Bug Summary

File:clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 1764, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-12-07-102640-14763-1 -x c++ /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
41 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
;
42 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
43 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
;
44
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
58
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
72 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
73 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
;
74 }
75 return {required, PrefixSize};
76}
77
78RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE ? CE->getExprLoc() : SourceLocation());
91}
92
93RValue CodeGenFunction::EmitCXXDestructorCall(
94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97
98 assert(!ThisTy.isNull())((!ThisTy.isNull()) ? static_cast<void> (0) : __assert_fail
("!ThisTy.isNull()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 98, __PRETTY_FUNCTION__))
;
99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
100 "Pointer/Object mixup")((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
;
101
102 LangAS SrcAS = ThisTy.getAddressSpace();
103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104 if (SrcAS != DstAS) {
105 QualType DstTy = DtorDecl->getThisType();
106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108 NewType);
109 }
110
111 CallArgList Args;
112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113 ImplicitParamTy, CE, Args, nullptr);
114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115 ReturnValueSlot(), Args);
116}
117
118RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119 const CXXPseudoDestructorExpr *E) {
120 QualType DestroyedType = E->getDestroyedType();
121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122 // Automatic Reference Counting:
123 // If the pseudo-expression names a retainable object with weak or
124 // strong lifetime, the object shall be released.
125 Expr *BaseExpr = E->getBase();
126 Address BaseValue = Address::invalid();
127 Qualifiers BaseQuals;
128
129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130 if (E->isArrow()) {
131 BaseValue = EmitPointerWithAlignment(BaseExpr);
132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
133 BaseQuals = PTy->getPointeeType().getQualifiers();
134 } else {
135 LValue BaseLV = EmitLValue(BaseExpr);
136 BaseValue = BaseLV.getAddress();
137 QualType BaseTy = BaseExpr->getType();
138 BaseQuals = BaseTy.getQualifiers();
139 }
140
141 switch (DestroyedType.getObjCLifetime()) {
142 case Qualifiers::OCL_None:
143 case Qualifiers::OCL_ExplicitNone:
144 case Qualifiers::OCL_Autoreleasing:
145 break;
146
147 case Qualifiers::OCL_Strong:
148 EmitARCRelease(Builder.CreateLoad(BaseValue,
149 DestroyedType.isVolatileQualified()),
150 ARCPreciseLifetime);
151 break;
152
153 case Qualifiers::OCL_Weak:
154 EmitARCDestroyWeak(BaseValue);
155 break;
156 }
157 } else {
158 // C++ [expr.pseudo]p1:
159 // The result shall only be used as the operand for the function call
160 // operator (), and the result of such a call has type void. The only
161 // effect is the evaluation of the postfix-expression before the dot or
162 // arrow.
163 EmitIgnoredExpr(E->getBase());
164 }
165
166 return RValue::get(nullptr);
167}
168
169static CXXRecordDecl *getCXXRecord(const Expr *E) {
170 QualType T = E->getType();
171 if (const PointerType *PTy = T->getAs<PointerType>())
172 T = PTy->getPointeeType();
173 const RecordType *Ty = T->castAs<RecordType>();
174 return cast<CXXRecordDecl>(Ty->getDecl());
175}
176
177// Note: This function also emit constructor calls to support a MSVC
178// extensions allowing explicit constructor function call.
179RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180 ReturnValueSlot ReturnValue) {
181 const Expr *callee = CE->getCallee()->IgnoreParens();
182
183 if (isa<BinaryOperator>(callee))
184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185
186 const MemberExpr *ME = cast<MemberExpr>(callee);
187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188
189 if (MD->isStatic()) {
190 // The method is static, emit it as we would a regular call.
191 CGCallee callee =
192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194 ReturnValue);
195 }
196
197 bool HasQualifier = ME->hasQualifier();
198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199 bool IsArrow = ME->isArrow();
200 const Expr *Base = ME->getBase();
201
202 return EmitCXXMemberOrOperatorMemberCallExpr(
203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204}
205
206RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209 const Expr *Base) {
210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211
212 // Compute the object pointer.
213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214
215 const CXXMethodDecl *DevirtualizedMethod = nullptr;
216 if (CanUseVirtualCall &&
217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222 const Expr *Inner = Base->ignoreParenBaseCasts();
223 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224 MD->getReturnType().getCanonicalType())
225 // If the return types are not the same, this might be a case where more
226 // code needs to run to compensate for it. For example, the derived
227 // method might return a type that inherits form from the return
228 // type of MD and has a prefix.
229 // For now we just avoid devirtualizing these covariant cases.
230 DevirtualizedMethod = nullptr;
231 else if (getCXXRecord(Inner) == DevirtualizedClass)
232 // If the class of the Inner expression is where the dynamic method
233 // is defined, build the this pointer from it.
234 Base = Inner;
235 else if (getCXXRecord(Base) != DevirtualizedClass) {
236 // If the method is defined in a class that is not the best dynamic
237 // one or the one of the full expression, we would have to build
238 // a derived-to-base cast to compute the correct this pointer, but
239 // we don't have support for that yet, so do a virtual call.
240 DevirtualizedMethod = nullptr;
241 }
242 }
243
244 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245 // operator before the LHS.
246 CallArgList RtlArgStorage;
247 CallArgList *RtlArgs = nullptr;
248 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249 if (OCE->isAssignmentOp()) {
250 RtlArgs = &RtlArgStorage;
251 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254 }
255 }
256
257 LValue This;
258 if (IsArrow) {
259 LValueBaseInfo BaseInfo;
260 TBAAAccessInfo TBAAInfo;
261 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263 } else {
264 This = EmitLValue(Base);
265 }
266
267 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269 // constructing a new complete object of type Ctor.
270 assert(!RtlArgs)((!RtlArgs) ? static_cast<void> (0) : __assert_fail ("!RtlArgs"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 270, __PRETTY_FUNCTION__))
;
271 assert(ReturnValue.isNull() && "Constructor shouldn't have return value")((ReturnValue.isNull() && "Constructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 CallArgList Args;
273 commonEmitCXXMemberOrOperatorCall(
274 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276
277 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278 /*Delegating=*/false, This.getAddress(), Args,
279 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
280 /*NewPointerIsChecked=*/false);
281 return RValue::get(nullptr);
282 }
283
284 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286 if (!MD->getParent()->mayInsertExtraPadding()) {
287 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
288 // We don't like to generate the trivial copy/move assignment operator
289 // when it isn't necessary; just produce the proper effect here.
290 LValue RHS = isa<CXXOperatorCallExpr>(CE)
291 ? MakeNaturalAlignAddrLValue(
292 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293 (*(CE->arg_begin() + 1))->getType())
294 : EmitLValue(*CE->arg_begin());
295 EmitAggregateAssign(This, RHS, CE->getType());
296 return RValue::get(This.getPointer());
297 }
298 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 298)
;
299 }
300 }
301
302 // Compute the function type we're calling.
303 const CXXMethodDecl *CalleeDecl =
304 DevirtualizedMethod ? DevirtualizedMethod : MD;
305 const CGFunctionInfo *FInfo = nullptr;
306 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308 GlobalDecl(Dtor, Dtor_Complete));
309 else
310 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311
312 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313
314 // C++11 [class.mfct.non-static]p2:
315 // If a non-static member function of a class X is called for an object that
316 // is not of type X, or of a type derived from X, the behavior is undefined.
317 SourceLocation CallLoc;
318 ASTContext &C = getContext();
319 if (CE)
320 CallLoc = CE->getExprLoc();
321
322 SanitizerSet SkippedChecks;
323 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324 auto *IOA = CMCE->getImplicitObjectArgument();
325 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326 if (IsImplicitObjectCXXThis)
327 SkippedChecks.set(SanitizerKind::Alignment, true);
328 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329 SkippedChecks.set(SanitizerKind::Null, true);
330 }
331 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332 C.getRecordType(CalleeDecl->getParent()),
333 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334
335 // C++ [class.virtual]p12:
336 // Explicit qualification with the scope operator (5.1) suppresses the
337 // virtual call mechanism.
338 //
339 // We also don't emit a virtual call if the base expression has a record type
340 // because then we know what the type is.
