.end(*this);
4245 if (rhs && !rhs->isSimple())
4246 return EmitUnsupportedLValue(expr, "conditional operator");
4247 rhsBlock = Builder.GetInsertBlock();
4248
4249 EmitBlock(contBlock);
4250
4251 if (lhs && rhs) {
4252 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4253 2, "cond-lvalue");
4254 phi->addIncoming(lhs->getPointer(), lhsBlock);
4255 phi->addIncoming(rhs->getPointer(), rhsBlock);
4256 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4257 AlignmentSource alignSource =
4258 std::max(lhs->getBaseInfo().getAlignmentSource(),
4259 rhs->getBaseInfo().getAlignmentSource());
4260 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4261 lhs->getTBAAInfo(), rhs->getTBAAInfo());
4262 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4263 TBAAInfo);
4264 } else {
4265 assert((lhs || rhs) &&(((lhs || rhs) && "both operands of glvalue conditional are throw-expressions?"
) ? static_cast<void> (0) : __assert_fail ("(lhs || rhs) && \"both operands of glvalue conditional are throw-expressions?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4266, __PRETTY_FUNCTION__))
4266 "both operands of glvalue conditional are throw-expressions?")(((lhs || rhs) && "both operands of glvalue conditional are throw-expressions?"
) ? static_cast<void> (0) : __assert_fail ("(lhs || rhs) && \"both operands of glvalue conditional are throw-expressions?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4266, __PRETTY_FUNCTION__))
;
4267 return lhs ? *lhs : *rhs;
4268 }
4269}
4270
4271/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4272/// type. If the cast is to a reference, we can have the usual lvalue result,
4273/// otherwise if a cast is needed by the code generator in an lvalue context,
4274/// then it must mean that we need the address of an aggregate in order to
4275/// access one of its members. This can happen for all the reasons that casts
4276/// are permitted with aggregate result, including noop aggregate casts, and
4277/// cast from scalar to union.
4278LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4279 switch (E->getCastKind()) {
4280 case CK_ToVoid:
4281 case CK_BitCast:
4282 case CK_LValueToRValueBitCast:
4283 case CK_ArrayToPointerDecay:
4284 case CK_FunctionToPointerDecay:
4285 case CK_NullToMemberPointer:
4286 case CK_NullToPointer:
4287 case CK_IntegralToPointer:
4288 case CK_PointerToIntegral:
4289 case CK_PointerToBoolean:
4290 case CK_VectorSplat:
4291 case CK_IntegralCast:
4292 case CK_BooleanToSignedIntegral:
4293 case CK_IntegralToBoolean:
4294 case CK_IntegralToFloating:
4295 case CK_FloatingToIntegral:
4296 case CK_FloatingToBoolean:
4297 case CK_FloatingCast:
4298 case CK_FloatingRealToComplex:
4299 case CK_FloatingComplexToReal:
4300 case CK_FloatingComplexToBoolean:
4301 case CK_FloatingComplexCast:
4302 case CK_FloatingComplexToIntegralComplex:
4303 case CK_IntegralRealToComplex:
4304 case CK_IntegralComplexToReal:
4305 case CK_IntegralComplexToBoolean:
4306 case CK_IntegralComplexCast:
4307 case CK_IntegralComplexToFloatingComplex:
4308 case CK_DerivedToBaseMemberPointer:
4309 case CK_BaseToDerivedMemberPointer:
4310 case CK_MemberPointerToBoolean:
4311 case CK_ReinterpretMemberPointer:
4312 case CK_AnyPointerToBlockPointerCast:
4313 case CK_ARCProduceObject:
4314 case CK_ARCConsumeObject:
4315 case CK_ARCReclaimReturnedObject:
4316 case CK_ARCExtendBlockObject:
4317 case CK_CopyAndAutoreleaseBlockObject:
4318 case CK_IntToOCLSampler:
4319 case CK_FixedPointCast:
4320 case CK_FixedPointToBoolean:
4321 case CK_FixedPointToIntegral:
4322 case CK_IntegralToFixedPoint:
4323 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4324
4325 case CK_Dependent:
4326 llvm_unreachable("dependent cast kind in IR gen!")::llvm::llvm_unreachable_internal("dependent cast kind in IR gen!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4326)
;
4327
4328 case CK_BuiltinFnToFnPtr:
4329 llvm_unreachable("builtin functions are handled elsewhere")::llvm::llvm_unreachable_internal("builtin functions are handled elsewhere"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4329)
;
4330
4331 // These are never l-values; just use the aggregate emission code.
4332 case CK_NonAtomicToAtomic:
4333 case CK_AtomicToNonAtomic:
4334 return EmitAggExprToLValue(E);
4335
4336 case CK_Dynamic: {
4337 LValue LV = EmitLValue(E->getSubExpr());
4338 Address V = LV.getAddress();
4339 const auto *DCE = cast<CXXDynamicCastExpr>(E);
4340 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4341 }
4342
4343 case CK_ConstructorConversion:
4344 case CK_UserDefinedConversion:
4345 case CK_CPointerToObjCPointerCast:
4346 case CK_BlockPointerToObjCPointerCast:
4347 case CK_NoOp:
4348 case CK_LValueToRValue:
4349 return EmitLValue(E->getSubExpr());
4350
4351 case CK_UncheckedDerivedToBase:
4352 case CK_DerivedToBase: {
4353 const RecordType *DerivedClassTy =
4354 E->getSubExpr()->getType()->getAs<RecordType>();
4355 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4356
4357 LValue LV = EmitLValue(E->getSubExpr());
4358 Address This = LV.getAddress();
4359
4360 // Perform the derived-to-base conversion
4361 Address Base = GetAddressOfBaseClass(
4362 This, DerivedClassDecl, E->path_begin(), E->path_end(),
4363 /*NullCheckValue=*/false, E->getExprLoc());
4364
4365 // TODO: Support accesses to members of base classes in TBAA. For now, we
4366 // conservatively pretend that the complete object is of the base class
4367 // type.
4368 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4369 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4370 }
4371 case CK_ToUnion:
4372 return EmitAggExprToLValue(E);
4373 case CK_BaseToDerived: {
4374 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4375 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4376
4377 LValue LV = EmitLValue(E->getSubExpr());
4378
4379 // Perform the base-to-derived conversion
4380 Address Derived =
4381 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4382 E->path_begin(), E->path_end(),
4383 /*NullCheckValue=*/false);
4384
4385 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4386 // performed and the object is not of the derived type.
4387 if (sanitizePerformTypeCheck())
4388 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4389 Derived.getPointer(), E->getType());
4390
4391 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4392 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4393 /*MayBeNull=*/false, CFITCK_DerivedCast,
4394 E->getBeginLoc());
4395
4396 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4397 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4398 }
4399 case CK_LValueBitCast: {
4400 // This must be a reinterpret_cast (or c-style equivalent).
4401 const auto *CE = cast<ExplicitCastExpr>(E);
4402
4403 CGM.EmitExplicitCastExprType(CE, this);
4404 LValue LV = EmitLValue(E->getSubExpr());
4405 Address V = Builder.CreateBitCast(LV.getAddress(),
4406 ConvertType(CE->getTypeAsWritten()));
4407
4408 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4409 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4410 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4411 E->getBeginLoc());
4412
4413 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4414 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4415 }
4416 case CK_AddressSpaceConversion: {
4417 LValue LV = EmitLValue(E->getSubExpr());
4418 QualType DestTy = getContext().getPointerType(E->getType());
4419 llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4420 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4421 E->getType().getAddressSpace(), ConvertType(DestTy));
4422 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4423 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4424 }
4425 case CK_ObjCObjectLValueCast: {
4426 LValue LV = EmitLValue(E->getSubExpr());
4427 Address V = Builder.CreateElementBitCast(LV.getAddress(),
4428 ConvertType(E->getType()));
4429 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4430 CGM.getTBAAInfoForSubobject(LV, E->getType()));
4431 }
4432 case CK_ZeroToOCLOpaqueType:
4433 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid")::llvm::llvm_unreachable_internal("NULL to OpenCL opaque type lvalue cast is not valid"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4433)
;
4434 }
4435
4436 llvm_unreachable("Unhandled lvalue cast kind?")::llvm::llvm_unreachable_internal("Unhandled lvalue cast kind?"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4436)
;
4437}
4438
4439LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4440 assert(OpaqueValueMappingData::shouldBindAsLValue(e))((OpaqueValueMappingData::shouldBindAsLValue(e)) ? static_cast
<void> (0) : __assert_fail ("OpaqueValueMappingData::shouldBindAsLValue(e)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4440, __PRETTY_FUNCTION__))
;
4441 return getOrCreateOpaqueLValueMapping(e);
4442}
4443
4444LValue
4445CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4446 assert(OpaqueValueMapping::shouldBindAsLValue(e))((OpaqueValueMapping::shouldBindAsLValue(e)) ? static_cast<
void> (0) : __assert_fail ("OpaqueValueMapping::shouldBindAsLValue(e)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4446, __PRETTY_FUNCTION__))
;
4447
4448 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4449 it = OpaqueLValues.find(e);
4450
4451 if (it != OpaqueLValues.end())
4452 return it->second;
4453
4454 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted")((e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"
) ? static_cast<void> (0) : __assert_fail ("e->isUnique() && \"LValue for a nonunique OVE hasn't been emitted\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4454, __PRETTY_FUNCTION__))
;
4455 return EmitLValue(e->getSourceExpr());
4456}
4457
4458RValue
4459CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4460 assert(!OpaqueValueMapping::shouldBindAsLValue(e))((!OpaqueValueMapping::shouldBindAsLValue(e)) ? static_cast<
void> (0) : __assert_fail ("!OpaqueValueMapping::shouldBindAsLValue(e)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4460, __PRETTY_FUNCTION__))
;
4461
4462 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4463 it = OpaqueRValues.find(e);
4464
4465 if (it != OpaqueRValues.end())
4466 return it->second;
4467
4468 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted")((e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"
) ? static_cast<void> (0) : __assert_fail ("e->isUnique() && \"RValue for a nonunique OVE hasn't been emitted\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4468, __PRETTY_FUNCTION__))
;
4469 return EmitAnyExpr(e->getSourceExpr());
4470}
4471
4472RValue CodeGenFunction::EmitRValueForField(LValue LV,
4473 const FieldDecl *FD,
4474 SourceLocation Loc) {
4475 QualType FT = FD->getType();
4476 LValue FieldLV = EmitLValueForField(LV, FD);
4477 switch (getEvaluationKind(FT)) {
4478 case TEK_Complex:
4479 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4480 case TEK_Aggregate:
4481 return FieldLV.asAggregateRValue();
4482 case TEK_Scalar:
4483 // This routine is used to load fields one-by-one to perform a copy, so
4484 // don't load reference fields.
4485 if (FD->getType()->isReferenceType())
4486 return RValue::get(FieldLV.getPointer());
4487 return EmitLoadOfLValue(FieldLV, Loc);
4488 }
4489 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4489)
;
4490}
4491
4492//===--------------------------------------------------------------------===//
4493// Expression Emission
4494//===--------------------------------------------------------------------===//
4495
4496RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4497 ReturnValueSlot ReturnValue) {
4498 // Builtins never have block type.
4499 if (E->getCallee()->getType()->isBlockPointerType())
4500 return EmitBlockCallExpr(E, ReturnValue);
4501
4502 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4503 return EmitCXXMemberCallExpr(CE, ReturnValue);
4504
4505 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4506 return EmitCUDAKernelCallExpr(CE, ReturnValue);
4507
4508 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4509 if (const CXXMethodDecl *MD =
4510 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4511 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4512
4513 CGCallee callee = EmitCallee(E->getCallee());
4514
4515 if (callee.isBuiltin()) {
4516 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4517 E, ReturnValue);
4518 }
4519
4520 if (callee.isPseudoDestructor()) {
4521 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4522 }
4523
4524 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4525}
4526
4527/// Emit a CallExpr without considering whether it might be a subclass.
4528RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4529 ReturnValueSlot ReturnValue) {
4530 CGCallee Callee = EmitCallee(E->getCallee());
4531 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4532}
4533
4534static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4535 if (auto builtinID = FD->getBuiltinID()) {
4536 return CGCallee::forBuiltin(builtinID, FD);
4537 }
4538
4539 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4540 return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4541}
4542
4543CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4544 E = E->IgnoreParens();
4545
4546 // Look through function-to-pointer decay.
4547 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4548 if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4549 ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4550 return EmitCallee(ICE->getSubExpr());
4551 }
4552
4553 // Resolve direct calls.
4554 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4555 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4556 return EmitDirectCallee(*this, FD);
4557 }
4558 } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4559 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4560 EmitIgnoredExpr(ME->getBase());
4561 return EmitDirectCallee(*this, FD);
4562 }
4563
4564 // Look through template substitutions.
4565 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4566 return EmitCallee(NTTP->getReplacement());
4567
4568 // Treat pseudo-destructor calls differently.
4569 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4570 return CGCallee::forPseudoDestructor(PDE);
4571 }
4572
4573 // Otherwise, we have an indirect reference.
4574 llvm::Value *calleePtr;
4575 QualType functionType;
4576 if (auto ptrType = E->getType()->getAs<PointerType>()) {
4577 calleePtr = EmitScalarExpr(E);
4578 functionType = ptrType->getPointeeType();
4579 } else {
4580 functionType = E->getType();
4581 calleePtr = EmitLValue(E).getPointer();
4582 }
4583 assert(functionType->isFunctionType())((functionType->isFunctionType()) ? static_cast<void>
(0) : __assert_fail ("functionType->isFunctionType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4583, __PRETTY_FUNCTION__))
;
4584
4585 GlobalDecl GD;
4586 if (const auto *VD =
4587 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4588 GD = GlobalDecl(VD);
4589
4590 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4591 CGCallee callee(calleeInfo, calleePtr);
4592 return callee;
4593}
4594
4595LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4596 // Comma expressions just emit their LHS then their RHS as an l-value.
4597 if (E->getOpcode() == BO_Comma) {
4598 EmitIgnoredExpr(E->getLHS());
4599 EnsureInsertPoint();
4600 return EmitLValue(E->getRHS());
4601 }
4602
4603 if (E->getOpcode() == BO_PtrMemD ||
4604 E->getOpcode() == BO_PtrMemI)
4605 return EmitPointerToDataMemberBinaryExpr(E);
4606
4607 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value")((E->getOpcode() == BO_Assign && "unexpected binary l-value"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_Assign && \"unexpected binary l-value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4607, __PRETTY_FUNCTION__))
;
4608
4609 // Note that in all of these cases, __block variables need the RHS
4610 // evaluated first just in case the variable gets moved by the RHS.
4611
4612 switch (getEvaluationKind(E->getType())) {
4613 case TEK_Scalar: {
4614 switch (E->getLHS()->getType().getObjCLifetime()) {
4615 case Qualifiers::OCL_Strong:
4616 return EmitARCStoreStrong(E, /*ignored*/ false).first;
4617
4618 case Qualifiers::OCL_Autoreleasing:
4619 return EmitARCStoreAutoreleasing(E).first;
4620
4621 // No reason to do any of these differently.
4622 case Qualifiers::OCL_None:
4623 case Qualifiers::OCL_ExplicitNone:
4624 case Qualifiers::OCL_Weak:
4625 break;
4626 }
4627
4628 RValue RV = EmitAnyExpr(E->getRHS());
4629 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4630 if (RV.isScalar())
4631 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4632 EmitStoreThroughLValue(RV, LV);
4633 return LV;
4634 }
4635
4636 case TEK_Complex:
4637 return EmitComplexAssignmentLValue(E);
4638
4639 case TEK_Aggregate:
4640 return EmitAggExprToLValue(E);
4641 }
4642 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4642)
;
4643}
4644
4645LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4646 RValue RV = EmitCallExpr(E);
4647
4648 if (!RV.isScalar())
4649 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4650 AlignmentSource::Decl);
4651
4652 assert(E->getCallReturnType(getContext())->isReferenceType() &&((E->getCallReturnType(getContext())->isReferenceType()
&& "Can't have a scalar return unless the return type is a "
"reference type!") ? static_cast<void> (0) : __assert_fail
("E->getCallReturnType(getContext())->isReferenceType() && \"Can't have a scalar return unless the return type is a \" \"reference type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4654, __PRETTY_FUNCTION__))
4653 "Can't have a scalar return unless the return type is a "((E->getCallReturnType(getContext())->isReferenceType()
&& "Can't have a scalar return unless the return type is a "
"reference type!") ? static_cast<void> (0) : __assert_fail
("E->getCallReturnType(getContext())->isReferenceType() && \"Can't have a scalar return unless the return type is a \" \"reference type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4654, __PRETTY_FUNCTION__))
4654 "reference type!")((E->getCallReturnType(getContext())->isReferenceType()
&& "Can't have a scalar return unless the return type is a "
"reference type!") ? static_cast<void> (0) : __assert_fail
("E->getCallReturnType(getContext())->isReferenceType() && \"Can't have a scalar return unless the return type is a \" \"reference type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4654, __PRETTY_FUNCTION__))
;
4655
4656 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4657}
4658
4659LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4660 // FIXME: This shouldn't require another copy.
4661 return EmitAggExprToLValue(E);
4662}
4663
4664LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4665 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()((E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor
() && "binding l-value to type which needs a temporary"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() && \"binding l-value to type which needs a temporary\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4666, __PRETTY_FUNCTION__))
4666 && "binding l-value to type which needs a temporary")((E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor
() && "binding l-value to type which needs a temporary"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() && \"binding l-value to type which needs a temporary\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4666, __PRETTY_FUNCTION__))
;
4667 AggValueSlot Slot = CreateAggTemp(E->getType());
4668 EmitCXXConstructExpr(E, Slot);
4669 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4670}
4671
4672LValue
4673CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4674 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4675}
4676
4677Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4678 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4679 ConvertType(E->getType()));
4680}
4681
4682LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4683 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4684 AlignmentSource::Decl);
4685}
4686
4687LValue
4688CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4689 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4690 Slot.setExternallyDestructed();
4691 EmitAggExpr(E->getSubExpr(), Slot);
4692 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4693 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4694}
4695
4696LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4697 RValue RV = EmitObjCMessageExpr(E);
4698
4699 if (!RV.isScalar())
4700 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4701 AlignmentSource::Decl);
4702
4703 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&((E->getMethodDecl()->getReturnType()->isReferenceType
() && "Can't have a scalar return unless the return type is a "
"reference type!") ? static_cast<void> (0) : __assert_fail
("E->getMethodDecl()->getReturnType()->isReferenceType() && \"Can't have a scalar return unless the return type is a \" \"reference type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4705, __PRETTY_FUNCTION__))
4704 "Can't have a scalar return unless the return type is a "((E->getMethodDecl()->getReturnType()->isReferenceType
() && "Can't have a scalar return unless the return type is a "
"reference type!") ? static_cast<void> (0) : __assert_fail
("E->getMethodDecl()->getReturnType()->isReferenceType() && \"Can't have a scalar return unless the return type is a \" \"reference type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4705, __PRETTY_FUNCTION__))
4705 "reference type!")((E->getMethodDecl()->getReturnType()->isReferenceType
() && "Can't have a scalar return unless the return type is a "
"reference type!") ? static_cast<void> (0) : __assert_fail
("E->getMethodDecl()->getReturnType()->isReferenceType() && \"Can't have a scalar return unless the return type is a \" \"reference type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4705, __PRETTY_FUNCTION__))
;
4706
4707 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4708}
4709
4710LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4711 Address V =
4712 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4713 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4714}
4715
4716llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4717 const ObjCIvarDecl *Ivar) {
4718 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4719}
4720
4721LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4722 llvm::Value *BaseValue,
4723 const ObjCIvarDecl *Ivar,
4724 unsigned CVRQualifiers) {
4725 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4726 Ivar, CVRQualifiers);
4727}
4728
4729LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4730 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4731 llvm::Value *BaseValue = nullptr;
4732 const Expr *BaseExpr = E->getBase();
4733 Qualifiers BaseQuals;
4734 QualType ObjectTy;
4735 if (E->isArrow()) {
4736 BaseValue = EmitScalarExpr(BaseExpr);
4737 ObjectTy = BaseExpr->getType()->getPointeeType();
4738 BaseQuals = ObjectTy.getQualifiers();
4739 } else {
4740 LValue BaseLV = EmitLValue(BaseExpr);
4741 BaseValue = BaseLV.getPointer();
4742 ObjectTy = BaseExpr->getType();
4743 BaseQuals = ObjectTy.getQualifiers();
4744 }
4745
4746 LValue LV =
4747 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4748 BaseQuals.getCVRQualifiers());
4749 setObjCGCLValueClass(getContext(), E, LV);
4750 return LV;
4751}
4752
4753LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4754 // Can only get l-value for message expression returning aggregate type
4755 RValue RV = EmitAnyExprToTemp(E);
4756 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4757 AlignmentSource::Decl);
4758}
4759
4760RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4761 const CallExpr *E, ReturnValueSlot ReturnValue,
4762 llvm::Value *Chain) {
4763 // Get the actual function type. The callee type will always be a pointer to
4764 // function type or a block pointer type.
4765 assert(CalleeType->isFunctionPointerType() &&((CalleeType->isFunctionPointerType() && "Call must have function pointer type!"
) ? static_cast<void> (0) : __assert_fail ("CalleeType->isFunctionPointerType() && \"Call must have function pointer type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4766, __PRETTY_FUNCTION__))
4766 "Call must have function pointer type!")((CalleeType->isFunctionPointerType() && "Call must have function pointer type!"
) ? static_cast<void> (0) : __assert_fail ("CalleeType->isFunctionPointerType() && \"Call must have function pointer type!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4766, __PRETTY_FUNCTION__))
;
4767
4768 const Decl *TargetDecl =
4769 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4770
4771 CalleeType = getContext().getCanonicalType(CalleeType);
4772
4773 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4774
4775 CGCallee Callee = OrigCallee;
4776
4777 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4778 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4779 if (llvm::Constant *PrefixSig =
4780 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4781 SanitizerScope SanScope(this);
4782 // Remove any (C++17) exception specifications, to allow calling e.g. a
4783 // noexcept function through a non-noexcept pointer.
4784 auto ProtoTy =
4785 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4786 llvm::Constant *FTRTTIConst =
4787 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4788 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4789 llvm::StructType *PrefixStructTy = llvm::StructType::get(
4790 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4791
4792 llvm::Value *CalleePtr = Callee.getFunctionPointer();
4793
4794 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4795 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4796 llvm::Value *CalleeSigPtr =
4797 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4798 llvm::Value *CalleeSig =
4799 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4800 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4801
4802 llvm::BasicBlock *Cont = createBasicBlock("cont");
4803 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4804 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4805
4806 EmitBlock(TypeCheck);
4807 llvm::Value *CalleeRTTIPtr =
4808 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4809 llvm::Value *CalleeRTTIEncoded =
4810 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4811 llvm::Value *CalleeRTTI =
4812 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4813 llvm::Value *CalleeRTTIMatch =
4814 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4815 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4816 EmitCheckTypeDescriptor(CalleeType)};
4817 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4818 SanitizerHandler::FunctionTypeMismatch, StaticData,
4819 {CalleePtr, CalleeRTTI, FTRTTIConst});
4820
4821 Builder.CreateBr(Cont);
4822 EmitBlock(Cont);
4823 }
4824 }
4825
4826 const auto *FnType = cast<FunctionType>(PointeeType);
4827
4828 // If we are checking indirect calls and this call is indirect, check that the
4829 // function pointer is a member of the bit set for the function type.
4830 if (SanOpts.has(SanitizerKind::CFIICall) &&
4831 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4832 SanitizerScope SanScope(this);
4833 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4834
4835 llvm::Metadata *MD;
4836 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4837 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4838 else
4839 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4840
4841 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4842
4843 llvm::Value *CalleePtr = Callee.getFunctionPointer();
4844 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4845 llvm::Value *TypeTest = Builder.CreateCall(
4846 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4847
4848 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4849 llvm::Constant *StaticData[] = {
4850 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4851 EmitCheckSourceLocation(E->getBeginLoc()),
4852 EmitCheckTypeDescriptor(QualType(FnType, 0)),
4853 };
4854 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4855 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4856 CastedCallee, StaticData);
4857 } else {
4858 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4859 SanitizerHandler::CFICheckFail, StaticData,
4860 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4861 }
4862 }
4863
4864 CallArgList Args;
4865 if (Chain)
4866 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4867 CGM.getContext().VoidPtrTy);
4868
4869 // C++17 requires that we evaluate arguments to a call using assignment syntax
4870 // right-to-left, and that we evaluate arguments to certain other operators
4871 // left-to-right. Note that we allow this to override the order dictated by
4872 // the calling convention on the MS ABI, which means that parameter
4873 // destruction order is not necessarily reverse construction order.
4874 // FIXME: Revisit this based on C++ committee response to unimplementability.
4875 EvaluationOrder Order = EvaluationOrder::Default;
4876 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4877 if (OCE->isAssignmentOp())
4878 Order = EvaluationOrder::ForceRightToLeft;
4879 else {
4880 switch (OCE->getOperator()) {
4881 case OO_LessLess:
4882 case OO_GreaterGreater:
4883 case OO_AmpAmp:
4884 case OO_PipePipe:
4885 case OO_Comma:
4886 case OO_ArrowStar:
4887 Order = EvaluationOrder::ForceLeftToRight;
4888 break;
4889 default:
4890 break;
4891 }
4892 }
4893 }
4894
4895 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4896 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4897
4898 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4899 Args, FnType, /*ChainCall=*/Chain);
4900
4901 // C99 6.5.2.2p6:
4902 // If the expression that denotes the called function has a type
4903 // that does not include a prototype, [the default argument
4904 // promotions are performed]. If the number of arguments does not
4905 // equal the number of parameters, the behavior is undefined. If
4906 // the function is defined with a type that includes a prototype,
4907 // and either the prototype ends with an ellipsis (, ...) or the
4908 // types of the arguments after promotion are not compatible with
4909 // the types of the parameters, the behavior is undefined. If the
4910 // function is defined with a type that does not include a
4911 // prototype, and the types of the arguments after promotion are
4912 // not compatible with those of the parameters after promotion,
4913 // the behavior is undefined [except in some trivial cases].
4914 // That is, in the general case, we should assume that a call
4915 // through an unprototyped function type works like a *non-variadic*
4916 // call. The way we make this work is to cast to the exact type
4917 // of the promoted arguments.
4918 //
4919 // Chain calls use this same code path to add the invisible chain parameter
4920 // to the function type.
4921 if (isa<FunctionNoProtoType>(FnType) || Chain) {
4922 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4923 CalleeTy = CalleeTy->getPointerTo();
4924
4925 llvm::Value *CalleePtr = Callee.getFunctionPointer();
4926 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4927 Callee.setFunctionPointer(CalleePtr);
4928 }
4929
4930 llvm::CallBase *CallOrInvoke = nullptr;
4931 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
4932 E->getExprLoc());
4933
4934 // Generate function declaration DISuprogram in order to be used
4935 // in debug info about call sites.
4936 if (CGDebugInfo *DI = getDebugInfo()) {
4937 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4938 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
4939 CalleeDecl);
4940 }
4941
4942 return Call;
4943}
4944
4945LValue CodeGenFunction::
4946EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4947 Address BaseAddr = Address::invalid();
4948 if (E->getOpcode() == BO_PtrMemI) {
4949 BaseAddr = EmitPointerWithAlignment(E->getLHS());
4950 } else {
4951 BaseAddr = EmitLValue(E->getLHS()).getAddress();
4952 }
4953
4954 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4955
4956 const MemberPointerType *MPT
4957 = E->getRHS()->getType()->getAs<MemberPointerType>();
4958
4959 LValueBaseInfo BaseInfo;
4960 TBAAAccessInfo TBAAInfo;
4961 Address MemberAddr =
4962 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4963 &TBAAInfo);
4964
4965 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4966}
4967
4968/// Given the address of a temporary variable, produce an r-value of
4969/// its type.
