Bug Summary

File:tools/clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 277, column 32
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp -faddrsig
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "ConstantEmitter.h"
19#include "clang/Basic/CodeGenOptions.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "llvm/IR/Intrinsics.h"
22
23using namespace clang;
24using namespace CodeGen;
25
26namespace {
27struct MemberCallInfo {
28 RequiredArgs ReqArgs;
29 // Number of prefix arguments for the call. Ignores the `this` pointer.
30 unsigned PrefixSize;
31};
32}
33
34static MemberCallInfo
35commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
36 llvm::Value *This, llvm::Value *ImplicitParam,
37 QualType ImplicitParamTy, const CallExpr *CE,
38 CallArgList &Args, CallArgList *RtlArgs) {
39 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 40, __PRETTY_FUNCTION__))
40 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 40, __PRETTY_FUNCTION__))
;
41 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 42, __PRETTY_FUNCTION__))
42 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 42, __PRETTY_FUNCTION__))
;
43
44 // Push the this ptr.
45 const CXXRecordDecl *RD =
46 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
47 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48
49 // If there is an implicit parameter (e.g. VTT), emit it.
50 if (ImplicitParam) {
51 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52 }
53
54 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
56 unsigned PrefixSize = Args.size() - 1;
57
58 // And the rest of the call args.
59 if (RtlArgs) {
60 // Special case: if the caller emitted the arguments right-to-left already
61 // (prior to emitting the *this argument), we're done. This happens for
62 // assignment operators.
63 Args.addFrom(*RtlArgs);
64 } else if (CE) {
65 // Special case: skip first argument of CXXOperatorCall (it is "this").
66 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68 CE->getDirectCallee());
69 } else {
70 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 72, __PRETTY_FUNCTION__))
71 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 72, __PRETTY_FUNCTION__))
72 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 72, __PRETTY_FUNCTION__))
;
73 }
74 return {required, PrefixSize};
75}
76
77RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
78 const CXXMethodDecl *MD, const CGCallee &Callee,
79 ReturnValueSlot ReturnValue,
80 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
81 const CallExpr *CE, CallArgList *RtlArgs) {
82 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83 CallArgList Args;
84 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
86 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
88 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
89 CE ? CE->getExprLoc() : SourceLocation());
90}
91
92RValue CodeGenFunction::EmitCXXDestructorCall(
93 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This,
94 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
95 CallArgList Args;
96 commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()),
97 This, ImplicitParam, ImplicitParamTy, CE,
98 Args, nullptr);
99 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
100 ReturnValueSlot(), Args);
101}
102
103RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
104 const CXXPseudoDestructorExpr *E) {
105 QualType DestroyedType = E->getDestroyedType();
106 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107 // Automatic Reference Counting:
108 // If the pseudo-expression names a retainable object with weak or
109 // strong lifetime, the object shall be released.
110 Expr *BaseExpr = E->getBase();
111 Address BaseValue = Address::invalid();
112 Qualifiers BaseQuals;
113
114 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115 if (E->isArrow()) {
116 BaseValue = EmitPointerWithAlignment(BaseExpr);
117 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118 BaseQuals = PTy->getPointeeType().getQualifiers();
119 } else {
120 LValue BaseLV = EmitLValue(BaseExpr);
121 BaseValue = BaseLV.getAddress();
122 QualType BaseTy = BaseExpr->getType();
123 BaseQuals = BaseTy.getQualifiers();
124 }
125
126 switch (DestroyedType.getObjCLifetime()) {
127 case Qualifiers::OCL_None:
128 case Qualifiers::OCL_ExplicitNone:
129 case Qualifiers::OCL_Autoreleasing:
130 break;
131
132 case Qualifiers::OCL_Strong:
133 EmitARCRelease(Builder.CreateLoad(BaseValue,
134 DestroyedType.isVolatileQualified()),
135 ARCPreciseLifetime);
136 break;
137
138 case Qualifiers::OCL_Weak:
139 EmitARCDestroyWeak(BaseValue);
140 break;
141 }
142 } else {
143 // C++ [expr.pseudo]p1:
144 // The result shall only be used as the operand for the function call
145 // operator (), and the result of such a call has type void. The only
146 // effect is the evaluation of the postfix-expression before the dot or
147 // arrow.
148 EmitIgnoredExpr(E->getBase());
149 }
150
151 return RValue::get(nullptr);
152}
153
154static CXXRecordDecl *getCXXRecord(const Expr *E) {
155 QualType T = E->getType();
156 if (const PointerType *PTy = T->getAs<PointerType>())
157 T = PTy->getPointeeType();
158 const RecordType *Ty = T->castAs<RecordType>();
159 return cast<CXXRecordDecl>(Ty->getDecl());
160}
161
162// Note: This function also emit constructor calls to support a MSVC
163// extensions allowing explicit constructor function call.
164RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
165 ReturnValueSlot ReturnValue) {
166 const Expr *callee = CE->getCallee()->IgnoreParens();
167
168 if (isa<BinaryOperator>(callee))
169 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
170
171 const MemberExpr *ME = cast<MemberExpr>(callee);
172 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173
174 if (MD->isStatic()) {
175 // The method is static, emit it as we would a regular call.
176 CGCallee callee =
177 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
179 ReturnValue);
180 }
181
182 bool HasQualifier = ME->hasQualifier();
183 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184 bool IsArrow = ME->isArrow();
185 const Expr *Base = ME->getBase();
186
187 return EmitCXXMemberOrOperatorMemberCallExpr(
188 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
189}
190
191RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
192 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
193 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
194 const Expr *Base) {
195 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 195, __PRETTY_FUNCTION__))
;
3
'?' condition is true
196
197 // Compute the object pointer.
198 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199
200 const CXXMethodDecl *DevirtualizedMethod = nullptr;
201 if (CanUseVirtualCall &&
202 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
203 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 205, __PRETTY_FUNCTION__))
;
206 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207 const Expr *Inner = Base->ignoreParenBaseCasts();
208 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
209 MD->getReturnType().getCanonicalType())
210 // If the return types are not the same, this might be a case where more
211 // code needs to run to compensate for it. For example, the derived
212 // method might return a type that inherits form from the return
213 // type of MD and has a prefix.
214 // For now we just avoid devirtualizing these covariant cases.
215 DevirtualizedMethod = nullptr;
216 else if (getCXXRecord(Inner) == DevirtualizedClass)
217 // If the class of the Inner expression is where the dynamic method
218 // is defined, build the this pointer from it.
219 Base = Inner;
220 else if (getCXXRecord(Base) != DevirtualizedClass) {
221 // If the method is defined in a class that is not the best dynamic
222 // one or the one of the full expression, we would have to build
223 // a derived-to-base cast to compute the correct this pointer, but
224 // we don't have support for that yet, so do a virtual call.
225 DevirtualizedMethod = nullptr;
226 }
227 }
228
229 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230 // operator before the LHS.
231 CallArgList RtlArgStorage;
232 CallArgList *RtlArgs = nullptr;
4
'RtlArgs' initialized to a null pointer value
233 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
5
Taking true branch
234 if (OCE->isAssignmentOp()) {
6
Taking false branch
235 RtlArgs = &RtlArgStorage;
236 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239 }
240 }
241
242 LValue This;
243 if (IsArrow) {
7
Taking false branch
244 LValueBaseInfo BaseInfo;
245 TBAAAccessInfo TBAAInfo;
246 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
248 } else {
249 This = EmitLValue(Base);
250 }
251
252 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
8
Taking false branch
253 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254 // constructing a new complete object of type Ctor.
255 assert(!RtlArgs)((!RtlArgs) ? static_cast<void> (0) : __assert_fail ("!RtlArgs"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 255, __PRETTY_FUNCTION__))
;
256 assert(ReturnValue.isNull() && "Constructor shouldn't have return value")((ReturnValue.isNull() && "Constructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 256, __PRETTY_FUNCTION__))
;
257 CallArgList Args;
258 commonEmitCXXMemberOrOperatorCall(
259 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
260 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
261
262 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
263 /*Delegating=*/false, This.getAddress(), Args,
264 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
265 /*NewPointerIsChecked=*/false);
266 return RValue::get(nullptr);
267 }
268
269 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
9
Assuming the condition is true
270 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
10
Taking false branch
271 if (!MD->getParent()->mayInsertExtraPadding()) {
11
Assuming the condition is true
12
Taking true branch
272 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
13
Assuming the condition is true
273 // We don't like to generate the trivial copy/move assignment operator
274 // when it isn't necessary; just produce the proper effect here.
275 LValue RHS = isa<CXXOperatorCallExpr>(CE)
14
'?' condition is true
276 ? MakeNaturalAlignAddrLValue(
277 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
15
Called C++ object pointer is null
278 (*(CE->arg_begin() + 1))->getType())
279 : EmitLValue(*CE->arg_begin());
280 EmitAggregateAssign(This, RHS, CE->getType());
281 return RValue::get(This.getPointer());
282 }
283 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 283)
;
284 }
285 }
286
287 // Compute the function type we're calling.