341 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342
343 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
345 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 if (UseVirtualCall) {
348 CGM.getCXXABI().EmitVirtualDestructorCall(
349 *this, Dtor, Dtor_Complete, This.getAddress(),
350 cast<CXXMemberCallExpr>(CE));
351 } else {
352 GlobalDecl GD(Dtor, Dtor_Complete);
353 CGCallee Callee;
354 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356 else if (!DevirtualizedMethod)
357 Callee =
358 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359 else {
360 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361 }
362
363 QualType ThisTy =
364 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365 EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366 /*ImplicitParam=*/nullptr,
367 /*ImplicitParamTy=*/QualType(), nullptr);
368 }
369 return RValue::get(nullptr);
370 }
371
372 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373 // 'CalleeDecl' instead.
374
375 CGCallee Callee;
376 if (UseVirtualCall) {
377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378 } else {
379 if (SanOpts.has(SanitizerKind::CFINVCall) &&
380 MD->getParent()->isDynamicClass()) {
381 llvm::Value *VTable;
382 const CXXRecordDecl *RD;
383 std::tie(VTable, RD) =
384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385 CalleeDecl->getParent());
386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387 }
388
389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391 else if (!DevirtualizedMethod)
392 Callee =
393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394 else {
395 Callee =
396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397 GlobalDecl(DevirtualizedMethod));
398 }
399 }
400
401 if (MD->isVirtual()) {
402 Address NewThisAddr =
403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405 This.setAddress(NewThisAddr);
406 }
407
408 return EmitCXXMemberOrOperatorCall(
409 CalleeDecl, Callee, ReturnValue, This.getPointer(),
410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411}
412
413RValue
414CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415 ReturnValueSlot ReturnValue) {
416 const BinaryOperator *BO =
417 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418 const Expr *BaseExpr = BO->getLHS();
419 const Expr *MemFnExpr = BO->getRHS();
420
421 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
422 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
423 const auto *RD =
424 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
425
426 // Emit the 'this' pointer.
427 Address This = Address::invalid();
428 if (BO->getOpcode() == BO_PtrMemI)
429 This = EmitPointerWithAlignment(BaseExpr);
430 else
431 This = EmitLValue(BaseExpr).getAddress();
432
433 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
434 QualType(MPT->getClass(), 0));
435
436 // Get the member function pointer.
437 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
438
439 // Ask the ABI to load the callee. Note that This is modified.
440 llvm::Value *ThisPtrForCall = nullptr;
441 CGCallee Callee =
442 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
443 ThisPtrForCall, MemFnPtr, MPT);
444
445 CallArgList Args;
446
447 QualType ThisType =
448 getContext().getPointerType(getContext().getTagDeclType(RD));
449
450 // Push the this ptr.
451 Args.add(RValue::get(ThisPtrForCall), ThisType);
452
453 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
454
455 // And the rest of the call args
456 EmitCallArgs(Args, FPT, E->arguments());
457 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
458 /*PrefixSize=*/0),
459 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
460}
461
462RValue
463CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
464 const CXXMethodDecl *MD,
465 ReturnValueSlot ReturnValue) {
466 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
467 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
;
468 return EmitCXXMemberOrOperatorMemberCallExpr(
469 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
470 /*IsArrow=*/false, E->getArg(0));
471}
472
473RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
474 ReturnValueSlot ReturnValue) {
475 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
476}
477
478static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
479 Address DestPtr,
480 const CXXRecordDecl *Base) {
481 if (Base->isEmpty())
482 return;
483
484 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
485
486 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
487 CharUnits NVSize = Layout.getNonVirtualSize();
488
489 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
490 // present, they are initialized by the most derived class before calling the
491 // constructor.
492 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
493 Stores.emplace_back(CharUnits::Zero(), NVSize);
494
495 // Each store is split by the existence of a vbptr.
496 CharUnits VBPtrWidth = CGF.getPointerSize();
497 std::vector<CharUnits> VBPtrOffsets =
498 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
499 for (CharUnits VBPtrOffset : VBPtrOffsets) {
500 // Stop before we hit any virtual base pointers located in virtual bases.
501 if (VBPtrOffset >= NVSize)
502 break;
503 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
504 CharUnits LastStoreOffset = LastStore.first;
505 CharUnits LastStoreSize = LastStore.second;
506
507 CharUnits SplitBeforeOffset = LastStoreOffset;
508 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
509 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 509, __PRETTY_FUNCTION__))
;
510 if (!SplitBeforeSize.isZero())
511 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
512
513 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
514 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
515 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 515, __PRETTY_FUNCTION__))
;
516 if (!SplitAfterSize.isZero())
517 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
518 }
519
520 // If the type contains a pointer to data member we can't memset it to zero.
521 // Instead, create a null constant and copy it to the destination.
522 // TODO: there are other patterns besides zero that we can usefully memset,
523 // like -1, which happens to be the pattern used by member-pointers.
524 // TODO: isZeroInitializable can be over-conservative in the case where a
525 // virtual base contains a member pointer.
526 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
527 if (!NullConstantForBase->isNullValue()) {
528 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
529 CGF.CGM.getModule(), NullConstantForBase->getType(),
530 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
531 NullConstantForBase, Twine());
532
533 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
534 DestPtr.getAlignment());
535 NullVariable->setAlignment(Align.getAsAlign());
536
537 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
538
539 // Get and call the appropriate llvm.memcpy overload.
540 for (std::pair<CharUnits, CharUnits> Store : Stores) {
541 CharUnits StoreOffset = Store.first;
542 CharUnits StoreSize = Store.second;
543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544 CGF.Builder.CreateMemCpy(
545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
547 StoreSizeVal);
548 }
549
550 // Otherwise, just memset the whole thing to zero. This is legal
551 // because in LLVM, all default initializers (other than the ones we just
552 // handled above) are guaranteed to have a bit pattern of all zeros.
553 } else {
554 for (std::pair<CharUnits, CharUnits> Store : Stores) {
555 CharUnits StoreOffset = Store.first;
556 CharUnits StoreSize = Store.second;
557 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
558 CGF.Builder.CreateMemSet(
559 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
560 CGF.Builder.getInt8(0), StoreSizeVal);
561 }
562 }
563}
564
565void
566CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
567 AggValueSlot Dest) {
568 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 568, __PRETTY_FUNCTION__))
;
569 const CXXConstructorDecl *CD = E->getConstructor();
570
571 // If we require zero initialization before (or instead of) calling the
572 // constructor, as can be the case with a non-user-provided default
573 // constructor, emit the zero initialization now, unless destination is
574 // already zeroed.
575 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
576 switch (E->getConstructionKind()) {
577 case CXXConstructExpr::CK_Delegating:
578 case CXXConstructExpr::CK_Complete:
579 EmitNullInitialization(Dest.getAddress(), E->getType());
580 break;
581 case CXXConstructExpr::CK_VirtualBase:
582 case CXXConstructExpr::CK_NonVirtualBase:
583 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
584 CD->getParent());
585 break;
586 }
587 }
588
589 // If this is a call to a trivial default constructor, do nothing.
590 if (CD->isTrivial() && CD->isDefaultConstructor())
591 return;
592
593 // Elide the constructor if we're constructing from a temporary.
594 // The temporary check is required because Sema sets this on NRVO
595 // returns.
596 if (getLangOpts().ElideConstructors && E->isElidable()) {
597 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
598 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
;
599 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
600 EmitAggExpr(E->getArg(0), Dest);
601 return;
602 }
603 }
604
605 if (const ArrayType *arrayType
606 = getContext().getAsArrayType(E->getType())) {
607 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
608 Dest.isSanitizerChecked());
609 } else {
610 CXXCtorType Type = Ctor_Complete;
611 bool ForVirtualBase = false;
612 bool Delegating = false;
613
614 switch (E->getConstructionKind()) {
615 case CXXConstructExpr::CK_Delegating:
616 // We should be emitting a constructor; GlobalDecl will assert this
617 Type = CurGD.getCtorType();
618 Delegating = true;
619 break;
620
621 case CXXConstructExpr::CK_Complete:
622 Type = Ctor_Complete;
623 break;
624
625 case CXXConstructExpr::CK_VirtualBase:
626 ForVirtualBase = true;
627 LLVM_FALLTHROUGH[[gnu::fallthrough]];
628
629 case CXXConstructExpr::CK_NonVirtualBase:
630 Type = Ctor_Base;
631 }
632
633 // Call the constructor.
634 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
635 }
636}
637
638void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
639 const Expr *Exp) {
640 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
641 Exp = E->getSubExpr();
642 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
643 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
;
644 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
645 const CXXConstructorDecl *CD = E->getConstructor();
646 RunCleanupsScope Scope(*this);
647
648 // If we require zero initialization before (or instead of) calling the
649 // constructor, as can be the case with a non-user-provided default
650 // constructor, emit the zero initialization now.