4970RValue CodeGenFunction::convertTempToRValue(Address addr,
4971 QualType type,
4972 SourceLocation loc) {
4973 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4974 switch (getEvaluationKind(type)) {
4975 case TEK_Complex:
4976 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4977 case TEK_Aggregate:
4978 return lvalue.asAggregateRValue();
4979 case TEK_Scalar:
4980 return RValue::get(EmitLoadOfScalar(lvalue, loc));
4981 }
4982 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4982)
;
4983}
4984
4985void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4986 assert(Val->getType()->isFPOrFPVectorTy())((Val->getType()->isFPOrFPVectorTy()) ? static_cast<
void> (0) : __assert_fail ("Val->getType()->isFPOrFPVectorTy()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 4986, __PRETTY_FUNCTION__))
;
4987 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4988 return;
4989
4990 llvm::MDBuilder MDHelper(getLLVMContext());
4991 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4992
4993 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4994}
4995
4996namespace {
4997 struct LValueOrRValue {
4998 LValue LV;
4999 RValue RV;
5000 };
5001}
5002
5003static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5004 const PseudoObjectExpr *E,
5005 bool forLValue,
5006 AggValueSlot slot) {
5007 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5008
5009 // Find the result expression, if any.
5010 const Expr *resultExpr = E->getResultExpr();
5011 LValueOrRValue result;
5012
5013 for (PseudoObjectExpr::const_semantics_iterator
3
Loop condition is true. Entering loop body
5014 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2
Assuming 'i' is not equal to 'e'
5015 const Expr *semantic = *i;
5016
5017 // If this semantic expression is an opaque value, bind it
5018 // to the result of its source expression.
5019 if (const auto *ov
4.1
'ov' is null
4.1
'ov' is null
= dyn_cast<OpaqueValueExpr>(semantic)) {
4
Assuming 'semantic' is not a 'OpaqueValueExpr'
5
Taking false branch
5020 // Skip unique OVEs.
5021 if (ov->isUnique()) {
5022 assert(ov != resultExpr &&((ov != resultExpr && "A unique OVE cannot be used as the result expression"
) ? static_cast<void> (0) : __assert_fail ("ov != resultExpr && \"A unique OVE cannot be used as the result expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 5023, __PRETTY_FUNCTION__))
5023 "A unique OVE cannot be used as the result expression")((ov != resultExpr && "A unique OVE cannot be used as the result expression"
) ? static_cast<void> (0) : __assert_fail ("ov != resultExpr && \"A unique OVE cannot be used as the result expression\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/CodeGen/CGExpr.cpp"
, 5023, __PRETTY_FUNCTION__))
;
5024 continue;
5025 }
5026
5027 // If this is the result expression, we may need to evaluate
5028 // directly into the slot.
5029 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5030 OVMA opaqueData;
5031 if (ov == resultExpr && ov->isRValue() && !forLValue &&
5032 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5033 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5034 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5035 AlignmentSource::Decl);
5036 opaqueData = OVMA::bind(CGF, ov, LV);
5037 result.RV = slot.asRValue();
5038
5039 // Otherwise, emit as normal.
5040 } else {
5041 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5042
5043 // If this is the result, also evaluate the result now.
5044 if (ov == resultExpr) {
5045 if (forLValue)
5046 result.LV = CGF.EmitLValue(ov);
5047 else
5048 result.RV = CGF.EmitAnyExpr(ov, slot);
5049 }
5050 }
5051
5052 opaques.push_back(opaqueData);
5053
5054 // Otherwise, if the expression is the result, evaluate it
5055 // and remember the result.
5056 } else if (semantic == resultExpr) {
6
Assuming 'semantic' is not equal to 'resultExpr'
7
Taking false branch
5057 if (forLValue)
5058 result.LV = CGF.EmitLValue(semantic);
5059 else
5060 result.RV = CGF.EmitAnyExpr(semantic, slot);
5061
5062 // Otherwise, evaluate the expression in an ignored context.
5063 } else {
5064 CGF.EmitIgnoredExpr(semantic);
8
Calling 'CodeGenFunction::EmitIgnoredExpr'
5065 }
5066 }
5067
5068 // Unbind all the opaques now.
5069 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5070 opaques[i].unbind(CGF);
5071
5072 return result;
5073}
5074
5075RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5076 AggValueSlot slot) {
5077 return emitPseudoObjectExpr(*this, E, false, slot).RV;
1
Calling 'emitPseudoObjectExpr'
5078}
5079
5080LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5081 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5082}

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Check if this is or contains a C union that is non-trivial to
1165 /// default-initialize, which is a union that has a member that is non-trivial
1166 /// to default-initialize. If this returns true,
1167 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1168 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1169
1170 /// Check if this is or contains a C union that is non-trivial to destruct,
1171 /// which is a union that has a member that is non-trivial to destruct. If
1172 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1173 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1174
1175 /// Check if this is or contains a C union that is non-trivial to copy, which
1176 /// is a union that has a member that is non-trivial to copy. If this returns
1177 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1178 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1179
1180 /// Determine whether expressions of the given type are forbidden
1181 /// from being lvalues in C.
1182 ///
1183 /// The expression types that are forbidden to be lvalues are:
1184 /// - 'void', but not qualified void
1185 /// - function types
1186 ///
1187 /// The exact rule here is C99 6.3.2.1:
1188 /// An lvalue is an expression with an object type or an incomplete
1189 /// type other than void.
1190 bool isCForbiddenLValueType() const;
1191
1192 /// Substitute type arguments for the Objective-C type parameters used in the
1193 /// subject type.
1194 ///
1195 /// \param ctx ASTContext in which the type exists.
1196 ///
1197 /// \param typeArgs The type arguments that will be substituted for the
1198 /// Objective-C type parameters in the subject type, which are generally
1199 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1200 /// parameters will be replaced with their bounds or id/Class, as appropriate
1201 /// for the context.
1202 ///
1203 /// \param context The context in which the subject type was written.
1204 ///
1205 /// \returns the resulting type.
1206 QualType substObjCTypeArgs(ASTContext &ctx,
1207 ArrayRef<QualType> typeArgs,
1208 ObjCSubstitutionContext context) const;
1209
1210 /// Substitute type arguments from an object type for the Objective-C type
1211 /// parameters used in the subject type.
1212 ///
1213 /// This operation combines the computation of type arguments for
1214 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1215 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1216 /// callers that need to perform a single substitution in isolation.
1217 ///
1218 /// \param objectType The type of the object whose member type we're
1219 /// substituting into. For example, this might be the receiver of a message
1220 /// or the base of a property access.
1221 ///
1222 /// \param dc The declaration context from which the subject type was
1223 /// retrieved, which indicates (for example) which type parameters should
1224 /// be substituted.
1225 ///
1226 /// \param context The context in which the subject type was written.
1227 ///
1228 /// \returns the subject type after replacing all of the Objective-C type
1229 /// parameters with their corresponding arguments.
1230 QualType substObjCMemberType(QualType objectType,
1231 const DeclContext *dc,
1232 ObjCSubstitutionContext context) const;
1233
1234 /// Strip Objective-C "__kindof" types from the given type.
1235 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1236
1237 /// Remove all qualifiers including _Atomic.
1238 QualType getAtomicUnqualifiedType() const;
1239
1240private:
1241 // These methods are implemented in a separate translation unit;
1242 // "static"-ize them to avoid creating temporary QualTypes in the
1243 // caller.
1244 static bool isConstant(QualType T, const ASTContext& Ctx);
1245 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1246 static SplitQualType getSplitDesugaredType(QualType T);
1247 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1248 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1249 const ASTContext &C);
1250 static QualType IgnoreParens(QualType T);
1251 static DestructionKind isDestructedTypeImpl(QualType type);
1252
1253 /// Check if \param RD is or contains a non-trivial C union.
1254 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1255 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1256 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1257};
1258
1259} // namespace clang
1260
1261namespace llvm {
1262
1263/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1264/// to a specific Type class.
1265template<> struct simplify_type< ::clang::QualType> {
1266 using SimpleType = const ::clang::Type *;
1267
1268 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1269 return Val.getTypePtr();
1270 }
1271};
1272
1273// Teach SmallPtrSet that QualType is "basically a pointer".
1274template<>
1275struct PointerLikeTypeTraits<clang::QualType> {
1276 static inline void *getAsVoidPointer(clang::QualType P) {
1277 return P.getAsOpaquePtr();
1278 }
1279
1280 static inline clang::QualType getFromVoidPointer(void *P) {
1281 return clang::QualType::getFromOpaquePtr(P);
1282 }
1283
1284 // Various qualifiers go in low bits.
1285 enum { NumLowBitsAvailable = 0 };
1286};
1287
1288} // namespace llvm
1289
1290namespace clang {
1291
1292/// Base class that is common to both the \c ExtQuals and \c Type
1293/// classes, which allows \c QualType to access the common fields between the
1294/// two.
1295class ExtQualsTypeCommonBase {
1296 friend class ExtQuals;
1297 friend class QualType;
1298 friend class Type;
1299
1300 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1301 /// a self-referential pointer (for \c Type).
1302 ///
1303 /// This pointer allows an efficient mapping from a QualType to its
1304 /// underlying type pointer.
1305 const Type *const BaseType;
1306
1307 /// The canonical type of this type. A QualType.
1308 QualType CanonicalType;
1309
1310 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1311 : BaseType(baseType), CanonicalType(canon) {}
1312};
1313
1314/// We can encode up to four bits in the low bits of a
1315/// type pointer, but there are many more type qualifiers that we want
1316/// to be able to apply to an arbitrary type. Therefore we have this
1317/// struct, intended to be heap-allocated and used by QualType to
1318/// store qualifiers.
1319///
1320/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1321/// in three low bits on the QualType pointer; a fourth bit records whether
1322/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1323/// Objective-C GC attributes) are much more rare.
1324class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1325 // NOTE: changing the fast qualifiers should be straightforward as
1326 // long as you don't make 'const' non-fast.
1327 // 1. Qualifiers:
1328 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1329 // Fast qualifiers must occupy the low-order bits.
1330 // b) Update Qualifiers::FastWidth and FastMask.
1331 // 2. QualType:
1332 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1333 // b) Update remove{Volatile,Restrict}, defined near the end of
1334 // this header.
1335 // 3. ASTContext:
1336 // a) Update get{Volatile,Restrict}Type.
1337
1338 /// The immutable set of qualifiers applied by this node. Always contains
1339 /// extended qualifiers.
1340 Qualifiers Quals;
1341
1342 ExtQuals *this_() { return this; }
1343
1344public:
1345 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1346 : ExtQualsTypeCommonBase(baseType,
1347 canon.isNull() ? QualType(this_(), 0) : canon),
1348 Quals(quals) {
1349 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
1350 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
1352 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
;
1353 }
1354
1355 Qualifiers getQualifiers() const { return Quals; }
1356
1357 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1358 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1359
1360 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1361 Qualifiers::ObjCLifetime getObjCLifetime() const {
1362 return Quals.getObjCLifetime();
1363 }
1364
1365 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1366 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1367
1368 const Type *getBaseType() const { return BaseType; }
1369
1370public:
1371 void Profile(llvm::FoldingSetNodeID &ID) const {
1372 Profile(ID, getBaseType(), Quals);
1373 }
1374
1375 static void Profile(llvm::FoldingSetNodeID &ID,
1376 const Type *BaseType,
1377 Qualifiers Quals) {
1378 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1378, __PRETTY_FUNCTION__))
;
1379 ID.AddPointer(BaseType);
1380 Quals.Profile(ID);
1381 }
1382};
1383
1384/// The kind of C++11 ref-qualifier associated with a function type.
1385/// This determines whether a member function's "this" object can be an
1386/// lvalue, rvalue, or neither.
1387enum RefQualifierKind {
1388 /// No ref-qualifier was provided.
1389 RQ_None = 0,
1390
1391 /// An lvalue ref-qualifier was provided (\c &).
1392 RQ_LValue,
1393
1394 /// An rvalue ref-qualifier was provided (\c &&).
1395 RQ_RValue
1396};
1397
1398/// Which keyword(s) were used to create an AutoType.
1399enum class AutoTypeKeyword {
1400 /// auto
1401 Auto,
1402
1403 /// decltype(auto)
1404 DecltypeAuto,
1405
1406 /// __auto_type (GNU extension)
1407 GNUAutoType
1408};
1409
1410/// The base class of the type hierarchy.
1411///
1412/// A central concept with types is that each type always has a canonical
1413/// type. A canonical type is the type with any typedef names stripped out
1414/// of it or the types it references. For example, consider:
1415///
1416/// typedef int foo;
1417/// typedef foo* bar;
1418/// 'int *' 'foo *' 'bar'
1419///
1420/// There will be a Type object created for 'int'. Since int is canonical, its
1421/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1422/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1423/// there is a PointerType that represents 'int*', which, like 'int', is
1424/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1425/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1426/// is also 'int*'.
1427///
1428/// Non-canonical types are useful for emitting diagnostics, without losing
1429/// information about typedefs being used. Canonical types are useful for type
1430/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1431/// about whether something has a particular form (e.g. is a function type),
1432/// because they implicitly, recursively, strip all typedefs out of a type.
1433///
1434/// Types, once created, are immutable.
1435///
1436class alignas(8) Type : public ExtQualsTypeCommonBase {
1437public:
1438 enum TypeClass {
1439#define TYPE(Class, Base) Class,
1440#define LAST_TYPE(Class) TypeLast = Class
1441#define ABSTRACT_TYPE(Class, Base)
1442#include "clang/AST/TypeNodes.inc"
1443 };
1444
1445private:
1446 /// Bitfields required by the Type class.
1447 class TypeBitfields {
1448 friend class Type;
1449 template <class T> friend class TypePropertyCache;
1450
1451 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1452 unsigned TC : 8;
1453
1454 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1455 unsigned Dependent : 1;
1456
1457 /// Whether this type somehow involves a template parameter, even
1458 /// if the resolution of the type does not depend on a template parameter.
1459 unsigned InstantiationDependent : 1;
1460
1461 /// Whether this type is a variably-modified type (C99 6.7.5).
1462 unsigned VariablyModified : 1;
1463
1464 /// Whether this type contains an unexpanded parameter pack
1465 /// (for C++11 variadic templates).
1466 unsigned ContainsUnexpandedParameterPack : 1;
1467
1468 /// True if the cache (i.e. the bitfields here starting with
1469 /// 'Cache') is valid.
1470 mutable unsigned CacheValid : 1;
1471
1472 /// Linkage of this type.
1473 mutable unsigned CachedLinkage : 3;
1474
1475 /// Whether this type involves and local or unnamed types.
1476 mutable unsigned CachedLocalOrUnnamed : 1;
1477
1478 /// Whether this type comes from an AST file.
1479 mutable unsigned FromAST : 1;
1480
1481 bool isCacheValid() const {
1482 return CacheValid;
1483 }
1484
1485 Linkage getLinkage() const {
1486 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1486, __PRETTY_FUNCTION__))
;
1487 return static_cast<Linkage>(CachedLinkage);
1488 }
1489
1490 bool hasLocalOrUnnamedType() const {
1491 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1491, __PRETTY_FUNCTION__))
;
1492 return CachedLocalOrUnnamed;
1493 }
1494 };
1495 enum { NumTypeBits = 18 };
1496
1497protected:
1498 // These classes allow subclasses to somewhat cleanly pack bitfields
1499 // into Type.
1500
1501 class ArrayTypeBitfields {
1502 friend class ArrayType;
1503
1504 unsigned : NumTypeBits;
1505
1506 /// CVR qualifiers from declarations like
1507 /// 'int X[static restrict 4]'. For function parameters only.
1508 unsigned IndexTypeQuals : 3;
1509
1510 /// Storage class qualifiers from declarations like
1511 /// 'int X[static restrict 4]'. For function parameters only.
1512 /// Actually an ArrayType::ArraySizeModifier.
1513 unsigned SizeModifier : 3;
1514 };
1515
1516 class BuiltinTypeBitfields {
1517 friend class BuiltinType;
1518
1519 unsigned : NumTypeBits;
1520
1521 /// The kind (BuiltinType::Kind) of builtin type this is.
1522 unsigned Kind : 8;
1523 };
1524
1525 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1526 /// Only common bits are stored here. Additional uncommon bits are stored
1527 /// in a trailing object after FunctionProtoType.
1528 class FunctionTypeBitfields {
1529 friend class FunctionProtoType;
1530 friend class FunctionType;
1531
1532 unsigned : NumTypeBits;
1533
1534 /// Extra information which affects how the function is called, like
1535 /// regparm and the calling convention.
1536 unsigned ExtInfo : 12;
1537
1538 /// The ref-qualifier associated with a \c FunctionProtoType.
1539 ///
1540 /// This is a value of type \c RefQualifierKind.
1541 unsigned RefQualifier : 2;
1542
1543 /// Used only by FunctionProtoType, put here to pack with the
1544 /// other bitfields.
1545 /// The qualifiers are part of FunctionProtoType because...
1546 ///
1547 /// C++ 8.3.5p4: The return type, the parameter type list and the
1548 /// cv-qualifier-seq, [...], are part of the function type.
1549 unsigned FastTypeQuals : Qualifiers::FastWidth;
1550 /// Whether this function has extended Qualifiers.
1551 unsigned HasExtQuals : 1;
1552
1553 /// The number of parameters this function has, not counting '...'.
1554 /// According to [implimits] 8 bits should be enough here but this is
1555 /// somewhat easy to exceed with metaprogramming and so we would like to
1556 /// keep NumParams as wide as reasonably possible.
1557 unsigned NumParams : 16;
1558
1559 /// The type of exception specification this function has.
1560 unsigned ExceptionSpecType : 4;
1561
1562 /// Whether this function has extended parameter information.
1563 unsigned HasExtParameterInfos : 1;
1564
1565 /// Whether the function is variadic.
1566 unsigned Variadic : 1;
1567
1568 /// Whether this function has a trailing return type.
1569 unsigned HasTrailingReturn : 1;
1570 };
1571
1572 class ObjCObjectTypeBitfields {
1573 friend class ObjCObjectType;
1574
1575 unsigned : NumTypeBits;
1576
1577 /// The number of type arguments stored directly on this object type.
1578 unsigned NumTypeArgs : 7;
1579
1580 /// The number of protocols stored directly on this object type.
1581 unsigned NumProtocols : 6;
1582
1583 /// Whether this is a "kindof" type.
1584 unsigned IsKindOf : 1;
1585 };
1586
1587 class ReferenceTypeBitfields {
1588 friend class ReferenceType;
1589
1590 unsigned : NumTypeBits;
1591
1592 /// True if the type was originally spelled with an lvalue sigil.
1593 /// This is never true of rvalue references but can also be false
1594 /// on lvalue references because of C++0x [dcl.typedef]p9,
1595 /// as follows:
1596 ///
1597 /// typedef int &ref; // lvalue, spelled lvalue
1598 /// typedef int &&rvref; // rvalue
1599 /// ref &a; // lvalue, inner ref, spelled lvalue
1600 /// ref &&a; // lvalue, inner ref
1601 /// rvref &a; // lvalue, inner ref, spelled lvalue
1602 /// rvref &&a; // rvalue, inner ref
1603 unsigned SpelledAsLValue : 1;
1604
1605 /// True if the inner type is a reference type. This only happens
1606 /// in non-canonical forms.
1607 unsigned InnerRef : 1;
1608 };
1609
1610 class TypeWithKeywordBitfields {
1611 friend class TypeWithKeyword;
1612
1613 unsigned : NumTypeBits;
1614
1615 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1616 unsigned Keyword : 8;
1617 };
1618
1619 enum { NumTypeWithKeywordBits = 8 };
1620
1621 class ElaboratedTypeBitfields {
1622 friend class ElaboratedType;
1623
1624 unsigned : NumTypeBits;
1625 unsigned : NumTypeWithKeywordBits;
1626
1627 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1628 unsigned HasOwnedTagDecl : 1;
1629 };
1630
1631 class VectorTypeBitfields {
1632 friend class VectorType;
1633 friend class DependentVectorType;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// The kind of vector, either a generic vector type or some
1638 /// target-specific vector type such as for AltiVec or Neon.
1639 unsigned VecKind : 3;
1640
1641 /// The number of elements in the vector.
1642 unsigned NumElements : 29 - NumTypeBits;
1643
1644 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1645 };
1646
1647 class AttributedTypeBitfields {
1648 friend class AttributedType;
1649
1650 unsigned : NumTypeBits;
1651
1652 /// An AttributedType::Kind
1653 unsigned AttrKind : 32 - NumTypeBits;
1654 };
1655
1656 class AutoTypeBitfields {
1657 friend class AutoType;
1658
1659 unsigned : NumTypeBits;
1660
1661 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1662 /// or '__auto_type'? AutoTypeKeyword value.
1663 unsigned Keyword : 2;
1664 };
1665
1666 class SubstTemplateTypeParmPackTypeBitfields {
1667 friend class SubstTemplateTypeParmPackType;
1668
1669 unsigned : NumTypeBits;
1670
1671 /// The number of template arguments in \c Arguments, which is
1672 /// expected to be able to hold at least 1024 according to [implimits].
1673 /// However as this limit is somewhat easy to hit with template
1674 /// metaprogramming we'd prefer to keep it as large as possible.
1675 /// At the moment it has been left as a non-bitfield since this type
1676 /// safely fits in 64 bits as an unsigned, so there is no reason to
1677 /// introduce the performance impact of a bitfield.
1678 unsigned NumArgs;
1679 };
1680
1681 class TemplateSpecializationTypeBitfields {
1682 friend class TemplateSpecializationType;
1683
1684 unsigned : NumTypeBits;
1685
1686 /// Whether this template specialization type is a substituted type alias.
1687 unsigned TypeAlias : 1;
1688
1689 /// The number of template arguments named in this class template
1690 /// specialization, which is expected to be able to hold at least 1024
1691 /// according to [implimits]. However, as this limit is somewhat easy to
1692 /// hit with template metaprogramming we'd prefer to keep it as large
1693 /// as possible. At the moment it has been left as a non-bitfield since
1694 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1695 /// to introduce the performance impact of a bitfield.
1696 unsigned NumArgs;
1697 };
1698
1699 class DependentTemplateSpecializationTypeBitfields {
1700 friend class DependentTemplateSpecializationType;
1701
1702 unsigned : NumTypeBits;
1703 unsigned : NumTypeWithKeywordBits;
1704
1705 /// The number of template arguments named in this class template
1706 /// specialization, which is expected to be able to hold at least 1024
1707 /// according to [implimits]. However, as this limit is somewhat easy to
1708 /// hit with template metaprogramming we'd prefer to keep it as large
1709 /// as possible. At the moment it has been left as a non-bitfield since
1710 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1711 /// to introduce the performance impact of a bitfield.
1712 unsigned NumArgs;
1713 };
1714
1715 class PackExpansionTypeBitfields {
1716 friend class PackExpansionType;
1717
1718 unsigned : NumTypeBits;
1719
1720 /// The number of expansions that this pack expansion will
1721 /// generate when substituted (+1), which is expected to be able to
1722 /// hold at least 1024 according to [implimits]. However, as this limit
1723 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1724 /// keep it as large as possible. At the moment it has been left as a
1725 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1726 /// there is no reason to introduce the performance impact of a bitfield.
1727 ///
1728 /// This field will only have a non-zero value when some of the parameter
1729 /// packs that occur within the pattern have been substituted but others
1730 /// have not.
1731 unsigned NumExpansions;
1732 };
1733
1734 union {
1735 TypeBitfields TypeBits;
1736 ArrayTypeBitfields ArrayTypeBits;
1737 AttributedTypeBitfields AttributedTypeBits;
1738 AutoTypeBitfields AutoTypeBits;
1739 BuiltinTypeBitfields BuiltinTypeBits;
1740 FunctionTypeBitfields FunctionTypeBits;
1741 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1742 ReferenceTypeBitfields ReferenceTypeBits;
1743 TypeWithKeywordBitfields TypeWithKeywordBits;
1744 ElaboratedTypeBitfields ElaboratedTypeBits;
1745 VectorTypeBitfields VectorTypeBits;
1746 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1747 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1748 DependentTemplateSpecializationTypeBitfields
1749 DependentTemplateSpecializationTypeBits;
1750 PackExpansionTypeBitfields PackExpansionTypeBits;
1751
1752 static_assert(sizeof(TypeBitfields) <= 8,
1753 "TypeBitfields is larger than 8 bytes!");
1754 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1755 "ArrayTypeBitfields is larger than 8 bytes!");
1756 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1757 "AttributedTypeBitfields is larger than 8 bytes!");
1758 static_assert(sizeof(AutoTypeBitfields) <= 8,
1759 "AutoTypeBitfields is larger than 8 bytes!");
1760 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1761 "BuiltinTypeBitfields is larger than 8 bytes!");
1762 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1763 "FunctionTypeBitfields is larger than 8 bytes!");
1764 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1765 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1766 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1767 "ReferenceTypeBitfields is larger than 8 bytes!");
1768 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1769 "TypeWithKeywordBitfields is larger than 8 bytes!");
1770 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1771 "ElaboratedTypeBitfields is larger than 8 bytes!");
1772 static_assert(sizeof(VectorTypeBitfields) <= 8,
1773 "VectorTypeBitfields is larger than 8 bytes!");
1774 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1775 "SubstTemplateTypeParmPackTypeBitfields is larger"
1776 " than 8 bytes!");
1777 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1778 "TemplateSpecializationTypeBitfields is larger"
1779 " than 8 bytes!");
1780 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1781 "DependentTemplateSpecializationTypeBitfields is larger"
1782 " than 8 bytes!");
1783 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1784 "PackExpansionTypeBitfields is larger than 8 bytes");
1785 };
1786
1787private:
1788 template <class T> friend class TypePropertyCache;
1789
1790 /// Set whether this type comes from an AST file.
1791 void setFromAST(bool V = true) const {
1792 TypeBits.FromAST = V;
1793 }
1794
1795protected:
1796 friend class ASTContext;
1797
1798 Type(TypeClass tc, QualType canon, bool Dependent,
1799 bool InstantiationDependent, bool VariablyModified,
1800 bool ContainsUnexpandedParameterPack)
1801 : ExtQualsTypeCommonBase(this,
1802 canon.isNull() ? QualType(this_(), 0) : canon) {
1803 TypeBits.TC = tc;
1804 TypeBits.Dependent = Dependent;
1805 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1806 TypeBits.VariablyModified = VariablyModified;
1807 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1808 TypeBits.CacheValid = false;
1809 TypeBits.CachedLocalOrUnnamed = false;
1810 TypeBits.CachedLinkage = NoLinkage;
1811 TypeBits.FromAST = false;
1812 }
1813
1814 // silence VC++ warning C4355: 'this' : used in base member initializer list
1815 Type *this_() { return this; }
1816
1817 void setDependent(bool D = true) {
1818 TypeBits.Dependent = D;
1819 if (D)
1820 TypeBits.InstantiationDependent = true;
1821 }
1822
1823 void setInstantiationDependent(bool D = true) {
1824 TypeBits.InstantiationDependent = D; }
1825
1826 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1827
1828 void setContainsUnexpandedParameterPack(bool PP = true) {
1829 TypeBits.ContainsUnexpandedParameterPack = PP;
1830 }
1831
1832public:
1833 friend class ASTReader;
1834 friend class ASTWriter;
1835
1836 Type(const Type &) = delete;
1837 Type(Type &&) = delete;
1838 Type &operator=(const Type &) = delete;
1839 Type &operator=(Type &&) = delete;
1840
1841 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1842
1843 /// Whether this type comes from an AST file.
1844 bool isFromAST() const { return TypeBits.FromAST; }
1845
1846 /// Whether this type is or contains an unexpanded parameter
1847 /// pack, used to support C++0x variadic templates.