288 const CXXMethodDecl *CalleeDecl =
289 DevirtualizedMethod ? DevirtualizedMethod : MD;
290 const CGFunctionInfo *FInfo = nullptr;
291 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293 GlobalDecl(Dtor, Dtor_Complete));
294 else
295 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296
297 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298
299 // C++11 [class.mfct.non-static]p2:
300 // If a non-static member function of a class X is called for an object that
301 // is not of type X, or of a type derived from X, the behavior is undefined.
302 SourceLocation CallLoc;
303 ASTContext &C = getContext();
304 if (CE)
305 CallLoc = CE->getExprLoc();
306
307 SanitizerSet SkippedChecks;
308 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309 auto *IOA = CMCE->getImplicitObjectArgument();
310 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311 if (IsImplicitObjectCXXThis)
312 SkippedChecks.set(SanitizerKind::Alignment, true);
313 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314 SkippedChecks.set(SanitizerKind::Null, true);
315 }
316 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
317 C.getRecordType(CalleeDecl->getParent()),
318 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319
320 // C++ [class.virtual]p12:
321 // Explicit qualification with the scope operator (5.1) suppresses the
322 // virtual call mechanism.
323 //
324 // We also don't emit a virtual call if the base expression has a record type
325 // because then we know what the type is.
326 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327
328 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 330, __PRETTY_FUNCTION__))
330 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 330, __PRETTY_FUNCTION__))
;
331 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 331, __PRETTY_FUNCTION__))
;
332 if (UseVirtualCall) {
333 CGM.getCXXABI().EmitVirtualDestructorCall(
334 *this, Dtor, Dtor_Complete, This.getAddress(),
335 cast<CXXMemberCallExpr>(CE));
336 } else {
337 GlobalDecl GD(Dtor, Dtor_Complete);
338 CGCallee Callee;
339 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
340 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
341 else if (!DevirtualizedMethod)
342 Callee =
343 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
344 else {
345 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
346 }
347
348 EmitCXXDestructorCall(GD, Callee, This.getPointer(),
349 /*ImplicitParam=*/nullptr,
350 /*ImplicitParamTy=*/QualType(), nullptr);
351 }
352 return RValue::get(nullptr);
353 }
354
355 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
356 // 'CalleeDecl' instead.
357
358 CGCallee Callee;
359 if (UseVirtualCall) {
360 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
361 } else {
362 if (SanOpts.has(SanitizerKind::CFINVCall) &&
363 MD->getParent()->isDynamicClass()) {
364 llvm::Value *VTable;
365 const CXXRecordDecl *RD;
366 std::tie(VTable, RD) =
367 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
368 MD->getParent());
369 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
370 }
371
372 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
373 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
374 else if (!DevirtualizedMethod)
375 Callee =
376 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
377 else {
378 Callee =
379 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
380 GlobalDecl(DevirtualizedMethod));
381 }
382 }
383
384 if (MD->isVirtual()) {
385 Address NewThisAddr =
386 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
387 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
388 This.setAddress(NewThisAddr);
389 }
390
391 return EmitCXXMemberOrOperatorCall(
392 CalleeDecl, Callee, ReturnValue, This.getPointer(),
393 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
394}
395
396RValue
397CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
398 ReturnValueSlot ReturnValue) {
399 const BinaryOperator *BO =
400 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
401 const Expr *BaseExpr = BO->getLHS();
402 const Expr *MemFnExpr = BO->getRHS();
403
404 const MemberPointerType *MPT =
405 MemFnExpr->getType()->castAs<MemberPointerType>();
406
407 const FunctionProtoType *FPT =
408 MPT->getPointeeType()->castAs<FunctionProtoType>();
409 const CXXRecordDecl *RD =
410 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
411
412 // Emit the 'this' pointer.
413 Address This = Address::invalid();
414 if (BO->getOpcode() == BO_PtrMemI)
415 This = EmitPointerWithAlignment(BaseExpr);
416 else
417 This = EmitLValue(BaseExpr).getAddress();
418
419 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
420 QualType(MPT->getClass(), 0));
421
422 // Get the member function pointer.
423 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
424
425 // Ask the ABI to load the callee. Note that This is modified.
426 llvm::Value *ThisPtrForCall = nullptr;
427 CGCallee Callee =
428 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
429 ThisPtrForCall, MemFnPtr, MPT);
430
431 CallArgList Args;
432
433 QualType ThisType =
434 getContext().getPointerType(getContext().getTagDeclType(RD));
435
436 // Push the this ptr.
437 Args.add(RValue::get(ThisPtrForCall), ThisType);
438
439 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
440
441 // And the rest of the call args
442 EmitCallArgs(Args, FPT, E->arguments());
443 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
444 /*PrefixSize=*/0),
445 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
446}
447
448RValue
449CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
450 const CXXMethodDecl *MD,
451 ReturnValueSlot ReturnValue) {
452 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 453, __PRETTY_FUNCTION__))
1
'?' condition is true
453 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 453, __PRETTY_FUNCTION__))
;
454 return EmitCXXMemberOrOperatorMemberCallExpr(
2
Calling 'CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr'
455 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
456 /*IsArrow=*/false, E->getArg(0));
457}
458
459RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
460 ReturnValueSlot ReturnValue) {
461 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
462}
463
464static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
465 Address DestPtr,
466 const CXXRecordDecl *Base) {
467 if (Base->isEmpty())
468 return;
469
470 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
471
472 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
473 CharUnits NVSize = Layout.getNonVirtualSize();
474
475 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
476 // present, they are initialized by the most derived class before calling the
477 // constructor.
478 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
479 Stores.emplace_back(CharUnits::Zero(), NVSize);
480
481 // Each store is split by the existence of a vbptr.
482 CharUnits VBPtrWidth = CGF.getPointerSize();
483 std::vector<CharUnits> VBPtrOffsets =
484 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
485 for (CharUnits VBPtrOffset : VBPtrOffsets) {
486 // Stop before we hit any virtual base pointers located in virtual bases.
487 if (VBPtrOffset >= NVSize)
488 break;
489 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
490 CharUnits LastStoreOffset = LastStore.first;
491 CharUnits LastStoreSize = LastStore.second;
492
493 CharUnits SplitBeforeOffset = LastStoreOffset;
494 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
495 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 495, __PRETTY_FUNCTION__))
;
496 if (!SplitBeforeSize.isZero())
497 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
498
499 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
500 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
501 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 501, __PRETTY_FUNCTION__))
;
502 if (!SplitAfterSize.isZero())
503 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
504 }
505
506 // If the type contains a pointer to data member we can't memset it to zero.
507 // Instead, create a null constant and copy it to the destination.
508 // TODO: there are other patterns besides zero that we can usefully memset,
509 // like -1, which happens to be the pattern used by member-pointers.
510 // TODO: isZeroInitializable can be over-conservative in the case where a
511 // virtual base contains a member pointer.
512 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
513 if (!NullConstantForBase->isNullValue()) {
514 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
515 CGF.CGM.getModule(), NullConstantForBase->getType(),
516 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
517 NullConstantForBase, Twine());
518
519 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
520 DestPtr.getAlignment());
521 NullVariable->setAlignment(Align.getQuantity());
522
523 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
524
525 // Get and call the appropriate llvm.memcpy overload.
526 for (std::pair<CharUnits, CharUnits> Store : Stores) {
527 CharUnits StoreOffset = Store.first;
528 CharUnits StoreSize = Store.second;
529 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
530 CGF.Builder.CreateMemCpy(
531 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
532 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
533 StoreSizeVal);
534 }
535
536 // Otherwise, just memset the whole thing to zero. This is legal
537 // because in LLVM, all default initializers (other than the ones we just
538 // handled above) are guaranteed to have a bit pattern of all zeros.
539 } else {
540 for (std::pair<CharUnits, CharUnits> Store : Stores) {
541 CharUnits StoreOffset = Store.first;
542 CharUnits StoreSize = Store.second;
543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544 CGF.Builder.CreateMemSet(
545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546 CGF.Builder.getInt8(0), StoreSizeVal);
547 }
548 }
549}
550
551void
552CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
553 AggValueSlot Dest) {
554 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 554, __PRETTY_FUNCTION__))
;
555 const CXXConstructorDecl *CD = E->getConstructor();
556
557 // If we require zero initialization before (or instead of) calling the
558 // constructor, as can be the case with a non-user-provided default
559 // constructor, emit the zero initialization now, unless destination is
560 // already zeroed.
