Bug Summary

File:tools/clang/lib/CodeGen/CGExprScalar.cpp
Warning:line 2920, column 5
Undefined or garbage value returned to caller

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprScalar.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp -faddrsig
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCXXABI.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/FixedPoint.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/IR/Module.h"
38#include <cstdarg>
39
40using namespace clang;
41using namespace CodeGen;
42using llvm::Value;
43
44//===----------------------------------------------------------------------===//
45// Scalar Expression Emitter
46//===----------------------------------------------------------------------===//
47
48namespace {
49
50/// Determine whether the given binary operation may overflow.
51/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53/// the returned overflow check is precise. The returned value is 'true' for
54/// all other opcodes, to be conservative.
55bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56 BinaryOperator::Opcode Opcode, bool Signed,
57 llvm::APInt &Result) {
58 // Assume overflow is possible, unless we can prove otherwise.
59 bool Overflow = true;
60 const auto &LHSAP = LHS->getValue();
61 const auto &RHSAP = RHS->getValue();
62 if (Opcode == BO_Add) {
63 if (Signed)
64 Result = LHSAP.sadd_ov(RHSAP, Overflow);
65 else
66 Result = LHSAP.uadd_ov(RHSAP, Overflow);
67 } else if (Opcode == BO_Sub) {
68 if (Signed)
69 Result = LHSAP.ssub_ov(RHSAP, Overflow);
70 else
71 Result = LHSAP.usub_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Mul) {
73 if (Signed)
74 Result = LHSAP.smul_ov(RHSAP, Overflow);
75 else
76 Result = LHSAP.umul_ov(RHSAP, Overflow);
77 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78 if (Signed && !RHS->isZero())
79 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80 else
81 return false;
82 }
83 return Overflow;
84}
85
86struct BinOpInfo {
87 Value *LHS;
88 Value *RHS;
89 QualType Ty; // Computation Type.
90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91 FPOptions FPFeatures;
92 const Expr *E; // Entire expr, for error unsupported. May not be binop.
93
94 /// Check if the binop can result in integer overflow.
95 bool mayHaveIntegerOverflow() const {
96 // Without constant input, we can't rule out overflow.
97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99 if (!LHSCI || !RHSCI)
100 return true;
101
102 llvm::APInt Result;
103 return ::mayHaveIntegerOverflow(
104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105 }
106
107 /// Check if the binop computes a division or a remainder.
108 bool isDivremOp() const {
109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110 Opcode == BO_RemAssign;
111 }
112
113 /// Check if the binop can result in an integer division by zero.
114 bool mayHaveIntegerDivisionByZero() const {
115 if (isDivremOp())
116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117 return CI->isZero();
118 return true;
119 }
120
121 /// Check if the binop can result in a float division by zero.
122 bool mayHaveFloatDivisionByZero() const {
123 if (isDivremOp())
124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125 return CFP->isZero();
126 return true;
127 }
128};
129
130static bool MustVisitNullValue(const Expr *E) {
131 // If a null pointer expression's type is the C++0x nullptr_t, then
132 // it's not necessarily a simple constant and it must be evaluated
133 // for its potential side effects.
134 return E->getType()->isNullPtrType();
135}
136
137/// If \p E is a widened promoted integer, get its base (unpromoted) type.
138static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
139 const Expr *E) {
140 const Expr *Base = E->IgnoreImpCasts();
141 if (E == Base)
142 return llvm::None;
143
144 QualType BaseTy = Base->getType();
145 if (!BaseTy->isPromotableIntegerType() ||
146 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
147 return llvm::None;
148
149 return BaseTy;
150}
151
152/// Check if \p E is a widened promoted integer.
153static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
154 return getUnwidenedIntegerType(Ctx, E).hasValue();
155}
156
157/// Check if we can skip the overflow check for \p Op.
158static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
159 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 160, __PRETTY_FUNCTION__))
160 "Expected a unary or binary operator")(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 160, __PRETTY_FUNCTION__))
;
161
162 // If the binop has constant inputs and we can prove there is no overflow,
163 // we can elide the overflow check.
164 if (!Op.mayHaveIntegerOverflow())
165 return true;
166
167 // If a unary op has a widened operand, the op cannot overflow.
168 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
169 return !UO->canOverflow();
170
171 // We usually don't need overflow checks for binops with widened operands.
172 // Multiplication with promoted unsigned operands is a special case.
173 const auto *BO = cast<BinaryOperator>(Op.E);
174 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
175 if (!OptionalLHSTy)
176 return false;
177
178 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
179 if (!OptionalRHSTy)
180 return false;
181
182 QualType LHSTy = *OptionalLHSTy;
183 QualType RHSTy = *OptionalRHSTy;
184
185 // This is the simple case: binops without unsigned multiplication, and with
186 // widened operands. No overflow check is needed here.
187 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
188 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
189 return true;
190
191 // For unsigned multiplication the overflow check can be elided if either one
192 // of the unpromoted types are less than half the size of the promoted type.
193 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
194 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
195 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
196}
197
198/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
199static void updateFastMathFlags(llvm::FastMathFlags &FMF,
200 FPOptions FPFeatures) {
201 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
202}
203
204/// Propagate fast-math flags from \p Op to the instruction in \p V.
205static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
206 if (auto *I = dyn_cast<llvm::Instruction>(V)) {
207 llvm::FastMathFlags FMF = I->getFastMathFlags();
208 updateFastMathFlags(FMF, Op.FPFeatures);
209 I->setFastMathFlags(FMF);
210 }
211 return V;
212}
213
214class ScalarExprEmitter
215 : public StmtVisitor<ScalarExprEmitter, Value*> {
216 CodeGenFunction &CGF;
217 CGBuilderTy &Builder;
218 bool IgnoreResultAssign;
219 llvm::LLVMContext &VMContext;
220public:
221
222 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
223 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
224 VMContext(cgf.getLLVMContext()) {
225 }
226
227 //===--------------------------------------------------------------------===//
228 // Utilities
229 //===--------------------------------------------------------------------===//
230
231 bool TestAndClearIgnoreResultAssign() {
232 bool I = IgnoreResultAssign;
233 IgnoreResultAssign = false;
234 return I;
235 }
236
237 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
238 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
239 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
240 return CGF.EmitCheckedLValue(E, TCK);
241 }
242
243 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
244 const BinOpInfo &Info);
245
246 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
247 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
248 }
249
250 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
251 const AlignValueAttr *AVAttr = nullptr;
252 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
253 const ValueDecl *VD = DRE->getDecl();
254
255 if (VD->getType()->isReferenceType()) {
256 if (const auto *TTy =
257 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
258 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
259 } else {
260 // Assumptions for function parameters are emitted at the start of the
261 // function, so there is no need to repeat that here.
