Bug Summary

File:clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 133, column 19
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-12-09-002921-48462-1 -x c++ /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp

/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp

1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
41 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
;
42 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
43 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
;
44
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
58
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
72 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
73 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
;
74 }
75 return {required, PrefixSize};
76}
77
78RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE ? CE->getExprLoc() : SourceLocation());
91}
92
93RValue CodeGenFunction::EmitCXXDestructorCall(
94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97
98 assert(!ThisTy.isNull())((!ThisTy.isNull()) ? static_cast<void> (0) : __assert_fail
("!ThisTy.isNull()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 98, __PRETTY_FUNCTION__))
;
99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
100 "Pointer/Object mixup")((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
;
101
102 LangAS SrcAS = ThisTy.getAddressSpace();
103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104 if (SrcAS != DstAS) {
105 QualType DstTy = DtorDecl->getThisType();
106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108 NewType);
109 }
110
111 CallArgList Args;
112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113 ImplicitParamTy, CE, Args, nullptr);
114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115 ReturnValueSlot(), Args);
116}
117
118RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119 const CXXPseudoDestructorExpr *E) {
120 QualType DestroyedType = E->getDestroyedType();
121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
1
Calling 'QualType::hasStrongOrWeakObjCLifetime'
7
Returning from 'QualType::hasStrongOrWeakObjCLifetime'
8
Taking true branch
122 // Automatic Reference Counting:
123 // If the pseudo-expression names a retainable object with weak or
124 // strong lifetime, the object shall be released.
125 Expr *BaseExpr = E->getBase();
126 Address BaseValue = Address::invalid();
127 Qualifiers BaseQuals;
128
129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130 if (E->isArrow()) {
9
Assuming the condition is true
10
Taking true branch
131 BaseValue = EmitPointerWithAlignment(BaseExpr);
132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
11
Assuming the object is not a 'PointerType'
12
'PTy' initialized to a null pointer value
133 BaseQuals = PTy->getPointeeType().getQualifiers();
13
Called C++ object pointer is null
134 } else {
135 LValue BaseLV = EmitLValue(BaseExpr);
136 BaseValue = BaseLV.getAddress();
137 QualType BaseTy = BaseExpr->getType();
138 BaseQuals = BaseTy.getQualifiers();
139 }
140
141 switch (DestroyedType.getObjCLifetime()) {
142 case Qualifiers::OCL_None:
143 case Qualifiers::OCL_ExplicitNone:
144 case Qualifiers::OCL_Autoreleasing:
145 break;
146
147 case Qualifiers::OCL_Strong:
148 EmitARCRelease(Builder.CreateLoad(BaseValue,
149 DestroyedType.isVolatileQualified()),
150 ARCPreciseLifetime);
151 break;
152
153 case Qualifiers::OCL_Weak:
154 EmitARCDestroyWeak(BaseValue);
155 break;
156 }
157 } else {
158 // C++ [expr.pseudo]p1:
159 // The result shall only be used as the operand for the function call
160 // operator (), and the result of such a call has type void. The only
161 // effect is the evaluation of the postfix-expression before the dot or
162 // arrow.
163 EmitIgnoredExpr(E->getBase());
164 }
165
166 return RValue::get(nullptr);
167}
168
169static CXXRecordDecl *getCXXRecord(const Expr *E) {
170 QualType T = E->getType();
171 if (const PointerType *PTy = T->getAs<PointerType>())
172 T = PTy->getPointeeType();
173 const RecordType *Ty = T->castAs<RecordType>();
174 return cast<CXXRecordDecl>(Ty->getDecl());
175}
176
177// Note: This function also emit constructor calls to support a MSVC
178// extensions allowing explicit constructor function call.
179RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180 ReturnValueSlot ReturnValue) {
181 const Expr *callee = CE->getCallee()->IgnoreParens();
182
183 if (isa<BinaryOperator>(callee))
184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185
186 const MemberExpr *ME = cast<MemberExpr>(callee);
187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188
189 if (MD->isStatic()) {
190 // The method is static, emit it as we would a regular call.
191 CGCallee callee =
192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194 ReturnValue);
195 }
196
197 bool HasQualifier = ME->hasQualifier();
198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199 bool IsArrow = ME->isArrow();
200 const Expr *Base = ME->getBase();
201
202 return EmitCXXMemberOrOperatorMemberCallExpr(
203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204}
205
206RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209 const Expr *Base) {
210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211
212 // Compute the object pointer.
213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214
215 const CXXMethodDecl *DevirtualizedMethod = nullptr;
216 if (CanUseVirtualCall &&
217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222 const Expr *Inner = Base->ignoreParenBaseCasts();
223 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224 MD->getReturnType().getCanonicalType())
225 // If the return types are not the same, this might be a case where more
226 // code needs to run to compensate for it. For example, the derived
227 // method might return a type that inherits form from the return
228 // type of MD and has a prefix.
229 // For now we just avoid devirtualizing these covariant cases.
230 DevirtualizedMethod = nullptr;
231 else if (getCXXRecord(Inner) == DevirtualizedClass)
232 // If the class of the Inner expression is where the dynamic method
233 // is defined, build the this pointer from it.
234 Base = Inner;
235 else if (getCXXRecord(Base) != DevirtualizedClass) {
236 // If the method is defined in a class that is not the best dynamic
237 // one or the one of the full expression, we would have to build
238 // a derived-to-base cast to compute the correct this pointer, but
239 // we don't have support for that yet, so do a virtual call.
240 DevirtualizedMethod = nullptr;
241 }
242 }
243
244 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245 // operator before the LHS.
246 CallArgList RtlArgStorage;
247 CallArgList *RtlArgs = nullptr;
248 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249 if (OCE->isAssignmentOp()) {
250 RtlArgs = &RtlArgStorage;
251 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254 }
255 }
256
257 LValue This;
258 if (IsArrow) {
259 LValueBaseInfo BaseInfo;
260 TBAAAccessInfo TBAAInfo;
261 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263 } else {
264 This = EmitLValue(Base);
265 }
266
267 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269 // constructing a new complete object of type Ctor.
270 assert(!RtlArgs)((!RtlArgs) ? static_cast<void> (0) : __assert_fail ("!RtlArgs"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 270, __PRETTY_FUNCTION__))
;
271 assert(ReturnValue.isNull() && "Constructor shouldn't have return value")((ReturnValue.isNull() && "Constructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 CallArgList Args;
273 commonEmitCXXMemberOrOperatorCall(
274 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276
277 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278 /*Delegating=*/false, This.getAddress(), Args,
279 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
280 /*NewPointerIsChecked=*/false);
281 return RValue::get(nullptr);
282 }
283
284 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286 if (!MD->getParent()->mayInsertExtraPadding()) {
287 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
288 // We don't like to generate the trivial copy/move assignment operator
289 // when it isn't necessary; just produce the proper effect here.
290 LValue RHS = isa<CXXOperatorCallExpr>(CE)
291 ? MakeNaturalAlignAddrLValue(
292 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293 (*(CE->arg_begin() + 1))->getType())
294 : EmitLValue(*CE->arg_begin());
295 EmitAggregateAssign(This, RHS, CE->getType());
296 return RValue::get(This.getPointer());
297 }
298 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 298)
;
299 }
300 }
301
302 // Compute the function type we're calling.
303 const CXXMethodDecl *CalleeDecl =
304 DevirtualizedMethod ? DevirtualizedMethod : MD;
305 const CGFunctionInfo *FInfo = nullptr;
306 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308 GlobalDecl(Dtor, Dtor_Complete));
309 else
310 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311
312 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313
314 // C++11 [class.mfct.non-static]p2:
315 // If a non-static member function of a class X is called for an object that
316 // is not of type X, or of a type derived from X, the behavior is undefined.
317 SourceLocation CallLoc;
318 ASTContext &C = getContext();
319 if (CE)
320 CallLoc = CE->getExprLoc();
321
322 SanitizerSet SkippedChecks;
323 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324 auto *IOA = CMCE->getImplicitObjectArgument();
325 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326 if (IsImplicitObjectCXXThis)
327 SkippedChecks.set(SanitizerKind::Alignment, true);
328 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329 SkippedChecks.set(SanitizerKind::Null, true);
330 }
331 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332 C.getRecordType(CalleeDecl->getParent()),
333 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334
335 // C++ [class.virtual]p12:
336 // Explicit qualification with the scope operator (5.1) suppresses the
337 // virtual call mechanism.
338 //
339 // We also don't emit a virtual call if the base expression has a record type
340 // because then we know what the type is.
341 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342
343 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
345 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 if (UseVirtualCall) {
348 CGM.getCXXABI().EmitVirtualDestructorCall(
349 *this, Dtor, Dtor_Complete, This.getAddress(),
350 cast<CXXMemberCallExpr>(CE));
351 } else {
352 GlobalDecl GD(Dtor, Dtor_Complete);
353 CGCallee Callee;
354 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356 else if (!DevirtualizedMethod)
357 Callee =
358 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359 else {
360 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361 }
362
363 QualType ThisTy =
364 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365 EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366 /*ImplicitParam=*/nullptr,
367 /*ImplicitParamTy=*/QualType(), nullptr);
368 }
369 return RValue::get(nullptr);
370 }
371
372 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373 // 'CalleeDecl' instead.
374
375 CGCallee Callee;
376 if (UseVirtualCall) {
377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378 } else {
379 if (SanOpts.has(SanitizerKind::CFINVCall) &&
380 MD->getParent()->isDynamicClass()) {
381 llvm::Value *VTable;
382 const CXXRecordDecl *RD;
383 std::tie(VTable, RD) =
384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385 CalleeDecl->getParent());
386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387 }
388
389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391 else if (!DevirtualizedMethod)
392 Callee =
393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394 else {
395 Callee =
396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397 GlobalDecl(DevirtualizedMethod));
398 }
399 }
400
401 if (MD->isVirtual()) {
402 Address NewThisAddr =
403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405 This.setAddress(NewThisAddr);
406 }
407
408 return EmitCXXMemberOrOperatorCall(
409 CalleeDecl, Callee, ReturnValue, This.getPointer(),
410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411}
412
413RValue
414CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415 ReturnValueSlot ReturnValue) {
416 const BinaryOperator *BO =
417 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418 const Expr *BaseExpr = BO->getLHS();
419 const Expr *MemFnExpr = BO->getRHS();
420
421 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
422 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
423 const auto *RD =
424 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
425
426 // Emit the 'this' pointer.
427 Address This = Address::invalid();
428 if (BO->getOpcode() == BO_PtrMemI)
429 This = EmitPointerWithAlignment(BaseExpr);
430 else
431 This = EmitLValue(BaseExpr).getAddress();
432
433 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
434 QualType(MPT->getClass(), 0));
435
436 // Get the member function pointer.
437 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
438
439 // Ask the ABI to load the callee. Note that This is modified.
440 llvm::Value *ThisPtrForCall = nullptr;
441 CGCallee Callee =
442 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
443 ThisPtrForCall, MemFnPtr, MPT);
444
445 CallArgList Args;
446
447 QualType ThisType =
448 getContext().getPointerType(getContext().getTagDeclType(RD));
449
450 // Push the this ptr.
451 Args.add(RValue::get(ThisPtrForCall), ThisType);
452
453 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
454
455 // And the rest of the call args
456 EmitCallArgs(Args, FPT, E->arguments());
457 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
458 /*PrefixSize=*/0),
459 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
460}
461
462RValue
463CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
464 const CXXMethodDecl *MD,
465 ReturnValueSlot ReturnValue) {
466 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
467 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
;
468 return EmitCXXMemberOrOperatorMemberCallExpr(
469 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
470 /*IsArrow=*/false, E->getArg(0));
471}
472
473RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
474 ReturnValueSlot ReturnValue) {
475 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
476}
477
478static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
479 Address DestPtr,
480 const CXXRecordDecl *Base) {
481 if (Base->isEmpty())
482 return;
483
484 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
485
486 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
487 CharUnits NVSize = Layout.getNonVirtualSize();
488
489 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
490 // present, they are initialized by the most derived class before calling the
491 // constructor.
492 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
493 Stores.emplace_back(CharUnits::Zero(), NVSize);
494
495 // Each store is split by the existence of a vbptr.
496 CharUnits VBPtrWidth = CGF.getPointerSize();
497 std::vector<CharUnits> VBPtrOffsets =
498 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
499 for (CharUnits VBPtrOffset : VBPtrOffsets) {
500 // Stop before we hit any virtual base pointers located in virtual bases.
501 if (VBPtrOffset >= NVSize)
502 break;
503 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
504 CharUnits LastStoreOffset = LastStore.first;
505 CharUnits LastStoreSize = LastStore.second;
506
507 CharUnits SplitBeforeOffset = LastStoreOffset;
508 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
509 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 509, __PRETTY_FUNCTION__))
;
510 if (!SplitBeforeSize.isZero())
511 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
512
513 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
514 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
515 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 515, __PRETTY_FUNCTION__))
;
516 if (!SplitAfterSize.isZero())
517 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
518 }
519
520 // If the type contains a pointer to data member we can't memset it to zero.
521 // Instead, create a null constant and copy it to the destination.
522 // TODO: there are other patterns besides zero that we can usefully memset,
523 // like -1, which happens to be the pattern used by member-pointers.
524 // TODO: isZeroInitializable can be over-conservative in the case where a
525 // virtual base contains a member pointer.
526 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
527 if (!NullConstantForBase->isNullValue()) {
528 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
529 CGF.CGM.getModule(), NullConstantForBase->getType(),
530 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
531 NullConstantForBase, Twine());
532
533 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
534 DestPtr.getAlignment());
535 NullVariable->setAlignment(Align.getAsAlign());
536
537 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
538
539 // Get and call the appropriate llvm.memcpy overload.
540 for (std::pair<CharUnits, CharUnits> Store : Stores) {
541 CharUnits StoreOffset = Store.first;
542 CharUnits StoreSize = Store.second;
543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544 CGF.Builder.CreateMemCpy(
545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
547 StoreSizeVal);
548 }
549
550 // Otherwise, just memset the whole thing to zero. This is legal
551 // because in LLVM, all default initializers (other than the ones we just
552 // handled above) are guaranteed to have a bit pattern of all zeros.
553 } else {
554 for (std::pair<CharUnits, CharUnits> Store : Stores) {
555 CharUnits StoreOffset = Store.first;
556 CharUnits StoreSize = Store.second;
557 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
558 CGF.Builder.CreateMemSet(
559 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
560 CGF.Builder.getInt8(0), StoreSizeVal);
561 }
562 }
563}
564
565void
566CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
567 AggValueSlot Dest) {
568 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 568, __PRETTY_FUNCTION__))
;
569 const CXXConstructorDecl *CD = E->getConstructor();
570
571 // If we require zero initialization before (or instead of) calling the
572 // constructor, as can be the case with a non-user-provided default
573 // constructor, emit the zero initialization now, unless destination is
574 // already zeroed.
575 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
576 switch (E->getConstructionKind()) {
577 case CXXConstructExpr::CK_Delegating:
578 case CXXConstructExpr::CK_Complete:
579 EmitNullInitialization(Dest.getAddress(), E->getType());
580 break;
581 case CXXConstructExpr::CK_VirtualBase:
582 case CXXConstructExpr::CK_NonVirtualBase:
583 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
584 CD->getParent());
585 break;
586 }
587 }
588
589 // If this is a call to a trivial default constructor, do nothing.
590 if (CD->isTrivial() && CD->isDefaultConstructor())
591 return;
592
593 // Elide the constructor if we're constructing from a temporary.
594 // The temporary check is required because Sema sets this on NRVO
595 // returns.
596 if (getLangOpts().ElideConstructors && E->isElidable()) {
597 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
598 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
;
599 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
600 EmitAggExpr(E->getArg(0), Dest);
601 return;
602 }
603 }
604
605 if (const ArrayType *arrayType
606 = getContext().getAsArrayType(E->getType())) {
607 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
608 Dest.isSanitizerChecked());
609 } else {
610 CXXCtorType Type = Ctor_Complete;
611 bool ForVirtualBase = false;
612 bool Delegating = false;
613
614 switch (E->getConstructionKind()) {
615 case CXXConstructExpr::CK_Delegating:
616 // We should be emitting a constructor; GlobalDecl will assert this
617 Type = CurGD.getCtorType();
618 Delegating = true;
619 break;
620
621 case CXXConstructExpr::CK_Complete:
622 Type = Ctor_Complete;
623 break;
624
625 case CXXConstructExpr::CK_VirtualBase:
626 ForVirtualBase = true;
627 LLVM_FALLTHROUGH[[gnu::fallthrough]];
628
629 case CXXConstructExpr::CK_NonVirtualBase:
630 Type = Ctor_Base;
631 }
632
633 // Call the constructor.
634 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
635 }
636}
637
638void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
639 const Expr *Exp) {
640 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
641 Exp = E->getSubExpr();
642 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
643 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
;
644 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
645 const CXXConstructorDecl *CD = E->getConstructor();
646 RunCleanupsScope Scope(*this);
647
648 // If we require zero initialization before (or instead of) calling the
649 // constructor, as can be the case with a non-user-provided default
650 // constructor, emit the zero initialization now.
651 // FIXME. Do I still need this for a copy ctor synthesis?
652 if (E->requiresZeroInitialization())
653 EmitNullInitialization(Dest, E->getType());
654
655 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
656 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
;
657 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
658}
659
660static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
661 const CXXNewExpr *E) {
662 if (!E->isArray())
663 return CharUnits::Zero();
664
665 // No cookie is required if the operator new[] being used is the
666 // reserved placement operator new[].
667 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
668 return CharUnits::Zero();
669
670 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
671}
672
673static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
674 const CXXNewExpr *e,
675 unsigned minElements,
676 llvm::Value *&numElements,
677 llvm::Value *&sizeWithoutCookie) {
678 QualType type = e->getAllocatedType();
679
680 if (!e->isArray()) {
681 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
682 sizeWithoutCookie
683 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
684 return sizeWithoutCookie;
685 }
686
687 // The width of size_t.
688 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
689
690 // Figure out the cookie size.
691 llvm::APInt cookieSize(sizeWidth,
692 CalculateCookiePadding(CGF, e).getQuantity());
693
694 // Emit the array size expression.
695 // We multiply the size of all dimensions for NumElements.
696 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
697 numElements =
698 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
699 if (!numElements)
700 numElements = CGF.EmitScalarExpr(*e->getArraySize());
701 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 701, __PRETTY_FUNCTION__))
;
702
703 // The number of elements can be have an arbitrary integer type;
704 // essentially, we need to multiply it by a constant factor, add a
705 // cookie size, and verify that the result is representable as a
706 // size_t. That's just a gloss, though, and it's wrong in one
707 // important way: if the count is negative, it's an error even if
708 // the cookie size would bring the total size >= 0.