561 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
562 switch (E->getConstructionKind()) {
563 case CXXConstructExpr::CK_Delegating:
564 case CXXConstructExpr::CK_Complete:
565 EmitNullInitialization(Dest.getAddress(), E->getType());
566 break;
567 case CXXConstructExpr::CK_VirtualBase:
568 case CXXConstructExpr::CK_NonVirtualBase:
569 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
570 CD->getParent());
571 break;
572 }
573 }
574
575 // If this is a call to a trivial default constructor, do nothing.
576 if (CD->isTrivial() && CD->isDefaultConstructor())
577 return;
578
579 // Elide the constructor if we're constructing from a temporary.
580 // The temporary check is required because Sema sets this on NRVO
581 // returns.
582 if (getLangOpts().ElideConstructors && E->isElidable()) {
583 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 584, __PRETTY_FUNCTION__))
584 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 584, __PRETTY_FUNCTION__))
;
585 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
586 EmitAggExpr(E->getArg(0), Dest);
587 return;
588 }
589 }
590
591 if (const ArrayType *arrayType
592 = getContext().getAsArrayType(E->getType())) {
593 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
594 Dest.isSanitizerChecked());
595 } else {
596 CXXCtorType Type = Ctor_Complete;
597 bool ForVirtualBase = false;
598 bool Delegating = false;
599
600 switch (E->getConstructionKind()) {
601 case CXXConstructExpr::CK_Delegating:
602 // We should be emitting a constructor; GlobalDecl will assert this
603 Type = CurGD.getCtorType();
604 Delegating = true;
605 break;
606
607 case CXXConstructExpr::CK_Complete:
608 Type = Ctor_Complete;
609 break;
610
611 case CXXConstructExpr::CK_VirtualBase:
612 ForVirtualBase = true;
613 LLVM_FALLTHROUGH[[clang::fallthrough]];
614
615 case CXXConstructExpr::CK_NonVirtualBase:
616 Type = Ctor_Base;
617 }
618
619 // Call the constructor.
620 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
621 }
622}
623
624void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
625 const Expr *Exp) {
626 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
627 Exp = E->getSubExpr();
628 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 629, __PRETTY_FUNCTION__))
629 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 629, __PRETTY_FUNCTION__))
;
630 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
631 const CXXConstructorDecl *CD = E->getConstructor();
632 RunCleanupsScope Scope(*this);
633
634 // If we require zero initialization before (or instead of) calling the
635 // constructor, as can be the case with a non-user-provided default
636 // constructor, emit the zero initialization now.
637 // FIXME. Do I still need this for a copy ctor synthesis?
638 if (E->requiresZeroInitialization())
639 EmitNullInitialization(Dest, E->getType());
640
641 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 642, __PRETTY_FUNCTION__))
642 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 642, __PRETTY_FUNCTION__))
;
643 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
644}
645
646static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
647 const CXXNewExpr *E) {
648 if (!E->isArray())
649 return CharUnits::Zero();
650
651 // No cookie is required if the operator new[] being used is the
652 // reserved placement operator new[].
653 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
654 return CharUnits::Zero();
655
656 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
657}
658
659static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
660 const CXXNewExpr *e,
661 unsigned minElements,
662 llvm::Value *&numElements,
663 llvm::Value *&sizeWithoutCookie) {
664 QualType type = e->getAllocatedType();
665
666 if (!e->isArray()) {
667 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
668 sizeWithoutCookie
669 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
670 return sizeWithoutCookie;
671 }
672
673 // The width of size_t.
674 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
675
676 // Figure out the cookie size.
677 llvm::APInt cookieSize(sizeWidth,
678 CalculateCookiePadding(CGF, e).getQuantity());
679
680 // Emit the array size expression.
681 // We multiply the size of all dimensions for NumElements.
682 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
683 numElements =
684 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
685 if (!numElements)
686 numElements = CGF.EmitScalarExpr(*e->getArraySize());
687 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 687, __PRETTY_FUNCTION__))
;
688
689 // The number of elements can be have an arbitrary integer type;
690 // essentially, we need to multiply it by a constant factor, add a
691 // cookie size, and verify that the result is representable as a
692 // size_t. That's just a gloss, though, and it's wrong in one
693 // important way: if the count is negative, it's an error even if
694 // the cookie size would bring the total size >= 0.
695 bool isSigned
696 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
697 llvm::IntegerType *numElementsType
698 = cast<llvm::IntegerType>(numElements->getType());
699 unsigned numElementsWidth = numElementsType->getBitWidth();
700
701 // Compute the constant factor.
702 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
703 while (const ConstantArrayType *CAT
704 = CGF.getContext().getAsConstantArrayType(type)) {
705 type = CAT->getElementType();
706 arraySizeMultiplier *= CAT->getSize();
707 }
708
709 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
710 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
711 typeSizeMultiplier *= arraySizeMultiplier;
712
713 // This will be a size_t.
714 llvm::Value *size;
715
716 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
717 // Don't bloat the -O0 code.
718 if (llvm::ConstantInt *numElementsC =
719 dyn_cast<llvm::ConstantInt>(numElements)) {
720 const llvm::APInt &count = numElementsC->getValue();
721
722 bool hasAnyOverflow = false;
723
724 // If 'count' was a negative number, it's an overflow.
725 if (isSigned && count.isNegative())
726 hasAnyOverflow = true;
727
728 // We want to do all this arithmetic in size_t. If numElements is
729 // wider than that, check whether it's already too big, and if so,
730 // overflow.
731 else if (numElementsWidth > sizeWidth &&
732 numElementsWidth - sizeWidth > count.countLeadingZeros())
733 hasAnyOverflow = true;
734
735 // Okay, compute a count at the right width.
736 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
737
738 // If there is a brace-initializer, we cannot allocate fewer elements than
739 // there are initializers. If we do, that's treated like an overflow.
740 if (adjustedCount.ult(minElements))
741 hasAnyOverflow = true;
742
743 // Scale numElements by that. This might overflow, but we don't
744 // care because it only overflows if allocationSize does, too, and
745 // if that overflows then we shouldn't use this.
746 numElements = llvm::ConstantInt::get(CGF.SizeTy,
747 adjustedCount * arraySizeMultiplier);
748
749 // Compute the size before cookie, and track whether it overflowed.
750 bool overflow;
751 llvm::APInt allocationSize
752 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
753 hasAnyOverflow |= overflow;
754
755 // Add in the cookie, and check whether it's overflowed.
756 if (cookieSize != 0) {
757 // Save the current size without a cookie. This shouldn't be
758 // used if there was overflow.
759 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
760
761 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
762 hasAnyOverflow |= overflow;
763 }
764
765 // On overflow, produce a -1 so operator new will fail.
766 if (hasAnyOverflow) {
767 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
768 } else {
769 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
770 }
771
772 // Otherwise, we might need to use the overflow intrinsics.
773 } else {
774 // There are up to five conditions we need to test for:
775 // 1) if isSigned, we need to check whether numElements is negative;
776 // 2) if numElementsWidth > sizeWidth, we need to check whether
777 // numElements is larger than something representable in size_t;
778 // 3) if minElements > 0, we need to check whether numElements is smaller
779 // than that.
780 // 4) we need to compute
781 // sizeWithoutCookie := numElements * typeSizeMultiplier
782 // and check whether it overflows; and
783 // 5) if we need a cookie, we need to compute
784 // size := sizeWithoutCookie + cookieSize
785 // and check whether it overflows.
786
787 llvm::Value *hasOverflow = nullptr;
788
789 // If numElementsWidth > sizeWidth, then one way or another, we're
790 // going to have to do a comparison for (2), and this happens to
791 // take care of (1), too.
792 if (numElementsWidth > sizeWidth) {
793 llvm::APInt threshold(numElementsWidth, 1);
794 threshold <<= sizeWidth;
795
796 llvm::Value *thresholdV
797 = llvm::ConstantInt::get(numElementsType, threshold);
798
799 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
800 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
801
802 // Otherwise, if we're signed, we want to sext up to size_t.
803 } else if (isSigned) {
804 if (numElementsWidth < sizeWidth)
805 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
806
807 // If there's a non-1 type size multiplier, then we can do the
808 // signedness check at the same time as we do the multiply
809 // because a negative number times anything will cause an
810 // unsigned overflow. Otherwise, we have to do it here. But at least
811 // in this case, we can subsume the >= minElements check.
812 if (typeSizeMultiplier == 1)
813 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
814 llvm::ConstantInt::get(CGF.SizeTy, minElements));
815
816 // Otherwise, zext up to size_t if necessary.
817 } else if (numElementsWidth < sizeWidth) {
818 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
819 }
820
821 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 821, __PRETTY_FUNCTION__))
;
822
823 if (minElements) {
824 // Don't allow allocation of fewer elements than we have initializers.
825 if (!hasOverflow) {
826 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
827 llvm::ConstantInt::get(CGF.SizeTy, minElements));
828 } else if (numElementsWidth > sizeWidth) {
829 // The other existing overflow subsumes this check.