262 if (isa<ParmVarDecl>(VD))
263 return;
264
265 AVAttr = VD->getAttr<AlignValueAttr>();
266 }
267 }
268
269 if (!AVAttr)
270 if (const auto *TTy =
271 dyn_cast<TypedefType>(E->getType()))
272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
273
274 if (!AVAttr)
275 return;
276
277 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
278 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
279 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
280 }
281
282 /// EmitLoadOfLValue - Given an expression with complex type that represents a
283 /// value l-value, this method emits the address of the l-value, then loads
284 /// and returns the result.
285 Value *EmitLoadOfLValue(const Expr *E) {
286 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
287 E->getExprLoc());
288
289 EmitLValueAlignmentAssumption(E, V);
290 return V;
291 }
292
293 /// EmitConversionToBool - Convert the specified expression value to a
294 /// boolean (i1) truth value. This is equivalent to "Val != 0".
295 Value *EmitConversionToBool(Value *Src, QualType DstTy);
296
297 /// Emit a check that a conversion to or from a floating-point type does not
298 /// overflow.
299 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
300 Value *Src, QualType SrcType, QualType DstType,
301 llvm::Type *DstTy, SourceLocation Loc);
302
303 /// Known implicit conversion check kinds.
304 /// Keep in sync with the enum of the same name in ubsan_handlers.h
305 enum ImplicitConversionCheckKind : unsigned char {
306 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
307 ICCK_UnsignedIntegerTruncation = 1,
308 ICCK_SignedIntegerTruncation = 2,
309 ICCK_IntegerSignChange = 3,
310 ICCK_SignedIntegerTruncationOrSignChange = 4,
311 };
312
313 /// Emit a check that an [implicit] truncation of an integer does not
314 /// discard any bits. It is not UB, so we use the value after truncation.
315 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
316 QualType DstType, SourceLocation Loc);
317
318 /// Emit a check that an [implicit] conversion of an integer does not change
319 /// the sign of the value. It is not UB, so we use the value after conversion.
320 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
321 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
322 QualType DstType, SourceLocation Loc);
323
324 /// Emit a conversion from the specified type to the specified destination
325 /// type, both of which are LLVM scalar types.
326 struct ScalarConversionOpts {
327 bool TreatBooleanAsSigned;
328 bool EmitImplicitIntegerTruncationChecks;
329 bool EmitImplicitIntegerSignChangeChecks;
330
331 ScalarConversionOpts()
332 : TreatBooleanAsSigned(false),
333 EmitImplicitIntegerTruncationChecks(false),
334 EmitImplicitIntegerSignChangeChecks(false) {}
335
336 ScalarConversionOpts(clang::SanitizerSet SanOpts)
337 : TreatBooleanAsSigned(false),
338 EmitImplicitIntegerTruncationChecks(
339 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
340 EmitImplicitIntegerSignChangeChecks(
341 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
342 };
343 Value *
344 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
345 SourceLocation Loc,
346 ScalarConversionOpts Opts = ScalarConversionOpts());
347
348 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
349 SourceLocation Loc);
350
351 /// Emit a conversion from the specified complex type to the specified
352 /// destination type, where the destination type is an LLVM scalar type.
353 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
354 QualType SrcTy, QualType DstTy,
355 SourceLocation Loc);
356
357 /// EmitNullValue - Emit a value that corresponds to null for the given type.
358 Value *EmitNullValue(QualType Ty);
359
360 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
361 Value *EmitFloatToBoolConversion(Value *V) {
362 // Compare against 0.0 for fp scalars.
363 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
364 return Builder.CreateFCmpUNE(V, Zero, "tobool");
365 }
366
367 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
368 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
369 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
370
371 return Builder.CreateICmpNE(V, Zero, "tobool");
372 }
373
374 Value *EmitIntToBoolConversion(Value *V) {
375 // Because of the type rules of C, we often end up computing a
376 // logical value, then zero extending it to int, then wanting it
377 // as a logical value again. Optimize this common case.
378 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
379 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
380 Value *Result = ZI->getOperand(0);
381 // If there aren't any more uses, zap the instruction to save space.
382 // Note that there can be more uses, for example if this
383 // is the result of an assignment.
384 if (ZI->use_empty())
385 ZI->eraseFromParent();
386 return Result;
387 }
388 }
389
390 return Builder.CreateIsNotNull(V, "tobool");
391 }
392
393 //===--------------------------------------------------------------------===//
394 // Visitor Methods
395 //===--------------------------------------------------------------------===//
396
397 Value *Visit(Expr *E) {
398 ApplyDebugLocation DL(CGF, E);
399 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
400 }
401
402 Value *VisitStmt(Stmt *S) {
403 S->dump(CGF.getContext().getSourceManager());
404 llvm_unreachable("Stmt can't have complex result type!")::llvm::llvm_unreachable_internal("Stmt can't have complex result type!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 404)
;
405 }
406 Value *VisitExpr(Expr *S);
407
408 Value *VisitConstantExpr(ConstantExpr *E) {
409 return Visit(E->getSubExpr());
410 }
411 Value *VisitParenExpr(ParenExpr *PE) {
412 return Visit(PE->getSubExpr());
413 }
414 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
415 return Visit(E->getReplacement());
416 }
417 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
418 return Visit(GE->getResultExpr());
419 }
420 Value *VisitCoawaitExpr(CoawaitExpr *S) {
421 return CGF.EmitCoawaitExpr(*S).getScalarVal();
422 }
423 Value *VisitCoyieldExpr(CoyieldExpr *S) {
424 return CGF.EmitCoyieldExpr(*S).getScalarVal();
425 }
426 Value *VisitUnaryCoawait(const UnaryOperator *E) {
427 return Visit(E->getSubExpr());
428 }
429
430 // Leaves.
431 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
432 return Builder.getInt(E->getValue());
433 }
434 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
435 return Builder.getInt(E->getValue());
436 }
437 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
438 return llvm::ConstantFP::get(VMContext, E->getValue());
439 }
440 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
441 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
442 }
443 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
444 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
445 }
446 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
447 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
448 }
449 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
450 return EmitNullValue(E->getType());
451 }
452 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
453 return EmitNullValue(E->getType());
454 }
455 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
456 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
457 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
458 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
459 return Builder.CreateBitCast(V, ConvertType(E->getType()));
460 }
461
462 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
463 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
464 }
465
466 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
467 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
468 }
469
470 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
471 if (E->isGLValue())
472 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
473 E->getExprLoc());
474
475 // Otherwise, assume the mapping is the scalar directly.