709 bool isSigned
710 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
711 llvm::IntegerType *numElementsType
712 = cast<llvm::IntegerType>(numElements->getType());
713 unsigned numElementsWidth = numElementsType->getBitWidth();
714
715 // Compute the constant factor.
716 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
717 while (const ConstantArrayType *CAT
718 = CGF.getContext().getAsConstantArrayType(type)) {
719 type = CAT->getElementType();
720 arraySizeMultiplier *= CAT->getSize();
721 }
722
723 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
724 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
725 typeSizeMultiplier *= arraySizeMultiplier;
726
727 // This will be a size_t.
728 llvm::Value *size;
729
730 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
731 // Don't bloat the -O0 code.
732 if (llvm::ConstantInt *numElementsC =
733 dyn_cast<llvm::ConstantInt>(numElements)) {
734 const llvm::APInt &count = numElementsC->getValue();
735
736 bool hasAnyOverflow = false;
737
738 // If 'count' was a negative number, it's an overflow.
739 if (isSigned && count.isNegative())
740 hasAnyOverflow = true;
741
742 // We want to do all this arithmetic in size_t. If numElements is
743 // wider than that, check whether it's already too big, and if so,
744 // overflow.
745 else if (numElementsWidth > sizeWidth &&
746 numElementsWidth - sizeWidth > count.countLeadingZeros())
747 hasAnyOverflow = true;
748
749 // Okay, compute a count at the right width.
750 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
751
752 // If there is a brace-initializer, we cannot allocate fewer elements than
753 // there are initializers. If we do, that's treated like an overflow.
754 if (adjustedCount.ult(minElements))
755 hasAnyOverflow = true;
756
757 // Scale numElements by that. This might overflow, but we don't
758 // care because it only overflows if allocationSize does, too, and
759 // if that overflows then we shouldn't use this.
760 numElements = llvm::ConstantInt::get(CGF.SizeTy,
761 adjustedCount * arraySizeMultiplier);
762
763 // Compute the size before cookie, and track whether it overflowed.
764 bool overflow;
765 llvm::APInt allocationSize
766 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
767 hasAnyOverflow |= overflow;
768
769 // Add in the cookie, and check whether it's overflowed.
770 if (cookieSize != 0) {
771 // Save the current size without a cookie. This shouldn't be
772 // used if there was overflow.
773 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
774
775 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
776 hasAnyOverflow |= overflow;
777 }
778
779 // On overflow, produce a -1 so operator new will fail.
780 if (hasAnyOverflow) {
781 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
782 } else {
783 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
784 }
785
786 // Otherwise, we might need to use the overflow intrinsics.
787 } else {
788 // There are up to five conditions we need to test for:
789 // 1) if isSigned, we need to check whether numElements is negative;
790 // 2) if numElementsWidth > sizeWidth, we need to check whether
791 // numElements is larger than something representable in size_t;
792 // 3) if minElements > 0, we need to check whether numElements is smaller
793 // than that.
794 // 4) we need to compute
795 // sizeWithoutCookie := numElements * typeSizeMultiplier
796 // and check whether it overflows; and
797 // 5) if we need a cookie, we need to compute
798 // size := sizeWithoutCookie + cookieSize
799 // and check whether it overflows.
800
801 llvm::Value *hasOverflow = nullptr;
802
803 // If numElementsWidth > sizeWidth, then one way or another, we're
804 // going to have to do a comparison for (2), and this happens to
805 // take care of (1), too.
806 if (numElementsWidth > sizeWidth) {
807 llvm::APInt threshold(numElementsWidth, 1);
808 threshold <<= sizeWidth;
809
810 llvm::Value *thresholdV
811 = llvm::ConstantInt::get(numElementsType, threshold);
812
813 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
814 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
815
816 // Otherwise, if we're signed, we want to sext up to size_t.
817 } else if (isSigned) {
818 if (numElementsWidth < sizeWidth)
819 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
820
821 // If there's a non-1 type size multiplier, then we can do the
822 // signedness check at the same time as we do the multiply
823 // because a negative number times anything will cause an
824 // unsigned overflow. Otherwise, we have to do it here. But at least
825 // in this case, we can subsume the >= minElements check.
826 if (typeSizeMultiplier == 1)
827 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
828 llvm::ConstantInt::get(CGF.SizeTy, minElements));
829
830 // Otherwise, zext up to size_t if necessary.
831 } else if (numElementsWidth < sizeWidth) {
832 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
833 }
834
835 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 835, __PRETTY_FUNCTION__))
;
836
837 if (minElements) {
838 // Don't allow allocation of fewer elements than we have initializers.
839 if (!hasOverflow) {
840 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
841 llvm::ConstantInt::get(CGF.SizeTy, minElements));
842 } else if (numElementsWidth > sizeWidth) {
843 // The other existing overflow subsumes this check.
844 // We do an unsigned comparison, since any signed value < -1 is
845 // taken care of either above or below.
846 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
847 CGF.Builder.CreateICmpULT(numElements,
848 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
849 }
850 }
851
852 size = numElements;
853
854 // Multiply by the type size if necessary. This multiplier
855 // includes all the factors for nested arrays.
856 //
857 // This step also causes numElements to be scaled up by the
858 // nested-array factor if necessary. Overflow on this computation
859 // can be ignored because the result shouldn't be used if
860 // allocation fails.
861 if (typeSizeMultiplier != 1) {
862 llvm::Function *umul_with_overflow
863 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
864
865 llvm::Value *tsmV =
866 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
867 llvm::Value *result =
868 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
869
870 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
871 if (hasOverflow)
872 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
873 else
874 hasOverflow = overflowed;
875
876 size = CGF.Builder.CreateExtractValue(result, 0);
877
878 // Also scale up numElements by the array size multiplier.
879 if (arraySizeMultiplier != 1) {
880 // If the base element type size is 1, then we can re-use the
881 // multiply we just did.
882 if (typeSize.isOne()) {
883 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 883, __PRETTY_FUNCTION__))
;
884 numElements = size;
885
886 // Otherwise we need a separate multiply.
887 } else {
888 llvm::Value *asmV =
889 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
890 numElements = CGF.Builder.CreateMul(numElements, asmV);
891 }
892 }
893 } else {
894 // numElements doesn't need to be scaled.
895 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 895, __PRETTY_FUNCTION__))
;
896 }
897
898 // Add in the cookie size if necessary.
899 if (cookieSize != 0) {
900 sizeWithoutCookie = size;
901
902 llvm::Function *uadd_with_overflow
903 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
904
905 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
906 llvm::Value *result =
907 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
908
909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
910 if (hasOverflow)
911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
912 else
913 hasOverflow = overflowed;
914
915 size = CGF.Builder.CreateExtractValue(result, 0);
916 }
917
918 // If we had any possibility of dynamic overflow, make a select to
919 // overwrite 'size' with an all-ones value, which should cause
920 // operator new to throw.
921 if (hasOverflow)
922 size = CGF.Builder.CreateSelect(hasOverflow,
923 llvm::Constant::getAllOnesValue(CGF.SizeTy),
924 size);
925 }
926
927 if (cookieSize == 0)
928 sizeWithoutCookie = size;
929 else
930 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 930, __PRETTY_FUNCTION__))
;
931
932 return size;
933}
934
935static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
936 QualType AllocType, Address NewPtr,
937 AggValueSlot::Overlap_t MayOverlap) {
938 // FIXME: Refactor with EmitExprAsInit.
939 switch (CGF.getEvaluationKind(AllocType)) {
940 case TEK_Scalar:
941 CGF.EmitScalarInit(Init, nullptr,
942 CGF.MakeAddrLValue(NewPtr, AllocType), false);
943 return;
944 case TEK_Complex:
945 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
946 /*isInit*/ true);
947 return;
948 case TEK_Aggregate: {
949 AggValueSlot Slot
950 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
951 AggValueSlot::IsDestructed,
952 AggValueSlot::DoesNotNeedGCBarriers,
953 AggValueSlot::IsNotAliased,
954 MayOverlap, AggValueSlot::IsNotZeroed,
955 AggValueSlot::IsSanitizerChecked);
956 CGF.EmitAggExpr(Init, Slot);
957 return;
958 }
959 }
960 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 960)
;
961}
962
963void CodeGenFunction::EmitNewArrayInitializer(
964 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
965 Address BeginPtr, llvm::Value *NumElements,
966 llvm::Value *AllocSizeWithoutCookie) {
967 // If we have a type with trivial initialization and no initializer,
968 // there's nothing to do.
969 if (!E->hasInitializer())
970 return;
971
972 Address CurPtr = BeginPtr;
973
974 unsigned InitListElements = 0;
975
976 const Expr *Init = E->getInitializer();
977 Address EndOfInit = Address::invalid();
978 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
979 EHScopeStack::stable_iterator Cleanup;
980 llvm::Instruction *CleanupDominator = nullptr;
981
982 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
983 CharUnits ElementAlign =
984 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
985
986 // Attempt to perform zero-initialization using memset.
987 auto TryMemsetInitialization = [&]() -> bool {
988 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
989 // we can initialize with a memset to -1.
990 if (!CGM.getTypes().isZeroInitializable(ElementType))
991 return false;
992
993 // Optimization: since zero initialization will just set the memory
994 // to all zeroes, generate a single memset to do it in one shot.
995
996 // Subtract out the size of any elements we've already initialized.
997 auto *RemainingSize = AllocSizeWithoutCookie;
998 if (InitListElements) {
999 // We know this can't overflow; we check this when doing the allocation.
1000 auto *InitializedSize = llvm::ConstantInt::get(
1001 RemainingSize->getType(),
1002 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1003 InitListElements);
1004 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1005 }
1006
1007 // Create the memset.
1008 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1009 return true;
1010 };
1011
1012 // If the initializer is an initializer list, first do the explicit elements.
1013 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1014 // Initializing from a (braced) string literal is a special case; the init
1015 // list element does not initialize a (single) array element.
1016 if (ILE->isStringLiteralInit()) {
1017 // Initialize the initial portion of length equal to that of the string
1018 // literal. The allocation must be for at least this much; we emitted a
1019 // check for that earlier.
1020 AggValueSlot Slot =
1021 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1022 AggValueSlot::IsDestructed,
1023 AggValueSlot::DoesNotNeedGCBarriers,
1024 AggValueSlot::IsNotAliased,
1025 AggValueSlot::DoesNotOverlap,
1026 AggValueSlot::IsNotZeroed,
1027 AggValueSlot::IsSanitizerChecked);
1028 EmitAggExpr(ILE->getInit(0), Slot);
1029
1030 // Move past these elements.
1031 InitListElements =
1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1033 ->getSize().getZExtValue();
1034 CurPtr =
1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1036 Builder.getSize(InitListElements),
1037 "string.init.end"),
1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1039 ElementSize));
1040
1041 // Zero out the rest, if any remain.
1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1044 bool OK = TryMemsetInitialization();
1045 (void)OK;
1046 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1046, __PRETTY_FUNCTION__))
;
1047 }
1048 return;
1049 }
1050
1051 InitListElements = ILE->getNumInits();
1052
1053 // If this is a multi-dimensional array new, we will initialize multiple
1054 // elements with each init list element.
1055 QualType AllocType = E->getAllocatedType();
1056 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1057 AllocType->getAsArrayTypeUnsafe())) {
1058 ElementTy = ConvertTypeForMem(AllocType);
1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1060 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1061 }
1062
1063 // Enter a partial-destruction Cleanup if necessary.
1064 if (needsEHCleanup(DtorKind)) {
1065 // In principle we could tell the Cleanup where we are more
1066 // directly, but the control flow can get so varied here that it
1067 // would actually be quite complex. Therefore we go through an
1068 // alloca.
1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1070 "array.init.end");
1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1073 ElementType, ElementAlign,
1074 getDestroyer(DtorKind));
1075 Cleanup = EHStack.stable_begin();
1076 }
1077
1078 CharUnits StartAlign = CurPtr.getAlignment();
1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1080 // Tell the cleanup that it needs to destroy up to this
1081 // element. TODO: some of these stores can be trivially
1082 // observed to be unnecessary.
1083 if (EndOfInit.isValid()) {
1084 auto FinishedPtr =
1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1086 Builder.CreateStore(FinishedPtr, EndOfInit);
1087 }
1088 // FIXME: If the last initializer is an incomplete initializer list for
1089 // an array, and we have an array filler, we can fold together the two
1090 // initialization loops.
1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1092 ILE->getInit(i)->getType(), CurPtr,
1093 AggValueSlot::DoesNotOverlap);
1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1095 Builder.getSize(1),
1096 "array.exp.next"),
1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1098 }
1099
1100 // The remaining elements are filled with the array filler expression.
1101 Init = ILE->getArrayFiller();
1102
1103 // Extract the initializer for the individual array elements by pulling
1104 // out the array filler from all the nested initializer lists. This avoids
1105 // generating a nested loop for the initialization.
1106 while (Init && Init->getType()->isConstantArrayType()) {
1107 auto *SubILE = dyn_cast<InitListExpr>(Init);
1108 if (!SubILE)
1109 break;
1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111 Init = SubILE->getArrayFiller();
1112 }
1113
1114 // Switch back to initializing one base element at a time.
1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1116 }
1117
1118 // If all elements have already been initialized, skip any further
1119 // initialization.
1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1122 // If there was a Cleanup, deactivate it.
1123 if (CleanupDominator)
1124 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1125 return;
1126 }
1127
1128 assert(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1128, __PRETTY_FUNCTION__))
;
1129
1130 // If this is a constructor call, try to optimize it out, and failing that
1131 // emit a single loop to initialize all remaining elements.
1132 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1133 CXXConstructorDecl *Ctor = CCE->getConstructor();
1134 if (Ctor->isTrivial()) {
1135 // If new expression did not specify value-initialization, then there
1136 // is no initialization.
1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1138 return;
1139
1140 if (TryMemsetInitialization())
1141 return;
1142 }
1143
1144 // Store the new Cleanup position for irregular Cleanups.
1145 //
1146 // FIXME: Share this cleanup with the constructor call emission rather than
1147 // having it create a cleanup of its own.
1148 if (EndOfInit.isValid())
1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1150
1151 // Emit a constructor call loop to initialize the remaining elements.
1152 if (InitListElements)
1153 NumElements = Builder.CreateSub(
1154 NumElements,
1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1157 /*NewPointerIsChecked*/true,
1158 CCE->requiresZeroInitialization());
1159 return;
1160 }
1161
1162 // If this is value-initialization, we can usually use memset.
1163 ImplicitValueInitExpr IVIE(ElementType);
1164 if (isa<ImplicitValueInitExpr>(Init)) {
1165 if (TryMemsetInitialization())
1166 return;
1167
1168 // Switch to an ImplicitValueInitExpr for the element type. This handles
1169 // only one case: multidimensional array new of pointers to members. In
1170 // all other cases, we already have an initializer for the array element.
1171 Init = &IVIE;
1172 }
1173
1174 // At this point we should have found an initializer for the individual
1175 // elements of the array.
1176 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
1177 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
;
1178
1179 // If we have an empty initializer list, we can usually use memset.
1180 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1181 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1182 return;
1183
1184 // If we have a struct whose every field is value-initialized, we can
1185 // usually use memset.
1186 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1187 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1188 if (RType->getDecl()->isStruct()) {
1189 unsigned NumElements = 0;
1190 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1191 NumElements = CXXRD->getNumBases();
1192 for (auto *Field : RType->getDecl()->fields())
1193 if (!Field->isUnnamedBitfield())
1194 ++NumElements;
1195 // FIXME: Recurse into nested InitListExprs.
1196 if (ILE->getNumInits() == NumElements)
1197 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1198 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1199 --NumElements;
1200 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1201 return;
1202 }
1203 }
1204 }
1205
1206 // Create the loop blocks.
1207 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1208 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1209 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1210
1211 // Find the end of the array, hoisted out of the loop.
1212 llvm::Value *EndPtr =
1213 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1214
1215 // If the number of elements isn't constant, we have to now check if there is
1216 // anything left to initialize.
1217 if (!ConstNum) {
1218 llvm::Value *IsEmpty =
1219 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1220 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1221 }
1222
1223 // Enter the loop.
1224 EmitBlock(LoopBB);
1225
1226 // Set up the current-element phi.
1227 llvm::PHINode *CurPtrPhi =
1228 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1229 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1230
1231 CurPtr = Address(CurPtrPhi, ElementAlign);
1232
1233 // Store the new Cleanup position for irregular Cleanups.
1234 if (EndOfInit.isValid())
1235 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1236
1237 // Enter a partial-destruction Cleanup if necessary.
1238 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1239 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1240 ElementType, ElementAlign,
1241 getDestroyer(DtorKind));
1242 Cleanup = EHStack.stable_begin();
1243 CleanupDominator = Builder.CreateUnreachable();
1244 }
1245
1246 // Emit the initializer into this element.
1247 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1248 AggValueSlot::DoesNotOverlap);
1249
1250 // Leave the Cleanup if we entered one.
1251 if (CleanupDominator) {
1252 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1253 CleanupDominator->eraseFromParent();
1254 }
1255
1256 // Advance to the next element by adjusting the pointer type as necessary.
1257 llvm::Value *NextPtr =
1258 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1259 "array.next");
1260
1261 // Check whether we've gotten to the end of the array and, if so,
1262 // exit the loop.
1263 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1264 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1265 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1266
1267 EmitBlock(ContBB);
1268}
1269
1270static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1271 QualType ElementType, llvm::Type *ElementTy,
1272 Address NewPtr, llvm::Value *NumElements,
1273 llvm::Value *AllocSizeWithoutCookie) {
1274 ApplyDebugLocation DL(CGF, E);
1275 if (E->isArray())
1276 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1277 AllocSizeWithoutCookie);
1278 else if (const Expr *Init = E->getInitializer())
1279 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1280 AggValueSlot::DoesNotOverlap);
1281}
1282
1283/// Emit a call to an operator new or operator delete function, as implicitly
1284/// created by new-expressions and delete-expressions.
1285static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1286 const FunctionDecl *CalleeDecl,
1287 const FunctionProtoType *CalleeType,
1288 const CallArgList &Args) {
1289 llvm::CallBase *CallOrInvoke;
1290 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1291 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1292 RValue RV =
1293 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1294 Args, CalleeType, /*ChainCall=*/false),
1295 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1296
1297 /// C++1y [expr.new]p10:
1298 /// [In a new-expression,] an implementation is allowed to omit a call
1299 /// to a replaceable global allocation function.
1300 ///
1301 /// We model such elidable calls with the 'builtin' attribute.
1302 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1303 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1304 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1305 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1306 llvm::Attribute::Builtin);
1307 }
1308
1309 return RV;
1310}
1311
1312RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1313 const CallExpr *TheCall,
1314 bool IsDelete) {
1315 CallArgList Args;
1316 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1317 // Find the allocation or deallocation function that we're calling.
