Bug Summary

File:clang/lib/CodeGen/CGExprCXX.cpp
Warning:line 1155, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-12-07-102640-14763-1 -x c++ /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp

/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp

1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
41 isa<CXXOperatorCallExpr>(CE))((CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<
CXXOperatorCallExpr>(CE)) ? static_cast<void> (0) : __assert_fail
("CE == nullptr || isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 41, __PRETTY_FUNCTION__))
;
42 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
43 "Trying to emit a member or operator call expr on a static method!")((MD->isInstance() && "Trying to emit a member or operator call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member or operator call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 43, __PRETTY_FUNCTION__))
;
44
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
58
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
72 FPT->getNumParams() == 0 &&((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
73 "No CallExpr specified for function with non-zero number of arguments")((FPT->getNumParams() == 0 && "No CallExpr specified for function with non-zero number of arguments"
) ? static_cast<void> (0) : __assert_fail ("FPT->getNumParams() == 0 && \"No CallExpr specified for function with non-zero number of arguments\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 73, __PRETTY_FUNCTION__))
;
74 }
75 return {required, PrefixSize};
76}
77
78RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE ? CE->getExprLoc() : SourceLocation());
91}
92
93RValue CodeGenFunction::EmitCXXDestructorCall(
94 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97
98 assert(!ThisTy.isNull())((!ThisTy.isNull()) ? static_cast<void> (0) : __assert_fail
("!ThisTy.isNull()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 98, __PRETTY_FUNCTION__))
;
99 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
100 "Pointer/Object mixup")((ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent()
&& "Pointer/Object mixup") ? static_cast<void>
(0) : __assert_fail ("ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && \"Pointer/Object mixup\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 100, __PRETTY_FUNCTION__))
;
101
102 LangAS SrcAS = ThisTy.getAddressSpace();
103 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104 if (SrcAS != DstAS) {
105 QualType DstTy = DtorDecl->getThisType();
106 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108 NewType);
109 }
110
111 CallArgList Args;
112 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113 ImplicitParamTy, CE, Args, nullptr);
114 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115 ReturnValueSlot(), Args);
116}
117
118RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
119 const CXXPseudoDestructorExpr *E) {
120 QualType DestroyedType = E->getDestroyedType();
121 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122 // Automatic Reference Counting:
123 // If the pseudo-expression names a retainable object with weak or
124 // strong lifetime, the object shall be released.
125 Expr *BaseExpr = E->getBase();
126 Address BaseValue = Address::invalid();
127 Qualifiers BaseQuals;
128
129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130 if (E->isArrow()) {
131 BaseValue = EmitPointerWithAlignment(BaseExpr);
132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
133 BaseQuals = PTy->getPointeeType().getQualifiers();
134 } else {
135 LValue BaseLV = EmitLValue(BaseExpr);
136 BaseValue = BaseLV.getAddress();
137 QualType BaseTy = BaseExpr->getType();
138 BaseQuals = BaseTy.getQualifiers();
139 }
140
141 switch (DestroyedType.getObjCLifetime()) {
142 case Qualifiers::OCL_None:
143 case Qualifiers::OCL_ExplicitNone:
144 case Qualifiers::OCL_Autoreleasing:
145 break;
146
147 case Qualifiers::OCL_Strong:
148 EmitARCRelease(Builder.CreateLoad(BaseValue,
149 DestroyedType.isVolatileQualified()),
150 ARCPreciseLifetime);
151 break;
152
153 case Qualifiers::OCL_Weak:
154 EmitARCDestroyWeak(BaseValue);
155 break;
156 }
157 } else {
158 // C++ [expr.pseudo]p1:
159 // The result shall only be used as the operand for the function call
160 // operator (), and the result of such a call has type void. The only
161 // effect is the evaluation of the postfix-expression before the dot or
162 // arrow.
163 EmitIgnoredExpr(E->getBase());
164 }
165
166 return RValue::get(nullptr);
167}
168
169static CXXRecordDecl *getCXXRecord(const Expr *E) {
170 QualType T = E->getType();
171 if (const PointerType *PTy = T->getAs<PointerType>())
172 T = PTy->getPointeeType();
173 const RecordType *Ty = T->castAs<RecordType>();
174 return cast<CXXRecordDecl>(Ty->getDecl());
175}
176
177// Note: This function also emit constructor calls to support a MSVC
178// extensions allowing explicit constructor function call.
179RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
180 ReturnValueSlot ReturnValue) {
181 const Expr *callee = CE->getCallee()->IgnoreParens();
182
183 if (isa<BinaryOperator>(callee))
184 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185
186 const MemberExpr *ME = cast<MemberExpr>(callee);
187 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188
189 if (MD->isStatic()) {
190 // The method is static, emit it as we would a regular call.
191 CGCallee callee =
192 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194 ReturnValue);
195 }
196
197 bool HasQualifier = ME->hasQualifier();
198 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199 bool IsArrow = ME->isArrow();
200 const Expr *Base = ME->getBase();
201
202 return EmitCXXMemberOrOperatorMemberCallExpr(
203 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204}
205
206RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
207 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209 const Expr *Base) {
210 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE))((isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr
>(CE)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211
212 // Compute the object pointer.
213 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214
215 const CXXMethodDecl *DevirtualizedMethod = nullptr;
216 if (CanUseVirtualCall &&
217 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220 assert(DevirtualizedMethod)((DevirtualizedMethod) ? static_cast<void> (0) : __assert_fail
("DevirtualizedMethod", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222 const Expr *Inner = Base->ignoreParenBaseCasts();
223 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
224 MD->getReturnType().getCanonicalType())
225 // If the return types are not the same, this might be a case where more
226 // code needs to run to compensate for it. For example, the derived
227 // method might return a type that inherits form from the return
228 // type of MD and has a prefix.
229 // For now we just avoid devirtualizing these covariant cases.
230 DevirtualizedMethod = nullptr;
231 else if (getCXXRecord(Inner) == DevirtualizedClass)
232 // If the class of the Inner expression is where the dynamic method
233 // is defined, build the this pointer from it.
234 Base = Inner;
235 else if (getCXXRecord(Base) != DevirtualizedClass) {
236 // If the method is defined in a class that is not the best dynamic
237 // one or the one of the full expression, we would have to build
238 // a derived-to-base cast to compute the correct this pointer, but
239 // we don't have support for that yet, so do a virtual call.
240 DevirtualizedMethod = nullptr;
241 }
242 }
243
244 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245 // operator before the LHS.
246 CallArgList RtlArgStorage;
247 CallArgList *RtlArgs = nullptr;
248 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249 if (OCE->isAssignmentOp()) {
250 RtlArgs = &RtlArgStorage;
251 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254 }
255 }
256
257 LValue This;
258 if (IsArrow) {
259 LValueBaseInfo BaseInfo;
260 TBAAAccessInfo TBAAInfo;
261 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263 } else {
264 This = EmitLValue(Base);
265 }
266
267 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269 // constructing a new complete object of type Ctor.
270 assert(!RtlArgs)((!RtlArgs) ? static_cast<void> (0) : __assert_fail ("!RtlArgs"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 270, __PRETTY_FUNCTION__))
;
271 assert(ReturnValue.isNull() && "Constructor shouldn't have return value")((ReturnValue.isNull() && "Constructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Constructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 CallArgList Args;
273 commonEmitCXXMemberOrOperatorCall(
274 *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276
277 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278 /*Delegating=*/false, This.getAddress(), Args,
279 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
280 /*NewPointerIsChecked=*/false);
281 return RValue::get(nullptr);
282 }
283
284 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286 if (!MD->getParent()->mayInsertExtraPadding()) {
287 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
288 // We don't like to generate the trivial copy/move assignment operator
289 // when it isn't necessary; just produce the proper effect here.
290 LValue RHS = isa<CXXOperatorCallExpr>(CE)
291 ? MakeNaturalAlignAddrLValue(
292 (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293 (*(CE->arg_begin() + 1))->getType())
294 : EmitLValue(*CE->arg_begin());
295 EmitAggregateAssign(This, RHS, CE->getType());
296 return RValue::get(This.getPointer());
297 }
298 llvm_unreachable("unknown trivial member function")::llvm::llvm_unreachable_internal("unknown trivial member function"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 298)
;
299 }
300 }
301
302 // Compute the function type we're calling.
303 const CXXMethodDecl *CalleeDecl =
304 DevirtualizedMethod ? DevirtualizedMethod : MD;
305 const CGFunctionInfo *FInfo = nullptr;
306 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308 GlobalDecl(Dtor, Dtor_Complete));
309 else
310 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311
312 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313
314 // C++11 [class.mfct.non-static]p2:
315 // If a non-static member function of a class X is called for an object that
316 // is not of type X, or of a type derived from X, the behavior is undefined.
317 SourceLocation CallLoc;
318 ASTContext &C = getContext();
319 if (CE)
320 CallLoc = CE->getExprLoc();
321
322 SanitizerSet SkippedChecks;
323 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324 auto *IOA = CMCE->getImplicitObjectArgument();
325 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326 if (IsImplicitObjectCXXThis)
327 SkippedChecks.set(SanitizerKind::Alignment, true);
328 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329 SkippedChecks.set(SanitizerKind::Null, true);
330 }
331 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332 C.getRecordType(CalleeDecl->getParent()),
333 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334
335 // C++ [class.virtual]p12:
336 // Explicit qualification with the scope operator (5.1) suppresses the
337 // virtual call mechanism.
338 //
339 // We also don't emit a virtual call if the base expression has a record type
340 // because then we know what the type is.
341 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342
343 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344 assert(CE->arg_begin() == CE->arg_end() &&((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
345 "Destructor shouldn't have explicit parameters")((CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"
) ? static_cast<void> (0) : __assert_fail ("CE->arg_begin() == CE->arg_end() && \"Destructor shouldn't have explicit parameters\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 assert(ReturnValue.isNull() && "Destructor shouldn't have return value")((ReturnValue.isNull() && "Destructor shouldn't have return value"
) ? static_cast<void> (0) : __assert_fail ("ReturnValue.isNull() && \"Destructor shouldn't have return value\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 if (UseVirtualCall) {
348 CGM.getCXXABI().EmitVirtualDestructorCall(
349 *this, Dtor, Dtor_Complete, This.getAddress(),
350 cast<CXXMemberCallExpr>(CE));
351 } else {
352 GlobalDecl GD(Dtor, Dtor_Complete);
353 CGCallee Callee;
354 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356 else if (!DevirtualizedMethod)
357 Callee =
358 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359 else {
360 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361 }
362
363 QualType ThisTy =
364 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365 EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366 /*ImplicitParam=*/nullptr,
367 /*ImplicitParamTy=*/QualType(), nullptr);
368 }
369 return RValue::get(nullptr);
370 }
371
372 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373 // 'CalleeDecl' instead.
374
375 CGCallee Callee;
376 if (UseVirtualCall) {
377 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378 } else {
379 if (SanOpts.has(SanitizerKind::CFINVCall) &&
380 MD->getParent()->isDynamicClass()) {
381 llvm::Value *VTable;
382 const CXXRecordDecl *RD;
383 std::tie(VTable, RD) =
384 CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385 CalleeDecl->getParent());
386 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387 }
388
389 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391 else if (!DevirtualizedMethod)
392 Callee =
393 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394 else {
395 Callee =
396 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397 GlobalDecl(DevirtualizedMethod));
398 }
399 }
400
401 if (MD->isVirtual()) {
402 Address NewThisAddr =
403 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405 This.setAddress(NewThisAddr);
406 }
407
408 return EmitCXXMemberOrOperatorCall(
409 CalleeDecl, Callee, ReturnValue, This.getPointer(),
410 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411}
412
413RValue
414CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
415 ReturnValueSlot ReturnValue) {
416 const BinaryOperator *BO =
417 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418 const Expr *BaseExpr = BO->getLHS();
419 const Expr *MemFnExpr = BO->getRHS();
420
421 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
422 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
423 const auto *RD =
424 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
425
426 // Emit the 'this' pointer.
427 Address This = Address::invalid();
428 if (BO->getOpcode() == BO_PtrMemI)
429 This = EmitPointerWithAlignment(BaseExpr);
430 else
431 This = EmitLValue(BaseExpr).getAddress();
432
433 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
434 QualType(MPT->getClass(), 0));
435
436 // Get the member function pointer.
437 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
438
439 // Ask the ABI to load the callee. Note that This is modified.
440 llvm::Value *ThisPtrForCall = nullptr;
441 CGCallee Callee =
442 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
443 ThisPtrForCall, MemFnPtr, MPT);
444
445 CallArgList Args;
446
447 QualType ThisType =
448 getContext().getPointerType(getContext().getTagDeclType(RD));
449
450 // Push the this ptr.
451 Args.add(RValue::get(ThisPtrForCall), ThisType);
452
453 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
454
455 // And the rest of the call args
456 EmitCallArgs(Args, FPT, E->arguments());
457 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
458 /*PrefixSize=*/0),
459 Callee, ReturnValue, Args, nullptr, E->getExprLoc());
460}
461
462RValue
463CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
464 const CXXMethodDecl *MD,
465 ReturnValueSlot ReturnValue) {
466 assert(MD->isInstance() &&((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
467 "Trying to emit a member call expr on a static method!")((MD->isInstance() && "Trying to emit a member call expr on a static method!"
) ? static_cast<void> (0) : __assert_fail ("MD->isInstance() && \"Trying to emit a member call expr on a static method!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 467, __PRETTY_FUNCTION__))
;
468 return EmitCXXMemberOrOperatorMemberCallExpr(
469 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
470 /*IsArrow=*/false, E->getArg(0));
471}
472
473RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
474 ReturnValueSlot ReturnValue) {
475 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
476}
477
478static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
479 Address DestPtr,
480 const CXXRecordDecl *Base) {
481 if (Base->isEmpty())
482 return;
483
484 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
485
486 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
487 CharUnits NVSize = Layout.getNonVirtualSize();
488
489 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
490 // present, they are initialized by the most derived class before calling the
491 // constructor.
492 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
493 Stores.emplace_back(CharUnits::Zero(), NVSize);
494
495 // Each store is split by the existence of a vbptr.
496 CharUnits VBPtrWidth = CGF.getPointerSize();
497 std::vector<CharUnits> VBPtrOffsets =
498 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
499 for (CharUnits VBPtrOffset : VBPtrOffsets) {
500 // Stop before we hit any virtual base pointers located in virtual bases.
501 if (VBPtrOffset >= NVSize)
502 break;
503 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
504 CharUnits LastStoreOffset = LastStore.first;
505 CharUnits LastStoreSize = LastStore.second;
506
507 CharUnits SplitBeforeOffset = LastStoreOffset;
508 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
509 assert(!SplitBeforeSize.isNegative() && "negative store size!")((!SplitBeforeSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitBeforeSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 509, __PRETTY_FUNCTION__))
;
510 if (!SplitBeforeSize.isZero())
511 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
512
513 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
514 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
515 assert(!SplitAfterSize.isNegative() && "negative store size!")((!SplitAfterSize.isNegative() && "negative store size!"
) ? static_cast<void> (0) : __assert_fail ("!SplitAfterSize.isNegative() && \"negative store size!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 515, __PRETTY_FUNCTION__))
;
516 if (!SplitAfterSize.isZero())
517 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
518 }
519
520 // If the type contains a pointer to data member we can't memset it to zero.
521 // Instead, create a null constant and copy it to the destination.
522 // TODO: there are other patterns besides zero that we can usefully memset,
523 // like -1, which happens to be the pattern used by member-pointers.
524 // TODO: isZeroInitializable can be over-conservative in the case where a
525 // virtual base contains a member pointer.
526 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
527 if (!NullConstantForBase->isNullValue()) {
528 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
529 CGF.CGM.getModule(), NullConstantForBase->getType(),
530 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
531 NullConstantForBase, Twine());
532
533 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
534 DestPtr.getAlignment());
535 NullVariable->setAlignment(Align.getAsAlign());
536
537 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
538
539 // Get and call the appropriate llvm.memcpy overload.
540 for (std::pair<CharUnits, CharUnits> Store : Stores) {
541 CharUnits StoreOffset = Store.first;
542 CharUnits StoreSize = Store.second;
543 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544 CGF.Builder.CreateMemCpy(
545 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
547 StoreSizeVal);
548 }
549
550 // Otherwise, just memset the whole thing to zero. This is legal
551 // because in LLVM, all default initializers (other than the ones we just
552 // handled above) are guaranteed to have a bit pattern of all zeros.
553 } else {
554 for (std::pair<CharUnits, CharUnits> Store : Stores) {
555 CharUnits StoreOffset = Store.first;
556 CharUnits StoreSize = Store.second;
557 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
558 CGF.Builder.CreateMemSet(
559 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
560 CGF.Builder.getInt8(0), StoreSizeVal);
561 }
562 }
563}
564
565void
566CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
567 AggValueSlot Dest) {
568 assert(!Dest.isIgnored() && "Must have a destination!")((!Dest.isIgnored() && "Must have a destination!") ? static_cast
<void> (0) : __assert_fail ("!Dest.isIgnored() && \"Must have a destination!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 568, __PRETTY_FUNCTION__))
;
569 const CXXConstructorDecl *CD = E->getConstructor();
570
571 // If we require zero initialization before (or instead of) calling the
572 // constructor, as can be the case with a non-user-provided default
573 // constructor, emit the zero initialization now, unless destination is
574 // already zeroed.
575 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
576 switch (E->getConstructionKind()) {
577 case CXXConstructExpr::CK_Delegating:
578 case CXXConstructExpr::CK_Complete:
579 EmitNullInitialization(Dest.getAddress(), E->getType());
580 break;
581 case CXXConstructExpr::CK_VirtualBase:
582 case CXXConstructExpr::CK_NonVirtualBase:
583 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
584 CD->getParent());
585 break;
586 }
587 }
588
589 // If this is a call to a trivial default constructor, do nothing.
590 if (CD->isTrivial() && CD->isDefaultConstructor())
591 return;
592
593 // Elide the constructor if we're constructing from a temporary.
594 // The temporary check is required because Sema sets this on NRVO
595 // returns.
596 if (getLangOpts().ElideConstructors && E->isElidable()) {
597 assert(getContext().hasSameUnqualifiedType(E->getType(),((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
598 E->getArg(0)->getType()))((getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(0)->getType())) ? static_cast<void> (0) : __assert_fail
("getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 598, __PRETTY_FUNCTION__))
;
599 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
600 EmitAggExpr(E->getArg(0), Dest);
601 return;
602 }
603 }
604
605 if (const ArrayType *arrayType
606 = getContext().getAsArrayType(E->getType())) {
607 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
608 Dest.isSanitizerChecked());
609 } else {
610 CXXCtorType Type = Ctor_Complete;
611 bool ForVirtualBase = false;
612 bool Delegating = false;
613
614 switch (E->getConstructionKind()) {
615 case CXXConstructExpr::CK_Delegating:
616 // We should be emitting a constructor; GlobalDecl will assert this
617 Type = CurGD.getCtorType();
618 Delegating = true;
619 break;
620
621 case CXXConstructExpr::CK_Complete:
622 Type = Ctor_Complete;
623 break;
624
625 case CXXConstructExpr::CK_VirtualBase:
626 ForVirtualBase = true;
627 LLVM_FALLTHROUGH[[gnu::fallthrough]];
628
629 case CXXConstructExpr::CK_NonVirtualBase:
630 Type = Ctor_Base;
631 }
632
633 // Call the constructor.
634 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
635 }
636}
637
638void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
639 const Expr *Exp) {
640 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
641 Exp = E->getSubExpr();
642 assert(isa<CXXConstructExpr>(Exp) &&((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
643 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr")((isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConstructExpr>(Exp) && \"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 643, __PRETTY_FUNCTION__))
;
644 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
645 const CXXConstructorDecl *CD = E->getConstructor();
646 RunCleanupsScope Scope(*this);
647
648 // If we require zero initialization before (or instead of) calling the
649 // constructor, as can be the case with a non-user-provided default
650 // constructor, emit the zero initialization now.
651 // FIXME. Do I still need this for a copy ctor synthesis?
652 if (E->requiresZeroInitialization())
653 EmitNullInitialization(Dest, E->getType());
654
655 assert(!getContext().getAsConstantArrayType(E->getType())((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
656 && "EmitSynthesizedCXXCopyCtor - Copied-in Array")((!getContext().getAsConstantArrayType(E->getType()) &&
"EmitSynthesizedCXXCopyCtor - Copied-in Array") ? static_cast
<void> (0) : __assert_fail ("!getContext().getAsConstantArrayType(E->getType()) && \"EmitSynthesizedCXXCopyCtor - Copied-in Array\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 656, __PRETTY_FUNCTION__))
;
657 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
658}
659
660static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
661 const CXXNewExpr *E) {
662 if (!E->isArray())
663 return CharUnits::Zero();
664
665 // No cookie is required if the operator new[] being used is the
666 // reserved placement operator new[].
667 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
668 return CharUnits::Zero();
669
670 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
671}
672
673static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
674 const CXXNewExpr *e,
675 unsigned minElements,
676 llvm::Value *&numElements,
677 llvm::Value *&sizeWithoutCookie) {
678 QualType type = e->getAllocatedType();
679
680 if (!e->isArray()) {
4
Taking true branch
681 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
682 sizeWithoutCookie
683 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
684 return sizeWithoutCookie;
5
Returning without writing to 'numElements'
685 }
686
687 // The width of size_t.
688 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
689
690 // Figure out the cookie size.
691 llvm::APInt cookieSize(sizeWidth,
692 CalculateCookiePadding(CGF, e).getQuantity());
693
694 // Emit the array size expression.
695 // We multiply the size of all dimensions for NumElements.
696 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
697 numElements =
698 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
699 if (!numElements)
700 numElements = CGF.EmitScalarExpr(*e->getArraySize());
701 assert(isa<llvm::IntegerType>(numElements->getType()))((isa<llvm::IntegerType>(numElements->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(numElements->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 701, __PRETTY_FUNCTION__))
;
702
703 // The number of elements can be have an arbitrary integer type;
704 // essentially, we need to multiply it by a constant factor, add a
705 // cookie size, and verify that the result is representable as a
706 // size_t. That's just a gloss, though, and it's wrong in one
707 // important way: if the count is negative, it's an error even if
708 // the cookie size would bring the total size >= 0.
709 bool isSigned
710 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
711 llvm::IntegerType *numElementsType
712 = cast<llvm::IntegerType>(numElements->getType());
713 unsigned numElementsWidth = numElementsType->getBitWidth();
714
715 // Compute the constant factor.
716 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
717 while (const ConstantArrayType *CAT
718 = CGF.getContext().getAsConstantArrayType(type)) {
719 type = CAT->getElementType();
720 arraySizeMultiplier *= CAT->getSize();
721 }
722
723 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
724 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
725 typeSizeMultiplier *= arraySizeMultiplier;
726
727 // This will be a size_t.
728 llvm::Value *size;
729
730 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
731 // Don't bloat the -O0 code.
732 if (llvm::ConstantInt *numElementsC =
733 dyn_cast<llvm::ConstantInt>(numElements)) {
734 const llvm::APInt &count = numElementsC->getValue();
735
736 bool hasAnyOverflow = false;
737
738 // If 'count' was a negative number, it's an overflow.
739 if (isSigned && count.isNegative())
740 hasAnyOverflow = true;
741
742 // We want to do all this arithmetic in size_t. If numElements is
743 // wider than that, check whether it's already too big, and if so,
744 // overflow.
745 else if (numElementsWidth > sizeWidth &&
746 numElementsWidth - sizeWidth > count.countLeadingZeros())
747 hasAnyOverflow = true;
748
749 // Okay, compute a count at the right width.
750 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
751
752 // If there is a brace-initializer, we cannot allocate fewer elements than
753 // there are initializers. If we do, that's treated like an overflow.
754 if (adjustedCount.ult(minElements))
755 hasAnyOverflow = true;
756
757 // Scale numElements by that. This might overflow, but we don't
758 // care because it only overflows if allocationSize does, too, and
759 // if that overflows then we shouldn't use this.
760 numElements = llvm::ConstantInt::get(CGF.SizeTy,
761 adjustedCount * arraySizeMultiplier);
762
763 // Compute the size before cookie, and track whether it overflowed.
764 bool overflow;
765 llvm::APInt allocationSize
766 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
767 hasAnyOverflow |= overflow;
768
769 // Add in the cookie, and check whether it's overflowed.
770 if (cookieSize != 0) {
771 // Save the current size without a cookie. This shouldn't be
772 // used if there was overflow.
773 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
774
775 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
776 hasAnyOverflow |= overflow;
777 }
778
779 // On overflow, produce a -1 so operator new will fail.
780 if (hasAnyOverflow) {
781 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
782 } else {
783 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
784 }
785
786 // Otherwise, we might need to use the overflow intrinsics.
787 } else {
788 // There are up to five conditions we need to test for:
789 // 1) if isSigned, we need to check whether numElements is negative;
790 // 2) if numElementsWidth > sizeWidth, we need to check whether
791 // numElements is larger than something representable in size_t;
792 // 3) if minElements > 0, we need to check whether numElements is smaller
793 // than that.