476 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
477 }
478
479 // l-values.
480 Value *VisitDeclRefExpr(DeclRefExpr *E) {
481 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
482 return CGF.emitScalarConstant(Constant, E);
483 return EmitLoadOfLValue(E);
484 }
485
486 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
487 return CGF.EmitObjCSelectorExpr(E);
488 }
489 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
490 return CGF.EmitObjCProtocolExpr(E);
491 }
492 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
493 return EmitLoadOfLValue(E);
494 }
495 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
496 if (E->getMethodDecl() &&
497 E->getMethodDecl()->getReturnType()->isReferenceType())
498 return EmitLoadOfLValue(E);
499 return CGF.EmitObjCMessageExpr(E).getScalarVal();
500 }
501
502 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
503 LValue LV = CGF.EmitObjCIsaExpr(E);
504 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
505 return V;
506 }
507
508 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
509 VersionTuple Version = E->getVersion();
510
511 // If we're checking for a platform older than our minimum deployment
512 // target, we can fold the check away.
513 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
514 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
515
516 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
517 llvm::Value *Args[] = {
518 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
519 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
520 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
521 };
522
523 return CGF.EmitBuiltinAvailable(Args);
524 }
525
526 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
527 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
528 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
529 Value *VisitMemberExpr(MemberExpr *E);
530 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
531 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
532 return EmitLoadOfLValue(E);
533 }
534
535 Value *VisitInitListExpr(InitListExpr *E);
536
537 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
538 assert(CGF.getArrayInitIndex() &&((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 539, __PRETTY_FUNCTION__))
539 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?")((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 539, __PRETTY_FUNCTION__))
;
540 return CGF.getArrayInitIndex();
541 }
542
543 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
544 return EmitNullValue(E->getType());
545 }
546 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
547 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
548 return VisitCastExpr(E);
549 }
550 Value *VisitCastExpr(CastExpr *E);
551
552 Value *VisitCallExpr(const CallExpr *E) {
553 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
554 return EmitLoadOfLValue(E);
555
556 Value *V = CGF.EmitCallExpr(E).getScalarVal();
557
558 EmitLValueAlignmentAssumption(E, V);
559 return V;
560 }
561
562 Value *VisitStmtExpr(const StmtExpr *E);
563
564 // Unary Operators.
565 Value *VisitUnaryPostDec(const UnaryOperator *E) {
566 LValue LV = EmitLValue(E->getSubExpr());
567 return EmitScalarPrePostIncDec(E, LV, false, false);
568 }
569 Value *VisitUnaryPostInc(const UnaryOperator *E) {
570 LValue LV = EmitLValue(E->getSubExpr());
571 return EmitScalarPrePostIncDec(E, LV, true, false);
572 }
573 Value *VisitUnaryPreDec(const UnaryOperator *E) {
574 LValue LV = EmitLValue(E->getSubExpr());
575 return EmitScalarPrePostIncDec(E, LV, false, true);
576 }
577 Value *VisitUnaryPreInc(const UnaryOperator *E) {
578 LValue LV = EmitLValue(E->getSubExpr());
579 return EmitScalarPrePostIncDec(E, LV, true, true);
580 }
581
582 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
583 llvm::Value *InVal,
584 bool IsInc);
585
586 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
587 bool isInc, bool isPre);
588
589
590 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
591 if (isa<MemberPointerType>(E->getType())) // never sugared
592 return CGF.CGM.getMemberPointerConstant(E);
593
594 return EmitLValue(E->getSubExpr()).getPointer();
595 }
596 Value *VisitUnaryDeref(const UnaryOperator *E) {
597 if (E->getType()->isVoidType())
598 return Visit(E->getSubExpr()); // the actual value should be unused
599 return EmitLoadOfLValue(E);
600 }
601 Value *VisitUnaryPlus(const UnaryOperator *E) {
602 // This differs from gcc, though, most likely due to a bug in gcc.
603 TestAndClearIgnoreResultAssign();
604 return Visit(E->getSubExpr());
605 }
606 Value *VisitUnaryMinus (const UnaryOperator *E);
607 Value *VisitUnaryNot (const UnaryOperator *E);
608 Value *VisitUnaryLNot (const UnaryOperator *E);
609 Value *VisitUnaryReal (const UnaryOperator *E);
610 Value *VisitUnaryImag (const UnaryOperator *E);
611 Value *VisitUnaryExtension(const UnaryOperator *E) {
612 return Visit(E->getSubExpr());
613 }
614
615 // C++
616 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
617 return EmitLoadOfLValue(E);
618 }
619
620 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
621 return Visit(DAE->getExpr());
622 }
623 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
624 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
625 return Visit(DIE->getExpr());
626 }
627 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
628 return CGF.LoadCXXThis();
629 }
630
631 Value *VisitExprWithCleanups(ExprWithCleanups *E);
632 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
633 return CGF.EmitCXXNewExpr(E);
634 }
635 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
636 CGF.EmitCXXDeleteExpr(E);
637 return nullptr;
638 }
639
640 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
641 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
642 }
643
644 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
645 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
646 }
647
648 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
649 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
650 }
651
652 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
653 // C++ [expr.pseudo]p1:
654 // The result shall only be used as the operand for the function call
655 // operator (), and the result of such a call has type void. The only
656 // effect is the evaluation of the postfix-expression before the dot or
657 // arrow.
658 CGF.EmitScalarExpr(E->getBase());
659 return nullptr;
660 }
661
662 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
663 return EmitNullValue(E->getType());
664 }
665
666 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
667 CGF.EmitCXXThrowExpr(E);
668 return nullptr;
669 }
670
671 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
672 return Builder.getInt1(E->getValue());
673 }
674
675 // Binary Operators.
676 Value *EmitMul(const BinOpInfo &Ops) {
677 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
678 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
679 case LangOptions::SOB_Defined:
680 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
681 case LangOptions::SOB_Undefined:
682 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
683 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
684 LLVM_FALLTHROUGH[[clang::fallthrough]];
685 case LangOptions::SOB_Trapping:
686 if (CanElideOverflowCheck(CGF.getContext(), Ops))
687 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
688 return EmitOverflowCheckedBinOp(Ops);
689 }
690 }
691
692 if (Ops.Ty->isUnsignedIntegerType() &&
693 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
694 !CanElideOverflowCheck(CGF.getContext(), Ops))
695 return EmitOverflowCheckedBinOp(Ops);
696
697 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
698 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
699 return propagateFMFlags(V, Ops);
700 }
701 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
702 }
703 /// Create a binary op that checks for overflow.