1318 ASTContext &Ctx = getContext();
1319 DeclarationName Name = Ctx.DeclarationNames
1320 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1321
1322 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1323 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1324 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1325 return EmitNewDeleteCall(*this, FD, Type, Args);
1326 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1326)
;
1327}
1328
1329namespace {
1330/// The parameters to pass to a usual operator delete.
1331struct UsualDeleteParams {
1332 bool DestroyingDelete = false;
1333 bool Size = false;
1334 bool Alignment = false;
1335};
1336}
1337
1338static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1339 UsualDeleteParams Params;
1340
1341 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1342 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1343
1344 // The first argument is always a void*.
1345 ++AI;
1346
1347 // The next parameter may be a std::destroying_delete_t.
1348 if (FD->isDestroyingOperatorDelete()) {
1349 Params.DestroyingDelete = true;
1350 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1350, __PRETTY_FUNCTION__))
;
1351 ++AI;
1352 }
1353
1354 // Figure out what other parameters we should be implicitly passing.
1355 if (AI != AE && (*AI)->isIntegerType()) {
1356 Params.Size = true;
1357 ++AI;
1358 }
1359
1360 if (AI != AE && (*AI)->isAlignValT()) {
1361 Params.Alignment = true;
1362 ++AI;
1363 }
1364
1365 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1365, __PRETTY_FUNCTION__))
;
1366 return Params;
1367}
1368
1369namespace {
1370 /// A cleanup to call the given 'operator delete' function upon abnormal
1371 /// exit from a new expression. Templated on a traits type that deals with
1372 /// ensuring that the arguments dominate the cleanup if necessary.
1373 template<typename Traits>
1374 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1375 /// Type used to hold llvm::Value*s.
1376 typedef typename Traits::ValueTy ValueTy;
1377 /// Type used to hold RValues.
1378 typedef typename Traits::RValueTy RValueTy;
1379 struct PlacementArg {
1380 RValueTy ArgValue;
1381 QualType ArgType;
1382 };
1383
1384 unsigned NumPlacementArgs : 31;
1385 unsigned PassAlignmentToPlacementDelete : 1;
1386 const FunctionDecl *OperatorDelete;
1387 ValueTy Ptr;
1388 ValueTy AllocSize;
1389 CharUnits AllocAlign;
1390
1391 PlacementArg *getPlacementArgs() {
1392 return reinterpret_cast<PlacementArg *>(this + 1);
1393 }
1394
1395 public:
1396 static size_t getExtraSize(size_t NumPlacementArgs) {
1397 return NumPlacementArgs * sizeof(PlacementArg);
1398 }
1399
1400 CallDeleteDuringNew(size_t NumPlacementArgs,
1401 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1402 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1403 CharUnits AllocAlign)
1404 : NumPlacementArgs(NumPlacementArgs),
1405 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1406 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1407 AllocAlign(AllocAlign) {}
1408
1409 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1410 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1410, __PRETTY_FUNCTION__))
;
1411 getPlacementArgs()[I] = {Arg, Type};
1412 }
1413
1414 void Emit(CodeGenFunction &CGF, Flags flags) override {
1415 const FunctionProtoType *FPT =
1416 OperatorDelete->getType()->getAs<FunctionProtoType>();
1417 CallArgList DeleteArgs;
1418
1419 // The first argument is always a void* (or C* for a destroying operator
1420 // delete for class type C).
1421 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1422
1423 // Figure out what other parameters we should be implicitly passing.
1424 UsualDeleteParams Params;
1425 if (NumPlacementArgs) {
1426 // A placement deallocation function is implicitly passed an alignment
1427 // if the placement allocation function was, but is never passed a size.
1428 Params.Alignment = PassAlignmentToPlacementDelete;
1429 } else {
1430 // For a non-placement new-expression, 'operator delete' can take a
1431 // size and/or an alignment if it has the right parameters.
1432 Params = getUsualDeleteParams(OperatorDelete);
1433 }
1434
1435 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
1436 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
;
1437
1438 // The second argument can be a std::size_t (for non-placement delete).
1439 if (Params.Size)
1440 DeleteArgs.add(Traits::get(CGF, AllocSize),
1441 CGF.getContext().getSizeType());
1442
1443 // The next (second or third) argument can be a std::align_val_t, which
1444 // is an enum whose underlying type is std::size_t.
1445 // FIXME: Use the right type as the parameter type. Note that in a call
1446 // to operator delete(size_t, ...), we may not have it available.
1447 if (Params.Alignment)
1448 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1449 CGF.SizeTy, AllocAlign.getQuantity())),
1450 CGF.getContext().getSizeType());
1451
1452 // Pass the rest of the arguments, which must match exactly.
1453 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1454 auto Arg = getPlacementArgs()[I];
1455 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1456 }
1457
1458 // Call 'operator delete'.
1459 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1460 }
1461 };
1462}
1463
1464/// Enter a cleanup to call 'operator delete' if the initializer in a
1465/// new-expression throws.
1466static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1467 const CXXNewExpr *E,
1468 Address NewPtr,
1469 llvm::Value *AllocSize,
1470 CharUnits AllocAlign,
1471 const CallArgList &NewArgs) {
1472 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1473
1474 // If we're not inside a conditional branch, then the cleanup will
1475 // dominate and we can do the easier (and more efficient) thing.
1476 if (!CGF.isInConditionalBranch()) {
1477 struct DirectCleanupTraits {
1478 typedef llvm::Value *ValueTy;
1479 typedef RValue RValueTy;
1480 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1481 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1482 };
1483
1484 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1485
1486 DirectCleanup *Cleanup = CGF.EHStack
1487 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1488 E->getNumPlacementArgs(),
1489 E->getOperatorDelete(),
1490 NewPtr.getPointer(),
1491 AllocSize,
1492 E->passAlignment(),
1493 AllocAlign);
1494 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1495 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1496 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1497 }
1498
1499 return;
1500 }
1501
1502 // Otherwise, we need to save all this stuff.
1503 DominatingValue<RValue>::saved_type SavedNewPtr =
1504 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1505 DominatingValue<RValue>::saved_type SavedAllocSize =
1506 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1507
1508 struct ConditionalCleanupTraits {
1509 typedef DominatingValue<RValue>::saved_type ValueTy;
1510 typedef DominatingValue<RValue>::saved_type RValueTy;
1511 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1512 return V.restore(CGF);
1513 }
1514 };
1515 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1516
1517 ConditionalCleanup *Cleanup = CGF.EHStack
1518 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1519 E->getNumPlacementArgs(),
1520 E->getOperatorDelete(),
1521 SavedNewPtr,
1522 SavedAllocSize,
1523 E->passAlignment(),
1524 AllocAlign);
1525 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1526 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1527 Cleanup->setPlacementArg(
1528 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1529 }
1530
1531 CGF.initFullExprCleanup();
1532}
1533
1534llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1535 // The element type being allocated.
1536 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1537
1538 // 1. Build a call to the allocation function.
1539 FunctionDecl *allocator = E->getOperatorNew();
1540
1541 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1542 unsigned minElements = 0;
1543 if (E->isArray() && E->hasInitializer()) {
1544 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1545 if (ILE && ILE->isStringLiteralInit())
1546 minElements =
1547 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1548 ->getSize().getZExtValue();
1549 else if (ILE)
1550 minElements = ILE->getNumInits();
1551 }
1552
1553 llvm::Value *numElements = nullptr;
1554 llvm::Value *allocSizeWithoutCookie = nullptr;
1555 llvm::Value *allocSize =
1556 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1557 allocSizeWithoutCookie);
1558 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1559
1560 // Emit the allocation call. If the allocator is a global placement
1561 // operator, just "inline" it directly.
1562 Address allocation = Address::invalid();
1563 CallArgList allocatorArgs;
1564 if (allocator->isReservedGlobalPlacementOperator()) {
1565 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566 const Expr *arg = *E->placement_arguments().begin();
1567
1568 LValueBaseInfo BaseInfo;
1569 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1570
1571 // The pointer expression will, in many cases, be an opaque void*.
1572 // In these cases, discard the computed alignment and use the
1573 // formal alignment of the allocated type.
1574 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1575 allocation = Address(allocation.getPointer(), allocAlign);
1576
1577 // Set up allocatorArgs for the call to operator delete if it's not
1578 // the reserved global operator.
1579 if (E->getOperatorDelete() &&
1580 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1581 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1582 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1583 }
1584
1585 } else {
1586 const FunctionProtoType *allocatorType =
1587 allocator->getType()->castAs<FunctionProtoType>();
1588 unsigned ParamsToSkip = 0;
1589
1590 // The allocation size is the first argument.
1591 QualType sizeType = getContext().getSizeType();
1592 allocatorArgs.add(RValue::get(allocSize), sizeType);
1593 ++ParamsToSkip;
1594
1595 if (allocSize != allocSizeWithoutCookie) {
1596 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1597 allocAlign = std::max(allocAlign, cookieAlign);
1598 }
1599
1600 // The allocation alignment may be passed as the second argument.
1601 if (E->passAlignment()) {
1602 QualType AlignValT = sizeType;
1603 if (allocatorType->getNumParams() > 1) {
1604 AlignValT = allocatorType->getParamType(1);
1605 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1606 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1607 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1608 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
;
1609 ++ParamsToSkip;
1610 } else {
1611 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1612 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1612, __PRETTY_FUNCTION__))
;
1613 }
1614 allocatorArgs.add(
1615 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1616 AlignValT);
1617 }
1618
1619 // FIXME: Why do we not pass a CalleeDecl here?
1620 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1621 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1622
1623 RValue RV =
1624 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1625
1626 // If this was a call to a global replaceable allocation function that does
1627 // not take an alignment argument, the allocator is known to produce
1628 // storage that's suitably aligned for any object that fits, up to a known
1629 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1630 CharUnits allocationAlign = allocAlign;
1631 if (!E->passAlignment() &&
1632 allocator->isReplaceableGlobalAllocationFunction()) {
1633 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1634 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1635 allocationAlign = std::max(
1636 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1637 }
1638
1639 allocation = Address(RV.getScalarVal(), allocationAlign);
1640 }
1641
1642 // Emit a null check on the allocation result if the allocation
1643 // function is allowed to return null (because it has a non-throwing
1644 // exception spec or is the reserved placement new) and we have an
1645 // interesting initializer will be running sanitizers on the initialization.
1646 bool nullCheck = E->shouldNullCheckAllocation() &&
1647 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1648 sanitizePerformTypeCheck());
1649
1650 llvm::BasicBlock *nullCheckBB = nullptr;
1651 llvm::BasicBlock *contBB = nullptr;
1652
1653 // The null-check means that the initializer is conditionally
1654 // evaluated.
1655 ConditionalEvaluation conditional(*this);
1656
1657 if (nullCheck) {
1658 conditional.begin(*this);
1659
1660 nullCheckBB = Builder.GetInsertBlock();
1661 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1662 contBB = createBasicBlock("new.cont");
1663
1664 llvm::Value *isNull =
1665 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1666 Builder.CreateCondBr(isNull, contBB, notNullBB);
1667 EmitBlock(notNullBB);
1668 }
1669
1670 // If there's an operator delete, enter a cleanup to call it if an
1671 // exception is thrown.
1672 EHScopeStack::stable_iterator operatorDeleteCleanup;
1673 llvm::Instruction *cleanupDominator = nullptr;
1674 if (E->getOperatorDelete() &&
1675 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1676 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1677 allocatorArgs);
1678 operatorDeleteCleanup = EHStack.stable_begin();
1679 cleanupDominator = Builder.CreateUnreachable();
1680 }
1681
1682 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
1683 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
;
1684 if (allocSize != allocSizeWithoutCookie) {
1685 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1685, __PRETTY_FUNCTION__))
;
1686 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1687 numElements,
1688 E, allocType);
1689 }
1690
1691 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1692 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1693
1694 // Passing pointer through launder.invariant.group to avoid propagation of
1695 // vptrs information which may be included in previous type.
1696 // To not break LTO with different optimizations levels, we do it regardless
1697 // of optimization level.
1698 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1699 allocator->isReservedGlobalPlacementOperator())
1700 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1701 result.getAlignment());
1702
1703 // Emit sanitizer checks for pointer value now, so that in the case of an
1704 // array it was checked only once and not at each constructor call. We may
1705 // have already checked that the pointer is non-null.
1706 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1707 // we'll null check the wrong pointer here.
1708 SanitizerSet SkippedChecks;
1709 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1710 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1711 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1712 result.getPointer(), allocType, result.getAlignment(),
1713 SkippedChecks, numElements);
1714
1715 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1716 allocSizeWithoutCookie);
1717 if (E->isArray()) {
1718 // NewPtr is a pointer to the base element type. If we're
1719 // allocating an array of arrays, we'll need to cast back to the
1720 // array pointer type.
1721 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1722 if (result.getType() != resultType)
1723 result = Builder.CreateBitCast(result, resultType);
1724 }
1725
1726 // Deactivate the 'operator delete' cleanup if we finished
1727 // initialization.
1728 if (operatorDeleteCleanup.isValid()) {
1729 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1730 cleanupDominator->eraseFromParent();
1731 }
1732
1733 llvm::Value *resultPtr = result.getPointer();
1734 if (nullCheck) {
1735 conditional.end(*this);
1736
1737 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1738 EmitBlock(contBB);
1739
1740 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1741 PHI->addIncoming(resultPtr, notNullBB);
1742 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1743 nullCheckBB);
1744
1745 resultPtr = PHI;
1746 }
1747
1748 return resultPtr;
1749}
1750
1751void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1752 llvm::Value *Ptr, QualType DeleteTy,
1753 llvm::Value *NumElements,
1754 CharUnits CookieSize) {
1755 assert((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
1756 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
;
1757
1758 const FunctionProtoType *DeleteFTy =
1759 DeleteFD->getType()->getAs<FunctionProtoType>();
1760
1761 CallArgList DeleteArgs;
1762
1763 auto Params = getUsualDeleteParams(DeleteFD);
1764 auto ParamTypeIt = DeleteFTy->param_type_begin();
1765
1766 // Pass the pointer itself.
1767 QualType ArgTy = *ParamTypeIt++;
1768 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1769 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1770
1771 // Pass the std::destroying_delete tag if present.
1772 if (Params.DestroyingDelete) {
1773 QualType DDTag = *ParamTypeIt++;
1774 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1775 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1776 DeleteArgs.add(RValue::get(V), DDTag);
1777 }
1778
1779 // Pass the size if the delete function has a size_t parameter.
1780 if (Params.Size) {
1781 QualType SizeType = *ParamTypeIt++;
1782 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1783 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1784 DeleteTypeSize.getQuantity());
1785
1786 // For array new, multiply by the number of elements.
1787 if (NumElements)
1788 Size = Builder.CreateMul(Size, NumElements);
1789
1790 // If there is a cookie, add the cookie size.
1791 if (!CookieSize.isZero())
1792 Size = Builder.CreateAdd(
1793 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1794
1795 DeleteArgs.add(RValue::get(Size), SizeType);
1796 }
1797
1798 // Pass the alignment if the delete function has an align_val_t parameter.
1799 if (Params.Alignment) {
1800 QualType AlignValType = *ParamTypeIt++;
1801 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1802 getContext().getTypeAlignIfKnown(DeleteTy));
1803 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1804 DeleteTypeAlign.getQuantity());
1805 DeleteArgs.add(RValue::get(Align), AlignValType);
1806 }
1807
1808 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
1809 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 // Emit the call to delete.
1812 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1813}
1814
1815namespace {
1816 /// Calls the given 'operator delete' on a single object.
1817 struct CallObjectDelete final : EHScopeStack::Cleanup {
1818 llvm::Value *Ptr;
1819 const FunctionDecl *OperatorDelete;
1820 QualType ElementType;
1821
1822 CallObjectDelete(llvm::Value *Ptr,
1823 const FunctionDecl *OperatorDelete,
1824 QualType ElementType)
1825 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1826
1827 void Emit(CodeGenFunction &CGF, Flags flags) override {
1828 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1829 }
1830 };
1831}
1832
1833void
1834CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1835 llvm::Value *CompletePtr,
1836 QualType ElementType) {
1837 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1838 OperatorDelete, ElementType);
1839}
1840
1841/// Emit the code for deleting a single object with a destroying operator
1842/// delete. If the element type has a non-virtual destructor, Ptr has already
1843/// been converted to the type of the parameter of 'operator delete'. Otherwise
1844/// Ptr points to an object of the static type.
1845static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1846 const CXXDeleteExpr *DE, Address Ptr,
1847 QualType ElementType) {
1848 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1849 if (Dtor && Dtor->isVirtual())
1850 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1851 Dtor);
1852 else
1853 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1854}
1855
1856/// Emit the code for deleting a single object.
1857static void EmitObjectDelete(CodeGenFunction &CGF,
1858 const CXXDeleteExpr *DE,
1859 Address Ptr,
1860 QualType ElementType) {
1861 // C++11 [expr.delete]p3:
1862 // If the static type of the object to be deleted is different from its
1863 // dynamic type, the static type shall be a base class of the dynamic type
1864 // of the object to be deleted and the static type shall have a virtual
1865 // destructor or the behavior is undefined.
1866 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1867 DE->getExprLoc(), Ptr.getPointer(),
1868 ElementType);
1869
1870 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1871 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1871, __PRETTY_FUNCTION__))
;
1872
1873 // Find the destructor for the type, if applicable. If the
1874 // destructor is virtual, we'll just emit the vcall and return.
1875 const CXXDestructorDecl *Dtor = nullptr;
1876 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1877 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1878 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1879 Dtor = RD->getDestructor();
1880
1881 if (Dtor->isVirtual()) {
1882 bool UseVirtualCall = true;
1883 const Expr *Base = DE->getArgument();
1884 if (auto *DevirtualizedDtor =
1885 dyn_cast_or_null<const CXXDestructorDecl>(
1886 Dtor->getDevirtualizedMethod(
1887 Base, CGF.CGM.getLangOpts().AppleKext))) {
1888 UseVirtualCall = false;
1889 const CXXRecordDecl *DevirtualizedClass =
1890 DevirtualizedDtor->getParent();
1891 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1892 // Devirtualized to the class of the base type (the type of the
1893 // whole expression).
1894 Dtor = DevirtualizedDtor;
1895 } else {
1896 // Devirtualized to some other type. Would need to cast the this
1897 // pointer to that type but we don't have support for that yet, so
1898 // do a virtual call. FIXME: handle the case where it is
1899 // devirtualized to the derived type (the type of the inner
1900 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1901 UseVirtualCall = true;
1902 }
1903 }
1904 if (UseVirtualCall) {
1905 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1906 Dtor);
1907 return;
1908 }
1909 }
1910 }
1911 }
1912
1913 // Make sure that we call delete even if the dtor throws.
1914 // This doesn't have to a conditional cleanup because we're going
1915 // to pop it off in a second.