794 // 4) we need to compute
795 // sizeWithoutCookie := numElements * typeSizeMultiplier
796 // and check whether it overflows; and
797 // 5) if we need a cookie, we need to compute
798 // size := sizeWithoutCookie + cookieSize
799 // and check whether it overflows.
800
801 llvm::Value *hasOverflow = nullptr;
802
803 // If numElementsWidth > sizeWidth, then one way or another, we're
804 // going to have to do a comparison for (2), and this happens to
805 // take care of (1), too.
806 if (numElementsWidth > sizeWidth) {
807 llvm::APInt threshold(numElementsWidth, 1);
808 threshold <<= sizeWidth;
809
810 llvm::Value *thresholdV
811 = llvm::ConstantInt::get(numElementsType, threshold);
812
813 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
814 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
815
816 // Otherwise, if we're signed, we want to sext up to size_t.
817 } else if (isSigned) {
818 if (numElementsWidth < sizeWidth)
819 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
820
821 // If there's a non-1 type size multiplier, then we can do the
822 // signedness check at the same time as we do the multiply
823 // because a negative number times anything will cause an
824 // unsigned overflow. Otherwise, we have to do it here. But at least
825 // in this case, we can subsume the >= minElements check.
826 if (typeSizeMultiplier == 1)
827 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
828 llvm::ConstantInt::get(CGF.SizeTy, minElements));
829
830 // Otherwise, zext up to size_t if necessary.
831 } else if (numElementsWidth < sizeWidth) {
832 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
833 }
834
835 assert(numElements->getType() == CGF.SizeTy)((numElements->getType() == CGF.SizeTy) ? static_cast<void
> (0) : __assert_fail ("numElements->getType() == CGF.SizeTy"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 835, __PRETTY_FUNCTION__))
;
836
837 if (minElements) {
838 // Don't allow allocation of fewer elements than we have initializers.
839 if (!hasOverflow) {
840 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
841 llvm::ConstantInt::get(CGF.SizeTy, minElements));
842 } else if (numElementsWidth > sizeWidth) {
843 // The other existing overflow subsumes this check.
844 // We do an unsigned comparison, since any signed value < -1 is
845 // taken care of either above or below.
846 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
847 CGF.Builder.CreateICmpULT(numElements,
848 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
849 }
850 }
851
852 size = numElements;
853
854 // Multiply by the type size if necessary. This multiplier
855 // includes all the factors for nested arrays.
856 //
857 // This step also causes numElements to be scaled up by the
858 // nested-array factor if necessary. Overflow on this computation
859 // can be ignored because the result shouldn't be used if
860 // allocation fails.
861 if (typeSizeMultiplier != 1) {
862 llvm::Function *umul_with_overflow
863 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
864
865 llvm::Value *tsmV =
866 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
867 llvm::Value *result =
868 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
869
870 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
871 if (hasOverflow)
872 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
873 else
874 hasOverflow = overflowed;
875
876 size = CGF.Builder.CreateExtractValue(result, 0);
877
878 // Also scale up numElements by the array size multiplier.
879 if (arraySizeMultiplier != 1) {
880 // If the base element type size is 1, then we can re-use the
881 // multiply we just did.
882 if (typeSize.isOne()) {
883 assert(arraySizeMultiplier == typeSizeMultiplier)((arraySizeMultiplier == typeSizeMultiplier) ? static_cast<
void> (0) : __assert_fail ("arraySizeMultiplier == typeSizeMultiplier"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 883, __PRETTY_FUNCTION__))
;
884 numElements = size;
885
886 // Otherwise we need a separate multiply.
887 } else {
888 llvm::Value *asmV =
889 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
890 numElements = CGF.Builder.CreateMul(numElements, asmV);
891 }
892 }
893 } else {
894 // numElements doesn't need to be scaled.
895 assert(arraySizeMultiplier == 1)((arraySizeMultiplier == 1) ? static_cast<void> (0) : __assert_fail
("arraySizeMultiplier == 1", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 895, __PRETTY_FUNCTION__))
;
896 }
897
898 // Add in the cookie size if necessary.
899 if (cookieSize != 0) {
900 sizeWithoutCookie = size;
901
902 llvm::Function *uadd_with_overflow
903 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
904
905 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
906 llvm::Value *result =
907 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
908
909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
910 if (hasOverflow)
911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
912 else
913 hasOverflow = overflowed;
914
915 size = CGF.Builder.CreateExtractValue(result, 0);
916 }
917
918 // If we had any possibility of dynamic overflow, make a select to
919 // overwrite 'size' with an all-ones value, which should cause
920 // operator new to throw.
921 if (hasOverflow)
922 size = CGF.Builder.CreateSelect(hasOverflow,
923 llvm::Constant::getAllOnesValue(CGF.SizeTy),
924 size);
925 }
926
927 if (cookieSize == 0)
928 sizeWithoutCookie = size;
929 else
930 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?")((sizeWithoutCookie && "didn't set sizeWithoutCookie?"
) ? static_cast<void> (0) : __assert_fail ("sizeWithoutCookie && \"didn't set sizeWithoutCookie?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 930, __PRETTY_FUNCTION__))
;
931
932 return size;
933}
934
935static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
936 QualType AllocType, Address NewPtr,
937 AggValueSlot::Overlap_t MayOverlap) {
938 // FIXME: Refactor with EmitExprAsInit.
939 switch (CGF.getEvaluationKind(AllocType)) {
940 case TEK_Scalar:
941 CGF.EmitScalarInit(Init, nullptr,
942 CGF.MakeAddrLValue(NewPtr, AllocType), false);
943 return;
944 case TEK_Complex:
945 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
946 /*isInit*/ true);
947 return;
948 case TEK_Aggregate: {
949 AggValueSlot Slot
950 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
951 AggValueSlot::IsDestructed,
952 AggValueSlot::DoesNotNeedGCBarriers,
953 AggValueSlot::IsNotAliased,
954 MayOverlap, AggValueSlot::IsNotZeroed,
955 AggValueSlot::IsSanitizerChecked);
956 CGF.EmitAggExpr(Init, Slot);
957 return;
958 }
959 }
960 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 960)
;
961}
962
963void CodeGenFunction::EmitNewArrayInitializer(
964 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
965 Address BeginPtr, llvm::Value *NumElements,
966 llvm::Value *AllocSizeWithoutCookie) {
967 // If we have a type with trivial initialization and no initializer,
968 // there's nothing to do.
969 if (!E->hasInitializer())
25
Calling 'CXXNewExpr::hasInitializer'
28
Returning from 'CXXNewExpr::hasInitializer'
29
Taking false branch
970 return;
971
972 Address CurPtr = BeginPtr;
973
974 unsigned InitListElements = 0;
975
976 const Expr *Init = E->getInitializer();
977 Address EndOfInit = Address::invalid();
978 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
979 EHScopeStack::stable_iterator Cleanup;
980 llvm::Instruction *CleanupDominator = nullptr;
981
982 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
983 CharUnits ElementAlign =
984 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
985
986 // Attempt to perform zero-initialization using memset.
987 auto TryMemsetInitialization = [&]() -> bool {
988 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
989 // we can initialize with a memset to -1.
990 if (!CGM.getTypes().isZeroInitializable(ElementType))
991 return false;
992
993 // Optimization: since zero initialization will just set the memory
994 // to all zeroes, generate a single memset to do it in one shot.
995
996 // Subtract out the size of any elements we've already initialized.
997 auto *RemainingSize = AllocSizeWithoutCookie;
998 if (InitListElements) {
999 // We know this can't overflow; we check this when doing the allocation.
1000 auto *InitializedSize = llvm::ConstantInt::get(
1001 RemainingSize->getType(),
1002 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1003 InitListElements);
1004 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1005 }
1006
1007 // Create the memset.
1008 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1009 return true;
1010 };
1011
1012 // If the initializer is an initializer list, first do the explicit elements.
1013 if (const InitListExpr *ILE
30.1
'ILE' is non-null
30.1
'ILE' is non-null
= dyn_cast<InitListExpr>(Init)) {
30
Assuming 'Init' is a 'InitListExpr'
31
Taking true branch
1014 // Initializing from a (braced) string literal is a special case; the init
1015 // list element does not initialize a (single) array element.
1016 if (ILE->isStringLiteralInit()) {
32
Assuming the condition is false
33
Taking false branch
1017 // Initialize the initial portion of length equal to that of the string
1018 // literal. The allocation must be for at least this much; we emitted a
1019 // check for that earlier.
1020 AggValueSlot Slot =
1021 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1022 AggValueSlot::IsDestructed,
1023 AggValueSlot::DoesNotNeedGCBarriers,
1024 AggValueSlot::IsNotAliased,
1025 AggValueSlot::DoesNotOverlap,
1026 AggValueSlot::IsNotZeroed,
1027 AggValueSlot::IsSanitizerChecked);
1028 EmitAggExpr(ILE->getInit(0), Slot);
1029
1030 // Move past these elements.
1031 InitListElements =
1032 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1033 ->getSize().getZExtValue();
1034 CurPtr =
1035 Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1036 Builder.getSize(InitListElements),
1037 "string.init.end"),
1038 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1039 ElementSize));
1040
1041 // Zero out the rest, if any remain.
1042 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1043 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1044 bool OK = TryMemsetInitialization();
1045 (void)OK;
1046 assert(OK && "couldn't memset character type?")((OK && "couldn't memset character type?") ? static_cast
<void> (0) : __assert_fail ("OK && \"couldn't memset character type?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1046, __PRETTY_FUNCTION__))
;
1047 }
1048 return;
1049 }
1050
1051 InitListElements = ILE->getNumInits();
1052
1053 // If this is a multi-dimensional array new, we will initialize multiple
1054 // elements with each init list element.
1055 QualType AllocType = E->getAllocatedType();
1056 if (const ConstantArrayType *CAT
34.1
'CAT' is null
34.1
'CAT' is null
= dyn_cast_or_null<ConstantArrayType>(
34
Assuming null pointer is passed into cast
35
Taking false branch
1057 AllocType->getAsArrayTypeUnsafe())) {
1058 ElementTy = ConvertTypeForMem(AllocType);
1059 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1060 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1061 }
1062
1063 // Enter a partial-destruction Cleanup if necessary.
1064 if (needsEHCleanup(DtorKind)) {
36
Taking false branch
1065 // In principle we could tell the Cleanup where we are more
1066 // directly, but the control flow can get so varied here that it
1067 // would actually be quite complex. Therefore we go through an
1068 // alloca.
1069 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1070 "array.init.end");
1071 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1072 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1073 ElementType, ElementAlign,
1074 getDestroyer(DtorKind));
1075 Cleanup = EHStack.stable_begin();
1076 }
1077
1078 CharUnits StartAlign = CurPtr.getAlignment();
1079 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
37
Assuming 'i' is equal to 'e'
38
Loop condition is false. Execution continues on line 1101
1080 // Tell the cleanup that it needs to destroy up to this
1081 // element. TODO: some of these stores can be trivially
1082 // observed to be unnecessary.
1083 if (EndOfInit.isValid()) {
1084 auto FinishedPtr =
1085 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1086 Builder.CreateStore(FinishedPtr, EndOfInit);
1087 }
1088 // FIXME: If the last initializer is an incomplete initializer list for
1089 // an array, and we have an array filler, we can fold together the two
1090 // initialization loops.
1091 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1092 ILE->getInit(i)->getType(), CurPtr,
1093 AggValueSlot::DoesNotOverlap);
1094 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1095 Builder.getSize(1),
1096 "array.exp.next"),
1097 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1098 }
1099
1100 // The remaining elements are filled with the array filler expression.
1101 Init = ILE->getArrayFiller();
1102
1103 // Extract the initializer for the individual array elements by pulling
1104 // out the array filler from all the nested initializer lists. This avoids
1105 // generating a nested loop for the initialization.
1106 while (Init && Init->getType()->isConstantArrayType()) {
39
Assuming 'Init' is non-null
40
Loop condition is false. Execution continues on line 1115
1107 auto *SubILE = dyn_cast<InitListExpr>(Init);
1108 if (!SubILE)
1109 break;
1110 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?")((SubILE->getNumInits() == 0 && "explicit inits in array filler?"
) ? static_cast<void> (0) : __assert_fail ("SubILE->getNumInits() == 0 && \"explicit inits in array filler?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111 Init = SubILE->getArrayFiller();
1112 }
1113
1114 // Switch back to initializing one base element at a time.
1115 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1116 }
1117
1118 // If all elements have already been initialized, skip any further
1119 // initialization.
1120 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1121 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
41
Assuming 'ConstNum' is null
1122 // If there was a Cleanup, deactivate it.
1123 if (CleanupDominator)
1124 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1125 return;
1126 }
1127
1128 assert
41.1
'Init' is non-null
41.1
'Init' is non-null
(Init && "have trailing elements to initialize but no initializer")((Init && "have trailing elements to initialize but no initializer"
) ? static_cast<void> (0) : __assert_fail ("Init && \"have trailing elements to initialize but no initializer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1128, __PRETTY_FUNCTION__))
;
42
'?' condition is true
1129
1130 // If this is a constructor call, try to optimize it out, and failing that
1131 // emit a single loop to initialize all remaining elements.
1132 if (const CXXConstructExpr *CCE
43.1
'CCE' is non-null
43.1
'CCE' is non-null
= dyn_cast<CXXConstructExpr>(Init)) {
43
Assuming 'Init' is a 'CXXConstructExpr'
44
Taking true branch
1133 CXXConstructorDecl *Ctor = CCE->getConstructor();
1134 if (Ctor->isTrivial()) {
45
Assuming the condition is false
46
Taking false branch
1135 // If new expression did not specify value-initialization, then there
1136 // is no initialization.
1137 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1138 return;
1139
1140 if (TryMemsetInitialization())
1141 return;
1142 }
1143
1144 // Store the new Cleanup position for irregular Cleanups.
1145 //
1146 // FIXME: Share this cleanup with the constructor call emission rather than
1147 // having it create a cleanup of its own.
1148 if (EndOfInit.isValid())
47
Taking false branch
1149 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1150
1151 // Emit a constructor call loop to initialize the remaining elements.
1152 if (InitListElements)
48
Assuming 'InitListElements' is not equal to 0
49
Taking true branch
1153 NumElements = Builder.CreateSub(
1154 NumElements,
1155 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
50
Called C++ object pointer is null
1156 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1157 /*NewPointerIsChecked*/true,
1158 CCE->requiresZeroInitialization());
1159 return;
1160 }
1161
1162 // If this is value-initialization, we can usually use memset.
1163 ImplicitValueInitExpr IVIE(ElementType);
1164 if (isa<ImplicitValueInitExpr>(Init)) {
1165 if (TryMemsetInitialization())
1166 return;
1167
1168 // Switch to an ImplicitValueInitExpr for the element type. This handles
1169 // only one case: multidimensional array new of pointers to members. In
1170 // all other cases, we already have an initializer for the array element.
1171 Init = &IVIE;
1172 }
1173
1174 // At this point we should have found an initializer for the individual
1175 // elements of the array.
1176 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
1177 "got wrong type of element to initialize")((getContext().hasSameUnqualifiedType(ElementType, Init->getType
()) && "got wrong type of element to initialize") ? static_cast
<void> (0) : __assert_fail ("getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && \"got wrong type of element to initialize\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1177, __PRETTY_FUNCTION__))
;
1178
1179 // If we have an empty initializer list, we can usually use memset.
1180 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1181 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1182 return;
1183
1184 // If we have a struct whose every field is value-initialized, we can
1185 // usually use memset.
1186 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1187 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1188 if (RType->getDecl()->isStruct()) {
1189 unsigned NumElements = 0;
1190 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1191 NumElements = CXXRD->getNumBases();
1192 for (auto *Field : RType->getDecl()->fields())
1193 if (!Field->isUnnamedBitfield())
1194 ++NumElements;
1195 // FIXME: Recurse into nested InitListExprs.
1196 if (ILE->getNumInits() == NumElements)
1197 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1198 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1199 --NumElements;
1200 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1201 return;
1202 }
1203 }
1204 }
1205
1206 // Create the loop blocks.
1207 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1208 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1209 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1210
1211 // Find the end of the array, hoisted out of the loop.
1212 llvm::Value *EndPtr =
1213 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1214
1215 // If the number of elements isn't constant, we have to now check if there is
1216 // anything left to initialize.
1217 if (!ConstNum) {
1218 llvm::Value *IsEmpty =
1219 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1220 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1221 }
1222
1223 // Enter the loop.
1224 EmitBlock(LoopBB);
1225
1226 // Set up the current-element phi.
1227 llvm::PHINode *CurPtrPhi =
1228 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1229 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1230
1231 CurPtr = Address(CurPtrPhi, ElementAlign);
1232
1233 // Store the new Cleanup position for irregular Cleanups.
1234 if (EndOfInit.isValid())
1235 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1236
1237 // Enter a partial-destruction Cleanup if necessary.
1238 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1239 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1240 ElementType, ElementAlign,
1241 getDestroyer(DtorKind));
1242 Cleanup = EHStack.stable_begin();
1243 CleanupDominator = Builder.CreateUnreachable();
1244 }
1245
1246 // Emit the initializer into this element.
1247 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1248 AggValueSlot::DoesNotOverlap);
1249
1250 // Leave the Cleanup if we entered one.
1251 if (CleanupDominator) {
1252 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1253 CleanupDominator->eraseFromParent();
1254 }
1255
1256 // Advance to the next element by adjusting the pointer type as necessary.
1257 llvm::Value *NextPtr =
1258 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1259 "array.next");
1260
1261 // Check whether we've gotten to the end of the array and, if so,
1262 // exit the loop.
1263 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1264 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1265 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1266
1267 EmitBlock(ContBB);
1268}
1269
1270static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1271 QualType ElementType, llvm::Type *ElementTy,
1272 Address NewPtr, llvm::Value *NumElements,
1273 llvm::Value *AllocSizeWithoutCookie) {
1274 ApplyDebugLocation DL(CGF, E);
1275 if (E->isArray())
22
Taking true branch
1276 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
23
Passing null pointer value via 5th parameter 'NumElements'
24
Calling 'CodeGenFunction::EmitNewArrayInitializer'
1277 AllocSizeWithoutCookie);
1278 else if (const Expr *Init = E->getInitializer())
1279 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1280 AggValueSlot::DoesNotOverlap);
1281}
1282
1283/// Emit a call to an operator new or operator delete function, as implicitly
1284/// created by new-expressions and delete-expressions.
1285static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1286 const FunctionDecl *CalleeDecl,
1287 const FunctionProtoType *CalleeType,
1288 const CallArgList &Args) {
1289 llvm::CallBase *CallOrInvoke;
1290 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1291 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1292 RValue RV =
1293 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1294 Args, CalleeType, /*ChainCall=*/false),
1295 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1296
1297 /// C++1y [expr.new]p10:
1298 /// [In a new-expression,] an implementation is allowed to omit a call
1299 /// to a replaceable global allocation function.
1300 ///
1301 /// We model such elidable calls with the 'builtin' attribute.
1302 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1303 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1304 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1305 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1306 llvm::Attribute::Builtin);
1307 }
1308
1309 return RV;
1310}
1311
1312RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1313 const CallExpr *TheCall,
1314 bool IsDelete) {
1315 CallArgList Args;
1316 EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1317 // Find the allocation or deallocation function that we're calling.
1318 ASTContext &Ctx = getContext();
1319 DeclarationName Name = Ctx.DeclarationNames
1320 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1321
1322 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1323 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1324 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1325 return EmitNewDeleteCall(*this, FD, Type, Args);
1326 llvm_unreachable("predeclared global operator new/delete is missing")::llvm::llvm_unreachable_internal("predeclared global operator new/delete is missing"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1326)
;
1327}
1328
1329namespace {
1330/// The parameters to pass to a usual operator delete.
1331struct UsualDeleteParams {
1332 bool DestroyingDelete = false;
1333 bool Size = false;
1334 bool Alignment = false;
1335};
1336}
1337
1338static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1339 UsualDeleteParams Params;
1340
1341 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1342 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1343
1344 // The first argument is always a void*.
1345 ++AI;
1346
1347 // The next parameter may be a std::destroying_delete_t.
1348 if (FD->isDestroyingOperatorDelete()) {
1349 Params.DestroyingDelete = true;
1350 assert(AI != AE)((AI != AE) ? static_cast<void> (0) : __assert_fail ("AI != AE"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1350, __PRETTY_FUNCTION__))
;
1351 ++AI;
1352 }
1353
1354 // Figure out what other parameters we should be implicitly passing.
1355 if (AI != AE && (*AI)->isIntegerType()) {
1356 Params.Size = true;
1357 ++AI;
1358 }
1359
1360 if (AI != AE && (*AI)->isAlignValT()) {
1361 Params.Alignment = true;
1362 ++AI;
1363 }
1364
1365 assert(AI == AE && "unexpected usual deallocation function parameter")((AI == AE && "unexpected usual deallocation function parameter"
) ? static_cast<void> (0) : __assert_fail ("AI == AE && \"unexpected usual deallocation function parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1365, __PRETTY_FUNCTION__))
;
1366 return Params;
1367}
1368
1369namespace {
1370 /// A cleanup to call the given 'operator delete' function upon abnormal
1371 /// exit from a new expression. Templated on a traits type that deals with
1372 /// ensuring that the arguments dominate the cleanup if necessary.
1373 template<typename Traits>
1374 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1375 /// Type used to hold llvm::Value*s.
1376 typedef typename Traits::ValueTy ValueTy;
1377 /// Type used to hold RValues.
1378 typedef typename Traits::RValueTy RValueTy;
1379 struct PlacementArg {
1380 RValueTy ArgValue;
1381 QualType ArgType;
1382 };
1383
1384 unsigned NumPlacementArgs : 31;
1385 unsigned PassAlignmentToPlacementDelete : 1;
1386 const FunctionDecl *OperatorDelete;
1387 ValueTy Ptr;
1388 ValueTy AllocSize;
1389 CharUnits AllocAlign;
1390
1391 PlacementArg *getPlacementArgs() {
1392 return reinterpret_cast<PlacementArg *>(this + 1);
1393 }
1394
1395 public:
1396 static size_t getExtraSize(size_t NumPlacementArgs) {
1397 return NumPlacementArgs * sizeof(PlacementArg);
1398 }
1399
1400 CallDeleteDuringNew(size_t NumPlacementArgs,
1401 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1402 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1403 CharUnits AllocAlign)
1404 : NumPlacementArgs(NumPlacementArgs),
1405 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1406 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1407 AllocAlign(AllocAlign) {}
1408
1409 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1410 assert(I < NumPlacementArgs && "index out of range")((I < NumPlacementArgs && "index out of range") ? static_cast
<void> (0) : __assert_fail ("I < NumPlacementArgs && \"index out of range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1410, __PRETTY_FUNCTION__))
;
1411 getPlacementArgs()[I] = {Arg, Type};
1412 }
1413
1414 void Emit(CodeGenFunction &CGF, Flags flags) override {
1415 const FunctionProtoType *FPT =
1416 OperatorDelete->getType()->getAs<FunctionProtoType>();
1417 CallArgList DeleteArgs;
1418
1419 // The first argument is always a void* (or C* for a destroying operator
1420 // delete for class type C).
1421 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1422
1423 // Figure out what other parameters we should be implicitly passing.
1424 UsualDeleteParams Params;
1425 if (NumPlacementArgs) {
1426 // A placement deallocation function is implicitly passed an alignment
1427 // if the placement allocation function was, but is never passed a size.
1428 Params.Alignment = PassAlignmentToPlacementDelete;
1429 } else {
1430 // For a non-placement new-expression, 'operator delete' can take a
1431 // size and/or an alignment if it has the right parameters.
1432 Params = getUsualDeleteParams(OperatorDelete);
1433 }
1434
1435 assert(!Params.DestroyingDelete &&((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
1436 "should not call destroying delete in a new-expression")((!Params.DestroyingDelete && "should not call destroying delete in a new-expression"
) ? static_cast<void> (0) : __assert_fail ("!Params.DestroyingDelete && \"should not call destroying delete in a new-expression\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1436, __PRETTY_FUNCTION__))
;
1437
1438 // The second argument can be a std::size_t (for non-placement delete).
1439 if (Params.Size)
1440 DeleteArgs.add(Traits::get(CGF, AllocSize),
1441 CGF.getContext().getSizeType());
1442
1443 // The next (second or third) argument can be a std::align_val_t, which
1444 // is an enum whose underlying type is std::size_t.
1445 // FIXME: Use the right type as the parameter type. Note that in a call
1446 // to operator delete(size_t, ...), we may not have it available.
1447 if (Params.Alignment)
1448 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1449 CGF.SizeTy, AllocAlign.getQuantity())),
1450 CGF.getContext().getSizeType());
1451
1452 // Pass the rest of the arguments, which must match exactly.
1453 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1454 auto Arg = getPlacementArgs()[I];
1455 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1456 }
1457
1458 // Call 'operator delete'.
1459 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1460 }
1461 };
1462}
1463
1464/// Enter a cleanup to call 'operator delete' if the initializer in a
1465/// new-expression throws.