651 // FIXME. Do I still need this for a copy ctor synthesis?
652 if (E->requiresZeroInitialization())
653 EmitNullInitialization(Dest, E->getType());
654
655 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
656 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
;
657 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
658}
659
660static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
661 const CXXNewExpr *E) {
662 if (!E->isArray())
663 return CharUnits::Zero();
664
665 // No cookie is required if the operator new[] being used is the
666 // reserved placement operator new[].
667 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
668 return CharUnits::Zero();
669
670 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
671}
672
673static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
674 const CXXNewExpr *e,
675 unsigned minElements,
676 llvm::Value *&numElements,
677 llvm::Value *&sizeWithoutCookie) {
678 QualType type = e->getAllocatedType();
679
680 if (!e->isArray()) {
681 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
682 sizeWithoutCookie
683 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
684 return sizeWithoutCookie;
685 }
686
687 // The width of size_t.
688 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
689
690 // Figure out the cookie size.
691 llvm::APInt cookieSize(sizeWidth,
692 CalculateCookiePadding(CGF, e).getQuantity());
693
694 // Emit the array size expression.
695 // We multiply the size of all dimensions for NumElements.
696 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
697 numElements =
698 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
699 if (!numElements)
700 numElements = CGF.EmitScalarExpr(*e->getArraySize());
701 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 701, __PRETTY_FUNCTION__))
;
702
703 // The number of elements can be have an arbitrary integer type;
704 // essentially, we need to multiply it by a constant factor, add a
705 // cookie size, and verify that the result is representable as a
706 // size_t. That's just a gloss, though, and it's wrong in one
707 // important way: if the count is negative, it's an error even if
708 // the cookie size would bring the total size >= 0.
709 bool isSigned
710 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
711 llvm::IntegerType *numElementsType
712 = cast<llvm::IntegerType>(numElements->getType());
713 unsigned numElementsWidth = numElementsType->getBitWidth();
714
715 // Compute the constant factor.
716 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
717 while (const ConstantArrayType *CAT
718 = CGF.getContext().getAsConstantArrayType(type)) {
719 type = CAT->getElementType();
720 arraySizeMultiplier *= CAT->getSize();
721 }
722
723 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
724 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
725 typeSizeMultiplier *= arraySizeMultiplier;
726
727 // This will be a size_t.
728 llvm::Value *size;
729
730 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
731 // Don't bloat the -O0 code.
732 if (llvm::ConstantInt *numElementsC =
733 dyn_cast<llvm::ConstantInt>(numElements)) {
734 const llvm::APInt &count = numElementsC->getValue();
735
736 bool hasAnyOverflow = false;
737
738 // If 'count' was a negative number, it's an overflow.
739 if (isSigned && count.isNegative())
740 hasAnyOverflow = true;
741
742 // We want to do all this arithmetic in size_t. If numElements is
743 // wider than that, check whether it's already too big, and if so,
744 // overflow.
745 else if (numElementsWidth > sizeWidth &&
746 numElementsWidth - sizeWidth > count.countLeadingZeros())
747 hasAnyOverflow = true;
748
749 // Okay, compute a count at the right width.
750 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
751
752 // If there is a brace-initializer, we cannot allocate fewer elements than
753 // there are initializers. If we do, that's treated like an overflow.
754 if (adjustedCount.ult(minElements))
755 hasAnyOverflow = true;
756
757 // Scale numElements by that. This might overflow, but we don't
758 // care because it only overflows if allocationSize does, too, and
759 // if that overflows then we shouldn't use this.
760 numElements = llvm::ConstantInt::get(CGF.SizeTy,
761 adjustedCount * arraySizeMultiplier);
762
763 // Compute the size before cookie, and track whether it overflowed.
764 bool overflow;
765 llvm::APInt allocationSize
766 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
767 hasAnyOverflow |= overflow;
768
769 // Add in the cookie, and check whether it's overflowed.
770 if (cookieSize != 0) {
771 // Save the current size without a cookie. This shouldn't be
772 // used if there was overflow.
773 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
774
775 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
776 hasAnyOverflow |= overflow;
777 }
778
779 // On overflow, produce a -1 so operator new will fail.
780 if (hasAnyOverflow) {
781 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
782 } else {
783 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
784 }
785
786 // Otherwise, we might need to use the overflow intrinsics.
787 } else {
788 // There are up to five conditions we need to test for:
789 // 1) if isSigned, we need to check whether numElements is negative;
790 // 2) if numElementsWidth > sizeWidth, we need to check whether
791 // numElements is larger than something representable in size_t;
792 // 3) if minElements > 0, we need to check whether numElements is smaller
793 // than that.
794 // 4) we need to compute
795 // sizeWithoutCookie := numElements * typeSizeMultiplier
796 // and check whether it overflows; and
797 // 5) if we need a cookie, we need to compute
798 // size := sizeWithoutCookie + cookieSize
799 // and check whether it overflows.
800
801 llvm::Value *hasOverflow = nullptr;
802
803 // If numElementsWidth > sizeWidth, then one way or another, we're
804 // going to have to do a comparison for (2), and this happens to
805 // take care of (1), too.
806 if (numElementsWidth > sizeWidth) {
807 llvm::APInt threshold(numElementsWidth, 1);
808 threshold <<= sizeWidth;
809
810 llvm::Value *thresholdV
811 = llvm::ConstantInt::get(numElementsType, threshold);
812
813 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
814 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
815
816 // Otherwise, if we're signed, we want to sext up to size_t.
817 } else if (isSigned) {
818 if (numElementsWidth < sizeWidth)
819 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
820
821 // If there's a non-1 type size multiplier, then we can do the
822 // signedness check at the same time as we do the multiply
823 // because a negative number times anything will cause an
824 // unsigned overflow. Otherwise, we have to do it here. But at least
825 // in this case, we can subsume the >= minElements check.
826 if (typeSizeMultiplier == 1)
827 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
828 llvm::ConstantInt::get(CGF.SizeTy, minElements));
829
830 // Otherwise, zext up to size_t if necessary.
831 } else if (numElementsWidth < sizeWidth) {
832 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
833 }
834
835 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 835, __PRETTY_FUNCTION__))
;
836
837 if (minElements) {
838 // Don't allow allocation of fewer elements than we have initializers.
839 if (!hasOverflow) {
840 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
841 llvm::ConstantInt::get(CGF.SizeTy, minElements));
842 } else if (numElementsWidth > sizeWidth) {
843 // The other existing overflow subsumes this check.
844 // We do an unsigned comparison, since any signed value < -1 is
845 // taken care of either above or below.
846 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
847 CGF.Builder.CreateICmpULT(numElements,
848 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
849 }
850 }
851
852 size = numElements;
853
854 // Multiply by the type size if necessary. This multiplier
855 // includes all the factors for nested arrays.
856 //
857 // This step also causes numElements to be scaled up by the
858 // nested-array factor if necessary. Overflow on this computation
859 // can be ignored because the result shouldn't be used if
860 // allocation fails.
861 if (typeSizeMultiplier != 1) {
862 llvm::Function *umul_with_overflow
863 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
864
865 llvm::Value *tsmV =
866 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
867 llvm::Value *result =
868 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
869
870 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
871 if (hasOverflow)
872 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
873 else
874 hasOverflow = overflowed;
875
876 size = CGF.Builder.CreateExtractValue(result, 0);
877
878 // Also scale up numElements by the array size multiplier.
879 if (arraySizeMultiplier != 1) {
880 // If the base element type size is 1, then we can re-use the
881 // multiply we just did.
882 if (typeSize.isOne()) {
883 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 883, __PRETTY_FUNCTION__))
;
884 numElements = size;
885
886 // Otherwise we need a separate multiply.
887 } else {
888 llvm::Value *asmV =
889 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
890 numElements = CGF.Builder.CreateMul(numElements, asmV);
891 }
892 }
893 } else {
894 // numElements doesn't need to be scaled.
895 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 895, __PRETTY_FUNCTION__))
;
896 }
897
898 // Add in the cookie size if necessary.
899 if (cookieSize != 0) {
900 sizeWithoutCookie = size;
901
902 llvm::Function *uadd_with_overflow
903 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
904
905 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
906 llvm::Value *result =
907 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
908
909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
910 if (hasOverflow)
911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
912 else
913 hasOverflow = overflowed;
914
915 size = CGF.Builder.CreateExtractValue(result, 0);
916 }
917
918 // If we had any possibility of dynamic overflow, make a select to
919 // overwrite 'size' with an all-ones value, which should cause
920 // operator new to throw.