1916 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1917 Ptr.getPointer(),
1918 OperatorDelete, ElementType);
1919
1920 if (Dtor)
1921 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1922 /*ForVirtualBase=*/false,
1923 /*Delegating=*/false,
1924 Ptr, ElementType);
1925 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1926 switch (Lifetime) {
1927 case Qualifiers::OCL_None:
1928 case Qualifiers::OCL_ExplicitNone:
1929 case Qualifiers::OCL_Autoreleasing:
1930 break;
1931
1932 case Qualifiers::OCL_Strong:
1933 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1934 break;
1935
1936 case Qualifiers::OCL_Weak:
1937 CGF.EmitARCDestroyWeak(Ptr);
1938 break;
1939 }
1940 }
1941
1942 CGF.PopCleanupBlock();
1943}
1944
1945namespace {
1946 /// Calls the given 'operator delete' on an array of objects.
1947 struct CallArrayDelete final : EHScopeStack::Cleanup {
1948 llvm::Value *Ptr;
1949 const FunctionDecl *OperatorDelete;
1950 llvm::Value *NumElements;
1951 QualType ElementType;
1952 CharUnits CookieSize;
1953
1954 CallArrayDelete(llvm::Value *Ptr,
1955 const FunctionDecl *OperatorDelete,
1956 llvm::Value *NumElements,
1957 QualType ElementType,
1958 CharUnits CookieSize)
1959 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1960 ElementType(ElementType), CookieSize(CookieSize) {}
1961
1962 void Emit(CodeGenFunction &CGF, Flags flags) override {
1963 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1964 CookieSize);
1965 }
1966 };
1967}
1968
1969/// Emit the code for deleting an array of objects.
1970static void EmitArrayDelete(CodeGenFunction &CGF,
1971 const CXXDeleteExpr *E,
1972 Address deletedPtr,
1973 QualType elementType) {
1974 llvm::Value *numElements = nullptr;
1975 llvm::Value *allocatedPtr = nullptr;
1976 CharUnits cookieSize;
1977 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1978 numElements, allocatedPtr, cookieSize);
1979
1980 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1980, __PRETTY_FUNCTION__))
;
1981
1982 // Make sure that we call delete even if one of the dtors throws.
1983 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1984 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1985 allocatedPtr, operatorDelete,
1986 numElements, elementType,
1987 cookieSize);
1988
1989 // Destroy the elements.
1990 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1991 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1991, __PRETTY_FUNCTION__))
;
1992
1993 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1994 CharUnits elementAlign =
1995 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1996
1997 llvm::Value *arrayBegin = deletedPtr.getPointer();
1998 llvm::Value *arrayEnd =
1999 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2000
2001 // Note that it is legal to allocate a zero-length array, and we
2002 // can never fold the check away because the length should always
2003 // come from a cookie.
2004 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2005 CGF.getDestroyer(dtorKind),
2006 /*checkZeroLength*/ true,
2007 CGF.needsEHCleanup(dtorKind));
2008 }
2009
2010 // Pop the cleanup block.
2011 CGF.PopCleanupBlock();
2012}
2013
2014void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2015 const Expr *Arg = E->getArgument();
2016 Address Ptr = EmitPointerWithAlignment(Arg);
2017
2018 // Null check the pointer.
2019 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2020 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2021
2022 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2023
2024 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2025 EmitBlock(DeleteNotNull);
2026
2027 QualType DeleteTy = E->getDestroyedType();
2028
2029 // A destroying operator delete overrides the entire operation of the
2030 // delete expression.
2031 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2032 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2033 EmitBlock(DeleteEnd);
2034 return;
2035 }
2036
2037 // We might be deleting a pointer to array. If so, GEP down to the
2038 // first non-array element.
2039 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2040 if (DeleteTy->isConstantArrayType()) {
2041 llvm::Value *Zero = Builder.getInt32(0);
2042 SmallVector<llvm::Value*,8> GEP;
2043
2044 GEP.push_back(Zero); // point at the outermost array
2045
2046 // For each layer of array type we're pointing at:
2047 while (const ConstantArrayType *Arr
2048 = getContext().getAsConstantArrayType(DeleteTy)) {
2049 // 1. Unpeel the array type.
2050 DeleteTy = Arr->getElementType();
2051
2052 // 2. GEP to the first element of the array.
2053 GEP.push_back(Zero);
2054 }
2055
2056 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2057 Ptr.getAlignment());
2058 }
2059
2060 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2060, __PRETTY_FUNCTION__))
;
2061
2062 if (E->isArrayForm()) {
2063 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2064 } else {
2065 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2066 }
2067
2068 EmitBlock(DeleteEnd);
2069}
2070
2071static bool isGLValueFromPointerDeref(const Expr *E) {
2072 E = E->IgnoreParens();
2073
2074 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2075 if (!CE->getSubExpr()->isGLValue())
2076 return false;
2077 return isGLValueFromPointerDeref(CE->getSubExpr());
2078 }
2079
2080 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2081 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2082
2083 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2084 if (BO->getOpcode() == BO_Comma)
2085 return isGLValueFromPointerDeref(BO->getRHS());
2086
2087 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2088 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2089 isGLValueFromPointerDeref(ACO->getFalseExpr());
2090
2091 // C++11 [expr.sub]p1:
2092 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2093 if (isa<ArraySubscriptExpr>(E))
2094 return true;
2095
2096 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2097 if (UO->getOpcode() == UO_Deref)
2098 return true;
2099
2100 return false;
2101}
2102
2103static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2104 llvm::Type *StdTypeInfoPtrTy) {
2105 // Get the vtable pointer.
2106 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2107
2108 QualType SrcRecordTy = E->getType();
2109
2110 // C++ [class.cdtor]p4:
2111 // If the operand of typeid refers to the object under construction or
2112 // destruction and the static type of the operand is neither the constructor
2113 // or destructor’s class nor one of its bases, the behavior is undefined.
2114 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2115 ThisPtr.getPointer(), SrcRecordTy);
2116
2117 // C++ [expr.typeid]p2:
2118 // If the glvalue expression is obtained by applying the unary * operator to
2119 // a pointer and the pointer is a null pointer value, the typeid expression
2120 // throws the std::bad_typeid exception.
2121 //
2122 // However, this paragraph's intent is not clear. We choose a very generous
2123 // interpretation which implores us to consider comma operators, conditional
2124 // operators, parentheses and other such constructs.
2125 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2126 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2127 llvm::BasicBlock *BadTypeidBlock =
2128 CGF.createBasicBlock("typeid.bad_typeid");
2129 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2130
2131 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2132 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2133
2134 CGF.EmitBlock(BadTypeidBlock);
2135 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2136 CGF.EmitBlock(EndBlock);
2137 }
2138
2139 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2140 StdTypeInfoPtrTy);
2141}
2142
2143llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2144 llvm::Type *StdTypeInfoPtrTy =
2145 ConvertType(E->getType())->getPointerTo();
2146
2147 if (E->isTypeOperand()) {
2148 llvm::Constant *TypeInfo =
2149 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2150 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2151 }
2152
2153 // C++ [expr.typeid]p2:
2154 // When typeid is applied to a glvalue expression whose type is a
2155 // polymorphic class type, the result refers to a std::type_info object
2156 // representing the type of the most derived object (that is, the dynamic
2157 // type) to which the glvalue refers.
2158 if (E->isPotentiallyEvaluated())
2159 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2160 StdTypeInfoPtrTy);
2161
2162 QualType OperandTy = E->getExprOperand()->getType();
2163 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2164 StdTypeInfoPtrTy);
2165}
2166
2167static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2168 QualType DestTy) {
2169 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2170 if (DestTy->isPointerType())
2171 return llvm::Constant::getNullValue(DestLTy);
2172
2173 /// C++ [expr.dynamic.cast]p9:
2174 /// A failed cast to reference type throws std::bad_cast
2175 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2176 return nullptr;
2177
2178 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2179 return llvm::UndefValue::get(DestLTy);
2180}
2181
2182llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2183 const CXXDynamicCastExpr *DCE) {
2184 CGM.EmitExplicitCastExprType(DCE, this);
2185 QualType DestTy = DCE->getTypeAsWritten();
2186
2187 QualType SrcTy = DCE->getSubExpr()->getType();
2188
2189 // C++ [expr.dynamic.cast]p7:
2190 // If T is "pointer to cv void," then the result is a pointer to the most
2191 // derived object pointed to by v.
2192 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2193
2194 bool isDynamicCastToVoid;
2195 QualType SrcRecordTy;
2196 QualType DestRecordTy;
2197 if (DestPTy) {
2198 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2199 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2200 DestRecordTy = DestPTy->getPointeeType();
2201 } else {
2202 isDynamicCastToVoid = false;
2203 SrcRecordTy = SrcTy;
2204 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2205 }
2206
2207 // C++ [class.cdtor]p5:
2208 // If the operand of the dynamic_cast refers to the object under
2209 // construction or destruction and the static type of the operand is not a
2210 // pointer to or object of the constructor or destructor’s own class or one
2211 // of its bases, the dynamic_cast results in undefined behavior.
2212 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2213 SrcRecordTy);
2214
2215 if (DCE->isAlwaysNull())
2216 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2217 return T;
2218
2219 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2219, __PRETTY_FUNCTION__))
;
2220
2221 // C++ [expr.dynamic.cast]p4:
2222 // If the value of v is a null pointer value in the pointer case, the result
2223 // is the null pointer value of type T.
2224 bool ShouldNullCheckSrcValue =
2225 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2226 SrcRecordTy);
2227
2228 llvm::BasicBlock *CastNull = nullptr;
2229 llvm::BasicBlock *CastNotNull = nullptr;
2230 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2231
2232 if (ShouldNullCheckSrcValue) {
2233 CastNull = createBasicBlock("dynamic_cast.null");
2234 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2235
2236 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2237 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2238 EmitBlock(CastNotNull);
2239 }
2240
2241 llvm::Value *Value;
2242 if (isDynamicCastToVoid) {
2243 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2244 DestTy);
2245 } else {
2246 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
2247 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2249 DestTy, DestRecordTy, CastEnd);
2250 CastNotNull = Builder.GetInsertBlock();
2251 }
2252
2253 if (ShouldNullCheckSrcValue) {
2254 EmitBranch(CastEnd);
2255
2256 EmitBlock(CastNull);
2257 EmitBranch(CastEnd);
2258 }
2259
2260 EmitBlock(CastEnd);
2261
2262 if (ShouldNullCheckSrcValue) {
2263 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2264 PHI->addIncoming(Value, CastNotNull);
2265 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2266
2267 Value = PHI;
2268 }
2269
2270 return Value;
2271}

/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
3
Assuming 'lifetime' is equal to OCL_Strong
4
Returning the value 1, which participates in a condition later
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
2
Calling 'Qualifiers::hasStrongOrWeakObjCLifetime'
5
Returning from 'Qualifiers::hasStrongOrWeakObjCLifetime'
6
Returning the value 1, which participates in a condition later
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Check if this is or contains a C union that is non-trivial to
1165 /// default-initialize, which is a union that has a member that is non-trivial
1166 /// to default-initialize. If this returns true,
1167 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1168 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1169
1170 /// Check if this is or contains a C union that is non-trivial to destruct,
1171 /// which is a union that has a member that is non-trivial to destruct. If
1172 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1173 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1174
1175 /// Check if this is or contains a C union that is non-trivial to copy, which
1176 /// is a union that has a member that is non-trivial to copy. If this returns
1177 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1178 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1179
1180 /// Determine whether expressions of the given type are forbidden
1181 /// from being lvalues in C.
1182 ///
1183 /// The expression types that are forbidden to be lvalues are:
1184 /// - 'void', but not qualified void
1185 /// - function types
1186 ///
1187 /// The exact rule here is C99 6.3.2.1:
1188 /// An lvalue is an expression with an object type or an incomplete
1189 /// type other than void.
1190 bool isCForbiddenLValueType() const;
1191
1192 /// Substitute type arguments for the Objective-C type parameters used in the
1193 /// subject type.
1194 ///
1195 /// \param ctx ASTContext in which the type exists.
1196 ///
1197 /// \param typeArgs The type arguments that will be substituted for the
1198 /// Objective-C type parameters in the subject type, which are generally
1199 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1200 /// parameters will be replaced with their bounds or id/Class, as appropriate
1201 /// for the context.
1202 ///
1203 /// \param context The context in which the subject type was written.
1204 ///
1205 /// \returns the resulting type.
1206 QualType substObjCTypeArgs(ASTContext &ctx,
1207 ArrayRef<QualType> typeArgs,
1208 ObjCSubstitutionContext context) const;
1209
1210 /// Substitute type arguments from an object type for the Objective-C type
1211 /// parameters used in the subject type.
1212 ///
1213 /// This operation combines the computation of type arguments for
1214 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1215 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1216 /// callers that need to perform a single substitution in isolation.
1217 ///
1218 /// \param objectType The type of the object whose member type we're
1219 /// substituting into. For example, this might be the receiver of a message
1220 /// or the base of a property access.
1221 ///
1222 /// \param dc The declaration context from which the subject type was
1223 /// retrieved, which indicates (for example) which type parameters should
1224 /// be substituted.
1225 ///
1226 /// \param context The context in which the subject type was written.
1227 ///
1228 /// \returns the subject type after replacing all of the Objective-C type
1229 /// parameters with their corresponding arguments.
1230 QualType substObjCMemberType(QualType objectType,
1231 const DeclContext *dc,
1232 ObjCSubstitutionContext context) const;
1233
1234 /// Strip Objective-C "__kindof" types from the given type.
1235 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1236
1237 /// Remove all qualifiers including _Atomic.
1238 QualType getAtomicUnqualifiedType() const;
1239
1240private:
1241 // These methods are implemented in a separate translation unit;
1242 // "static"-ize them to avoid creating temporary QualTypes in the
1243 // caller.
1244 static bool isConstant(QualType T, const ASTContext& Ctx);
1245 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1246 static SplitQualType getSplitDesugaredType(QualType T);
1247 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1248 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1249 const ASTContext &C);
1250 static QualType IgnoreParens(QualType T);
1251 static DestructionKind isDestructedTypeImpl(QualType type);
1252
1253 /// Check if \param RD is or contains a non-trivial C union.
1254 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1255 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1256 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1257};
1258
1259} // namespace clang
1260
1261namespace llvm {
1262
1263/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1264/// to a specific Type class.
1265template<> struct simplify_type< ::clang::QualType> {
1266 using SimpleType = const ::clang::Type *;
1267
1268 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1269 return Val.getTypePtr();
1270 }
1271};
1272
1273// Teach SmallPtrSet that QualType is "basically a pointer".
1274template<>
1275struct PointerLikeTypeTraits<clang::QualType> {
1276 static inline void *getAsVoidPointer(clang::QualType P) {
1277 return P.getAsOpaquePtr();
1278 }
1279
1280 static inline clang::QualType getFromVoidPointer(void *P) {
1281 return clang::QualType::getFromOpaquePtr(P);
1282 }
1283
1284 // Various qualifiers go in low bits.
1285 enum { NumLowBitsAvailable = 0 };
1286};
1287
1288} // namespace llvm
1289
1290namespace clang {
1291
1292/// Base class that is common to both the \c ExtQuals and \c Type
1293/// classes, which allows \c QualType to access the common fields between the
1294/// two.
1295class ExtQualsTypeCommonBase {
1296 friend class ExtQuals;
1297 friend class QualType;
1298 friend class Type;
1299
1300 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1301 /// a self-referential pointer (for \c Type).
1302 ///
1303 /// This pointer allows an efficient mapping from a QualType to its
1304 /// underlying type pointer.
1305 const Type *const BaseType;
1306
1307 /// The canonical type of this type. A QualType.
1308 QualType CanonicalType;
1309
1310 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1311 : BaseType(baseType), CanonicalType(canon) {}
1312};
1313
1314/// We can encode up to four bits in the low bits of a
1315/// type pointer, but there are many more type qualifiers that we want
1316/// to be able to apply to an arbitrary type. Therefore we have this
1317/// struct, intended to be heap-allocated and used by QualType to
1318/// store qualifiers.
1319///
1320/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1321/// in three low bits on the QualType pointer; a fourth bit records whether
1322/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1323/// Objective-C GC attributes) are much more rare.
1324class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1325 // NOTE: changing the fast qualifiers should be straightforward as
1326 // long as you don't make 'const' non-fast.
1327 // 1. Qualifiers:
1328 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1329 // Fast qualifiers must occupy the low-order bits.
1330 // b) Update Qualifiers::FastWidth and FastMask.
1331 // 2. QualType:
1332 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1333 // b) Update remove{Volatile,Restrict}, defined near the end of
1334 // this header.
1335 // 3. ASTContext:
1336 // a) Update get{Volatile,Restrict}Type.
1337
1338 /// The immutable set of qualifiers applied by this node. Always contains
1339 /// extended qualifiers.
1340 Qualifiers Quals;
1341
1342 ExtQuals *this_() { return this; }
1343
1344public:
1345 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1346 : ExtQualsTypeCommonBase(baseType,
1347 canon.isNull() ? QualType(this_(), 0) : canon),
1348 Quals(quals) {
1349 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
1350 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
1352 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
;
1353 }
1354
1355 Qualifiers getQualifiers() const { return Quals; }
1356
1357 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1358 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1359
1360 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1361 Qualifiers::ObjCLifetime getObjCLifetime() const {
1362 return Quals.getObjCLifetime();
1363 }
1364
1365 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1366 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1367
1368 const Type *getBaseType() const { return BaseType; }
1369
1370public:
1371 void Profile(llvm::FoldingSetNodeID &ID) const {
1372 Profile(ID, getBaseType(), Quals);
1373 }
1374
1375 static void Profile(llvm::FoldingSetNodeID &ID,
1376 const Type *BaseType,
1377 Qualifiers Quals) {
1378 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1378, __PRETTY_FUNCTION__))
;
1379 ID.AddPointer(BaseType);
1380 Quals.Profile(ID);
1381 }
1382};
1383
1384/// The kind of C++11 ref-qualifier associated with a function type.
1385/// This determines whether a member function's "this" object can be an
1386/// lvalue, rvalue, or neither.
1387enum RefQualifierKind {
1388 /// No ref-qualifier was provided.
1389 RQ_None = 0,
1390
1391 /// An lvalue ref-qualifier was provided (\c &).
1392 RQ_LValue,
1393
1394 /// An rvalue ref-qualifier was provided (\c &&).
1395 RQ_RValue
1396};
1397
1398/// Which keyword(s) were used to create an AutoType.
1399enum class AutoTypeKeyword {
1400 /// auto
1401 Auto,
1402
1403 /// decltype(auto)
1404 DecltypeAuto,
1405
1406 /// __auto_type (GNU extension)
1407 GNUAutoType
1408};
1409
1410/// The base class of the type hierarchy.