1466static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1467 const CXXNewExpr *E,
1468 Address NewPtr,
1469 llvm::Value *AllocSize,
1470 CharUnits AllocAlign,
1471 const CallArgList &NewArgs) {
1472 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1473
1474 // If we're not inside a conditional branch, then the cleanup will
1475 // dominate and we can do the easier (and more efficient) thing.
1476 if (!CGF.isInConditionalBranch()) {
1477 struct DirectCleanupTraits {
1478 typedef llvm::Value *ValueTy;
1479 typedef RValue RValueTy;
1480 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1481 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1482 };
1483
1484 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1485
1486 DirectCleanup *Cleanup = CGF.EHStack
1487 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1488 E->getNumPlacementArgs(),
1489 E->getOperatorDelete(),
1490 NewPtr.getPointer(),
1491 AllocSize,
1492 E->passAlignment(),
1493 AllocAlign);
1494 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1495 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1496 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1497 }
1498
1499 return;
1500 }
1501
1502 // Otherwise, we need to save all this stuff.
1503 DominatingValue<RValue>::saved_type SavedNewPtr =
1504 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1505 DominatingValue<RValue>::saved_type SavedAllocSize =
1506 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1507
1508 struct ConditionalCleanupTraits {
1509 typedef DominatingValue<RValue>::saved_type ValueTy;
1510 typedef DominatingValue<RValue>::saved_type RValueTy;
1511 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1512 return V.restore(CGF);
1513 }
1514 };
1515 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1516
1517 ConditionalCleanup *Cleanup = CGF.EHStack
1518 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1519 E->getNumPlacementArgs(),
1520 E->getOperatorDelete(),
1521 SavedNewPtr,
1522 SavedAllocSize,
1523 E->passAlignment(),
1524 AllocAlign);
1525 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1526 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1527 Cleanup->setPlacementArg(
1528 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1529 }
1530
1531 CGF.initFullExprCleanup();
1532}
1533
1534llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1535 // The element type being allocated.
1536 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1537
1538 // 1. Build a call to the allocation function.
1539 FunctionDecl *allocator = E->getOperatorNew();
1540
1541 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1542 unsigned minElements = 0;
1543 if (E->isArray() && E->hasInitializer()) {
1
Assuming the condition is false
1544 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1545 if (ILE && ILE->isStringLiteralInit())
1546 minElements =
1547 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1548 ->getSize().getZExtValue();
1549 else if (ILE)
1550 minElements = ILE->getNumInits();
1551 }
1552
1553 llvm::Value *numElements = nullptr;
2
'numElements' initialized to a null pointer value
1554 llvm::Value *allocSizeWithoutCookie = nullptr;
1555 llvm::Value *allocSize =
1556 EmitCXXNewAllocSize(*this, E, minElements, numElements,
3
Calling 'EmitCXXNewAllocSize'
6
Returning from 'EmitCXXNewAllocSize'
1557 allocSizeWithoutCookie);
1558 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1559
1560 // Emit the allocation call. If the allocator is a global placement
1561 // operator, just "inline" it directly.
1562 Address allocation = Address::invalid();
1563 CallArgList allocatorArgs;
1564 if (allocator->isReservedGlobalPlacementOperator()) {
7
Assuming the condition is false
8
Taking false branch
1565 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566 const Expr *arg = *E->placement_arguments().begin();
1567
1568 LValueBaseInfo BaseInfo;
1569 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1570
1571 // The pointer expression will, in many cases, be an opaque void*.
1572 // In these cases, discard the computed alignment and use the
1573 // formal alignment of the allocated type.
1574 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1575 allocation = Address(allocation.getPointer(), allocAlign);
1576
1577 // Set up allocatorArgs for the call to operator delete if it's not
1578 // the reserved global operator.
1579 if (E->getOperatorDelete() &&
1580 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1581 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1582 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1583 }
1584
1585 } else {
1586 const FunctionProtoType *allocatorType =
1587 allocator->getType()->castAs<FunctionProtoType>();
9
The object is a 'FunctionProtoType'
1588 unsigned ParamsToSkip = 0;
1589
1590 // The allocation size is the first argument.
1591 QualType sizeType = getContext().getSizeType();
1592 allocatorArgs.add(RValue::get(allocSize), sizeType);
1593 ++ParamsToSkip;
1594
1595 if (allocSize
9.1
'allocSize' is equal to 'allocSizeWithoutCookie'
9.1
'allocSize' is equal to 'allocSizeWithoutCookie'
!= allocSizeWithoutCookie) {
10
Taking false branch
1596 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1597 allocAlign = std::max(allocAlign, cookieAlign);
1598 }
1599
1600 // The allocation alignment may be passed as the second argument.
1601 if (E->passAlignment()) {
11
Assuming the condition is false
12
Taking false branch
1602 QualType AlignValT = sizeType;
1603 if (allocatorType->getNumParams() > 1) {
1604 AlignValT = allocatorType->getParamType(1);
1605 assert(getContext().hasSameUnqualifiedType(((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1606 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1607 sizeType) &&((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
1608 "wrong type for alignment parameter")((getContext().hasSameUnqualifiedType( AlignValT->castAs<
EnumType>()->getDecl()->getIntegerType(), sizeType) &&
"wrong type for alignment parameter") ? static_cast<void>
(0) : __assert_fail ("getContext().hasSameUnqualifiedType( AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), sizeType) && \"wrong type for alignment parameter\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1608, __PRETTY_FUNCTION__))
;
1609 ++ParamsToSkip;
1610 } else {
1611 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1612 assert(allocator->isVariadic() && "can't pass alignment to allocator")((allocator->isVariadic() && "can't pass alignment to allocator"
) ? static_cast<void> (0) : __assert_fail ("allocator->isVariadic() && \"can't pass alignment to allocator\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1612, __PRETTY_FUNCTION__))
;
1613 }
1614 allocatorArgs.add(
1615 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1616 AlignValT);
1617 }
1618
1619 // FIXME: Why do we not pass a CalleeDecl here?
1620 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1621 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1622
1623 RValue RV =
1624 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1625
1626 // If this was a call to a global replaceable allocation function that does
1627 // not take an alignment argument, the allocator is known to produce
1628 // storage that's suitably aligned for any object that fits, up to a known
1629 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1630 CharUnits allocationAlign = allocAlign;
1631 if (!E->passAlignment() &&
13
Assuming the condition is false
1632 allocator->isReplaceableGlobalAllocationFunction()) {
1633 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1634 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1635 allocationAlign = std::max(
1636 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1637 }
1638
1639 allocation = Address(RV.getScalarVal(), allocationAlign);
1640 }
1641
1642 // Emit a null check on the allocation result if the allocation
1643 // function is allowed to return null (because it has a non-throwing
1644 // exception spec or is the reserved placement new) and we have an
1645 // interesting initializer will be running sanitizers on the initialization.
1646 bool nullCheck = E->shouldNullCheckAllocation() &&
14
Assuming the condition is false
1647 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1648 sanitizePerformTypeCheck());
1649
1650 llvm::BasicBlock *nullCheckBB = nullptr;
1651 llvm::BasicBlock *contBB = nullptr;
1652
1653 // The null-check means that the initializer is conditionally
1654 // evaluated.
1655 ConditionalEvaluation conditional(*this);
1656
1657 if (nullCheck
14.1
'nullCheck' is false
14.1
'nullCheck' is false
) {
15
Taking false branch
1658 conditional.begin(*this);
1659
1660 nullCheckBB = Builder.GetInsertBlock();
1661 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1662 contBB = createBasicBlock("new.cont");
1663
1664 llvm::Value *isNull =
1665 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1666 Builder.CreateCondBr(isNull, contBB, notNullBB);
1667 EmitBlock(notNullBB);
1668 }
1669
1670 // If there's an operator delete, enter a cleanup to call it if an
1671 // exception is thrown.
1672 EHScopeStack::stable_iterator operatorDeleteCleanup;
1673 llvm::Instruction *cleanupDominator = nullptr;
1674 if (E->getOperatorDelete() &&
16
Assuming the condition is false
1675 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1676 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1677 allocatorArgs);
1678 operatorDeleteCleanup = EHStack.stable_begin();
1679 cleanupDominator = Builder.CreateUnreachable();
1680 }
1681
1682 assert((allocSize == allocSizeWithoutCookie) ==(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
17
'?' condition is true
1683 CalculateCookiePadding(*this, E).isZero())(((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding
(*this, E).isZero()) ? static_cast<void> (0) : __assert_fail
("(allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1683, __PRETTY_FUNCTION__))
;
1684 if (allocSize
17.1
'allocSize' is equal to 'allocSizeWithoutCookie'
17.1
'allocSize' is equal to 'allocSizeWithoutCookie'
!= allocSizeWithoutCookie) {
18
Taking false branch
1685 assert(E->isArray())((E->isArray()) ? static_cast<void> (0) : __assert_fail
("E->isArray()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1685, __PRETTY_FUNCTION__))
;
1686 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1687 numElements,
1688 E, allocType);
1689 }
1690
1691 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1692 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1693
1694 // Passing pointer through launder.invariant.group to avoid propagation of
1695 // vptrs information which may be included in previous type.
1696 // To not break LTO with different optimizations levels, we do it regardless
1697 // of optimization level.
1698 if (CGM.getCodeGenOpts().StrictVTablePointers &&
19
Assuming field 'StrictVTablePointers' is 0
1699 allocator->isReservedGlobalPlacementOperator())
1700 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1701 result.getAlignment());
1702
1703 // Emit sanitizer checks for pointer value now, so that in the case of an
1704 // array it was checked only once and not at each constructor call. We may
1705 // have already checked that the pointer is non-null.
1706 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1707 // we'll null check the wrong pointer here.
1708 SanitizerSet SkippedChecks;
1709 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1710 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1711 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1712 result.getPointer(), allocType, result.getAlignment(),
1713 SkippedChecks, numElements);
1714
1715 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
20
Passing null pointer value via 6th parameter 'NumElements'
21
Calling 'EmitNewInitializer'
1716 allocSizeWithoutCookie);
1717 if (E->isArray()) {
1718 // NewPtr is a pointer to the base element type. If we're
1719 // allocating an array of arrays, we'll need to cast back to the
1720 // array pointer type.
1721 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1722 if (result.getType() != resultType)
1723 result = Builder.CreateBitCast(result, resultType);
1724 }
1725
1726 // Deactivate the 'operator delete' cleanup if we finished
1727 // initialization.
1728 if (operatorDeleteCleanup.isValid()) {
1729 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1730 cleanupDominator->eraseFromParent();
1731 }
1732
1733 llvm::Value *resultPtr = result.getPointer();
1734 if (nullCheck) {
1735 conditional.end(*this);
1736
1737 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1738 EmitBlock(contBB);
1739
1740 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1741 PHI->addIncoming(resultPtr, notNullBB);
1742 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1743 nullCheckBB);
1744
1745 resultPtr = PHI;
1746 }
1747
1748 return resultPtr;
1749}
1750
1751void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1752 llvm::Value *Ptr, QualType DeleteTy,
1753 llvm::Value *NumElements,
1754 CharUnits CookieSize) {
1755 assert((!NumElements && CookieSize.isZero()) ||(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
1756 DeleteFD->getOverloadedOperator() == OO_Array_Delete)(((!NumElements && CookieSize.isZero()) || DeleteFD->
getOverloadedOperator() == OO_Array_Delete) ? static_cast<
void> (0) : __assert_fail ("(!NumElements && CookieSize.isZero()) || DeleteFD->getOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1756, __PRETTY_FUNCTION__))
;
1757
1758 const FunctionProtoType *DeleteFTy =
1759 DeleteFD->getType()->getAs<FunctionProtoType>();
1760
1761 CallArgList DeleteArgs;
1762
1763 auto Params = getUsualDeleteParams(DeleteFD);
1764 auto ParamTypeIt = DeleteFTy->param_type_begin();
1765
1766 // Pass the pointer itself.
1767 QualType ArgTy = *ParamTypeIt++;
1768 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1769 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1770
1771 // Pass the std::destroying_delete tag if present.
1772 if (Params.DestroyingDelete) {
1773 QualType DDTag = *ParamTypeIt++;
1774 // Just pass an 'undef'. We expect the tag type to be an empty struct.
1775 auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1776 DeleteArgs.add(RValue::get(V), DDTag);
1777 }
1778
1779 // Pass the size if the delete function has a size_t parameter.
1780 if (Params.Size) {
1781 QualType SizeType = *ParamTypeIt++;
1782 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1783 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1784 DeleteTypeSize.getQuantity());
1785
1786 // For array new, multiply by the number of elements.
1787 if (NumElements)
1788 Size = Builder.CreateMul(Size, NumElements);
1789
1790 // If there is a cookie, add the cookie size.
1791 if (!CookieSize.isZero())
1792 Size = Builder.CreateAdd(
1793 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1794
1795 DeleteArgs.add(RValue::get(Size), SizeType);
1796 }
1797
1798 // Pass the alignment if the delete function has an align_val_t parameter.
1799 if (Params.Alignment) {
1800 QualType AlignValType = *ParamTypeIt++;
1801 CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1802 getContext().getTypeAlignIfKnown(DeleteTy));
1803 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1804 DeleteTypeAlign.getQuantity());
1805 DeleteArgs.add(RValue::get(Align), AlignValType);
1806 }
1807
1808 assert(ParamTypeIt == DeleteFTy->param_type_end() &&((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
1809 "unknown parameter to usual delete function")((ParamTypeIt == DeleteFTy->param_type_end() && "unknown parameter to usual delete function"
) ? static_cast<void> (0) : __assert_fail ("ParamTypeIt == DeleteFTy->param_type_end() && \"unknown parameter to usual delete function\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 // Emit the call to delete.
1812 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1813}
1814
1815namespace {
1816 /// Calls the given 'operator delete' on a single object.
1817 struct CallObjectDelete final : EHScopeStack::Cleanup {
1818 llvm::Value *Ptr;
1819 const FunctionDecl *OperatorDelete;
1820 QualType ElementType;
1821
1822 CallObjectDelete(llvm::Value *Ptr,
1823 const FunctionDecl *OperatorDelete,
1824 QualType ElementType)
1825 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1826
1827 void Emit(CodeGenFunction &CGF, Flags flags) override {
1828 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1829 }
1830 };
1831}
1832
1833void
1834CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1835 llvm::Value *CompletePtr,
1836 QualType ElementType) {
1837 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1838 OperatorDelete, ElementType);
1839}
1840
1841/// Emit the code for deleting a single object with a destroying operator
1842/// delete. If the element type has a non-virtual destructor, Ptr has already
1843/// been converted to the type of the parameter of 'operator delete'. Otherwise
1844/// Ptr points to an object of the static type.
1845static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1846 const CXXDeleteExpr *DE, Address Ptr,
1847 QualType ElementType) {
1848 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1849 if (Dtor && Dtor->isVirtual())
1850 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1851 Dtor);
1852 else
1853 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1854}
1855
1856/// Emit the code for deleting a single object.
1857static void EmitObjectDelete(CodeGenFunction &CGF,
1858 const CXXDeleteExpr *DE,
1859 Address Ptr,
1860 QualType ElementType) {
1861 // C++11 [expr.delete]p3:
1862 // If the static type of the object to be deleted is different from its
1863 // dynamic type, the static type shall be a base class of the dynamic type
1864 // of the object to be deleted and the static type shall have a virtual
1865 // destructor or the behavior is undefined.
1866 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1867 DE->getExprLoc(), Ptr.getPointer(),
1868 ElementType);
1869
1870 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1871 assert(!OperatorDelete->isDestroyingOperatorDelete())((!OperatorDelete->isDestroyingOperatorDelete()) ? static_cast
<void> (0) : __assert_fail ("!OperatorDelete->isDestroyingOperatorDelete()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1871, __PRETTY_FUNCTION__))
;
1872
1873 // Find the destructor for the type, if applicable. If the
1874 // destructor is virtual, we'll just emit the vcall and return.
1875 const CXXDestructorDecl *Dtor = nullptr;
1876 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1877 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1878 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1879 Dtor = RD->getDestructor();
1880
1881 if (Dtor->isVirtual()) {
1882 bool UseVirtualCall = true;
1883 const Expr *Base = DE->getArgument();
1884 if (auto *DevirtualizedDtor =
1885 dyn_cast_or_null<const CXXDestructorDecl>(
1886 Dtor->getDevirtualizedMethod(
1887 Base, CGF.CGM.getLangOpts().AppleKext))) {
1888 UseVirtualCall = false;
1889 const CXXRecordDecl *DevirtualizedClass =
1890 DevirtualizedDtor->getParent();
1891 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1892 // Devirtualized to the class of the base type (the type of the
1893 // whole expression).
1894 Dtor = DevirtualizedDtor;
1895 } else {
1896 // Devirtualized to some other type. Would need to cast the this
1897 // pointer to that type but we don't have support for that yet, so
1898 // do a virtual call. FIXME: handle the case where it is
1899 // devirtualized to the derived type (the type of the inner
1900 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1901 UseVirtualCall = true;
1902 }
1903 }
1904 if (UseVirtualCall) {
1905 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1906 Dtor);
1907 return;
1908 }
1909 }
1910 }
1911 }
1912
1913 // Make sure that we call delete even if the dtor throws.
1914 // This doesn't have to a conditional cleanup because we're going
1915 // to pop it off in a second.
1916 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1917 Ptr.getPointer(),
1918 OperatorDelete, ElementType);
1919
1920 if (Dtor)
1921 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1922 /*ForVirtualBase=*/false,
1923 /*Delegating=*/false,
1924 Ptr, ElementType);
1925 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1926 switch (Lifetime) {
1927 case Qualifiers::OCL_None:
1928 case Qualifiers::OCL_ExplicitNone:
1929 case Qualifiers::OCL_Autoreleasing:
1930 break;
1931
1932 case Qualifiers::OCL_Strong:
1933 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1934 break;
1935
1936 case Qualifiers::OCL_Weak:
1937 CGF.EmitARCDestroyWeak(Ptr);
1938 break;
1939 }
1940 }
1941
1942 CGF.PopCleanupBlock();
1943}
1944
1945namespace {
1946 /// Calls the given 'operator delete' on an array of objects.
1947 struct CallArrayDelete final : EHScopeStack::Cleanup {
1948 llvm::Value *Ptr;
1949 const FunctionDecl *OperatorDelete;
1950 llvm::Value *NumElements;
1951 QualType ElementType;
1952 CharUnits CookieSize;
1953
1954 CallArrayDelete(llvm::Value *Ptr,
1955 const FunctionDecl *OperatorDelete,
1956 llvm::Value *NumElements,
1957 QualType ElementType,
1958 CharUnits CookieSize)
1959 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1960 ElementType(ElementType), CookieSize(CookieSize) {}
1961
1962 void Emit(CodeGenFunction &CGF, Flags flags) override {
1963 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1964 CookieSize);
1965 }
1966 };
1967}
1968
1969/// Emit the code for deleting an array of objects.
1970static void EmitArrayDelete(CodeGenFunction &CGF,
1971 const CXXDeleteExpr *E,
1972 Address deletedPtr,
1973 QualType elementType) {
1974 llvm::Value *numElements = nullptr;
1975 llvm::Value *allocatedPtr = nullptr;
1976 CharUnits cookieSize;
1977 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1978 numElements, allocatedPtr, cookieSize);
1979
1980 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer")((allocatedPtr && "ReadArrayCookie didn't set allocated pointer"
) ? static_cast<void> (0) : __assert_fail ("allocatedPtr && \"ReadArrayCookie didn't set allocated pointer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1980, __PRETTY_FUNCTION__))
;
1981
1982 // Make sure that we call delete even if one of the dtors throws.
1983 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1984 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1985 allocatedPtr, operatorDelete,
1986 numElements, elementType,
1987 cookieSize);
1988
1989 // Destroy the elements.
1990 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1991 assert(numElements && "no element count for a type with a destructor!")((numElements && "no element count for a type with a destructor!"
) ? static_cast<void> (0) : __assert_fail ("numElements && \"no element count for a type with a destructor!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 1991, __PRETTY_FUNCTION__))
;
1992
1993 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1994 CharUnits elementAlign =
1995 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1996
1997 llvm::Value *arrayBegin = deletedPtr.getPointer();
1998 llvm::Value *arrayEnd =
1999 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
2000
2001 // Note that it is legal to allocate a zero-length array, and we
2002 // can never fold the check away because the length should always
2003 // come from a cookie.
2004 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2005 CGF.getDestroyer(dtorKind),
2006 /*checkZeroLength*/ true,
2007 CGF.needsEHCleanup(dtorKind));
2008 }
2009
2010 // Pop the cleanup block.
2011 CGF.PopCleanupBlock();
2012}
2013
2014void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2015 const Expr *Arg = E->getArgument();
2016 Address Ptr = EmitPointerWithAlignment(Arg);
2017
2018 // Null check the pointer.
2019 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2020 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2021
2022 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2023
2024 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2025 EmitBlock(DeleteNotNull);
2026
2027 QualType DeleteTy = E->getDestroyedType();
2028
2029 // A destroying operator delete overrides the entire operation of the
2030 // delete expression.
2031 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2032 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2033 EmitBlock(DeleteEnd);
2034 return;
2035 }
2036
2037 // We might be deleting a pointer to array. If so, GEP down to the
2038 // first non-array element.
2039 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2040 if (DeleteTy->isConstantArrayType()) {
2041 llvm::Value *Zero = Builder.getInt32(0);
2042 SmallVector<llvm::Value*,8> GEP;
2043
2044 GEP.push_back(Zero); // point at the outermost array
2045
2046 // For each layer of array type we're pointing at:
2047 while (const ConstantArrayType *Arr
2048 = getContext().getAsConstantArrayType(DeleteTy)) {
2049 // 1. Unpeel the array type.
2050 DeleteTy = Arr->getElementType();
2051
2052 // 2. GEP to the first element of the array.
2053 GEP.push_back(Zero);
2054 }
2055
2056 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2057 Ptr.getAlignment());
2058 }
2059
2060 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType())((ConvertTypeForMem(DeleteTy) == Ptr.getElementType()) ? static_cast
<void> (0) : __assert_fail ("ConvertTypeForMem(DeleteTy) == Ptr.getElementType()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2060, __PRETTY_FUNCTION__))
;
2061
2062 if (E->isArrayForm()) {
2063 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2064 } else {
2065 EmitObjectDelete(*this, E, Ptr, DeleteTy);
2066 }
2067
2068 EmitBlock(DeleteEnd);
2069}
2070
2071static bool isGLValueFromPointerDeref(const Expr *E) {
2072 E = E->IgnoreParens();
2073
2074 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2075 if (!CE->getSubExpr()->isGLValue())
2076 return false;
2077 return isGLValueFromPointerDeref(CE->getSubExpr());
2078 }
2079
2080 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2081 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2082
2083 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2084 if (BO->getOpcode() == BO_Comma)
2085 return isGLValueFromPointerDeref(BO->getRHS());
2086
2087 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2088 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2089 isGLValueFromPointerDeref(ACO->getFalseExpr());
2090
2091 // C++11 [expr.sub]p1:
2092 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2093 if (isa<ArraySubscriptExpr>(E))
2094 return true;
2095
2096 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2097 if (UO->getOpcode() == UO_Deref)
2098 return true;
2099
2100 return false;
2101}
2102
2103static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2104 llvm::Type *StdTypeInfoPtrTy) {
2105 // Get the vtable pointer.
2106 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2107
2108 QualType SrcRecordTy = E->getType();
2109
2110 // C++ [class.cdtor]p4:
2111 // If the operand of typeid refers to the object under construction or
2112 // destruction and the static type of the operand is neither the constructor
2113 // or destructor’s class nor one of its bases, the behavior is undefined.
2114 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2115 ThisPtr.getPointer(), SrcRecordTy);
2116
2117 // C++ [expr.typeid]p2:
2118 // If the glvalue expression is obtained by applying the unary * operator to
2119 // a pointer and the pointer is a null pointer value, the typeid expression
2120 // throws the std::bad_typeid exception.
2121 //
2122 // However, this paragraph's intent is not clear. We choose a very generous
2123 // interpretation which implores us to consider comma operators, conditional
2124 // operators, parentheses and other such constructs.
2125 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2126 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2127 llvm::BasicBlock *BadTypeidBlock =
2128 CGF.createBasicBlock("typeid.bad_typeid");
2129 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2130
2131 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2132 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2133
2134 CGF.EmitBlock(BadTypeidBlock);
2135 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2136 CGF.EmitBlock(EndBlock);
2137 }
2138
2139 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2140 StdTypeInfoPtrTy);
2141}
2142
2143llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2144 llvm::Type *StdTypeInfoPtrTy =
2145 ConvertType(E->getType())->getPointerTo();
2146
2147 if (E->isTypeOperand()) {
2148 llvm::Constant *TypeInfo =
2149 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2150 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2151 }
2152
2153 // C++ [expr.typeid]p2:
2154 // When typeid is applied to a glvalue expression whose type is a
2155 // polymorphic class type, the result refers to a std::type_info object
2156 // representing the type of the most derived object (that is, the dynamic
2157 // type) to which the glvalue refers.