1848 ///
1849 /// A type that contains a parameter pack shall be expanded by the
1850 /// ellipsis operator at some point. For example, the typedef in the
1851 /// following example contains an unexpanded parameter pack 'T':
1852 ///
1853 /// \code
1854 /// template<typename ...T>
1855 /// struct X {
1856 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1857 /// };
1858 /// \endcode
1859 ///
1860 /// Note that this routine does not specify which
1861 bool containsUnexpandedParameterPack() const {
1862 return TypeBits.ContainsUnexpandedParameterPack;
1863 }
1864
1865 /// Determines if this type would be canonical if it had no further
1866 /// qualification.
1867 bool isCanonicalUnqualified() const {
1868 return CanonicalType == QualType(this, 0);
1869 }
1870
1871 /// Pull a single level of sugar off of this locally-unqualified type.
1872 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1873 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1874 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1875
1876 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1877 /// object types, function types, and incomplete types.
1878
1879 /// Return true if this is an incomplete type.
1880 /// A type that can describe objects, but which lacks information needed to
1881 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1882 /// routine will need to determine if the size is actually required.
1883 ///
1884 /// Def If non-null, and the type refers to some kind of declaration
1885 /// that can be completed (such as a C struct, C++ class, or Objective-C
1886 /// class), will be set to the declaration.
1887 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1888
1889 /// Return true if this is an incomplete or object
1890 /// type, in other words, not a function type.
1891 bool isIncompleteOrObjectType() const {
1892 return !isFunctionType();
1893 }
1894
1895 /// Determine whether this type is an object type.
1896 bool isObjectType() const {
1897 // C++ [basic.types]p8:
1898 // An object type is a (possibly cv-qualified) type that is not a
1899 // function type, not a reference type, and not a void type.
1900 return !isReferenceType() && !isFunctionType() && !isVoidType();
1901 }
1902
1903 /// Return true if this is a literal type
1904 /// (C++11 [basic.types]p10)
1905 bool isLiteralType(const ASTContext &Ctx) const;
1906
1907 /// Test if this type is a standard-layout type.
1908 /// (C++0x [basic.type]p9)
1909 bool isStandardLayoutType() const;
1910
1911 /// Helper methods to distinguish type categories. All type predicates
1912 /// operate on the canonical type, ignoring typedefs and qualifiers.
1913
1914 /// Returns true if the type is a builtin type.
1915 bool isBuiltinType() const;
1916
1917 /// Test for a particular builtin type.
1918 bool isSpecificBuiltinType(unsigned K) const;
1919
1920 /// Test for a type which does not represent an actual type-system type but
1921 /// is instead used as a placeholder for various convenient purposes within
1922 /// Clang. All such types are BuiltinTypes.
1923 bool isPlaceholderType() const;
1924 const BuiltinType *getAsPlaceholderType() const;
1925
1926 /// Test for a specific placeholder type.
1927 bool isSpecificPlaceholderType(unsigned K) const;
1928
1929 /// Test for a placeholder type other than Overload; see
1930 /// BuiltinType::isNonOverloadPlaceholderType.
1931 bool isNonOverloadPlaceholderType() const;
1932
1933 /// isIntegerType() does *not* include complex integers (a GCC extension).
1934 /// isComplexIntegerType() can be used to test for complex integers.
1935 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1936 bool isEnumeralType() const;
1937
1938 /// Determine whether this type is a scoped enumeration type.
1939 bool isScopedEnumeralType() const;
1940 bool isBooleanType() const;
1941 bool isCharType() const;
1942 bool isWideCharType() const;
1943 bool isChar8Type() const;
1944 bool isChar16Type() const;
1945 bool isChar32Type() const;
1946 bool isAnyCharacterType() const;
1947 bool isIntegralType(const ASTContext &Ctx) const;
1948
1949 /// Determine whether this type is an integral or enumeration type.
1950 bool isIntegralOrEnumerationType() const;
1951
1952 /// Determine whether this type is an integral or unscoped enumeration type.
1953 bool isIntegralOrUnscopedEnumerationType() const;
1954
1955 /// Floating point categories.
1956 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1957 /// isComplexType() does *not* include complex integers (a GCC extension).
1958 /// isComplexIntegerType() can be used to test for complex integers.
1959 bool isComplexType() const; // C99 6.2.5p11 (complex)
1960 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1961 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1962 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1963 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1964 bool isFloat128Type() const;
1965 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1966 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1967 bool isVoidType() const; // C99 6.2.5p19
1968 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1969 bool isAggregateType() const;
1970 bool isFundamentalType() const;
1971 bool isCompoundType() const;
1972
1973 // Type Predicates: Check to see if this type is structurally the specified
1974 // type, ignoring typedefs and qualifiers.
1975 bool isFunctionType() const;
1976 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1977 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1978 bool isPointerType() const;
1979 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1980 bool isBlockPointerType() const;
1981 bool isVoidPointerType() const;
1982 bool isReferenceType() const;
1983 bool isLValueReferenceType() const;
1984 bool isRValueReferenceType() const;
1985 bool isFunctionPointerType() const;
1986 bool isFunctionReferenceType() const;
1987 bool isMemberPointerType() const;
1988 bool isMemberFunctionPointerType() const;
1989 bool isMemberDataPointerType() const;
1990 bool isArrayType() const;
1991 bool isConstantArrayType() const;
1992 bool isIncompleteArrayType() const;
1993 bool isVariableArrayType() const;
1994 bool isDependentSizedArrayType() const;
1995 bool isRecordType() const;
1996 bool isClassType() const;
1997 bool isStructureType() const;
1998 bool isObjCBoxableRecordType() const;
1999 bool isInterfaceType() const;
2000 bool isStructureOrClassType() const;
2001 bool isUnionType() const;
2002 bool isComplexIntegerType() const; // GCC _Complex integer type.
2003 bool isVectorType() const; // GCC vector type.
2004 bool isExtVectorType() const; // Extended vector type.
2005 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2006 bool isObjCObjectPointerType() const; // pointer to ObjC object
2007 bool isObjCRetainableType() const; // ObjC object or block pointer
2008 bool isObjCLifetimeType() const; // (array of)* retainable type
2009 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2010 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2011 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2012 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2013 // for the common case.
2014 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2015 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2016 bool isObjCQualifiedIdType() const; // id<foo>
2017 bool isObjCQualifiedClassType() const; // Class<foo>
2018 bool isObjCObjectOrInterfaceType() const;
2019 bool isObjCIdType() const; // id
2020 bool isDecltypeType() const;
2021 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2022 /// qualifier?
2023 ///
2024 /// This approximates the answer to the following question: if this
2025 /// translation unit were compiled in ARC, would this type be qualified
2026 /// with __unsafe_unretained?
2027 bool isObjCInertUnsafeUnretainedType() const {
2028 return hasAttr(attr::ObjCInertUnsafeUnretained);
2029 }
2030
2031 /// Whether the type is Objective-C 'id' or a __kindof type of an
2032 /// object type, e.g., __kindof NSView * or __kindof id
2033 /// <NSCopying>.
2034 ///
2035 /// \param bound Will be set to the bound on non-id subtype types,
2036 /// which will be (possibly specialized) Objective-C class type, or
2037 /// null for 'id.
2038 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2039 const ObjCObjectType *&bound) const;
2040
2041 bool isObjCClassType() const; // Class
2042
2043 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2044 /// Class type, e.g., __kindof Class <NSCopying>.
2045 ///
2046 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2047 /// here because Objective-C's type system cannot express "a class
2048 /// object for a subclass of NSFoo".
2049 bool isObjCClassOrClassKindOfType() const;
2050
2051 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2052 bool isObjCSelType() const; // Class
2053 bool isObjCBuiltinType() const; // 'id' or 'Class'
2054 bool isObjCARCBridgableType() const;
2055 bool isCARCBridgableType() const;
2056 bool isTemplateTypeParmType() const; // C++ template type parameter
2057 bool isNullPtrType() const; // C++11 std::nullptr_t
2058 bool isNothrowT() const; // C++ std::nothrow_t
2059 bool isAlignValT() const; // C++17 std::align_val_t
2060 bool isStdByteType() const; // C++17 std::byte
2061 bool isAtomicType() const; // C11 _Atomic()
2062
2063#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2064 bool is##Id##Type() const;
2065#include "clang/Basic/OpenCLImageTypes.def"
2066
2067 bool isImageType() const; // Any OpenCL image type
2068
2069 bool isSamplerT() const; // OpenCL sampler_t
2070 bool isEventT() const; // OpenCL event_t
2071 bool isClkEventT() const; // OpenCL clk_event_t
2072 bool isQueueT() const; // OpenCL queue_t
2073 bool isReserveIDT() const; // OpenCL reserve_id_t
2074
2075#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2076 bool is##Id##Type() const;
2077#include "clang/Basic/OpenCLExtensionTypes.def"
2078 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2079 bool isOCLIntelSubgroupAVCType() const;
2080 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2081
2082 bool isPipeType() const; // OpenCL pipe type
2083 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2084
2085 /// Determines if this type, which must satisfy
2086 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2087 /// than implicitly __strong.
2088 bool isObjCARCImplicitlyUnretainedType() const;
2089
2090 /// Return the implicit lifetime for this type, which must not be dependent.
2091 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2092
2093 enum ScalarTypeKind {
2094 STK_CPointer,
2095 STK_BlockPointer,
2096 STK_ObjCObjectPointer,
2097 STK_MemberPointer,
2098 STK_Bool,
2099 STK_Integral,
2100 STK_Floating,
2101 STK_IntegralComplex,
2102 STK_FloatingComplex,
2103 STK_FixedPoint
2104 };
2105
2106 /// Given that this is a scalar type, classify it.
2107 ScalarTypeKind getScalarTypeKind() const;
2108
2109 /// Whether this type is a dependent type, meaning that its definition
2110 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2111 bool isDependentType() const { return TypeBits.Dependent; }
2112
2113 /// Determine whether this type is an instantiation-dependent type,
2114 /// meaning that the type involves a template parameter (even if the
2115 /// definition does not actually depend on the type substituted for that
2116 /// template parameter).
2117 bool isInstantiationDependentType() const {
2118 return TypeBits.InstantiationDependent;
2119 }
2120
2121 /// Determine whether this type is an undeduced type, meaning that
2122 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2123 /// deduced.
2124 bool isUndeducedType() const;
2125
2126 /// Whether this type is a variably-modified type (C99 6.7.5).
2127 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2128
2129 /// Whether this type involves a variable-length array type
2130 /// with a definite size.
2131 bool hasSizedVLAType() const;
2132
2133 /// Whether this type is or contains a local or unnamed type.
2134 bool hasUnnamedOrLocalType() const;
2135
2136 bool isOverloadableType() const;
2137
2138 /// Determine wither this type is a C++ elaborated-type-specifier.
2139 bool isElaboratedTypeSpecifier() const;
2140
2141 bool canDecayToPointerType() const;
2142
2143 /// Whether this type is represented natively as a pointer. This includes
2144 /// pointers, references, block pointers, and Objective-C interface,
2145 /// qualified id, and qualified interface types, as well as nullptr_t.
2146 bool hasPointerRepresentation() const;
2147
2148 /// Whether this type can represent an objective pointer type for the
2149 /// purpose of GC'ability
2150 bool hasObjCPointerRepresentation() const;
2151
2152 /// Determine whether this type has an integer representation
2153 /// of some sort, e.g., it is an integer type or a vector.
2154 bool hasIntegerRepresentation() const;
2155
2156 /// Determine whether this type has an signed integer representation
2157 /// of some sort, e.g., it is an signed integer type or a vector.
2158 bool hasSignedIntegerRepresentation() const;
2159
2160 /// Determine whether this type has an unsigned integer representation
2161 /// of some sort, e.g., it is an unsigned integer type or a vector.
2162 bool hasUnsignedIntegerRepresentation() const;
2163
2164 /// Determine whether this type has a floating-point representation
2165 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2166 bool hasFloatingRepresentation() const;
2167
2168 // Type Checking Functions: Check to see if this type is structurally the
2169 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2170 // the best type we can.
2171 const RecordType *getAsStructureType() const;
2172 /// NOTE: getAs*ArrayType are methods on ASTContext.
2173 const RecordType *getAsUnionType() const;
2174 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2175 const ObjCObjectType *getAsObjCInterfaceType() const;
2176
2177 // The following is a convenience method that returns an ObjCObjectPointerType
2178 // for object declared using an interface.
2179 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2180 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2181 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2182 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2183
2184 /// Retrieves the CXXRecordDecl that this type refers to, either
2185 /// because the type is a RecordType or because it is the injected-class-name
2186 /// type of a class template or class template partial specialization.
2187 CXXRecordDecl *getAsCXXRecordDecl() const;
2188
2189 /// Retrieves the RecordDecl this type refers to.
2190 RecordDecl *getAsRecordDecl() const;
2191
2192 /// Retrieves the TagDecl that this type refers to, either
2193 /// because the type is a TagType or because it is the injected-class-name
2194 /// type of a class template or class template partial specialization.
2195 TagDecl *getAsTagDecl() const;
2196
2197 /// If this is a pointer or reference to a RecordType, return the
2198 /// CXXRecordDecl that the type refers to.
2199 ///
2200 /// If this is not a pointer or reference, or the type being pointed to does
2201 /// not refer to a CXXRecordDecl, returns NULL.
2202 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2203
2204 /// Get the DeducedType whose type will be deduced for a variable with
2205 /// an initializer of this type. This looks through declarators like pointer
2206 /// types, but not through decltype or typedefs.
2207 DeducedType *getContainedDeducedType() const;
2208
2209 /// Get the AutoType whose type will be deduced for a variable with
2210 /// an initializer of this type. This looks through declarators like pointer
2211 /// types, but not through decltype or typedefs.
2212 AutoType *getContainedAutoType() const {
2213 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2214 }
2215
2216 /// Determine whether this type was written with a leading 'auto'
2217 /// corresponding to a trailing return type (possibly for a nested
2218 /// function type within a pointer to function type or similar).
2219 bool hasAutoForTrailingReturnType() const;
2220
2221 /// Member-template getAs<specific type>'. Look through sugar for
2222 /// an instance of \<specific type>. This scheme will eventually
2223 /// replace the specific getAsXXXX methods above.
2224 ///
2225 /// There are some specializations of this member template listed
2226 /// immediately following this class.
2227 template <typename T> const T *getAs() const;
2228
2229 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2230 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2231 /// This is used when you need to walk over sugar nodes that represent some
2232 /// kind of type adjustment from a type that was written as a \<specific type>
2233 /// to another type that is still canonically a \<specific type>.
2234 template <typename T> const T *getAsAdjusted() const;
2235
2236 /// A variant of getAs<> for array types which silently discards
2237 /// qualifiers from the outermost type.
2238 const ArrayType *getAsArrayTypeUnsafe() const;
2239
2240 /// Member-template castAs<specific type>. Look through sugar for
2241 /// the underlying instance of \<specific type>.
2242 ///
2243 /// This method has the same relationship to getAs<T> as cast<T> has
2244 /// to dyn_cast<T>; which is to say, the underlying type *must*
2245 /// have the intended type, and this method will never return null.
2246 template <typename T> const T *castAs() const;
2247
2248 /// A variant of castAs<> for array type which silently discards
2249 /// qualifiers from the outermost type.
2250 const ArrayType *castAsArrayTypeUnsafe() const;
2251
2252 /// Determine whether this type had the specified attribute applied to it
2253 /// (looking through top-level type sugar).
2254 bool hasAttr(attr::Kind AK) const;
2255
2256 /// Get the base element type of this type, potentially discarding type
2257 /// qualifiers. This should never be used when type qualifiers
2258 /// are meaningful.
2259 const Type *getBaseElementTypeUnsafe() const;
2260
2261 /// If this is an array type, return the element type of the array,
2262 /// potentially with type qualifiers missing.
2263 /// This should never be used when type qualifiers are meaningful.
2264 const Type *getArrayElementTypeNoTypeQual() const;
2265
2266 /// If this is a pointer type, return the pointee type.
2267 /// If this is an array type, return the array element type.
2268 /// This should never be used when type qualifiers are meaningful.
2269 const Type *getPointeeOrArrayElementType() const;
2270
2271 /// If this is a pointer, ObjC object pointer, or block
2272 /// pointer, this returns the respective pointee.
2273 QualType getPointeeType() const;
2274
2275 /// Return the specified type with any "sugar" removed from the type,
2276 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2277 const Type *getUnqualifiedDesugaredType() const;
2278
2279 /// More type predicates useful for type checking/promotion
2280 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2281
2282 /// Return true if this is an integer type that is
2283 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2284 /// or an enum decl which has a signed representation.
2285 bool isSignedIntegerType() const;
2286
2287 /// Return true if this is an integer type that is
2288 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2289 /// or an enum decl which has an unsigned representation.
2290 bool isUnsignedIntegerType() const;
2291
2292 /// Determines whether this is an integer type that is signed or an
2293 /// enumeration types whose underlying type is a signed integer type.
2294 bool isSignedIntegerOrEnumerationType() const;
2295
2296 /// Determines whether this is an integer type that is unsigned or an
2297 /// enumeration types whose underlying type is a unsigned integer type.
2298 bool isUnsignedIntegerOrEnumerationType() const;
2299
2300 /// Return true if this is a fixed point type according to
2301 /// ISO/IEC JTC1 SC22 WG14 N1169.
2302 bool isFixedPointType() const;
2303
2304 /// Return true if this is a fixed point or integer type.
2305 bool isFixedPointOrIntegerType() const;
2306
2307 /// Return true if this is a saturated fixed point type according to
2308 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2309 bool isSaturatedFixedPointType() const;
2310
2311 /// Return true if this is a saturated fixed point type according to
2312 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2313 bool isUnsaturatedFixedPointType() const;
2314
2315 /// Return true if this is a fixed point type that is signed according
2316 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2317 bool isSignedFixedPointType() const;
2318
2319 /// Return true if this is a fixed point type that is unsigned according
2320 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2321 bool isUnsignedFixedPointType() const;
2322
2323 /// Return true if this is not a variable sized type,
2324 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2325 /// incomplete types.
2326 bool isConstantSizeType() const;
2327
2328 /// Returns true if this type can be represented by some
2329 /// set of type specifiers.
2330 bool isSpecifierType() const;
2331
2332 /// Determine the linkage of this type.
2333 Linkage getLinkage() const;
2334
2335 /// Determine the visibility of this type.
2336 Visibility getVisibility() const {
2337 return getLinkageAndVisibility().getVisibility();
2338 }
2339
2340 /// Return true if the visibility was explicitly set is the code.
2341 bool isVisibilityExplicit() const {
2342 return getLinkageAndVisibility().isVisibilityExplicit();
2343 }
2344
2345 /// Determine the linkage and visibility of this type.
2346 LinkageInfo getLinkageAndVisibility() const;
2347
2348 /// True if the computed linkage is valid. Used for consistency
2349 /// checking. Should always return true.
2350 bool isLinkageValid() const;
2351
2352 /// Determine the nullability of the given type.
2353 ///
2354 /// Note that nullability is only captured as sugar within the type
2355 /// system, not as part of the canonical type, so nullability will
2356 /// be lost by canonicalization and desugaring.
2357 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2358
2359 /// Determine whether the given type can have a nullability
2360 /// specifier applied to it, i.e., if it is any kind of pointer type.
2361 ///
2362 /// \param ResultIfUnknown The value to return if we don't yet know whether
2363 /// this type can have nullability because it is dependent.
2364 bool canHaveNullability(bool ResultIfUnknown = true) const;
2365
2366 /// Retrieve the set of substitutions required when accessing a member
2367 /// of the Objective-C receiver type that is declared in the given context.
2368 ///
2369 /// \c *this is the type of the object we're operating on, e.g., the
2370 /// receiver for a message send or the base of a property access, and is
2371 /// expected to be of some object or object pointer type.
2372 ///
2373 /// \param dc The declaration context for which we are building up a
2374 /// substitution mapping, which should be an Objective-C class, extension,
2375 /// category, or method within.
2376 ///
2377 /// \returns an array of type arguments that can be substituted for
2378 /// the type parameters of the given declaration context in any type described
2379 /// within that context, or an empty optional to indicate that no
2380 /// substitution is required.
2381 Optional<ArrayRef<QualType>>
2382 getObjCSubstitutions(const DeclContext *dc) const;
2383
2384 /// Determines if this is an ObjC interface type that may accept type
2385 /// parameters.
2386 bool acceptsObjCTypeParams() const;
2387
2388 const char *getTypeClassName() const;
2389
2390 QualType getCanonicalTypeInternal() const {
2391 return CanonicalType;
2392 }
2393
2394 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2395 void dump() const;
2396 void dump(llvm::raw_ostream &OS) const;
2397};
2398
2399/// This will check for a TypedefType by removing any existing sugar
2400/// until it reaches a TypedefType or a non-sugared type.
2401template <> const TypedefType *Type::getAs() const;
2402
2403/// This will check for a TemplateSpecializationType by removing any
2404/// existing sugar until it reaches a TemplateSpecializationType or a
2405/// non-sugared type.
2406template <> const TemplateSpecializationType *Type::getAs() const;
2407
2408/// This will check for an AttributedType by removing any existing sugar
2409/// until it reaches an AttributedType or a non-sugared type.
2410template <> const AttributedType *Type::getAs() const;
2411
2412// We can do canonical leaf types faster, because we don't have to
2413// worry about preserving child type decoration.
2414#define TYPE(Class, Base)
2415#define LEAF_TYPE(Class) \
2416template <> inline const Class##Type *Type::getAs() const { \
2417 return dyn_cast<Class##Type>(CanonicalType); \
2418} \
2419template <> inline const Class##Type *Type::castAs() const { \
2420 return cast<Class##Type>(CanonicalType); \
2421}
2422#include "clang/AST/TypeNodes.inc"
2423
2424/// This class is used for builtin types like 'int'. Builtin
2425/// types are always canonical and have a literal name field.
2426class BuiltinType : public Type {
2427public:
2428 enum Kind {
2429// OpenCL image types
2430#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2431#include "clang/Basic/OpenCLImageTypes.def"
2432// OpenCL extension types
2433#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2434#include "clang/Basic/OpenCLExtensionTypes.def"
2435// SVE Types
2436#define SVE_TYPE(Name, Id, SingletonId) Id,
2437#include "clang/Basic/AArch64SVEACLETypes.def"
2438// All other builtin types
2439#define BUILTIN_TYPE(Id, SingletonId) Id,
2440#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2441#include "clang/AST/BuiltinTypes.def"
2442 };
2443
2444private:
2445 friend class ASTContext; // ASTContext creates these.
2446
2447 BuiltinType(Kind K)
2448 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2449 /*InstantiationDependent=*/(K == Dependent),
2450 /*VariablyModified=*/false,
2451 /*Unexpanded parameter pack=*/false) {
2452 BuiltinTypeBits.Kind = K;
2453 }
2454
2455public:
2456 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2457 StringRef getName(const PrintingPolicy &Policy) const;
2458
2459 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2460 // The StringRef is null-terminated.
2461 StringRef str = getName(Policy);
2462 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 2462, __PRETTY_FUNCTION__))
;
2463 return str.data();
2464 }
2465
2466 bool isSugared() const { return false; }
2467 QualType desugar() const { return QualType(this, 0); }
2468
2469 bool isInteger() const {
2470 return getKind() >= Bool && getKind() <= Int128;
2471 }
2472
2473 bool isSignedInteger() const {
2474 return getKind() >= Char_S && getKind() <= Int128;
2475 }
2476
2477 bool isUnsignedInteger() const {
2478 return getKind() >= Bool && getKind() <= UInt128;
2479 }
2480
2481 bool isFloatingPoint() const {
2482 return getKind() >= Half && getKind() <= Float128;
2483 }
2484
2485 /// Determines whether the given kind corresponds to a placeholder type.
2486 static bool isPlaceholderTypeKind(Kind K) {
2487 return K >= Overload;
2488 }
2489
2490 /// Determines whether this type is a placeholder type, i.e. a type
2491 /// which cannot appear in arbitrary positions in a fully-formed
2492 /// expression.
2493 bool isPlaceholderType() const {
2494 return isPlaceholderTypeKind(getKind());
2495 }
2496
2497 /// Determines whether this type is a placeholder type other than
2498 /// Overload. Most placeholder types require only syntactic
2499 /// information about their context in order to be resolved (e.g.
2500 /// whether it is a call expression), which means they can (and
2501 /// should) be resolved in an earlier "phase" of analysis.
2502 /// Overload expressions sometimes pick up further information
2503 /// from their context, like whether the context expects a
2504 /// specific function-pointer type, and so frequently need
2505 /// special treatment.
2506 bool isNonOverloadPlaceholderType() const {
2507 return getKind() > Overload;
2508 }
2509
2510 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2511};
2512
2513/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2514/// types (_Complex float etc) as well as the GCC integer complex extensions.
2515class ComplexType : public Type, public llvm::FoldingSetNode {
2516 friend class ASTContext; // ASTContext creates these.
2517
2518 QualType ElementType;
2519
2520 ComplexType(QualType Element, QualType CanonicalPtr)
2521 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2522 Element->isInstantiationDependentType(),
2523 Element->isVariablyModifiedType(),
2524 Element->containsUnexpandedParameterPack()),
2525 ElementType(Element) {}
2526
2527public:
2528 QualType getElementType() const { return ElementType; }
2529
2530 bool isSugared() const { return false; }
2531 QualType desugar() const { return QualType(this, 0); }
2532
2533 void Profile(llvm::FoldingSetNodeID &ID) {
2534 Profile(ID, getElementType());
2535 }
2536
2537 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2538 ID.AddPointer(Element.getAsOpaquePtr());
2539 }
2540
2541 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2542};
2543
2544/// Sugar for parentheses used when specifying types.
2545class ParenType : public Type, public llvm::FoldingSetNode {
2546 friend class ASTContext; // ASTContext creates these.
2547
2548 QualType Inner;
2549
2550 ParenType(QualType InnerType, QualType CanonType)
2551 : Type(Paren, CanonType, InnerType->isDependentType(),
2552 InnerType->isInstantiationDependentType(),
2553 InnerType->isVariablyModifiedType(),
2554 InnerType->containsUnexpandedParameterPack()),
2555 Inner(InnerType) {}
2556
2557public:
2558 QualType getInnerType() const { return Inner; }
2559
2560 bool isSugared() const { return true; }
2561 QualType desugar() const { return getInnerType(); }
2562
2563 void Profile(llvm::FoldingSetNodeID &ID) {
2564 Profile(ID, getInnerType());
2565 }
2566
2567 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2568 Inner.Profile(ID);
2569 }
2570
2571 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2572};
2573
2574/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2575class PointerType : public Type, public llvm::FoldingSetNode {
2576 friend class ASTContext; // ASTContext creates these.
2577
2578 QualType PointeeType;
2579
2580 PointerType(QualType Pointee, QualType CanonicalPtr)
2581 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2582 Pointee->isInstantiationDependentType(),
2583 Pointee->isVariablyModifiedType(),
2584 Pointee->containsUnexpandedParameterPack()),
2585 PointeeType(Pointee) {}
2586
2587public:
2588 QualType getPointeeType() const { return PointeeType; }
2589
2590 /// Returns true if address spaces of pointers overlap.
2591 /// OpenCL v2.0 defines conversion rules for pointers to different
2592 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2593 /// address spaces.
2594 /// CL1.1 or CL1.2:
2595 /// address spaces overlap iff they are they same.
2596 /// CL2.0 adds:
2597 /// __generic overlaps with any address space except for __constant.
2598 bool isAddressSpaceOverlapping(const PointerType &other) const {
2599 Qualifiers thisQuals = PointeeType.getQualifiers();
2600 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2601 // Address spaces overlap if at least one of them is a superset of another
2602 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2603 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2604 }
2605
2606 bool isSugared() const { return false; }
2607 QualType desugar() const { return QualType(this, 0); }
2608
2609 void Profile(llvm::FoldingSetNodeID &ID) {
2610 Profile(ID, getPointeeType());
2611 }
2612
2613 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2614 ID.AddPointer(Pointee.getAsOpaquePtr());
2615 }
2616
2617 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2618};
2619
2620/// Represents a type which was implicitly adjusted by the semantic
2621/// engine for arbitrary reasons. For example, array and function types can
2622/// decay, and function types can have their calling conventions adjusted.