830 // We do an unsigned comparison, since any signed value < -1 is
831 // taken care of either above or below.
832 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
833 CGF.Builder.CreateICmpULT(numElements,
834 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
835 }
836 }
837
838 size = numElements;
839
840 // Multiply by the type size if necessary. This multiplier
841 // includes all the factors for nested arrays.
842 //
843 // This step also causes numElements to be scaled up by the
844 // nested-array factor if necessary. Overflow on this computation
845 // can be ignored because the result shouldn't be used if
846 // allocation fails.
847 if (typeSizeMultiplier != 1) {
848 llvm::Function *umul_with_overflow
849 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
850
851 llvm::Value *tsmV =
852 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
853 llvm::Value *result =
854 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
855
856 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
857 if (hasOverflow)
858 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
859 else
860 hasOverflow = overflowed;
861
862 size = CGF.Builder.CreateExtractValue(result, 0);
863
864 // Also scale up numElements by the array size multiplier.
865 if (arraySizeMultiplier != 1) {
866 // If the base element type size is 1, then we can re-use the
867 // multiply we just did.
868 if (typeSize.isOne()) {
869 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 869, __PRETTY_FUNCTION__))
;
870 numElements = size;
871
872 // Otherwise we need a separate multiply.
873 } else {
874 llvm::Value *asmV =
875 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
876 numElements = CGF.Builder.CreateMul(numElements, asmV);
877 }
878 }
879 } else {
880 // numElements doesn't need to be scaled.
881 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 881, __PRETTY_FUNCTION__))
;
882 }
883
884 // Add in the cookie size if necessary.
885 if (cookieSize != 0) {
886 sizeWithoutCookie = size;
887
888 llvm::Function *uadd_with_overflow
889 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
890
891 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
892 llvm::Value *result =
893 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
894
895 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
896 if (hasOverflow)
897 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
898 else
899 hasOverflow = overflowed;
900
901 size = CGF.Builder.CreateExtractValue(result, 0);
902 }
903
904 // If we had any possibility of dynamic overflow, make a select to
905 // overwrite 'size' with an all-ones value, which should cause
906 // operator new to throw.
907 if (hasOverflow)
908 size = CGF.Builder.CreateSelect(hasOverflow,
909 llvm::Constant::getAllOnesValue(CGF.SizeTy),
910 size);
911 }
912
913 if (cookieSize == 0)
914 sizeWithoutCookie = size;
915 else
916 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 916, __PRETTY_FUNCTION__))
;
917
918 return size;
919}
920
921static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
922 QualType AllocType, Address NewPtr,
923 AggValueSlot::Overlap_t MayOverlap) {
924 // FIXME: Refactor with EmitExprAsInit.
925 switch (CGF.getEvaluationKind(AllocType)) {
926 case TEK_Scalar:
927 CGF.EmitScalarInit(Init, nullptr,
928 CGF.MakeAddrLValue(NewPtr, AllocType), false);
929 return;
930 case TEK_Complex:
931 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
932 /*isInit*/ true);
933 return;
934 case TEK_Aggregate: {
935 AggValueSlot Slot
936 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
937 AggValueSlot::IsDestructed,
938 AggValueSlot::DoesNotNeedGCBarriers,
939 AggValueSlot::IsNotAliased,
940 MayOverlap, AggValueSlot::IsNotZeroed,
941 AggValueSlot::IsSanitizerChecked);
942 CGF.EmitAggExpr(Init, Slot);
943 return;
944 }
945 }
946 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 946)
;
947}
948
949void CodeGenFunction::EmitNewArrayInitializer(
950 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
951 Address BeginPtr, llvm::Value *NumElements,
952 llvm::Value *AllocSizeWithoutCookie) {
953 // If we have a type with trivial initialization and no initializer,
954 // there's nothing to do.
955 if (!E->hasInitializer())
956 return;
957
958 Address CurPtr = BeginPtr;
959
960 unsigned InitListElements = 0;
961
962 const Expr *Init = E->getInitializer();
963 Address EndOfInit = Address::invalid();
964 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
965 EHScopeStack::stable_iterator Cleanup;
966 llvm::Instruction *CleanupDominator = nullptr;
967
968 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
969 CharUnits ElementAlign =
970 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
971
972 // Attempt to perform zero-initialization using memset.
973 auto TryMemsetInitialization = [&]() -> bool {
974 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
975 // we can initialize with a memset to -1.
976 if (!CGM.getTypes().isZeroInitializable(ElementType))
977 return false;
978
979 // Optimization: since zero initialization will just set the memory
980 // to all zeroes, generate a single memset to do it in one shot.
981
982 // Subtract out the size of any elements we've already initialized.
983 auto *RemainingSize = AllocSizeWithoutCookie;
984 if (InitListElements) {
985 // We know this can't overflow; we check this when doing the allocation.
986 auto *InitializedSize = llvm::ConstantInt::get(
987 RemainingSize->getType(),
988 getContext().getTypeSizeInChars(ElementType).getQuantity() *
989 InitListElements);
990 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
991 }
992
993 // Create the memset.
994 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
995 return true;
996 };
997
998 // If the initializer is an initializer list, first do the explicit elements.
999 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1000 // Initializing from a (braced) string literal is a special case; the init
1001 // list element does not initialize a (single) array element.
1002 if (ILE->isStringLiteralInit()) {
1003 // Initialize the initial portion of length equal to that of the string
1004 // literal. The allocation must be for at least this much; we emitted a
1005 // check for that earlier.
1006 AggValueSlot Slot =
1007 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1008 AggValueSlot::IsDestructed,
1009 AggValueSlot::DoesNotNeedGCBarriers,
1010 AggValueSlot::IsNotAliased,
1011 AggValueSlot::DoesNotOverlap,
1012 AggValueSlot::IsNotZeroed,
1013 AggValueSlot::IsSanitizerChecked);
1014 EmitAggExpr(ILE->getInit(0), Slot);
1015
1016 // Move past these elements.
1017 InitListElements =
1018 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1019 ->getSize().getZExtValue();
1020 CurPtr =
1021 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1022 Builder.getSize(InitListElements),
1023 "string.init.end"),
1024 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1025 ElementSize));
1026
1027 // Zero out the rest, if any remain.
1028 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1029 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1030 bool OK = TryMemsetInitialization();
1031 (void)OK;
1032 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1032, __PRETTY_FUNCTION__))
;
1033 }
1034 return;
1035 }
1036
1037 InitListElements = ILE->getNumInits();
1038
1039 // If this is a multi-dimensional array new, we will initialize multiple
1040 // elements with each init list element.
1041 QualType AllocType = E->getAllocatedType();
1042 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1043 AllocType->getAsArrayTypeUnsafe())) {
1044 ElementTy = ConvertTypeForMem(AllocType);
1045 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1046 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1047 }
1048
1049 // Enter a partial-destruction Cleanup if necessary.
1050 if (needsEHCleanup(DtorKind)) {
1051 // In principle we could tell the Cleanup where we are more
1052 // directly, but the control flow can get so varied here that it
1053 // would actually be quite complex. Therefore we go through an
1054 // alloca.
1055 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1056 "array.init.end");
1057 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1058 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1059 ElementType, ElementAlign,
1060 getDestroyer(DtorKind));
1061 Cleanup = EHStack.stable_begin();
1062 }
1063
1064 CharUnits StartAlign = CurPtr.getAlignment();
1065 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1066 // Tell the cleanup that it needs to destroy up to this
1067 // element. TODO: some of these stores can be trivially
1068 // observed to be unnecessary.
1069 if (EndOfInit.isValid()) {
1070 auto FinishedPtr =
1071 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1072 Builder.CreateStore(FinishedPtr, EndOfInit);
1073 }
1074 // FIXME: If the last initializer is an incomplete initializer list for
1075 // an array, and we have an array filler, we can fold together the two
1076 // initialization loops.
1077 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1078 ILE->getInit(i)->getType(), CurPtr,
1079 AggValueSlot::DoesNotOverlap);
1080 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1081 Builder.getSize(1),
1082 "array.exp.next"),
1083 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1084 }
1085
1086 // The remaining elements are filled with the array filler expression.
1087 Init = ILE->getArrayFiller();
1088
1089 // Extract the initializer for the individual array elements by pulling
1090 // out the array filler from all the nested initializer lists. This avoids
1091 // generating a nested loop for the initialization.
1092 while (Init && Init->getType()->isConstantArrayType()) {
1093 auto *SubILE = dyn_cast<InitListExpr>(Init);
1094 if (!SubILE)
1095 break;
1096 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1096, __PRETTY_FUNCTION__))
;
1097 Init = SubILE->getArrayFiller();
1098 }
1099
1100 // Switch back to initializing one base element at a time.
1101 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1102 }
1103
1104 // If all elements have already been initialized, skip any further
1105 // initialization.