704 /// Currently only supports +, - and *.
705 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
706
707 // Check for undefined division and modulus behaviors.
708 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
709 llvm::Value *Zero,bool isDiv);
710 // Common helper for getting how wide LHS of shift is.
711 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
712 Value *EmitDiv(const BinOpInfo &Ops);
713 Value *EmitRem(const BinOpInfo &Ops);
714 Value *EmitAdd(const BinOpInfo &Ops);
715 Value *EmitSub(const BinOpInfo &Ops);
716 Value *EmitShl(const BinOpInfo &Ops);
717 Value *EmitShr(const BinOpInfo &Ops);
718 Value *EmitAnd(const BinOpInfo &Ops) {
719 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
720 }
721 Value *EmitXor(const BinOpInfo &Ops) {
722 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
723 }
724 Value *EmitOr (const BinOpInfo &Ops) {
725 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
726 }
727
728 BinOpInfo EmitBinOps(const BinaryOperator *E);
729 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
730 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
731 Value *&Result);
732
733 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
734 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
735
736 // Binary operators and binary compound assignment operators.
737#define HANDLEBINOP(OP) \
738 Value *VisitBin ## OP(const BinaryOperator *E) { \
739 return Emit ## OP(EmitBinOps(E)); \
740 } \
741 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
742 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
743 }
744 HANDLEBINOP(Mul)
745 HANDLEBINOP(Div)
746 HANDLEBINOP(Rem)
747 HANDLEBINOP(Add)
748 HANDLEBINOP(Sub)
749 HANDLEBINOP(Shl)
750 HANDLEBINOP(Shr)
751 HANDLEBINOP(And)
752 HANDLEBINOP(Xor)
1
Calling 'ScalarExprEmitter::EmitCompoundAssign'
753 HANDLEBINOP(Or)
754#undef HANDLEBINOP
755
756 // Comparisons.
757 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
758 llvm::CmpInst::Predicate SICmpOpc,
759 llvm::CmpInst::Predicate FCmpOpc);
760#define VISITCOMP(CODE, UI, SI, FP) \
761 Value *VisitBin##CODE(const BinaryOperator *E) { \
762 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
763 llvm::FCmpInst::FP); }
764 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
765 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
766 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
767 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
768 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
769 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
770#undef VISITCOMP
771
772 Value *VisitBinAssign (const BinaryOperator *E);
773
774 Value *VisitBinLAnd (const BinaryOperator *E);
775 Value *VisitBinLOr (const BinaryOperator *E);
776 Value *VisitBinComma (const BinaryOperator *E);
777
778 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
779 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
780
781 // Other Operators.
782 Value *VisitBlockExpr(const BlockExpr *BE);
783 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
784 Value *VisitChooseExpr(ChooseExpr *CE);
785 Value *VisitVAArgExpr(VAArgExpr *VE);
786 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
787 return CGF.EmitObjCStringLiteral(E);
788 }
789 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
790 return CGF.EmitObjCBoxedExpr(E);
791 }
792 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
793 return CGF.EmitObjCArrayLiteral(E);
794 }
795 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
796 return CGF.EmitObjCDictionaryLiteral(E);
797 }
798 Value *VisitAsTypeExpr(AsTypeExpr *CE);
799 Value *VisitAtomicExpr(AtomicExpr *AE);
800};
801} // end anonymous namespace.
802
803//===----------------------------------------------------------------------===//
804// Utilities
805//===----------------------------------------------------------------------===//
806
807/// EmitConversionToBool - Convert the specified expression value to a
808/// boolean (i1) truth value. This is equivalent to "Val != 0".
809Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
810 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs")((SrcType.isCanonical() && "EmitScalarConversion strips typedefs"
) ? static_cast<void> (0) : __assert_fail ("SrcType.isCanonical() && \"EmitScalarConversion strips typedefs\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 810, __PRETTY_FUNCTION__))
;
811
812 if (SrcType->isRealFloatingType())
813 return EmitFloatToBoolConversion(Src);
814
815 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
816 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
817
818 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 819, __PRETTY_FUNCTION__))
819 "Unknown scalar type to convert")(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 819, __PRETTY_FUNCTION__))
;
820
821 if (isa<llvm::IntegerType>(Src->getType()))
822 return EmitIntToBoolConversion(Src);
823
824 assert(isa<llvm::PointerType>(Src->getType()))((isa<llvm::PointerType>(Src->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::PointerType>(Src->getType())"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 824, __PRETTY_FUNCTION__))
;
825 return EmitPointerToBoolConversion(Src, SrcType);
826}
827
828void ScalarExprEmitter::EmitFloatConversionCheck(
829 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
830 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
831 CodeGenFunction::SanitizerScope SanScope(&CGF);
832 using llvm::APFloat;
833 using llvm::APSInt;
834
835 llvm::Type *SrcTy = Src->getType();
836
837 llvm::Value *Check = nullptr;
838 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
839 // Integer to floating-point. This can fail for unsigned short -> __half
840 // or unsigned __int128 -> float.
841 assert(DstType->isFloatingType())((DstType->isFloatingType()) ? static_cast<void> (0)
: __assert_fail ("DstType->isFloatingType()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 841, __PRETTY_FUNCTION__))
;
842 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
843
844 APFloat LargestFloat =
845 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
846 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
847
848 bool IsExact;
849 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
850 &IsExact) != APFloat::opOK)
851 // The range of representable values of this floating point type includes
852 // all values of this integer type. Don't need an overflow check.
853 return;
854
855 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
856 if (SrcIsUnsigned)
857 Check = Builder.CreateICmpULE(Src, Max);
858 else {
859 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
860 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
861 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
862 Check = Builder.CreateAnd(GE, LE);
863 }
864 } else {
865 const llvm::fltSemantics &SrcSema =
866 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
867 if (isa<llvm::IntegerType>(DstTy)) {
868 // Floating-point to integer. This has undefined behavior if the source is
869 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
870 // to an integer).