921 if (hasOverflow)
922 size = CGF.Builder.CreateSelect(hasOverflow,
923 llvm::Constant::getAllOnesValue(CGF.SizeTy),
924 size);
925 }
926
927 if (cookieSize == 0)
928 sizeWithoutCookie = size;
929 else
930 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 930, __PRETTY_FUNCTION__))
;
931
932 return size;
933}
934
935static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
936 QualType AllocType, Address NewPtr,
937 AggValueSlot::Overlap_t MayOverlap) {
938 // FIXME: Refactor with EmitExprAsInit.
939 switch (CGF.getEvaluationKind(AllocType)) {
940 case TEK_Scalar:
941 CGF.EmitScalarInit(Init, nullptr,
942 CGF.MakeAddrLValue(NewPtr, AllocType), false);
943 return;
944 case TEK_Complex:
945 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
946 /*isInit*/ true);
947 return;
948 case TEK_Aggregate: {
949 AggValueSlot Slot
950 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
951 AggValueSlot::IsDestructed,
952 AggValueSlot::DoesNotNeedGCBarriers,
953 AggValueSlot::IsNotAliased,
954 MayOverlap, AggValueSlot::IsNotZeroed,
955 AggValueSlot::IsSanitizerChecked);
956 CGF.EmitAggExpr(Init, Slot);
957 return;
958 }
959 }
960 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 960)
;
961}
962
963void CodeGenFunction::EmitNewArrayInitializer(
964 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
965 Address BeginPtr, llvm::Value *NumElements,
966 llvm::Value *AllocSizeWithoutCookie) {
967 // If we have a type with trivial initialization and no initializer,
968 // there's nothing to do.
969 if (!E->hasInitializer())
970 return;
971
972 Address CurPtr = BeginPtr;
973
974 unsigned InitListElements = 0;
975
976 const Expr *Init = E->getInitializer();
977 Address EndOfInit = Address::invalid();
978 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
979 EHScopeStack::stable_iterator Cleanup;
980 llvm::Instruction *CleanupDominator = nullptr;
981
982 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
983 CharUnits ElementAlign =
984 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
985
986 // Attempt to perform zero-initialization using memset.
987 auto TryMemsetInitialization = [&]() -> bool {
988 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
989 // we can initialize with a memset to -1.
990 if (!CGM.getTypes().isZeroInitializable(ElementType))
991 return false;
992
993 // Optimization: since zero initialization will just set the memory
994 // to all zeroes, generate a single memset to do it in one shot.
995
996 // Subtract out the size of any elements we've already initialized.
997 auto *RemainingSize = AllocSizeWithoutCookie;
998 if (InitListElements) {
999 // We know this can't overflow; we check this when doing the allocation.
1000 auto *InitializedSize = llvm::ConstantInt::get(
1001 RemainingSize->getType(),
1002 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1003 InitListElements);
1004 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1005 }
1006
1007 // Create the memset.
1008 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1009 return true;
1010 };
1011
1012 // If the initializer is an initializer list, first do the explicit elements.
1013 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1014 // Initializing from a (braced) string literal is a special case; the init
1015 // list element does not initialize a (single) array element.
1016 if (ILE->isStringLiteralInit()) {
1017 // Initialize the initial portion of length equal to that of the string
1018 // literal. The allocation must be for at least this much; we emitted a
1019 // check for that earlier.
1020 AggValueSlot Slot =
1021 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1022 AggValueSlot::IsDestructed,
1023 AggValueSlot::DoesNotNeedGCBarriers,
1024 AggValueSlot::IsNotAliased,
1025 AggValueSlot::DoesNotOverlap,
1026 AggValueSlot::IsNotZeroed,
1027 AggValueSlot::IsSanitizerChecked);
1028 EmitAggExpr(ILE->getInit(0), Slot);
1029
1030 // Move past these elements.
1031 InitListElements =
1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1033 ->getSize().getZExtValue();
1034 CurPtr =
1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1036 Builder.getSize(InitListElements),
1037 "string.init.end"),
1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1039 ElementSize));
1040
1041 // Zero out the rest, if any remain.
1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1044 bool OK = TryMemsetInitialization();
1045 (void)OK;
1046 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1046, __PRETTY_FUNCTION__))
;
1047 }
1048 return;
1049 }
1050
1051 InitListElements = ILE->getNumInits();
1052
1053 // If this is a multi-dimensional array new, we will initialize multiple
1054 // elements with each init list element.
1055 QualType AllocType = E->getAllocatedType();
1056 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1057 AllocType->getAsArrayTypeUnsafe())) {
1058 ElementTy = ConvertTypeForMem(AllocType);
1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1060 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1061 }
1062
1063 // Enter a partial-destruction Cleanup if necessary.
1064 if (needsEHCleanup(DtorKind)) {
1065 // In principle we could tell the Cleanup where we are more
1066 // directly, but the control flow can get so varied here that it
1067 // would actually be quite complex. Therefore we go through an
1068 // alloca.
1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1070 "array.init.end");
1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1073 ElementType, ElementAlign,
1074 getDestroyer(DtorKind));
1075 Cleanup = EHStack.stable_begin();
1076 }
1077
1078 CharUnits StartAlign = CurPtr.getAlignment();
1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1080 // Tell the cleanup that it needs to destroy up to this
1081 // element. TODO: some of these stores can be trivially
1082 // observed to be unnecessary.
1083 if (EndOfInit.isValid()) {
1084 auto FinishedPtr =
1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1086 Builder.CreateStore(FinishedPtr, EndOfInit);
1087 }
1088 // FIXME: If the last initializer is an incomplete initializer list for
1089 // an array, and we have an array filler, we can fold together the two
1090 // initialization loops.
1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1092 ILE->getInit(i)->getType(), CurPtr,
1093 AggValueSlot::DoesNotOverlap);
1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1095 Builder.getSize(1),
1096 "array.exp.next"),
1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1098 }
1099
1100 // The remaining elements are filled with the array filler expression.
1101 Init = ILE->getArrayFiller();
1102
1103 // Extract the initializer for the individual array elements by pulling
1104 // out the array filler from all the nested initializer lists. This avoids
1105 // generating a nested loop for the initialization.
1106 while (Init && Init->getType()->isConstantArrayType()) {
1107 auto *SubILE = dyn_cast<InitListExpr>(Init);
1108 if (!SubILE)
1109 break;
1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111 Init = SubILE->getArrayFiller();
1112 }
1113
1114 // Switch back to initializing one base element at a time.
1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1116 }
1117
1118 // If all elements have already been initialized, skip any further
1119 // initialization.
1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1122 // If there was a Cleanup, deactivate it.
1123 if (CleanupDominator)
1124 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1125 return;
1126 }
1127
1128 assert(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1128, __PRETTY_FUNCTION__))
;
1129
1130 // If this is a constructor call, try to optimize it out, and failing that
1131 // emit a single loop to initialize all remaining elements.
1132 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1133 CXXConstructorDecl *Ctor = CCE->getConstructor();
1134 if (Ctor->isTrivial()) {
1135 // If new expression did not specify value-initialization, then there
1136 // is no initialization.
1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1138 return;
1139
1140 if (TryMemsetInitialization())
1141 return;
1142 }
1143
1144 // Store the new Cleanup position for irregular Cleanups.
1145 //
1146 // FIXME: Share this cleanup with the constructor call emission rather than
1147 // having it create a cleanup of its own.
1148 if (EndOfInit.isValid())
1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1150
1151 // Emit a constructor call loop to initialize the remaining elements.
1152 if (InitListElements)
1153 NumElements = Builder.CreateSub(
1154 NumElements,
1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1157 /*NewPointerIsChecked*/true,
1158 CCE->requiresZeroInitialization());
1159 return;
1160 }
1161
1162 // If this is value-initialization, we can usually use memset.
1163 ImplicitValueInitExpr IVIE(ElementType);
1164 if (isa<ImplicitValueInitExpr>(Init)) {
1165 if (TryMemsetInitialization())
1166 return;
1167
1168 // Switch to an ImplicitValueInitExpr for the element type. This handles
1169 // only one case: multidimensional array new of pointers to members. In
1170 // all other cases, we already have an initializer for the array element.
1171 Init = &IVIE;
1172 }
1173
1174 // At this point we should have found an initializer for the individual
1175 // elements of the array.
1176 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
1177 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
;
1178
1179 // If we have an empty initializer list, we can usually use memset.