2623class AdjustedType : public Type, public llvm::FoldingSetNode {
2624 QualType OriginalTy;
2625 QualType AdjustedTy;
2626
2627protected:
2628 friend class ASTContext; // ASTContext creates these.
2629
2630 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2631 QualType CanonicalPtr)
2632 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2633 OriginalTy->isInstantiationDependentType(),
2634 OriginalTy->isVariablyModifiedType(),
2635 OriginalTy->containsUnexpandedParameterPack()),
2636 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2637
2638public:
2639 QualType getOriginalType() const { return OriginalTy; }
2640 QualType getAdjustedType() const { return AdjustedTy; }
2641
2642 bool isSugared() const { return true; }
2643 QualType desugar() const { return AdjustedTy; }
2644
2645 void Profile(llvm::FoldingSetNodeID &ID) {
2646 Profile(ID, OriginalTy, AdjustedTy);
2647 }
2648
2649 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2650 ID.AddPointer(Orig.getAsOpaquePtr());
2651 ID.AddPointer(New.getAsOpaquePtr());
2652 }
2653
2654 static bool classof(const Type *T) {
2655 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2656 }
2657};
2658
2659/// Represents a pointer type decayed from an array or function type.
2660class DecayedType : public AdjustedType {
2661 friend class ASTContext; // ASTContext creates these.
2662
2663 inline
2664 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2665
2666public:
2667 QualType getDecayedType() const { return getAdjustedType(); }
2668
2669 inline QualType getPointeeType() const;
2670
2671 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2672};
2673
2674/// Pointer to a block type.
2675/// This type is to represent types syntactically represented as
2676/// "void (^)(int)", etc. Pointee is required to always be a function type.
2677class BlockPointerType : public Type, public llvm::FoldingSetNode {
2678 friend class ASTContext; // ASTContext creates these.
2679
2680 // Block is some kind of pointer type
2681 QualType PointeeType;
2682
2683 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2684 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2685 Pointee->isInstantiationDependentType(),
2686 Pointee->isVariablyModifiedType(),
2687 Pointee->containsUnexpandedParameterPack()),
2688 PointeeType(Pointee) {}
2689
2690public:
2691 // Get the pointee type. Pointee is required to always be a function type.
2692 QualType getPointeeType() const { return PointeeType; }
2693
2694 bool isSugared() const { return false; }
2695 QualType desugar() const { return QualType(this, 0); }
2696
2697 void Profile(llvm::FoldingSetNodeID &ID) {
2698 Profile(ID, getPointeeType());
2699 }
2700
2701 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2702 ID.AddPointer(Pointee.getAsOpaquePtr());
2703 }
2704
2705 static bool classof(const Type *T) {
2706 return T->getTypeClass() == BlockPointer;
2707 }
2708};
2709
2710/// Base for LValueReferenceType and RValueReferenceType
2711class ReferenceType : public Type, public llvm::FoldingSetNode {
2712 QualType PointeeType;
2713
2714protected:
2715 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2716 bool SpelledAsLValue)
2717 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2718 Referencee->isInstantiationDependentType(),
2719 Referencee->isVariablyModifiedType(),
2720 Referencee->containsUnexpandedParameterPack()),
2721 PointeeType(Referencee) {
2722 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2723 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2724 }
2725
2726public:
2727 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2728 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2729
2730 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2731
2732 QualType getPointeeType() const {
2733 // FIXME: this might strip inner qualifiers; okay?
2734 const ReferenceType *T = this;
2735 while (T->isInnerRef())
2736 T = T->PointeeType->castAs<ReferenceType>();
2737 return T->PointeeType;
2738 }
2739
2740 void Profile(llvm::FoldingSetNodeID &ID) {
2741 Profile(ID, PointeeType, isSpelledAsLValue());
2742 }
2743
2744 static void Profile(llvm::FoldingSetNodeID &ID,
2745 QualType Referencee,
2746 bool SpelledAsLValue) {
2747 ID.AddPointer(Referencee.getAsOpaquePtr());
2748 ID.AddBoolean(SpelledAsLValue);
2749 }
2750
2751 static bool classof(const Type *T) {
2752 return T->getTypeClass() == LValueReference ||
2753 T->getTypeClass() == RValueReference;
2754 }
2755};
2756
2757/// An lvalue reference type, per C++11 [dcl.ref].
2758class LValueReferenceType : public ReferenceType {
2759 friend class ASTContext; // ASTContext creates these
2760
2761 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2762 bool SpelledAsLValue)
2763 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2764 SpelledAsLValue) {}
2765
2766public:
2767 bool isSugared() const { return false; }
2768 QualType desugar() const { return QualType(this, 0); }
2769
2770 static bool classof(const Type *T) {
2771 return T->getTypeClass() == LValueReference;
2772 }
2773};
2774
2775/// An rvalue reference type, per C++11 [dcl.ref].
2776class RValueReferenceType : public ReferenceType {
2777 friend class ASTContext; // ASTContext creates these
2778
2779 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2780 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2781
2782public:
2783 bool isSugared() const { return false; }
2784 QualType desugar() const { return QualType(this, 0); }
2785
2786 static bool classof(const Type *T) {
2787 return T->getTypeClass() == RValueReference;
2788 }
2789};
2790
2791/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2792///
2793/// This includes both pointers to data members and pointer to member functions.
2794class MemberPointerType : public Type, public llvm::FoldingSetNode {
2795 friend class ASTContext; // ASTContext creates these.
2796
2797 QualType PointeeType;
2798
2799 /// The class of which the pointee is a member. Must ultimately be a
2800 /// RecordType, but could be a typedef or a template parameter too.
2801 const Type *Class;
2802
2803 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2804 : Type(MemberPointer, CanonicalPtr,
2805 Cls->isDependentType() || Pointee->isDependentType(),
2806 (Cls->isInstantiationDependentType() ||
2807 Pointee->isInstantiationDependentType()),
2808 Pointee->isVariablyModifiedType(),
2809 (Cls->containsUnexpandedParameterPack() ||
2810 Pointee->containsUnexpandedParameterPack())),
2811 PointeeType(Pointee), Class(Cls) {}
2812
2813public:
2814 QualType getPointeeType() const { return PointeeType; }
2815
2816 /// Returns true if the member type (i.e. the pointee type) is a
2817 /// function type rather than a data-member type.
2818 bool isMemberFunctionPointer() const {
2819 return PointeeType->isFunctionProtoType();
2820 }
2821
2822 /// Returns true if the member type (i.e. the pointee type) is a
2823 /// data type rather than a function type.
2824 bool isMemberDataPointer() const {
2825 return !PointeeType->isFunctionProtoType();
2826 }
2827
2828 const Type *getClass() const { return Class; }
2829 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2830
2831 bool isSugared() const { return false; }
2832 QualType desugar() const { return QualType(this, 0); }
2833
2834 void Profile(llvm::FoldingSetNodeID &ID) {
2835 Profile(ID, getPointeeType(), getClass());
2836 }
2837
2838 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2839 const Type *Class) {
2840 ID.AddPointer(Pointee.getAsOpaquePtr());
2841 ID.AddPointer(Class);
2842 }
2843
2844 static bool classof(const Type *T) {
2845 return T->getTypeClass() == MemberPointer;
2846 }
2847};
2848
2849/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2850class ArrayType : public Type, public llvm::FoldingSetNode {
2851public:
2852 /// Capture whether this is a normal array (e.g. int X[4])
2853 /// an array with a static size (e.g. int X[static 4]), or an array
2854 /// with a star size (e.g. int X[*]).
2855 /// 'static' is only allowed on function parameters.
2856 enum ArraySizeModifier {
2857 Normal, Static, Star
2858 };
2859
2860private:
2861 /// The element type of the array.
2862 QualType ElementType;
2863
2864protected:
2865 friend class ASTContext; // ASTContext creates these.
2866
2867 // C++ [temp.dep.type]p1:
2868 // A type is dependent if it is...
2869 // - an array type constructed from any dependent type or whose
2870 // size is specified by a constant expression that is
2871 // value-dependent,
2872 ArrayType(TypeClass tc, QualType et, QualType can,
2873 ArraySizeModifier sm, unsigned tq,
2874 bool ContainsUnexpandedParameterPack)
2875 : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2876 et->isInstantiationDependentType() || tc == DependentSizedArray,
2877 (tc == VariableArray || et->isVariablyModifiedType()),
2878 ContainsUnexpandedParameterPack),
2879 ElementType(et) {
2880 ArrayTypeBits.IndexTypeQuals = tq;
2881 ArrayTypeBits.SizeModifier = sm;
2882 }
2883
2884public:
2885 QualType getElementType() const { return ElementType; }
2886
2887 ArraySizeModifier getSizeModifier() const {
2888 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2889 }
2890
2891 Qualifiers getIndexTypeQualifiers() const {
2892 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2893 }
2894
2895 unsigned getIndexTypeCVRQualifiers() const {
2896 return ArrayTypeBits.IndexTypeQuals;
2897 }
2898
2899 static bool classof(const Type *T) {
2900 return T->getTypeClass() == ConstantArray ||
2901 T->getTypeClass() == VariableArray ||
2902 T->getTypeClass() == IncompleteArray ||
2903 T->getTypeClass() == DependentSizedArray;
2904 }
2905};
2906
2907/// Represents the canonical version of C arrays with a specified constant size.
2908/// For example, the canonical type for 'int A[4 + 4*100]' is a
2909/// ConstantArrayType where the element type is 'int' and the size is 404.
2910class ConstantArrayType : public ArrayType {
2911 llvm::APInt Size; // Allows us to unique the type.
2912
2913 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2914 ArraySizeModifier sm, unsigned tq)
2915 : ArrayType(ConstantArray, et, can, sm, tq,
2916 et->containsUnexpandedParameterPack()),
2917 Size(size) {}
2918
2919protected:
2920 friend class ASTContext; // ASTContext creates these.
2921
2922 ConstantArrayType(TypeClass tc, QualType et, QualType can,
2923 const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2924 : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2925 Size(size) {}
2926
2927public:
2928 const llvm::APInt &getSize() const { return Size; }
2929 bool isSugared() const { return false; }
2930 QualType desugar() const { return QualType(this, 0); }
2931
2932 /// Determine the number of bits required to address a member of
2933 // an array with the given element type and number of elements.
2934 static unsigned getNumAddressingBits(const ASTContext &Context,
2935 QualType ElementType,
2936 const llvm::APInt &NumElements);
2937
2938 /// Determine the maximum number of active bits that an array's size
2939 /// can require, which limits the maximum size of the array.
2940 static unsigned getMaxSizeBits(const ASTContext &Context);
2941
2942 void Profile(llvm::FoldingSetNodeID &ID) {
2943 Profile(ID, getElementType(), getSize(),
2944 getSizeModifier(), getIndexTypeCVRQualifiers());
2945 }
2946
2947 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2948 const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2949 unsigned TypeQuals) {
2950 ID.AddPointer(ET.getAsOpaquePtr());
2951 ID.AddInteger(ArraySize.getZExtValue());
2952 ID.AddInteger(SizeMod);
2953 ID.AddInteger(TypeQuals);
2954 }
2955
2956 static bool classof(const Type *T) {
2957 return T->getTypeClass() == ConstantArray;
2958 }
2959};
2960
2961/// Represents a C array with an unspecified size. For example 'int A[]' has
2962/// an IncompleteArrayType where the element type is 'int' and the size is
2963/// unspecified.
2964class IncompleteArrayType : public ArrayType {
2965 friend class ASTContext; // ASTContext creates these.
2966
2967 IncompleteArrayType(QualType et, QualType can,
2968 ArraySizeModifier sm, unsigned tq)
2969 : ArrayType(IncompleteArray, et, can, sm, tq,
2970 et->containsUnexpandedParameterPack()) {}
2971
2972public:
2973 friend class StmtIteratorBase;
2974
2975 bool isSugared() const { return false; }
2976 QualType desugar() const { return QualType(this, 0); }
2977
2978 static bool classof(const Type *T) {
2979 return T->getTypeClass() == IncompleteArray;
2980 }
2981
2982 void Profile(llvm::FoldingSetNodeID &ID) {
2983 Profile(ID, getElementType(), getSizeModifier(),
2984 getIndexTypeCVRQualifiers());
2985 }
2986
2987 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2988 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2989 ID.AddPointer(ET.getAsOpaquePtr());
2990 ID.AddInteger(SizeMod);
2991 ID.AddInteger(TypeQuals);
2992 }
2993};
2994
2995/// Represents a C array with a specified size that is not an
2996/// integer-constant-expression. For example, 'int s[x+foo()]'.
2997/// Since the size expression is an arbitrary expression, we store it as such.
2998///
2999/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3000/// should not be: two lexically equivalent variable array types could mean
3001/// different things, for example, these variables do not have the same type
3002/// dynamically:
3003///
3004/// void foo(int x) {
3005/// int Y[x];
3006/// ++x;
3007/// int Z[x];
3008/// }
3009class VariableArrayType : public ArrayType {
3010 friend class ASTContext; // ASTContext creates these.
3011
3012 /// An assignment-expression. VLA's are only permitted within
3013 /// a function block.
3014 Stmt *SizeExpr;
3015
3016 /// The range spanned by the left and right array brackets.
3017 SourceRange Brackets;
3018
3019 VariableArrayType(QualType et, QualType can, Expr *e,
3020 ArraySizeModifier sm, unsigned tq,
3021 SourceRange brackets)
3022 : ArrayType(VariableArray, et, can, sm, tq,
3023 et->containsUnexpandedParameterPack()),
3024 SizeExpr((Stmt*) e), Brackets(brackets) {}
3025
3026public:
3027 friend class StmtIteratorBase;
3028
3029 Expr *getSizeExpr() const {
3030 // We use C-style casts instead of cast<> here because we do not wish
3031 // to have a dependency of Type.h on Stmt.h/Expr.h.
3032 return (Expr*) SizeExpr;
3033 }
3034
3035 SourceRange getBracketsRange() const { return Brackets; }
3036 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3037 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3038
3039 bool isSugared() const { return false; }
3040 QualType desugar() const { return QualType(this, 0); }
3041
3042 static bool classof(const Type *T) {
3043 return T->getTypeClass() == VariableArray;
3044 }
3045
3046 void Profile(llvm::FoldingSetNodeID &ID) {
3047 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3047)
;
3048 }
3049};
3050
3051/// Represents an array type in C++ whose size is a value-dependent expression.
3052///
3053/// For example:
3054/// \code
3055/// template<typename T, int Size>
3056/// class array {
3057/// T data[Size];
3058/// };
3059/// \endcode
3060///
3061/// For these types, we won't actually know what the array bound is
3062/// until template instantiation occurs, at which point this will
3063/// become either a ConstantArrayType or a VariableArrayType.
3064class DependentSizedArrayType : public ArrayType {
3065 friend class ASTContext; // ASTContext creates these.
3066
3067 const ASTContext &Context;
3068
3069 /// An assignment expression that will instantiate to the
3070 /// size of the array.
3071 ///
3072 /// The expression itself might be null, in which case the array
3073 /// type will have its size deduced from an initializer.
3074 Stmt *SizeExpr;
3075
3076 /// The range spanned by the left and right array brackets.
3077 SourceRange Brackets;
3078
3079 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3080 Expr *e, ArraySizeModifier sm, unsigned tq,
3081 SourceRange brackets);
3082
3083public:
3084 friend class StmtIteratorBase;
3085
3086 Expr *getSizeExpr() const {
3087 // We use C-style casts instead of cast<> here because we do not wish
3088 // to have a dependency of Type.h on Stmt.h/Expr.h.
3089 return (Expr*) SizeExpr;
3090 }
3091
3092 SourceRange getBracketsRange() const { return Brackets; }
3093 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3094 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3095
3096 bool isSugared() const { return false; }
3097 QualType desugar() const { return QualType(this, 0); }
3098
3099 static bool classof(const Type *T) {
3100 return T->getTypeClass() == DependentSizedArray;
3101 }
3102
3103 void Profile(llvm::FoldingSetNodeID &ID) {
3104 Profile(ID, Context, getElementType(),
3105 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3106 }
3107
3108 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3109 QualType ET, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals, Expr *E);
3111};
3112
3113/// Represents an extended address space qualifier where the input address space
3114/// value is dependent. Non-dependent address spaces are not represented with a
3115/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3116///
3117/// For example:
3118/// \code
3119/// template<typename T, int AddrSpace>
3120/// class AddressSpace {
3121/// typedef T __attribute__((address_space(AddrSpace))) type;
3122/// }
3123/// \endcode
3124class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3125 friend class ASTContext;
3126
3127 const ASTContext &Context;
3128 Expr *AddrSpaceExpr;
3129 QualType PointeeType;
3130 SourceLocation loc;
3131
3132 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3133 QualType can, Expr *AddrSpaceExpr,
3134 SourceLocation loc);
3135
3136public:
3137 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3138 QualType getPointeeType() const { return PointeeType; }
3139 SourceLocation getAttributeLoc() const { return loc; }
3140
3141 bool isSugared() const { return false; }
3142 QualType desugar() const { return QualType(this, 0); }
3143
3144 static bool classof(const Type *T) {
3145 return T->getTypeClass() == DependentAddressSpace;
3146 }
3147
3148 void Profile(llvm::FoldingSetNodeID &ID) {
3149 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3150 }
3151
3152 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3153 QualType PointeeType, Expr *AddrSpaceExpr);
3154};
3155
3156/// Represents an extended vector type where either the type or size is
3157/// dependent.
3158///
3159/// For example:
3160/// \code
3161/// template<typename T, int Size>
3162/// class vector {
3163/// typedef T __attribute__((ext_vector_type(Size))) type;
3164/// }
3165/// \endcode
3166class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3167 friend class ASTContext;
3168
3169 const ASTContext &Context;
3170 Expr *SizeExpr;
3171
3172 /// The element type of the array.
3173 QualType ElementType;
3174
3175 SourceLocation loc;
3176
3177 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3178 QualType can, Expr *SizeExpr, SourceLocation loc);
3179
3180public:
3181 Expr *getSizeExpr() const { return SizeExpr; }
3182 QualType getElementType() const { return ElementType; }
3183 SourceLocation getAttributeLoc() const { return loc; }
3184
3185 bool isSugared() const { return false; }
3186 QualType desugar() const { return QualType(this, 0); }
3187
3188 static bool classof(const Type *T) {
3189 return T->getTypeClass() == DependentSizedExtVector;
3190 }
3191
3192 void Profile(llvm::FoldingSetNodeID &ID) {
3193 Profile(ID, Context, getElementType(), getSizeExpr());
3194 }
3195
3196 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3197 QualType ElementType, Expr *SizeExpr);
3198};
3199
3200
3201/// Represents a GCC generic vector type. This type is created using
3202/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3203/// bytes; or from an Altivec __vector or vector declaration.
3204/// Since the constructor takes the number of vector elements, the
3205/// client is responsible for converting the size into the number of elements.
3206class VectorType : public Type, public llvm::FoldingSetNode {
3207public:
3208 enum VectorKind {
3209 /// not a target-specific vector type
3210 GenericVector,
3211
3212 /// is AltiVec vector
3213 AltiVecVector,
3214
3215 /// is AltiVec 'vector Pixel'
3216 AltiVecPixel,
3217
3218 /// is AltiVec 'vector bool ...'
3219 AltiVecBool,
3220
3221 /// is ARM Neon vector
3222 NeonVector,
3223
3224 /// is ARM Neon polynomial vector
3225 NeonPolyVector
3226 };
3227
3228protected:
3229 friend class ASTContext; // ASTContext creates these.
3230
3231 /// The element type of the vector.
3232 QualType ElementType;
3233
3234 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3235 VectorKind vecKind);
3236
3237 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3238 QualType canonType, VectorKind vecKind);
3239
3240public:
3241 QualType getElementType() const { return ElementType; }
3242 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3243
3244 static bool isVectorSizeTooLarge(unsigned NumElements) {
3245 return NumElements > VectorTypeBitfields::MaxNumElements;
3246 }
3247
3248 bool isSugared() const { return false; }
3249 QualType desugar() const { return QualType(this, 0); }
3250
3251 VectorKind getVectorKind() const {
3252 return VectorKind(VectorTypeBits.VecKind);
3253 }
3254
3255 void Profile(llvm::FoldingSetNodeID &ID) {
3256 Profile(ID, getElementType(), getNumElements(),
3257 getTypeClass(), getVectorKind());
3258 }
3259
3260 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3261 unsigned NumElements, TypeClass TypeClass,
3262 VectorKind VecKind) {
3263 ID.AddPointer(ElementType.getAsOpaquePtr());
3264 ID.AddInteger(NumElements);
3265 ID.AddInteger(TypeClass);
3266 ID.AddInteger(VecKind);
3267 }
3268
3269 static bool classof(const Type *T) {
3270 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3271 }
3272};
3273
3274/// Represents a vector type where either the type or size is dependent.
3275////
3276/// For example:
3277/// \code
3278/// template<typename T, int Size>
3279/// class vector {
3280/// typedef T __attribute__((vector_size(Size))) type;
3281/// }
3282/// \endcode
3283class DependentVectorType : public Type, public llvm::FoldingSetNode {
3284 friend class ASTContext;
3285
3286 const ASTContext &Context;
3287 QualType ElementType;
3288 Expr *SizeExpr;
3289 SourceLocation Loc;
3290
3291 DependentVectorType(const ASTContext &Context, QualType ElementType,
3292 QualType CanonType, Expr *SizeExpr,
3293 SourceLocation Loc, VectorType::VectorKind vecKind);
3294
3295public:
3296 Expr *getSizeExpr() const { return SizeExpr; }
3297 QualType getElementType() const { return ElementType; }
3298 SourceLocation getAttributeLoc() const { return Loc; }
3299 VectorType::VectorKind getVectorKind() const {
3300 return VectorType::VectorKind(VectorTypeBits.VecKind);
3301 }
3302
3303 bool isSugared() const { return false; }
3304 QualType desugar() const { return QualType(this, 0); }
3305
3306 static bool classof(const Type *T) {
3307 return T->getTypeClass() == DependentVector;
3308 }
3309
3310 void Profile(llvm::FoldingSetNodeID &ID) {
3311 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3312 }
3313
3314 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3315 QualType ElementType, const Expr *SizeExpr,
3316 VectorType::VectorKind VecKind);
3317};
3318
3319/// ExtVectorType - Extended vector type. This type is created using
3320/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3321/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3322/// class enables syntactic extensions, like Vector Components for accessing
3323/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3324/// Shading Language).
3325class ExtVectorType : public VectorType {
3326 friend class ASTContext; // ASTContext creates these.
3327
3328 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3329 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3330
3331public:
3332 static int getPointAccessorIdx(char c) {
3333 switch (c) {
3334 default: return -1;
3335 case 'x': case 'r': return 0;
3336 case 'y': case 'g': return 1;
3337 case 'z': case 'b': return 2;
3338 case 'w': case 'a': return 3;
3339 }
3340 }
3341
3342 static int getNumericAccessorIdx(char c) {
3343 switch (c) {
3344 default: return -1;
3345 case '0': return 0;
3346 case '1': return 1;
3347 case '2': return 2;
3348 case '3': return 3;
3349 case '4': return 4;
3350 case '5': return 5;
3351 case '6': return 6;
3352 case '7': return 7;
3353 case '8': return 8;
3354 case '9': return 9;
3355 case 'A':
3356 case 'a': return 10;
3357 case 'B':
3358 case 'b': return 11;
3359 case 'C':
3360 case 'c': return 12;
3361 case 'D':
3362 case 'd': return 13;
3363 case 'E':
3364 case 'e': return 14;
3365 case 'F':
3366 case 'f': return 15;
3367 }
3368 }
3369
3370 static int getAccessorIdx(char c, bool isNumericAccessor) {
3371 if (isNumericAccessor)
3372 return getNumericAccessorIdx(c);
3373 else
3374 return getPointAccessorIdx(c);
3375 }
3376
3377 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3378 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3379 return unsigned(idx-1) < getNumElements();
3380 return false;
3381 }
3382
3383 bool isSugared() const { return false; }
3384 QualType desugar() const { return QualType(this, 0); }
3385
3386 static bool classof(const Type *T) {
3387 return T->getTypeClass() == ExtVector;
3388 }
3389};
3390
3391/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3392/// class of FunctionNoProtoType and FunctionProtoType.
3393class FunctionType : public Type {
3394 // The type returned by the function.
3395 QualType ResultType;
3396
3397public:
3398 /// Interesting information about a specific parameter that can't simply
3399 /// be reflected in parameter's type. This is only used by FunctionProtoType
3400 /// but is in FunctionType to make this class available during the
3401 /// specification of the bases of FunctionProtoType.
3402 ///
3403 /// It makes sense to model language features this way when there's some
3404 /// sort of parameter-specific override (such as an attribute) that
3405 /// affects how the function is called. For example, the ARC ns_consumed
3406 /// attribute changes whether a parameter is passed at +0 (the default)
3407 /// or +1 (ns_consumed). This must be reflected in the function type,
3408 /// but isn't really a change to the parameter type.
3409 ///
3410 /// One serious disadvantage of modelling language features this way is
3411 /// that they generally do not work with language features that attempt
3412 /// to destructure types. For example, template argument deduction will
3413 /// not be able to match a parameter declared as
3414 /// T (*)(U)
3415 /// against an argument of type
3416 /// void (*)(__attribute__((ns_consumed)) id)
3417 /// because the substitution of T=void, U=id into the former will
3418 /// not produce the latter.
3419 class ExtParameterInfo {
3420 enum {
3421 ABIMask = 0x0F,
3422 IsConsumed = 0x10,
3423 HasPassObjSize = 0x20,
3424 IsNoEscape = 0x40,
3425 };
3426 unsigned char Data = 0;
3427
3428 public:
3429 ExtParameterInfo() = default;
3430
3431 /// Return the ABI treatment of this parameter.
3432 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3433 ExtParameterInfo withABI(ParameterABI kind) const {
3434 ExtParameterInfo copy = *this;
3435 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3436 return copy;
3437 }
3438
3439 /// Is this parameter considered "consumed" by Objective-C ARC?
3440 /// Consumed parameters must have retainable object type.
3441 bool isConsumed() const { return (Data & IsConsumed); }
3442 ExtParameterInfo withIsConsumed(bool consumed) const {
3443 ExtParameterInfo copy = *this;
3444 if (consumed)
3445 copy.Data |= IsConsumed;
3446 else
3447 copy.Data &= ~IsConsumed;
3448 return copy;
3449 }
3450
3451 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3452 ExtParameterInfo withHasPassObjectSize() const {
3453 ExtParameterInfo Copy = *this;
3454 Copy.Data |= HasPassObjSize;
3455 return Copy;
3456 }
3457
3458 bool isNoEscape() const { return Data & IsNoEscape; }
3459 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3460 ExtParameterInfo Copy = *this;
3461 if (NoEscape)
3462 Copy.Data |= IsNoEscape;
3463 else
3464 Copy.Data &= ~IsNoEscape;
3465 return Copy;
3466 }
3467
3468 unsigned char getOpaqueValue() const { return Data; }
3469 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3470 ExtParameterInfo result;
3471 result.Data = data;
3472 return result;
3473 }
3474
3475 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3476 return lhs.Data == rhs.Data;
3477 }
3478
3479 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3480 return lhs.Data != rhs.Data;
3481 }
3482 };
3483
3484 /// A class which abstracts out some details necessary for
3485 /// making a call.
3486 ///
3487 /// It is not actually used directly for storing this information in
3488 /// a FunctionType, although FunctionType does currently use the
3489 /// same bit-pattern.
3490 ///
3491 // If you add a field (say Foo), other than the obvious places (both,
3492 // constructors, compile failures), what you need to update is
3493 // * Operator==
3494 // * getFoo
3495 // * withFoo
3496 // * functionType. Add Foo, getFoo.