871 unsigned Width = CGF.getContext().getIntWidth(DstType);
872 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
873
874 APSInt Min = APSInt::getMinValue(Width, Unsigned);
875 APFloat MinSrc(SrcSema, APFloat::uninitialized);
876 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
877 APFloat::opOverflow)
878 // Don't need an overflow check for lower bound. Just check for
879 // -Inf/NaN.
880 MinSrc = APFloat::getInf(SrcSema, true);
881 else
882 // Find the largest value which is too small to represent (before
883 // truncation toward zero).
884 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
885
886 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
887 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
888 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
889 APFloat::opOverflow)
890 // Don't need an overflow check for upper bound. Just check for
891 // +Inf/NaN.
892 MaxSrc = APFloat::getInf(SrcSema, false);
893 else
894 // Find the smallest value which is too large to represent (before
895 // truncation toward zero).
896 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
897
898 // If we're converting from __half, convert the range to float to match
899 // the type of src.
900 if (OrigSrcType->isHalfType()) {
901 const llvm::fltSemantics &Sema =
902 CGF.getContext().getFloatTypeSemantics(SrcType);
903 bool IsInexact;
904 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
905 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
906 }
907
908 llvm::Value *GE =
909 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
910 llvm::Value *LE =
911 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
912 Check = Builder.CreateAnd(GE, LE);
913 } else {
914 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
915 //
916 // Floating-point to floating-point. This has undefined behavior if the
917 // source is not in the range of representable values of the destination
918 // type. The C and C++ standards are spectacularly unclear here. We
919 // diagnose finite out-of-range conversions, but allow infinities and NaNs
920 // to convert to the corresponding value in the smaller type.
921 //
922 // C11 Annex F gives all such conversions defined behavior for IEC 60559
923 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
924 // does not.
925
926 // Converting from a lower rank to a higher rank can never have
927 // undefined behavior, since higher-rank types must have a superset
928 // of values of lower-rank types.
929 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
930 return;
931
932 assert(!OrigSrcType->isHalfType() &&((!OrigSrcType->isHalfType() && "should not check conversion from __half, it has the lowest rank"
) ? static_cast<void> (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 933, __PRETTY_FUNCTION__))
933 "should not check conversion from __half, it has the lowest rank")((!OrigSrcType->isHalfType() && "should not check conversion from __half, it has the lowest rank"
) ? static_cast<void> (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 933, __PRETTY_FUNCTION__))
;
934
935 const llvm::fltSemantics &DstSema =
936 CGF.getContext().getFloatTypeSemantics(DstType);
937 APFloat MinBad = APFloat::getLargest(DstSema, false);
938 APFloat MaxBad = APFloat::getInf(DstSema, false);
939
940 bool IsInexact;
941 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
942 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
943
944 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
945 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
946 llvm::Value *GE =
947 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
948 llvm::Value *LE =
949 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
950 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
951 }
952 }
953
954 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
955 CGF.EmitCheckTypeDescriptor(OrigSrcType),
956 CGF.EmitCheckTypeDescriptor(DstType)};
957 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
958 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
959}
960
961// Should be called within CodeGenFunction::SanitizerScope RAII scope.
962// Returns 'i1 false' when the truncation Src -> Dst was lossy.
963static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
964 std::pair<llvm::Value *, SanitizerMask>>
965EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
966 QualType DstType, CGBuilderTy &Builder) {
967 llvm::Type *SrcTy = Src->getType();
968 llvm::Type *DstTy = Dst->getType();
969 (void)DstTy; // Only used in assert()
970
971 // This should be truncation of integral types.
972 assert(Src != Dst)((Src != Dst) ? static_cast<void> (0) : __assert_fail (
"Src != Dst", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 972, __PRETTY_FUNCTION__))
;
973 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits())((SrcTy->getScalarSizeInBits() > Dst->getType()->
getScalarSizeInBits()) ? static_cast<void> (0) : __assert_fail
("SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 973, __PRETTY_FUNCTION__))
;
974 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 975, __PRETTY_FUNCTION__))
975 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 975, __PRETTY_FUNCTION__))
;
976
977 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
978 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
979
980 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
981 // Else, it is a signed truncation.
982 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
983 SanitizerMask Mask;
984 if (!SrcSigned && !DstSigned) {
985 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
986 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
987 } else {
988 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
989 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
990 }
991
992 llvm::Value *Check = nullptr;
993 // 1. Extend the truncated value back to the same width as the Src.
994 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
995 // 2. Equality-compare with the original source value
996 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
997 // If the comparison result is 'i1 false', then the truncation was lossy.
998 return std::make_pair(Kind, std::make_pair(Check, Mask));
999}
1000
1001void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1002 Value *Dst, QualType DstType,
1003 SourceLocation Loc) {
1004 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1005 return;
1006
1007 // We only care about int->int conversions here.
1008 // We ignore conversions to/from pointer and/or bool.
1009 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1010 return;
1011
1012 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1013 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1014 // This must be truncation. Else we do not care.
1015 if (SrcBits <= DstBits)
1016 return;
1017
1018 assert(!DstType->isBooleanType() && "we should not get here with booleans.")((!DstType->isBooleanType() && "we should not get here with booleans."
) ? static_cast<void> (0) : __assert_fail ("!DstType->isBooleanType() && \"we should not get here with booleans.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1018, __PRETTY_FUNCTION__))
;
1019
1020 // If the integer sign change sanitizer is enabled,
1021 // and we are truncating from larger unsigned type to smaller signed type,
1022 // let that next sanitizer deal with it.
1023 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1024 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1025 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1026 (!SrcSigned && DstSigned))
1027 return;
1028
1029 CodeGenFunction::SanitizerScope SanScope(&CGF);
1030
1031 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1032 std::pair<llvm::Value *, SanitizerMask>>
1033 Check =
1034 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1035 // If the comparison result is 'i1 false', then the truncation was lossy.
1036
1037 // Do we care about this type of truncation?
1038 if (!CGF.SanOpts.has(Check.second.second))
1039 return;
1040
1041 llvm::Constant *StaticArgs[] = {
1042 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1043 CGF.EmitCheckTypeDescriptor(DstType),
1044 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1045 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1046 {Src, Dst});
1047}
1048
1049// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1050// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1051static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1052 std::pair<llvm::Value *, SanitizerMask>>
1053EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1054 QualType DstType, CGBuilderTy &Builder) {
1055 llvm::Type *SrcTy = Src->getType();
1056 llvm::Type *DstTy = Dst->getType();
1057
1058 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1059, __PRETTY_FUNCTION__))
1059 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1059, __PRETTY_FUNCTION__))
;
1060
1061 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1062 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1063 (void)SrcSigned; // Only used in assert()
1064 (void)DstSigned; // Only used in assert()
1065 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1066 unsigned DstBits = DstTy->getScalarSizeInBits();
1067 (void)SrcBits; // Only used in assert()
1068 (void)DstBits; // Only used in assert()
1069
1070 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1071, __PRETTY_FUNCTION__))
1071 "either the widths should be different, or the signednesses.")((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1071, __PRETTY_FUNCTION__))
;
1072
1073 // NOTE: zero value is considered to be non-negative.