2158 if (E->isPotentiallyEvaluated())
2159 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2160 StdTypeInfoPtrTy);
2161
2162 QualType OperandTy = E->getExprOperand()->getType();
2163 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2164 StdTypeInfoPtrTy);
2165}
2166
2167static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2168 QualType DestTy) {
2169 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2170 if (DestTy->isPointerType())
2171 return llvm::Constant::getNullValue(DestLTy);
2172
2173 /// C++ [expr.dynamic.cast]p9:
2174 /// A failed cast to reference type throws std::bad_cast
2175 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2176 return nullptr;
2177
2178 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2179 return llvm::UndefValue::get(DestLTy);
2180}
2181
2182llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2183 const CXXDynamicCastExpr *DCE) {
2184 CGM.EmitExplicitCastExprType(DCE, this);
2185 QualType DestTy = DCE->getTypeAsWritten();
2186
2187 QualType SrcTy = DCE->getSubExpr()->getType();
2188
2189 // C++ [expr.dynamic.cast]p7:
2190 // If T is "pointer to cv void," then the result is a pointer to the most
2191 // derived object pointed to by v.
2192 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2193
2194 bool isDynamicCastToVoid;
2195 QualType SrcRecordTy;
2196 QualType DestRecordTy;
2197 if (DestPTy) {
2198 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2199 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2200 DestRecordTy = DestPTy->getPointeeType();
2201 } else {
2202 isDynamicCastToVoid = false;
2203 SrcRecordTy = SrcTy;
2204 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2205 }
2206
2207 // C++ [class.cdtor]p5:
2208 // If the operand of the dynamic_cast refers to the object under
2209 // construction or destruction and the static type of the operand is not a
2210 // pointer to or object of the constructor or destructor’s own class or one
2211 // of its bases, the dynamic_cast results in undefined behavior.
2212 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2213 SrcRecordTy);
2214
2215 if (DCE->isAlwaysNull())
2216 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2217 return T;
2218
2219 assert(SrcRecordTy->isRecordType() && "source type must be a record type!")((SrcRecordTy->isRecordType() && "source type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("SrcRecordTy->isRecordType() && \"source type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2219, __PRETTY_FUNCTION__))
;
2220
2221 // C++ [expr.dynamic.cast]p4:
2222 // If the value of v is a null pointer value in the pointer case, the result
2223 // is the null pointer value of type T.
2224 bool ShouldNullCheckSrcValue =
2225 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2226 SrcRecordTy);
2227
2228 llvm::BasicBlock *CastNull = nullptr;
2229 llvm::BasicBlock *CastNotNull = nullptr;
2230 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2231
2232 if (ShouldNullCheckSrcValue) {
2233 CastNull = createBasicBlock("dynamic_cast.null");
2234 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2235
2236 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2237 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2238 EmitBlock(CastNotNull);
2239 }
2240
2241 llvm::Value *Value;
2242 if (isDynamicCastToVoid) {
2243 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2244 DestTy);
2245 } else {
2246 assert(DestRecordTy->isRecordType() &&((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
2247 "destination type must be a record type!")((DestRecordTy->isRecordType() && "destination type must be a record type!"
) ? static_cast<void> (0) : __assert_fail ("DestRecordTy->isRecordType() && \"destination type must be a record type!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprCXX.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2249 DestTy, DestRecordTy, CastEnd);
2250 CastNotNull = Builder.GetInsertBlock();
2251 }
2252
2253 if (ShouldNullCheckSrcValue) {
2254 EmitBranch(CastEnd);
2255
2256 EmitBlock(CastNull);
2257 EmitBranch(CastEnd);
2258 }
2259
2260 EmitBlock(CastEnd);
2261
2262 if (ShouldNullCheckSrcValue) {
2263 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2264 PHI->addIncoming(Value, CastNotNull);
2265 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2266
2267 Value = PHI;
2268 }
2269
2270 return Value;
2271}

/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h

1//===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/DeclarationName.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/OperationKinds.h"
25#include "clang/AST/Stmt.h"
26#include "clang/AST/TemplateBase.h"
27#include "clang/AST/Type.h"
28#include "clang/AST/UnresolvedSet.h"
29#include "clang/Basic/ExceptionSpecificationType.h"
30#include "clang/Basic/ExpressionTraits.h"
31#include "clang/Basic/LLVM.h"
32#include "clang/Basic/Lambda.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/OperatorKinds.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/Specifiers.h"
37#include "clang/Basic/TypeTraits.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/None.h"
40#include "llvm/ADT/Optional.h"
41#include "llvm/ADT/PointerUnion.h"
42#include "llvm/ADT/StringRef.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/TrailingObjects.h"
47#include <cassert>
48#include <cstddef>
49#include <cstdint>
50#include <memory>
51
52namespace clang {
53
54class ASTContext;
55class DeclAccessPair;
56class IdentifierInfo;
57class LambdaCapture;
58class NonTypeTemplateParmDecl;
59class TemplateParameterList;
60
61//===--------------------------------------------------------------------===//
62// C++ Expressions.
63//===--------------------------------------------------------------------===//
64
65/// A call to an overloaded operator written using operator
66/// syntax.
67///
68/// Represents a call to an overloaded operator written using operator
69/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
70/// normal call, this AST node provides better information about the
71/// syntactic representation of the call.
72///
73/// In a C++ template, this expression node kind will be used whenever
74/// any of the arguments are type-dependent. In this case, the
75/// function itself will be a (possibly empty) set of functions and
76/// function templates that were found by name lookup at template
77/// definition time.
78class CXXOperatorCallExpr final : public CallExpr {
79 friend class ASTStmtReader;
80 friend class ASTStmtWriter;
81
82 SourceRange Range;
83
84 // CXXOperatorCallExpr has some trailing objects belonging
85 // to CallExpr. See CallExpr for the details.
86
87 SourceRange getSourceRangeImpl() const LLVM_READONLY__attribute__((__pure__));
88
89 CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn,
90 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
91 SourceLocation OperatorLoc, FPOptions FPFeatures,
92 ADLCallKind UsesADL);
93
94 CXXOperatorCallExpr(unsigned NumArgs, EmptyShell Empty);
95
96public:
97 static CXXOperatorCallExpr *
98 Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn,
99 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
100 SourceLocation OperatorLoc, FPOptions FPFeatures,
101 ADLCallKind UsesADL = NotADL);
102
103 static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx,
104 unsigned NumArgs, EmptyShell Empty);
105
106 /// Returns the kind of overloaded operator that this expression refers to.
107 OverloadedOperatorKind getOperator() const {
108 return static_cast<OverloadedOperatorKind>(
109 CXXOperatorCallExprBits.OperatorKind);
110 }
111
112 static bool isAssignmentOp(OverloadedOperatorKind Opc) {
113 return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual ||
114 Opc == OO_PercentEqual || Opc == OO_PlusEqual ||
115 Opc == OO_MinusEqual || Opc == OO_LessLessEqual ||
116 Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual ||
117 Opc == OO_CaretEqual || Opc == OO_PipeEqual;
118 }
119 bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }
120
121 /// Is this written as an infix binary operator?
122 bool isInfixBinaryOp() const;
123
124 /// Returns the location of the operator symbol in the expression.
125 ///
126 /// When \c getOperator()==OO_Call, this is the location of the right
127 /// parentheses; when \c getOperator()==OO_Subscript, this is the location
128 /// of the right bracket.
129 SourceLocation getOperatorLoc() const { return getRParenLoc(); }
130
131 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
132 OverloadedOperatorKind Operator = getOperator();
133 return (Operator < OO_Plus || Operator >= OO_Arrow ||
134 Operator == OO_PlusPlus || Operator == OO_MinusMinus)
135 ? getBeginLoc()
136 : getOperatorLoc();
137 }
138
139 SourceLocation getBeginLoc() const { return Range.getBegin(); }
140 SourceLocation getEndLoc() const { return Range.getEnd(); }
141 SourceRange getSourceRange() const { return Range; }
142
143 static bool classof(const Stmt *T) {
144 return T->getStmtClass() == CXXOperatorCallExprClass;
145 }
146
147 // Set the FP contractability status of this operator. Only meaningful for
148 // operations on floating point types.
149 void setFPFeatures(FPOptions F) {
150 CXXOperatorCallExprBits.FPFeatures = F.getInt();
151 }
152 FPOptions getFPFeatures() const {
153 return FPOptions(CXXOperatorCallExprBits.FPFeatures);
154 }
155
156 // Get the FP contractability status of this operator. Only meaningful for
157 // operations on floating point types.
158 bool isFPContractableWithinStatement() const {
159 return getFPFeatures().allowFPContractWithinStatement();
160 }
161};
162
163/// Represents a call to a member function that
164/// may be written either with member call syntax (e.g., "obj.func()"
165/// or "objptr->func()") or with normal function-call syntax
166/// ("func()") within a member function that ends up calling a member
167/// function. The callee in either case is a MemberExpr that contains
168/// both the object argument and the member function, while the
169/// arguments are the arguments within the parentheses (not including
170/// the object argument).
171class CXXMemberCallExpr final : public CallExpr {
172 // CXXMemberCallExpr has some trailing objects belonging
173 // to CallExpr. See CallExpr for the details.
174
175 CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
176 ExprValueKind VK, SourceLocation RP, unsigned MinNumArgs);
177
178 CXXMemberCallExpr(unsigned NumArgs, EmptyShell Empty);
179
180public:
181 static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
182 ArrayRef<Expr *> Args, QualType Ty,
183 ExprValueKind VK, SourceLocation RP,
184 unsigned MinNumArgs = 0);
185
186 static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
187 EmptyShell Empty);
188
189 /// Retrieve the implicit object argument for the member call.
190 ///
191 /// For example, in "x.f(5)", this returns the sub-expression "x".
192 Expr *getImplicitObjectArgument() const;
193
194 /// Retrieve the type of the object argument.
195 ///
196 /// Note that this always returns a non-pointer type.
197 QualType getObjectType() const;
198
199 /// Retrieve the declaration of the called method.
200 CXXMethodDecl *getMethodDecl() const;
201
202 /// Retrieve the CXXRecordDecl for the underlying type of
203 /// the implicit object argument.
204 ///
205 /// Note that this is may not be the same declaration as that of the class
206 /// context of the CXXMethodDecl which this function is calling.
207 /// FIXME: Returns 0 for member pointer call exprs.
208 CXXRecordDecl *getRecordDecl() const;
209
210 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
211 SourceLocation CLoc = getCallee()->getExprLoc();
212 if (CLoc.isValid())
213 return CLoc;
214
215 return getBeginLoc();
216 }
217
218 static bool classof(const Stmt *T) {
219 return T->getStmtClass() == CXXMemberCallExprClass;
220 }
221};
222
223/// Represents a call to a CUDA kernel function.
224class CUDAKernelCallExpr final : public CallExpr {
225 friend class ASTStmtReader;
226
227 enum { CONFIG, END_PREARG };
228
229 // CUDAKernelCallExpr has some trailing objects belonging
230 // to CallExpr. See CallExpr for the details.
231
232 CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args,
233 QualType Ty, ExprValueKind VK, SourceLocation RP,
234 unsigned MinNumArgs);
235
236 CUDAKernelCallExpr(unsigned NumArgs, EmptyShell Empty);
237
238public:
239 static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
240 CallExpr *Config, ArrayRef<Expr *> Args,
241 QualType Ty, ExprValueKind VK,
242 SourceLocation RP, unsigned MinNumArgs = 0);
243
244 static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx,
245 unsigned NumArgs, EmptyShell Empty);
246
247 const CallExpr *getConfig() const {
248 return cast_or_null<CallExpr>(getPreArg(CONFIG));
249 }
250 CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
251
252 static bool classof(const Stmt *T) {
253 return T->getStmtClass() == CUDAKernelCallExprClass;
254 }
255};
256
257/// A rewritten comparison expression that was originally written using
258/// operator syntax.
259///
260/// In C++20, the following rewrites are performed:
261/// - <tt>a == b</tt> -> <tt>b == a</tt>
262/// - <tt>a != b</tt> -> <tt>!(a == b)</tt>
263/// - <tt>a != b</tt> -> <tt>!(b == a)</tt>
264/// - For \c \@ in \c <, \c <=, \c >, \c >=, \c <=>:
265/// - <tt>a @ b</tt> -> <tt>(a <=> b) @ 0</tt>
266/// - <tt>a @ b</tt> -> <tt>0 @ (b <=> a)</tt>
267///
268/// This expression provides access to both the original syntax and the
269/// rewritten expression.
270///
271/// Note that the rewritten calls to \c ==, \c <=>, and \c \@ are typically
272/// \c CXXOperatorCallExprs, but could theoretically be \c BinaryOperators.
273class CXXRewrittenBinaryOperator : public Expr {
274 friend class ASTStmtReader;
275
276 /// The rewritten semantic form.
277 Stmt *SemanticForm;
278
279public:
280 CXXRewrittenBinaryOperator(Expr *SemanticForm, bool IsReversed)
281 : Expr(CXXRewrittenBinaryOperatorClass, SemanticForm->getType(),
282 SemanticForm->getValueKind(), SemanticForm->getObjectKind(),
283 SemanticForm->isTypeDependent(), SemanticForm->isValueDependent(),
284 SemanticForm->isInstantiationDependent(),
285 SemanticForm->containsUnexpandedParameterPack()),
286 SemanticForm(SemanticForm) {
287 CXXRewrittenBinaryOperatorBits.IsReversed = IsReversed;
288 }
289 CXXRewrittenBinaryOperator(EmptyShell Empty)
290 : Expr(CXXRewrittenBinaryOperatorClass, Empty), SemanticForm() {}
291
292 /// Get an equivalent semantic form for this expression.
293 Expr *getSemanticForm() { return cast<Expr>(SemanticForm); }
294 const Expr *getSemanticForm() const { return cast<Expr>(SemanticForm); }
295
296 struct DecomposedForm {
297 /// The original opcode, prior to rewriting.
298 BinaryOperatorKind Opcode;
299 /// The original left-hand side.
300 const Expr *LHS;
301 /// The original right-hand side.
302 const Expr *RHS;
303 /// The inner \c == or \c <=> operator expression.
304 const Expr *InnerBinOp;
305 };
306
307 /// Decompose this operator into its syntactic form.
308 DecomposedForm getDecomposedForm() const LLVM_READONLY__attribute__((__pure__));
309
310 /// Determine whether this expression was rewritten in reverse form.
311 bool isReversed() const { return CXXRewrittenBinaryOperatorBits.IsReversed; }
312
313 BinaryOperatorKind getOperator() const { return getDecomposedForm().Opcode; }
314 const Expr *getLHS() const { return getDecomposedForm().LHS; }
315 const Expr *getRHS() const { return getDecomposedForm().RHS; }
316
317 SourceLocation getOperatorLoc() const LLVM_READONLY__attribute__((__pure__)) {
318 return getDecomposedForm().InnerBinOp->getExprLoc();
319 }
320 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) { return getOperatorLoc(); }
321
322 /// Compute the begin and end locations from the decomposed form.
323 /// The locations of the semantic form are not reliable if this is
324 /// a reversed expression.
325 //@{
326 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
327 return getDecomposedForm().LHS->getBeginLoc();
328 }
329 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
330 return getDecomposedForm().RHS->getEndLoc();
331 }
332 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
333 DecomposedForm DF = getDecomposedForm();
334 return SourceRange(DF.LHS->getBeginLoc(), DF.RHS->getEndLoc());
335 }
336 //@}
337
338 child_range children() {
339 return child_range(&SemanticForm, &SemanticForm + 1);
340 }
341
342 static bool classof(const Stmt *T) {
343 return T->getStmtClass() == CXXRewrittenBinaryOperatorClass;
344 }
345};
346
347/// Abstract class common to all of the C++ "named"/"keyword" casts.
348///
349/// This abstract class is inherited by all of the classes
350/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
351/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
352/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
353class CXXNamedCastExpr : public ExplicitCastExpr {
354private:
355 // the location of the casting op
356 SourceLocation Loc;
357
358 // the location of the right parenthesis
359 SourceLocation RParenLoc;
360
361 // range for '<' '>'
362 SourceRange AngleBrackets;
363
364protected:
365 friend class ASTStmtReader;
366
367 CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
368 CastKind kind, Expr *op, unsigned PathSize,
369 TypeSourceInfo *writtenTy, SourceLocation l,
370 SourceLocation RParenLoc,
371 SourceRange AngleBrackets)
372 : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
373 RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
374
375 explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
376 : ExplicitCastExpr(SC, Shell, PathSize) {}
377
378public:
379 const char *getCastName() const;
380
381 /// Retrieve the location of the cast operator keyword, e.g.,
382 /// \c static_cast.
383 SourceLocation getOperatorLoc() const { return Loc; }
384
385 /// Retrieve the location of the closing parenthesis.
386 SourceLocation getRParenLoc() const { return RParenLoc; }
387
388 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
389 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
390 SourceRange getAngleBrackets() const LLVM_READONLY__attribute__((__pure__)) { return AngleBrackets; }
391
392 static bool classof(const Stmt *T) {
393 switch (T->getStmtClass()) {
394 case CXXStaticCastExprClass:
395 case CXXDynamicCastExprClass:
396 case CXXReinterpretCastExprClass:
397 case CXXConstCastExprClass:
398 return true;
399 default:
400 return false;
401 }
402 }
403};
404
405/// A C++ \c static_cast expression (C++ [expr.static.cast]).
406///
407/// This expression node represents a C++ static cast, e.g.,
408/// \c static_cast<int>(1.0).
409class CXXStaticCastExpr final
410 : public CXXNamedCastExpr,
411 private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *> {
412 CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
413 unsigned pathSize, TypeSourceInfo *writtenTy,
414 SourceLocation l, SourceLocation RParenLoc,
415 SourceRange AngleBrackets)
416 : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
417 writtenTy, l, RParenLoc, AngleBrackets) {}
418
419 explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
420 : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) {}
421
422public:
423 friend class CastExpr;
424 friend TrailingObjects;
425
426 static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
427 ExprValueKind VK, CastKind K, Expr *Op,
428 const CXXCastPath *Path,
429 TypeSourceInfo *Written, SourceLocation L,
430 SourceLocation RParenLoc,
431 SourceRange AngleBrackets);
432 static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
433 unsigned PathSize);
434
435 static bool classof(const Stmt *T) {
436 return T->getStmtClass() == CXXStaticCastExprClass;
437 }
438};
439
440/// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
441///
442/// This expression node represents a dynamic cast, e.g.,
443/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
444/// check to determine how to perform the type conversion.
445class CXXDynamicCastExpr final
446 : public CXXNamedCastExpr,
447 private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
448 CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
449 Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
450 SourceLocation l, SourceLocation RParenLoc,
451 SourceRange AngleBrackets)
452 : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
453 writtenTy, l, RParenLoc, AngleBrackets) {}
454
455 explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
456 : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) {}
457
458public:
459 friend class CastExpr;
460 friend TrailingObjects;
461
462 static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
463 ExprValueKind VK, CastKind Kind, Expr *Op,
464 const CXXCastPath *Path,
465 TypeSourceInfo *Written, SourceLocation L,
466 SourceLocation RParenLoc,
467 SourceRange AngleBrackets);
468
469 static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
470 unsigned pathSize);
471
472 bool isAlwaysNull() const;
473
474 static bool classof(const Stmt *T) {
475 return T->getStmtClass() == CXXDynamicCastExprClass;
476 }
477};
478
479/// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
480///
481/// This expression node represents a reinterpret cast, e.g.,
482/// @c reinterpret_cast<int>(VoidPtr).
483///
484/// A reinterpret_cast provides a differently-typed view of a value but
485/// (in Clang, as in most C++ implementations) performs no actual work at
486/// run time.
487class CXXReinterpretCastExpr final
488 : public CXXNamedCastExpr,
489 private llvm::TrailingObjects<CXXReinterpretCastExpr,
490 CXXBaseSpecifier *> {
491 CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
492 Expr *op, unsigned pathSize,
493 TypeSourceInfo *writtenTy, SourceLocation l,
494 SourceLocation RParenLoc,
495 SourceRange AngleBrackets)
496 : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
497 pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
498
499 CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
500 : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) {}
501
502public:
503 friend class CastExpr;
504 friend TrailingObjects;
505
506 static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
507 ExprValueKind VK, CastKind Kind,
508 Expr *Op, const CXXCastPath *Path,
509 TypeSourceInfo *WrittenTy, SourceLocation L,
510 SourceLocation RParenLoc,
511 SourceRange AngleBrackets);
512 static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
513 unsigned pathSize);
514
515 static bool classof(const Stmt *T) {
516 return T->getStmtClass() == CXXReinterpretCastExprClass;
517 }
518};
519
520/// A C++ \c const_cast expression (C++ [expr.const.cast]).
521///
522/// This expression node represents a const cast, e.g.,
523/// \c const_cast<char*>(PtrToConstChar).
524///
525/// A const_cast can remove type qualifiers but does not change the underlying
526/// value.
527class CXXConstCastExpr final
528 : public CXXNamedCastExpr,
529 private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
530 CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
531 TypeSourceInfo *writtenTy, SourceLocation l,
532 SourceLocation RParenLoc, SourceRange AngleBrackets)
533 : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
534 0, writtenTy, l, RParenLoc, AngleBrackets) {}
535
536 explicit CXXConstCastExpr(EmptyShell Empty)
537 : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) {}
538
539public:
540 friend class CastExpr;
541 friend TrailingObjects;
542
543 static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
544 ExprValueKind VK, Expr *Op,
545 TypeSourceInfo *WrittenTy, SourceLocation L,
546 SourceLocation RParenLoc,
547 SourceRange AngleBrackets);
548 static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
549
550 static bool classof(const Stmt *T) {
551 return T->getStmtClass() == CXXConstCastExprClass;
552 }
553};
554
555/// A call to a literal operator (C++11 [over.literal])
556/// written as a user-defined literal (C++11 [lit.ext]).
557///
558/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
559/// is semantically equivalent to a normal call, this AST node provides better
560/// information about the syntactic representation of the literal.
561///
562/// Since literal operators are never found by ADL and can only be declared at
563/// namespace scope, a user-defined literal is never dependent.
564class UserDefinedLiteral final : public CallExpr {
565 friend class ASTStmtReader;
566 friend class ASTStmtWriter;
567
568 /// The location of a ud-suffix within the literal.
569 SourceLocation UDSuffixLoc;
570
571 // UserDefinedLiteral has some trailing objects belonging
572 // to CallExpr. See CallExpr for the details.
573
574 UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
575 ExprValueKind VK, SourceLocation LitEndLoc,
576 SourceLocation SuffixLoc);
577
578 UserDefinedLiteral(unsigned NumArgs, EmptyShell Empty);
579
580public:
581 static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn,
582 ArrayRef<Expr *> Args, QualType Ty,
583 ExprValueKind VK, SourceLocation LitEndLoc,
584 SourceLocation SuffixLoc);
585
586 static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx,
587 unsigned NumArgs, EmptyShell Empty);
588
589 /// The kind of literal operator which is invoked.
590 enum LiteralOperatorKind {
591 /// Raw form: operator "" X (const char *)
592 LOK_Raw,
593
594 /// Raw form: operator "" X<cs...> ()
595 LOK_Template,
596
597 /// operator "" X (unsigned long long)
598 LOK_Integer,
599
600 /// operator "" X (long double)
601 LOK_Floating,
602
603 /// operator "" X (const CharT *, size_t)
604 LOK_String,
605
606 /// operator "" X (CharT)
607 LOK_Character
608 };
609
610 /// Returns the kind of literal operator invocation
611 /// which this expression represents.
612 LiteralOperatorKind getLiteralOperatorKind() const;
613
614 /// If this is not a raw user-defined literal, get the
615 /// underlying cooked literal (representing the literal with the suffix
616 /// removed).
617 Expr *getCookedLiteral();
618 const Expr *getCookedLiteral() const {
619 return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
620 }
621
622 SourceLocation getBeginLoc() const {
623 if (getLiteralOperatorKind() == LOK_Template)
624 return getRParenLoc();
625 return getArg(0)->getBeginLoc();
626 }
627
628 SourceLocation getEndLoc() const { return getRParenLoc(); }
629
630 /// Returns the location of a ud-suffix in the expression.
631 ///
632 /// For a string literal, there may be multiple identical suffixes. This
633 /// returns the first.
634 SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
635
636 /// Returns the ud-suffix specified for this literal.
637 const IdentifierInfo *getUDSuffix() const;
638
639 static bool classof(const Stmt *S) {
640 return S->getStmtClass() == UserDefinedLiteralClass;
641 }
642};
643
644/// A boolean literal, per ([C++ lex.bool] Boolean literals).