1106 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1107 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1108 // If there was a Cleanup, deactivate it.
1109 if (CleanupDominator)
1110 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1111 return;
1112 }
1113
1114 assert(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1114, __PRETTY_FUNCTION__))
;
1115
1116 // If this is a constructor call, try to optimize it out, and failing that
1117 // emit a single loop to initialize all remaining elements.
1118 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1119 CXXConstructorDecl *Ctor = CCE->getConstructor();
1120 if (Ctor->isTrivial()) {
1121 // If new expression did not specify value-initialization, then there
1122 // is no initialization.
1123 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1124 return;
1125
1126 if (TryMemsetInitialization())
1127 return;
1128 }
1129
1130 // Store the new Cleanup position for irregular Cleanups.
1131 //
1132 // FIXME: Share this cleanup with the constructor call emission rather than
1133 // having it create a cleanup of its own.
1134 if (EndOfInit.isValid())
1135 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1136
1137 // Emit a constructor call loop to initialize the remaining elements.
1138 if (InitListElements)
1139 NumElements = Builder.CreateSub(
1140 NumElements,
1141 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1142 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1143 /*NewPointerIsChecked*/true,
1144 CCE->requiresZeroInitialization());
1145 return;
1146 }
1147
1148 // If this is value-initialization, we can usually use memset.
1149 ImplicitValueInitExpr IVIE(ElementType);
1150 if (isa<ImplicitValueInitExpr>(Init)) {
1151 if (TryMemsetInitialization())
1152 return;
1153
1154 // Switch to an ImplicitValueInitExpr for the element type. This handles
1155 // only one case: multidimensional array new of pointers to members. In
1156 // all other cases, we already have an initializer for the array element.
1157 Init = &IVIE;
1158 }
1159
1160 // At this point we should have found an initializer for the individual
1161 // elements of the array.
1162 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1163, __PRETTY_FUNCTION__))
1163 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1163, __PRETTY_FUNCTION__))
;
1164
1165 // If we have an empty initializer list, we can usually use memset.
1166 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1167 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1168 return;
1169
1170 // If we have a struct whose every field is value-initialized, we can
1171 // usually use memset.
1172 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1173 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1174 if (RType->getDecl()->isStruct()) {
1175 unsigned NumElements = 0;
1176 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1177 NumElements = CXXRD->getNumBases();
1178 for (auto *Field : RType->getDecl()->fields())
1179 if (!Field->isUnnamedBitfield())
1180 ++NumElements;
1181 // FIXME: Recurse into nested InitListExprs.
1182 if (ILE->getNumInits() == NumElements)
1183 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1184 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1185 --NumElements;
1186 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1187 return;
1188 }
1189 }
1190 }
1191
1192 // Create the loop blocks.
1193 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1194 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1195 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1196
1197 // Find the end of the array, hoisted out of the loop.
1198 llvm::Value *EndPtr =
1199 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1200
1201 // If the number of elements isn't constant, we have to now check if there is
1202 // anything left to initialize.
1203 if (!ConstNum) {
1204 llvm::Value *IsEmpty =
1205 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1206 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1207 }
1208
1209 // Enter the loop.
1210 EmitBlock(LoopBB);
1211
1212 // Set up the current-element phi.
1213 llvm::PHINode *CurPtrPhi =
1214 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1215 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1216
1217 CurPtr = Address(CurPtrPhi, ElementAlign);
1218
1219 // Store the new Cleanup position for irregular Cleanups.
1220 if (EndOfInit.isValid())
1221 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1222
1223 // Enter a partial-destruction Cleanup if necessary.
1224 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1225 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1226 ElementType, ElementAlign,
1227 getDestroyer(DtorKind));
1228 Cleanup = EHStack.stable_begin();
1229 CleanupDominator = Builder.CreateUnreachable();
1230 }
1231
1232 // Emit the initializer into this element.
1233 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1234 AggValueSlot::DoesNotOverlap);
1235
1236 // Leave the Cleanup if we entered one.
1237 if (CleanupDominator) {
1238 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1239 CleanupDominator->eraseFromParent();
1240 }
1241
1242 // Advance to the next element by adjusting the pointer type as necessary.
1243 llvm::Value *NextPtr =
1244 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1245 "array.next");
1246
1247 // Check whether we've gotten to the end of the array and, if so,
1248 // exit the loop.
1249 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1250 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1251 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1252
1253 EmitBlock(ContBB);
1254}
1255
1256static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1257 QualType ElementType, llvm::Type *ElementTy,
1258 Address NewPtr, llvm::Value *NumElements,
1259 llvm::Value *AllocSizeWithoutCookie) {
1260 ApplyDebugLocation DL(CGF, E);
1261 if (E->isArray())
1262 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1263 AllocSizeWithoutCookie);
1264 else if (const Expr *Init = E->getInitializer())
1265 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1266 AggValueSlot::DoesNotOverlap);
1267}
1268
1269/// Emit a call to an operator new or operator delete function, as implicitly
1270/// created by new-expressions and delete-expressions.
1271static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1272 const FunctionDecl *CalleeDecl,
1273 const FunctionProtoType *CalleeType,
1274 const CallArgList &Args) {
1275 llvm::CallBase *CallOrInvoke;
1276 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1277 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1278 RValue RV =
1279 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1280 Args, CalleeType, /*chainCall=*/false),
1281 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1282
1283 /// C++1y [expr.new]p10:
1284 /// [In a new-expression,] an implementation is allowed to omit a call
1285 /// to a replaceable global allocation function.
1286 ///
1287 /// We model such elidable calls with the 'builtin' attribute.
1288 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1289 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1290 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1291 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1292 llvm::Attribute::Builtin);
1293 }
1294
1295 return RV;
1296}
1297
1298RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1299 const CallExpr *TheCall,
1300 bool IsDelete) {
1301 CallArgList Args;
1302 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1303 // Find the allocation or deallocation function that we're calling.
1304 ASTContext &Ctx = getContext();
1305 DeclarationName Name = Ctx.DeclarationNames
1306 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1307
1308 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1309 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1310 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1311 return EmitNewDeleteCall(*this, FD, Type, Args);
1312 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1312)
;
1313}
1314
1315namespace {
1316/// The parameters to pass to a usual operator delete.
1317struct UsualDeleteParams {
1318 bool DestroyingDelete = false;
1319 bool Size = false;
1320 bool Alignment = false;
1321};
1322}
1323
1324static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1325 UsualDeleteParams Params;
1326
1327 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1328 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1329
1330 // The first argument is always a void*.
1331 ++AI;
1332
1333 // The next parameter may be a std::destroying_delete_t.
1334 if (FD->isDestroyingOperatorDelete()) {
1335 Params.DestroyingDelete = true;
1336 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1336, __PRETTY_FUNCTION__))
;
1337 ++AI;
1338 }
1339
1340 // Figure out what other parameters we should be implicitly passing.
1341 if (AI != AE && (*AI)->isIntegerType()) {
1342 Params.Size = true;
1343 ++AI;
1344 }
1345
1346 if (AI != AE && (*AI)->isAlignValT()) {
1347 Params.Alignment = true;
1348 ++AI;
1349 }
1350
1351 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1351, __PRETTY_FUNCTION__))
;
1352 return Params;
1353}
1354
1355namespace {
1356 /// A cleanup to call the given 'operator delete' function upon abnormal
1357 /// exit from a new expression. Templated on a traits type that deals with
1358 /// ensuring that the arguments dominate the cleanup if necessary.
1359 template<typename Traits>
1360 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1361 /// Type used to hold llvm::Value*s.
1362 typedef typename Traits::ValueTy ValueTy;
1363 /// Type used to hold RValues.
1364 typedef typename Traits::RValueTy RValueTy;
1365 struct PlacementArg {
1366 RValueTy ArgValue;
1367 QualType ArgType;
1368 };
1369
1370 unsigned NumPlacementArgs : 31;
1371 unsigned PassAlignmentToPlacementDelete : 1;
1372 const FunctionDecl *OperatorDelete;
1373 ValueTy Ptr;
1374 ValueTy AllocSize;
1375 CharUnits AllocAlign;
1376
1377 PlacementArg *getPlacementArgs() {
1378 return reinterpret_cast<PlacementArg *>(this + 1);
1379 }
1380
1381 public:
1382 static size_t getExtraSize(size_t NumPlacementArgs) {
1383 return NumPlacementArgs * sizeof(PlacementArg);
1384 }
1385
1386 CallDeleteDuringNew(size_t NumPlacementArgs,
1387 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1388 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1389 CharUnits AllocAlign)
1390 : NumPlacementArgs(NumPlacementArgs),
1391 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1392 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1393 AllocAlign(AllocAlign) {}
1394
1395 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1396 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1396, __PRETTY_FUNCTION__))
;
1397 getPlacementArgs()[I] = {Arg, Type};
1398 }
1399
1400 void Emit(CodeGenFunction &CGF, Flags flags) override {
1401 const FunctionProtoType *FPT =
1402 OperatorDelete->getType()->getAs<FunctionProtoType>();
1403 CallArgList DeleteArgs;
1404
1405 // The first argument is always a void* (or C* for a destroying operator
1406 // delete for class type C).