1074 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1075 const char *Name) -> Value * {
1076 // Is this value a signed type?
1077 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1078 llvm::Type *VTy = V->getType();
1079 if (!VSigned) {
1080 // If the value is unsigned, then it is never negative.
1081 // FIXME: can we encounter non-scalar VTy here?
1082 return llvm::ConstantInt::getFalse(VTy->getContext());
1083 }
1084 // Get the zero of the same type with which we will be comparing.
1085 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1086 // %V.isnegative = icmp slt %V, 0
1087 // I.e is %V *strictly* less than zero, does it have negative value?
1088 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1089 llvm::Twine(Name) + "." + V->getName() +
1090 ".negativitycheck");
1091 };
1092
1093 // 1. Was the old Value negative?
1094 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1095 // 2. Is the new Value negative?
1096 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1097 // 3. Now, was the 'negativity status' preserved during the conversion?
1098 // NOTE: conversion from negative to zero is considered to change the sign.
1099 // (We want to get 'false' when the conversion changed the sign)
1100 // So we should just equality-compare the negativity statuses.
1101 llvm::Value *Check = nullptr;
1102 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1103 // If the comparison result is 'false', then the conversion changed the sign.
1104 return std::make_pair(
1105 ScalarExprEmitter::ICCK_IntegerSignChange,
1106 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1107}
1108
1109void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1110 Value *Dst, QualType DstType,
1111 SourceLocation Loc) {
1112 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1113 return;
1114
1115 llvm::Type *SrcTy = Src->getType();
1116 llvm::Type *DstTy = Dst->getType();
1117
1118 // We only care about int->int conversions here.
1119 // We ignore conversions to/from pointer and/or bool.
1120 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1121 return;
1122
1123 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1124 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1125 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1126 unsigned DstBits = DstTy->getScalarSizeInBits();
1127
1128 // Now, we do not need to emit the check in *all* of the cases.
1129 // We can avoid emitting it in some obvious cases where it would have been
1130 // dropped by the opt passes (instcombine) always anyways.
1131 // If it's a cast between effectively the same type, no check.
1132 // NOTE: this is *not* equivalent to checking the canonical types.
1133 if (SrcSigned == DstSigned && SrcBits == DstBits)
1134 return;
1135 // At least one of the values needs to have signed type.
1136 // If both are unsigned, then obviously, neither of them can be negative.
1137 if (!SrcSigned && !DstSigned)
1138 return;
1139 // If the conversion is to *larger* *signed* type, then no check is needed.
1140 // Because either sign-extension happens (so the sign will remain),
1141 // or zero-extension will happen (the sign bit will be zero.)
1142 if ((DstBits > SrcBits) && DstSigned)
1143 return;
1144 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1145 (SrcBits > DstBits) && SrcSigned) {
1146 // If the signed integer truncation sanitizer is enabled,
1147 // and this is a truncation from signed type, then no check is needed.
1148 // Because here sign change check is interchangeable with truncation check.
1149 return;
1150 }
1151 // That's it. We can't rule out any more cases with the data we have.
1152
1153 CodeGenFunction::SanitizerScope SanScope(&CGF);
1154
1155 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1156 std::pair<llvm::Value *, SanitizerMask>>
1157 Check;
1158
1159 // Each of these checks needs to return 'false' when an issue was detected.
1160 ImplicitConversionCheckKind CheckKind;
1161 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1162 // So we can 'and' all the checks together, and still get 'false',
1163 // if at least one of the checks detected an issue.
1164
1165 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1166 CheckKind = Check.first;
1167 Checks.emplace_back(Check.second);
1168
1169 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1170 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1171 // If the signed integer truncation sanitizer was enabled,
1172 // and we are truncating from larger unsigned type to smaller signed type,
1173 // let's handle the case we skipped in that check.
1174 Check =
1175 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1176 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1177 Checks.emplace_back(Check.second);
1178 // If the comparison result is 'i1 false', then the truncation was lossy.
1179 }
1180
1181 llvm::Constant *StaticArgs[] = {
1182 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1183 CGF.EmitCheckTypeDescriptor(DstType),
1184 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1185 // EmitCheck() will 'and' all the checks together.
1186 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1187 {Src, Dst});
1188}
1189
1190/// Emit a conversion from the specified type to the specified destination type,
1191/// both of which are LLVM scalar types.
1192Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1193 QualType DstType,
1194 SourceLocation Loc,
1195 ScalarConversionOpts Opts) {
1196 // All conversions involving fixed point types should be handled by the
1197 // EmitFixedPoint family functions. This is done to prevent bloating up this
1198 // function more, and although fixed point numbers are represented by
1199 // integers, we do not want to follow any logic that assumes they should be
1200 // treated as integers.
1201 // TODO(leonardchan): When necessary, add another if statement checking for
1202 // conversions to fixed point types from other types.
1203 if (SrcType->isFixedPointType()) {
1204 if (DstType->isFixedPointType()) {
1205 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1206 } else if (DstType->isBooleanType()) {
1207 // We do not need to check the padding bit on unsigned types if unsigned
1208 // padding is enabled because overflow into this bit is undefined
1209 // behavior.
1210 return Builder.CreateIsNotNull(Src, "tobool");
1211 }
1212
1213 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion involving a fixed point type."
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1214)
1214 "Unhandled scalar conversion involving a fixed point type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion involving a fixed point type."
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1214)
;
1215 }
1216
1217 QualType NoncanonicalSrcType = SrcType;
1218 QualType NoncanonicalDstType = DstType;
1219
1220 SrcType = CGF.getContext().getCanonicalType(SrcType);
1221 DstType = CGF.getContext().getCanonicalType(DstType);
1222 if (SrcType == DstType) return Src;
1223
1224 if (DstType->isVoidType()) return nullptr;
1225
1226 llvm::Value *OrigSrc = Src;
1227 QualType OrigSrcType = SrcType;
1228 llvm::Type *SrcTy = Src->getType();
1229
1230 // Handle conversions to bool first, they are special: comparisons against 0.