1180 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1181 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1182 return;
1183
1184 // If we have a struct whose every field is value-initialized, we can
1185 // usually use memset.
1186 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1187 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1188 if (RType->getDecl()->isStruct()) {
1189 unsigned NumElements = 0;
1190 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1191 NumElements = CXXRD->getNumBases();
1192 for (auto *Field : RType->getDecl()->fields())
1193 if (!Field->isUnnamedBitfield())
1194 ++NumElements;
1195 // FIXME: Recurse into nested InitListExprs.
1196 if (ILE->getNumInits() == NumElements)
1197 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1198 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1199 --NumElements;
1200 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1201 return;
1202 }
1203 }
1204 }
1205
1206 // Create the loop blocks.
1207 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1208 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1209 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1210
1211 // Find the end of the array, hoisted out of the loop.
1212 llvm::Value *EndPtr =
1213 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1214
1215 // If the number of elements isn't constant, we have to now check if there is
1216 // anything left to initialize.
1217 if (!ConstNum) {
1218 llvm::Value *IsEmpty =
1219 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1220 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1221 }
1222
1223 // Enter the loop.
1224 EmitBlock(LoopBB);
1225
1226 // Set up the current-element phi.
1227 llvm::PHINode *CurPtrPhi =
1228 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1229 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1230
1231 CurPtr = Address(CurPtrPhi, ElementAlign);
1232
1233 // Store the new Cleanup position for irregular Cleanups.
1234 if (EndOfInit.isValid())
1235 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1236
1237 // Enter a partial-destruction Cleanup if necessary.
1238 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1239 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1240 ElementType, ElementAlign,
1241 getDestroyer(DtorKind));
1242 Cleanup = EHStack.stable_begin();
1243 CleanupDominator = Builder.CreateUnreachable();
1244 }
1245
1246 // Emit the initializer into this element.
1247 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1248 AggValueSlot::DoesNotOverlap);
1249
1250 // Leave the Cleanup if we entered one.
1251 if (CleanupDominator) {
1252 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1253 CleanupDominator->eraseFromParent();
1254 }
1255
1256 // Advance to the next element by adjusting the pointer type as necessary.
1257 llvm::Value *NextPtr =
1258 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1259 "array.next");
1260
1261 // Check whether we've gotten to the end of the array and, if so,
1262 // exit the loop.
1263 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1264 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1265 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1266
1267 EmitBlock(ContBB);
1268}
1269
1270static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1271 QualType ElementType, llvm::Type *ElementTy,
1272 Address NewPtr, llvm::Value *NumElements,
1273 llvm::Value *AllocSizeWithoutCookie) {
1274 ApplyDebugLocation DL(CGF, E);
1275 if (E->isArray())
1276 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1277 AllocSizeWithoutCookie);
1278 else if (const Expr *Init = E->getInitializer())
1279 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1280 AggValueSlot::DoesNotOverlap);
1281}
1282
1283/// Emit a call to an operator new or operator delete function, as implicitly
1284/// created by new-expressions and delete-expressions.
1285static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1286 const FunctionDecl *CalleeDecl,
1287 const FunctionProtoType *CalleeType,
1288 const CallArgList &Args) {
1289 llvm::CallBase *CallOrInvoke;
1290 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1291 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1292 RValue RV =
1293 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1294 Args, CalleeType, /*ChainCall=*/false),
1295 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1296
1297 /// C++1y [expr.new]p10:
1298 /// [In a new-expression,] an implementation is allowed to omit a call
1299 /// to a replaceable global allocation function.
1300 ///
1301 /// We model such elidable calls with the 'builtin' attribute.
1302 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1303 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1304 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1305 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1306 llvm::Attribute::Builtin);
1307 }
1308
1309 return RV;
1310}
1311
1312RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1313 const CallExpr *TheCall,
1314 bool IsDelete) {
1315 CallArgList Args;
1316 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1317 // Find the allocation or deallocation function that we're calling.
1318 ASTContext &Ctx = getContext();
1319 DeclarationName Name = Ctx.DeclarationNames
1320 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1321
1322 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1323 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1324 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1325 return EmitNewDeleteCall(*this, FD, Type, Args);
1326 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1326)
;
1327}
1328
1329namespace {
1330/// The parameters to pass to a usual operator delete.
1331struct UsualDeleteParams {
1332 bool DestroyingDelete = false;
1333 bool Size = false;
1334 bool Alignment = false;
1335};
1336}
1337
1338static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1339 UsualDeleteParams Params;
1340
1341 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1342 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1343
1344 // The first argument is always a void*.
1345 ++AI;
1346
1347 // The next parameter may be a std::destroying_delete_t.
1348 if (FD->isDestroyingOperatorDelete()) {
1349 Params.DestroyingDelete = true;
1350 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1350, __PRETTY_FUNCTION__))
;
1351 ++AI;
1352 }
1353
1354 // Figure out what other parameters we should be implicitly passing.
1355 if (AI != AE && (*AI)->isIntegerType()) {
1356 Params.Size = true;
1357 ++AI;
1358 }
1359
1360 if (AI != AE && (*AI)->isAlignValT()) {
1361 Params.Alignment = true;
1362 ++AI;
1363 }
1364
1365 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1365, __PRETTY_FUNCTION__))
;
1366 return Params;
1367}
1368
1369namespace {
1370 /// A cleanup to call the given 'operator delete' function upon abnormal
1371 /// exit from a new expression. Templated on a traits type that deals with
1372 /// ensuring that the arguments dominate the cleanup if necessary.
1373 template<typename Traits>
1374 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1375 /// Type used to hold llvm::Value*s.
1376 typedef typename Traits::ValueTy ValueTy;
1377 /// Type used to hold RValues.
1378 typedef typename Traits::RValueTy RValueTy;
1379 struct PlacementArg {
1380 RValueTy ArgValue;
1381 QualType ArgType;
1382 };
1383
1384 unsigned NumPlacementArgs : 31;
1385 unsigned PassAlignmentToPlacementDelete : 1;
1386 const FunctionDecl *OperatorDelete;
1387 ValueTy Ptr;
1388 ValueTy AllocSize;
1389 CharUnits AllocAlign;
1390
1391 PlacementArg *getPlacementArgs() {
1392 return reinterpret_cast<PlacementArg *>(this + 1);
1393 }
1394
1395 public:
1396 static size_t getExtraSize(size_t NumPlacementArgs) {
1397 return NumPlacementArgs * sizeof(PlacementArg);
1398 }
1399
1400 CallDeleteDuringNew(size_t NumPlacementArgs,
1401 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1402 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1403 CharUnits AllocAlign)
1404 : NumPlacementArgs(NumPlacementArgs),
1405 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1406 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1407 AllocAlign(AllocAlign) {}
1408
1409 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1410 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1410, __PRETTY_FUNCTION__))
;
1411 getPlacementArgs()[I] = {Arg, Type};
1412 }
1413
1414 void Emit(CodeGenFunction &CGF, Flags flags) override {
1415 const FunctionProtoType *FPT =
1416 OperatorDelete->getType()->getAs<FunctionProtoType>();
1417 CallArgList DeleteArgs;
1418
1419 // The first argument is always a void* (or C* for a destroying operator
1420 // delete for class type C).
1421 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1422
1423 // Figure out what other parameters we should be implicitly passing.
1424 UsualDeleteParams Params;
1425 if (NumPlacementArgs) {
1426 // A placement deallocation function is implicitly passed an alignment
1427 // if the placement allocation function was, but is never passed a size.
1428 Params.Alignment = PassAlignmentToPlacementDelete;
1429 } else {
1430 // For a non-placement new-expression, 'operator delete' can take a
1431 // size and/or an alignment if it has the right parameters.
1432 Params = getUsualDeleteParams(OperatorDelete);
1433 }
1434
1435 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
1436 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
;
1437
1438 // The second argument can be a std::size_t (for non-placement delete).
1439 if (Params.Size)
1440 DeleteArgs.add(Traits::get(CGF, AllocSize),
1441 CGF.getContext().getSizeType());
1442
1443 // The next (second or third) argument can be a std::align_val_t, which
1444 // is an enum whose underlying type is std::size_t.
1445 // FIXME: Use the right type as the parameter type. Note that in a call
1446 // to operator delete(size_t, ...), we may not have it available.
1447 if (Params.Alignment)
1448 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1449 CGF.SizeTy, AllocAlign.getQuantity())),
1450 CGF.getContext().getSizeType());
1451
1452 // Pass the rest of the arguments, which must match exactly.