645class CXXBoolLiteralExpr : public Expr {
646public:
647 CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc)
648 : Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
649 false, false) {
650 CXXBoolLiteralExprBits.Value = Val;
651 CXXBoolLiteralExprBits.Loc = Loc;
652 }
653
654 explicit CXXBoolLiteralExpr(EmptyShell Empty)
655 : Expr(CXXBoolLiteralExprClass, Empty) {}
656
657 bool getValue() const { return CXXBoolLiteralExprBits.Value; }
658 void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }
659
660 SourceLocation getBeginLoc() const { return getLocation(); }
661 SourceLocation getEndLoc() const { return getLocation(); }
662
663 SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; }
664 void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }
665
666 static bool classof(const Stmt *T) {
667 return T->getStmtClass() == CXXBoolLiteralExprClass;
668 }
669
670 // Iterators
671 child_range children() {
672 return child_range(child_iterator(), child_iterator());
673 }
674
675 const_child_range children() const {
676 return const_child_range(const_child_iterator(), const_child_iterator());
677 }
678};
679
680/// The null pointer literal (C++11 [lex.nullptr])
681///
682/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
683class CXXNullPtrLiteralExpr : public Expr {
684public:
685 CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc)
686 : Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false,
687 false, false, false) {
688 CXXNullPtrLiteralExprBits.Loc = Loc;
689 }
690
691 explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
692 : Expr(CXXNullPtrLiteralExprClass, Empty) {}
693
694 SourceLocation getBeginLoc() const { return getLocation(); }
695 SourceLocation getEndLoc() const { return getLocation(); }
696
697 SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; }
698 void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }
699
700 static bool classof(const Stmt *T) {
701 return T->getStmtClass() == CXXNullPtrLiteralExprClass;
702 }
703
704 child_range children() {
705 return child_range(child_iterator(), child_iterator());
706 }
707
708 const_child_range children() const {
709 return const_child_range(const_child_iterator(), const_child_iterator());
710 }
711};
712
713/// Implicit construction of a std::initializer_list<T> object from an
714/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
715class CXXStdInitializerListExpr : public Expr {
716 Stmt *SubExpr = nullptr;
717
718 CXXStdInitializerListExpr(EmptyShell Empty)
719 : Expr(CXXStdInitializerListExprClass, Empty) {}
720
721public:
722 friend class ASTReader;
723 friend class ASTStmtReader;
724
725 CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
726 : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
727 Ty->isDependentType(), SubExpr->isValueDependent(),
728 SubExpr->isInstantiationDependent(),
729 SubExpr->containsUnexpandedParameterPack()),
730 SubExpr(SubExpr) {}
731
732 Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
733 const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
734
735 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
736 return SubExpr->getBeginLoc();
737 }
738
739 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
740 return SubExpr->getEndLoc();
741 }
742
743 /// Retrieve the source range of the expression.
744 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
745 return SubExpr->getSourceRange();
746 }
747
748 static bool classof(const Stmt *S) {
749 return S->getStmtClass() == CXXStdInitializerListExprClass;
750 }
751
752 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
753
754 const_child_range children() const {
755 return const_child_range(&SubExpr, &SubExpr + 1);
756 }
757};
758
759/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
760/// the \c type_info that corresponds to the supplied type, or the (possibly
761/// dynamic) type of the supplied expression.
762///
763/// This represents code like \c typeid(int) or \c typeid(*objPtr)
764class CXXTypeidExpr : public Expr {
765private:
766 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
767 SourceRange Range;
768
769public:
770 CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
771 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
772 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
773 false,
774 // typeid is value-dependent if the type or expression are
775 // dependent
776 Operand->getType()->isDependentType(),
777 Operand->getType()->isInstantiationDependentType(),
778 Operand->getType()->containsUnexpandedParameterPack()),
779 Operand(Operand), Range(R) {}
780
781 CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
782 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
783 // typeid is never type-dependent (C++ [temp.dep.expr]p4)
784 false,
785 // typeid is value-dependent if the type or expression are
786 // dependent
787 Operand->isTypeDependent() || Operand->isValueDependent(),
788 Operand->isInstantiationDependent(),
789 Operand->containsUnexpandedParameterPack()),
790 Operand(Operand), Range(R) {}
791
792 CXXTypeidExpr(EmptyShell Empty, bool isExpr)
793 : Expr(CXXTypeidExprClass, Empty) {
794 if (isExpr)
795 Operand = (Expr*)nullptr;
796 else
797 Operand = (TypeSourceInfo*)nullptr;
798 }
799
800 /// Determine whether this typeid has a type operand which is potentially
801 /// evaluated, per C++11 [expr.typeid]p3.
802 bool isPotentiallyEvaluated() const;
803
804 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
805
806 /// Retrieves the type operand of this typeid() expression after
807 /// various required adjustments (removing reference types, cv-qualifiers).
808 QualType getTypeOperand(ASTContext &Context) const;
809
810 /// Retrieve source information for the type operand.
811 TypeSourceInfo *getTypeOperandSourceInfo() const {
812 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)")((isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for typeid(expr)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 812, __PRETTY_FUNCTION__))
;
813 return Operand.get<TypeSourceInfo *>();
814 }
815
816 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
817 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)")((isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for typeid(expr)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 817, __PRETTY_FUNCTION__))
;
818 Operand = TSI;
819 }
820
821 Expr *getExprOperand() const {
822 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)")((!isTypeOperand() && "Cannot call getExprOperand for typeid(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for typeid(type)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 822, __PRETTY_FUNCTION__))
;
823 return static_cast<Expr*>(Operand.get<Stmt *>());
824 }
825
826 void setExprOperand(Expr *E) {
827 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)")((!isTypeOperand() && "Cannot call getExprOperand for typeid(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for typeid(type)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 827, __PRETTY_FUNCTION__))
;
828 Operand = E;
829 }
830
831 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
832 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
833 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
834 void setSourceRange(SourceRange R) { Range = R; }
835
836 static bool classof(const Stmt *T) {
837 return T->getStmtClass() == CXXTypeidExprClass;
838 }
839
840 // Iterators
841 child_range children() {
842 if (isTypeOperand())
843 return child_range(child_iterator(), child_iterator());
844 auto **begin = reinterpret_cast<Stmt **>(&Operand);
845 return child_range(begin, begin + 1);
846 }
847
848 const_child_range children() const {
849 if (isTypeOperand())
850 return const_child_range(const_child_iterator(), const_child_iterator());
851
852 auto **begin =
853 reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand);
854 return const_child_range(begin, begin + 1);
855 }
856};
857
858/// A member reference to an MSPropertyDecl.
859///
860/// This expression always has pseudo-object type, and therefore it is
861/// typically not encountered in a fully-typechecked expression except
862/// within the syntactic form of a PseudoObjectExpr.
863class MSPropertyRefExpr : public Expr {
864 Expr *BaseExpr;
865 MSPropertyDecl *TheDecl;
866 SourceLocation MemberLoc;
867 bool IsArrow;
868 NestedNameSpecifierLoc QualifierLoc;
869
870public:
871 friend class ASTStmtReader;
872
873 MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
874 QualType ty, ExprValueKind VK,
875 NestedNameSpecifierLoc qualifierLoc,
876 SourceLocation nameLoc)
877 : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
878 /*type-dependent*/ false, baseExpr->isValueDependent(),
879 baseExpr->isInstantiationDependent(),
880 baseExpr->containsUnexpandedParameterPack()),
881 BaseExpr(baseExpr), TheDecl(decl),
882 MemberLoc(nameLoc), IsArrow(isArrow),
883 QualifierLoc(qualifierLoc) {}
884
885 MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
886
887 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
888 return SourceRange(getBeginLoc(), getEndLoc());
889 }
890
891 bool isImplicitAccess() const {
892 return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
893 }
894
895 SourceLocation getBeginLoc() const {
896 if (!isImplicitAccess())
897 return BaseExpr->getBeginLoc();
898 else if (QualifierLoc)
899 return QualifierLoc.getBeginLoc();
900 else
901 return MemberLoc;
902 }
903
904 SourceLocation getEndLoc() const { return getMemberLoc(); }
905
906 child_range children() {
907 return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
908 }
909
910 const_child_range children() const {
911 auto Children = const_cast<MSPropertyRefExpr *>(this)->children();
912 return const_child_range(Children.begin(), Children.end());
913 }
914
915 static bool classof(const Stmt *T) {
916 return T->getStmtClass() == MSPropertyRefExprClass;
917 }
918
919 Expr *getBaseExpr() const { return BaseExpr; }
920 MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
921 bool isArrow() const { return IsArrow; }
922 SourceLocation getMemberLoc() const { return MemberLoc; }
923 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
924};
925
926/// MS property subscript expression.
927/// MSVC supports 'property' attribute and allows to apply it to the
928/// declaration of an empty array in a class or structure definition.
929/// For example:
930/// \code
931/// __declspec(property(get=GetX, put=PutX)) int x[];
932/// \endcode
933/// The above statement indicates that x[] can be used with one or more array
934/// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
935/// p->x[a][b] = i will be turned into p->PutX(a, b, i).
936/// This is a syntactic pseudo-object expression.
937class MSPropertySubscriptExpr : public Expr {
938 friend class ASTStmtReader;
939
940 enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
941
942 Stmt *SubExprs[NUM_SUBEXPRS];
943 SourceLocation RBracketLoc;
944
945 void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
946 void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }
947
948public:
949 MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
950 ExprObjectKind OK, SourceLocation RBracketLoc)
951 : Expr(MSPropertySubscriptExprClass, Ty, VK, OK, Idx->isTypeDependent(),
952 Idx->isValueDependent(), Idx->isInstantiationDependent(),
953 Idx->containsUnexpandedParameterPack()),
954 RBracketLoc(RBracketLoc) {
955 SubExprs[BASE_EXPR] = Base;
956 SubExprs[IDX_EXPR] = Idx;
957 }
958
959 /// Create an empty array subscript expression.
960 explicit MSPropertySubscriptExpr(EmptyShell Shell)
961 : Expr(MSPropertySubscriptExprClass, Shell) {}
962
963 Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
964 const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }
965
966 Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
967 const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }
968
969 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
970 return getBase()->getBeginLoc();
971 }
972
973 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RBracketLoc; }
974
975 SourceLocation getRBracketLoc() const { return RBracketLoc; }
976 void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
977
978 SourceLocation getExprLoc() const LLVM_READONLY__attribute__((__pure__)) {
979 return getBase()->getExprLoc();
980 }
981
982 static bool classof(const Stmt *T) {
983 return T->getStmtClass() == MSPropertySubscriptExprClass;
984 }
985
986 // Iterators
987 child_range children() {
988 return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
989 }
990
991 const_child_range children() const {
992 return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
993 }
994};
995
996/// A Microsoft C++ @c __uuidof expression, which gets
997/// the _GUID that corresponds to the supplied type or expression.
998///
999/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
1000class CXXUuidofExpr : public Expr {
1001private:
1002 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
1003 StringRef UuidStr;
1004 SourceRange Range;
1005
1006public:
1007 CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, StringRef UuidStr,
1008 SourceRange R)
1009 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
1010 Operand->getType()->isDependentType(),
1011 Operand->getType()->isInstantiationDependentType(),
1012 Operand->getType()->containsUnexpandedParameterPack()),
1013 Operand(Operand), UuidStr(UuidStr), Range(R) {}
1014
1015 CXXUuidofExpr(QualType Ty, Expr *Operand, StringRef UuidStr, SourceRange R)
1016 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary, false,
1017 Operand->isTypeDependent(), Operand->isInstantiationDependent(),
1018 Operand->containsUnexpandedParameterPack()),
1019 Operand(Operand), UuidStr(UuidStr), Range(R) {}
1020
1021 CXXUuidofExpr(EmptyShell Empty, bool isExpr)
1022 : Expr(CXXUuidofExprClass, Empty) {
1023 if (isExpr)
1024 Operand = (Expr*)nullptr;
1025 else
1026 Operand = (TypeSourceInfo*)nullptr;
1027 }
1028
1029 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
1030
1031 /// Retrieves the type operand of this __uuidof() expression after
1032 /// various required adjustments (removing reference types, cv-qualifiers).
1033 QualType getTypeOperand(ASTContext &Context) const;
1034
1035 /// Retrieve source information for the type operand.
1036 TypeSourceInfo *getTypeOperandSourceInfo() const {
1037 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)")((isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for __uuidof(expr)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1037, __PRETTY_FUNCTION__))
;
1038 return Operand.get<TypeSourceInfo *>();
1039 }
1040
1041 void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
1042 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)")((isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)"
) ? static_cast<void> (0) : __assert_fail ("isTypeOperand() && \"Cannot call getTypeOperand for __uuidof(expr)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1042, __PRETTY_FUNCTION__))
;
1043 Operand = TSI;
1044 }
1045
1046 Expr *getExprOperand() const {
1047 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)")((!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for __uuidof(type)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1047, __PRETTY_FUNCTION__))
;
1048 return static_cast<Expr*>(Operand.get<Stmt *>());
1049 }
1050
1051 void setExprOperand(Expr *E) {
1052 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)")((!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)"
) ? static_cast<void> (0) : __assert_fail ("!isTypeOperand() && \"Cannot call getExprOperand for __uuidof(type)\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1052, __PRETTY_FUNCTION__))
;
1053 Operand = E;
1054 }
1055
1056 void setUuidStr(StringRef US) { UuidStr = US; }
1057 StringRef getUuidStr() const { return UuidStr; }
1058
1059 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
1060 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
1061 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
1062 void setSourceRange(SourceRange R) { Range = R; }
1063
1064 static bool classof(const Stmt *T) {
1065 return T->getStmtClass() == CXXUuidofExprClass;
1066 }
1067
1068 // Iterators
1069 child_range children() {
1070 if (isTypeOperand())
1071 return child_range(child_iterator(), child_iterator());
1072 auto **begin = reinterpret_cast<Stmt **>(&Operand);
1073 return child_range(begin, begin + 1);
1074 }
1075
1076 const_child_range children() const {
1077 if (isTypeOperand())
1078 return const_child_range(const_child_iterator(), const_child_iterator());
1079 auto **begin =
1080 reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand);
1081 return const_child_range(begin, begin + 1);
1082 }
1083};
1084
1085/// Represents the \c this expression in C++.
1086///
1087/// This is a pointer to the object on which the current member function is
1088/// executing (C++ [expr.prim]p3). Example:
1089///
1090/// \code
1091/// class Foo {
1092/// public:
1093/// void bar();
1094/// void test() { this->bar(); }
1095/// };
1096/// \endcode
1097class CXXThisExpr : public Expr {
1098public:
1099 CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit)
1100 : Expr(CXXThisExprClass, Ty, VK_RValue, OK_Ordinary,
1101 // 'this' is type-dependent if the class type of the enclosing
1102 // member function is dependent (C++ [temp.dep.expr]p2)
1103 Ty->isDependentType(), Ty->isDependentType(),
1104 Ty->isInstantiationDependentType(),
1105 /*ContainsUnexpandedParameterPack=*/false) {
1106 CXXThisExprBits.IsImplicit = IsImplicit;
1107 CXXThisExprBits.Loc = L;
1108 }
1109
1110 CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
1111
1112 SourceLocation getLocation() const { return CXXThisExprBits.Loc; }
1113 void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }
1114
1115 SourceLocation getBeginLoc() const { return getLocation(); }
1116 SourceLocation getEndLoc() const { return getLocation(); }
1117
1118 bool isImplicit() const { return CXXThisExprBits.IsImplicit; }
1119 void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }
1120
1121 static bool classof(const Stmt *T) {
1122 return T->getStmtClass() == CXXThisExprClass;
1123 }
1124
1125 // Iterators
1126 child_range children() {
1127 return child_range(child_iterator(), child_iterator());
1128 }
1129
1130 const_child_range children() const {
1131 return const_child_range(const_child_iterator(), const_child_iterator());
1132 }
1133};
1134
1135/// A C++ throw-expression (C++ [except.throw]).
1136///
1137/// This handles 'throw' (for re-throwing the current exception) and
1138/// 'throw' assignment-expression. When assignment-expression isn't
1139/// present, Op will be null.
1140class CXXThrowExpr : public Expr {
1141 friend class ASTStmtReader;
1142
1143 /// The optional expression in the throw statement.
1144 Stmt *Operand;
1145
1146public:
1147 // \p Ty is the void type which is used as the result type of the
1148 // expression. The \p Loc is the location of the throw keyword.
1149 // \p Operand is the expression in the throw statement, and can be
1150 // null if not present.
1151 CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc,
1152 bool IsThrownVariableInScope)
1153 : Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
1154 Operand && Operand->isInstantiationDependent(),
1155 Operand && Operand->containsUnexpandedParameterPack()),
1156 Operand(Operand) {
1157 CXXThrowExprBits.ThrowLoc = Loc;
1158 CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope;
1159 }
1160 CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
1161
1162 const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); }
1163 Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }
1164
1165 SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }
1166
1167 /// Determines whether the variable thrown by this expression (if any!)
1168 /// is within the innermost try block.
1169 ///
1170 /// This information is required to determine whether the NRVO can apply to
1171 /// this variable.
1172 bool isThrownVariableInScope() const {
1173 return CXXThrowExprBits.IsThrownVariableInScope;
1174 }
1175
1176 SourceLocation getBeginLoc() const { return getThrowLoc(); }
1177 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
1178 if (!getSubExpr())
1179 return getThrowLoc();
1180 return getSubExpr()->getEndLoc();
1181 }
1182
1183 static bool classof(const Stmt *T) {
1184 return T->getStmtClass() == CXXThrowExprClass;
1185 }
1186
1187 // Iterators
1188 child_range children() {
1189 return child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1190 }
1191
1192 const_child_range children() const {
1193 return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1194 }
1195};
1196
1197/// A default argument (C++ [dcl.fct.default]).
1198///
1199/// This wraps up a function call argument that was created from the
1200/// corresponding parameter's default argument, when the call did not
1201/// explicitly supply arguments for all of the parameters.
1202class CXXDefaultArgExpr final : public Expr {
1203 friend class ASTStmtReader;
1204
1205 /// The parameter whose default is being used.
1206 ParmVarDecl *Param;
1207
1208 /// The context where the default argument expression was used.
1209 DeclContext *UsedContext;
1210
1211 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param,
1212 DeclContext *UsedContext)
1213 : Expr(SC,
1214 Param->hasUnparsedDefaultArg()
1215 ? Param->getType().getNonReferenceType()
1216 : Param->getDefaultArg()->getType(),
1217 Param->getDefaultArg()->getValueKind(),
1218 Param->getDefaultArg()->getObjectKind(), false, false, false,
1219 false),
1220 Param(Param), UsedContext(UsedContext) {
1221 CXXDefaultArgExprBits.Loc = Loc;
1222 }
1223
1224public:
1225 CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
1226
1227 // \p Param is the parameter whose default argument is used by this
1228 // expression.
1229 static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
1230 ParmVarDecl *Param,
1231 DeclContext *UsedContext) {
1232 return new (C)
1233 CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param, UsedContext);
1234 }
1235
1236 // Retrieve the parameter that the argument was created from.
1237 const ParmVarDecl *getParam() const { return Param; }
1238 ParmVarDecl *getParam() { return Param; }
1239
1240 // Retrieve the actual argument to the function call.
1241 const Expr *getExpr() const { return getParam()->getDefaultArg(); }
1242 Expr *getExpr() { return getParam()->getDefaultArg(); }
1243
1244 const DeclContext *getUsedContext() const { return UsedContext; }
1245 DeclContext *getUsedContext() { return UsedContext; }
1246
1247 /// Retrieve the location where this default argument was actually used.
1248 SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }
1249
1250 /// Default argument expressions have no representation in the
1251 /// source, so they have an empty source range.
1252 SourceLocation getBeginLoc() const { return SourceLocation(); }
1253 SourceLocation getEndLoc() const { return SourceLocation(); }
1254
1255 SourceLocation getExprLoc() const { return getUsedLocation(); }
1256
1257 static bool classof(const Stmt *T) {
1258 return T->getStmtClass() == CXXDefaultArgExprClass;
1259 }
1260
1261 // Iterators
1262 child_range children() {
1263 return child_range(child_iterator(), child_iterator());
1264 }
1265
1266 const_child_range children() const {
1267 return const_child_range(const_child_iterator(), const_child_iterator());
1268 }
1269};
1270
1271/// A use of a default initializer in a constructor or in aggregate
1272/// initialization.
1273///
1274/// This wraps a use of a C++ default initializer (technically,
1275/// a brace-or-equal-initializer for a non-static data member) when it
1276/// is implicitly used in a mem-initializer-list in a constructor
1277/// (C++11 [class.base.init]p8) or in aggregate initialization
1278/// (C++1y [dcl.init.aggr]p7).
1279class CXXDefaultInitExpr : public Expr {
1280 friend class ASTReader;
1281 friend class ASTStmtReader;
1282
1283 /// The field whose default is being used.
1284 FieldDecl *Field;
1285
1286 /// The context where the default initializer expression was used.
1287 DeclContext *UsedContext;
1288
1289 CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc,
1290 FieldDecl *Field, QualType Ty, DeclContext *UsedContext);
1291
1292 CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
1293
1294public:
1295 /// \p Field is the non-static data member whose default initializer is used
1296 /// by this expression.
1297 static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc,
1298 FieldDecl *Field, DeclContext *UsedContext) {
1299 return new (Ctx) CXXDefaultInitExpr(Ctx, Loc, Field, Field->getType(), UsedContext);
1300 }
1301
1302 /// Get the field whose initializer will be used.
1303 FieldDecl *getField() { return Field; }
1304 const FieldDecl *getField() const { return Field; }
1305
1306 /// Get the initialization expression that will be used.
1307 const Expr *getExpr() const {
1308 assert(Field->getInClassInitializer() && "initializer hasn't been parsed")((Field->getInClassInitializer() && "initializer hasn't been parsed"
) ? static_cast<void> (0) : __assert_fail ("Field->getInClassInitializer() && \"initializer hasn't been parsed\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1308, __PRETTY_FUNCTION__))
;
1309 return Field->getInClassInitializer();
1310 }
1311 Expr *getExpr() {
1312 assert(Field->getInClassInitializer() && "initializer hasn't been parsed")((Field->getInClassInitializer() && "initializer hasn't been parsed"
) ? static_cast<void> (0) : __assert_fail ("Field->getInClassInitializer() && \"initializer hasn't been parsed\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1312, __PRETTY_FUNCTION__))
;
1313 return Field->getInClassInitializer();
1314 }
1315
1316 const DeclContext *getUsedContext() const { return UsedContext; }
1317 DeclContext *getUsedContext() { return UsedContext; }
1318
1319 /// Retrieve the location where this default initializer expression was
1320 /// actually used.
1321 SourceLocation getUsedLocation() const { return getBeginLoc(); }
1322
1323 SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; }
1324 SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }
1325
1326 static bool classof(const Stmt *T) {
1327 return T->getStmtClass() == CXXDefaultInitExprClass;
1328 }
1329
1330 // Iterators
1331 child_range children() {
1332 return child_range(child_iterator(), child_iterator());
1333 }
1334
1335 const_child_range children() const {
1336 return const_child_range(const_child_iterator(), const_child_iterator());
1337 }
1338};
1339
1340/// Represents a C++ temporary.
1341class CXXTemporary {
1342 /// The destructor that needs to be called.
1343 const CXXDestructorDecl *Destructor;
1344
1345 explicit CXXTemporary(const CXXDestructorDecl *destructor)
1346 : Destructor(destructor) {}
1347
1348public:
1349 static CXXTemporary *Create(const ASTContext &C,
1350 const CXXDestructorDecl *Destructor);
1351
1352 const CXXDestructorDecl *getDestructor() const { return Destructor; }
1353
1354 void setDestructor(const CXXDestructorDecl *Dtor) {
1355 Destructor = Dtor;
1356 }
1357};
1358
1359/// Represents binding an expression to a temporary.
1360///
1361/// This ensures the destructor is called for the temporary. It should only be
1362/// needed for non-POD, non-trivially destructable class types. For example:
1363///
1364/// \code
1365/// struct S {
1366/// S() { } // User defined constructor makes S non-POD.
1367/// ~S() { } // User defined destructor makes it non-trivial.
1368/// };
1369/// void test() {
1370/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1371/// }
1372/// \endcode
1373class CXXBindTemporaryExpr : public Expr {
1374 CXXTemporary *Temp = nullptr;
1375 Stmt *SubExpr = nullptr;
1376
1377 CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1378 : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1379 VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1380 SubExpr->isValueDependent(),
1381 SubExpr->isInstantiationDependent(),
1382 SubExpr->containsUnexpandedParameterPack()),
1383 Temp(temp), SubExpr(SubExpr) {}
1384
1385public:
1386 CXXBindTemporaryExpr(EmptyShell Empty)
1387 : Expr(CXXBindTemporaryExprClass, Empty) {}
1388
1389 static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1390 Expr* SubExpr);
1391
1392 CXXTemporary *getTemporary() { return Temp; }
1393 const CXXTemporary *getTemporary() const { return Temp; }
1394 void setTemporary(CXXTemporary *T) { Temp = T; }
1395
1396 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1397 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1398 void setSubExpr(Expr *E) { SubExpr = E; }
1399
1400 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
1401 return SubExpr->getBeginLoc();
1402 }
1403
1404 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
1405 return SubExpr->getEndLoc();
1406 }
1407
1408 // Implement isa/cast/dyncast/etc.