1411///
1412/// A central concept with types is that each type always has a canonical
1413/// type. A canonical type is the type with any typedef names stripped out
1414/// of it or the types it references. For example, consider:
1415///
1416/// typedef int foo;
1417/// typedef foo* bar;
1418/// 'int *' 'foo *' 'bar'
1419///
1420/// There will be a Type object created for 'int'. Since int is canonical, its
1421/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1422/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1423/// there is a PointerType that represents 'int*', which, like 'int', is
1424/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1425/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1426/// is also 'int*'.
1427///
1428/// Non-canonical types are useful for emitting diagnostics, without losing
1429/// information about typedefs being used. Canonical types are useful for type
1430/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1431/// about whether something has a particular form (e.g. is a function type),
1432/// because they implicitly, recursively, strip all typedefs out of a type.
1433///
1434/// Types, once created, are immutable.
1435///
1436class alignas(8) Type : public ExtQualsTypeCommonBase {
1437public:
1438 enum TypeClass {
1439#define TYPE(Class, Base) Class,
1440#define LAST_TYPE(Class) TypeLast = Class
1441#define ABSTRACT_TYPE(Class, Base)
1442#include "clang/AST/TypeNodes.inc"
1443 };
1444
1445private:
1446 /// Bitfields required by the Type class.
1447 class TypeBitfields {
1448 friend class Type;
1449 template <class T> friend class TypePropertyCache;
1450
1451 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1452 unsigned TC : 8;
1453
1454 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1455 unsigned Dependent : 1;
1456
1457 /// Whether this type somehow involves a template parameter, even
1458 /// if the resolution of the type does not depend on a template parameter.
1459 unsigned InstantiationDependent : 1;
1460
1461 /// Whether this type is a variably-modified type (C99 6.7.5).
1462 unsigned VariablyModified : 1;
1463
1464 /// Whether this type contains an unexpanded parameter pack
1465 /// (for C++11 variadic templates).
1466 unsigned ContainsUnexpandedParameterPack : 1;
1467
1468 /// True if the cache (i.e. the bitfields here starting with
1469 /// 'Cache') is valid.
1470 mutable unsigned CacheValid : 1;
1471
1472 /// Linkage of this type.
1473 mutable unsigned CachedLinkage : 3;
1474
1475 /// Whether this type involves and local or unnamed types.
1476 mutable unsigned CachedLocalOrUnnamed : 1;
1477
1478 /// Whether this type comes from an AST file.
1479 mutable unsigned FromAST : 1;
1480
1481 bool isCacheValid() const {
1482 return CacheValid;
1483 }
1484
1485 Linkage getLinkage() const {
1486 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1486, __PRETTY_FUNCTION__))
;
1487 return static_cast<Linkage>(CachedLinkage);
1488 }
1489
1490 bool hasLocalOrUnnamedType() const {
1491 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 1491, __PRETTY_FUNCTION__))
;
1492 return CachedLocalOrUnnamed;
1493 }
1494 };
1495 enum { NumTypeBits = 18 };
1496
1497protected:
1498 // These classes allow subclasses to somewhat cleanly pack bitfields
1499 // into Type.
1500
1501 class ArrayTypeBitfields {
1502 friend class ArrayType;
1503
1504 unsigned : NumTypeBits;
1505
1506 /// CVR qualifiers from declarations like
1507 /// 'int X[static restrict 4]'. For function parameters only.
1508 unsigned IndexTypeQuals : 3;
1509
1510 /// Storage class qualifiers from declarations like
1511 /// 'int X[static restrict 4]'. For function parameters only.
1512 /// Actually an ArrayType::ArraySizeModifier.
1513 unsigned SizeModifier : 3;
1514 };
1515
1516 class ConstantArrayTypeBitfields {
1517 friend class ConstantArrayType;
1518
1519 unsigned : NumTypeBits + 3 + 3;
1520
1521 /// Whether we have a stored size expression.
1522 unsigned HasStoredSizeExpr : 1;
1523 };
1524
1525 class BuiltinTypeBitfields {
1526 friend class BuiltinType;
1527
1528 unsigned : NumTypeBits;
1529
1530 /// The kind (BuiltinType::Kind) of builtin type this is.
1531 unsigned Kind : 8;
1532 };
1533
1534 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1535 /// Only common bits are stored here. Additional uncommon bits are stored
1536 /// in a trailing object after FunctionProtoType.
1537 class FunctionTypeBitfields {
1538 friend class FunctionProtoType;
1539 friend class FunctionType;
1540
1541 unsigned : NumTypeBits;
1542
1543 /// Extra information which affects how the function is called, like
1544 /// regparm and the calling convention.
1545 unsigned ExtInfo : 12;
1546
1547 /// The ref-qualifier associated with a \c FunctionProtoType.
1548 ///
1549 /// This is a value of type \c RefQualifierKind.
1550 unsigned RefQualifier : 2;
1551
1552 /// Used only by FunctionProtoType, put here to pack with the
1553 /// other bitfields.
1554 /// The qualifiers are part of FunctionProtoType because...
1555 ///
1556 /// C++ 8.3.5p4: The return type, the parameter type list and the
1557 /// cv-qualifier-seq, [...], are part of the function type.
1558 unsigned FastTypeQuals : Qualifiers::FastWidth;
1559 /// Whether this function has extended Qualifiers.
1560 unsigned HasExtQuals : 1;
1561
1562 /// The number of parameters this function has, not counting '...'.
1563 /// According to [implimits] 8 bits should be enough here but this is
1564 /// somewhat easy to exceed with metaprogramming and so we would like to
1565 /// keep NumParams as wide as reasonably possible.
1566 unsigned NumParams : 16;
1567
1568 /// The type of exception specification this function has.
1569 unsigned ExceptionSpecType : 4;
1570
1571 /// Whether this function has extended parameter information.
1572 unsigned HasExtParameterInfos : 1;
1573
1574 /// Whether the function is variadic.
1575 unsigned Variadic : 1;
1576
1577 /// Whether this function has a trailing return type.
1578 unsigned HasTrailingReturn : 1;
1579 };
1580
1581 class ObjCObjectTypeBitfields {
1582 friend class ObjCObjectType;
1583
1584 unsigned : NumTypeBits;
1585
1586 /// The number of type arguments stored directly on this object type.
1587 unsigned NumTypeArgs : 7;
1588
1589 /// The number of protocols stored directly on this object type.
1590 unsigned NumProtocols : 6;
1591
1592 /// Whether this is a "kindof" type.
1593 unsigned IsKindOf : 1;
1594 };
1595
1596 class ReferenceTypeBitfields {
1597 friend class ReferenceType;
1598
1599 unsigned : NumTypeBits;
1600
1601 /// True if the type was originally spelled with an lvalue sigil.
1602 /// This is never true of rvalue references but can also be false
1603 /// on lvalue references because of C++0x [dcl.typedef]p9,
1604 /// as follows:
1605 ///
1606 /// typedef int &ref; // lvalue, spelled lvalue
1607 /// typedef int &&rvref; // rvalue
1608 /// ref &a; // lvalue, inner ref, spelled lvalue
1609 /// ref &&a; // lvalue, inner ref
1610 /// rvref &a; // lvalue, inner ref, spelled lvalue
1611 /// rvref &&a; // rvalue, inner ref
1612 unsigned SpelledAsLValue : 1;
1613
1614 /// True if the inner type is a reference type. This only happens
1615 /// in non-canonical forms.
1616 unsigned InnerRef : 1;
1617 };
1618
1619 class TypeWithKeywordBitfields {
1620 friend class TypeWithKeyword;
1621
1622 unsigned : NumTypeBits;
1623
1624 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1625 unsigned Keyword : 8;
1626 };
1627
1628 enum { NumTypeWithKeywordBits = 8 };
1629
1630 class ElaboratedTypeBitfields {
1631 friend class ElaboratedType;
1632
1633 unsigned : NumTypeBits;
1634 unsigned : NumTypeWithKeywordBits;
1635
1636 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1637 unsigned HasOwnedTagDecl : 1;
1638 };
1639
1640 class VectorTypeBitfields {
1641 friend class VectorType;
1642 friend class DependentVectorType;
1643
1644 unsigned : NumTypeBits;
1645
1646 /// The kind of vector, either a generic vector type or some
1647 /// target-specific vector type such as for AltiVec or Neon.
1648 unsigned VecKind : 3;
1649
1650 /// The number of elements in the vector.
1651 unsigned NumElements : 29 - NumTypeBits;
1652
1653 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1654 };
1655
1656 class AttributedTypeBitfields {
1657 friend class AttributedType;
1658
1659 unsigned : NumTypeBits;
1660
1661 /// An AttributedType::Kind
1662 unsigned AttrKind : 32 - NumTypeBits;
1663 };
1664
1665 class AutoTypeBitfields {
1666 friend class AutoType;
1667
1668 unsigned : NumTypeBits;
1669
1670 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1671 /// or '__auto_type'? AutoTypeKeyword value.
1672 unsigned Keyword : 2;
1673 };
1674
1675 class SubstTemplateTypeParmPackTypeBitfields {
1676 friend class SubstTemplateTypeParmPackType;
1677
1678 unsigned : NumTypeBits;
1679
1680 /// The number of template arguments in \c Arguments, which is
1681 /// expected to be able to hold at least 1024 according to [implimits].
1682 /// However as this limit is somewhat easy to hit with template
1683 /// metaprogramming we'd prefer to keep it as large as possible.
1684 /// At the moment it has been left as a non-bitfield since this type
1685 /// safely fits in 64 bits as an unsigned, so there is no reason to
1686 /// introduce the performance impact of a bitfield.
1687 unsigned NumArgs;
1688 };
1689
1690 class TemplateSpecializationTypeBitfields {
1691 friend class TemplateSpecializationType;
1692
1693 unsigned : NumTypeBits;
1694
1695 /// Whether this template specialization type is a substituted type alias.
1696 unsigned TypeAlias : 1;
1697
1698 /// The number of template arguments named in this class template
1699 /// specialization, which is expected to be able to hold at least 1024
1700 /// according to [implimits]. However, as this limit is somewhat easy to
1701 /// hit with template metaprogramming we'd prefer to keep it as large
1702 /// as possible. At the moment it has been left as a non-bitfield since
1703 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1704 /// to introduce the performance impact of a bitfield.
1705 unsigned NumArgs;
1706 };
1707
1708 class DependentTemplateSpecializationTypeBitfields {
1709 friend class DependentTemplateSpecializationType;
1710
1711 unsigned : NumTypeBits;
1712 unsigned : NumTypeWithKeywordBits;
1713
1714 /// The number of template arguments named in this class template
1715 /// specialization, which is expected to be able to hold at least 1024
1716 /// according to [implimits]. However, as this limit is somewhat easy to
1717 /// hit with template metaprogramming we'd prefer to keep it as large
1718 /// as possible. At the moment it has been left as a non-bitfield since
1719 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1720 /// to introduce the performance impact of a bitfield.
1721 unsigned NumArgs;
1722 };
1723
1724 class PackExpansionTypeBitfields {
1725 friend class PackExpansionType;
1726
1727 unsigned : NumTypeBits;
1728
1729 /// The number of expansions that this pack expansion will
1730 /// generate when substituted (+1), which is expected to be able to
1731 /// hold at least 1024 according to [implimits]. However, as this limit
1732 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1733 /// keep it as large as possible. At the moment it has been left as a
1734 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1735 /// there is no reason to introduce the performance impact of a bitfield.
1736 ///
1737 /// This field will only have a non-zero value when some of the parameter
1738 /// packs that occur within the pattern have been substituted but others
1739 /// have not.
1740 unsigned NumExpansions;
1741 };
1742
1743 union {
1744 TypeBitfields TypeBits;
1745 ArrayTypeBitfields ArrayTypeBits;
1746 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1747 AttributedTypeBitfields AttributedTypeBits;
1748 AutoTypeBitfields AutoTypeBits;
1749 BuiltinTypeBitfields BuiltinTypeBits;
1750 FunctionTypeBitfields FunctionTypeBits;
1751 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1752 ReferenceTypeBitfields ReferenceTypeBits;
1753 TypeWithKeywordBitfields TypeWithKeywordBits;
1754 ElaboratedTypeBitfields ElaboratedTypeBits;
1755 VectorTypeBitfields VectorTypeBits;
1756 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1757 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1758 DependentTemplateSpecializationTypeBitfields
1759 DependentTemplateSpecializationTypeBits;
1760 PackExpansionTypeBitfields PackExpansionTypeBits;
1761
1762 static_assert(sizeof(TypeBitfields) <= 8,
1763 "TypeBitfields is larger than 8 bytes!");
1764 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1765 "ArrayTypeBitfields is larger than 8 bytes!");
1766 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1767 "AttributedTypeBitfields is larger than 8 bytes!");
1768 static_assert(sizeof(AutoTypeBitfields) <= 8,
1769 "AutoTypeBitfields is larger than 8 bytes!");
1770 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1771 "BuiltinTypeBitfields is larger than 8 bytes!");
1772 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1773 "FunctionTypeBitfields is larger than 8 bytes!");
1774 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1775 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1776 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1777 "ReferenceTypeBitfields is larger than 8 bytes!");
1778 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1779 "TypeWithKeywordBitfields is larger than 8 bytes!");
1780 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1781 "ElaboratedTypeBitfields is larger than 8 bytes!");
1782 static_assert(sizeof(VectorTypeBitfields) <= 8,
1783 "VectorTypeBitfields is larger than 8 bytes!");
1784 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1785 "SubstTemplateTypeParmPackTypeBitfields is larger"
1786 " than 8 bytes!");
1787 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1788 "TemplateSpecializationTypeBitfields is larger"
1789 " than 8 bytes!");
1790 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1791 "DependentTemplateSpecializationTypeBitfields is larger"
1792 " than 8 bytes!");
1793 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1794 "PackExpansionTypeBitfields is larger than 8 bytes");
1795 };
1796
1797private:
1798 template <class T> friend class TypePropertyCache;
1799
1800 /// Set whether this type comes from an AST file.
1801 void setFromAST(bool V = true) const {
1802 TypeBits.FromAST = V;
1803 }
1804
1805protected:
1806 friend class ASTContext;
1807
1808 Type(TypeClass tc, QualType canon, bool Dependent,
1809 bool InstantiationDependent, bool VariablyModified,
1810 bool ContainsUnexpandedParameterPack)
1811 : ExtQualsTypeCommonBase(this,
1812 canon.isNull() ? QualType(this_(), 0) : canon) {
1813 TypeBits.TC = tc;
1814 TypeBits.Dependent = Dependent;
1815 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1816 TypeBits.VariablyModified = VariablyModified;
1817 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1818 TypeBits.CacheValid = false;
1819 TypeBits.CachedLocalOrUnnamed = false;
1820 TypeBits.CachedLinkage = NoLinkage;
1821 TypeBits.FromAST = false;
1822 }
1823
1824 // silence VC++ warning C4355: 'this' : used in base member initializer list
1825 Type *this_() { return this; }
1826
1827 void setDependent(bool D = true) {
1828 TypeBits.Dependent = D;
1829 if (D)
1830 TypeBits.InstantiationDependent = true;
1831 }
1832
1833 void setInstantiationDependent(bool D = true) {
1834 TypeBits.InstantiationDependent = D; }
1835
1836 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1837
1838 void setContainsUnexpandedParameterPack(bool PP = true) {
1839 TypeBits.ContainsUnexpandedParameterPack = PP;
1840 }
1841
1842public:
1843 friend class ASTReader;
1844 friend class ASTWriter;
1845
1846 Type(const Type &) = delete;
1847 Type(Type &&) = delete;
1848 Type &operator=(const Type &) = delete;
1849 Type &operator=(Type &&) = delete;
1850
1851 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1852
1853 /// Whether this type comes from an AST file.
1854 bool isFromAST() const { return TypeBits.FromAST; }
1855
1856 /// Whether this type is or contains an unexpanded parameter
1857 /// pack, used to support C++0x variadic templates.
1858 ///
1859 /// A type that contains a parameter pack shall be expanded by the
1860 /// ellipsis operator at some point. For example, the typedef in the
1861 /// following example contains an unexpanded parameter pack 'T':
1862 ///
1863 /// \code
1864 /// template<typename ...T>
1865 /// struct X {
1866 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1867 /// };
1868 /// \endcode
1869 ///
1870 /// Note that this routine does not specify which
1871 bool containsUnexpandedParameterPack() const {
1872 return TypeBits.ContainsUnexpandedParameterPack;
1873 }
1874
1875 /// Determines if this type would be canonical if it had no further
1876 /// qualification.
1877 bool isCanonicalUnqualified() const {
1878 return CanonicalType == QualType(this, 0);
1879 }
1880
1881 /// Pull a single level of sugar off of this locally-unqualified type.
1882 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1883 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1884 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1885
1886 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1887 /// object types, function types, and incomplete types.
1888
1889 /// Return true if this is an incomplete type.
1890 /// A type that can describe objects, but which lacks information needed to
1891 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1892 /// routine will need to determine if the size is actually required.
1893 ///
1894 /// Def If non-null, and the type refers to some kind of declaration
1895 /// that can be completed (such as a C struct, C++ class, or Objective-C
1896 /// class), will be set to the declaration.
1897 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1898
1899 /// Return true if this is an incomplete or object
1900 /// type, in other words, not a function type.
1901 bool isIncompleteOrObjectType() const {
1902 return !isFunctionType();
1903 }
1904
1905 /// Determine whether this type is an object type.
1906 bool isObjectType() const {
1907 // C++ [basic.types]p8:
1908 // An object type is a (possibly cv-qualified) type that is not a
1909 // function type, not a reference type, and not a void type.
1910 return !isReferenceType() && !isFunctionType() && !isVoidType();
1911 }
1912
1913 /// Return true if this is a literal type
1914 /// (C++11 [basic.types]p10)
1915 bool isLiteralType(const ASTContext &Ctx) const;
1916
1917 /// Test if this type is a standard-layout type.
1918 /// (C++0x [basic.type]p9)
1919 bool isStandardLayoutType() const;
1920
1921 /// Helper methods to distinguish type categories. All type predicates
1922 /// operate on the canonical type, ignoring typedefs and qualifiers.
1923
1924 /// Returns true if the type is a builtin type.
1925 bool isBuiltinType() const;
1926
1927 /// Test for a particular builtin type.
1928 bool isSpecificBuiltinType(unsigned K) const;
1929
1930 /// Test for a type which does not represent an actual type-system type but
1931 /// is instead used as a placeholder for various convenient purposes within
1932 /// Clang. All such types are BuiltinTypes.
1933 bool isPlaceholderType() const;
1934 const BuiltinType *getAsPlaceholderType() const;
1935
1936 /// Test for a specific placeholder type.
1937 bool isSpecificPlaceholderType(unsigned K) const;
1938
1939 /// Test for a placeholder type other than Overload; see
1940 /// BuiltinType::isNonOverloadPlaceholderType.
1941 bool isNonOverloadPlaceholderType() const;
1942
1943 /// isIntegerType() does *not* include complex integers (a GCC extension).