1453 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1454 auto Arg = getPlacementArgs()[I];
1455 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1456 }
1457
1458 // Call 'operator delete'.
1459 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1460 }
1461 };
1462}
1463
1464/// Enter a cleanup to call 'operator delete' if the initializer in a
1465/// new-expression throws.
1466static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1467 const CXXNewExpr *E,
1468 Address NewPtr,
1469 llvm::Value *AllocSize,
1470 CharUnits AllocAlign,
1471 const CallArgList &NewArgs) {
1472 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1473
1474 // If we're not inside a conditional branch, then the cleanup will
1475 // dominate and we can do the easier (and more efficient) thing.
1476 if (!CGF.isInConditionalBranch()) {
1477 struct DirectCleanupTraits {
1478 typedef llvm::Value *ValueTy;
1479 typedef RValue RValueTy;
1480 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1481 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1482 };
1483
1484 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1485
1486 DirectCleanup *Cleanup = CGF.EHStack
1487 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1488 E->getNumPlacementArgs(),
1489 E->getOperatorDelete(),
1490 NewPtr.getPointer(),
1491 AllocSize,
1492 E->passAlignment(),
1493 AllocAlign);
1494 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1495 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1496 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1497 }
1498
1499 return;
1500 }
1501
1502 // Otherwise, we need to save all this stuff.
1503 DominatingValue<RValue>::saved_type SavedNewPtr =
1504 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1505 DominatingValue<RValue>::saved_type SavedAllocSize =
1506 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1507
1508 struct ConditionalCleanupTraits {
1509 typedef DominatingValue<RValue>::saved_type ValueTy;
1510 typedef DominatingValue<RValue>::saved_type RValueTy;
1511 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1512 return V.restore(CGF);
1513 }
1514 };
1515 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1516
1517 ConditionalCleanup *Cleanup = CGF.EHStack
1518 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1519 E->getNumPlacementArgs(),
1520 E->getOperatorDelete(),
1521 SavedNewPtr,
1522 SavedAllocSize,
1523 E->passAlignment(),
1524 AllocAlign);
1525 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1526 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1527 Cleanup->setPlacementArg(
1528 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1529 }
1530
1531 CGF.initFullExprCleanup();
1532}
1533
1534llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1535 // The element type being allocated.
1536 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1537
1538 // 1. Build a call to the allocation function.
1539 FunctionDecl *allocator = E->getOperatorNew();
1540
1541 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1542 unsigned minElements = 0;
1543 if (E->isArray() && E->hasInitializer()) {
1544 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1545 if (ILE && ILE->isStringLiteralInit())
1546 minElements =
1547 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1548 ->getSize().getZExtValue();
1549 else if (ILE)
1550 minElements = ILE->getNumInits();
1551 }
1552
1553 llvm::Value *numElements = nullptr;
1554 llvm::Value *allocSizeWithoutCookie = nullptr;
1555 llvm::Value *allocSize =
1556 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1557 allocSizeWithoutCookie);
1558 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1559
1560 // Emit the allocation call. If the allocator is a global placement
1561 // operator, just "inline" it directly.
1562 Address allocation = Address::invalid();
1563 CallArgList allocatorArgs;
1564 if (allocator->isReservedGlobalPlacementOperator()) {
1565 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566 const Expr *arg = *E->placement_arguments().begin();
1567
1568 LValueBaseInfo BaseInfo;
1569 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1570
1571 // The pointer expression will, in many cases, be an opaque void*.
1572 // In these cases, discard the computed alignment and use the
1573 // formal alignment of the allocated type.
1574 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1575 allocation = Address(allocation.getPointer(), allocAlign);
1576
1577 // Set up allocatorArgs for the call to operator delete if it's not
1578 // the reserved global operator.
1579 if (E->getOperatorDelete() &&
1580 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1581 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1582 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1583 }
1584
1585 } else {
1586 const FunctionProtoType *allocatorType =
1587 allocator->getType()->castAs<FunctionProtoType>();
1588 unsigned ParamsToSkip = 0;
1589
1590 // The allocation size is the first argument.
1591 QualType sizeType = getContext().getSizeType();
1592 allocatorArgs.add(RValue::get(allocSize), sizeType);
1593 ++ParamsToSkip;
1594
1595 if (allocSize != allocSizeWithoutCookie) {
1596 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1597 allocAlign = std::max(allocAlign, cookieAlign);
1598 }
1599
1600 // The allocation alignment may be passed as the second argument.
1601 if (E->passAlignment()) {
1602 QualType AlignValT = sizeType;
1603 if (allocatorType->getNumParams() > 1) {
1604 AlignValT = allocatorType->getParamType(1);
1605 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1606 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1607 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1608 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
;
1609 ++ParamsToSkip;
1610 } else {
1611 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1612 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1612, __PRETTY_FUNCTION__))
;
1613 }
1614 allocatorArgs.add(
1615 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1616 AlignValT);
1617 }
1618
1619 // FIXME: Why do we not pass a CalleeDecl here?
1620 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1621 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1622
1623 RValue RV =
1624 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1625
1626 // If this was a call to a global replaceable allocation function that does
1627 // not take an alignment argument, the allocator is known to produce
1628 // storage that's suitably aligned for any object that fits, up to a known
1629 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1630 CharUnits allocationAlign = allocAlign;
1631 if (!E->passAlignment() &&
1632 allocator->isReplaceableGlobalAllocationFunction()) {
1633 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1634 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1635 allocationAlign = std::max(
1636 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1637 }
1638
1639 allocation = Address(RV.getScalarVal(), allocationAlign);
1640 }
1641
1642 // Emit a null check on the allocation result if the allocation
1643 // function is allowed to return null (because it has a non-throwing
1644 // exception spec or is the reserved placement new) and we have an
1645 // interesting initializer will be running sanitizers on the initialization.
1646 bool nullCheck = E->shouldNullCheckAllocation() &&
1647 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1648 sanitizePerformTypeCheck());
1649
1650 llvm::BasicBlock *nullCheckBB = nullptr;
1651 llvm::BasicBlock *contBB = nullptr;
1652
1653 // The null-check means that the initializer is conditionally
1654 // evaluated.
1655 ConditionalEvaluation conditional(*this);
1656
1657 if (nullCheck) {
1658 conditional.begin(*this);
1659
1660 nullCheckBB = Builder.GetInsertBlock();
1661 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1662 contBB = createBasicBlock("new.cont");
1663
1664 llvm::Value *isNull =
1665 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1666 Builder.CreateCondBr(isNull, contBB, notNullBB);
1667 EmitBlock(notNullBB);
1668 }
1669
1670 // If there's an operator delete, enter a cleanup to call it if an
1671 // exception is thrown.
1672 EHScopeStack::stable_iterator operatorDeleteCleanup;
1673 llvm::Instruction *cleanupDominator = nullptr;
1674 if (E->getOperatorDelete() &&
1675 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1676 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1677 allocatorArgs);
1678 operatorDeleteCleanup = EHStack.stable_begin();
1679 cleanupDominator = Builder.CreateUnreachable();
1680 }
1681
1682 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
1683 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
;
1684 if (allocSize != allocSizeWithoutCookie) {
1685 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1685, __PRETTY_FUNCTION__))
;
1686 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1687 numElements,
1688 E, allocType);
1689 }
1690
1691 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1692 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1693
1694 // Passing pointer through launder.invariant.group to avoid propagation of
1695 // vptrs information which may be included in previous type.
1696 // To not break LTO with different optimizations levels, we do it regardless
1697 // of optimization level.
1698 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1699 allocator->isReservedGlobalPlacementOperator())
1700 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1701 result.getAlignment());
1702
1703 // Emit sanitizer checks for pointer value now, so that in the case of an
1704 // array it was checked only once and not at each constructor call. We may
1705 // have already checked that the pointer is non-null.
1706 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1707 // we'll null check the wrong pointer here.
1708 SanitizerSet SkippedChecks;
1709 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1710 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1711 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1712 result.getPointer(), allocType, result.getAlignment(),
1713 SkippedChecks, numElements);
1714
1715 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1716 allocSizeWithoutCookie);
1717 if (E->isArray()) {
1718 // NewPtr is a pointer to the base element type. If we're
1719 // allocating an array of arrays, we'll need to cast back to the
1720 // array pointer type.
1721 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1722 if (result.getType() != resultType)
1723 result = Builder.CreateBitCast(result, resultType);
1724 }
1725
1726 // Deactivate the 'operator delete' cleanup if we finished
1727 // initialization.