1407 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1408
1409 // Figure out what other parameters we should be implicitly passing.
1410 UsualDeleteParams Params;
1411 if (NumPlacementArgs) {
1412 // A placement deallocation function is implicitly passed an alignment
1413 // if the placement allocation function was, but is never passed a size.
1414 Params.Alignment = PassAlignmentToPlacementDelete;
1415 } else {
1416 // For a non-placement new-expression, 'operator delete' can take a
1417 // size and/or an alignment if it has the right parameters.
1418 Params = getUsualDeleteParams(OperatorDelete);
1419 }
1420
1421 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1422, __PRETTY_FUNCTION__))
1422 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1422, __PRETTY_FUNCTION__))
;
1423
1424 // The second argument can be a std::size_t (for non-placement delete).
1425 if (Params.Size)
1426 DeleteArgs.add(Traits::get(CGF, AllocSize),
1427 CGF.getContext().getSizeType());
1428
1429 // The next (second or third) argument can be a std::align_val_t, which
1430 // is an enum whose underlying type is std::size_t.
1431 // FIXME: Use the right type as the parameter type. Note that in a call
1432 // to operator delete(size_t, ...), we may not have it available.
1433 if (Params.Alignment)
1434 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1435 CGF.SizeTy, AllocAlign.getQuantity())),
1436 CGF.getContext().getSizeType());
1437
1438 // Pass the rest of the arguments, which must match exactly.
1439 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1440 auto Arg = getPlacementArgs()[I];
1441 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1442 }
1443
1444 // Call 'operator delete'.
1445 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1446 }
1447 };
1448}
1449
1450/// Enter a cleanup to call 'operator delete' if the initializer in a
1451/// new-expression throws.
1452static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1453 const CXXNewExpr *E,
1454 Address NewPtr,
1455 llvm::Value *AllocSize,
1456 CharUnits AllocAlign,
1457 const CallArgList &NewArgs) {
1458 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1459
1460 // If we're not inside a conditional branch, then the cleanup will
1461 // dominate and we can do the easier (and more efficient) thing.
1462 if (!CGF.isInConditionalBranch()) {
1463 struct DirectCleanupTraits {
1464 typedef llvm::Value *ValueTy;
1465 typedef RValue RValueTy;
1466 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1467 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1468 };
1469
1470 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1471
1472 DirectCleanup *Cleanup = CGF.EHStack
1473 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1474 E->getNumPlacementArgs(),
1475 E->getOperatorDelete(),
1476 NewPtr.getPointer(),
1477 AllocSize,
1478 E->passAlignment(),
1479 AllocAlign);
1480 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1481 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1482 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1483 }
1484
1485 return;
1486 }
1487
1488 // Otherwise, we need to save all this stuff.
1489 DominatingValue<RValue>::saved_type SavedNewPtr =
1490 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1491 DominatingValue<RValue>::saved_type SavedAllocSize =
1492 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1493
1494 struct ConditionalCleanupTraits {
1495 typedef DominatingValue<RValue>::saved_type ValueTy;
1496 typedef DominatingValue<RValue>::saved_type RValueTy;
1497 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1498 return V.restore(CGF);
1499 }
1500 };
1501 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1502
1503 ConditionalCleanup *Cleanup = CGF.EHStack
1504 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1505 E->getNumPlacementArgs(),
1506 E->getOperatorDelete(),
1507 SavedNewPtr,
1508 SavedAllocSize,
1509 E->passAlignment(),
1510 AllocAlign);
1511 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1512 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1513 Cleanup->setPlacementArg(
1514 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1515 }
1516
1517 CGF.initFullExprCleanup();
1518}
1519
1520llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1521 // The element type being allocated.
1522 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1523
1524 // 1. Build a call to the allocation function.
1525 FunctionDecl *allocator = E->getOperatorNew();
1526
1527 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1528 unsigned minElements = 0;
1529 if (E->isArray() && E->hasInitializer()) {
1530 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1531 if (ILE && ILE->isStringLiteralInit())
1532 minElements =
1533 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1534 ->getSize().getZExtValue();
1535 else if (ILE)
1536 minElements = ILE->getNumInits();
1537 }
1538
1539 llvm::Value *numElements = nullptr;
1540 llvm::Value *allocSizeWithoutCookie = nullptr;
1541 llvm::Value *allocSize =
1542 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1543 allocSizeWithoutCookie);
1544 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1545
1546 // Emit the allocation call. If the allocator is a global placement
1547 // operator, just "inline" it directly.
1548 Address allocation = Address::invalid();
1549 CallArgList allocatorArgs;
1550 if (allocator->isReservedGlobalPlacementOperator()) {
1551 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1551, __PRETTY_FUNCTION__))
;
1552 const Expr *arg = *E->placement_arguments().begin();
1553
1554 LValueBaseInfo BaseInfo;
1555 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1556
1557 // The pointer expression will, in many cases, be an opaque void*.
1558 // In these cases, discard the computed alignment and use the
1559 // formal alignment of the allocated type.
1560 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1561 allocation = Address(allocation.getPointer(), allocAlign);
1562
1563 // Set up allocatorArgs for the call to operator delete if it's not
1564 // the reserved global operator.
1565 if (E->getOperatorDelete() &&
1566 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1567 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1568 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1569 }
1570
1571 } else {
1572 const FunctionProtoType *allocatorType =
1573 allocator->getType()->castAs<FunctionProtoType>();
1574 unsigned ParamsToSkip = 0;
1575
1576 // The allocation size is the first argument.
1577 QualType sizeType = getContext().getSizeType();
1578 allocatorArgs.add(RValue::get(allocSize), sizeType);
1579 ++ParamsToSkip;
1580
1581 if (allocSize != allocSizeWithoutCookie) {
1582 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1583 allocAlign = std::max(allocAlign, cookieAlign);
1584 }
1585
1586 // The allocation alignment may be passed as the second argument.
1587 if (E->passAlignment()) {
1588 QualType AlignValT = sizeType;
1589 if (allocatorType->getNumParams() > 1) {
1590 AlignValT = allocatorType->getParamType(1);
1591 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1594, __PRETTY_FUNCTION__))
1592 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1594, __PRETTY_FUNCTION__))
1593 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1594, __PRETTY_FUNCTION__))
1594 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1594, __PRETTY_FUNCTION__))
;
1595 ++ParamsToSkip;
1596 } else {
1597 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1598 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1598, __PRETTY_FUNCTION__))
;
1599 }
1600 allocatorArgs.add(
1601 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1602 AlignValT);
1603 }
1604
1605 // FIXME: Why do we not pass a CalleeDecl here?
1606 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1607 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1608
1609 RValue RV =
1610 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1611
1612 // If this was a call to a global replaceable allocation function that does
1613 // not take an alignment argument, the allocator is known to produce
1614 // storage that's suitably aligned for any object that fits, up to a known
1615 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1616 CharUnits allocationAlign = allocAlign;
1617 if (!E->passAlignment() &&
1618 allocator->isReplaceableGlobalAllocationFunction()) {
1619 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1620 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1621 allocationAlign = std::max(
1622 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1623 }
1624
1625 allocation = Address(RV.getScalarVal(), allocationAlign);
1626 }
1627
1628 // Emit a null check on the allocation result if the allocation
1629 // function is allowed to return null (because it has a non-throwing
1630 // exception spec or is the reserved placement new) and we have an
1631 // interesting initializer will be running sanitizers on the initialization.
1632 bool nullCheck = E->shouldNullCheckAllocation() &&
1633 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1634 sanitizePerformTypeCheck());
1635
1636 llvm::BasicBlock *nullCheckBB = nullptr;
1637 llvm::BasicBlock *contBB = nullptr;
1638
1639 // The null-check means that the initializer is conditionally
1640 // evaluated.
1641 ConditionalEvaluation conditional(*this);
1642
1643 if (nullCheck) {
1644 conditional.begin(*this);
1645
1646 nullCheckBB = Builder.GetInsertBlock();
1647 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1648 contBB = createBasicBlock("new.cont");
1649
1650 llvm::Value *isNull =
1651 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1652 Builder.CreateCondBr(isNull, contBB, notNullBB);
1653 EmitBlock(notNullBB);
1654 }
1655
1656 // If there's an operator delete, enter a cleanup to call it if an
1657 // exception is thrown.