1944 /// isComplexIntegerType() can be used to test for complex integers.
1945 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1946 bool isEnumeralType() const;
1947
1948 /// Determine whether this type is a scoped enumeration type.
1949 bool isScopedEnumeralType() const;
1950 bool isBooleanType() const;
1951 bool isCharType() const;
1952 bool isWideCharType() const;
1953 bool isChar8Type() const;
1954 bool isChar16Type() const;
1955 bool isChar32Type() const;
1956 bool isAnyCharacterType() const;
1957 bool isIntegralType(const ASTContext &Ctx) const;
1958
1959 /// Determine whether this type is an integral or enumeration type.
1960 bool isIntegralOrEnumerationType() const;
1961
1962 /// Determine whether this type is an integral or unscoped enumeration type.
1963 bool isIntegralOrUnscopedEnumerationType() const;
1964
1965 /// Floating point categories.
1966 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1967 /// isComplexType() does *not* include complex integers (a GCC extension).
1968 /// isComplexIntegerType() can be used to test for complex integers.
1969 bool isComplexType() const; // C99 6.2.5p11 (complex)
1970 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1971 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1972 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1973 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1974 bool isFloat128Type() const;
1975 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1976 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1977 bool isVoidType() const; // C99 6.2.5p19
1978 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1979 bool isAggregateType() const;
1980 bool isFundamentalType() const;
1981 bool isCompoundType() const;
1982
1983 // Type Predicates: Check to see if this type is structurally the specified
1984 // type, ignoring typedefs and qualifiers.
1985 bool isFunctionType() const;
1986 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1987 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1988 bool isPointerType() const;
1989 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1990 bool isBlockPointerType() const;
1991 bool isVoidPointerType() const;
1992 bool isReferenceType() const;
1993 bool isLValueReferenceType() const;
1994 bool isRValueReferenceType() const;
1995 bool isFunctionPointerType() const;
1996 bool isFunctionReferenceType() const;
1997 bool isMemberPointerType() const;
1998 bool isMemberFunctionPointerType() const;
1999 bool isMemberDataPointerType() const;
2000 bool isArrayType() const;
2001 bool isConstantArrayType() const;
2002 bool isIncompleteArrayType() const;
2003 bool isVariableArrayType() const;
2004 bool isDependentSizedArrayType() const;
2005 bool isRecordType() const;
2006 bool isClassType() const;
2007 bool isStructureType() const;
2008 bool isObjCBoxableRecordType() const;
2009 bool isInterfaceType() const;
2010 bool isStructureOrClassType() const;
2011 bool isUnionType() const;
2012 bool isComplexIntegerType() const; // GCC _Complex integer type.
2013 bool isVectorType() const; // GCC vector type.
2014 bool isExtVectorType() const; // Extended vector type.
2015 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2016 bool isObjCObjectPointerType() const; // pointer to ObjC object
2017 bool isObjCRetainableType() const; // ObjC object or block pointer
2018 bool isObjCLifetimeType() const; // (array of)* retainable type
2019 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2020 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2021 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2022 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2023 // for the common case.
2024 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2025 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2026 bool isObjCQualifiedIdType() const; // id<foo>
2027 bool isObjCQualifiedClassType() const; // Class<foo>
2028 bool isObjCObjectOrInterfaceType() const;
2029 bool isObjCIdType() const; // id
2030 bool isDecltypeType() const;
2031 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2032 /// qualifier?
2033 ///
2034 /// This approximates the answer to the following question: if this
2035 /// translation unit were compiled in ARC, would this type be qualified
2036 /// with __unsafe_unretained?
2037 bool isObjCInertUnsafeUnretainedType() const {
2038 return hasAttr(attr::ObjCInertUnsafeUnretained);
2039 }
2040
2041 /// Whether the type is Objective-C 'id' or a __kindof type of an
2042 /// object type, e.g., __kindof NSView * or __kindof id
2043 /// <NSCopying>.
2044 ///
2045 /// \param bound Will be set to the bound on non-id subtype types,
2046 /// which will be (possibly specialized) Objective-C class type, or
2047 /// null for 'id.
2048 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2049 const ObjCObjectType *&bound) const;
2050
2051 bool isObjCClassType() const; // Class
2052
2053 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2054 /// Class type, e.g., __kindof Class <NSCopying>.
2055 ///
2056 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2057 /// here because Objective-C's type system cannot express "a class
2058 /// object for a subclass of NSFoo".
2059 bool isObjCClassOrClassKindOfType() const;
2060
2061 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2062 bool isObjCSelType() const; // Class
2063 bool isObjCBuiltinType() const; // 'id' or 'Class'
2064 bool isObjCARCBridgableType() const;
2065 bool isCARCBridgableType() const;
2066 bool isTemplateTypeParmType() const; // C++ template type parameter
2067 bool isNullPtrType() const; // C++11 std::nullptr_t
2068 bool isNothrowT() const; // C++ std::nothrow_t
2069 bool isAlignValT() const; // C++17 std::align_val_t
2070 bool isStdByteType() const; // C++17 std::byte
2071 bool isAtomicType() const; // C11 _Atomic()
2072
2073#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2074 bool is##Id##Type() const;
2075#include "clang/Basic/OpenCLImageTypes.def"
2076
2077 bool isImageType() const; // Any OpenCL image type
2078
2079 bool isSamplerT() const; // OpenCL sampler_t
2080 bool isEventT() const; // OpenCL event_t
2081 bool isClkEventT() const; // OpenCL clk_event_t
2082 bool isQueueT() const; // OpenCL queue_t
2083 bool isReserveIDT() const; // OpenCL reserve_id_t
2084
2085#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2086 bool is##Id##Type() const;
2087#include "clang/Basic/OpenCLExtensionTypes.def"
2088 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2089 bool isOCLIntelSubgroupAVCType() const;
2090 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2091
2092 bool isPipeType() const; // OpenCL pipe type
2093 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2094
2095 /// Determines if this type, which must satisfy
2096 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2097 /// than implicitly __strong.
2098 bool isObjCARCImplicitlyUnretainedType() const;
2099
2100 /// Return the implicit lifetime for this type, which must not be dependent.
2101 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2102
2103 enum ScalarTypeKind {
2104 STK_CPointer,
2105 STK_BlockPointer,
2106 STK_ObjCObjectPointer,
2107 STK_MemberPointer,
2108 STK_Bool,
2109 STK_Integral,
2110 STK_Floating,
2111 STK_IntegralComplex,
2112 STK_FloatingComplex,
2113 STK_FixedPoint
2114 };
2115
2116 /// Given that this is a scalar type, classify it.
2117 ScalarTypeKind getScalarTypeKind() const;
2118
2119 /// Whether this type is a dependent type, meaning that its definition
2120 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2121 bool isDependentType() const { return TypeBits.Dependent; }
2122
2123 /// Determine whether this type is an instantiation-dependent type,
2124 /// meaning that the type involves a template parameter (even if the
2125 /// definition does not actually depend on the type substituted for that
2126 /// template parameter).
2127 bool isInstantiationDependentType() const {
2128 return TypeBits.InstantiationDependent;
2129 }
2130
2131 /// Determine whether this type is an undeduced type, meaning that
2132 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2133 /// deduced.
2134 bool isUndeducedType() const;
2135
2136 /// Whether this type is a variably-modified type (C99 6.7.5).
2137 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2138
2139 /// Whether this type involves a variable-length array type
2140 /// with a definite size.
2141 bool hasSizedVLAType() const;
2142
2143 /// Whether this type is or contains a local or unnamed type.
2144 bool hasUnnamedOrLocalType() const;
2145
2146 bool isOverloadableType() const;
2147
2148 /// Determine wither this type is a C++ elaborated-type-specifier.
2149 bool isElaboratedTypeSpecifier() const;
2150
2151 bool canDecayToPointerType() const;
2152
2153 /// Whether this type is represented natively as a pointer. This includes
2154 /// pointers, references, block pointers, and Objective-C interface,
2155 /// qualified id, and qualified interface types, as well as nullptr_t.
2156 bool hasPointerRepresentation() const;
2157
2158 /// Whether this type can represent an objective pointer type for the
2159 /// purpose of GC'ability
2160 bool hasObjCPointerRepresentation() const;
2161
2162 /// Determine whether this type has an integer representation
2163 /// of some sort, e.g., it is an integer type or a vector.
2164 bool hasIntegerRepresentation() const;
2165
2166 /// Determine whether this type has an signed integer representation
2167 /// of some sort, e.g., it is an signed integer type or a vector.
2168 bool hasSignedIntegerRepresentation() const;
2169
2170 /// Determine whether this type has an unsigned integer representation
2171 /// of some sort, e.g., it is an unsigned integer type or a vector.
2172 bool hasUnsignedIntegerRepresentation() const;
2173
2174 /// Determine whether this type has a floating-point representation
2175 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2176 bool hasFloatingRepresentation() const;
2177
2178 // Type Checking Functions: Check to see if this type is structurally the
2179 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2180 // the best type we can.
2181 const RecordType *getAsStructureType() const;
2182 /// NOTE: getAs*ArrayType are methods on ASTContext.
2183 const RecordType *getAsUnionType() const;
2184 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2185 const ObjCObjectType *getAsObjCInterfaceType() const;
2186
2187 // The following is a convenience method that returns an ObjCObjectPointerType
2188 // for object declared using an interface.
2189 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2190 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2191 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2192 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2193
2194 /// Retrieves the CXXRecordDecl that this type refers to, either
2195 /// because the type is a RecordType or because it is the injected-class-name
2196 /// type of a class template or class template partial specialization.
2197 CXXRecordDecl *getAsCXXRecordDecl() const;
2198
2199 /// Retrieves the RecordDecl this type refers to.
2200 RecordDecl *getAsRecordDecl() const;
2201
2202 /// Retrieves the TagDecl that this type refers to, either
2203 /// because the type is a TagType or because it is the injected-class-name
2204 /// type of a class template or class template partial specialization.
2205 TagDecl *getAsTagDecl() const;
2206
2207 /// If this is a pointer or reference to a RecordType, return the
2208 /// CXXRecordDecl that the type refers to.
2209 ///
2210 /// If this is not a pointer or reference, or the type being pointed to does
2211 /// not refer to a CXXRecordDecl, returns NULL.
2212 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2213
2214 /// Get the DeducedType whose type will be deduced for a variable with
2215 /// an initializer of this type. This looks through declarators like pointer
2216 /// types, but not through decltype or typedefs.
2217 DeducedType *getContainedDeducedType() const;
2218
2219 /// Get the AutoType whose type will be deduced for a variable with
2220 /// an initializer of this type. This looks through declarators like pointer
2221 /// types, but not through decltype or typedefs.
2222 AutoType *getContainedAutoType() const {
2223 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2224 }
2225
2226 /// Determine whether this type was written with a leading 'auto'
2227 /// corresponding to a trailing return type (possibly for a nested
2228 /// function type within a pointer to function type or similar).
2229 bool hasAutoForTrailingReturnType() const;
2230
2231 /// Member-template getAs<specific type>'. Look through sugar for
2232 /// an instance of \<specific type>. This scheme will eventually
2233 /// replace the specific getAsXXXX methods above.
2234 ///
2235 /// There are some specializations of this member template listed
2236 /// immediately following this class.
2237 template <typename T> const T *getAs() const;
2238
2239 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2240 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2241 /// This is used when you need to walk over sugar nodes that represent some
2242 /// kind of type adjustment from a type that was written as a \<specific type>
2243 /// to another type that is still canonically a \<specific type>.
2244 template <typename T> const T *getAsAdjusted() const;
2245
2246 /// A variant of getAs<> for array types which silently discards
2247 /// qualifiers from the outermost type.
2248 const ArrayType *getAsArrayTypeUnsafe() const;
2249
2250 /// Member-template castAs<specific type>. Look through sugar for
2251 /// the underlying instance of \<specific type>.
2252 ///
2253 /// This method has the same relationship to getAs<T> as cast<T> has
2254 /// to dyn_cast<T>; which is to say, the underlying type *must*
2255 /// have the intended type, and this method will never return null.
2256 template <typename T> const T *castAs() const;
2257
2258 /// A variant of castAs<> for array type which silently discards
2259 /// qualifiers from the outermost type.
2260 const ArrayType *castAsArrayTypeUnsafe() const;
2261
2262 /// Determine whether this type had the specified attribute applied to it
2263 /// (looking through top-level type sugar).
2264 bool hasAttr(attr::Kind AK) const;
2265
2266 /// Get the base element type of this type, potentially discarding type
2267 /// qualifiers. This should never be used when type qualifiers
2268 /// are meaningful.
2269 const Type *getBaseElementTypeUnsafe() const;
2270
2271 /// If this is an array type, return the element type of the array,
2272 /// potentially with type qualifiers missing.
2273 /// This should never be used when type qualifiers are meaningful.
2274 const Type *getArrayElementTypeNoTypeQual() const;
2275
2276 /// If this is a pointer type, return the pointee type.
2277 /// If this is an array type, return the array element type.
2278 /// This should never be used when type qualifiers are meaningful.
2279 const Type *getPointeeOrArrayElementType() const;
2280
2281 /// If this is a pointer, ObjC object pointer, or block
2282 /// pointer, this returns the respective pointee.
2283 QualType getPointeeType() const;
2284
2285 /// Return the specified type with any "sugar" removed from the type,
2286 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2287 const Type *getUnqualifiedDesugaredType() const;
2288
2289 /// More type predicates useful for type checking/promotion
2290 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2291
2292 /// Return true if this is an integer type that is
2293 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2294 /// or an enum decl which has a signed representation.
2295 bool isSignedIntegerType() const;
2296
2297 /// Return true if this is an integer type that is
2298 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2299 /// or an enum decl which has an unsigned representation.
2300 bool isUnsignedIntegerType() const;
2301
2302 /// Determines whether this is an integer type that is signed or an
2303 /// enumeration types whose underlying type is a signed integer type.
2304 bool isSignedIntegerOrEnumerationType() const;
2305
2306 /// Determines whether this is an integer type that is unsigned or an
2307 /// enumeration types whose underlying type is a unsigned integer type.
2308 bool isUnsignedIntegerOrEnumerationType() const;
2309
2310 /// Return true if this is a fixed point type according to
2311 /// ISO/IEC JTC1 SC22 WG14 N1169.
2312 bool isFixedPointType() const;
2313
2314 /// Return true if this is a fixed point or integer type.
2315 bool isFixedPointOrIntegerType() const;
2316
2317 /// Return true if this is a saturated fixed point type according to
2318 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2319 bool isSaturatedFixedPointType() const;
2320
2321 /// Return true if this is a saturated fixed point type according to
2322 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2323 bool isUnsaturatedFixedPointType() const;
2324
2325 /// Return true if this is a fixed point type that is signed according
2326 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2327 bool isSignedFixedPointType() const;
2328
2329 /// Return true if this is a fixed point type that is unsigned according
2330 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2331 bool isUnsignedFixedPointType() const;
2332
2333 /// Return true if this is not a variable sized type,
2334 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2335 /// incomplete types.
2336 bool isConstantSizeType() const;
2337
2338 /// Returns true if this type can be represented by some
2339 /// set of type specifiers.
2340 bool isSpecifierType() const;
2341
2342 /// Determine the linkage of this type.
2343 Linkage getLinkage() const;
2344
2345 /// Determine the visibility of this type.
2346 Visibility getVisibility() const {
2347 return getLinkageAndVisibility().getVisibility();
2348 }
2349
2350 /// Return true if the visibility was explicitly set is the code.
2351 bool isVisibilityExplicit() const {
2352 return getLinkageAndVisibility().isVisibilityExplicit();
2353 }
2354
2355 /// Determine the linkage and visibility of this type.
2356 LinkageInfo getLinkageAndVisibility() const;
2357
2358 /// True if the computed linkage is valid. Used for consistency
2359 /// checking. Should always return true.
2360 bool isLinkageValid() const;
2361
2362 /// Determine the nullability of the given type.
2363 ///
2364 /// Note that nullability is only captured as sugar within the type
2365 /// system, not as part of the canonical type, so nullability will
2366 /// be lost by canonicalization and desugaring.
2367 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2368
2369 /// Determine whether the given type can have a nullability
2370 /// specifier applied to it, i.e., if it is any kind of pointer type.
2371 ///
2372 /// \param ResultIfUnknown The value to return if we don't yet know whether
2373 /// this type can have nullability because it is dependent.
2374 bool canHaveNullability(bool ResultIfUnknown = true) const;
2375
2376 /// Retrieve the set of substitutions required when accessing a member
2377 /// of the Objective-C receiver type that is declared in the given context.
2378 ///
2379 /// \c *this is the type of the object we're operating on, e.g., the
2380 /// receiver for a message send or the base of a property access, and is
2381 /// expected to be of some object or object pointer type.
2382 ///
2383 /// \param dc The declaration context for which we are building up a
2384 /// substitution mapping, which should be an Objective-C class, extension,
2385 /// category, or method within.
2386 ///
2387 /// \returns an array of type arguments that can be substituted for
2388 /// the type parameters of the given declaration context in any type described
2389 /// within that context, or an empty optional to indicate that no
2390 /// substitution is required.
2391 Optional<ArrayRef<QualType>>
2392 getObjCSubstitutions(const DeclContext *dc) const;
2393
2394 /// Determines if this is an ObjC interface type that may accept type
2395 /// parameters.
2396 bool acceptsObjCTypeParams() const;
2397
2398 const char *getTypeClassName() const;
2399
2400 QualType getCanonicalTypeInternal() const {
2401 return CanonicalType;
2402 }
2403
2404 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2405 void dump() const;
2406 void dump(llvm::raw_ostream &OS) const;
2407};
2408
2409/// This will check for a TypedefType by removing any existing sugar
2410/// until it reaches a TypedefType or a non-sugared type.
2411template <> const TypedefType *Type::getAs() const;
2412
2413/// This will check for a TemplateSpecializationType by removing any
2414/// existing sugar until it reaches a TemplateSpecializationType or a
2415/// non-sugared type.
2416template <> const TemplateSpecializationType *Type::getAs() const;
2417
2418/// This will check for an AttributedType by removing any existing sugar
2419/// until it reaches an AttributedType or a non-sugared type.
2420template <> const AttributedType *Type::getAs() const;
2421
2422// We can do canonical leaf types faster, because we don't have to
2423// worry about preserving child type decoration.
2424#define TYPE(Class, Base)
2425#define LEAF_TYPE(Class) \
2426template <> inline const Class##Type *Type::getAs() const { \
2427 return dyn_cast<Class##Type>(CanonicalType); \
2428} \
2429template <> inline const Class##Type *Type::castAs() const { \
2430 return cast<Class##Type>(CanonicalType); \
2431}
2432#include "clang/AST/TypeNodes.inc"
2433
2434/// This class is used for builtin types like 'int'. Builtin
2435/// types are always canonical and have a literal name field.