1409 static bool classof(const Stmt *T) {
1410 return T->getStmtClass() == CXXBindTemporaryExprClass;
1411 }
1412
1413 // Iterators
1414 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1415
1416 const_child_range children() const {
1417 return const_child_range(&SubExpr, &SubExpr + 1);
1418 }
1419};
1420
1421/// Represents a call to a C++ constructor.
1422class CXXConstructExpr : public Expr {
1423 friend class ASTStmtReader;
1424
1425public:
1426 enum ConstructionKind {
1427 CK_Complete,
1428 CK_NonVirtualBase,
1429 CK_VirtualBase,
1430 CK_Delegating
1431 };
1432
1433private:
1434 /// A pointer to the constructor which will be ultimately called.
1435 CXXConstructorDecl *Constructor;
1436
1437 SourceRange ParenOrBraceRange;
1438
1439 /// The number of arguments.
1440 unsigned NumArgs;
1441
1442 // We would like to stash the arguments of the constructor call after
1443 // CXXConstructExpr. However CXXConstructExpr is used as a base class of
1444 // CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects
1445 // impossible.
1446 //
1447 // Instead we manually stash the trailing object after the full object
1448 // containing CXXConstructExpr (that is either CXXConstructExpr or
1449 // CXXTemporaryObjectExpr).
1450 //
1451 // The trailing objects are:
1452 //
1453 // * An array of getNumArgs() "Stmt *" for the arguments of the
1454 // constructor call.
1455
1456 /// Return a pointer to the start of the trailing arguments.
1457 /// Defined just after CXXTemporaryObjectExpr.
1458 inline Stmt **getTrailingArgs();
1459 const Stmt *const *getTrailingArgs() const {
1460 return const_cast<CXXConstructExpr *>(this)->getTrailingArgs();
1461 }
1462
1463protected:
1464 /// Build a C++ construction expression.
1465 CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc,
1466 CXXConstructorDecl *Ctor, bool Elidable,
1467 ArrayRef<Expr *> Args, bool HadMultipleCandidates,
1468 bool ListInitialization, bool StdInitListInitialization,
1469 bool ZeroInitialization, ConstructionKind ConstructKind,
1470 SourceRange ParenOrBraceRange);
1471
1472 /// Build an empty C++ construction expression.
1473 CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);
1474
1475 /// Return the size in bytes of the trailing objects. Used by
1476 /// CXXTemporaryObjectExpr to allocate the right amount of storage.
1477 static unsigned sizeOfTrailingObjects(unsigned NumArgs) {
1478 return NumArgs * sizeof(Stmt *);
1479 }
1480
1481public:
1482 /// Create a C++ construction expression.
1483 static CXXConstructExpr *
1484 Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
1485 CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
1486 bool HadMultipleCandidates, bool ListInitialization,
1487 bool StdInitListInitialization, bool ZeroInitialization,
1488 ConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
1489
1490 /// Create an empty C++ construction expression.
1491 static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
1492
1493 /// Get the constructor that this expression will (ultimately) call.
1494 CXXConstructorDecl *getConstructor() const { return Constructor; }
1495
1496 SourceLocation getLocation() const { return CXXConstructExprBits.Loc; }
1497 void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }
1498
1499 /// Whether this construction is elidable.
1500 bool isElidable() const { return CXXConstructExprBits.Elidable; }
1501 void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }
1502
1503 /// Whether the referred constructor was resolved from
1504 /// an overloaded set having size greater than 1.
1505 bool hadMultipleCandidates() const {
1506 return CXXConstructExprBits.HadMultipleCandidates;
1507 }
1508 void setHadMultipleCandidates(bool V) {
1509 CXXConstructExprBits.HadMultipleCandidates = V;
1510 }
1511
1512 /// Whether this constructor call was written as list-initialization.
1513 bool isListInitialization() const {
1514 return CXXConstructExprBits.ListInitialization;
1515 }
1516 void setListInitialization(bool V) {
1517 CXXConstructExprBits.ListInitialization = V;
1518 }
1519
1520 /// Whether this constructor call was written as list-initialization,
1521 /// but was interpreted as forming a std::initializer_list<T> from the list
1522 /// and passing that as a single constructor argument.
1523 /// See C++11 [over.match.list]p1 bullet 1.
1524 bool isStdInitListInitialization() const {
1525 return CXXConstructExprBits.StdInitListInitialization;
1526 }
1527 void setStdInitListInitialization(bool V) {
1528 CXXConstructExprBits.StdInitListInitialization = V;
1529 }
1530
1531 /// Whether this construction first requires
1532 /// zero-initialization before the initializer is called.
1533 bool requiresZeroInitialization() const {
1534 return CXXConstructExprBits.ZeroInitialization;
1535 }
1536 void setRequiresZeroInitialization(bool ZeroInit) {
1537 CXXConstructExprBits.ZeroInitialization = ZeroInit;
1538 }
1539
1540 /// Determine whether this constructor is actually constructing
1541 /// a base class (rather than a complete object).
1542 ConstructionKind getConstructionKind() const {
1543 return static_cast<ConstructionKind>(CXXConstructExprBits.ConstructionKind);
1544 }
1545 void setConstructionKind(ConstructionKind CK) {
1546 CXXConstructExprBits.ConstructionKind = CK;
1547 }
1548
1549 using arg_iterator = ExprIterator;
1550 using const_arg_iterator = ConstExprIterator;
1551 using arg_range = llvm::iterator_range<arg_iterator>;
1552 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
1553
1554 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
1555 const_arg_range arguments() const {
1556 return const_arg_range(arg_begin(), arg_end());
1557 }
1558
1559 arg_iterator arg_begin() { return getTrailingArgs(); }
1560 arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
1561 const_arg_iterator arg_begin() const { return getTrailingArgs(); }
1562 const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
1563
1564 Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); }
1565 const Expr *const *getArgs() const {
1566 return reinterpret_cast<const Expr *const *>(getTrailingArgs());
1567 }
1568
1569 /// Return the number of arguments to the constructor call.
1570 unsigned getNumArgs() const { return NumArgs; }
1571
1572 /// Return the specified argument.
1573 Expr *getArg(unsigned Arg) {
1574 assert(Arg < getNumArgs() && "Arg access out of range!")((Arg < getNumArgs() && "Arg access out of range!"
) ? static_cast<void> (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1574, __PRETTY_FUNCTION__))
;
1575 return getArgs()[Arg];
1576 }
1577 const Expr *getArg(unsigned Arg) const {
1578 assert(Arg < getNumArgs() && "Arg access out of range!")((Arg < getNumArgs() && "Arg access out of range!"
) ? static_cast<void> (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1578, __PRETTY_FUNCTION__))
;
1579 return getArgs()[Arg];
1580 }
1581
1582 /// Set the specified argument.
1583 void setArg(unsigned Arg, Expr *ArgExpr) {
1584 assert(Arg < getNumArgs() && "Arg access out of range!")((Arg < getNumArgs() && "Arg access out of range!"
) ? static_cast<void> (0) : __assert_fail ("Arg < getNumArgs() && \"Arg access out of range!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1584, __PRETTY_FUNCTION__))
;
1585 getArgs()[Arg] = ArgExpr;
1586 }
1587
1588 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1589 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1590 SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1591 void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1592
1593 static bool classof(const Stmt *T) {
1594 return T->getStmtClass() == CXXConstructExprClass ||
1595 T->getStmtClass() == CXXTemporaryObjectExprClass;
1596 }
1597
1598 // Iterators
1599 child_range children() {
1600 return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs());
1601 }
1602
1603 const_child_range children() const {
1604 auto Children = const_cast<CXXConstructExpr *>(this)->children();
1605 return const_child_range(Children.begin(), Children.end());
1606 }
1607};
1608
1609/// Represents a call to an inherited base class constructor from an
1610/// inheriting constructor. This call implicitly forwards the arguments from
1611/// the enclosing context (an inheriting constructor) to the specified inherited
1612/// base class constructor.
1613class CXXInheritedCtorInitExpr : public Expr {
1614private:
1615 CXXConstructorDecl *Constructor = nullptr;
1616
1617 /// The location of the using declaration.
1618 SourceLocation Loc;
1619
1620 /// Whether this is the construction of a virtual base.
1621 unsigned ConstructsVirtualBase : 1;
1622
1623 /// Whether the constructor is inherited from a virtual base class of the
1624 /// class that we construct.
1625 unsigned InheritedFromVirtualBase : 1;
1626
1627public:
1628 friend class ASTStmtReader;
1629
1630 /// Construct a C++ inheriting construction expression.
1631 CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
1632 CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
1633 bool InheritedFromVirtualBase)
1634 : Expr(CXXInheritedCtorInitExprClass, T, VK_RValue, OK_Ordinary, false,
1635 false, false, false),
1636 Constructor(Ctor), Loc(Loc),
1637 ConstructsVirtualBase(ConstructsVirtualBase),
1638 InheritedFromVirtualBase(InheritedFromVirtualBase) {
1639 assert(!T->isDependentType())((!T->isDependentType()) ? static_cast<void> (0) : __assert_fail
("!T->isDependentType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1639, __PRETTY_FUNCTION__))
;
1640 }
1641
1642 /// Construct an empty C++ inheriting construction expression.
1643 explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
1644 : Expr(CXXInheritedCtorInitExprClass, Empty),
1645 ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}
1646
1647 /// Get the constructor that this expression will call.
1648 CXXConstructorDecl *getConstructor() const { return Constructor; }
1649
1650 /// Determine whether this constructor is actually constructing
1651 /// a base class (rather than a complete object).
1652 bool constructsVBase() const { return ConstructsVirtualBase; }
1653 CXXConstructExpr::ConstructionKind getConstructionKind() const {
1654 return ConstructsVirtualBase ? CXXConstructExpr::CK_VirtualBase
1655 : CXXConstructExpr::CK_NonVirtualBase;
1656 }
1657
1658 /// Determine whether the inherited constructor is inherited from a
1659 /// virtual base of the object we construct. If so, we are not responsible
1660 /// for calling the inherited constructor (the complete object constructor
1661 /// does that), and so we don't need to pass any arguments.
1662 bool inheritedFromVBase() const { return InheritedFromVirtualBase; }
1663
1664 SourceLocation getLocation() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1665 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1666 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
1667
1668 static bool classof(const Stmt *T) {
1669 return T->getStmtClass() == CXXInheritedCtorInitExprClass;
1670 }
1671
1672 child_range children() {
1673 return child_range(child_iterator(), child_iterator());
1674 }
1675
1676 const_child_range children() const {
1677 return const_child_range(const_child_iterator(), const_child_iterator());
1678 }
1679};
1680
1681/// Represents an explicit C++ type conversion that uses "functional"
1682/// notation (C++ [expr.type.conv]).
1683///
1684/// Example:
1685/// \code
1686/// x = int(0.5);
1687/// \endcode
1688class CXXFunctionalCastExpr final
1689 : public ExplicitCastExpr,
1690 private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *> {
1691 SourceLocation LParenLoc;
1692 SourceLocation RParenLoc;
1693
1694 CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1695 TypeSourceInfo *writtenTy,
1696 CastKind kind, Expr *castExpr, unsigned pathSize,
1697 SourceLocation lParenLoc, SourceLocation rParenLoc)
1698 : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1699 castExpr, pathSize, writtenTy),
1700 LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1701
1702 explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1703 : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) {}
1704
1705public:
1706 friend class CastExpr;
1707 friend TrailingObjects;
1708
1709 static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
1710 ExprValueKind VK,
1711 TypeSourceInfo *Written,
1712 CastKind Kind, Expr *Op,
1713 const CXXCastPath *Path,
1714 SourceLocation LPLoc,
1715 SourceLocation RPLoc);
1716 static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
1717 unsigned PathSize);
1718
1719 SourceLocation getLParenLoc() const { return LParenLoc; }
1720 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1721 SourceLocation getRParenLoc() const { return RParenLoc; }
1722 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1723
1724 /// Determine whether this expression models list-initialization.
1725 bool isListInitialization() const { return LParenLoc.isInvalid(); }
1726
1727 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1728 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1729
1730 static bool classof(const Stmt *T) {
1731 return T->getStmtClass() == CXXFunctionalCastExprClass;
1732 }
1733};
1734
1735/// Represents a C++ functional cast expression that builds a
1736/// temporary object.
1737///
1738/// This expression type represents a C++ "functional" cast
1739/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1740/// constructor to build a temporary object. With N == 1 arguments the
1741/// functional cast expression will be represented by CXXFunctionalCastExpr.
1742/// Example:
1743/// \code
1744/// struct X { X(int, float); }
1745///
1746/// X create_X() {
1747/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1748/// };
1749/// \endcode
1750class CXXTemporaryObjectExpr final : public CXXConstructExpr {
1751 friend class ASTStmtReader;
1752
1753 // CXXTemporaryObjectExpr has some trailing objects belonging
1754 // to CXXConstructExpr. See the comment inside CXXConstructExpr
1755 // for more details.
1756
1757 TypeSourceInfo *TSI;
1758
1759 CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty,
1760 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1761 SourceRange ParenOrBraceRange,
1762 bool HadMultipleCandidates, bool ListInitialization,
1763 bool StdInitListInitialization,
1764 bool ZeroInitialization);
1765
1766 CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);
1767
1768public:
1769 static CXXTemporaryObjectExpr *
1770 Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
1771 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1772 SourceRange ParenOrBraceRange, bool HadMultipleCandidates,
1773 bool ListInitialization, bool StdInitListInitialization,
1774 bool ZeroInitialization);
1775
1776 static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx,
1777 unsigned NumArgs);
1778
1779 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
1780
1781 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
1782 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
1783
1784 static bool classof(const Stmt *T) {
1785 return T->getStmtClass() == CXXTemporaryObjectExprClass;
1786 }
1787};
1788
1789Stmt **CXXConstructExpr::getTrailingArgs() {
1790 if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this))
1791 return reinterpret_cast<Stmt **>(E + 1);
1792 assert((getStmtClass() == CXXConstructExprClass) &&(((getStmtClass() == CXXConstructExprClass) && "Unexpected class deriving from CXXConstructExpr!"
) ? static_cast<void> (0) : __assert_fail ("(getStmtClass() == CXXConstructExprClass) && \"Unexpected class deriving from CXXConstructExpr!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1793, __PRETTY_FUNCTION__))
1793 "Unexpected class deriving from CXXConstructExpr!")(((getStmtClass() == CXXConstructExprClass) && "Unexpected class deriving from CXXConstructExpr!"
) ? static_cast<void> (0) : __assert_fail ("(getStmtClass() == CXXConstructExprClass) && \"Unexpected class deriving from CXXConstructExpr!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 1793, __PRETTY_FUNCTION__))
;
1794 return reinterpret_cast<Stmt **>(this + 1);
1795}
1796
1797/// A C++ lambda expression, which produces a function object
1798/// (of unspecified type) that can be invoked later.
1799///
1800/// Example:
1801/// \code
1802/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1803/// values.erase(std::remove_if(values.begin(), values.end(),
1804/// [=](double value) { return value > cutoff; });
1805/// }
1806/// \endcode
1807///
1808/// C++11 lambda expressions can capture local variables, either by copying
1809/// the values of those local variables at the time the function
1810/// object is constructed (not when it is called!) or by holding a
1811/// reference to the local variable. These captures can occur either
1812/// implicitly or can be written explicitly between the square
1813/// brackets ([...]) that start the lambda expression.
1814///
1815/// C++1y introduces a new form of "capture" called an init-capture that
1816/// includes an initializing expression (rather than capturing a variable),
1817/// and which can never occur implicitly.
1818class LambdaExpr final : public Expr,
1819 private llvm::TrailingObjects<LambdaExpr, Stmt *> {
1820 /// The source range that covers the lambda introducer ([...]).
1821 SourceRange IntroducerRange;
1822
1823 /// The source location of this lambda's capture-default ('=' or '&').
1824 SourceLocation CaptureDefaultLoc;
1825
1826 /// The number of captures.
1827 unsigned NumCaptures : 16;
1828
1829 /// The default capture kind, which is a value of type
1830 /// LambdaCaptureDefault.
1831 unsigned CaptureDefault : 2;
1832
1833 /// Whether this lambda had an explicit parameter list vs. an
1834 /// implicit (and empty) parameter list.
1835 unsigned ExplicitParams : 1;
1836
1837 /// Whether this lambda had the result type explicitly specified.
1838 unsigned ExplicitResultType : 1;
1839
1840 /// The location of the closing brace ('}') that completes
1841 /// the lambda.
1842 ///
1843 /// The location of the brace is also available by looking up the
1844 /// function call operator in the lambda class. However, it is
1845 /// stored here to improve the performance of getSourceRange(), and
1846 /// to avoid having to deserialize the function call operator from a
1847 /// module file just to determine the source range.
1848 SourceLocation ClosingBrace;
1849
1850 /// Construct a lambda expression.
1851 LambdaExpr(QualType T, SourceRange IntroducerRange,
1852 LambdaCaptureDefault CaptureDefault,
1853 SourceLocation CaptureDefaultLoc, ArrayRef<LambdaCapture> Captures,
1854 bool ExplicitParams, bool ExplicitResultType,
1855 ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace,
1856 bool ContainsUnexpandedParameterPack);
1857
1858 /// Construct an empty lambda expression.
1859 LambdaExpr(EmptyShell Empty, unsigned NumCaptures)
1860 : Expr(LambdaExprClass, Empty), NumCaptures(NumCaptures),
1861 CaptureDefault(LCD_None), ExplicitParams(false),
1862 ExplicitResultType(false) {
1863 getStoredStmts()[NumCaptures] = nullptr;
1864 }
1865
1866 Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
1867
1868 Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
1869
1870public:
1871 friend class ASTStmtReader;
1872 friend class ASTStmtWriter;
1873 friend TrailingObjects;
1874
1875 /// Construct a new lambda expression.
1876 static LambdaExpr *
1877 Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
1878 LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
1879 ArrayRef<LambdaCapture> Captures, bool ExplicitParams,
1880 bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
1881 SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
1882
1883 /// Construct a new lambda expression that will be deserialized from
1884 /// an external source.
1885 static LambdaExpr *CreateDeserialized(const ASTContext &C,
1886 unsigned NumCaptures);
1887
1888 /// Determine the default capture kind for this lambda.
1889 LambdaCaptureDefault getCaptureDefault() const {
1890 return static_cast<LambdaCaptureDefault>(CaptureDefault);
1891 }
1892
1893 /// Retrieve the location of this lambda's capture-default, if any.
1894 SourceLocation getCaptureDefaultLoc() const {
1895 return CaptureDefaultLoc;
1896 }
1897
1898 /// Determine whether one of this lambda's captures is an init-capture.
1899 bool isInitCapture(const LambdaCapture *Capture) const;
1900
1901 /// An iterator that walks over the captures of the lambda,
1902 /// both implicit and explicit.
1903 using capture_iterator = const LambdaCapture *;
1904
1905 /// An iterator over a range of lambda captures.
1906 using capture_range = llvm::iterator_range<capture_iterator>;
1907
1908 /// Retrieve this lambda's captures.
1909 capture_range captures() const;
1910
1911 /// Retrieve an iterator pointing to the first lambda capture.
1912 capture_iterator capture_begin() const;
1913
1914 /// Retrieve an iterator pointing past the end of the
1915 /// sequence of lambda captures.
1916 capture_iterator capture_end() const;
1917
1918 /// Determine the number of captures in this lambda.
1919 unsigned capture_size() const { return NumCaptures; }
1920
1921 /// Retrieve this lambda's explicit captures.
1922 capture_range explicit_captures() const;
1923
1924 /// Retrieve an iterator pointing to the first explicit
1925 /// lambda capture.
1926 capture_iterator explicit_capture_begin() const;
1927
1928 /// Retrieve an iterator pointing past the end of the sequence of
1929 /// explicit lambda captures.
1930 capture_iterator explicit_capture_end() const;
1931
1932 /// Retrieve this lambda's implicit captures.
1933 capture_range implicit_captures() const;
1934
1935 /// Retrieve an iterator pointing to the first implicit
1936 /// lambda capture.
1937 capture_iterator implicit_capture_begin() const;
1938
1939 /// Retrieve an iterator pointing past the end of the sequence of
1940 /// implicit lambda captures.
1941 capture_iterator implicit_capture_end() const;
1942
1943 /// Iterator that walks over the capture initialization
1944 /// arguments.
1945 using capture_init_iterator = Expr **;
1946
1947 /// Const iterator that walks over the capture initialization
1948 /// arguments.
1949 using const_capture_init_iterator = Expr *const *;
1950
1951 /// Retrieve the initialization expressions for this lambda's captures.
1952 llvm::iterator_range<capture_init_iterator> capture_inits() {
1953 return llvm::make_range(capture_init_begin(), capture_init_end());
1954 }
1955
1956 /// Retrieve the initialization expressions for this lambda's captures.
1957 llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
1958 return llvm::make_range(capture_init_begin(), capture_init_end());
1959 }
1960
1961 /// Retrieve the first initialization argument for this
1962 /// lambda expression (which initializes the first capture field).
1963 capture_init_iterator capture_init_begin() {
1964 return reinterpret_cast<Expr **>(getStoredStmts());
1965 }
1966
1967 /// Retrieve the first initialization argument for this
1968 /// lambda expression (which initializes the first capture field).
1969 const_capture_init_iterator capture_init_begin() const {
1970 return reinterpret_cast<Expr *const *>(getStoredStmts());
1971 }
1972
1973 /// Retrieve the iterator pointing one past the last
1974 /// initialization argument for this lambda expression.
1975 capture_init_iterator capture_init_end() {
1976 return capture_init_begin() + NumCaptures;
1977 }
1978
1979 /// Retrieve the iterator pointing one past the last
1980 /// initialization argument for this lambda expression.
1981 const_capture_init_iterator capture_init_end() const {
1982 return capture_init_begin() + NumCaptures;
1983 }
1984
1985 /// Retrieve the source range covering the lambda introducer,
1986 /// which contains the explicit capture list surrounded by square
1987 /// brackets ([...]).
1988 SourceRange getIntroducerRange() const { return IntroducerRange; }
1989
1990 /// Retrieve the class that corresponds to the lambda.
1991 ///
1992 /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1993 /// captures in its fields and provides the various operations permitted
1994 /// on a lambda (copying, calling).
1995 CXXRecordDecl *getLambdaClass() const;
1996
1997 /// Retrieve the function call operator associated with this
1998 /// lambda expression.
1999 CXXMethodDecl *getCallOperator() const;
2000
2001 /// Retrieve the function template call operator associated with this
2002 /// lambda expression.
2003 FunctionTemplateDecl *getDependentCallOperator() const;
2004
2005 /// If this is a generic lambda expression, retrieve the template
2006 /// parameter list associated with it, or else return null.
2007 TemplateParameterList *getTemplateParameterList() const;
2008
2009 /// Get the template parameters were explicitly specified (as opposed to being
2010 /// invented by use of an auto parameter).
2011 ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;
2012
2013 /// Whether this is a generic lambda.
2014 bool isGenericLambda() const { return getTemplateParameterList(); }
2015
2016 /// Retrieve the body of the lambda.
2017 CompoundStmt *getBody() const;
2018
2019 /// Determine whether the lambda is mutable, meaning that any
2020 /// captures values can be modified.
2021 bool isMutable() const;
2022
2023 /// Determine whether this lambda has an explicit parameter
2024 /// list vs. an implicit (empty) parameter list.
2025 bool hasExplicitParameters() const { return ExplicitParams; }
2026
2027 /// Whether this lambda had its result type explicitly specified.
2028 bool hasExplicitResultType() const { return ExplicitResultType; }
2029
2030 static bool classof(const Stmt *T) {
2031 return T->getStmtClass() == LambdaExprClass;
2032 }
2033
2034 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
2035 return IntroducerRange.getBegin();
2036 }
2037
2038 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return ClosingBrace; }
2039
2040 child_range children() {
2041 // Includes initialization exprs plus body stmt
2042 return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
2043 }
2044
2045 const_child_range children() const {
2046 return const_child_range(getStoredStmts(),
2047 getStoredStmts() + NumCaptures + 1);
2048 }
2049};
2050
2051/// An expression "T()" which creates a value-initialized rvalue of type
2052/// T, which is a non-class type. See (C++98 [5.2.3p2]).
2053class CXXScalarValueInitExpr : public Expr {
2054 friend class ASTStmtReader;
2055
2056 TypeSourceInfo *TypeInfo;
2057
2058public:
2059 /// Create an explicitly-written scalar-value initialization
2060 /// expression.