1728 if (operatorDeleteCleanup.isValid()) {
1729 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1730 cleanupDominator->eraseFromParent();
1731 }
1732
1733 llvm::Value *resultPtr = result.getPointer();
1734 if (nullCheck) {
1735 conditional.end(*this);
1736
1737 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1738 EmitBlock(contBB);
1739
1740 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1741 PHI->addIncoming(resultPtr, notNullBB);
1742 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1743 nullCheckBB);
1744
1745 resultPtr = PHI;
1746 }
1747
1748 return resultPtr;
1749}
1750
1751void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1752 llvm::Value *Ptr, QualType DeleteTy,
1753 llvm::Value *NumElements,
1754 CharUnits CookieSize) {
1755 assert
1.1
'NumElements' is null
((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
1756 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
;
1757
1758 const FunctionProtoType *DeleteFTy =
3
'DeleteFTy' initialized to a null pointer value
1759 DeleteFD->getType()->getAs<FunctionProtoType>();
2
Assuming the object is not a 'FunctionProtoType'
1760
1761 CallArgList DeleteArgs;
1762
1763 auto Params = getUsualDeleteParams(DeleteFD);
1764 auto ParamTypeIt = DeleteFTy->param_type_begin();
4
Called C++ object pointer is null
1765
1766 // Pass the pointer itself.
1767 QualType ArgTy = *ParamTypeIt++;
1768 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1769 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1770
1771 // Pass the std::destroying_delete tag if present.
1772 if (Params.DestroyingDelete) {
1773 QualType DDTag = *ParamTypeIt++;
1774 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1775 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1776 DeleteArgs.add(RValue::get(V), DDTag);
1777 }
1778
1779 // Pass the size if the delete function has a size_t parameter.
1780 if (Params.Size) {
1781 QualType SizeType = *ParamTypeIt++;
1782 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1783 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1784 DeleteTypeSize.getQuantity());
1785
1786 // For array new, multiply by the number of elements.
1787 if (NumElements)
1788 Size = Builder.CreateMul(Size, NumElements);
1789
1790 // If there is a cookie, add the cookie size.
1791 if (!CookieSize.isZero())
1792 Size = Builder.CreateAdd(
1793 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1794
1795 DeleteArgs.add(RValue::get(Size), SizeType);
1796 }
1797
1798 // Pass the alignment if the delete function has an align_val_t parameter.
1799 if (Params.Alignment) {
1800 QualType AlignValType = *ParamTypeIt++;
1801 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1802 getContext().getTypeAlignIfKnown(DeleteTy));
1803 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1804 DeleteTypeAlign.getQuantity());
1805 DeleteArgs.add(RValue::get(Align), AlignValType);
1806 }
1807
1808 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
1809 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 // Emit the call to delete.
1812 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1813}
1814
1815namespace {
1816 /// Calls the given 'operator delete' on a single object.
1817 struct CallObjectDelete final : EHScopeStack::Cleanup {
1818 llvm::Value *Ptr;
1819 const FunctionDecl *OperatorDelete;
1820 QualType ElementType;
1821
1822 CallObjectDelete(llvm::Value *Ptr,
1823 const FunctionDecl *OperatorDelete,
1824 QualType ElementType)
1825 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1826
1827 void Emit(CodeGenFunction &CGF, Flags flags) override {
1828 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1
Calling 'CodeGenFunction::EmitDeleteCall'
1829 }
1830 };
1831}
1832
1833void
1834CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1835 llvm::Value *CompletePtr,
1836 QualType ElementType) {
1837 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1838 OperatorDelete, ElementType);
1839}
1840
1841/// Emit the code for deleting a single object with a destroying operator
1842/// delete. If the element type has a non-virtual destructor, Ptr has already
1843/// been converted to the type of the parameter of 'operator delete'. Otherwise
1844/// Ptr points to an object of the static type.
1845static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1846 const CXXDeleteExpr *DE, Address Ptr,
1847 QualType ElementType) {
1848 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1849 if (Dtor && Dtor->isVirtual())
1850 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1851 Dtor);
1852 else
1853 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1854}
1855
1856/// Emit the code for deleting a single object.
1857static void EmitObjectDelete(CodeGenFunction &CGF,
1858 const CXXDeleteExpr *DE,
1859 Address Ptr,
1860 QualType ElementType) {
1861 // C++11 [expr.delete]p3:
1862 // If the static type of the object to be deleted is different from its
1863 // dynamic type, the static type shall be a base class of the dynamic type
1864 // of the object to be deleted and the static type shall have a virtual
1865 // destructor or the behavior is undefined.
1866 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1867 DE->getExprLoc(), Ptr.getPointer(),
1868 ElementType);
1869
1870 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1871 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1871, __PRETTY_FUNCTION__))
;
1872
1873 // Find the destructor for the type, if applicable. If the
1874 // destructor is virtual, we'll just emit the vcall and return.
1875 const CXXDestructorDecl *Dtor = nullptr;
1876 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1877 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1878 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1879 Dtor = RD->getDestructor();
1880
1881 if (Dtor->isVirtual()) {
1882 bool UseVirtualCall = true;
1883 const Expr *Base = DE->getArgument();
1884 if (auto *DevirtualizedDtor =
1885 dyn_cast_or_null<const CXXDestructorDecl>(
1886 Dtor->getDevirtualizedMethod(
1887 Base, CGF.CGM.getLangOpts().AppleKext))) {
1888 UseVirtualCall = false;
1889 const CXXRecordDecl *DevirtualizedClass =
1890 DevirtualizedDtor->getParent();
1891 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1892 // Devirtualized to the class of the base type (the type of the
1893 // whole expression).
1894 Dtor = DevirtualizedDtor;
1895 } else {
1896 // Devirtualized to some other type. Would need to cast the this
1897 // pointer to that type but we don't have support for that yet, so
1898 // do a virtual call. FIXME: handle the case where it is
1899 // devirtualized to the derived type (the type of the inner
1900 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1901 UseVirtualCall = true;
1902 }
1903 }
1904 if (UseVirtualCall) {
1905 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1906 Dtor);
1907 return;
1908 }
1909 }
1910 }
1911 }
1912
1913 // Make sure that we call delete even if the dtor throws.
1914 // This doesn't have to a conditional cleanup because we're going
1915 // to pop it off in a second.
1916 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1917 Ptr.getPointer(),
1918 OperatorDelete, ElementType);
1919
1920 if (Dtor)
1921 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1922 /*ForVirtualBase=*/false,
1923 /*Delegating=*/false,
1924 Ptr, ElementType);
1925 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1926 switch (Lifetime) {
1927 case Qualifiers::OCL_None:
1928 case Qualifiers::OCL_ExplicitNone:
1929 case Qualifiers::OCL_Autoreleasing:
1930 break;
1931
1932 case Qualifiers::OCL_Strong:
1933 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1934 break;
1935
1936 case Qualifiers::OCL_Weak:
1937 CGF.EmitARCDestroyWeak(Ptr);
1938 break;
1939 }
1940 }
1941
1942 CGF.PopCleanupBlock();
1943}
1944
1945namespace {
1946 /// Calls the given 'operator delete' on an array of objects.
1947 struct CallArrayDelete final : EHScopeStack::Cleanup {
1948 llvm::Value *Ptr;
1949 const FunctionDecl *OperatorDelete;
1950 llvm::Value *NumElements;
1951 QualType ElementType;
1952 CharUnits CookieSize;
1953
1954 CallArrayDelete(llvm::Value *Ptr,
1955 const FunctionDecl *OperatorDelete,
1956 llvm::Value *NumElements,
1957 QualType ElementType,
1958 CharUnits CookieSize)
1959 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1960 ElementType(ElementType), CookieSize(CookieSize) {}
1961
1962 void Emit(CodeGenFunction &CGF, Flags flags) override {
1963 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1964 CookieSize);
1965 }
1966 };
1967}
1968
1969/// Emit the code for deleting an array of objects.
1970static void EmitArrayDelete(CodeGenFunction &CGF,
1971 const CXXDeleteExpr *E,
1972 Address deletedPtr,
1973 QualType elementType) {
1974 llvm::Value *numElements = nullptr;
1975 llvm::Value *allocatedPtr = nullptr;
1976 CharUnits cookieSize;
1977 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1978 numElements, allocatedPtr, cookieSize);
1979
1980 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1980, __PRETTY_FUNCTION__))
;
1981
1982 // Make sure that we call delete even if one of the dtors throws.