3497 // * ASTContext::getFooType
3498 // * ASTContext::mergeFunctionTypes
3499 // * FunctionNoProtoType::Profile
3500 // * FunctionProtoType::Profile
3501 // * TypePrinter::PrintFunctionProto
3502 // * AST read and write
3503 // * Codegen
3504 class ExtInfo {
3505 friend class FunctionType;
3506
3507 // Feel free to rearrange or add bits, but if you go over 12,
3508 // you'll need to adjust both the Bits field below and
3509 // Type::FunctionTypeBitfields.
3510
3511 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3512 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3513 //
3514 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3515 enum { CallConvMask = 0x1F };
3516 enum { NoReturnMask = 0x20 };
3517 enum { ProducesResultMask = 0x40 };
3518 enum { NoCallerSavedRegsMask = 0x80 };
3519 enum { NoCfCheckMask = 0x800 };
3520 enum {
3521 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3522 NoCallerSavedRegsMask | NoCfCheckMask),
3523 RegParmOffset = 8
3524 }; // Assumed to be the last field
3525 uint16_t Bits = CC_C;
3526
3527 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3528
3529 public:
3530 // Constructor with no defaults. Use this when you know that you
3531 // have all the elements (when reading an AST file for example).
3532 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3533 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3534 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3534, __PRETTY_FUNCTION__))
;
3535 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3536 (producesResult ? ProducesResultMask : 0) |
3537 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3538 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3539 (NoCfCheck ? NoCfCheckMask : 0);
3540 }
3541
3542 // Constructor with all defaults. Use when for example creating a
3543 // function known to use defaults.
3544 ExtInfo() = default;
3545
3546 // Constructor with just the calling convention, which is an important part
3547 // of the canonical type.
3548 ExtInfo(CallingConv CC) : Bits(CC) {}
3549
3550 bool getNoReturn() const { return Bits & NoReturnMask; }
3551 bool getProducesResult() const { return Bits & ProducesResultMask; }
3552 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3553 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3554 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3555
3556 unsigned getRegParm() const {
3557 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3558 if (RegParm > 0)
3559 --RegParm;
3560 return RegParm;
3561 }
3562
3563 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3564
3565 bool operator==(ExtInfo Other) const {
3566 return Bits == Other.Bits;
3567 }
3568 bool operator!=(ExtInfo Other) const {
3569 return Bits != Other.Bits;
3570 }
3571
3572 // Note that we don't have setters. That is by design, use
3573 // the following with methods instead of mutating these objects.
3574
3575 ExtInfo withNoReturn(bool noReturn) const {
3576 if (noReturn)
3577 return ExtInfo(Bits | NoReturnMask);
3578 else
3579 return ExtInfo(Bits & ~NoReturnMask);
3580 }
3581
3582 ExtInfo withProducesResult(bool producesResult) const {
3583 if (producesResult)
3584 return ExtInfo(Bits | ProducesResultMask);
3585 else
3586 return ExtInfo(Bits & ~ProducesResultMask);
3587 }
3588
3589 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3590 if (noCallerSavedRegs)
3591 return ExtInfo(Bits | NoCallerSavedRegsMask);
3592 else
3593 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3594 }
3595
3596 ExtInfo withNoCfCheck(bool noCfCheck) const {
3597 if (noCfCheck)
3598 return ExtInfo(Bits | NoCfCheckMask);
3599 else
3600 return ExtInfo(Bits & ~NoCfCheckMask);
3601 }
3602
3603 ExtInfo withRegParm(unsigned RegParm) const {
3604 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3604, __PRETTY_FUNCTION__))
;
3605 return ExtInfo((Bits & ~RegParmMask) |
3606 ((RegParm + 1) << RegParmOffset));
3607 }
3608
3609 ExtInfo withCallingConv(CallingConv cc) const {
3610 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3611 }
3612
3613 void Profile(llvm::FoldingSetNodeID &ID) const {
3614 ID.AddInteger(Bits);
3615 }
3616 };
3617
3618 /// A simple holder for a QualType representing a type in an
3619 /// exception specification. Unfortunately needed by FunctionProtoType
3620 /// because TrailingObjects cannot handle repeated types.
3621 struct ExceptionType { QualType Type; };
3622
3623 /// A simple holder for various uncommon bits which do not fit in
3624 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3625 /// alignment of subsequent objects in TrailingObjects. You must update
3626 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3627 struct alignas(void *) FunctionTypeExtraBitfields {
3628 /// The number of types in the exception specification.
3629 /// A whole unsigned is not needed here and according to
3630 /// [implimits] 8 bits would be enough here.
3631 unsigned NumExceptionType;
3632 };
3633
3634protected:
3635 FunctionType(TypeClass tc, QualType res,
3636 QualType Canonical, bool Dependent,
3637 bool InstantiationDependent,
3638 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3639 ExtInfo Info)
3640 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3641 ContainsUnexpandedParameterPack),
3642 ResultType(res) {
3643 FunctionTypeBits.ExtInfo = Info.Bits;
3644 }
3645
3646 Qualifiers getFastTypeQuals() const {
3647 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3648 }
3649
3650public:
3651 QualType getReturnType() const { return ResultType; }
3652
3653 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3654 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3655
3656 /// Determine whether this function type includes the GNU noreturn
3657 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3658 /// type.
3659 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3660
3661 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3662 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3663
3664 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3665 "Const, volatile and restrict are assumed to be a subset of "
3666 "the fast qualifiers.");
3667
3668 bool isConst() const { return getFastTypeQuals().hasConst(); }
3669 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3670 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3671
3672 /// Determine the type of an expression that calls a function of
3673 /// this type.
3674 QualType getCallResultType(const ASTContext &Context) const {
3675 return getReturnType().getNonLValueExprType(Context);
3676 }
3677
3678 static StringRef getNameForCallConv(CallingConv CC);
3679
3680 static bool classof(const Type *T) {
3681 return T->getTypeClass() == FunctionNoProto ||
3682 T->getTypeClass() == FunctionProto;
3683 }
3684};
3685
3686/// Represents a K&R-style 'int foo()' function, which has
3687/// no information available about its arguments.
3688class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3689 friend class ASTContext; // ASTContext creates these.
3690
3691 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3692 : FunctionType(FunctionNoProto, Result, Canonical,
3693 /*Dependent=*/false, /*InstantiationDependent=*/false,
3694 Result->isVariablyModifiedType(),
3695 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3696
3697public:
3698 // No additional state past what FunctionType provides.
3699
3700 bool isSugared() const { return false; }
3701 QualType desugar() const { return QualType(this, 0); }
3702
3703 void Profile(llvm::FoldingSetNodeID &ID) {
3704 Profile(ID, getReturnType(), getExtInfo());
3705 }
3706
3707 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3708 ExtInfo Info) {
3709 Info.Profile(ID);
3710 ID.AddPointer(ResultType.getAsOpaquePtr());
3711 }
3712
3713 static bool classof(const Type *T) {
3714 return T->getTypeClass() == FunctionNoProto;
3715 }
3716};
3717
3718/// Represents a prototype with parameter type info, e.g.
3719/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3720/// parameters, not as having a single void parameter. Such a type can have
3721/// an exception specification, but this specification is not part of the
3722/// canonical type. FunctionProtoType has several trailing objects, some of
3723/// which optional. For more information about the trailing objects see
3724/// the first comment inside FunctionProtoType.
3725class FunctionProtoType final
3726 : public FunctionType,
3727 public llvm::FoldingSetNode,
3728 private llvm::TrailingObjects<
3729 FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
3730 FunctionType::ExceptionType, Expr *, FunctionDecl *,
3731 FunctionType::ExtParameterInfo, Qualifiers> {
3732 friend class ASTContext; // ASTContext creates these.
3733 friend TrailingObjects;
3734
3735 // FunctionProtoType is followed by several trailing objects, some of
3736 // which optional. They are in order:
3737 //
3738 // * An array of getNumParams() QualType holding the parameter types.
3739 // Always present. Note that for the vast majority of FunctionProtoType,
3740 // these will be the only trailing objects.
3741 //
3742 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3743 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3744 // a single FunctionTypeExtraBitfields. Present if and only if
3745 // hasExtraBitfields() is true.
3746 //
3747 // * Optionally exactly one of:
3748 // * an array of getNumExceptions() ExceptionType,
3749 // * a single Expr *,
3750 // * a pair of FunctionDecl *,
3751 // * a single FunctionDecl *
3752 // used to store information about the various types of exception
3753 // specification. See getExceptionSpecSize for the details.
3754 //
3755 // * Optionally an array of getNumParams() ExtParameterInfo holding
3756 // an ExtParameterInfo for each of the parameters. Present if and
3757 // only if hasExtParameterInfos() is true.
3758 //
3759 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3760 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3761 // if hasExtQualifiers() is true.
3762 //
3763 // The optional FunctionTypeExtraBitfields has to be before the data
3764 // related to the exception specification since it contains the number
3765 // of exception types.
3766 //
3767 // We put the ExtParameterInfos last. If all were equal, it would make
3768 // more sense to put these before the exception specification, because
3769 // it's much easier to skip past them compared to the elaborate switch
3770 // required to skip the exception specification. However, all is not
3771 // equal; ExtParameterInfos are used to model very uncommon features,
3772 // and it's better not to burden the more common paths.
3773
3774public:
3775 /// Holds information about the various types of exception specification.
3776 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3777 /// used to group together the various bits of information about the
3778 /// exception specification.
3779 struct ExceptionSpecInfo {
3780 /// The kind of exception specification this is.
3781 ExceptionSpecificationType Type = EST_None;
3782
3783 /// Explicitly-specified list of exception types.
3784 ArrayRef<QualType> Exceptions;
3785
3786 /// Noexcept expression, if this is a computed noexcept specification.
3787 Expr *NoexceptExpr = nullptr;
3788
3789 /// The function whose exception specification this is, for
3790 /// EST_Unevaluated and EST_Uninstantiated.
3791 FunctionDecl *SourceDecl = nullptr;
3792
3793 /// The function template whose exception specification this is instantiated
3794 /// from, for EST_Uninstantiated.
3795 FunctionDecl *SourceTemplate = nullptr;
3796
3797 ExceptionSpecInfo() = default;
3798
3799 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3800 };
3801
3802 /// Extra information about a function prototype. ExtProtoInfo is not
3803 /// stored as such in FunctionProtoType but is used to group together
3804 /// the various bits of extra information about a function prototype.
3805 struct ExtProtoInfo {
3806 FunctionType::ExtInfo ExtInfo;
3807 bool Variadic : 1;
3808 bool HasTrailingReturn : 1;
3809 Qualifiers TypeQuals;
3810 RefQualifierKind RefQualifier = RQ_None;
3811 ExceptionSpecInfo ExceptionSpec;
3812 const ExtParameterInfo *ExtParameterInfos = nullptr;
3813
3814 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3815
3816 ExtProtoInfo(CallingConv CC)
3817 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3818
3819 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3820 ExtProtoInfo Result(*this);
3821 Result.ExceptionSpec = ESI;
3822 return Result;
3823 }
3824 };
3825
3826private:
3827 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3828 return getNumParams();
3829 }
3830
3831 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3832 return hasExtraBitfields();
3833 }
3834
3835 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3836 return getExceptionSpecSize().NumExceptionType;
3837 }
3838
3839 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3840 return getExceptionSpecSize().NumExprPtr;
3841 }
3842
3843 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3844 return getExceptionSpecSize().NumFunctionDeclPtr;
3845 }
3846
3847 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3848 return hasExtParameterInfos() ? getNumParams() : 0;
3849 }
3850
3851 /// Determine whether there are any argument types that
3852 /// contain an unexpanded parameter pack.
3853 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3854 unsigned numArgs) {
3855 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3856 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3857 return true;
3858
3859 return false;
3860 }
3861
3862 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3863 QualType canonical, const ExtProtoInfo &epi);
3864
3865 /// This struct is returned by getExceptionSpecSize and is used to
3866 /// translate an ExceptionSpecificationType to the number and kind
3867 /// of trailing objects related to the exception specification.
3868 struct ExceptionSpecSizeHolder {
3869 unsigned NumExceptionType;
3870 unsigned NumExprPtr;
3871 unsigned NumFunctionDeclPtr;
3872 };
3873
3874 /// Return the number and kind of trailing objects
3875 /// related to the exception specification.
3876 static ExceptionSpecSizeHolder
3877 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3878 switch (EST) {
3879 case EST_None:
3880 case EST_DynamicNone:
3881 case EST_MSAny:
3882 case EST_BasicNoexcept:
3883 case EST_Unparsed:
3884 case EST_NoThrow:
3885 return {0, 0, 0};
3886
3887 case EST_Dynamic:
3888 return {NumExceptions, 0, 0};
3889
3890 case EST_DependentNoexcept:
3891 case EST_NoexceptFalse:
3892 case EST_NoexceptTrue:
3893 return {0, 1, 0};
3894
3895 case EST_Uninstantiated:
3896 return {0, 0, 2};
3897
3898 case EST_Unevaluated:
3899 return {0, 0, 1};
3900 }
3901 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3901)
;
3902 }
3903
3904 /// Return the number and kind of trailing objects
3905 /// related to the exception specification.
3906 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3907 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3908 }
3909
3910 /// Whether the trailing FunctionTypeExtraBitfields is present.
3911 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3912 // If the exception spec type is EST_Dynamic then we have > 0 exception
3913 // types and the exact number is stored in FunctionTypeExtraBitfields.
3914 return EST == EST_Dynamic;
3915 }
3916
3917 /// Whether the trailing FunctionTypeExtraBitfields is present.
3918 bool hasExtraBitfields() const {
3919 return hasExtraBitfields(getExceptionSpecType());
3920 }
3921
3922 bool hasExtQualifiers() const {
3923 return FunctionTypeBits.HasExtQuals;
3924 }
3925
3926public:
3927 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3928
3929 QualType getParamType(unsigned i) const {
3930 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3930, __PRETTY_FUNCTION__))
;
3931 return param_type_begin()[i];
3932 }
3933
3934 ArrayRef<QualType> getParamTypes() const {
3935 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3936 }
3937
3938 ExtProtoInfo getExtProtoInfo() const {
3939 ExtProtoInfo EPI;
3940 EPI.ExtInfo = getExtInfo();
3941 EPI.Variadic = isVariadic();
3942 EPI.HasTrailingReturn = hasTrailingReturn();
3943 EPI.ExceptionSpec.Type = getExceptionSpecType();
3944 EPI.TypeQuals = getMethodQuals();
3945 EPI.RefQualifier = getRefQualifier();
3946 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3947 EPI.ExceptionSpec.Exceptions = exceptions();
3948 } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
3949 EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3950 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3951 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3952 EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3953 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3954 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3955 }
3956 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3957 return EPI;
3958 }
3959
3960 /// Get the kind of exception specification on this function.
3961 ExceptionSpecificationType getExceptionSpecType() const {
3962 return static_cast<ExceptionSpecificationType>(
3963 FunctionTypeBits.ExceptionSpecType);
3964 }
3965
3966 /// Return whether this function has any kind of exception spec.
3967 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3968
3969 /// Return whether this function has a dynamic (throw) exception spec.
3970 bool hasDynamicExceptionSpec() const {
3971 return isDynamicExceptionSpec(getExceptionSpecType());
3972 }
3973
3974 /// Return whether this function has a noexcept exception spec.
3975 bool hasNoexceptExceptionSpec() const {
3976 return isNoexceptExceptionSpec(getExceptionSpecType());
3977 }
3978
3979 /// Return whether this function has a dependent exception spec.
3980 bool hasDependentExceptionSpec() const;
3981
3982 /// Return whether this function has an instantiation-dependent exception
3983 /// spec.
3984 bool hasInstantiationDependentExceptionSpec() const;
3985
3986 /// Return the number of types in the exception specification.
3987 unsigned getNumExceptions() const {
3988 return getExceptionSpecType() == EST_Dynamic
3989 ? getTrailingObjects<FunctionTypeExtraBitfields>()
3990 ->NumExceptionType
3991 : 0;
3992 }
3993
3994 /// Return the ith exception type, where 0 <= i < getNumExceptions().
3995 QualType getExceptionType(unsigned i) const {
3996 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3996, __PRETTY_FUNCTION__))
;
3997 return exception_begin()[i];
3998 }
3999
4000 /// Return the expression inside noexcept(expression), or a null pointer
4001 /// if there is none (because the exception spec is not of this form).
4002 Expr *getNoexceptExpr() const {
4003 if (!isComputedNoexcept(getExceptionSpecType()))
4004 return nullptr;
4005 return *getTrailingObjects<Expr *>();
4006 }
4007
4008 /// If this function type has an exception specification which hasn't
4009 /// been determined yet (either because it has not been evaluated or because
4010 /// it has not been instantiated), this is the function whose exception
4011 /// specification is represented by this type.
4012 FunctionDecl *getExceptionSpecDecl() const {
4013 if (getExceptionSpecType() != EST_Uninstantiated &&
4014 getExceptionSpecType() != EST_Unevaluated)
4015 return nullptr;
4016 return getTrailingObjects<FunctionDecl *>()[0];
4017 }
4018
4019 /// If this function type has an uninstantiated exception
4020 /// specification, this is the function whose exception specification
4021 /// should be instantiated to find the exception specification for
4022 /// this type.
4023 FunctionDecl *getExceptionSpecTemplate() const {
4024 if (getExceptionSpecType() != EST_Uninstantiated)
4025 return nullptr;
4026 return getTrailingObjects<FunctionDecl *>()[1];
4027 }
4028
4029 /// Determine whether this function type has a non-throwing exception
4030 /// specification.
4031 CanThrowResult canThrow() const;
4032
4033 /// Determine whether this function type has a non-throwing exception
4034 /// specification. If this depends on template arguments, returns
4035 /// \c ResultIfDependent.
4036 bool isNothrow(bool ResultIfDependent = false) const {
4037 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4038 }
4039
4040 /// Whether this function prototype is variadic.
4041 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4042
4043 /// Determines whether this function prototype contains a
4044 /// parameter pack at the end.
4045 ///
4046 /// A function template whose last parameter is a parameter pack can be
4047 /// called with an arbitrary number of arguments, much like a variadic
4048 /// function.
4049 bool isTemplateVariadic() const;
4050
4051 /// Whether this function prototype has a trailing return type.
4052 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4053
4054 Qualifiers getMethodQuals() const {
4055 if (hasExtQualifiers())
4056 return *getTrailingObjects<Qualifiers>();
4057 else
4058 return getFastTypeQuals();
4059 }
4060
4061 /// Retrieve the ref-qualifier associated with this function type.
4062 RefQualifierKind getRefQualifier() const {
4063 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4064 }
4065
4066 using param_type_iterator = const QualType *;
4067 using param_type_range = llvm::iterator_range<param_type_iterator>;
4068
4069 param_type_range param_types() const {
4070 return param_type_range(param_type_begin(), param_type_end());
4071 }
4072
4073 param_type_iterator param_type_begin() const {
4074 return getTrailingObjects<QualType>();
4075 }
4076
4077 param_type_iterator param_type_end() const {
4078 return param_type_begin() + getNumParams();
4079 }
4080
4081 using exception_iterator = const QualType *;
4082
4083 ArrayRef<QualType> exceptions() const {
4084 return llvm::makeArrayRef(exception_begin(), exception_end());
4085 }
4086
4087 exception_iterator exception_begin() const {
4088 return reinterpret_cast<exception_iterator>(
4089 getTrailingObjects<ExceptionType>());
4090 }
4091
4092 exception_iterator exception_end() const {
4093 return exception_begin() + getNumExceptions();
4094 }
4095
4096 /// Is there any interesting extra information for any of the parameters
4097 /// of this function type?
4098 bool hasExtParameterInfos() const {
4099 return FunctionTypeBits.HasExtParameterInfos;
4100 }
4101
4102 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4103 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4103, __PRETTY_FUNCTION__))
;
4104 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4105 getNumParams());
4106 }
4107
4108 /// Return a pointer to the beginning of the array of extra parameter
4109 /// information, if present, or else null if none of the parameters
4110 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4111 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4112 if (!hasExtParameterInfos())
4113 return nullptr;
4114 return getTrailingObjects<ExtParameterInfo>();
4115 }
4116
4117 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4118 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4118, __PRETTY_FUNCTION__))
;
4119 if (hasExtParameterInfos())
4120 return getTrailingObjects<ExtParameterInfo>()[I];
4121 return ExtParameterInfo();
4122 }
4123
4124 ParameterABI getParameterABI(unsigned I) const {
4125 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4125, __PRETTY_FUNCTION__))
;
4126 if (hasExtParameterInfos())
4127 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4128 return ParameterABI::Ordinary;
4129 }
4130
4131 bool isParamConsumed(unsigned I) const {
4132 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4132, __PRETTY_FUNCTION__))
;
4133 if (hasExtParameterInfos())
4134 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4135 return false;
4136 }
4137
4138 bool isSugared() const { return false; }
4139 QualType desugar() const { return QualType(this, 0); }
4140
4141 void printExceptionSpecification(raw_ostream &OS,
4142 const PrintingPolicy &Policy) const;
4143
4144 static bool classof(const Type *T) {
4145 return T->getTypeClass() == FunctionProto;
4146 }
4147
4148 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4149 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4150 param_type_iterator ArgTys, unsigned NumArgs,
4151 const ExtProtoInfo &EPI, const ASTContext &Context,
4152 bool Canonical);
4153};
4154
4155/// Represents the dependent type named by a dependently-scoped
4156/// typename using declaration, e.g.
4157/// using typename Base<T>::foo;
4158///
4159/// Template instantiation turns these into the underlying type.
4160class UnresolvedUsingType : public Type {
4161 friend class ASTContext; // ASTContext creates these.
4162
4163 UnresolvedUsingTypenameDecl *Decl;
4164
4165 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4166 : Type(UnresolvedUsing, QualType(), true, true, false,
4167 /*ContainsUnexpandedParameterPack=*/false),
4168 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4169
4170public:
4171 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4172
4173 bool isSugared() const { return false; }
4174 QualType desugar() const { return QualType(this, 0); }
4175
4176 static bool classof(const Type *T) {
4177 return T->getTypeClass() == UnresolvedUsing;
4178 }
4179
4180 void Profile(llvm::FoldingSetNodeID &ID) {
4181 return Profile(ID, Decl);
4182 }
4183
4184 static void Profile(llvm::FoldingSetNodeID &ID,
4185 UnresolvedUsingTypenameDecl *D) {
4186 ID.AddPointer(D);
4187 }
4188};
4189
4190class TypedefType : public Type {
4191 TypedefNameDecl *Decl;
4192
4193protected:
4194 friend class ASTContext; // ASTContext creates these.
4195
4196 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4197 : Type(tc, can, can->isDependentType(),
4198 can->isInstantiationDependentType(),
4199 can->isVariablyModifiedType(),
4200 /*ContainsUnexpandedParameterPack=*/false),
4201 Decl(const_cast<TypedefNameDecl*>(D)) {
4202 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4202, __PRETTY_FUNCTION__))
;
4203 }
4204
4205public:
4206 TypedefNameDecl *getDecl() const { return Decl; }
4207
4208 bool isSugared() const { return true; }
4209 QualType desugar() const;
4210
4211 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4212};
4213
4214/// Sugar type that represents a type that was qualified by a qualifier written
4215/// as a macro invocation.
4216class MacroQualifiedType : public Type {
4217 friend class ASTContext; // ASTContext creates these.
4218
4219 QualType UnderlyingTy;
4220 const IdentifierInfo *MacroII;
4221
4222 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4223 const IdentifierInfo *MacroII)
4224 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4225 UnderlyingTy->isInstantiationDependentType(),
4226 UnderlyingTy->isVariablyModifiedType(),
4227 UnderlyingTy->containsUnexpandedParameterPack()),
4228 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4229 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
4230 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
;
4231 }
4232
4233public:
4234 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4235 QualType getUnderlyingType() const { return UnderlyingTy; }
4236
4237 /// Return this attributed type's modified type with no qualifiers attached to
4238 /// it.
4239 QualType getModifiedType() const;
4240
4241 bool isSugared() const { return true; }
4242 QualType desugar() const;
4243
4244 static bool classof(const Type *T) {
4245 return T->getTypeClass() == MacroQualified;
4246 }
4247};
4248
4249/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4250class TypeOfExprType : public Type {
4251 Expr *TOExpr;
4252
4253protected:
4254 friend class ASTContext; // ASTContext creates these.
4255
4256 TypeOfExprType(Expr *E, QualType can = QualType());
4257
4258public:
4259 Expr *getUnderlyingExpr() const { return TOExpr; }
4260
4261 /// Remove a single level of sugar.
4262 QualType desugar() const;
4263
4264 /// Returns whether this type directly provides sugar.
4265 bool isSugared() const;
4266
4267 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4268};
4269
4270/// Internal representation of canonical, dependent
4271/// `typeof(expr)` types.
4272///
4273/// This class is used internally by the ASTContext to manage
4274/// canonical, dependent types, only. Clients will only see instances
4275/// of this class via TypeOfExprType nodes.
4276class DependentTypeOfExprType
4277 : public TypeOfExprType, public llvm::FoldingSetNode {
4278 const ASTContext &Context;
4279
4280public:
4281 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4282 : TypeOfExprType(E), Context(Context) {}
4283
4284 void Profile(llvm::FoldingSetNodeID &ID) {
4285 Profile(ID, Context, getUnderlyingExpr());
4286 }
4287
4288 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4289 Expr *E);
4290};
4291
4292/// Represents `typeof(type)`, a GCC extension.
4293class TypeOfType : public Type {
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 QualType TOType;
4297
4298 TypeOfType(QualType T, QualType can)
4299 : Type(TypeOf, can, T->isDependentType(),
4300 T->isInstantiationDependentType(),
4301 T->isVariablyModifiedType(),
4302 T->containsUnexpandedParameterPack()),
4303 TOType(T) {
4304 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4304, __PRETTY_FUNCTION__))
;
4305 }
4306
4307public:
4308 QualType getUnderlyingType() const { return TOType; }
4309
4310 /// Remove a single level of sugar.
4311 QualType desugar() const { return getUnderlyingType(); }
4312
4313 /// Returns whether this type directly provides sugar.
4314 bool isSugared() const { return true; }
4315
4316 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4317};
4318
4319/// Represents the type `decltype(expr)` (C++11).
4320class DecltypeType : public Type {
4321 Expr *E;
4322 QualType UnderlyingType;
4323
4324protected:
4325 friend class ASTContext; // ASTContext creates these.
4326
4327 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4328
4329public:
4330 Expr *getUnderlyingExpr() const { return E; }
4331 QualType getUnderlyingType() const { return UnderlyingType; }
4332
4333 /// Remove a single level of sugar.
4334 QualType desugar() const;
4335
4336 /// Returns whether this type directly provides sugar.
4337 bool isSugared() const;
4338
4339 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4340};
4341
4342/// Internal representation of canonical, dependent
4343/// decltype(expr) types.
4344///
4345/// This class is used internally by the ASTContext to manage
4346/// canonical, dependent types, only. Clients will only see instances
4347/// of this class via DecltypeType nodes.
4348class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4349 const ASTContext &Context;
4350
4351public:
4352 DependentDecltypeType(const ASTContext &Context, Expr *E);
4353
4354 void Profile(llvm::FoldingSetNodeID &ID) {
4355 Profile(ID, Context, getUnderlyingExpr());
4356 }
4357
4358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4359 Expr *E);
4360};
4361
4362/// A unary type transform, which is a type constructed from another.
4363class UnaryTransformType : public Type {
4364public:
4365 enum UTTKind {
4366 EnumUnderlyingType
4367 };
4368
4369private:
4370 /// The untransformed type.
4371 QualType BaseType;
4372
4373 /// The transformed type if not dependent, otherwise the same as BaseType.