2061 CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
2062 SourceLocation RParenLoc)
2063 : Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary, false,
2064 false, Type->isInstantiationDependentType(),
2065 Type->containsUnexpandedParameterPack()),
2066 TypeInfo(TypeInfo) {
2067 CXXScalarValueInitExprBits.RParenLoc = RParenLoc;
2068 }
2069
2070 explicit CXXScalarValueInitExpr(EmptyShell Shell)
2071 : Expr(CXXScalarValueInitExprClass, Shell) {}
2072
2073 TypeSourceInfo *getTypeSourceInfo() const {
2074 return TypeInfo;
2075 }
2076
2077 SourceLocation getRParenLoc() const {
2078 return CXXScalarValueInitExprBits.RParenLoc;
2079 }
2080
2081 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
2082 SourceLocation getEndLoc() const { return getRParenLoc(); }
2083
2084 static bool classof(const Stmt *T) {
2085 return T->getStmtClass() == CXXScalarValueInitExprClass;
2086 }
2087
2088 // Iterators
2089 child_range children() {
2090 return child_range(child_iterator(), child_iterator());
2091 }
2092
2093 const_child_range children() const {
2094 return const_child_range(const_child_iterator(), const_child_iterator());
2095 }
2096};
2097
2098/// Represents a new-expression for memory allocation and constructor
2099/// calls, e.g: "new CXXNewExpr(foo)".
2100class CXXNewExpr final
2101 : public Expr,
2102 private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> {
2103 friend class ASTStmtReader;
2104 friend class ASTStmtWriter;
2105 friend TrailingObjects;
2106
2107 /// Points to the allocation function used.
2108 FunctionDecl *OperatorNew;
2109
2110 /// Points to the deallocation function used in case of error. May be null.
2111 FunctionDecl *OperatorDelete;
2112
2113 /// The allocated type-source information, as written in the source.
2114 TypeSourceInfo *AllocatedTypeInfo;
2115
2116 /// Range of the entire new expression.
2117 SourceRange Range;
2118
2119 /// Source-range of a paren-delimited initializer.
2120 SourceRange DirectInitRange;
2121
2122 // CXXNewExpr is followed by several optional trailing objects.
2123 // They are in order:
2124 //
2125 // * An optional "Stmt *" for the array size expression.
2126 // Present if and ony if isArray().
2127 //
2128 // * An optional "Stmt *" for the init expression.
2129 // Present if and only if hasInitializer().
2130 //
2131 // * An array of getNumPlacementArgs() "Stmt *" for the placement new
2132 // arguments, if any.
2133 //
2134 // * An optional SourceRange for the range covering the parenthesized type-id
2135 // if the allocated type was expressed as a parenthesized type-id.
2136 // Present if and only if isParenTypeId().
2137 unsigned arraySizeOffset() const { return 0; }
2138 unsigned initExprOffset() const { return arraySizeOffset() + isArray(); }
2139 unsigned placementNewArgsOffset() const {
2140 return initExprOffset() + hasInitializer();
2141 }
2142
2143 unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
2144 return isArray() + hasInitializer() + getNumPlacementArgs();
2145 }
2146
2147 unsigned numTrailingObjects(OverloadToken<SourceRange>) const {
2148 return isParenTypeId();
2149 }
2150
2151public:
2152 enum InitializationStyle {
2153 /// New-expression has no initializer as written.
2154 NoInit,
2155
2156 /// New-expression has a C++98 paren-delimited initializer.
2157 CallInit,
2158
2159 /// New-expression has a C++11 list-initializer.
2160 ListInit
2161 };
2162
2163private:
2164 /// Build a c++ new expression.
2165 CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
2166 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2167 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2168 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2169 InitializationStyle InitializationStyle, Expr *Initializer,
2170 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2171 SourceRange DirectInitRange);
2172
2173 /// Build an empty c++ new expression.
2174 CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs,
2175 bool IsParenTypeId);
2176
2177public:
2178 /// Create a c++ new expression.
2179 static CXXNewExpr *
2180 Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew,
2181 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2182 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2183 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2184 InitializationStyle InitializationStyle, Expr *Initializer,
2185 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2186 SourceRange DirectInitRange);
2187
2188 /// Create an empty c++ new expression.
2189 static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray,
2190 bool HasInit, unsigned NumPlacementArgs,
2191 bool IsParenTypeId);
2192
2193 QualType getAllocatedType() const {
2194 return getType()->castAs<PointerType>()->getPointeeType();
2195 }
2196
2197 TypeSourceInfo *getAllocatedTypeSourceInfo() const {
2198 return AllocatedTypeInfo;
2199 }
2200
2201 /// True if the allocation result needs to be null-checked.
2202 ///
2203 /// C++11 [expr.new]p13:
2204 /// If the allocation function returns null, initialization shall
2205 /// not be done, the deallocation function shall not be called,
2206 /// and the value of the new-expression shall be null.
2207 ///
2208 /// C++ DR1748:
2209 /// If the allocation function is a reserved placement allocation
2210 /// function that returns null, the behavior is undefined.
2211 ///
2212 /// An allocation function is not allowed to return null unless it
2213 /// has a non-throwing exception-specification. The '03 rule is
2214 /// identical except that the definition of a non-throwing
2215 /// exception specification is just "is it throw()?".
2216 bool shouldNullCheckAllocation() const;
2217
2218 FunctionDecl *getOperatorNew() const { return OperatorNew; }
2219 void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
2220 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2221 void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
2222
2223 bool isArray() const { return CXXNewExprBits.IsArray; }
2224
2225 Optional<Expr *> getArraySize() {
2226 if (!isArray())
2227 return None;
2228 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2229 }
2230 Optional<const Expr *> getArraySize() const {
2231 if (!isArray())
2232 return None;
2233 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2234 }
2235
2236 unsigned getNumPlacementArgs() const {
2237 return CXXNewExprBits.NumPlacementArgs;
2238 }
2239
2240 Expr **getPlacementArgs() {
2241 return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() +
2242 placementNewArgsOffset());
2243 }
2244
2245 Expr *getPlacementArg(unsigned I) {
2246 assert((I < getNumPlacementArgs()) && "Index out of range!")(((I < getNumPlacementArgs()) && "Index out of range!"
) ? static_cast<void> (0) : __assert_fail ("(I < getNumPlacementArgs()) && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 2246, __PRETTY_FUNCTION__))
;
2247 return getPlacementArgs()[I];
2248 }
2249 const Expr *getPlacementArg(unsigned I) const {
2250 return const_cast<CXXNewExpr *>(this)->getPlacementArg(I);
2251 }
2252
2253 bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; }
2254 SourceRange getTypeIdParens() const {
2255 return isParenTypeId() ? getTrailingObjects<SourceRange>()[0]
2256 : SourceRange();
2257 }
2258
2259 bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }
2260
2261 /// Whether this new-expression has any initializer at all.
2262 bool hasInitializer() const {
2263 return CXXNewExprBits.StoredInitializationStyle > 0;
26
Assuming field 'StoredInitializationStyle' is > 0
27
Returning the value 1, which participates in a condition later
2264 }
2265
2266 /// The kind of initializer this new-expression has.
2267 InitializationStyle getInitializationStyle() const {
2268 if (CXXNewExprBits.StoredInitializationStyle == 0)
2269 return NoInit;
2270 return static_cast<InitializationStyle>(
2271 CXXNewExprBits.StoredInitializationStyle - 1);
2272 }
2273
2274 /// The initializer of this new-expression.
2275 Expr *getInitializer() {
2276 return hasInitializer()
2277 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2278 : nullptr;
2279 }
2280 const Expr *getInitializer() const {
2281 return hasInitializer()
2282 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2283 : nullptr;
2284 }
2285
2286 /// Returns the CXXConstructExpr from this new-expression, or null.
2287 const CXXConstructExpr *getConstructExpr() const {
2288 return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
2289 }
2290
2291 /// Indicates whether the required alignment should be implicitly passed to
2292 /// the allocation function.
2293 bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }
2294
2295 /// Answers whether the usual array deallocation function for the
2296 /// allocated type expects the size of the allocation as a
2297 /// parameter.
2298 bool doesUsualArrayDeleteWantSize() const {
2299 return CXXNewExprBits.UsualArrayDeleteWantsSize;
2300 }
2301
2302 using arg_iterator = ExprIterator;
2303 using const_arg_iterator = ConstExprIterator;
2304
2305 llvm::iterator_range<arg_iterator> placement_arguments() {
2306 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2307 }
2308
2309 llvm::iterator_range<const_arg_iterator> placement_arguments() const {
2310 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2311 }
2312
2313 arg_iterator placement_arg_begin() {
2314 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2315 }
2316 arg_iterator placement_arg_end() {
2317 return placement_arg_begin() + getNumPlacementArgs();
2318 }
2319 const_arg_iterator placement_arg_begin() const {
2320 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2321 }
2322 const_arg_iterator placement_arg_end() const {
2323 return placement_arg_begin() + getNumPlacementArgs();
2324 }
2325
2326 using raw_arg_iterator = Stmt **;
2327
2328 raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); }
2329 raw_arg_iterator raw_arg_end() {
2330 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2331 }
2332 const_arg_iterator raw_arg_begin() const {
2333 return getTrailingObjects<Stmt *>();
2334 }
2335 const_arg_iterator raw_arg_end() const {
2336 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2337 }
2338
2339 SourceLocation getBeginLoc() const { return Range.getBegin(); }
2340 SourceLocation getEndLoc() const { return Range.getEnd(); }
2341
2342 SourceRange getDirectInitRange() const { return DirectInitRange; }
2343 SourceRange getSourceRange() const { return Range; }
2344
2345 static bool classof(const Stmt *T) {
2346 return T->getStmtClass() == CXXNewExprClass;
2347 }
2348
2349 // Iterators
2350 child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }
2351
2352 const_child_range children() const {
2353 return const_child_range(const_cast<CXXNewExpr *>(this)->children());
2354 }
2355};
2356
2357/// Represents a \c delete expression for memory deallocation and
2358/// destructor calls, e.g. "delete[] pArray".
2359class CXXDeleteExpr : public Expr {
2360 friend class ASTStmtReader;
2361
2362 /// Points to the operator delete overload that is used. Could be a member.
2363 FunctionDecl *OperatorDelete = nullptr;
2364
2365 /// The pointer expression to be deleted.
2366 Stmt *Argument = nullptr;
2367
2368public:
2369 CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm,
2370 bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize,
2371 FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc)
2372 : Expr(CXXDeleteExprClass, Ty, VK_RValue, OK_Ordinary, false,
2373 Arg->isValueDependent(), Arg->isInstantiationDependent(),
2374 Arg->containsUnexpandedParameterPack()),
2375 OperatorDelete(OperatorDelete), Argument(Arg) {
2376 CXXDeleteExprBits.GlobalDelete = GlobalDelete;
2377 CXXDeleteExprBits.ArrayForm = ArrayForm;
2378 CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten;
2379 CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
2380 CXXDeleteExprBits.Loc = Loc;
2381 }
2382
2383 explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}
2384
2385 bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; }
2386 bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; }
2387 bool isArrayFormAsWritten() const {
2388 return CXXDeleteExprBits.ArrayFormAsWritten;
2389 }
2390
2391 /// Answers whether the usual array deallocation function for the
2392 /// allocated type expects the size of the allocation as a
2393 /// parameter. This can be true even if the actual deallocation
2394 /// function that we're using doesn't want a size.
2395 bool doesUsualArrayDeleteWantSize() const {
2396 return CXXDeleteExprBits.UsualArrayDeleteWantsSize;
2397 }
2398
2399 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2400
2401 Expr *getArgument() { return cast<Expr>(Argument); }
2402 const Expr *getArgument() const { return cast<Expr>(Argument); }
2403
2404 /// Retrieve the type being destroyed.
2405 ///
2406 /// If the type being destroyed is a dependent type which may or may not
2407 /// be a pointer, return an invalid type.
2408 QualType getDestroyedType() const;
2409
2410 SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; }
2411 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
2412 return Argument->getEndLoc();
2413 }
2414
2415 static bool classof(const Stmt *T) {
2416 return T->getStmtClass() == CXXDeleteExprClass;
2417 }
2418
2419 // Iterators
2420 child_range children() { return child_range(&Argument, &Argument + 1); }
2421
2422 const_child_range children() const {
2423 return const_child_range(&Argument, &Argument + 1);
2424 }
2425};
2426
2427/// Stores the type being destroyed by a pseudo-destructor expression.
2428class PseudoDestructorTypeStorage {
2429 /// Either the type source information or the name of the type, if
2430 /// it couldn't be resolved due to type-dependence.
2431 llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
2432
2433 /// The starting source location of the pseudo-destructor type.
2434 SourceLocation Location;
2435
2436public:
2437 PseudoDestructorTypeStorage() = default;
2438
2439 PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
2440 : Type(II), Location(Loc) {}
2441
2442 PseudoDestructorTypeStorage(TypeSourceInfo *Info);
2443
2444 TypeSourceInfo *getTypeSourceInfo() const {
2445 return Type.dyn_cast<TypeSourceInfo *>();
2446 }
2447
2448 IdentifierInfo *getIdentifier() const {
2449 return Type.dyn_cast<IdentifierInfo *>();
2450 }
2451
2452 SourceLocation getLocation() const { return Location; }
2453};
2454
2455/// Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
2456///
2457/// A pseudo-destructor is an expression that looks like a member access to a
2458/// destructor of a scalar type, except that scalar types don't have
2459/// destructors. For example:
2460///
2461/// \code
2462/// typedef int T;
2463/// void f(int *p) {
2464/// p->T::~T();
2465/// }
2466/// \endcode
2467///
2468/// Pseudo-destructors typically occur when instantiating templates such as:
2469///
2470/// \code
2471/// template<typename T>
2472/// void destroy(T* ptr) {
2473/// ptr->T::~T();
2474/// }
2475/// \endcode
2476///
2477/// for scalar types. A pseudo-destructor expression has no run-time semantics
2478/// beyond evaluating the base expression.
2479class CXXPseudoDestructorExpr : public Expr {
2480 friend class ASTStmtReader;
2481
2482 /// The base expression (that is being destroyed).
2483 Stmt *Base = nullptr;
2484
2485 /// Whether the operator was an arrow ('->'); otherwise, it was a
2486 /// period ('.').
2487 bool IsArrow : 1;
2488
2489 /// The location of the '.' or '->' operator.
2490 SourceLocation OperatorLoc;
2491
2492 /// The nested-name-specifier that follows the operator, if present.
2493 NestedNameSpecifierLoc QualifierLoc;
2494
2495 /// The type that precedes the '::' in a qualified pseudo-destructor
2496 /// expression.
2497 TypeSourceInfo *ScopeType = nullptr;
2498
2499 /// The location of the '::' in a qualified pseudo-destructor
2500 /// expression.
2501 SourceLocation ColonColonLoc;
2502
2503 /// The location of the '~'.
2504 SourceLocation TildeLoc;
2505
2506 /// The type being destroyed, or its name if we were unable to
2507 /// resolve the name.
2508 PseudoDestructorTypeStorage DestroyedType;
2509
2510public:
2511 CXXPseudoDestructorExpr(const ASTContext &Context,
2512 Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2513 NestedNameSpecifierLoc QualifierLoc,
2514 TypeSourceInfo *ScopeType,
2515 SourceLocation ColonColonLoc,
2516 SourceLocation TildeLoc,
2517 PseudoDestructorTypeStorage DestroyedType);
2518
2519 explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2520 : Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}
2521
2522 Expr *getBase() const { return cast<Expr>(Base); }
2523
2524 /// Determines whether this member expression actually had
2525 /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2526 /// x->Base::foo.
2527 bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2528
2529 /// Retrieves the nested-name-specifier that qualifies the type name,
2530 /// with source-location information.
2531 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2532
2533 /// If the member name was qualified, retrieves the
2534 /// nested-name-specifier that precedes the member name. Otherwise, returns
2535 /// null.
2536 NestedNameSpecifier *getQualifier() const {
2537 return QualifierLoc.getNestedNameSpecifier();
2538 }
2539
2540 /// Determine whether this pseudo-destructor expression was written
2541 /// using an '->' (otherwise, it used a '.').
2542 bool isArrow() const { return IsArrow; }
2543
2544 /// Retrieve the location of the '.' or '->' operator.
2545 SourceLocation getOperatorLoc() const { return OperatorLoc; }
2546
2547 /// Retrieve the scope type in a qualified pseudo-destructor
2548 /// expression.
2549 ///
2550 /// Pseudo-destructor expressions can have extra qualification within them
2551 /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2552 /// Here, if the object type of the expression is (or may be) a scalar type,
2553 /// \p T may also be a scalar type and, therefore, cannot be part of a
2554 /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2555 /// destructor expression.
2556 TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2557
2558 /// Retrieve the location of the '::' in a qualified pseudo-destructor
2559 /// expression.
2560 SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2561
2562 /// Retrieve the location of the '~'.
2563 SourceLocation getTildeLoc() const { return TildeLoc; }
2564
2565 /// Retrieve the source location information for the type
2566 /// being destroyed.
2567 ///
2568 /// This type-source information is available for non-dependent
2569 /// pseudo-destructor expressions and some dependent pseudo-destructor
2570 /// expressions. Returns null if we only have the identifier for a
2571 /// dependent pseudo-destructor expression.
2572 TypeSourceInfo *getDestroyedTypeInfo() const {
2573 return DestroyedType.getTypeSourceInfo();
2574 }
2575
2576 /// In a dependent pseudo-destructor expression for which we do not
2577 /// have full type information on the destroyed type, provides the name
2578 /// of the destroyed type.
2579 IdentifierInfo *getDestroyedTypeIdentifier() const {
2580 return DestroyedType.getIdentifier();
2581 }
2582
2583 /// Retrieve the type being destroyed.
2584 QualType getDestroyedType() const;
2585
2586 /// Retrieve the starting location of the type being destroyed.
2587 SourceLocation getDestroyedTypeLoc() const {
2588 return DestroyedType.getLocation();
2589 }
2590
2591 /// Set the name of destroyed type for a dependent pseudo-destructor
2592 /// expression.
2593 void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2594 DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2595 }
2596
2597 /// Set the destroyed type.
2598 void setDestroyedType(TypeSourceInfo *Info) {
2599 DestroyedType = PseudoDestructorTypeStorage(Info);
2600 }
2601
2602 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
2603 return Base->getBeginLoc();
2604 }
2605 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__));
2606
2607 static bool classof(const Stmt *T) {
2608 return T->getStmtClass() == CXXPseudoDestructorExprClass;
2609 }
2610
2611 // Iterators
2612 child_range children() { return child_range(&Base, &Base + 1); }
2613
2614 const_child_range children() const {
2615 return const_child_range(&Base, &Base + 1);
2616 }
2617};
2618
2619/// A type trait used in the implementation of various C++11 and
2620/// Library TR1 trait templates.
2621///
2622/// \code
2623/// __is_pod(int) == true
2624/// __is_enum(std::string) == false
2625/// __is_trivially_constructible(vector<int>, int*, int*)
2626/// \endcode
2627class TypeTraitExpr final
2628 : public Expr,
2629 private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
2630 /// The location of the type trait keyword.
2631 SourceLocation Loc;
2632
2633 /// The location of the closing parenthesis.
2634 SourceLocation RParenLoc;
2635
2636 // Note: The TypeSourceInfos for the arguments are allocated after the
2637 // TypeTraitExpr.
2638
2639 TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2640 ArrayRef<TypeSourceInfo *> Args,
2641 SourceLocation RParenLoc,
2642 bool Value);
2643
2644 TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}
2645
2646 size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
2647 return getNumArgs();
2648 }
2649
2650public:
2651 friend class ASTStmtReader;
2652 friend class ASTStmtWriter;
2653 friend TrailingObjects;
2654
2655 /// Create a new type trait expression.
2656 static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2657 SourceLocation Loc, TypeTrait Kind,
2658 ArrayRef<TypeSourceInfo *> Args,
2659 SourceLocation RParenLoc,
2660 bool Value);
2661
2662 static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2663 unsigned NumArgs);
2664
2665 /// Determine which type trait this expression uses.
2666 TypeTrait getTrait() const {
2667 return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2668 }
2669
2670 bool getValue() const {
2671 assert(!isValueDependent())((!isValueDependent()) ? static_cast<void> (0) : __assert_fail
("!isValueDependent()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 2671, __PRETTY_FUNCTION__))
;
2672 return TypeTraitExprBits.Value;
2673 }
2674
2675 /// Determine the number of arguments to this type trait.
2676 unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2677
2678 /// Retrieve the Ith argument.
2679 TypeSourceInfo *getArg(unsigned I) const {
2680 assert(I < getNumArgs() && "Argument out-of-range")((I < getNumArgs() && "Argument out-of-range") ? static_cast
<void> (0) : __assert_fail ("I < getNumArgs() && \"Argument out-of-range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 2680, __PRETTY_FUNCTION__))
;
2681 return getArgs()[I];
2682 }
2683
2684 /// Retrieve the argument types.
2685 ArrayRef<TypeSourceInfo *> getArgs() const {
2686 return llvm::makeArrayRef(getTrailingObjects<TypeSourceInfo *>(),
2687 getNumArgs());
2688 }
2689
2690 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2691 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParenLoc; }
2692
2693 static bool classof(const Stmt *T) {
2694 return T->getStmtClass() == TypeTraitExprClass;
2695 }
2696
2697 // Iterators
2698 child_range children() {
2699 return child_range(child_iterator(), child_iterator());
2700 }
2701
2702 const_child_range children() const {
2703 return const_child_range(const_child_iterator(), const_child_iterator());
2704 }
2705};
2706
2707/// An Embarcadero array type trait, as used in the implementation of
2708/// __array_rank and __array_extent.
2709///
2710/// Example:
2711/// \code
2712/// __array_rank(int[10][20]) == 2
2713/// __array_extent(int, 1) == 20
2714/// \endcode
2715class ArrayTypeTraitExpr : public Expr {
2716 /// The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2717 unsigned ATT : 2;
2718
2719 /// The value of the type trait. Unspecified if dependent.
2720 uint64_t Value = 0;
2721
2722 /// The array dimension being queried, or -1 if not used.
2723 Expr *Dimension;
2724
2725 /// The location of the type trait keyword.
2726 SourceLocation Loc;
2727
2728 /// The location of the closing paren.
2729 SourceLocation RParen;
2730
2731 /// The type being queried.
2732 TypeSourceInfo *QueriedType = nullptr;
2733
2734public:
2735 friend class ASTStmtReader;
2736
2737 ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2738 TypeSourceInfo *queried, uint64_t value,
2739 Expr *dimension, SourceLocation rparen, QualType ty)
2740 : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2741 false, queried->getType()->isDependentType(),
2742 (queried->getType()->isInstantiationDependentType() ||
2743 (dimension && dimension->isInstantiationDependent())),
2744 queried->getType()->containsUnexpandedParameterPack()),
2745 ATT(att), Value(value), Dimension(dimension),
2746 Loc(loc), RParen(rparen), QueriedType(queried) {}
2747
2748 explicit ArrayTypeTraitExpr(EmptyShell Empty)
2749 : Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}
2750
2751 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2752 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParen; }
2753
2754 ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2755
2756 QualType getQueriedType() const { return QueriedType->getType(); }
2757
2758 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2759
2760 uint64_t getValue() const { assert(!isTypeDependent())((!isTypeDependent()) ? static_cast<void> (0) : __assert_fail
("!isTypeDependent()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 2760, __PRETTY_FUNCTION__))
; return Value; }
2761
2762 Expr *getDimensionExpression() const { return Dimension; }
2763
2764 static bool classof(const Stmt *T) {
2765 return T->getStmtClass() == ArrayTypeTraitExprClass;
2766 }
2767
2768 // Iterators
2769 child_range children() {
2770 return child_range(child_iterator(), child_iterator());
2771 }
2772
2773 const_child_range children() const {
2774 return const_child_range(const_child_iterator(), const_child_iterator());
2775 }
2776};
2777
2778/// An expression trait intrinsic.
2779///
2780/// Example:
2781/// \code
2782/// __is_lvalue_expr(std::cout) == true
2783/// __is_lvalue_expr(1) == false
2784/// \endcode
2785class ExpressionTraitExpr : public Expr {
2786 /// The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2787 unsigned ET : 31;
2788
2789 /// The value of the type trait. Unspecified if dependent.
2790 unsigned Value : 1;
2791
2792 /// The location of the type trait keyword.
2793 SourceLocation Loc;
2794
2795 /// The location of the closing paren.
2796 SourceLocation RParen;
2797
2798 /// The expression being queried.
2799 Expr* QueriedExpression = nullptr;
2800
2801public:
2802 friend class ASTStmtReader;
2803
2804 ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2805 Expr *queried, bool value,
2806 SourceLocation rparen, QualType resultType)
2807 : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2808 false, // Not type-dependent
2809 // Value-dependent if the argument is type-dependent.
2810 queried->isTypeDependent(),
2811 queried->isInstantiationDependent(),
2812 queried->containsUnexpandedParameterPack()),
2813 ET(et), Value(value), Loc(loc), RParen(rparen),
2814 QueriedExpression(queried) {}
2815
2816 explicit ExpressionTraitExpr(EmptyShell Empty)
2817 : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}
2818
2819 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Loc; }
2820 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return RParen; }
2821
2822 ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2823
2824 Expr *getQueriedExpression() const { return QueriedExpression; }
2825
2826 bool getValue() const { return Value; }
2827
2828 static bool classof(const Stmt *T) {
2829 return T->getStmtClass() == ExpressionTraitExprClass;
2830 }
2831
2832 // Iterators
2833 child_range children() {
2834 return child_range(child_iterator(), child_iterator());
2835 }
2836
2837 const_child_range children() const {
2838 return const_child_range(const_child_iterator(), const_child_iterator());
2839 }
2840};
2841
2842/// A reference to an overloaded function set, either an
2843/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2844class OverloadExpr : public Expr {
2845 friend class ASTStmtReader;
2846 friend class ASTStmtWriter;
2847
2848 /// The common name of these declarations.