1983 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1984 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1985 allocatedPtr, operatorDelete,
1986 numElements, elementType,
1987 cookieSize);
1988
1989 // Destroy the elements.
1990 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1991 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1991, __PRETTY_FUNCTION__))
;
1992
1993 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1994 CharUnits elementAlign =
1995 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1996
1997 llvm::Value *arrayBegin = deletedPtr.getPointer();
1998 llvm::Value *arrayEnd =
1999 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2000
2001 // Note that it is legal to allocate a zero-length array, and we
2002 // can never fold the check away because the length should always
2003 // come from a cookie.
2004 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2005 CGF.getDestroyer(dtorKind),
2006 /*checkZeroLength*/ true,
2007 CGF.needsEHCleanup(dtorKind));
2008 }
2009
2010 // Pop the cleanup block.
2011 CGF.PopCleanupBlock();
2012}
2013
2014void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2015 const Expr *Arg = E->getArgument();
2016 Address Ptr = EmitPointerWithAlignment(Arg);
2017
2018 // Null check the pointer.
2019 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2020 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2021
2022 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2023
2024 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2025 EmitBlock(DeleteNotNull);
2026
2027 QualType DeleteTy = E->getDestroyedType();
2028
2029 // A destroying operator delete overrides the entire operation of the
2030 // delete expression.
2031 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2032 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2033 EmitBlock(DeleteEnd);
2034 return;
2035 }
2036
2037 // We might be deleting a pointer to array. If so, GEP down to the
2038 // first non-array element.
2039 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2040 if (DeleteTy->isConstantArrayType()) {
2041 llvm::Value *Zero = Builder.getInt32(0);
2042 SmallVector<llvm::Value*,8> GEP;
2043
2044 GEP.push_back(Zero); // point at the outermost array
2045
2046 // For each layer of array type we're pointing at:
2047 while (const ConstantArrayType *Arr
2048 = getContext().getAsConstantArrayType(DeleteTy)) {
2049 // 1. Unpeel the array type.
2050 DeleteTy = Arr->getElementType();
2051
2052 // 2. GEP to the first element of the array.
2053 GEP.push_back(Zero);
2054 }
2055
2056 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2057 Ptr.getAlignment());
2058 }
2059
2060 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2060, __PRETTY_FUNCTION__))
;
2061
2062 if (E->isArrayForm()) {
2063 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2064 } else {
2065 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2066 }
2067
2068 EmitBlock(DeleteEnd);
2069}
2070
2071static bool isGLValueFromPointerDeref(const Expr *E) {
2072 E = E->IgnoreParens();
2073
2074 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2075 if (!CE->getSubExpr()->isGLValue())
2076 return false;
2077 return isGLValueFromPointerDeref(CE->getSubExpr());
2078 }
2079
2080 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2081 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2082
2083 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2084 if (BO->getOpcode() == BO_Comma)
2085 return isGLValueFromPointerDeref(BO->getRHS());
2086
2087 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2088 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2089 isGLValueFromPointerDeref(ACO->getFalseExpr());
2090
2091 // C++11 [expr.sub]p1:
2092 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2093 if (isa<ArraySubscriptExpr>(E))
2094 return true;
2095
2096 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2097 if (UO->getOpcode() == UO_Deref)
2098 return true;
2099
2100 return false;
2101}
2102
2103static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2104 llvm::Type *StdTypeInfoPtrTy) {
2105 // Get the vtable pointer.
2106 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2107
2108 QualType SrcRecordTy = E->getType();
2109
2110 // C++ [class.cdtor]p4:
2111 // If the operand of typeid refers to the object under construction or
2112 // destruction and the static type of the operand is neither the constructor
2113 // or destructor’s class nor one of its bases, the behavior is undefined.
2114 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2115 ThisPtr.getPointer(), SrcRecordTy);
2116
2117 // C++ [expr.typeid]p2:
2118 // If the glvalue expression is obtained by applying the unary * operator to
2119 // a pointer and the pointer is a null pointer value, the typeid expression
2120 // throws the std::bad_typeid exception.
2121 //
2122 // However, this paragraph's intent is not clear. We choose a very generous
2123 // interpretation which implores us to consider comma operators, conditional
2124 // operators, parentheses and other such constructs.
2125 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2126 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2127 llvm::BasicBlock *BadTypeidBlock =
2128 CGF.createBasicBlock("typeid.bad_typeid");
2129 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2130
2131 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2132 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2133
2134 CGF.EmitBlock(BadTypeidBlock);
2135 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2136 CGF.EmitBlock(EndBlock);
2137 }
2138
2139 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2140 StdTypeInfoPtrTy);
2141}
2142
2143llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2144 llvm::Type *StdTypeInfoPtrTy =
2145 ConvertType(E->getType())->getPointerTo();
2146
2147 if (E->isTypeOperand()) {
2148 llvm::Constant *TypeInfo =
2149 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2150 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2151 }
2152
2153 // C++ [expr.typeid]p2:
2154 // When typeid is applied to a glvalue expression whose type is a
2155 // polymorphic class type, the result refers to a std::type_info object
2156 // representing the type of the most derived object (that is, the dynamic
2157 // type) to which the glvalue refers.
2158 if (E->isPotentiallyEvaluated())
2159 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2160 StdTypeInfoPtrTy);
2161
2162 QualType OperandTy = E->getExprOperand()->getType();
2163 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2164 StdTypeInfoPtrTy);
2165}
2166
2167static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2168 QualType DestTy) {
2169 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2170 if (DestTy->isPointerType())
2171 return llvm::Constant::getNullValue(DestLTy);
2172
2173 /// C++ [expr.dynamic.cast]p9:
2174 /// A failed cast to reference type throws std::bad_cast
2175 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2176 return nullptr;
2177
2178 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2179 return llvm::UndefValue::get(DestLTy);
2180}
2181
2182llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2183 const CXXDynamicCastExpr *DCE) {
2184 CGM.EmitExplicitCastExprType(DCE, this);
2185 QualType DestTy = DCE->getTypeAsWritten();
2186
2187 QualType SrcTy = DCE->getSubExpr()->getType();
2188
2189 // C++ [expr.dynamic.cast]p7:
2190 // If T is "pointer to cv void," then the result is a pointer to the most
2191 // derived object pointed to by v.
2192 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2193
2194 bool isDynamicCastToVoid;
2195 QualType SrcRecordTy;
2196 QualType DestRecordTy;
2197 if (DestPTy) {
2198 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2199 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2200 DestRecordTy = DestPTy->getPointeeType();
2201 } else {
2202 isDynamicCastToVoid = false;
2203 SrcRecordTy = SrcTy;
2204 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2205 }
2206
2207 // C++ [class.cdtor]p5:
2208 // If the operand of the dynamic_cast refers to the object under
2209 // construction or destruction and the static type of the operand is not a
2210 // pointer to or object of the constructor or destructor’s own class or one
2211 // of its bases, the dynamic_cast results in undefined behavior.
2212 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2213 SrcRecordTy);
2214
2215 if (DCE->isAlwaysNull())
2216 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2217 return T;
2218
2219 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2219, __PRETTY_FUNCTION__))
;
2220
2221 // C++ [expr.dynamic.cast]p4:
2222 // If the value of v is a null pointer value in the pointer case, the result
2223 // is the null pointer value of type T.
2224 bool ShouldNullCheckSrcValue =
2225 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2226 SrcRecordTy);
2227
2228 llvm::BasicBlock *CastNull = nullptr;
2229 llvm::BasicBlock *CastNotNull = nullptr;
2230 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2231
2232 if (ShouldNullCheckSrcValue) {
2233 CastNull = createBasicBlock("dynamic_cast.null");
2234 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2235
2236 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2237 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2238 EmitBlock(CastNotNull);
2239 }
2240
2241 llvm::Value *Value;
2242 if (isDynamicCastToVoid) {
2243 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2244 DestTy);
2245 } else {
2246 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
2247 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2249 DestTy, DestRecordTy, CastEnd);
2250 CastNotNull = Builder.GetInsertBlock();
2251 }
2252
2253 if (ShouldNullCheckSrcValue) {
2254 EmitBranch(CastEnd);
2255
2256 EmitBlock(CastNull);
2257 EmitBranch(CastEnd);
2258 }
2259
2260 EmitBlock(CastEnd);
2261
2262 if (ShouldNullCheckSrcValue) {
2263 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2264 PHI->addIncoming(Value, CastNotNull);
2265 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2266
2267 Value = PHI;
2268 }
2269
2270 return Value;
2271}