1231 if (DstType->isBooleanType())
1232 return EmitConversionToBool(Src, SrcType);
1233
1234 llvm::Type *DstTy = ConvertType(DstType);
1235
1236 // Cast from half through float if half isn't a native type.
1237 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1238 // Cast to FP using the intrinsic if the half type itself isn't supported.
1239 if (DstTy->isFloatingPointTy()) {
1240 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1241 return Builder.CreateCall(
1242 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1243 Src);
1244 } else {
1245 // Cast to other types through float, using either the intrinsic or FPExt,
1246 // depending on whether the half type itself is supported
1247 // (as opposed to operations on half, available with NativeHalfType).
1248 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1249 Src = Builder.CreateCall(
1250 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1251 CGF.CGM.FloatTy),
1252 Src);
1253 } else {
1254 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1255 }
1256 SrcType = CGF.getContext().FloatTy;
1257 SrcTy = CGF.FloatTy;
1258 }
1259 }
1260
1261 // Ignore conversions like int -> uint.
1262 if (SrcTy == DstTy) {
1263 if (Opts.EmitImplicitIntegerSignChangeChecks)
1264 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1265 NoncanonicalDstType, Loc);
1266
1267 return Src;
1268 }
1269
1270 // Handle pointer conversions next: pointers can only be converted to/from
1271 // other pointers and integers. Check for pointer types in terms of LLVM, as
1272 // some native types (like Obj-C id) may map to a pointer type.
1273 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1274 // The source value may be an integer, or a pointer.
1275 if (isa<llvm::PointerType>(SrcTy))
1276 return Builder.CreateBitCast(Src, DstTy, "conv");
1277
1278 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?")((SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isIntegerType() && \"Not ptr->ptr or int->ptr conversion?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1278, __PRETTY_FUNCTION__))
;
1279 // First, convert to the correct width so that we control the kind of
1280 // extension.
1281 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1282 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1283 llvm::Value* IntResult =
1284 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1285 // Then, cast to pointer.
1286 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1287 }
1288
1289 if (isa<llvm::PointerType>(SrcTy)) {
1290 // Must be an ptr to int cast.
1291 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?")((isa<llvm::IntegerType>(DstTy) && "not ptr->int?"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::IntegerType>(DstTy) && \"not ptr->int?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1291, __PRETTY_FUNCTION__))
;
1292 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1293 }
1294
1295 // A scalar can be splatted to an extended vector of the same element type
1296 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1297 // Sema should add casts to make sure that the source expression's type is
1298 // the same as the vector's element type (sans qualifiers)
1299 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1301, __PRETTY_FUNCTION__))
1300 SrcType.getTypePtr() &&((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1301, __PRETTY_FUNCTION__))
1301 "Splatted expr doesn't match with vector element type?")((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1301, __PRETTY_FUNCTION__))
;
1302
1303 // Splat the element across to all elements
1304 unsigned NumElements = DstTy->getVectorNumElements();
1305 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1306 }
1307
1308 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1309 // Allow bitcast from vector to integer/fp of the same size.
1310 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1311 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1312 if (SrcSize == DstSize)
1313 return Builder.CreateBitCast(Src, DstTy, "conv");
1314
1315 // Conversions between vectors of different sizes are not allowed except
1316 // when vectors of half are involved. Operations on storage-only half
1317 // vectors require promoting half vector operands to float vectors and
1318 // truncating the result, which is either an int or float vector, to a
1319 // short or half vector.
1320
1321 // Source and destination are both expected to be vectors.
1322 llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1323 llvm::Type *DstElementTy = DstTy->getVectorElementType();
1324 (void)DstElementTy;
1325
1326 assert(((SrcElementTy->isIntegerTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1331, __PRETTY_FUNCTION__))
1327 DstElementTy->isIntegerTy()) ||((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1331, __PRETTY_FUNCTION__))
1328 (SrcElementTy->isFloatingPointTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1331, __PRETTY_FUNCTION__))
1329 DstElementTy->isFloatingPointTy())) &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1331, __PRETTY_FUNCTION__))
1330 "unexpected conversion between a floating-point vector and an "((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1331, __PRETTY_FUNCTION__))
1331 "integer vector")((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1331, __PRETTY_FUNCTION__))
;
1332
1333 // Truncate an i32 vector to an i16 vector.
1334 if (SrcElementTy->isIntegerTy())
1335 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1336
1337 // Truncate a float vector to a half vector.
1338 if (SrcSize > DstSize)
1339 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1340
1341 // Promote a half vector to a float vector.
1342 return Builder.CreateFPExt(Src, DstTy, "conv");
1343 }
1344
1345 // Finally, we have the arithmetic types: real int/float.
1346 Value *Res = nullptr;
1347 llvm::Type *ResTy = DstTy;
1348
1349 // An overflowing conversion has undefined behavior if either the source type
1350 // or the destination type is a floating-point type.
1351 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1352 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1353 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1354 Loc);
1355
1356 // Cast to half through float if half isn't a native type.
1357 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1358 // Make sure we cast in a single step if from another FP type.
1359 if (SrcTy->isFloatingPointTy()) {
1360 // Use the intrinsic if the half type itself isn't supported
1361 // (as opposed to operations on half, available with NativeHalfType).
1362 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1363 return Builder.CreateCall(
1364 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1365 // If the half type is supported, just use an fptrunc.