1658 EHScopeStack::stable_iterator operatorDeleteCleanup;
1659 llvm::Instruction *cleanupDominator = nullptr;
1660 if (E->getOperatorDelete() &&
1661 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1662 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1663 allocatorArgs);
1664 operatorDeleteCleanup = EHStack.stable_begin();
1665 cleanupDominator = Builder.CreateUnreachable();
1666 }
1667
1668 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1669, __PRETTY_FUNCTION__))
1669 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1669, __PRETTY_FUNCTION__))
;
1670 if (allocSize != allocSizeWithoutCookie) {
1671 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1673 numElements,
1674 E, allocType);
1675 }
1676
1677 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1678 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1679
1680 // Passing pointer through launder.invariant.group to avoid propagation of
1681 // vptrs information which may be included in previous type.
1682 // To not break LTO with different optimizations levels, we do it regardless
1683 // of optimization level.
1684 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1685 allocator->isReservedGlobalPlacementOperator())
1686 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1687 result.getAlignment());
1688
1689 // Emit sanitizer checks for pointer value now, so that in the case of an
1690 // array it was checked only once and not at each constructor call. We may
1691 // have already checked that the pointer is non-null.
1692 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1693 // we'll null check the wrong pointer here.
1694 SanitizerSet SkippedChecks;
1695 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1696 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1697 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1698 result.getPointer(), allocType, result.getAlignment(),
1699 SkippedChecks, numElements);
1700
1701 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1702 allocSizeWithoutCookie);
1703 if (E->isArray()) {
1704 // NewPtr is a pointer to the base element type. If we're
1705 // allocating an array of arrays, we'll need to cast back to the
1706 // array pointer type.
1707 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1708 if (result.getType() != resultType)
1709 result = Builder.CreateBitCast(result, resultType);
1710 }
1711
1712 // Deactivate the 'operator delete' cleanup if we finished
1713 // initialization.
1714 if (operatorDeleteCleanup.isValid()) {
1715 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1716 cleanupDominator->eraseFromParent();
1717 }
1718
1719 llvm::Value *resultPtr = result.getPointer();
1720 if (nullCheck) {
1721 conditional.end(*this);
1722
1723 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1724 EmitBlock(contBB);
1725
1726 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1727 PHI->addIncoming(resultPtr, notNullBB);
1728 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1729 nullCheckBB);
1730
1731 resultPtr = PHI;
1732 }
1733
1734 return resultPtr;
1735}
1736
1737void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1738 llvm::Value *Ptr, QualType DeleteTy,
1739 llvm::Value *NumElements,
1740 CharUnits CookieSize) {
1741 assert((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1742, __PRETTY_FUNCTION__))
1742 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1742, __PRETTY_FUNCTION__))
;
1743
1744 const FunctionProtoType *DeleteFTy =
1745 DeleteFD->getType()->getAs<FunctionProtoType>();
1746
1747 CallArgList DeleteArgs;
1748
1749 auto Params = getUsualDeleteParams(DeleteFD);
1750 auto ParamTypeIt = DeleteFTy->param_type_begin();
1751
1752 // Pass the pointer itself.
1753 QualType ArgTy = *ParamTypeIt++;
1754 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1755 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1756
1757 // Pass the std::destroying_delete tag if present.
1758 if (Params.DestroyingDelete) {
1759 QualType DDTag = *ParamTypeIt++;
1760 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1761 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1762 DeleteArgs.add(RValue::get(V), DDTag);
1763 }
1764
1765 // Pass the size if the delete function has a size_t parameter.
1766 if (Params.Size) {
1767 QualType SizeType = *ParamTypeIt++;
1768 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1769 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1770 DeleteTypeSize.getQuantity());
1771
1772 // For array new, multiply by the number of elements.
1773 if (NumElements)
1774 Size = Builder.CreateMul(Size, NumElements);
1775
1776 // If there is a cookie, add the cookie size.
1777 if (!CookieSize.isZero())
1778 Size = Builder.CreateAdd(
1779 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1780
1781 DeleteArgs.add(RValue::get(Size), SizeType);
1782 }
1783
1784 // Pass the alignment if the delete function has an align_val_t parameter.
1785 if (Params.Alignment) {
1786 QualType AlignValType = *ParamTypeIt++;
1787 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1788 getContext().getTypeAlignIfKnown(DeleteTy));
1789 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1790 DeleteTypeAlign.getQuantity());
1791 DeleteArgs.add(RValue::get(Align), AlignValType);
1792 }
1793
1794 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1795, __PRETTY_FUNCTION__))
1795 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1795, __PRETTY_FUNCTION__))
;
1796
1797 // Emit the call to delete.
1798 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1799}
1800
1801namespace {
1802 /// Calls the given 'operator delete' on a single object.
1803 struct CallObjectDelete final : EHScopeStack::Cleanup {
1804 llvm::Value *Ptr;
1805 const FunctionDecl *OperatorDelete;
1806 QualType ElementType;
1807
1808 CallObjectDelete(llvm::Value *Ptr,
1809 const FunctionDecl *OperatorDelete,
1810 QualType ElementType)
1811 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1812
1813 void Emit(CodeGenFunction &CGF, Flags flags) override {
1814 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1815 }
1816 };
1817}
1818
1819void
1820CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1821 llvm::Value *CompletePtr,
1822 QualType ElementType) {
1823 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1824 OperatorDelete, ElementType);
1825}
1826
1827/// Emit the code for deleting a single object with a destroying operator
1828/// delete. If the element type has a non-virtual destructor, Ptr has already
1829/// been converted to the type of the parameter of 'operator delete'. Otherwise
1830/// Ptr points to an object of the static type.
1831static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1832 const CXXDeleteExpr *DE, Address Ptr,
1833 QualType ElementType) {
1834 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1835 if (Dtor && Dtor->isVirtual())
1836 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1837 Dtor);
1838 else
1839 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1840}
1841
1842/// Emit the code for deleting a single object.
1843static void EmitObjectDelete(CodeGenFunction &CGF,
1844 const CXXDeleteExpr *DE,
1845 Address Ptr,
1846 QualType ElementType) {
1847 // C++11 [expr.delete]p3:
1848 // If the static type of the object to be deleted is different from its
1849 // dynamic type, the static type shall be a base class of the dynamic type
1850 // of the object to be deleted and the static type shall have a virtual
1851 // destructor or the behavior is undefined.
1852 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1853 DE->getExprLoc(), Ptr.getPointer(),
1854 ElementType);
1855
1856 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1857 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1857, __PRETTY_FUNCTION__))
;
1858
1859 // Find the destructor for the type, if applicable. If the
1860 // destructor is virtual, we'll just emit the vcall and return.
1861 const CXXDestructorDecl *Dtor = nullptr;
1862 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1863 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1864 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1865 Dtor = RD->getDestructor();
1866
1867 if (Dtor->isVirtual()) {
1868 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1869 Dtor);
1870 return;
1871 }
1872 }
1873 }
1874
1875 // Make sure that we call delete even if the dtor throws.
1876 // This doesn't have to a conditional cleanup because we're going
1877 // to pop it off in a second.
1878 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1879 Ptr.getPointer(),
1880 OperatorDelete, ElementType);
1881
1882 if (Dtor)
1883 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1884 /*ForVirtualBase=*/false,
1885 /*Delegating=*/false,
1886 Ptr);
1887 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1888 switch (Lifetime) {
1889 case Qualifiers::OCL_None:
1890 case Qualifiers::OCL_ExplicitNone:
1891 case Qualifiers::OCL_Autoreleasing:
1892 break;
1893
1894 case Qualifiers::OCL_Strong:
1895 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1896 break;
1897
1898 case Qualifiers::OCL_Weak:
1899 CGF.EmitARCDestroyWeak(Ptr);
1900 break;
1901 }
1902 }
1903
1904 CGF.PopCleanupBlock();
1905}
1906
1907namespace {
1908 /// Calls the given 'operator delete' on an array of objects.
1909 struct CallArrayDelete final : EHScopeStack::Cleanup {
1910 llvm::Value *Ptr;
1911 const FunctionDecl *OperatorDelete;
1912 llvm::Value *NumElements;
1913 QualType ElementType;
1914 CharUnits CookieSize;
1915
1916 CallArrayDelete(llvm::Value *Ptr,
1917 const FunctionDecl *OperatorDelete,
1918 llvm::Value *NumElements,
1919 QualType ElementType,
1920 CharUnits CookieSize)
1921 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1922 ElementType(ElementType), CookieSize(CookieSize) {}
1923
1924 void Emit(CodeGenFunction &CGF, Flags flags) override {
1925 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1926 CookieSize);
1927 }
1928 };
1929}
1930
1931/// Emit the code for deleting an array of objects.
1932static void EmitArrayDelete(CodeGenFunction &CGF,
1933 const CXXDeleteExpr *E,
1934 Address deletedPtr,
1935 QualType elementType) {
1936 llvm::Value *numElements = nullptr;
1937 llvm::Value *allocatedPtr = nullptr;
1938 CharUnits cookieSize;
1939 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1940 numElements, allocatedPtr, cookieSize);
1941
1942 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1942, __PRETTY_FUNCTION__))
;
1943
1944 // Make sure that we call delete even if one of the dtors throws.