2436class BuiltinType : public Type {
2437public:
2438 enum Kind {
2439// OpenCL image types
2440#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2441#include "clang/Basic/OpenCLImageTypes.def"
2442// OpenCL extension types
2443#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2444#include "clang/Basic/OpenCLExtensionTypes.def"
2445// SVE Types
2446#define SVE_TYPE(Name, Id, SingletonId) Id,
2447#include "clang/Basic/AArch64SVEACLETypes.def"
2448// All other builtin types
2449#define BUILTIN_TYPE(Id, SingletonId) Id,
2450#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2451#include "clang/AST/BuiltinTypes.def"
2452 };
2453
2454private:
2455 friend class ASTContext; // ASTContext creates these.
2456
2457 BuiltinType(Kind K)
2458 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2459 /*InstantiationDependent=*/(K == Dependent),
2460 /*VariablyModified=*/false,
2461 /*Unexpanded parameter pack=*/false) {
2462 BuiltinTypeBits.Kind = K;
2463 }
2464
2465public:
2466 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2467 StringRef getName(const PrintingPolicy &Policy) const;
2468
2469 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2470 // The StringRef is null-terminated.
2471 StringRef str = getName(Policy);
2472 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 2472, __PRETTY_FUNCTION__))
;
2473 return str.data();
2474 }
2475
2476 bool isSugared() const { return false; }
2477 QualType desugar() const { return QualType(this, 0); }
2478
2479 bool isInteger() const {
2480 return getKind() >= Bool && getKind() <= Int128;
2481 }
2482
2483 bool isSignedInteger() const {
2484 return getKind() >= Char_S && getKind() <= Int128;
2485 }
2486
2487 bool isUnsignedInteger() const {
2488 return getKind() >= Bool && getKind() <= UInt128;
2489 }
2490
2491 bool isFloatingPoint() const {
2492 return getKind() >= Half && getKind() <= Float128;
2493 }
2494
2495 /// Determines whether the given kind corresponds to a placeholder type.
2496 static bool isPlaceholderTypeKind(Kind K) {
2497 return K >= Overload;
2498 }
2499
2500 /// Determines whether this type is a placeholder type, i.e. a type
2501 /// which cannot appear in arbitrary positions in a fully-formed
2502 /// expression.
2503 bool isPlaceholderType() const {
2504 return isPlaceholderTypeKind(getKind());
2505 }
2506
2507 /// Determines whether this type is a placeholder type other than
2508 /// Overload. Most placeholder types require only syntactic
2509 /// information about their context in order to be resolved (e.g.
2510 /// whether it is a call expression), which means they can (and
2511 /// should) be resolved in an earlier "phase" of analysis.
2512 /// Overload expressions sometimes pick up further information
2513 /// from their context, like whether the context expects a
2514 /// specific function-pointer type, and so frequently need
2515 /// special treatment.
2516 bool isNonOverloadPlaceholderType() const {
2517 return getKind() > Overload;
2518 }
2519
2520 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2521};
2522
2523/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2524/// types (_Complex float etc) as well as the GCC integer complex extensions.
2525class ComplexType : public Type, public llvm::FoldingSetNode {
2526 friend class ASTContext; // ASTContext creates these.
2527
2528 QualType ElementType;
2529
2530 ComplexType(QualType Element, QualType CanonicalPtr)
2531 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2532 Element->isInstantiationDependentType(),
2533 Element->isVariablyModifiedType(),
2534 Element->containsUnexpandedParameterPack()),
2535 ElementType(Element) {}
2536
2537public:
2538 QualType getElementType() const { return ElementType; }
2539
2540 bool isSugared() const { return false; }
2541 QualType desugar() const { return QualType(this, 0); }
2542
2543 void Profile(llvm::FoldingSetNodeID &ID) {
2544 Profile(ID, getElementType());
2545 }
2546
2547 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2548 ID.AddPointer(Element.getAsOpaquePtr());
2549 }
2550
2551 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2552};
2553
2554/// Sugar for parentheses used when specifying types.
2555class ParenType : public Type, public llvm::FoldingSetNode {
2556 friend class ASTContext; // ASTContext creates these.
2557
2558 QualType Inner;
2559
2560 ParenType(QualType InnerType, QualType CanonType)
2561 : Type(Paren, CanonType, InnerType->isDependentType(),
2562 InnerType->isInstantiationDependentType(),
2563 InnerType->isVariablyModifiedType(),
2564 InnerType->containsUnexpandedParameterPack()),
2565 Inner(InnerType) {}
2566
2567public:
2568 QualType getInnerType() const { return Inner; }
2569
2570 bool isSugared() const { return true; }
2571 QualType desugar() const { return getInnerType(); }
2572
2573 void Profile(llvm::FoldingSetNodeID &ID) {
2574 Profile(ID, getInnerType());
2575 }
2576
2577 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2578 Inner.Profile(ID);
2579 }
2580
2581 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2582};
2583
2584/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2585class PointerType : public Type, public llvm::FoldingSetNode {
2586 friend class ASTContext; // ASTContext creates these.
2587
2588 QualType PointeeType;
2589
2590 PointerType(QualType Pointee, QualType CanonicalPtr)
2591 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2592 Pointee->isInstantiationDependentType(),
2593 Pointee->isVariablyModifiedType(),
2594 Pointee->containsUnexpandedParameterPack()),
2595 PointeeType(Pointee) {}
2596
2597public:
2598 QualType getPointeeType() const { return PointeeType; }
2599
2600 /// Returns true if address spaces of pointers overlap.
2601 /// OpenCL v2.0 defines conversion rules for pointers to different
2602 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2603 /// address spaces.
2604 /// CL1.1 or CL1.2:
2605 /// address spaces overlap iff they are they same.
2606 /// CL2.0 adds:
2607 /// __generic overlaps with any address space except for __constant.
2608 bool isAddressSpaceOverlapping(const PointerType &other) const {
2609 Qualifiers thisQuals = PointeeType.getQualifiers();
2610 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2611 // Address spaces overlap if at least one of them is a superset of another
2612 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2613 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2614 }
2615
2616 bool isSugared() const { return false; }
2617 QualType desugar() const { return QualType(this, 0); }
2618
2619 void Profile(llvm::FoldingSetNodeID &ID) {
2620 Profile(ID, getPointeeType());
2621 }
2622
2623 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2624 ID.AddPointer(Pointee.getAsOpaquePtr());
2625 }
2626
2627 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2628};
2629
2630/// Represents a type which was implicitly adjusted by the semantic
2631/// engine for arbitrary reasons. For example, array and function types can
2632/// decay, and function types can have their calling conventions adjusted.
2633class AdjustedType : public Type, public llvm::FoldingSetNode {
2634 QualType OriginalTy;
2635 QualType AdjustedTy;
2636
2637protected:
2638 friend class ASTContext; // ASTContext creates these.
2639
2640 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2641 QualType CanonicalPtr)
2642 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2643 OriginalTy->isInstantiationDependentType(),
2644 OriginalTy->isVariablyModifiedType(),
2645 OriginalTy->containsUnexpandedParameterPack()),
2646 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2647
2648public:
2649 QualType getOriginalType() const { return OriginalTy; }
2650 QualType getAdjustedType() const { return AdjustedTy; }
2651
2652 bool isSugared() const { return true; }
2653 QualType desugar() const { return AdjustedTy; }
2654
2655 void Profile(llvm::FoldingSetNodeID &ID) {
2656 Profile(ID, OriginalTy, AdjustedTy);
2657 }
2658
2659 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2660 ID.AddPointer(Orig.getAsOpaquePtr());
2661 ID.AddPointer(New.getAsOpaquePtr());
2662 }
2663
2664 static bool classof(const Type *T) {
2665 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2666 }
2667};
2668
2669/// Represents a pointer type decayed from an array or function type.
2670class DecayedType : public AdjustedType {
2671 friend class ASTContext; // ASTContext creates these.
2672
2673 inline
2674 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2675
2676public:
2677 QualType getDecayedType() const { return getAdjustedType(); }
2678
2679 inline QualType getPointeeType() const;
2680
2681 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2682};
2683
2684/// Pointer to a block type.
2685/// This type is to represent types syntactically represented as
2686/// "void (^)(int)", etc. Pointee is required to always be a function type.
2687class BlockPointerType : public Type, public llvm::FoldingSetNode {
2688 friend class ASTContext; // ASTContext creates these.
2689
2690 // Block is some kind of pointer type
2691 QualType PointeeType;
2692
2693 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2694 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2695 Pointee->isInstantiationDependentType(),
2696 Pointee->isVariablyModifiedType(),
2697 Pointee->containsUnexpandedParameterPack()),
2698 PointeeType(Pointee) {}
2699
2700public:
2701 // Get the pointee type. Pointee is required to always be a function type.
2702 QualType getPointeeType() const { return PointeeType; }
2703
2704 bool isSugared() const { return false; }
2705 QualType desugar() const { return QualType(this, 0); }
2706
2707 void Profile(llvm::FoldingSetNodeID &ID) {
2708 Profile(ID, getPointeeType());
2709 }
2710
2711 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2712 ID.AddPointer(Pointee.getAsOpaquePtr());
2713 }
2714
2715 static bool classof(const Type *T) {
2716 return T->getTypeClass() == BlockPointer;
2717 }
2718};
2719
2720/// Base for LValueReferenceType and RValueReferenceType
2721class ReferenceType : public Type, public llvm::FoldingSetNode {
2722 QualType PointeeType;
2723
2724protected:
2725 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2726 bool SpelledAsLValue)
2727 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2728 Referencee->isInstantiationDependentType(),
2729 Referencee->isVariablyModifiedType(),
2730 Referencee->containsUnexpandedParameterPack()),
2731 PointeeType(Referencee) {
2732 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2733 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2734 }
2735
2736public:
2737 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2738 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2739
2740 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2741
2742 QualType getPointeeType() const {
2743 // FIXME: this might strip inner qualifiers; okay?
2744 const ReferenceType *T = this;
2745 while (T->isInnerRef())
2746 T = T->PointeeType->castAs<ReferenceType>();
2747 return T->PointeeType;
2748 }
2749
2750 void Profile(llvm::FoldingSetNodeID &ID) {
2751 Profile(ID, PointeeType, isSpelledAsLValue());
2752 }
2753
2754 static void Profile(llvm::FoldingSetNodeID &ID,
2755 QualType Referencee,
2756 bool SpelledAsLValue) {
2757 ID.AddPointer(Referencee.getAsOpaquePtr());
2758 ID.AddBoolean(SpelledAsLValue);
2759 }
2760
2761 static bool classof(const Type *T) {
2762 return T->getTypeClass() == LValueReference ||
2763 T->getTypeClass() == RValueReference;
2764 }
2765};
2766
2767/// An lvalue reference type, per C++11 [dcl.ref].
2768class LValueReferenceType : public ReferenceType {
2769 friend class ASTContext; // ASTContext creates these
2770
2771 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2772 bool SpelledAsLValue)
2773 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2774 SpelledAsLValue) {}
2775
2776public:
2777 bool isSugared() const { return false; }
2778 QualType desugar() const { return QualType(this, 0); }
2779
2780 static bool classof(const Type *T) {
2781 return T->getTypeClass() == LValueReference;
2782 }
2783};
2784
2785/// An rvalue reference type, per C++11 [dcl.ref].
2786class RValueReferenceType : public ReferenceType {
2787 friend class ASTContext; // ASTContext creates these
2788
2789 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2790 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2791
2792public:
2793 bool isSugared() const { return false; }
2794 QualType desugar() const { return QualType(this, 0); }
2795
2796 static bool classof(const Type *T) {
2797 return T->getTypeClass() == RValueReference;
2798 }
2799};
2800
2801/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2802///
2803/// This includes both pointers to data members and pointer to member functions.
2804class MemberPointerType : public Type, public llvm::FoldingSetNode {
2805 friend class ASTContext; // ASTContext creates these.
2806
2807 QualType PointeeType;
2808
2809 /// The class of which the pointee is a member. Must ultimately be a
2810 /// RecordType, but could be a typedef or a template parameter too.
2811 const Type *Class;
2812
2813 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2814 : Type(MemberPointer, CanonicalPtr,
2815 Cls->isDependentType() || Pointee->isDependentType(),
2816 (Cls->isInstantiationDependentType() ||
2817 Pointee->isInstantiationDependentType()),
2818 Pointee->isVariablyModifiedType(),
2819 (Cls->containsUnexpandedParameterPack() ||
2820 Pointee->containsUnexpandedParameterPack())),
2821 PointeeType(Pointee), Class(Cls) {}
2822
2823public:
2824 QualType getPointeeType() const { return PointeeType; }
2825
2826 /// Returns true if the member type (i.e. the pointee type) is a
2827 /// function type rather than a data-member type.
2828 bool isMemberFunctionPointer() const {
2829 return PointeeType->isFunctionProtoType();
2830 }
2831
2832 /// Returns true if the member type (i.e. the pointee type) is a
2833 /// data type rather than a function type.
2834 bool isMemberDataPointer() const {
2835 return !PointeeType->isFunctionProtoType();
2836 }
2837
2838 const Type *getClass() const { return Class; }
2839 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2840
2841 bool isSugared() const { return false; }
2842 QualType desugar() const { return QualType(this, 0); }
2843
2844 void Profile(llvm::FoldingSetNodeID &ID) {
2845 Profile(ID, getPointeeType(), getClass());
2846 }
2847
2848 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2849 const Type *Class) {
2850 ID.AddPointer(Pointee.getAsOpaquePtr());
2851 ID.AddPointer(Class);
2852 }
2853
2854 static bool classof(const Type *T) {
2855 return T->getTypeClass() == MemberPointer;
2856 }
2857};
2858
2859/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2860class ArrayType : public Type, public llvm::FoldingSetNode {
2861public:
2862 /// Capture whether this is a normal array (e.g. int X[4])
2863 /// an array with a static size (e.g. int X[static 4]), or an array
2864 /// with a star size (e.g. int X[*]).
2865 /// 'static' is only allowed on function parameters.
2866 enum ArraySizeModifier {
2867 Normal, Static, Star
2868 };
2869
2870private:
2871 /// The element type of the array.
2872 QualType ElementType;
2873
2874protected:
2875 friend class ASTContext; // ASTContext creates these.
2876
2877 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2878 unsigned tq, const Expr *sz = nullptr);
2879
2880public:
2881 QualType getElementType() const { return ElementType; }
2882
2883 ArraySizeModifier getSizeModifier() const {
2884 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2885 }
2886
2887 Qualifiers getIndexTypeQualifiers() const {
2888 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2889 }
2890
2891 unsigned getIndexTypeCVRQualifiers() const {
2892 return ArrayTypeBits.IndexTypeQuals;
2893 }
2894
2895 static bool classof(const Type *T) {
2896 return T->getTypeClass() == ConstantArray ||
2897 T->getTypeClass() == VariableArray ||
2898 T->getTypeClass() == IncompleteArray ||
2899 T->getTypeClass() == DependentSizedArray;
2900 }
2901};
2902
2903/// Represents the canonical version of C arrays with a specified constant size.
2904/// For example, the canonical type for 'int A[4 + 4*100]' is a
2905/// ConstantArrayType where the element type is 'int' and the size is 404.
2906class ConstantArrayType final
2907 : public ArrayType,
2908 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2909 friend class ASTContext; // ASTContext creates these.
2910 friend TrailingObjects;
2911
2912 llvm::APInt Size; // Allows us to unique the type.
2913
2914 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2915 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2916 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2917 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2918 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2919 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 2919, __PRETTY_FUNCTION__))
;
2920 *getTrailingObjects<const Expr*>() = sz;
2921 }
2922 }
2923
2924 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2925 return ConstantArrayTypeBits.HasStoredSizeExpr;
2926 }
2927
2928public:
2929 const llvm::APInt &getSize() const { return Size; }
2930 const Expr *getSizeExpr() const {
2931 return ConstantArrayTypeBits.HasStoredSizeExpr
2932 ? *getTrailingObjects<const Expr *>()
2933 : nullptr;
2934 }
2935 bool isSugared() const { return false; }
2936 QualType desugar() const { return QualType(this, 0); }
2937
2938 /// Determine the number of bits required to address a member of
2939 // an array with the given element type and number of elements.
2940 static unsigned getNumAddressingBits(const ASTContext &Context,
2941 QualType ElementType,
2942 const llvm::APInt &NumElements);
2943
2944 /// Determine the maximum number of active bits that an array's size
2945 /// can require, which limits the maximum size of the array.
2946 static unsigned getMaxSizeBits(const ASTContext &Context);
2947
2948 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2949 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2950 getSizeModifier(), getIndexTypeCVRQualifiers());
2951 }
2952
2953 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2954 QualType ET, const llvm::APInt &ArraySize,
2955 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2956 unsigned TypeQuals);
2957
2958 static bool classof(const Type *T) {
2959 return T->getTypeClass() == ConstantArray;
2960 }
2961};
2962
2963/// Represents a C array with an unspecified size. For example 'int A[]' has
2964/// an IncompleteArrayType where the element type is 'int' and the size is
2965/// unspecified.
2966class IncompleteArrayType : public ArrayType {
2967 friend class ASTContext; // ASTContext creates these.
2968
2969 IncompleteArrayType(QualType et, QualType can,
2970 ArraySizeModifier sm, unsigned tq)
2971 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2972
2973public:
2974 friend class StmtIteratorBase;
2975
2976 bool isSugared() const { return false; }
2977 QualType desugar() const { return QualType(this, 0); }
2978
2979 static bool classof(const Type *T) {
2980 return T->getTypeClass() == IncompleteArray;
2981 }
2982
2983 void Profile(llvm::FoldingSetNodeID &ID) {
2984 Profile(ID, getElementType(), getSizeModifier(),
2985 getIndexTypeCVRQualifiers());
2986 }
2987
2988 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2989 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2990 ID.AddPointer(ET.getAsOpaquePtr());
2991 ID.AddInteger(SizeMod);
2992 ID.AddInteger(TypeQuals);
2993 }
2994};
2995
2996/// Represents a C array with a specified size that is not an
2997/// integer-constant-expression. For example, 'int s[x+foo()]'.
2998/// Since the size expression is an arbitrary expression, we store it as such.
2999///
3000/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3001/// should not be: two lexically equivalent variable array types could mean
3002/// different things, for example, these variables do not have the same type
3003/// dynamically:
3004///
3005/// void foo(int x) {
3006/// int Y[x];
3007/// ++x;
3008/// int Z[x];
3009/// }
3010class VariableArrayType : public ArrayType {
3011 friend class ASTContext; // ASTContext creates these.
3012
3013 /// An assignment-expression. VLA's are only permitted within
3014 /// a function block.
3015 Stmt *SizeExpr;
3016
3017 /// The range spanned by the left and right array brackets.