4374 QualType UnderlyingType;
4375
4376 UTTKind UKind;
4377
4378protected:
4379 friend class ASTContext;
4380
4381 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4382 QualType CanonicalTy);
4383
4384public:
4385 bool isSugared() const { return !isDependentType(); }
4386 QualType desugar() const { return UnderlyingType; }
4387
4388 QualType getUnderlyingType() const { return UnderlyingType; }
4389 QualType getBaseType() const { return BaseType; }
4390
4391 UTTKind getUTTKind() const { return UKind; }
4392
4393 static bool classof(const Type *T) {
4394 return T->getTypeClass() == UnaryTransform;
4395 }
4396};
4397
4398/// Internal representation of canonical, dependent
4399/// __underlying_type(type) types.
4400///
4401/// This class is used internally by the ASTContext to manage
4402/// canonical, dependent types, only. Clients will only see instances
4403/// of this class via UnaryTransformType nodes.
4404class DependentUnaryTransformType : public UnaryTransformType,
4405 public llvm::FoldingSetNode {
4406public:
4407 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4408 UTTKind UKind);
4409
4410 void Profile(llvm::FoldingSetNodeID &ID) {
4411 Profile(ID, getBaseType(), getUTTKind());
4412 }
4413
4414 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4415 UTTKind UKind) {
4416 ID.AddPointer(BaseType.getAsOpaquePtr());
4417 ID.AddInteger((unsigned)UKind);
4418 }
4419};
4420
4421class TagType : public Type {
4422 friend class ASTReader;
4423
4424 /// Stores the TagDecl associated with this type. The decl may point to any
4425 /// TagDecl that declares the entity.
4426 TagDecl *decl;
4427
4428protected:
4429 TagType(TypeClass TC, const TagDecl *D, QualType can);
4430
4431public:
4432 TagDecl *getDecl() const;
4433
4434 /// Determines whether this type is in the process of being defined.
4435 bool isBeingDefined() const;
4436
4437 static bool classof(const Type *T) {
4438 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4439 }
4440};
4441
4442/// A helper class that allows the use of isa/cast/dyncast
4443/// to detect TagType objects of structs/unions/classes.
4444class RecordType : public TagType {
4445protected:
4446 friend class ASTContext; // ASTContext creates these.
4447
4448 explicit RecordType(const RecordDecl *D)
4449 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4450 explicit RecordType(TypeClass TC, RecordDecl *D)
4451 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4452
4453public:
4454 RecordDecl *getDecl() const {
4455 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4456 }
4457
4458 /// Recursively check all fields in the record for const-ness. If any field
4459 /// is declared const, return true. Otherwise, return false.
4460 bool hasConstFields() const;
4461
4462 bool isSugared() const { return false; }
4463 QualType desugar() const { return QualType(this, 0); }
4464
4465 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4466};
4467
4468/// A helper class that allows the use of isa/cast/dyncast
4469/// to detect TagType objects of enums.
4470class EnumType : public TagType {
4471 friend class ASTContext; // ASTContext creates these.
4472
4473 explicit EnumType(const EnumDecl *D)
4474 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4475
4476public:
4477 EnumDecl *getDecl() const {
4478 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4479 }
4480
4481 bool isSugared() const { return false; }
4482 QualType desugar() const { return QualType(this, 0); }
4483
4484 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4485};
4486
4487/// An attributed type is a type to which a type attribute has been applied.
4488///
4489/// The "modified type" is the fully-sugared type to which the attributed
4490/// type was applied; generally it is not canonically equivalent to the
4491/// attributed type. The "equivalent type" is the minimally-desugared type
4492/// which the type is canonically equivalent to.
4493///
4494/// For example, in the following attributed type:
4495/// int32_t __attribute__((vector_size(16)))
4496/// - the modified type is the TypedefType for int32_t
4497/// - the equivalent type is VectorType(16, int32_t)
4498/// - the canonical type is VectorType(16, int)
4499class AttributedType : public Type, public llvm::FoldingSetNode {
4500public:
4501 using Kind = attr::Kind;
4502
4503private:
4504 friend class ASTContext; // ASTContext creates these
4505
4506 QualType ModifiedType;
4507 QualType EquivalentType;
4508
4509 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4510 QualType equivalent)
4511 : Type(Attributed, canon, equivalent->isDependentType(),
4512 equivalent->isInstantiationDependentType(),
4513 equivalent->isVariablyModifiedType(),
4514 equivalent->containsUnexpandedParameterPack()),
4515 ModifiedType(modified), EquivalentType(equivalent) {
4516 AttributedTypeBits.AttrKind = attrKind;
4517 }
4518
4519public:
4520 Kind getAttrKind() const {
4521 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4522 }
4523
4524 QualType getModifiedType() const { return ModifiedType; }
4525 QualType getEquivalentType() const { return EquivalentType; }
4526
4527 bool isSugared() const { return true; }
4528 QualType desugar() const { return getEquivalentType(); }
4529
4530 /// Does this attribute behave like a type qualifier?
4531 ///
4532 /// A type qualifier adjusts a type to provide specialized rules for
4533 /// a specific object, like the standard const and volatile qualifiers.
4534 /// This includes attributes controlling things like nullability,
4535 /// address spaces, and ARC ownership. The value of the object is still
4536 /// largely described by the modified type.
4537 ///
4538 /// In contrast, many type attributes "rewrite" their modified type to
4539 /// produce a fundamentally different type, not necessarily related in any
4540 /// formalizable way to the original type. For example, calling convention
4541 /// and vector attributes are not simple type qualifiers.
4542 ///
4543 /// Type qualifiers are often, but not always, reflected in the canonical
4544 /// type.
4545 bool isQualifier() const;
4546
4547 bool isMSTypeSpec() const;
4548
4549 bool isCallingConv() const;
4550
4551 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4552
4553 /// Retrieve the attribute kind corresponding to the given
4554 /// nullability kind.
4555 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4556 switch (kind) {
4557 case NullabilityKind::NonNull:
4558 return attr::TypeNonNull;
4559
4560 case NullabilityKind::Nullable:
4561 return attr::TypeNullable;
4562
4563 case NullabilityKind::Unspecified:
4564 return attr::TypeNullUnspecified;
4565 }
4566 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4566)
;
4567 }
4568
4569 /// Strip off the top-level nullability annotation on the given
4570 /// type, if it's there.
4571 ///
4572 /// \param T The type to strip. If the type is exactly an
4573 /// AttributedType specifying nullability (without looking through
4574 /// type sugar), the nullability is returned and this type changed
4575 /// to the underlying modified type.
4576 ///
4577 /// \returns the top-level nullability, if present.
4578 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4585 QualType modified, QualType equivalent) {
4586 ID.AddInteger(attrKind);
4587 ID.AddPointer(modified.getAsOpaquePtr());
4588 ID.AddPointer(equivalent.getAsOpaquePtr());
4589 }
4590
4591 static bool classof(const Type *T) {
4592 return T->getTypeClass() == Attributed;
4593 }
4594};
4595
4596class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4597 friend class ASTContext; // ASTContext creates these
4598
4599 // Helper data collector for canonical types.
4600 struct CanonicalTTPTInfo {
4601 unsigned Depth : 15;
4602 unsigned ParameterPack : 1;
4603 unsigned Index : 16;
4604 };
4605
4606 union {
4607 // Info for the canonical type.
4608 CanonicalTTPTInfo CanTTPTInfo;
4609
4610 // Info for the non-canonical type.
4611 TemplateTypeParmDecl *TTPDecl;
4612 };
4613
4614 /// Build a non-canonical type.
4615 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4616 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4617 /*InstantiationDependent=*/true,
4618 /*VariablyModified=*/false,
4619 Canon->containsUnexpandedParameterPack()),
4620 TTPDecl(TTPDecl) {}
4621
4622 /// Build the canonical type.
4623 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4624 : Type(TemplateTypeParm, QualType(this, 0),
4625 /*Dependent=*/true,
4626 /*InstantiationDependent=*/true,
4627 /*VariablyModified=*/false, PP) {
4628 CanTTPTInfo.Depth = D;
4629 CanTTPTInfo.Index = I;
4630 CanTTPTInfo.ParameterPack = PP;
4631 }
4632
4633 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4634 QualType Can = getCanonicalTypeInternal();
4635 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4636 }
4637
4638public:
4639 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4640 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4641 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4642
4643 TemplateTypeParmDecl *getDecl() const {
4644 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4645 }
4646
4647 IdentifierInfo *getIdentifier() const;
4648
4649 bool isSugared() const { return false; }
4650 QualType desugar() const { return QualType(this, 0); }
4651
4652 void Profile(llvm::FoldingSetNodeID &ID) {
4653 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4654 }
4655
4656 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4657 unsigned Index, bool ParameterPack,
4658 TemplateTypeParmDecl *TTPDecl) {
4659 ID.AddInteger(Depth);
4660 ID.AddInteger(Index);
4661 ID.AddBoolean(ParameterPack);
4662 ID.AddPointer(TTPDecl);
4663 }
4664
4665 static bool classof(const Type *T) {
4666 return T->getTypeClass() == TemplateTypeParm;
4667 }
4668};
4669
4670/// Represents the result of substituting a type for a template
4671/// type parameter.
4672///
4673/// Within an instantiated template, all template type parameters have
4674/// been replaced with these. They are used solely to record that a
4675/// type was originally written as a template type parameter;
4676/// therefore they are never canonical.
4677class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4678 friend class ASTContext;
4679
4680 // The original type parameter.
4681 const TemplateTypeParmType *Replaced;
4682
4683 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4684 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4685 Canon->isInstantiationDependentType(),
4686 Canon->isVariablyModifiedType(),
4687 Canon->containsUnexpandedParameterPack()),
4688 Replaced(Param) {}
4689
4690public:
4691 /// Gets the template parameter that was substituted for.
4692 const TemplateTypeParmType *getReplacedParameter() const {
4693 return Replaced;
4694 }
4695
4696 /// Gets the type that was substituted for the template
4697 /// parameter.
4698 QualType getReplacementType() const {
4699 return getCanonicalTypeInternal();
4700 }
4701
4702 bool isSugared() const { return true; }
4703 QualType desugar() const { return getReplacementType(); }
4704
4705 void Profile(llvm::FoldingSetNodeID &ID) {
4706 Profile(ID, getReplacedParameter(), getReplacementType());
4707 }
4708
4709 static void Profile(llvm::FoldingSetNodeID &ID,
4710 const TemplateTypeParmType *Replaced,
4711 QualType Replacement) {
4712 ID.AddPointer(Replaced);
4713 ID.AddPointer(Replacement.getAsOpaquePtr());
4714 }
4715
4716 static bool classof(const Type *T) {
4717 return T->getTypeClass() == SubstTemplateTypeParm;
4718 }
4719};
4720
4721/// Represents the result of substituting a set of types for a template
4722/// type parameter pack.
4723///
4724/// When a pack expansion in the source code contains multiple parameter packs
4725/// and those parameter packs correspond to different levels of template
4726/// parameter lists, this type node is used to represent a template type
4727/// parameter pack from an outer level, which has already had its argument pack
4728/// substituted but that still lives within a pack expansion that itself
4729/// could not be instantiated. When actually performing a substitution into
4730/// that pack expansion (e.g., when all template parameters have corresponding
4731/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4732/// at the current pack substitution index.
4733class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4734 friend class ASTContext;
4735
4736 /// The original type parameter.
4737 const TemplateTypeParmType *Replaced;
4738
4739 /// A pointer to the set of template arguments that this
4740 /// parameter pack is instantiated with.
4741 const TemplateArgument *Arguments;
4742
4743 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4744 QualType Canon,
4745 const TemplateArgument &ArgPack);
4746
4747public:
4748 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4749
4750 /// Gets the template parameter that was substituted for.
4751 const TemplateTypeParmType *getReplacedParameter() const {
4752 return Replaced;
4753 }
4754
4755 unsigned getNumArgs() const {
4756 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4757 }
4758
4759 bool isSugared() const { return false; }
4760 QualType desugar() const { return QualType(this, 0); }
4761
4762 TemplateArgument getArgumentPack() const;
4763
4764 void Profile(llvm::FoldingSetNodeID &ID);
4765 static void Profile(llvm::FoldingSetNodeID &ID,
4766 const TemplateTypeParmType *Replaced,
4767 const TemplateArgument &ArgPack);
4768
4769 static bool classof(const Type *T) {
4770 return T->getTypeClass() == SubstTemplateTypeParmPack;
4771 }
4772};
4773
4774/// Common base class for placeholders for types that get replaced by
4775/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4776/// class template types, and (eventually) constrained type names from the C++
4777/// Concepts TS.
4778///
4779/// These types are usually a placeholder for a deduced type. However, before
4780/// the initializer is attached, or (usually) if the initializer is
4781/// type-dependent, there is no deduced type and the type is canonical. In
4782/// the latter case, it is also a dependent type.
4783class DeducedType : public Type {
4784protected:
4785 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4786 bool IsInstantiationDependent, bool ContainsParameterPack)
4787 : Type(TC,
4788 // FIXME: Retain the sugared deduced type?
4789 DeducedAsType.isNull() ? QualType(this, 0)
4790 : DeducedAsType.getCanonicalType(),
4791 IsDependent, IsInstantiationDependent,
4792 /*VariablyModified=*/false, ContainsParameterPack) {
4793 if (!DeducedAsType.isNull()) {
4794 if (DeducedAsType->isDependentType())
4795 setDependent();
4796 if (DeducedAsType->isInstantiationDependentType())
4797 setInstantiationDependent();
4798 if (DeducedAsType->containsUnexpandedParameterPack())
4799 setContainsUnexpandedParameterPack();
4800 }
4801 }
4802
4803public:
4804 bool isSugared() const { return !isCanonicalUnqualified(); }
4805 QualType desugar() const { return getCanonicalTypeInternal(); }
4806
4807 /// Get the type deduced for this placeholder type, or null if it's
4808 /// either not been deduced or was deduced to a dependent type.
4809 QualType getDeducedType() const {
4810 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4811 }
4812 bool isDeduced() const {
4813 return !isCanonicalUnqualified() || isDependentType();
4814 }
4815
4816 static bool classof(const Type *T) {
4817 return T->getTypeClass() == Auto ||
4818 T->getTypeClass() == DeducedTemplateSpecialization;
4819 }
4820};
4821
4822/// Represents a C++11 auto or C++14 decltype(auto) type.
4823class AutoType : public DeducedType, public llvm::FoldingSetNode {
4824 friend class ASTContext; // ASTContext creates these
4825
4826 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4827 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4828 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4829 IsDeducedAsDependent, IsDeducedAsPack) {
4830 AutoTypeBits.Keyword = (unsigned)Keyword;
4831 }
4832
4833public:
4834 bool isDecltypeAuto() const {
4835 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4836 }
4837
4838 AutoTypeKeyword getKeyword() const {
4839 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4840 }
4841
4842 void Profile(llvm::FoldingSetNodeID &ID) {
4843 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4844 containsUnexpandedParameterPack());
4845 }
4846
4847 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4848 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4849 ID.AddPointer(Deduced.getAsOpaquePtr());
4850 ID.AddInteger((unsigned)Keyword);
4851 ID.AddBoolean(IsDependent);
4852 ID.AddBoolean(IsPack);
4853 }
4854
4855 static bool classof(const Type *T) {
4856 return T->getTypeClass() == Auto;
4857 }
4858};
4859
4860/// Represents a C++17 deduced template specialization type.
4861class DeducedTemplateSpecializationType : public DeducedType,
4862 public llvm::FoldingSetNode {
4863 friend class ASTContext; // ASTContext creates these
4864
4865 /// The name of the template whose arguments will be deduced.
4866 TemplateName Template;
4867
4868 DeducedTemplateSpecializationType(TemplateName Template,
4869 QualType DeducedAsType,
4870 bool IsDeducedAsDependent)
4871 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4872 IsDeducedAsDependent || Template.isDependent(),
4873 IsDeducedAsDependent || Template.isInstantiationDependent(),
4874 Template.containsUnexpandedParameterPack()),
4875 Template(Template) {}
4876
4877public:
4878 /// Retrieve the name of the template that we are deducing.
4879 TemplateName getTemplateName() const { return Template;}
4880
4881 void Profile(llvm::FoldingSetNodeID &ID) {
4882 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4883 }
4884
4885 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4886 QualType Deduced, bool IsDependent) {
4887 Template.Profile(ID);
4888 ID.AddPointer(Deduced.getAsOpaquePtr());
4889 ID.AddBoolean(IsDependent);
4890 }
4891
4892 static bool classof(const Type *T) {
4893 return T->getTypeClass() == DeducedTemplateSpecialization;
4894 }
4895};
4896
4897/// Represents a type template specialization; the template
4898/// must be a class template, a type alias template, or a template
4899/// template parameter. A template which cannot be resolved to one of
4900/// these, e.g. because it is written with a dependent scope
4901/// specifier, is instead represented as a
4902/// @c DependentTemplateSpecializationType.
4903///
4904/// A non-dependent template specialization type is always "sugar",
4905/// typically for a \c RecordType. For example, a class template
4906/// specialization type of \c vector<int> will refer to a tag type for
4907/// the instantiation \c std::vector<int, std::allocator<int>>
4908///
4909/// Template specializations are dependent if either the template or
4910/// any of the template arguments are dependent, in which case the
4911/// type may also be canonical.
4912///
4913/// Instances of this type are allocated with a trailing array of
4914/// TemplateArguments, followed by a QualType representing the
4915/// non-canonical aliased type when the template is a type alias
4916/// template.
4917class alignas(8) TemplateSpecializationType
4918 : public Type,
4919 public llvm::FoldingSetNode {
4920 friend class ASTContext; // ASTContext creates these
4921
4922 /// The name of the template being specialized. This is
4923 /// either a TemplateName::Template (in which case it is a
4924 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4925 /// TypeAliasTemplateDecl*), a
4926 /// TemplateName::SubstTemplateTemplateParmPack, or a
4927 /// TemplateName::SubstTemplateTemplateParm (in which case the
4928 /// replacement must, recursively, be one of these).
4929 TemplateName Template;
4930
4931 TemplateSpecializationType(TemplateName T,
4932 ArrayRef<TemplateArgument> Args,
4933 QualType Canon,
4934 QualType Aliased);
4935
4936public:
4937 /// Determine whether any of the given template arguments are dependent.
4938 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4939 bool &InstantiationDependent);
4940
4941 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4942 bool &InstantiationDependent);
4943
4944 /// True if this template specialization type matches a current
4945 /// instantiation in the context in which it is found.
4946 bool isCurrentInstantiation() const {
4947 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4948 }
4949
4950 /// Determine if this template specialization type is for a type alias
4951 /// template that has been substituted.
4952 ///
4953 /// Nearly every template specialization type whose template is an alias
4954 /// template will be substituted. However, this is not the case when
4955 /// the specialization contains a pack expansion but the template alias
4956 /// does not have a corresponding parameter pack, e.g.,
4957 ///
4958 /// \code
4959 /// template<typename T, typename U, typename V> struct S;
4960 /// template<typename T, typename U> using A = S<T, int, U>;
4961 /// template<typename... Ts> struct X {
4962 /// typedef A<Ts...> type; // not a type alias
4963 /// };
4964 /// \endcode
4965 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
4966
4967 /// Get the aliased type, if this is a specialization of a type alias
4968 /// template.
4969 QualType getAliasedType() const {
4970 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4970, __PRETTY_FUNCTION__))
;
4971 return *reinterpret_cast<const QualType*>(end());
4972 }
4973
4974 using iterator = const TemplateArgument *;
4975
4976 iterator begin() const { return getArgs(); }
4977 iterator end() const; // defined inline in TemplateBase.h
4978
4979 /// Retrieve the name of the template that we are specializing.
4980 TemplateName getTemplateName() const { return Template; }
4981
4982 /// Retrieve the template arguments.
4983 const TemplateArgument *getArgs() const {
4984 return reinterpret_cast<const TemplateArgument *>(this + 1);
4985 }
4986
4987 /// Retrieve the number of template arguments.
4988 unsigned getNumArgs() const {
4989 return TemplateSpecializationTypeBits.NumArgs;
4990 }
4991
4992 /// Retrieve a specific template argument as a type.
4993 /// \pre \c isArgType(Arg)
4994 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4995
4996 ArrayRef<TemplateArgument> template_arguments() const {
4997 return {getArgs(), getNumArgs()};
4998 }
4999
5000 bool isSugared() const {
5001 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5002 }
5003
5004 QualType desugar() const {
5005 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5006 }
5007
5008 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5009 Profile(ID, Template, template_arguments(), Ctx);
5010 if (isTypeAlias())
5011 getAliasedType().Profile(ID);
5012 }
5013
5014 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5015 ArrayRef<TemplateArgument> Args,
5016 const ASTContext &Context);
5017
5018 static bool classof(const Type *T) {
5019 return T->getTypeClass() == TemplateSpecialization;
5020 }
5021};
5022
5023/// Print a template argument list, including the '<' and '>'
5024/// enclosing the template arguments.
5025void printTemplateArgumentList(raw_ostream &OS,
5026 ArrayRef<TemplateArgument> Args,
5027 const PrintingPolicy &Policy);
5028
5029void printTemplateArgumentList(raw_ostream &OS,
5030 ArrayRef<TemplateArgumentLoc> Args,
5031 const PrintingPolicy &Policy);
5032
5033void printTemplateArgumentList(raw_ostream &OS,
5034 const TemplateArgumentListInfo &Args,
5035 const PrintingPolicy &Policy);
5036
5037/// The injected class name of a C++ class template or class
5038/// template partial specialization. Used to record that a type was
5039/// spelled with a bare identifier rather than as a template-id; the
5040/// equivalent for non-templated classes is just RecordType.
5041///
5042/// Injected class name types are always dependent. Template
5043/// instantiation turns these into RecordTypes.
5044///
5045/// Injected class name types are always canonical. This works
5046/// because it is impossible to compare an injected class name type
5047/// with the corresponding non-injected template type, for the same
5048/// reason that it is impossible to directly compare template
5049/// parameters from different dependent contexts: injected class name
5050/// types can only occur within the scope of a particular templated
5051/// declaration, and within that scope every template specialization
5052/// will canonicalize to the injected class name (when appropriate
5053/// according to the rules of the language).
5054class InjectedClassNameType : public Type {
5055 friend class ASTContext; // ASTContext creates these.
5056 friend class ASTNodeImporter;
5057 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5058 // currently suitable for AST reading, too much
5059 // interdependencies.
5060
5061 CXXRecordDecl *Decl;
5062
5063 /// The template specialization which this type represents.
5064 /// For example, in
5065 /// template <class T> class A { ... };
5066 /// this is A<T>, whereas in
5067 /// template <class X, class Y> class A<B<X,Y> > { ... };
5068 /// this is A<B<X,Y> >.
5069 ///
5070 /// It is always unqualified, always a template specialization type,
5071 /// and always dependent.
5072 QualType InjectedType;
5073
5074 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5075 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5076 /*InstantiationDependent=*/true,
5077 /*VariablyModified=*/false,
5078 /*ContainsUnexpandedParameterPack=*/false),
5079 Decl(D), InjectedType(TST) {
5080 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5080, __PRETTY_FUNCTION__))
;
5081 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5081, __PRETTY_FUNCTION__))
;
5082 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5082, __PRETTY_FUNCTION__))
;
5083 }
5084
5085public:
5086 QualType getInjectedSpecializationType() const { return InjectedType; }
5087
5088 const TemplateSpecializationType *getInjectedTST() const {
5089 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5090 }
5091
5092 TemplateName getTemplateName() const {
5093 return getInjectedTST()->getTemplateName();
5094 }
5095
5096 CXXRecordDecl *getDecl() const;
5097
5098 bool isSugared() const { return false; }
5099 QualType desugar() const { return QualType(this, 0); }
5100
5101 static bool classof(const Type *T) {
5102 return T->getTypeClass() == InjectedClassName;
5103 }
5104};
5105
5106/// The kind of a tag type.
5107enum TagTypeKind {
5108 /// The "struct" keyword.
5109 TTK_Struct,
5110
5111 /// The "__interface" keyword.
5112 TTK_Interface,
5113
5114 /// The "union" keyword.
5115 TTK_Union,
5116
5117 /// The "class" keyword.
5118 TTK_Class,
5119
5120 /// The "enum" keyword.
5121 TTK_Enum
5122};
5123
5124/// The elaboration keyword that precedes a qualified type name or
5125/// introduces an elaborated-type-specifier.
5126enum ElaboratedTypeKeyword {
5127 /// The "struct" keyword introduces the elaborated-type-specifier.
5128 ETK_Struct,
5129
5130 /// The "__interface" keyword introduces the elaborated-type-specifier.
5131 ETK_Interface,
5132
5133 /// The "union" keyword introduces the elaborated-type-specifier.
5134 ETK_Union,
5135
5136 /// The "class" keyword introduces the elaborated-type-specifier.
5137 ETK_Class,
5138
5139 /// The "enum" keyword introduces the elaborated-type-specifier.
5140 ETK_Enum,
5141
5142 /// The "typename" keyword precedes the qualified type name, e.g.,
5143 /// \c typename T::type.
5144 ETK_Typename,
5145
5146 /// No keyword precedes the qualified type name.
5147 ETK_None
5148};
5149
5150/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5151/// The keyword in stored in the free bits of the base class.
5152/// Also provides a few static helpers for converting and printing
5153/// elaborated type keyword and tag type kind enumerations.
5154class TypeWithKeyword : public Type {
5155protected:
5156 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5157 QualType Canonical, bool Dependent,
5158 bool InstantiationDependent, bool VariablyModified,
5159 bool ContainsUnexpandedParameterPack)
5160 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5161 ContainsUnexpandedParameterPack) {
5162 TypeWithKeywordBits.Keyword = Keyword;
5163 }
5164
5165public:
5166 ElaboratedTypeKeyword getKeyword() const {
5167 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5168 }
5169
5170 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5171 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5172
5173 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5174 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5175 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5176
5177 /// Converts a TagTypeKind into an elaborated type keyword.
5178 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5179
5180 /// Converts an elaborated type keyword into a TagTypeKind.
5181 /// It is an error to provide an elaborated type keyword
5182 /// which *isn't* a tag kind here.
5183 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5184
5185 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5186
5187 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5188
5189 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5190 return getKeywordName(getKeywordForTagTypeKind(Kind));
5191 }
5192
5193 class CannotCastToThisType {};
5194 static CannotCastToThisType classof(const Type *);
5195};
5196
5197/// Represents a type that was referred to using an elaborated type
5198/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5199/// or both.
5200///
5201/// This type is used to keep track of a type name as written in the
5202/// source code, including tag keywords and any nested-name-specifiers.
5203/// The type itself is always "sugar", used to express what was written
5204/// in the source code but containing no additional semantic information.
5205class ElaboratedType final
5206 : public TypeWithKeyword,
5207 public llvm::FoldingSetNode,
5208 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5209 friend class ASTContext; // ASTContext creates these
5210 friend TrailingObjects;
5211
5212 /// The nested name specifier containing the qualifier.
5213 NestedNameSpecifier *NNS;
5214
5215 /// The type that this qualified name refers to.
5216 QualType NamedType;
5217
5218 /// The (re)declaration of this tag type owned by this occurrence is stored
5219 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5220 /// it, or obtain a null pointer if there is none.
5221
5222 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5223 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5224 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5225 NamedType->isDependentType(),
5226 NamedType->isInstantiationDependentType(),
5227 NamedType->isVariablyModifiedType(),
5228 NamedType->containsUnexpandedParameterPack()),
5229 NNS(NNS), NamedType(NamedType) {
5230 ElaboratedTypeBits.HasOwnedTagDecl = false;
5231 if (OwnedTagDecl) {
5232 ElaboratedTypeBits.HasOwnedTagDecl = true;
5233 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5234 }
5235 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5236 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5237 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
;
5238 }
5239
5240public:
5241 /// Retrieve the qualification on this type.
5242 NestedNameSpecifier *getQualifier() const { return NNS; }
5243
5244 /// Retrieve the type named by the qualified-id.
5245 QualType getNamedType() const { return NamedType; }
5246
5247 /// Remove a single level of sugar.
5248 QualType desugar() const { return getNamedType(); }
5249
5250 /// Returns whether this type directly provides sugar.