1945 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1946 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1947 allocatedPtr, operatorDelete,
1948 numElements, elementType,
1949 cookieSize);
1950
1951 // Destroy the elements.
1952 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1953 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 1953, __PRETTY_FUNCTION__))
;
1954
1955 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1956 CharUnits elementAlign =
1957 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1958
1959 llvm::Value *arrayBegin = deletedPtr.getPointer();
1960 llvm::Value *arrayEnd =
1961 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1962
1963 // Note that it is legal to allocate a zero-length array, and we
1964 // can never fold the check away because the length should always
1965 // come from a cookie.
1966 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1967 CGF.getDestroyer(dtorKind),
1968 /*checkZeroLength*/ true,
1969 CGF.needsEHCleanup(dtorKind));
1970 }
1971
1972 // Pop the cleanup block.
1973 CGF.PopCleanupBlock();
1974}
1975
1976void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1977 const Expr *Arg = E->getArgument();
1978 Address Ptr = EmitPointerWithAlignment(Arg);
1979
1980 // Null check the pointer.
1981 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1982 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1983
1984 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1985
1986 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1987 EmitBlock(DeleteNotNull);
1988
1989 QualType DeleteTy = E->getDestroyedType();
1990
1991 // A destroying operator delete overrides the entire operation of the
1992 // delete expression.
1993 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
1994 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1995 EmitBlock(DeleteEnd);
1996 return;
1997 }
1998
1999 // We might be deleting a pointer to array. If so, GEP down to the
2000 // first non-array element.
2001 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2002 if (DeleteTy->isConstantArrayType()) {
2003 llvm::Value *Zero = Builder.getInt32(0);
2004 SmallVector<llvm::Value*,8> GEP;
2005
2006 GEP.push_back(Zero); // point at the outermost array
2007
2008 // For each layer of array type we're pointing at:
2009 while (const ConstantArrayType *Arr
2010 = getContext().getAsConstantArrayType(DeleteTy)) {
2011 // 1. Unpeel the array type.
2012 DeleteTy = Arr->getElementType();
2013
2014 // 2. GEP to the first element of the array.
2015 GEP.push_back(Zero);
2016 }
2017
2018 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2019 Ptr.getAlignment());
2020 }
2021
2022 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2022, __PRETTY_FUNCTION__))
;
2023
2024 if (E->isArrayForm()) {
2025 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2026 } else {
2027 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2028 }
2029
2030 EmitBlock(DeleteEnd);
2031}
2032
2033static bool isGLValueFromPointerDeref(const Expr *E) {
2034 E = E->IgnoreParens();
2035
2036 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2037 if (!CE->getSubExpr()->isGLValue())
2038 return false;
2039 return isGLValueFromPointerDeref(CE->getSubExpr());
2040 }
2041
2042 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2043 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2044
2045 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2046 if (BO->getOpcode() == BO_Comma)
2047 return isGLValueFromPointerDeref(BO->getRHS());
2048
2049 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2050 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2051 isGLValueFromPointerDeref(ACO->getFalseExpr());
2052
2053 // C++11 [expr.sub]p1:
2054 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2055 if (isa<ArraySubscriptExpr>(E))
2056 return true;
2057
2058 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2059 if (UO->getOpcode() == UO_Deref)
2060 return true;
2061
2062 return false;
2063}
2064
2065static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2066 llvm::Type *StdTypeInfoPtrTy) {
2067 // Get the vtable pointer.
2068 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2069
2070 QualType SrcRecordTy = E->getType();
2071
2072 // C++ [class.cdtor]p4:
2073 // If the operand of typeid refers to the object under construction or
2074 // destruction and the static type of the operand is neither the constructor
2075 // or destructor’s class nor one of its bases, the behavior is undefined.
2076 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2077 ThisPtr.getPointer(), SrcRecordTy);
2078
2079 // C++ [expr.typeid]p2:
2080 // If the glvalue expression is obtained by applying the unary * operator to
2081 // a pointer and the pointer is a null pointer value, the typeid expression
2082 // throws the std::bad_typeid exception.
2083 //
2084 // However, this paragraph's intent is not clear. We choose a very generous
2085 // interpretation which implores us to consider comma operators, conditional
2086 // operators, parentheses and other such constructs.
2087 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2088 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2089 llvm::BasicBlock *BadTypeidBlock =
2090 CGF.createBasicBlock("typeid.bad_typeid");
2091 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2092
2093 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2094 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2095
2096 CGF.EmitBlock(BadTypeidBlock);
2097 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2098 CGF.EmitBlock(EndBlock);
2099 }
2100
2101 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2102 StdTypeInfoPtrTy);
2103}
2104
2105llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2106 llvm::Type *StdTypeInfoPtrTy =
2107 ConvertType(E->getType())->getPointerTo();
2108
2109 if (E->isTypeOperand()) {
2110 llvm::Constant *TypeInfo =
2111 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2112 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2113 }
2114
2115 // C++ [expr.typeid]p2:
2116 // When typeid is applied to a glvalue expression whose type is a
2117 // polymorphic class type, the result refers to a std::type_info object
2118 // representing the type of the most derived object (that is, the dynamic
2119 // type) to which the glvalue refers.
2120 if (E->isPotentiallyEvaluated())
2121 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2122 StdTypeInfoPtrTy);
2123
2124 QualType OperandTy = E->getExprOperand()->getType();
2125 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2126 StdTypeInfoPtrTy);
2127}
2128
2129static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2130 QualType DestTy) {
2131 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2132 if (DestTy->isPointerType())
2133 return llvm::Constant::getNullValue(DestLTy);
2134
2135 /// C++ [expr.dynamic.cast]p9:
2136 /// A failed cast to reference type throws std::bad_cast
2137 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2138 return nullptr;
2139
2140 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2141 return llvm::UndefValue::get(DestLTy);
2142}
2143
2144llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2145 const CXXDynamicCastExpr *DCE) {
2146 CGM.EmitExplicitCastExprType(DCE, this);
2147 QualType DestTy = DCE->getTypeAsWritten();
2148
2149 QualType SrcTy = DCE->getSubExpr()->getType();
2150
2151 // C++ [expr.dynamic.cast]p7:
2152 // If T is "pointer to cv void," then the result is a pointer to the most
2153 // derived object pointed to by v.
2154 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2155
2156 bool isDynamicCastToVoid;
2157 QualType SrcRecordTy;
2158 QualType DestRecordTy;
2159 if (DestPTy) {
2160 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2161 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2162 DestRecordTy = DestPTy->getPointeeType();
2163 } else {
2164 isDynamicCastToVoid = false;
2165 SrcRecordTy = SrcTy;
2166 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2167 }
2168
2169 // C++ [class.cdtor]p5:
2170 // If the operand of the dynamic_cast refers to the object under
2171 // construction or destruction and the static type of the operand is not a
2172 // pointer to or object of the constructor or destructor’s own class or one
2173 // of its bases, the dynamic_cast results in undefined behavior.
2174 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2175 SrcRecordTy);
2176
2177 if (DCE->isAlwaysNull())
2178 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2179 return T;
2180
2181 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2181, __PRETTY_FUNCTION__))
;
2182
2183 // C++ [expr.dynamic.cast]p4:
2184 // If the value of v is a null pointer value in the pointer case, the result
2185 // is the null pointer value of type T.
2186 bool ShouldNullCheckSrcValue =
2187 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2188 SrcRecordTy);
2189
2190 llvm::BasicBlock *CastNull = nullptr;
2191 llvm::BasicBlock *CastNotNull = nullptr;
2192 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2193
2194 if (ShouldNullCheckSrcValue) {
2195 CastNull = createBasicBlock("dynamic_cast.null");
2196 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2197
2198 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2199 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2200 EmitBlock(CastNotNull);
2201 }
2202
2203 llvm::Value *Value;
2204 if (isDynamicCastToVoid) {
2205 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2206 DestTy);
2207 } else {
2208 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2209, __PRETTY_FUNCTION__))
2209 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprCXX.cpp"
, 2209, __PRETTY_FUNCTION__))
;
2210 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2211 DestTy, DestRecordTy, CastEnd);
2212 CastNotNull = Builder.GetInsertBlock();
2213 }
2214
2215 if (ShouldNullCheckSrcValue) {
2216 EmitBranch(CastEnd);
2217
2218 EmitBlock(CastNull);
2219 EmitBranch(CastEnd);
2220 }
2221
2222 EmitBlock(CastEnd);
2223
2224 if (ShouldNullCheckSrcValue) {
2225 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2226 PHI->addIncoming(Value, CastNotNull);
2227 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2228
2229 Value = PHI;
2230 }
2231
2232 return Value;
2233}