2849 DeclarationNameInfo NameInfo;
2850
2851 /// The nested-name-specifier that qualifies the name, if any.
2852 NestedNameSpecifierLoc QualifierLoc;
2853
2854protected:
2855 OverloadExpr(StmtClass SC, const ASTContext &Context,
2856 NestedNameSpecifierLoc QualifierLoc,
2857 SourceLocation TemplateKWLoc,
2858 const DeclarationNameInfo &NameInfo,
2859 const TemplateArgumentListInfo *TemplateArgs,
2860 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2861 bool KnownDependent, bool KnownInstantiationDependent,
2862 bool KnownContainsUnexpandedParameterPack);
2863
2864 OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
2865 bool HasTemplateKWAndArgsInfo);
2866
2867 /// Return the results. Defined after UnresolvedMemberExpr.
2868 inline DeclAccessPair *getTrailingResults();
2869 const DeclAccessPair *getTrailingResults() const {
2870 return const_cast<OverloadExpr *>(this)->getTrailingResults();
2871 }
2872
2873 /// Return the optional template keyword and arguments info.
2874 /// Defined after UnresolvedMemberExpr.
2875 inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo();
2876 const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
2877 return const_cast<OverloadExpr *>(this)
2878 ->getTrailingASTTemplateKWAndArgsInfo();
2879 }
2880
2881 /// Return the optional template arguments. Defined after
2882 /// UnresolvedMemberExpr.
2883 inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc();
2884 const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const {
2885 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
2886 }
2887
2888 bool hasTemplateKWAndArgsInfo() const {
2889 return OverloadExprBits.HasTemplateKWAndArgsInfo;
2890 }
2891
2892public:
2893 struct FindResult {
2894 OverloadExpr *Expression;
2895 bool IsAddressOfOperand;
2896 bool HasFormOfMemberPointer;
2897 };
2898
2899 /// Finds the overloaded expression in the given expression \p E of
2900 /// OverloadTy.
2901 ///
2902 /// \return the expression (which must be there) and true if it has
2903 /// the particular form of a member pointer expression
2904 static FindResult find(Expr *E) {
2905 assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload))((E->getType()->isSpecificBuiltinType(BuiltinType::Overload
)) ? static_cast<void> (0) : __assert_fail ("E->getType()->isSpecificBuiltinType(BuiltinType::Overload)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 2905, __PRETTY_FUNCTION__))
;
2906
2907 FindResult Result;
2908
2909 E = E->IgnoreParens();
2910 if (isa<UnaryOperator>(E)) {
2911 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)((cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) ?
static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 2911, __PRETTY_FUNCTION__))
;
2912 E = cast<UnaryOperator>(E)->getSubExpr();
2913 auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2914
2915 Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2916 Result.IsAddressOfOperand = true;
2917 Result.Expression = Ovl;
2918 } else {
2919 Result.HasFormOfMemberPointer = false;
2920 Result.IsAddressOfOperand = false;
2921 Result.Expression = cast<OverloadExpr>(E);
2922 }
2923
2924 return Result;
2925 }
2926
2927 /// Gets the naming class of this lookup, if any.
2928 /// Defined after UnresolvedMemberExpr.
2929 inline CXXRecordDecl *getNamingClass();
2930 const CXXRecordDecl *getNamingClass() const {
2931 return const_cast<OverloadExpr *>(this)->getNamingClass();
2932 }
2933
2934 using decls_iterator = UnresolvedSetImpl::iterator;
2935
2936 decls_iterator decls_begin() const {
2937 return UnresolvedSetIterator(getTrailingResults());
2938 }
2939 decls_iterator decls_end() const {
2940 return UnresolvedSetIterator(getTrailingResults() + getNumDecls());
2941 }
2942 llvm::iterator_range<decls_iterator> decls() const {
2943 return llvm::make_range(decls_begin(), decls_end());
2944 }
2945
2946 /// Gets the number of declarations in the unresolved set.
2947 unsigned getNumDecls() const { return OverloadExprBits.NumResults; }
2948
2949 /// Gets the full name info.
2950 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2951
2952 /// Gets the name looked up.
2953 DeclarationName getName() const { return NameInfo.getName(); }
2954
2955 /// Gets the location of the name.
2956 SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2957
2958 /// Fetches the nested-name qualifier, if one was given.
2959 NestedNameSpecifier *getQualifier() const {
2960 return QualifierLoc.getNestedNameSpecifier();
2961 }
2962
2963 /// Fetches the nested-name qualifier with source-location
2964 /// information, if one was given.
2965 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2966
2967 /// Retrieve the location of the template keyword preceding
2968 /// this name, if any.
2969 SourceLocation getTemplateKeywordLoc() const {
2970 if (!hasTemplateKWAndArgsInfo())
2971 return SourceLocation();
2972 return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
2973 }
2974
2975 /// Retrieve the location of the left angle bracket starting the
2976 /// explicit template argument list following the name, if any.
2977 SourceLocation getLAngleLoc() const {
2978 if (!hasTemplateKWAndArgsInfo())
2979 return SourceLocation();
2980 return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
2981 }
2982
2983 /// Retrieve the location of the right angle bracket ending the
2984 /// explicit template argument list following the name, if any.
2985 SourceLocation getRAngleLoc() const {
2986 if (!hasTemplateKWAndArgsInfo())
2987 return SourceLocation();
2988 return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
2989 }
2990
2991 /// Determines whether the name was preceded by the template keyword.
2992 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2993
2994 /// Determines whether this expression had explicit template arguments.
2995 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2996
2997 TemplateArgumentLoc const *getTemplateArgs() const {
2998 if (!hasExplicitTemplateArgs())
2999 return nullptr;
3000 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
3001 }
3002
3003 unsigned getNumTemplateArgs() const {
3004 if (!hasExplicitTemplateArgs())
3005 return 0;
3006
3007 return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
3008 }
3009
3010 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3011 return {getTemplateArgs(), getNumTemplateArgs()};
3012 }
3013
3014 /// Copies the template arguments into the given structure.
3015 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3016 if (hasExplicitTemplateArgs())
3017 getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
3018 }
3019
3020 static bool classof(const Stmt *T) {
3021 return T->getStmtClass() == UnresolvedLookupExprClass ||
3022 T->getStmtClass() == UnresolvedMemberExprClass;
3023 }
3024};
3025
3026/// A reference to a name which we were able to look up during
3027/// parsing but could not resolve to a specific declaration.
3028///
3029/// This arises in several ways:
3030/// * we might be waiting for argument-dependent lookup;
3031/// * the name might resolve to an overloaded function;
3032/// and eventually:
3033/// * the lookup might have included a function template.
3034///
3035/// These never include UnresolvedUsingValueDecls, which are always class
3036/// members and therefore appear only in UnresolvedMemberLookupExprs.
3037class UnresolvedLookupExpr final
3038 : public OverloadExpr,
3039 private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair,
3040 ASTTemplateKWAndArgsInfo,
3041 TemplateArgumentLoc> {
3042 friend class ASTStmtReader;
3043 friend class OverloadExpr;
3044 friend TrailingObjects;
3045
3046 /// The naming class (C++ [class.access.base]p5) of the lookup, if
3047 /// any. This can generally be recalculated from the context chain,
3048 /// but that can be fairly expensive for unqualified lookups.
3049 CXXRecordDecl *NamingClass;
3050
3051 // UnresolvedLookupExpr is followed by several trailing objects.
3052 // They are in order:
3053 //
3054 // * An array of getNumResults() DeclAccessPair for the results. These are
3055 // undesugared, which is to say, they may include UsingShadowDecls.
3056 // Access is relative to the naming class.
3057 //
3058 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3059 // template keyword and arguments. Present if and only if
3060 // hasTemplateKWAndArgsInfo().
3061 //
3062 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
3063 // location information for the explicitly specified template arguments.
3064
3065 UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass,
3066 NestedNameSpecifierLoc QualifierLoc,
3067 SourceLocation TemplateKWLoc,
3068 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3069 bool Overloaded,
3070 const TemplateArgumentListInfo *TemplateArgs,
3071 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3072
3073 UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults,
3074 bool HasTemplateKWAndArgsInfo);
3075
3076 unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
3077 return getNumDecls();
3078 }
3079
3080 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3081 return hasTemplateKWAndArgsInfo();
3082 }
3083
3084public:
3085 static UnresolvedLookupExpr *
3086 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3087 NestedNameSpecifierLoc QualifierLoc,
3088 const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded,
3089 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3090
3091 static UnresolvedLookupExpr *
3092 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3093 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
3094 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3095 const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
3096 UnresolvedSetIterator End);
3097
3098 static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context,
3099 unsigned NumResults,
3100 bool HasTemplateKWAndArgsInfo,
3101 unsigned NumTemplateArgs);
3102
3103 /// True if this declaration should be extended by
3104 /// argument-dependent lookup.
3105 bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }
3106
3107 /// True if this lookup is overloaded.
3108 bool isOverloaded() const { return UnresolvedLookupExprBits.Overloaded; }
3109
3110 /// Gets the 'naming class' (in the sense of C++0x
3111 /// [class.access.base]p5) of the lookup. This is the scope
3112 /// that was looked in to find these results.
3113 CXXRecordDecl *getNamingClass() { return NamingClass; }
3114 const CXXRecordDecl *getNamingClass() const { return NamingClass; }
3115
3116 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3117 if (NestedNameSpecifierLoc l = getQualifierLoc())
3118 return l.getBeginLoc();
3119 return getNameInfo().getBeginLoc();
3120 }
3121
3122 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3123 if (hasExplicitTemplateArgs())
3124 return getRAngleLoc();
3125 return getNameInfo().getEndLoc();
3126 }
3127
3128 child_range children() {
3129 return child_range(child_iterator(), child_iterator());
3130 }
3131
3132 const_child_range children() const {
3133 return const_child_range(const_child_iterator(), const_child_iterator());
3134 }
3135
3136 static bool classof(const Stmt *T) {
3137 return T->getStmtClass() == UnresolvedLookupExprClass;
3138 }
3139};
3140
3141/// A qualified reference to a name whose declaration cannot
3142/// yet be resolved.
3143///
3144/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
3145/// it expresses a reference to a declaration such as
3146/// X<T>::value. The difference, however, is that an
3147/// DependentScopeDeclRefExpr node is used only within C++ templates when
3148/// the qualification (e.g., X<T>::) refers to a dependent type. In
3149/// this case, X<T>::value cannot resolve to a declaration because the
3150/// declaration will differ from one instantiation of X<T> to the
3151/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
3152/// qualifier (X<T>::) and the name of the entity being referenced
3153/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
3154/// declaration can be found.
3155class DependentScopeDeclRefExpr final
3156 : public Expr,
3157 private llvm::TrailingObjects<DependentScopeDeclRefExpr,
3158 ASTTemplateKWAndArgsInfo,
3159 TemplateArgumentLoc> {
3160 friend class ASTStmtReader;
3161 friend class ASTStmtWriter;
3162 friend TrailingObjects;
3163
3164 /// The nested-name-specifier that qualifies this unresolved
3165 /// declaration name.
3166 NestedNameSpecifierLoc QualifierLoc;
3167
3168 /// The name of the entity we will be referencing.
3169 DeclarationNameInfo NameInfo;
3170
3171 DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc,
3172 SourceLocation TemplateKWLoc,
3173 const DeclarationNameInfo &NameInfo,
3174 const TemplateArgumentListInfo *Args);
3175
3176 size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3177 return hasTemplateKWAndArgsInfo();
3178 }
3179
3180 bool hasTemplateKWAndArgsInfo() const {
3181 return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo;
3182 }
3183
3184public:
3185 static DependentScopeDeclRefExpr *
3186 Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
3187 SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
3188 const TemplateArgumentListInfo *TemplateArgs);
3189
3190 static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context,
3191 bool HasTemplateKWAndArgsInfo,
3192 unsigned NumTemplateArgs);
3193
3194 /// Retrieve the name that this expression refers to.
3195 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
3196
3197 /// Retrieve the name that this expression refers to.
3198 DeclarationName getDeclName() const { return NameInfo.getName(); }
3199
3200 /// Retrieve the location of the name within the expression.
3201 ///
3202 /// For example, in "X<T>::value" this is the location of "value".
3203 SourceLocation getLocation() const { return NameInfo.getLoc(); }
3204
3205 /// Retrieve the nested-name-specifier that qualifies the
3206 /// name, with source location information.
3207 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3208
3209 /// Retrieve the nested-name-specifier that qualifies this
3210 /// declaration.
3211 NestedNameSpecifier *getQualifier() const {
3212 return QualifierLoc.getNestedNameSpecifier();
3213 }
3214
3215 /// Retrieve the location of the template keyword preceding
3216 /// this name, if any.
3217 SourceLocation getTemplateKeywordLoc() const {
3218 if (!hasTemplateKWAndArgsInfo())
3219 return SourceLocation();
3220 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
3221 }
3222
3223 /// Retrieve the location of the left angle bracket starting the
3224 /// explicit template argument list following the name, if any.
3225 SourceLocation getLAngleLoc() const {
3226 if (!hasTemplateKWAndArgsInfo())
3227 return SourceLocation();
3228 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
3229 }
3230
3231 /// Retrieve the location of the right angle bracket ending the
3232 /// explicit template argument list following the name, if any.
3233 SourceLocation getRAngleLoc() const {
3234 if (!hasTemplateKWAndArgsInfo())
3235 return SourceLocation();
3236 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
3237 }
3238
3239 /// Determines whether the name was preceded by the template keyword.
3240 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3241
3242 /// Determines whether this lookup had explicit template arguments.
3243 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3244
3245 /// Copies the template arguments (if present) into the given
3246 /// structure.
3247 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3248 if (hasExplicitTemplateArgs())
3249 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
3250 getTrailingObjects<TemplateArgumentLoc>(), List);
3251 }
3252
3253 TemplateArgumentLoc const *getTemplateArgs() const {
3254 if (!hasExplicitTemplateArgs())
3255 return nullptr;
3256
3257 return getTrailingObjects<TemplateArgumentLoc>();
3258 }
3259
3260 unsigned getNumTemplateArgs() const {
3261 if (!hasExplicitTemplateArgs())
3262 return 0;
3263
3264 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
3265 }
3266
3267 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3268 return {getTemplateArgs(), getNumTemplateArgs()};
3269 }
3270
3271 /// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr,
3272 /// and differs from getLocation().getStart().
3273 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3274 return QualifierLoc.getBeginLoc();
3275 }
3276
3277 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3278 if (hasExplicitTemplateArgs())
3279 return getRAngleLoc();
3280 return getLocation();
3281 }
3282
3283 static bool classof(const Stmt *T) {
3284 return T->getStmtClass() == DependentScopeDeclRefExprClass;
3285 }
3286
3287 child_range children() {
3288 return child_range(child_iterator(), child_iterator());
3289 }
3290
3291 const_child_range children() const {
3292 return const_child_range(const_child_iterator(), const_child_iterator());
3293 }
3294};
3295
3296/// Represents an expression -- generally a full-expression -- that
3297/// introduces cleanups to be run at the end of the sub-expression's
3298/// evaluation. The most common source of expression-introduced
3299/// cleanups is temporary objects in C++, but several other kinds of
3300/// expressions can create cleanups, including basically every
3301/// call in ARC that returns an Objective-C pointer.
3302///
3303/// This expression also tracks whether the sub-expression contains a
3304/// potentially-evaluated block literal. The lifetime of a block
3305/// literal is the extent of the enclosing scope.
3306class ExprWithCleanups final
3307 : public FullExpr,
3308 private llvm::TrailingObjects<ExprWithCleanups, BlockDecl *> {
3309public:
3310 /// The type of objects that are kept in the cleanup.
3311 /// It's useful to remember the set of blocks; we could also
3312 /// remember the set of temporaries, but there's currently
3313 /// no need.
3314 using CleanupObject = BlockDecl *;
3315
3316private:
3317 friend class ASTStmtReader;
3318 friend TrailingObjects;
3319
3320 ExprWithCleanups(EmptyShell, unsigned NumObjects);
3321 ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
3322 ArrayRef<CleanupObject> Objects);
3323
3324public:
3325 static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
3326 unsigned numObjects);
3327
3328 static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
3329 bool CleanupsHaveSideEffects,
3330 ArrayRef<CleanupObject> objects);
3331
3332 ArrayRef<CleanupObject> getObjects() const {
3333 return llvm::makeArrayRef(getTrailingObjects<CleanupObject>(),
3334 getNumObjects());
3335 }
3336
3337 unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
3338
3339 CleanupObject getObject(unsigned i) const {
3340 assert(i < getNumObjects() && "Index out of range")((i < getNumObjects() && "Index out of range") ? static_cast
<void> (0) : __assert_fail ("i < getNumObjects() && \"Index out of range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 3340, __PRETTY_FUNCTION__))
;
3341 return getObjects()[i];
3342 }
3343
3344 bool cleanupsHaveSideEffects() const {
3345 return ExprWithCleanupsBits.CleanupsHaveSideEffects;
3346 }
3347
3348 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
3349 return SubExpr->getBeginLoc();
3350 }
3351
3352 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3353 return SubExpr->getEndLoc();
3354 }
3355
3356 // Implement isa/cast/dyncast/etc.
3357 static bool classof(const Stmt *T) {
3358 return T->getStmtClass() == ExprWithCleanupsClass;
3359 }
3360
3361 // Iterators
3362 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
3363
3364 const_child_range children() const {
3365 return const_child_range(&SubExpr, &SubExpr + 1);
3366 }
3367};
3368
3369/// Describes an explicit type conversion that uses functional
3370/// notion but could not be resolved because one or more arguments are
3371/// type-dependent.
3372///
3373/// The explicit type conversions expressed by
3374/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3375/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3376/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3377/// type-dependent. For example, this would occur in a template such
3378/// as:
3379///
3380/// \code
3381/// template<typename T, typename A1>
3382/// inline T make_a(const A1& a1) {
3383/// return T(a1);
3384/// }
3385/// \endcode
3386///
3387/// When the returned expression is instantiated, it may resolve to a
3388/// constructor call, conversion function call, or some kind of type
3389/// conversion.
3390class CXXUnresolvedConstructExpr final
3391 : public Expr,
3392 private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
3393 friend class ASTStmtReader;
3394 friend TrailingObjects;
3395
3396 /// The type being constructed.
3397 TypeSourceInfo *TSI;
3398
3399 /// The location of the left parentheses ('(').
3400 SourceLocation LParenLoc;
3401
3402 /// The location of the right parentheses (')').
3403 SourceLocation RParenLoc;
3404
3405 CXXUnresolvedConstructExpr(TypeSourceInfo *TSI, SourceLocation LParenLoc,
3406 ArrayRef<Expr *> Args, SourceLocation RParenLoc);
3407
3408 CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3409 : Expr(CXXUnresolvedConstructExprClass, Empty) {
3410 CXXUnresolvedConstructExprBits.NumArgs = NumArgs;
3411 }
3412
3413public:
3414 static CXXUnresolvedConstructExpr *Create(const ASTContext &Context,
3415 TypeSourceInfo *Type,
3416 SourceLocation LParenLoc,
3417 ArrayRef<Expr *> Args,
3418 SourceLocation RParenLoc);
3419
3420 static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context,
3421 unsigned NumArgs);
3422
3423 /// Retrieve the type that is being constructed, as specified
3424 /// in the source code.
3425 QualType getTypeAsWritten() const { return TSI->getType(); }
3426
3427 /// Retrieve the type source information for the type being
3428 /// constructed.
3429 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
3430
3431 /// Retrieve the location of the left parentheses ('(') that
3432 /// precedes the argument list.
3433 SourceLocation getLParenLoc() const { return LParenLoc; }
3434 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3435
3436 /// Retrieve the location of the right parentheses (')') that
3437 /// follows the argument list.
3438 SourceLocation getRParenLoc() const { return RParenLoc; }
3439 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3440
3441 /// Determine whether this expression models list-initialization.
3442 /// If so, there will be exactly one subexpression, which will be
3443 /// an InitListExpr.
3444 bool isListInitialization() const { return LParenLoc.isInvalid(); }
3445
3446 /// Retrieve the number of arguments.
3447 unsigned arg_size() const { return CXXUnresolvedConstructExprBits.NumArgs; }
3448
3449 using arg_iterator = Expr **;
3450 using arg_range = llvm::iterator_range<arg_iterator>;
3451
3452 arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
3453 arg_iterator arg_end() { return arg_begin() + arg_size(); }
3454 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
3455
3456 using const_arg_iterator = const Expr* const *;
3457 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
3458
3459 const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
3460 const_arg_iterator arg_end() const { return arg_begin() + arg_size(); }
3461 const_arg_range arguments() const {
3462 return const_arg_range(arg_begin(), arg_end());
3463 }
3464
3465 Expr *getArg(unsigned I) {
3466 assert(I < arg_size() && "Argument index out-of-range")((I < arg_size() && "Argument index out-of-range")
? static_cast<void> (0) : __assert_fail ("I < arg_size() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 3466, __PRETTY_FUNCTION__))
;
3467 return arg_begin()[I];
3468 }
3469
3470 const Expr *getArg(unsigned I) const {
3471 assert(I < arg_size() && "Argument index out-of-range")((I < arg_size() && "Argument index out-of-range")
? static_cast<void> (0) : __assert_fail ("I < arg_size() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 3471, __PRETTY_FUNCTION__))
;
3472 return arg_begin()[I];
3473 }
3474
3475 void setArg(unsigned I, Expr *E) {
3476 assert(I < arg_size() && "Argument index out-of-range")((I < arg_size() && "Argument index out-of-range")
? static_cast<void> (0) : __assert_fail ("I < arg_size() && \"Argument index out-of-range\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/ExprCXX.h"
, 3476, __PRETTY_FUNCTION__))
;
3477 arg_begin()[I] = E;
3478 }
3479
3480 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__));
3481 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
3482 if (!RParenLoc.isValid() && arg_size() > 0)
3483 return getArg(arg_size() - 1)->getEndLoc();
3484 return RParenLoc;
3485 }
3486
3487 static bool classof(const Stmt *T) {
3488 return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3489 }
3490
3491 // Iterators
3492 child_range children() {
3493 auto **begin = reinterpret_cast<Stmt **>(arg_begin());
3494 return child_range(begin, begin + arg_size());
3495 }
3496
3497 const_child_range children() const {
3498 auto **begin = reinterpret_cast<Stmt **>(
3499 const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin());
3500 return const_child_range(begin, begin + arg_size());
3501 }
3502};
3503
3504/// Represents a C++ member access expression where the actual
3505/// member referenced could not be resolved because the base
3506/// expression or the member name was dependent.
3507///
3508/// Like UnresolvedMemberExprs, these can be either implicit or
3509/// explicit accesses. It is only possible to get one of these with
3510/// an implicit access if a qualifier is provided.
3511class CXXDependentScopeMemberExpr final
3512 : public Expr,
3513 private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
3514 ASTTemplateKWAndArgsInfo,
3515 TemplateArgumentLoc, NamedDecl *> {
3516 friend class ASTStmtReader;
3517 friend class ASTStmtWriter;
3518 friend TrailingObjects;
3519
3520 /// The expression for the base pointer or class reference,
3521 /// e.g., the \c x in x.f. Can be null in implicit accesses.
3522 Stmt *Base;
3523
3524 /// The type of the base expression. Never null, even for
3525 /// implicit accesses.
3526 QualType BaseType;
3527
3528 /// The nested-name-specifier that precedes the member name, if any.
3529 /// FIXME: This could be in principle store as a trailing object.
3530 /// However the performance impact of doing so should be investigated first.
3531 NestedNameSpecifierLoc QualifierLoc;
3532
3533 /// The member to which this member expression refers, which
3534 /// can be name, overloaded operator, or destructor.
3535 ///
3536 /// FIXME: could also be a template-id
3537 DeclarationNameInfo MemberNameInfo;
3538
3539 // CXXDependentScopeMemberExpr is followed by several trailing objects,
3540 // some of which optional. They are in order:
3541 //
3542 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3543 // template keyword and arguments. Present if and only if
3544 // hasTemplateKWAndArgsInfo().
3545 //
3546 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing location
3547 // information for the explicitly specified template arguments.
3548 //
3549 // * An optional NamedDecl *. In a qualified member access expression such
3550 // as t->Base::f, this member stores the resolves of name lookup in the
3551 // context of the member access expression, to be used at instantiation
3552 // time. Present if and only if hasFirstQualifierFoundInScope().
3553
3554 bool hasTemplateKWAndArgsInfo() const {
3555