3018 SourceRange Brackets;
3019
3020 VariableArrayType(QualType et, QualType can, Expr *e,
3021 ArraySizeModifier sm, unsigned tq,
3022 SourceRange brackets)
3023 : ArrayType(VariableArray, et, can, sm, tq, e),
3024 SizeExpr((Stmt*) e), Brackets(brackets) {}
3025
3026public:
3027 friend class StmtIteratorBase;
3028
3029 Expr *getSizeExpr() const {
3030 // We use C-style casts instead of cast<> here because we do not wish
3031 // to have a dependency of Type.h on Stmt.h/Expr.h.
3032 return (Expr*) SizeExpr;
3033 }
3034
3035 SourceRange getBracketsRange() const { return Brackets; }
3036 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3037 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3038
3039 bool isSugared() const { return false; }
3040 QualType desugar() const { return QualType(this, 0); }
3041
3042 static bool classof(const Type *T) {
3043 return T->getTypeClass() == VariableArray;
3044 }
3045
3046 void Profile(llvm::FoldingSetNodeID &ID) {
3047 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 3047)
;
3048 }
3049};
3050
3051/// Represents an array type in C++ whose size is a value-dependent expression.
3052///
3053/// For example:
3054/// \code
3055/// template<typename T, int Size>
3056/// class array {
3057/// T data[Size];
3058/// };
3059/// \endcode
3060///
3061/// For these types, we won't actually know what the array bound is
3062/// until template instantiation occurs, at which point this will
3063/// become either a ConstantArrayType or a VariableArrayType.
3064class DependentSizedArrayType : public ArrayType {
3065 friend class ASTContext; // ASTContext creates these.
3066
3067 const ASTContext &Context;
3068
3069 /// An assignment expression that will instantiate to the
3070 /// size of the array.
3071 ///
3072 /// The expression itself might be null, in which case the array
3073 /// type will have its size deduced from an initializer.
3074 Stmt *SizeExpr;
3075
3076 /// The range spanned by the left and right array brackets.
3077 SourceRange Brackets;
3078
3079 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3080 Expr *e, ArraySizeModifier sm, unsigned tq,
3081 SourceRange brackets);
3082
3083public:
3084 friend class StmtIteratorBase;
3085
3086 Expr *getSizeExpr() const {
3087 // We use C-style casts instead of cast<> here because we do not wish
3088 // to have a dependency of Type.h on Stmt.h/Expr.h.
3089 return (Expr*) SizeExpr;
3090 }
3091
3092 SourceRange getBracketsRange() const { return Brackets; }
3093 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3094 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3095
3096 bool isSugared() const { return false; }
3097 QualType desugar() const { return QualType(this, 0); }
3098
3099 static bool classof(const Type *T) {
3100 return T->getTypeClass() == DependentSizedArray;
3101 }
3102
3103 void Profile(llvm::FoldingSetNodeID &ID) {
3104 Profile(ID, Context, getElementType(),
3105 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3106 }
3107
3108 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3109 QualType ET, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals, Expr *E);
3111};
3112
3113/// Represents an extended address space qualifier where the input address space
3114/// value is dependent. Non-dependent address spaces are not represented with a
3115/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3116///
3117/// For example:
3118/// \code
3119/// template<typename T, int AddrSpace>
3120/// class AddressSpace {
3121/// typedef T __attribute__((address_space(AddrSpace))) type;
3122/// }
3123/// \endcode
3124class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3125 friend class ASTContext;
3126
3127 const ASTContext &Context;
3128 Expr *AddrSpaceExpr;
3129 QualType PointeeType;
3130 SourceLocation loc;
3131
3132 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3133 QualType can, Expr *AddrSpaceExpr,
3134 SourceLocation loc);
3135
3136public:
3137 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3138 QualType getPointeeType() const { return PointeeType; }
3139 SourceLocation getAttributeLoc() const { return loc; }
3140
3141 bool isSugared() const { return false; }
3142 QualType desugar() const { return QualType(this, 0); }
3143
3144 static bool classof(const Type *T) {
3145 return T->getTypeClass() == DependentAddressSpace;
3146 }
3147
3148 void Profile(llvm::FoldingSetNodeID &ID) {
3149 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3150 }
3151
3152 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3153 QualType PointeeType, Expr *AddrSpaceExpr);
3154};
3155
3156/// Represents an extended vector type where either the type or size is
3157/// dependent.
3158///
3159/// For example:
3160/// \code
3161/// template<typename T, int Size>
3162/// class vector {
3163/// typedef T __attribute__((ext_vector_type(Size))) type;
3164/// }
3165/// \endcode
3166class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3167 friend class ASTContext;
3168
3169 const ASTContext &Context;
3170 Expr *SizeExpr;
3171
3172 /// The element type of the array.
3173 QualType ElementType;
3174
3175 SourceLocation loc;
3176
3177 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3178 QualType can, Expr *SizeExpr, SourceLocation loc);
3179
3180public:
3181 Expr *getSizeExpr() const { return SizeExpr; }
3182 QualType getElementType() const { return ElementType; }
3183 SourceLocation getAttributeLoc() const { return loc; }
3184
3185 bool isSugared() const { return false; }
3186 QualType desugar() const { return QualType(this, 0); }
3187
3188 static bool classof(const Type *T) {
3189 return T->getTypeClass() == DependentSizedExtVector;
3190 }
3191
3192 void Profile(llvm::FoldingSetNodeID &ID) {
3193 Profile(ID, Context, getElementType(), getSizeExpr());
3194 }
3195
3196 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3197 QualType ElementType, Expr *SizeExpr);
3198};
3199
3200
3201/// Represents a GCC generic vector type. This type is created using
3202/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3203/// bytes; or from an Altivec __vector or vector declaration.
3204/// Since the constructor takes the number of vector elements, the
3205/// client is responsible for converting the size into the number of elements.
3206class VectorType : public Type, public llvm::FoldingSetNode {
3207public:
3208 enum VectorKind {
3209 /// not a target-specific vector type
3210 GenericVector,
3211
3212 /// is AltiVec vector
3213 AltiVecVector,
3214
3215 /// is AltiVec 'vector Pixel'
3216 AltiVecPixel,
3217
3218 /// is AltiVec 'vector bool ...'
3219 AltiVecBool,
3220
3221 /// is ARM Neon vector
3222 NeonVector,
3223
3224 /// is ARM Neon polynomial vector
3225 NeonPolyVector
3226 };
3227
3228protected:
3229 friend class ASTContext; // ASTContext creates these.
3230
3231 /// The element type of the vector.
3232 QualType ElementType;
3233
3234 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3235 VectorKind vecKind);
3236
3237 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3238 QualType canonType, VectorKind vecKind);
3239
3240public:
3241 QualType getElementType() const { return ElementType; }
3242 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3243
3244 static bool isVectorSizeTooLarge(unsigned NumElements) {
3245 return NumElements > VectorTypeBitfields::MaxNumElements;
3246 }
3247
3248 bool isSugared() const { return false; }
3249 QualType desugar() const { return QualType(this, 0); }
3250
3251 VectorKind getVectorKind() const {
3252 return VectorKind(VectorTypeBits.VecKind);
3253 }
3254
3255 void Profile(llvm::FoldingSetNodeID &ID) {
3256 Profile(ID, getElementType(), getNumElements(),
3257 getTypeClass(), getVectorKind());
3258 }
3259
3260 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3261 unsigned NumElements, TypeClass TypeClass,
3262 VectorKind VecKind) {
3263 ID.AddPointer(ElementType.getAsOpaquePtr());
3264 ID.AddInteger(NumElements);
3265 ID.AddInteger(TypeClass);
3266 ID.AddInteger(VecKind);
3267 }
3268
3269 static bool classof(const Type *T) {
3270 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3271 }
3272};
3273
3274/// Represents a vector type where either the type or size is dependent.
3275////
3276/// For example:
3277/// \code
3278/// template<typename T, int Size>
3279/// class vector {
3280/// typedef T __attribute__((vector_size(Size))) type;
3281/// }
3282/// \endcode
3283class DependentVectorType : public Type, public llvm::FoldingSetNode {
3284 friend class ASTContext;
3285
3286 const ASTContext &Context;
3287 QualType ElementType;
3288 Expr *SizeExpr;
3289 SourceLocation Loc;
3290
3291 DependentVectorType(const ASTContext &Context, QualType ElementType,
3292 QualType CanonType, Expr *SizeExpr,
3293 SourceLocation Loc, VectorType::VectorKind vecKind);
3294
3295public:
3296 Expr *getSizeExpr() const { return SizeExpr; }
3297 QualType getElementType() const { return ElementType; }
3298 SourceLocation getAttributeLoc() const { return Loc; }
3299 VectorType::VectorKind getVectorKind() const {
3300 return VectorType::VectorKind(VectorTypeBits.VecKind);
3301 }
3302
3303 bool isSugared() const { return false; }
3304 QualType desugar() const { return QualType(this, 0); }
3305
3306 static bool classof(const Type *T) {
3307 return T->getTypeClass() == DependentVector;
3308 }
3309
3310 void Profile(llvm::FoldingSetNodeID &ID) {
3311 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3312 }
3313
3314 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3315 QualType ElementType, const Expr *SizeExpr,
3316 VectorType::VectorKind VecKind);
3317};
3318
3319/// ExtVectorType - Extended vector type. This type is created using
3320/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3321/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3322/// class enables syntactic extensions, like Vector Components for accessing
3323/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3324/// Shading Language).
3325class ExtVectorType : public VectorType {
3326 friend class ASTContext; // ASTContext creates these.
3327
3328 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3329 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3330
3331public:
3332 static int getPointAccessorIdx(char c) {
3333 switch (c) {
3334 default: return -1;
3335 case 'x': case 'r': return 0;
3336 case 'y': case 'g': return 1;
3337 case 'z': case 'b': return 2;
3338 case 'w': case 'a': return 3;
3339 }
3340 }
3341
3342 static int getNumericAccessorIdx(char c) {
3343 switch (c) {
3344 default: return -1;
3345 case '0': return 0;
3346 case '1': return 1;
3347 case '2': return 2;
3348 case '3': return 3;
3349 case '4': return 4;
3350 case '5': return 5;
3351 case '6': return 6;
3352 case '7': return 7;
3353 case '8': return 8;
3354 case '9': return 9;
3355 case 'A':
3356 case 'a': return 10;
3357 case 'B':
3358 case 'b': return 11;
3359 case 'C':
3360 case 'c': return 12;
3361 case 'D':
3362 case 'd': return 13;
3363 case 'E':
3364 case 'e': return 14;
3365 case 'F':
3366 case 'f': return 15;
3367 }
3368 }
3369
3370 static int getAccessorIdx(char c, bool isNumericAccessor) {
3371 if (isNumericAccessor)
3372 return getNumericAccessorIdx(c);
3373 else
3374 return getPointAccessorIdx(c);
3375 }
3376
3377 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3378 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3379 return unsigned(idx-1) < getNumElements();
3380 return false;
3381 }
3382
3383 bool isSugared() const { return false; }
3384 QualType desugar() const { return QualType(this, 0); }
3385
3386 static bool classof(const Type *T) {
3387 return T->getTypeClass() == ExtVector;
3388 }
3389};
3390
3391/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3392/// class of FunctionNoProtoType and FunctionProtoType.
3393class FunctionType : public Type {
3394 // The type returned by the function.
3395 QualType ResultType;
3396
3397public:
3398 /// Interesting information about a specific parameter that can't simply
3399 /// be reflected in parameter's type. This is only used by FunctionProtoType
3400 /// but is in FunctionType to make this class available during the
3401 /// specification of the bases of FunctionProtoType.
3402 ///
3403 /// It makes sense to model language features this way when there's some
3404 /// sort of parameter-specific override (such as an attribute) that
3405 /// affects how the function is called. For example, the ARC ns_consumed
3406 /// attribute changes whether a parameter is passed at +0 (the default)
3407 /// or +1 (ns_consumed). This must be reflected in the function type,
3408 /// but isn't really a change to the parameter type.
3409 ///
3410 /// One serious disadvantage of modelling language features this way is
3411 /// that they generally do not work with language features that attempt
3412 /// to destructure types. For example, template argument deduction will
3413 /// not be able to match a parameter declared as
3414 /// T (*)(U)
3415 /// against an argument of type
3416 /// void (*)(__attribute__((ns_consumed)) id)
3417 /// because the substitution of T=void, U=id into the former will
3418 /// not produce the latter.
3419 class ExtParameterInfo {
3420 enum {
3421 ABIMask = 0x0F,
3422 IsConsumed = 0x10,
3423 HasPassObjSize = 0x20,
3424 IsNoEscape = 0x40,
3425 };
3426 unsigned char Data = 0;
3427
3428 public:
3429 ExtParameterInfo() = default;
3430
3431 /// Return the ABI treatment of this parameter.
3432 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3433 ExtParameterInfo withABI(ParameterABI kind) const {
3434 ExtParameterInfo copy = *this;
3435 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3436 return copy;
3437 }
3438
3439 /// Is this parameter considered "consumed" by Objective-C ARC?
3440 /// Consumed parameters must have retainable object type.
3441 bool isConsumed() const { return (Data & IsConsumed); }
3442 ExtParameterInfo withIsConsumed(bool consumed) const {
3443 ExtParameterInfo copy = *this;
3444 if (consumed)
3445 copy.Data |= IsConsumed;
3446 else
3447 copy.Data &= ~IsConsumed;
3448 return copy;
3449 }
3450
3451 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3452 ExtParameterInfo withHasPassObjectSize() const {
3453 ExtParameterInfo Copy = *this;
3454 Copy.Data |= HasPassObjSize;
3455 return Copy;
3456 }
3457
3458 bool isNoEscape() const { return Data & IsNoEscape; }
3459 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3460 ExtParameterInfo Copy = *this;
3461 if (NoEscape)
3462 Copy.Data |= IsNoEscape;
3463 else
3464 Copy.Data &= ~IsNoEscape;
3465 return Copy;
3466 }
3467
3468 unsigned char getOpaqueValue() const { return Data; }
3469 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3470 ExtParameterInfo result;
3471 result.Data = data;
3472 return result;
3473 }
3474
3475 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3476 return lhs.Data == rhs.Data;
3477 }
3478
3479 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3480 return lhs.Data != rhs.Data;
3481 }
3482 };
3483
3484 /// A class which abstracts out some details necessary for
3485 /// making a call.
3486 ///
3487 /// It is not actually used directly for storing this information in
3488 /// a FunctionType, although FunctionType does currently use the
3489 /// same bit-pattern.
3490 ///
3491 // If you add a field (say Foo), other than the obvious places (both,
3492 // constructors, compile failures), what you need to update is
3493 // * Operator==
3494 // * getFoo
3495 // * withFoo
3496 // * functionType. Add Foo, getFoo.
3497 // * ASTContext::getFooType
3498 // * ASTContext::mergeFunctionTypes
3499 // * FunctionNoProtoType::Profile
3500 // * FunctionProtoType::Profile
3501 // * TypePrinter::PrintFunctionProto
3502 // * AST read and write
3503 // * Codegen
3504 class ExtInfo {
3505 friend class FunctionType;
3506
3507 // Feel free to rearrange or add bits, but if you go over 12,
3508 // you'll need to adjust both the Bits field below and
3509 // Type::FunctionTypeBitfields.
3510
3511 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3512 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3513 //
3514 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3515 enum { CallConvMask = 0x1F };
3516 enum { NoReturnMask = 0x20 };
3517 enum { ProducesResultMask = 0x40 };
3518 enum { NoCallerSavedRegsMask = 0x80 };
3519 enum { NoCfCheckMask = 0x800 };
3520 enum {
3521 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3522 NoCallerSavedRegsMask | NoCfCheckMask),
3523 RegParmOffset = 8
3524 }; // Assumed to be the last field
3525 uint16_t Bits = CC_C;
3526
3527 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3528
3529 public:
3530 // Constructor with no defaults. Use this when you know that you
3531 // have all the elements (when reading an AST file for example).
3532 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3533 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3534 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 3534, __PRETTY_FUNCTION__))
;
3535 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3536 (producesResult ? ProducesResultMask : 0) |
3537 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3538 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3539 (NoCfCheck ? NoCfCheckMask : 0);
3540 }
3541
3542 // Constructor with all defaults. Use when for example creating a
3543 // function known to use defaults.
3544 ExtInfo() = default;
3545
3546 // Constructor with just the calling convention, which is an important part
3547 // of the canonical type.
3548 ExtInfo(CallingConv CC) : Bits(CC) {}
3549
3550 bool getNoReturn() const { return Bits & NoReturnMask; }
3551 bool getProducesResult() const { return Bits & ProducesResultMask; }
3552 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3553 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3554 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3555
3556 unsigned getRegParm() const {
3557 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3558 if (RegParm > 0)
3559 --RegParm;
3560 return RegParm;
3561 }
3562
3563 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3564
3565 bool operator==(ExtInfo Other) const {
3566 return Bits == Other.Bits;
3567 }
3568 bool operator!=(ExtInfo Other) const {
3569 return Bits != Other.Bits;
3570 }
3571
3572 // Note that we don't have setters. That is by design, use
3573 // the following with methods instead of mutating these objects.
3574
3575 ExtInfo withNoReturn(bool noReturn) const {
3576 if (noReturn)
3577 return ExtInfo(Bits | NoReturnMask);
3578 else
3579 return ExtInfo(Bits & ~NoReturnMask);
3580 }
3581
3582 ExtInfo withProducesResult(bool producesResult) const {
3583 if (producesResult)
3584 return ExtInfo(Bits | ProducesResultMask);
3585 else
3586 return ExtInfo(Bits & ~ProducesResultMask);
3587 }
3588
3589 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3590 if (noCallerSavedRegs)
3591 return ExtInfo(Bits | NoCallerSavedRegsMask);
3592 else
3593 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3594 }
3595
3596 ExtInfo withNoCfCheck(bool noCfCheck) const {
3597 if (noCfCheck)
3598 return ExtInfo(Bits | NoCfCheckMask);
3599 else
3600 return ExtInfo(Bits & ~NoCfCheckMask);
3601 }
3602
3603 ExtInfo withRegParm(unsigned RegParm) const {
3604 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 3604, __PRETTY_FUNCTION__))
;
3605 return ExtInfo((Bits & ~RegParmMask) |
3606 ((RegParm + 1) << RegParmOffset));
3607 }
3608
3609 ExtInfo withCallingConv(CallingConv cc) const {
3610 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3611 }
3612
3613 void Profile(llvm::FoldingSetNodeID &ID) const {
3614 ID.AddInteger(Bits);
3615 }
3616 };
3617
3618 /// A simple holder for a QualType representing a type in an
3619 /// exception specification. Unfortunately needed by FunctionProtoType
3620 /// because TrailingObjects cannot handle repeated types.
3621 struct ExceptionType { QualType Type; };
3622
3623 /// A simple holder for various uncommon bits which do not fit in
3624 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the