5251 bool isSugared() const { return true; }
5252
5253 /// Return the (re)declaration of this type owned by this occurrence of this
5254 /// type, or nullptr if there is none.
5255 TagDecl *getOwnedTagDecl() const {
5256 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5257 : nullptr;
5258 }
5259
5260 void Profile(llvm::FoldingSetNodeID &ID) {
5261 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5262 }
5263
5264 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5265 NestedNameSpecifier *NNS, QualType NamedType,
5266 TagDecl *OwnedTagDecl) {
5267 ID.AddInteger(Keyword);
5268 ID.AddPointer(NNS);
5269 NamedType.Profile(ID);
5270 ID.AddPointer(OwnedTagDecl);
5271 }
5272
5273 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5274};
5275
5276/// Represents a qualified type name for which the type name is
5277/// dependent.
5278///
5279/// DependentNameType represents a class of dependent types that involve a
5280/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5281/// name of a type. The DependentNameType may start with a "typename" (for a
5282/// typename-specifier), "class", "struct", "union", or "enum" (for a
5283/// dependent elaborated-type-specifier), or nothing (in contexts where we
5284/// know that we must be referring to a type, e.g., in a base class specifier).
5285/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5286/// mode, this type is used with non-dependent names to delay name lookup until
5287/// instantiation.
5288class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5289 friend class ASTContext; // ASTContext creates these
5290
5291 /// The nested name specifier containing the qualifier.
5292 NestedNameSpecifier *NNS;
5293
5294 /// The type that this typename specifier refers to.
5295 const IdentifierInfo *Name;
5296
5297 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5298 const IdentifierInfo *Name, QualType CanonType)
5299 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5300 /*InstantiationDependent=*/true,
5301 /*VariablyModified=*/false,
5302 NNS->containsUnexpandedParameterPack()),
5303 NNS(NNS), Name(Name) {}
5304
5305public:
5306 /// Retrieve the qualification on this type.
5307 NestedNameSpecifier *getQualifier() const { return NNS; }
5308
5309 /// Retrieve the type named by the typename specifier as an identifier.
5310 ///
5311 /// This routine will return a non-NULL identifier pointer when the
5312 /// form of the original typename was terminated by an identifier,
5313 /// e.g., "typename T::type".
5314 const IdentifierInfo *getIdentifier() const {
5315 return Name;
5316 }
5317
5318 bool isSugared() const { return false; }
5319 QualType desugar() const { return QualType(this, 0); }
5320
5321 void Profile(llvm::FoldingSetNodeID &ID) {
5322 Profile(ID, getKeyword(), NNS, Name);
5323 }
5324
5325 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5326 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5327 ID.AddInteger(Keyword);
5328 ID.AddPointer(NNS);
5329 ID.AddPointer(Name);
5330 }
5331
5332 static bool classof(const Type *T) {
5333 return T->getTypeClass() == DependentName;
5334 }
5335};
5336
5337/// Represents a template specialization type whose template cannot be
5338/// resolved, e.g.
5339/// A<T>::template B<T>
5340class alignas(8) DependentTemplateSpecializationType
5341 : public TypeWithKeyword,
5342 public llvm::FoldingSetNode {
5343 friend class ASTContext; // ASTContext creates these
5344
5345 /// The nested name specifier containing the qualifier.
5346 NestedNameSpecifier *NNS;
5347
5348 /// The identifier of the template.
5349 const IdentifierInfo *Name;
5350
5351 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5352 NestedNameSpecifier *NNS,
5353 const IdentifierInfo *Name,
5354 ArrayRef<TemplateArgument> Args,
5355 QualType Canon);
5356
5357 const TemplateArgument *getArgBuffer() const {
5358 return reinterpret_cast<const TemplateArgument*>(this+1);
5359 }
5360
5361 TemplateArgument *getArgBuffer() {
5362 return reinterpret_cast<TemplateArgument*>(this+1);
5363 }
5364
5365public:
5366 NestedNameSpecifier *getQualifier() const { return NNS; }
5367 const IdentifierInfo *getIdentifier() const { return Name; }
5368
5369 /// Retrieve the template arguments.
5370 const TemplateArgument *getArgs() const {
5371 return getArgBuffer();
5372 }
5373
5374 /// Retrieve the number of template arguments.
5375 unsigned getNumArgs() const {
5376 return DependentTemplateSpecializationTypeBits.NumArgs;
5377 }
5378
5379 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5380
5381 ArrayRef<TemplateArgument> template_arguments() const {
5382 return {getArgs(), getNumArgs()};
5383 }
5384
5385 using iterator = const TemplateArgument *;
5386
5387 iterator begin() const { return getArgs(); }
5388 iterator end() const; // inline in TemplateBase.h
5389
5390 bool isSugared() const { return false; }
5391 QualType desugar() const { return QualType(this, 0); }
5392
5393 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5394 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5395 }
5396
5397 static void Profile(llvm::FoldingSetNodeID &ID,
5398 const ASTContext &Context,
5399 ElaboratedTypeKeyword Keyword,
5400 NestedNameSpecifier *Qualifier,
5401 const IdentifierInfo *Name,
5402 ArrayRef<TemplateArgument> Args);
5403
5404 static bool classof(const Type *T) {
5405 return T->getTypeClass() == DependentTemplateSpecialization;
5406 }
5407};
5408
5409/// Represents a pack expansion of types.
5410///
5411/// Pack expansions are part of C++11 variadic templates. A pack
5412/// expansion contains a pattern, which itself contains one or more
5413/// "unexpanded" parameter packs. When instantiated, a pack expansion
5414/// produces a series of types, each instantiated from the pattern of
5415/// the expansion, where the Ith instantiation of the pattern uses the
5416/// Ith arguments bound to each of the unexpanded parameter packs. The
5417/// pack expansion is considered to "expand" these unexpanded
5418/// parameter packs.
5419///
5420/// \code
5421/// template<typename ...Types> struct tuple;
5422///
5423/// template<typename ...Types>
5424/// struct tuple_of_references {
5425/// typedef tuple<Types&...> type;
5426/// };
5427/// \endcode
5428///
5429/// Here, the pack expansion \c Types&... is represented via a
5430/// PackExpansionType whose pattern is Types&.
5431class PackExpansionType : public Type, public llvm::FoldingSetNode {
5432 friend class ASTContext; // ASTContext creates these
5433
5434 /// The pattern of the pack expansion.
5435 QualType Pattern;
5436
5437 PackExpansionType(QualType Pattern, QualType Canon,
5438 Optional<unsigned> NumExpansions)
5439 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5440 /*InstantiationDependent=*/true,
5441 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5442 /*ContainsUnexpandedParameterPack=*/false),
5443 Pattern(Pattern) {
5444 PackExpansionTypeBits.NumExpansions =
5445 NumExpansions ? *NumExpansions + 1 : 0;
5446 }
5447
5448public:
5449 /// Retrieve the pattern of this pack expansion, which is the
5450 /// type that will be repeatedly instantiated when instantiating the
5451 /// pack expansion itself.
5452 QualType getPattern() const { return Pattern; }
5453
5454 /// Retrieve the number of expansions that this pack expansion will
5455 /// generate, if known.
5456 Optional<unsigned> getNumExpansions() const {
5457 if (PackExpansionTypeBits.NumExpansions)
5458 return PackExpansionTypeBits.NumExpansions - 1;
5459 return None;
5460 }
5461
5462 bool isSugared() const { return !Pattern->isDependentType(); }
5463 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5464
5465 void Profile(llvm::FoldingSetNodeID &ID) {
5466 Profile(ID, getPattern(), getNumExpansions());
5467 }
5468
5469 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5470 Optional<unsigned> NumExpansions) {
5471 ID.AddPointer(Pattern.getAsOpaquePtr());
5472 ID.AddBoolean(NumExpansions.hasValue());
5473 if (NumExpansions)
5474 ID.AddInteger(*NumExpansions);
5475 }
5476
5477 static bool classof(const Type *T) {
5478 return T->getTypeClass() == PackExpansion;
5479 }
5480};
5481
5482/// This class wraps the list of protocol qualifiers. For types that can
5483/// take ObjC protocol qualifers, they can subclass this class.
5484template <class T>
5485class ObjCProtocolQualifiers {
5486protected:
5487 ObjCProtocolQualifiers() = default;
5488
5489 ObjCProtocolDecl * const *getProtocolStorage() const {
5490 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5491 }
5492
5493 ObjCProtocolDecl **getProtocolStorage() {
5494 return static_cast<T*>(this)->getProtocolStorageImpl();
5495 }
5496
5497 void setNumProtocols(unsigned N) {
5498 static_cast<T*>(this)->setNumProtocolsImpl(N);
5499 }
5500
5501 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5502 setNumProtocols(protocols.size());
5503 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
5504 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
;
5505 if (!protocols.empty())
5506 memcpy(getProtocolStorage(), protocols.data(),
5507 protocols.size() * sizeof(ObjCProtocolDecl*));
5508 }
5509
5510public:
5511 using qual_iterator = ObjCProtocolDecl * const *;
5512 using qual_range = llvm::iterator_range<qual_iterator>;
5513
5514 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5515 qual_iterator qual_begin() const { return getProtocolStorage(); }
5516 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5517
5518 bool qual_empty() const { return getNumProtocols() == 0; }
5519
5520 /// Return the number of qualifying protocols in this type, or 0 if
5521 /// there are none.
5522 unsigned getNumProtocols() const {
5523 return static_cast<const T*>(this)->getNumProtocolsImpl();
5524 }
5525
5526 /// Fetch a protocol by index.
5527 ObjCProtocolDecl *getProtocol(unsigned I) const {
5528 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5528, __PRETTY_FUNCTION__))
;
5529 return qual_begin()[I];
5530 }
5531
5532 /// Retrieve all of the protocol qualifiers.
5533 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5534 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5535 }
5536};
5537
5538/// Represents a type parameter type in Objective C. It can take
5539/// a list of protocols.
5540class ObjCTypeParamType : public Type,
5541 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5542 public llvm::FoldingSetNode {
5543 friend class ASTContext;
5544 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5545
5546 /// The number of protocols stored on this type.
5547 unsigned NumProtocols : 6;
5548
5549 ObjCTypeParamDecl *OTPDecl;
5550
5551 /// The protocols are stored after the ObjCTypeParamType node. In the
5552 /// canonical type, the list of protocols are sorted alphabetically
5553 /// and uniqued.
5554 ObjCProtocolDecl **getProtocolStorageImpl();
5555
5556 /// Return the number of qualifying protocols in this interface type,
5557 /// or 0 if there are none.
5558 unsigned getNumProtocolsImpl() const {
5559 return NumProtocols;
5560 }
5561
5562 void setNumProtocolsImpl(unsigned N) {
5563 NumProtocols = N;
5564 }
5565
5566 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5567 QualType can,
5568 ArrayRef<ObjCProtocolDecl *> protocols);
5569
5570public:
5571 bool isSugared() const { return true; }
5572 QualType desugar() const { return getCanonicalTypeInternal(); }
5573
5574 static bool classof(const Type *T) {
5575 return T->getTypeClass() == ObjCTypeParam;
5576 }
5577
5578 void Profile(llvm::FoldingSetNodeID &ID);
5579 static void Profile(llvm::FoldingSetNodeID &ID,
5580 const ObjCTypeParamDecl *OTPDecl,
5581 ArrayRef<ObjCProtocolDecl *> protocols);
5582
5583 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5584};
5585
5586/// Represents a class type in Objective C.
5587///
5588/// Every Objective C type is a combination of a base type, a set of
5589/// type arguments (optional, for parameterized classes) and a list of
5590/// protocols.
5591///
5592/// Given the following declarations:
5593/// \code
5594/// \@class C<T>;
5595/// \@protocol P;
5596/// \endcode
5597///
5598/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5599/// with base C and no protocols.
5600///
5601/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5602/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5603/// protocol list.
5604/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5605/// and protocol list [P].
5606///
5607/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5608/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5609/// and no protocols.
5610///
5611/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5612/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5613/// this should get its own sugar class to better represent the source.
5614class ObjCObjectType : public Type,
5615 public ObjCProtocolQualifiers<ObjCObjectType> {
5616 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5617
5618 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5619 // after the ObjCObjectPointerType node.
5620 // ObjCObjectType.NumProtocols - the number of protocols stored
5621 // after the type arguments of ObjCObjectPointerType node.
5622 //
5623 // These protocols are those written directly on the type. If
5624 // protocol qualifiers ever become additive, the iterators will need
5625 // to get kindof complicated.
5626 //
5627 // In the canonical object type, these are sorted alphabetically
5628 // and uniqued.
5629
5630 /// Either a BuiltinType or an InterfaceType or sugar for either.
5631 QualType BaseType;
5632
5633 /// Cached superclass type.
5634 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5635 CachedSuperClassType;
5636
5637 QualType *getTypeArgStorage();
5638 const QualType *getTypeArgStorage() const {
5639 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5640 }
5641
5642 ObjCProtocolDecl **getProtocolStorageImpl();
5643 /// Return the number of qualifying protocols in this interface type,
5644 /// or 0 if there are none.
5645 unsigned getNumProtocolsImpl() const {
5646 return ObjCObjectTypeBits.NumProtocols;
5647 }
5648 void setNumProtocolsImpl(unsigned N) {
5649 ObjCObjectTypeBits.NumProtocols = N;
5650 }
5651
5652protected:
5653 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5654
5655 ObjCObjectType(QualType Canonical, QualType Base,
5656 ArrayRef<QualType> typeArgs,
5657 ArrayRef<ObjCProtocolDecl *> protocols,
5658 bool isKindOf);
5659
5660 ObjCObjectType(enum Nonce_ObjCInterface)
5661 : Type(ObjCInterface, QualType(), false, false, false, false),
5662 BaseType(QualType(this_(), 0)) {
5663 ObjCObjectTypeBits.NumProtocols = 0;
5664 ObjCObjectTypeBits.NumTypeArgs = 0;
5665 ObjCObjectTypeBits.IsKindOf = 0;
5666 }
5667
5668 void computeSuperClassTypeSlow() const;
5669
5670public:
5671 /// Gets the base type of this object type. This is always (possibly
5672 /// sugar for) one of:
5673 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5674 /// user, which is a typedef for an ObjCObjectPointerType)
5675 /// - the 'Class' builtin type (same caveat)
5676 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5677 QualType getBaseType() const { return BaseType; }
5678
5679 bool isObjCId() const {
5680 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5681 }
5682
5683 bool isObjCClass() const {
5684 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5685 }
5686
5687 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5688 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5689 bool isObjCUnqualifiedIdOrClass() const {
5690 if (!qual_empty()) return false;
5691 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5692 return T->getKind() == BuiltinType::ObjCId ||
5693 T->getKind() == BuiltinType::ObjCClass;
5694 return false;
5695 }
5696 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5697 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5698
5699 /// Gets the interface declaration for this object type, if the base type
5700 /// really is an interface.
5701 ObjCInterfaceDecl *getInterface() const;
5702
5703 /// Determine whether this object type is "specialized", meaning
5704 /// that it has type arguments.
5705 bool isSpecialized() const;
5706
5707 /// Determine whether this object type was written with type arguments.
5708 bool isSpecializedAsWritten() const {
5709 return ObjCObjectTypeBits.NumTypeArgs > 0;
5710 }
5711
5712 /// Determine whether this object type is "unspecialized", meaning
5713 /// that it has no type arguments.
5714 bool isUnspecialized() const { return !isSpecialized(); }
5715
5716 /// Determine whether this object type is "unspecialized" as
5717 /// written, meaning that it has no type arguments.
5718 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5719
5720 /// Retrieve the type arguments of this object type (semantically).
5721 ArrayRef<QualType> getTypeArgs() const;
5722
5723 /// Retrieve the type arguments of this object type as they were
5724 /// written.
5725 ArrayRef<QualType> getTypeArgsAsWritten() const {
5726 return llvm::makeArrayRef(getTypeArgStorage(),
5727 ObjCObjectTypeBits.NumTypeArgs);
5728 }
5729
5730 /// Whether this is a "__kindof" type as written.
5731 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5732
5733 /// Whether this ia a "__kindof" type (semantically).
5734 bool isKindOfType() const;
5735
5736 /// Retrieve the type of the superclass of this object type.
5737 ///
5738 /// This operation substitutes any type arguments into the
5739 /// superclass of the current class type, potentially producing a
5740 /// specialization of the superclass type. Produces a null type if
5741 /// there is no superclass.
5742 QualType getSuperClassType() const {
5743 if (!CachedSuperClassType.getInt())
5744 computeSuperClassTypeSlow();
5745
5746 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5746, __PRETTY_FUNCTION__))
;
5747 return QualType(CachedSuperClassType.getPointer(), 0);
5748 }
5749
5750 /// Strip off the Objective-C "kindof" type and (with it) any
5751 /// protocol qualifiers.
5752 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5753
5754 bool isSugared() const { return false; }
5755 QualType desugar() const { return QualType(this, 0); }
5756
5757 static bool classof(const Type *T) {
5758 return T->getTypeClass() == ObjCObject ||
5759 T->getTypeClass() == ObjCInterface;
5760 }
5761};
5762
5763/// A class providing a concrete implementation
5764/// of ObjCObjectType, so as to not increase the footprint of
5765/// ObjCInterfaceType. Code outside of ASTContext and the core type
5766/// system should not reference this type.
5767class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5768 friend class ASTContext;
5769
5770 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5771 // will need to be modified.
5772
5773 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5774 ArrayRef<QualType> typeArgs,
5775 ArrayRef<ObjCProtocolDecl *> protocols,
5776 bool isKindOf)
5777 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5778
5779public:
5780 void Profile(llvm::FoldingSetNodeID &ID);
5781 static void Profile(llvm::FoldingSetNodeID &ID,
5782 QualType Base,
5783 ArrayRef<QualType> typeArgs,
5784 ArrayRef<ObjCProtocolDecl *> protocols,
5785 bool isKindOf);
5786};
5787
5788inline QualType *ObjCObjectType::getTypeArgStorage() {
5789 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5790}
5791
5792inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5793 return reinterpret_cast<ObjCProtocolDecl**>(
5794 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5795}
5796
5797inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5798 return reinterpret_cast<ObjCProtocolDecl**>(
5799 static_cast<ObjCTypeParamType*>(this)+1);
5800}
5801
5802/// Interfaces are the core concept in Objective-C for object oriented design.
5803/// They basically correspond to C++ classes. There are two kinds of interface
5804/// types: normal interfaces like `NSString`, and qualified interfaces, which
5805/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5806///
5807/// ObjCInterfaceType guarantees the following properties when considered
5808/// as a subtype of its superclass, ObjCObjectType:
5809/// - There are no protocol qualifiers. To reinforce this, code which
5810/// tries to invoke the protocol methods via an ObjCInterfaceType will
5811/// fail to compile.
5812/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5813/// T->getBaseType() == QualType(T, 0).
5814class ObjCInterfaceType : public ObjCObjectType {
5815 friend class ASTContext; // ASTContext creates these.
5816 friend class ASTReader;
5817 friend class ObjCInterfaceDecl;
5818
5819 mutable ObjCInterfaceDecl *Decl;
5820
5821 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5822 : ObjCObjectType(Nonce_ObjCInterface),
5823 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5824
5825public:
5826 /// Get the declaration of this interface.
5827 ObjCInterfaceDecl *getDecl() const { return Decl; }
5828
5829 bool isSugared() const { return false; }
5830 QualType desugar() const { return QualType(this, 0); }
5831
5832 static bool classof(const Type *T) {
5833 return T->getTypeClass() == ObjCInterface;
5834 }
5835
5836 // Nonsense to "hide" certain members of ObjCObjectType within this
5837 // class. People asking for protocols on an ObjCInterfaceType are
5838 // not going to get what they want: ObjCInterfaceTypes are
5839 // guaranteed to have no protocols.
5840 enum {
5841 qual_iterator,
5842 qual_begin,
5843 qual_end,
5844 getNumProtocols,
5845 getProtocol
5846 };
5847};
5848
5849inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5850 QualType baseType = getBaseType();
5851 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5852 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5853 return T->getDecl();
5854
5855 baseType = ObjT->getBaseType();
5856 }
5857
5858 return nullptr;
5859}
5860
5861/// Represents a pointer to an Objective C object.
5862///
5863/// These are constructed from pointer declarators when the pointee type is
5864/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5865/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5866/// and 'Class<P>' are translated into these.
5867///
5868/// Pointers to pointers to Objective C objects are still PointerTypes;
5869/// only the first level of pointer gets it own type implementation.
5870class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5871 friend class ASTContext; // ASTContext creates these.
5872
5873 QualType PointeeType;
5874
5875 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5876 : Type(ObjCObjectPointer, Canonical,
5877 Pointee->isDependentType(),
5878 Pointee->isInstantiationDependentType(),
5879 Pointee->isVariablyModifiedType(),
5880 Pointee->containsUnexpandedParameterPack()),
5881 PointeeType(Pointee) {}
5882
5883public:
5884 /// Gets the type pointed to by this ObjC pointer.
5885 /// The result will always be an ObjCObjectType or sugar thereof.
5886 QualType getPointeeType() const { return PointeeType; }
5887
5888 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5889 ///
5890 /// This method is equivalent to getPointeeType() except that
5891 /// it discards any typedefs (or other sugar) between this
5892 /// type and the "outermost" object type. So for:
5893 /// \code
5894 /// \@class A; \@protocol P; \@protocol Q;
5895 /// typedef A<P> AP;
5896 /// typedef A A1;
5897 /// typedef A1<P> A1P;
5898 /// typedef A1P<Q> A1PQ;
5899 /// \endcode
5900 /// For 'A*', getObjectType() will return 'A'.
5901 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5902 /// For 'AP*', getObjectType() will return 'A<P>'.
5903 /// For 'A1*', getObjectType() will return 'A'.
5904 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5905 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5906 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5907 /// adding protocols to a protocol-qualified base discards the
5908 /// old qualifiers (for now). But if it didn't, getObjectType()
5909 /// would return 'A1P<Q>' (and we'd have to make iterating over
5910 /// qualifiers more complicated).
5911 const ObjCObjectType *getObjectType() const {
5912 return PointeeType->castAs<ObjCObjectType>();
5913 }
5914
5915 /// If this pointer points to an Objective C
5916 /// \@interface type, gets the type for that interface. Any protocol
5917 /// qualifiers on the interface are ignored.
5918 ///
5919 /// \return null if the base type for this pointer is 'id' or 'Class'
5920 const ObjCInterfaceType *getInterfaceType() const;
5921
5922 /// If this pointer points to an Objective \@interface
5923 /// type, gets the declaration for that interface.
5924 ///
5925 /// \return null if the base type for this pointer is 'id' or 'Class'
5926 ObjCInterfaceDecl *getInterfaceDecl() const {
5927 return getObjectType()->getInterface();
5928 }
5929
5930 /// True if this is equivalent to the 'id' type, i.e. if
5931 /// its object type is the primitive 'id' type with no protocols.
5932 bool isObjCIdType() const {
5933 return getObjectType()->isObjCUnqualifiedId();
5934 }
5935
5936 /// True if this is equivalent to the 'Class' type,
5937 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5938 bool isObjCClassType() const {
5939 return getObjectType()->isObjCUnqualifiedClass();
5940 }
5941
5942 /// True if this is equivalent to the 'id' or 'Class' type,
5943 bool isObjCIdOrClassType() const {
5944 return getObjectType()->isObjCUnqualifiedIdOrClass();
5945 }
5946
5947 /// True if this is equivalent to 'id<P>' for some non-empty set of
5948 /// protocols.
5949 bool isObjCQualifiedIdType() const {
5950 return getObjectType()->isObjCQualifiedId();
5951 }
5952
5953 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5954 /// protocols.
5955 bool isObjCQualifiedClassType() const {
5956 return getObjectType()->isObjCQualifiedClass();
5957 }
5958
5959 /// Whether this is a "__kindof" type.
5960 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
5961
5962 /// Whether this type is specialized, meaning that it has type arguments.
5963 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
5964
5965 /// Whether this type is specialized, meaning that it has type arguments.
5966 bool isSpecializedAsWritten() const {
5967 return getObjectType()->isSpecializedAsWritten();
5968 }
5969
5970 /// Whether this type is unspecialized, meaning that is has no type arguments.
5971 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
5972
5973 /// Determine whether this object type is "unspecialized" as
5974 /// written, meaning that it has no type arguments.
5975 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5976
5977 /// Retrieve the type arguments for this type.
5978 ArrayRef<QualType> getTypeArgs() const {
5979 return getObjectType()->getTypeArgs();
5980 }
5981
5982 /// Retrieve the type arguments for this type.
5983 ArrayRef<QualType> getTypeArgsAsWritten() const {
5984 return getObjectType()->getTypeArgsAsWritten();
5985 }
5986
5987 /// An iterator over the qualifiers on the object type. Provided
5988 /// for convenience. This will always iterate over the full set of
5989 /// protocols on a type, not just those provided directly.
5990 using qual_iterator = ObjCObjectType::qual_iterator;
5991 using qual_range = llvm::iterator_range<qual_iterator>;
5992
5993 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5994
5995 qual_iterator qual_begin() const {
5996 return getObjectType()->qual_begin();
5997 }
5998
5999 qual_iterator qual_end() const {
6000 return getObjectType()->qual_end();
6001 }
6002
6003 bool qual_empty() const { return getObjectType()->qual_empty(); }
6004
6005 /// Return the number of qualifying protocols on the object type.
6006 unsigned getNumProtocols() const {
6007 return getObjectType()->getNumProtocols();
6008 }
6009
6010 /// Retrieve a qualifying protocol by index on the object type.
6011 ObjCProtocolDecl *getProtocol(unsigned I) const {
6012 return getObjectType()->getProtocol(I);
6013 }
6014
6015 bool isSugared() const { return false; }
6016 QualType desugar() const { return QualType(this, 0); }
6017
6018 /// Retrieve the type of the superclass of this object pointer type.
6019 ///
6020 /// This operation substitutes any type arguments into the
6021 /// superclass of the current class type, potentially producing a
6022 /// pointer to a specialization of the superclass type. Produces a
6023 /// null type if there is no superclass.
6024 QualType getSuperClassType() const;
6025
6026 /// Strip off the Objective-C "kindof" type and (with it) any
6027 /// protocol qualifiers.
6028 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6029 const ASTContext &ctx) const;
6030
6031 void Profile(llvm::FoldingSetNodeID &ID) {
6032 Profile(ID, getPointeeType());
6033 }
6034
6035 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6036 ID.AddPointer(T.getAsOpaquePtr());
6037 }
6038
6039 static bool classof(const Type *T) {
6040 return T->getTypeClass() == ObjCObjectPointer;
6041 }
6042};
6043
6044class AtomicType : public Type, public llvm::FoldingSetNode {
6045 friend class ASTContext; // ASTContext creates these.
6046
6047 QualType ValueType;
6048
6049 AtomicType(QualType ValTy, QualType Canonical)
6050 : Type(Atomic, Canonical, ValTy->isDependentType(),
6051 ValTy->isInstantiationDependentType(),
6052 ValTy->isVariablyModifiedType(),
6053 ValTy->containsUnexpandedParameterPack()),
6054 ValueType(ValTy) {}
6055
6056public:
6057 /// Gets the type contained by this atomic type, i.e.
6058 /// the type returned by performing an atomic load of this atomic type.
6059 QualType getValueType() const { return ValueType; }
6060
6061 bool isSugared() const { return false; }
6062 QualType desugar() const { return QualType(this, 0); }
6063
6064 void Profile(llvm::FoldingSetNodeID &ID) {
6065 Profile(ID, getValueType());
6066 }
6067
6068 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6069 ID.AddPointer(T.getAsOpaquePtr());
6070 }
6071
6072 static bool classof(const Type *T) {
6073 return T->getTypeClass() == Atomic;
6074 }
6075};
6076
6077/// PipeType - OpenCL20.
6078class PipeType : public Type, public llvm::FoldingSetNode {
6079 friend class ASTContext; // ASTContext creates these.
6080
6081 QualType ElementType;
6082 bool isRead;
6083
6084 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6085 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6086 elemType->isInstantiationDependentType(),
6087 elemType->isVariablyModifiedType(),
6088 elemType->containsUnexpandedParameterPack()),
6089 ElementType(elemType), isRead(isRead) {}
6090
6091public:
6092 QualType getElementType() const { return ElementType; }
6093
6094 bool isSugared() const { return false; }
6095
6096 QualType desugar() const { return QualType(this, 0); }
6097
6098 void Profile(llvm::FoldingSetNodeID &ID) {
6099 Profile(ID, getElementType(), isReadOnly());
6100 }
6101
6102 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6103 ID.AddPointer(T.getAsOpaquePtr());
6104 ID.AddBoolean(isRead);
6105 }
6106
6107 static bool classof(const Type *T) {
6108 return T->getTypeClass() == Pipe;
6109 }
6110
6111 bool isReadOnly() const { return isRead; }
6112};
6113
6114/// A qualifier set is used to build a set of qualifiers.
6115class QualifierCollector : public Qualifiers {
6116public:
6117 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6118
6119 /// Collect any qualifiers on the given type and return an
6120 /// unqualified type. The qualifiers are assumed to be consistent
6121 /// with those already in the type.
6122 const Type *strip(QualType type) {
6123 addFastQualifiers(type.getLocalFastQualifiers());
6124 if (!type.hasLocalNonFastQualifiers())
6125 return type.getTypePtrUnsafe();
6126
6127 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6128 addConsistentQualifiers(extQuals->getQualifiers());
6129 return extQuals->getBaseType();
6130 }
6131
6132 /// Apply the collected qualifiers to the given type.
6133 QualType apply(const ASTContext &Context, QualType QT) const;
6134
6135 /// Apply the collected qualifiers to the given type.
6136 QualType apply(const ASTContext &Context, const Type* T) const;
6137};
6138
6139// Inline function definitions.
6140
6141inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6142 SplitQualType desugar =
6143 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6144 desugar.Quals.addConsistentQualifiers(Quals);
6145 return desugar;
6146}
6147
6148inline const Type *QualType::getTypePtr() const {
6149 return getCommonPtr()->BaseType;
6150}
6151
6152inline const Type *QualType::getTypePtrOrNull() const {
6153 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6154}
6155
6156inline SplitQualType QualType::split() const {
6157 if (!hasLocalNonFastQualifiers())
6158 return SplitQualType(getTypePtrUnsafe(),
6159 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6160
6161 const ExtQuals *eq = getExtQualsUnsafe();
6162 Qualifiers qs = eq->getQualifiers();
6163 qs.addFastQualifiers(getLocalFastQualifiers());
6164 return SplitQualType(eq->getBaseType(), qs);
6165}
6166
6167inline Qualifiers QualType::getLocalQualifiers() const {
6168 Qualifiers Quals;
6169 if (hasLocalNonFastQualifiers())
6170 Quals = getExtQualsUnsafe()->getQualifiers();
6171 Quals.addFastQualifiers(getLocalFastQualifiers());
6172 return Quals;
6173}
6174
6175inline Qualifiers QualType::getQualifiers() const {
6176 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6177 quals.addFastQualifiers(getLocalFastQualifiers());
6178 return quals;
6179}
6180
6181inline unsigned QualType::getCVRQualifiers() const {
6182 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6183 cvr |= getLocalCVRQualifiers();
6184 return cvr;
6185}
6186
6187inline QualType QualType::getCanonicalType() const {
6188 QualType canon = getCommonPtr()->CanonicalType;
6189 return canon.withFastQualifiers(getLocalFastQualifiers());
6190}
6191
6192inline bool QualType::isCanonical() const {
6193 return getTypePtr()->isCanonicalUnqualified();
6194}
6195
6196inline bool QualType::isCanonicalAsParam() const {
6197 if (!isCanonical()) return false;
6198 if (hasLocalQualifiers()) return false;
6199
6200 const Type *T = getTypePtr();
6201 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6202 return false;
6203
6204 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6205}
6206
6207inline bool QualType::isConstQualified() const {
6208 return isLocalConstQualified() ||
6209 getCommonPtr()->CanonicalType.isLocalConstQualified();
6210}
6211
6212inline bool QualType::isRestrictQualified() const {
6213 return isLocalRestrictQualified() ||
6214 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6215}
6216
6217
6218inline bool QualType::isVolatileQualified() const {
6219 return isLocalVolatileQualified() ||
6220 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6221}
6222
6223inline bool QualType::hasQualifiers() const {
6224 return hasLocalQualifiers() ||
6225 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6226}
6227
6228inline QualType QualType::getUnqualifiedType() const {
6229 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6230 return QualType(getTypePtr(), 0);
6231
6232 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6233}
6234
6235inline SplitQualType QualType::getSplitUnqualifiedType() const {
6236 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6237 return split();
6238
6239 return getSplitUnqualifiedTypeImpl(*this);
6240}
6241
6242inline void QualType::removeLocalConst() {
6243 removeLocalFastQualifiers(Qualifiers::Const);
6244}
6245
6246inline void QualType::removeLocalRestrict() {
6247 removeLocalFastQualifiers(Qualifiers::Restrict);
6248}
6249
6250inline void QualType::removeLocalVolatile() {
6251 removeLocalFastQualifiers(Qualifiers::Volatile);
6252}
6253
6254inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6255 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6255, __PRETTY_FUNCTION__))
;
6256 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6257 "Fast bits differ from CVR bits!");
6258
6259 // Fast path: we don't need to touch the slow qualifiers.
6260 removeLocalFastQualifiers(Mask);
6261}
6262
6263/// Return the address space of this type.
6264inline LangAS QualType::getAddressSpace() const {
6265 return getQualifiers().getAddressSpace();
6266}
6267
6268/// Return the gc attribute of this type.
6269inline Qualifiers::GC QualType::getObjCGCAttr() const {
6270 return getQualifiers().getObjCGCAttr();
6271}
6272
6273inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6274 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6275 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6276 return false;
6277}
6278
6279inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6280 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6281 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6282 return false;
6283}
6284
6285inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6286 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6287 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6288 return false;
6289}
6290
6291inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6292 if (const auto *PT = t.getAs<PointerType>()) {
6293 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6294 return FT->getExtInfo();
6295 } else if (const auto *FT = t.getAs<FunctionType>())
6296 return FT->getExtInfo();
6297
6298 return FunctionType::ExtInfo();
6299}
6300
6301inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6302 return getFunctionExtInfo(*t);
6303}
6304
6305/// Determine whether this type is more
6306/// qualified than the Other type. For example, "const volatile int"
6307/// is more qualified than "const int", "volatile int", and
6308/// "int". However, it is not more qualified than "const volatile
6309/// int".
6310inline bool QualType::isMoreQualifiedThan(QualType other) const {
6311 Qualifiers MyQuals = getQualifiers();
6312 Qualifiers OtherQuals = other.getQualifiers();
6313 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6314}
6315
6316/// Determine whether this type is at last
6317/// as qualified as the Other type. For example, "const volatile
6318/// int" is at least as qualified as "const int", "volatile int",
6319/// "int", and "const volatile int".
6320inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6321 Qualifiers OtherQuals = other.getQualifiers();
6322
6323 // Ignore __unaligned qualifier if this type is a void.
6324 if (getUnqualifiedType()->isVoidType())
6325 OtherQuals.removeUnaligned();
6326
6327 return getQualifiers().compatiblyIncludes(OtherQuals);
6328}
6329
6330/// If Type is a reference type (e.g., const
6331/// int&), returns the type that the reference refers to ("const
6332/// int"). Otherwise, returns the type itself. This routine is used
6333/// throughout Sema to implement C++ 5p6:
6334///
6335/// If an expression initially has the type "reference to T" (8.3.2,
6336/// 8.5.3), the type is adjusted to "T" prior to any further
6337/// analysis, the expression designates the object or function
6338/// denoted by the reference, and the expression is an lvalue.
6339inline QualType QualType::getNonReferenceType() const {
6340 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6341 return RefType->getPointeeType();
6342 else
6343 return *this;
6344}
6345
6346inline bool QualType::isCForbiddenLValueType() const {
6347 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6348 getTypePtr()->isFunctionType());
6349}
6350
6351/// Tests whether the type is categorized as a fundamental type.
6352///
6353/// \returns True for types specified in C++0x [basic.fundamental].
6354inline bool Type::isFundamentalType() const {
6355 return isVoidType() ||
6356 isNullPtrType() ||
6357 // FIXME: It's really annoying that we don't have an
6358 // 'isArithmeticType()' which agrees with the standard definition.
6359 (isArithmeticType() && !isEnumeralType());
6360}
6361
6362/// Tests whether the type is categorized as a compound type.
6363///
6364/// \returns True for types specified in C++0x [basic.compound].
6365inline bool Type::isCompoundType() const {
6366 // C++0x [basic.compound]p1:
6367 // Compound types can be constructed in the following ways:
6368 // -- arrays of objects of a given type [...];
6369 return isArrayType() ||
6370 // -- functions, which have parameters of given types [...];
6371 isFunctionType() ||
6372 // -- pointers to void or objects or functions [...];
6373 isPointerType() ||
6374 // -- references to objects or functions of a given type. [...]
6375 isReferenceType() ||
6376 // -- classes containing a sequence of objects of various types, [...];
6377 isRecordType() ||
6378 // -- unions, which are classes capable of containing objects of different
6379 // types at different times;
6380 isUnionType() ||
6381 // -- enumerations, which comprise a set of named constant values. [...];
6382 isEnumeralType() ||
6383 // -- pointers to non-static class members, [...].
6384 isMemberPointerType();
6385}
6386
6387inline bool Type::isFunctionType() const {
6388 return isa<FunctionType>(CanonicalType);
6389}
6390
6391inline bool Type::isPointerType() const {
6392 return isa<PointerType>(CanonicalType);
33
Assuming field 'CanonicalType' is a 'PointerType'
34
Returning the value 1, which participates in a condition later
6393}
6394
6395inline bool Type::isAnyPointerType() const {
6396 return isPointerType() || isObjCObjectPointerType();
6397}
6398
6399inline bool Type::isBlockPointerType() const {
6400 return isa<BlockPointerType>(CanonicalType);
6401}
6402
6403inline bool Type::isReferenceType() const {
6404 return isa<ReferenceType>(CanonicalType);
6405}
6406
6407inline bool Type::isLValueReferenceType() const {
6408 return isa<LValueReferenceType>(CanonicalType);
6409}
6410
6411inline bool Type::isRValueReferenceType() const {
6412 return isa<RValueReferenceType>(CanonicalType);
6413}
6414
6415inline bool Type::isFunctionPointerType() const {
6416 if (const auto *T = getAs<PointerType>())
6417 return T->getPointeeType()->isFunctionType();
6418 else
6419 return false;
6420}
6421
6422inline bool Type::isFunctionReferenceType() const {
6423 if (const auto *T = getAs<ReferenceType>())
6424 return T->getPointeeType()->isFunctionType();
6425 else
6426 return false;
6427}
6428
6429inline bool Type::isMemberPointerType() const {
6430 return isa<MemberPointerType>(CanonicalType);
6431}
6432
6433inline bool Type::isMemberFunctionPointerType() const {
6434 if (const auto *T = getAs<MemberPointerType>())
6435 return T->isMemberFunctionPointer();
6436 else
6437 return false;
6438}
6439
6440inline bool Type::isMemberDataPointerType() const {
6441 if (const auto *T = getAs<MemberPointerType>())
6442 return T->isMemberDataPointer();
6443 else
6444 return false;
6445}
6446
6447inline bool Type::isArrayType() const {
6448 return isa<ArrayType>(CanonicalType);
6449}
6450
6451inline bool Type::isConstantArrayType() const {
6452 return isa<ConstantArrayType>(CanonicalType);
6453}
6454
6455inline bool Type::isIncompleteArrayType() const {
6456 return isa<IncompleteArrayType>(CanonicalType);
6457}
6458
6459inline bool Type::isVariableArrayType() const {
6460 return isa<VariableArrayType>(CanonicalType);
6461}
6462
6463inline bool Type::isDependentSizedArrayType() const {
6464 return isa<DependentSizedArrayType>(CanonicalType);
6465}
6466
6467inline bool Type::isBuiltinType() const {
6468 return isa<BuiltinType>(CanonicalType);
6469}
6470
6471inline bool Type::isRecordType() const {
6472 return isa<RecordType>(CanonicalType);
6473}
6474
6475inline bool Type::isEnumeralType() const {
6476 return isa<EnumType>(CanonicalType);
6477}
6478
6479inline bool Type::isAnyComplexType() const {
6480 return isa<ComplexType>(CanonicalType);
6481}
6482
6483inline bool Type::isVectorType() const {
6484 return isa<VectorType>(CanonicalType);
6485}
6486
6487inline bool Type::isExtVectorType() const {
6488 return isa<ExtVectorType>(CanonicalType);
6489}
6490
6491inline bool Type::isDependentAddressSpaceType() const {
6492 return isa<DependentAddressSpaceType>(CanonicalType);
6493}
6494
6495inline bool Type::isObjCObjectPointerType() const {
6496 return isa<ObjCObjectPointerType>(CanonicalType);
6497}
6498
6499inline bool Type::isObjCObjectType() const {
6500 return isa<ObjCObjectType>(CanonicalType);
6501}
6502
6503inline bool Type::isObjCObjectOrInterfaceType() const {
6504 return isa<ObjCInterfaceType>(CanonicalType) ||
6505 isa<ObjCObjectType>(CanonicalType);
6506}
6507
6508inline bool Type::isAtomicType() const {
6509 return isa<AtomicType>(CanonicalType);
6510}
6511
6512inline bool Type::isObjCQualifiedIdType() const {
6513 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6514 return OPT->isObjCQualifiedIdType();
6515 return false;
6516}
6517
6518inline bool Type::isObjCQualifiedClassType() const {
6519 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6520 return OPT->isObjCQualifiedClassType();
6521 return false;
6522}
6523
6524inline bool Type::isObjCIdType() const {
6525 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6526 return OPT->isObjCIdType();
6527 return false;
6528}
6529
6530inline bool Type::isObjCClassType() const {
6531 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6532 return OPT->isObjCClassType();
6533 return false;
6534}
6535
6536inline bool Type::isObjCSelType() const {
6537 if (const auto *OPT = getAs<PointerType>())
6538 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6539 return false;
6540}
6541
6542inline bool Type::isObjCBuiltinType() const {
6543 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6544}
6545
6546inline bool Type::isDecltypeType() const {
6547 return isa<DecltypeType>(this);
6548}
6549
6550#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6551 inline bool Type::is##Id##Type() const { \
6552 return isSpecificBuiltinType(BuiltinType::Id); \
6553 }
6554#include "clang/Basic/OpenCLImageTypes.def"
6555
6556inline bool Type::isSamplerT() const {
6557 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6558}
6559
6560inline bool Type::isEventT() const {
6561 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6562}
6563
6564inline bool Type::isClkEventT() const {
6565 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6566}
6567
6568inline bool Type::isQueueT() const {
6569 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6570}
6571
6572inline bool Type::isReserveIDT() const {
6573 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6574}
6575
6576inline bool Type::isImageType() const {
6577#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6578 return
6579#include "clang/Basic/OpenCLImageTypes.def"
6580 false; // end boolean or operation
6581}
6582
6583inline bool Type::isPipeType() const {
6584 return isa<PipeType>(CanonicalType);
6585}
6586
6587#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6588 inline bool Type::is##Id##Type() const { \
6589 return isSpecificBuiltinType(BuiltinType::Id); \
6590 }
6591#include "clang/Basic/OpenCLExtensionTypes.def"
6592
6593inline bool Type::isOCLIntelSubgroupAVCType() const {
6594#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6595 isOCLIntelSubgroupAVC##Id##Type() ||
6596 return
6597#include "clang/Basic/OpenCLExtensionTypes.def"
6598 false; // end of boolean or operation
6599}
6600
6601inline bool Type::isOCLExtOpaqueType() const {
6602#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6603 return
6604#include "clang/Basic/OpenCLExtensionTypes.def"
6605 false; // end of boolean or operation
6606}
6607
6608inline bool Type::isOpenCLSpecificType() const {
6609 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6610 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6611}
6612
6613inline bool Type::isTemplateTypeParmType() const {
6614 return isa<TemplateTypeParmType>(CanonicalType);
6615}
6616
6617inline bool Type::isSpecificBuiltinType(unsigned K) const {
6618 if (const BuiltinType *BT = getAs<BuiltinType>())
6619 if (BT->getKind() == (BuiltinType::Kind) K)
6620 return true;
6621 return false;
6622}
6623
6624inline bool Type::isPlaceholderType() const {
6625 if (const auto *BT = dyn_cast<BuiltinType>(this))
6626 return BT->isPlaceholderType();
6627 return false;
6628}
6629
6630inline const BuiltinType *Type::getAsPlaceholderType() const {
6631 if (const auto *BT = dyn_cast<BuiltinType>(this))
6632 if (BT->isPlaceholderType())
6633 return BT;
6634 return nullptr;
6635}
6636
6637inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6638 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6638, __PRETTY_FUNCTION__))
;
6639 if (const auto *BT = dyn_cast<BuiltinType>(this))
6640 return (BT->getKind() == (BuiltinType::Kind) K);
6641 return false;
6642}
6643
6644inline bool Type::isNonOverloadPlaceholderType() const {
6645 if (const auto *BT = dyn_cast<BuiltinType>(this))
6646 return BT->isNonOverloadPlaceholderType();
6647 return false;
6648}
6649
6650inline bool Type::isVoidType() const {
6651 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6652 return BT->getKind() == BuiltinType::Void;
6653 return false;
6654}
6655
6656inline bool Type::isHalfType() const {
6657 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6658 return BT->getKind() == BuiltinType::Half;
6659 // FIXME: Should we allow complex __fp16? Probably not.
6660 return false;
6661}
6662
6663inline bool Type::isFloat16Type() const {
6664 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6665 return BT->getKind() == BuiltinType::Float16;
6666 return false;
6667}
6668
6669inline bool Type::isFloat128Type() const {
6670 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6671 return BT->getKind() == BuiltinType::Float128;
6672 return false;
6673}
6674
6675inline bool Type::isNullPtrType() const {
6676 if (const auto *BT = getAs<BuiltinType>())
6677 return BT->getKind() == BuiltinType::NullPtr;
6678 return false;
6679}
6680
6681bool IsEnumDeclComplete(EnumDecl *);
6682bool IsEnumDeclScoped(EnumDecl *);
6683
6684inline bool Type::isIntegerType() const {
6685 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6686 return BT->getKind() >= BuiltinType::Bool &&
6687 BT->getKind() <= BuiltinType::Int128;
6688 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6689 // Incomplete enum types are not treated as integer types.
6690 // FIXME: In C++, enum types are never integer types.
6691 return IsEnumDeclComplete(ET->getDecl()) &&
6692 !IsEnumDeclScoped(ET->getDecl());
6693 }
6694 return false;
6695}
6696
6697inline bool Type::isFixedPointType() const {
6698 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6699 return BT->getKind() >= BuiltinType::ShortAccum &&
6700 BT->getKind() <= BuiltinType::SatULongFract;
6701 }
6702 return false;
6703}
6704
6705inline bool Type::isFixedPointOrIntegerType() const {
6706 return isFixedPointType() || isIntegerType();
6707}
6708
6709inline bool Type::isSaturatedFixedPointType() const {
6710 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6711 return BT->getKind() >= BuiltinType::SatShortAccum &&
6712 BT->getKind() <= BuiltinType::SatULongFract;
6713 }
6714 return false;
6715}
6716
6717inline bool Type::isUnsaturatedFixedPointType() const {
6718 return isFixedPointType() && !isSaturatedFixedPointType();
6719}
6720
6721inline bool Type::isSignedFixedPointType() const {
6722 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6723 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6724 BT->getKind() <= BuiltinType::LongAccum) ||
6725 (BT->getKind() >= BuiltinType::ShortFract &&
6726 BT->getKind() <= BuiltinType::LongFract) ||
6727 (BT->getKind() >= BuiltinType::SatShortAccum &&
6728 BT->getKind() <= BuiltinType::SatLongAccum) ||
6729 (BT->getKind() >= BuiltinType::SatShortFract &&
6730 BT->getKind() <= BuiltinType::SatLongFract));
6731 }
6732 return false;
6733}
6734
6735inline bool Type::isUnsignedFixedPointType() const {
6736 return isFixedPointType() && !isSignedFixedPointType();
6737}
6738
6739inline bool Type::isScalarType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() > BuiltinType::Void &&
6742 BT->getKind() <= BuiltinType::NullPtr;
6743 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6744 // Enums are scalar types, but only if they are defined. Incomplete enums
6745 // are not treated as scalar types.
6746 return IsEnumDeclComplete(ET->getDecl());
6747 return isa<PointerType>(CanonicalType) ||
6748 isa<BlockPointerType>(CanonicalType) ||
6749 isa<MemberPointerType>(CanonicalType) ||
6750 isa<ComplexType>(CanonicalType) ||
6751 isa<ObjCObjectPointerType>(CanonicalType);
6752}
6753
6754inline bool Type::isIntegralOrEnumerationType() const {
6755 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6756 return BT->getKind() >= BuiltinType::Bool &&
6757 BT->getKind() <= BuiltinType::Int128;
6758
6759 // Check for a complete enum type; incomplete enum types are not properly an
6760 // enumeration type in the sense required here.
6761 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6762 return IsEnumDeclComplete(ET->getDecl());
6763
6764 return false;
6765}
6766
6767inline bool Type::isBooleanType() const {
6768 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6769 return BT->getKind() == BuiltinType::Bool;
6770 return false;
6771}
6772
6773inline bool Type::isUndeducedType() const {
6774 auto *DT = getContainedDeducedType();
6775 return DT && !DT->isDeduced();
6776}
6777
6778/// Determines whether this is a type for which one can define
6779/// an overloaded operator.
6780inline bool Type::isOverloadableType() const {
6781 return isDependentType() || isRecordType() || isEnumeralType();
6782}
6783
6784/// Determines whether this type can decay to a pointer type.
6785inline bool Type::canDecayToPointerType() const {
6786 return isFunctionType() || isArrayType();
6787}
6788
6789inline bool Type::hasPointerRepresentation() const {
6790 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6791 isObjCObjectPointerType() || isNullPtrType());
6792}
6793
6794inline bool Type::hasObjCPointerRepresentation() const {
6795 return isObjCObjectPointerType();
6796}
6797
6798inline const Type *Type::getBaseElementTypeUnsafe() const {
6799 const Type *type = this;
6800 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6801 type = arrayType->getElementType().getTypePtr();
6802 return type;
6803}
6804
6805inline const Type *Type::getPointeeOrArrayElementType() const {
6806 const Type *type = this;
6807 if (type->isAnyPointerType())
6808 return type->getPointeeType().getTypePtr();
6809 else if (type->isArrayType())
6810 return type->getBaseElementTypeUnsafe();
6811 return type;
6812}
6813
6814/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6815/// diagnostic with <<.
6816inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6817 Qualifiers Q) {
6818 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6819 DiagnosticsEngine::ArgumentKind::ak_qual);
6820 return DB;
6821}
6822
6823/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6824/// into a diagnostic with <<.
6825inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6826 Qualifiers Q) {
6827 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6828 DiagnosticsEngine::ArgumentKind::ak_qual);
6829 return PD;
6830}
6831
6832/// Insertion operator for diagnostics. This allows sending QualType's into a
6833/// diagnostic with <<.
6834inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6835 QualType T) {
6836 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6837 DiagnosticsEngine::ak_qualtype);
6838 return DB;
6839}
6840
6841/// Insertion operator for partial diagnostics. This allows sending QualType's
6842/// into a diagnostic with <<.
6843inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6844 QualType T) {
6845 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6846 DiagnosticsEngine::ak_qualtype);
6847 return PD;
6848}
6849
6850// Helper class template that is used by Type::getAs to ensure that one does
6851// not try to look through a qualified type to get to an array type.
6852template <typename T>
6853using TypeIsArrayType =
6854 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6855 std::is_base_of<ArrayType, T>::value>;
6856
6857// Member-template getAs<specific type>'.
6858template <typename T> const T *Type::getAs() const {
6859 static_assert(!TypeIsArrayType<T>::value,
6860 "ArrayType cannot be used with getAs!");
6861
6862 // If this is directly a T type, return it.
6863 if (const auto *Ty = dyn_cast<T>(this))
6864 return Ty;
6865
6866 // If the canonical form of this type isn't the right kind, reject it.
6867 if (!isa<T>(CanonicalType))
6868 return nullptr;
6869
6870 // If this is a typedef for the type, strip the typedef off without
6871 // losing all typedef information.
6872 return cast<T>(getUnqualifiedDesugaredType());
6873}
6874
6875template <typename T> const T *Type::getAsAdjusted() const {
6876 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6877
6878 // If this is directly a T type, return it.
6879 if (const auto *Ty = dyn_cast<T>(this))
6880 return Ty;
6881
6882 // If the canonical form of this type isn't the right kind, reject it.
6883 if (!isa<T>(CanonicalType))
6884 return nullptr;
6885
6886 // Strip off type adjustments that do not modify the underlying nature of the
6887 // type.
6888 const Type *Ty = this;
6889 while (Ty) {
6890 if (const auto *A = dyn_cast<AttributedType>(Ty))
6891 Ty = A->getModifiedType().getTypePtr();
6892 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6893 Ty = E->desugar().getTypePtr();
6894 else if (const auto *P = dyn_cast<ParenType>(Ty))
6895 Ty = P->desugar().getTypePtr();
6896 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
6897 Ty = A->desugar().getTypePtr();
6898 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
6899 Ty = M->desugar().getTypePtr();
6900 else
6901 break;
6902 }
6903
6904 // Just because the canonical type is correct does not mean we can use cast<>,
6905 // since we may not have stripped off all the sugar down to the base type.
6906 return dyn_cast<T>(Ty);
6907}
6908
6909inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
6910 // If this is directly an array type, return it.
6911 if (const auto *arr = dyn_cast<ArrayType>(this))
6912 return arr;
6913
6914 // If the canonical form of this type isn't the right kind, reject it.
6915 if (!isa<ArrayType>(CanonicalType))
6916 return nullptr;
6917
6918 // If this is a typedef for the type, strip the typedef off without
6919 // losing all typedef information.
6920 return cast<ArrayType>(getUnqualifiedDesugaredType());
6921}
6922
6923template <typename T> const T *Type::castAs() const {
6924 static_assert(!TypeIsArrayType<T>::value,
6925 "ArrayType cannot be used with castAs!");
6926
6927 if (const auto *ty = dyn_cast<T>(this)) return ty;
6928 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6928, __PRETTY_FUNCTION__))
;
6929 return cast<T>(getUnqualifiedDesugaredType());
6930}
6931
6932inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
6933 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6933, __PRETTY_FUNCTION__))
;
6934 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
6935 return cast<ArrayType>(getUnqualifiedDesugaredType());
6936}
6937
6938DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
6939 QualType CanonicalPtr)
6940 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
6941#ifndef NDEBUG
6942 QualType Adjusted = getAdjustedType();
6943 (void)AttributedType::stripOuterNullability(Adjusted);
6944 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6944, __PRETTY_FUNCTION__))
;
6945#endif
6946}
6947
6948QualType DecayedType::getPointeeType() const {
6949 QualType Decayed = getDecayedType();
6950 (void)AttributedType::stripOuterNullability(Decayed);
6951 return cast<PointerType>(Decayed)->getPointeeType();
6952}
6953
6954// Get the decimal string representation of a fixed point type, represented
6955// as a scaled integer.
6956// TODO: At some point, we should change the arguments to instead just accept an
6957// APFixedPoint instead of APSInt and scale.
6958void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
6959 unsigned Scale);
6960
6961} // namespace clang
6962
6963#endif // LLVM_CLANG_AST_TYPE_H