1366 return Builder.CreateFPTrunc(Src, DstTy);
1367 }
1368 DstTy = CGF.FloatTy;
1369 }
1370
1371 if (isa<llvm::IntegerType>(SrcTy)) {
1372 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1373 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1374 InputSigned = true;
1375 }
1376 if (isa<llvm::IntegerType>(DstTy))
1377 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1378 else if (InputSigned)
1379 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1380 else
1381 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1382 } else if (isa<llvm::IntegerType>(DstTy)) {
1383 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion")((SrcTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1383, __PRETTY_FUNCTION__))
;
1384 if (DstType->isSignedIntegerOrEnumerationType())
1385 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1386 else
1387 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1388 } else {
1389 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1390, __PRETTY_FUNCTION__))
1390 "Unknown real conversion")((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1390, __PRETTY_FUNCTION__))
;
1391 if (DstTy->getTypeID() < SrcTy->getTypeID())
1392 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1393 else
1394 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1395 }
1396
1397 if (DstTy != ResTy) {
1398 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1399 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion")((ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"
) ? static_cast<void> (0) : __assert_fail ("ResTy->isIntegerTy(16) && \"Only half FP requires extra conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1399, __PRETTY_FUNCTION__))
;
1400 Res = Builder.CreateCall(
1401 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1402 Res);
1403 } else {
1404 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1405 }
1406 }
1407
1408 if (Opts.EmitImplicitIntegerTruncationChecks)
1409 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1410 NoncanonicalDstType, Loc);
1411
1412 if (Opts.EmitImplicitIntegerSignChangeChecks)
1413 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1414 NoncanonicalDstType, Loc);
1415
1416 return Res;
1417}
1418
1419Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1420 QualType DstTy,
1421 SourceLocation Loc) {
1422 using llvm::APInt;
1423 using llvm::ConstantInt;
1424 using llvm::Value;
1425
1426 assert(SrcTy->isFixedPointType())((SrcTy->isFixedPointType()) ? static_cast<void> (0)
: __assert_fail ("SrcTy->isFixedPointType()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1426, __PRETTY_FUNCTION__))
;
1427 assert(DstTy->isFixedPointType())((DstTy->isFixedPointType()) ? static_cast<void> (0)
: __assert_fail ("DstTy->isFixedPointType()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1427, __PRETTY_FUNCTION__))
;
1428
1429 FixedPointSemantics SrcFPSema =
1430 CGF.getContext().getFixedPointSemantics(SrcTy);
1431 FixedPointSemantics DstFPSema =
1432 CGF.getContext().getFixedPointSemantics(DstTy);
1433 unsigned SrcWidth = SrcFPSema.getWidth();
1434 unsigned DstWidth = DstFPSema.getWidth();
1435 unsigned SrcScale = SrcFPSema.getScale();
1436 unsigned DstScale = DstFPSema.getScale();
1437 bool SrcIsSigned = SrcFPSema.isSigned();
1438 bool DstIsSigned = DstFPSema.isSigned();
1439
1440 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1441
1442 Value *Result = Src;
1443 unsigned ResultWidth = SrcWidth;
1444
1445 if (!DstFPSema.isSaturated()) {
1446 // Downscale.
1447 if (DstScale < SrcScale)
1448 Result = SrcIsSigned ?
1449 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") :
1450 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1451
1452 // Resize.
1453 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1454
1455 // Upscale.
1456 if (DstScale > SrcScale)
1457 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1458 } else {
1459 // Adjust the number of fractional bits.
1460 if (DstScale > SrcScale) {
1461 ResultWidth = SrcWidth + DstScale - SrcScale;
1462 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1463 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1464 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1465 } else if (DstScale < SrcScale) {
1466 Result = SrcIsSigned ?
1467 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") :
1468 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1469 }
1470
1471 // Handle saturation.
1472 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1473 if (LessIntBits) {
1474 Value *Max = ConstantInt::get(
1475 CGF.getLLVMContext(),
1476 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1477 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1478 : Builder.CreateICmpUGT(Result, Max);
1479 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1480 }
1481 // Cannot overflow min to dest type if src is unsigned since all fixed
1482 // point types can cover the unsigned min of 0.
1483 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1484 Value *Min = ConstantInt::get(
1485 CGF.getLLVMContext(),
1486 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1487 Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1488 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1489 }
1490
1491 // Resize the integer part to get the final destination size.
1492 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1493 }
1494 return Result;
1495}
1496
1497/// Emit a conversion from the specified complex type to the specified
1498/// destination type, where the destination type is an LLVM scalar type.
1499Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1500 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1501 SourceLocation Loc) {
1502 // Get the source element type.
1503 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1504
1505 // Handle conversions to bool first, they are special: comparisons against 0.
1506 if (DstTy->isBooleanType()) {
1507 // Complex != 0 -> (Real != 0) | (Imag != 0)
1508 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1509 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1510 return Builder.CreateOr(Src.first, Src.second, "tobool");
1511 }
1512
1513 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1514 // the imaginary part of the complex value is discarded and the value of the
1515 // real part is converted according to the conversion rules for the
1516 // corresponding real type.
1517 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1518}
1519
1520Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1521 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1522}
1523
1524/// Emit a sanitization check for the given "binary" operation (which
1525/// might actually be a unary increment which has been lowered to a binary
1526/// operation). The check passes if all values in \p Checks (which are \c i1),
1527/// are \c true.
1528void ScalarExprEmitter::EmitBinOpCheck(
1529 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1530 assert(CGF.IsSanitizerScope)((CGF.IsSanitizerScope) ? static_cast<void> (0) : __assert_fail
("CGF.IsSanitizerScope", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1530, __PRETTY_FUNCTION__))
;
1531 SanitizerHandler Check;
1532 SmallVector<llvm::Constant *, 4> StaticData;
1533 SmallVector<llvm::Value *, 2> DynamicData;
1534
1535 BinaryOperatorKind Opcode = Info.Opcode;
1536 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1537 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1538
1539 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1540 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1541 if (UO && UO->getOpcode() == UO_Minus) {
1542 Check = SanitizerHandler::NegateOverflow;
1543 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1544 DynamicData.push_back(Info.RHS);
1545 } else {
1546 if (BinaryOperator::isShiftOp(Opcode)) {
1547 // Shift LHS negative or too large, or RHS out of bounds.
1548 Check = SanitizerHandler::ShiftOutOfBounds;
1549 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1550 StaticData.push_back(
1551 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1552 StaticData.push_back(
1553 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1554 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1555 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1556 Check = SanitizerHandler::DivremOverflow;
1557 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1558 } else {
1559 // Arithmetic overflow (+, -, *).
1560 switch (Opcode) {
1561 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1562 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1563 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1564 default: llvm_unreachable("unexpected opcode for bin op check")::llvm::llvm_unreachable_internal("unexpected opcode for bin op check"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1564)
;
1565 }
1566 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1567 }
1568 DynamicData.push_back(Info.LHS);
1569 DynamicData.push_back(Info.RHS);
1570 }
1571
1572 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1573}
1574
1575//===----------------------------------------------------------------------===//
1576// Visitor Methods
1577//===----------------------------------------------------------------------===//
1578
1579Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1580 CGF.ErrorUnsupported(E, "scalar expression");
1581 if (E->getType()->isVoidType())
1582 return nullptr;
1583 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1584}
1585
1586Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1587 // Vector Mask Case
1588 if (E->getNumSubExprs() == 2) {
1589 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1590 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1591 Value *Mask;
1592
1593 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1594 unsigned LHSElts = LTy->getNumElements();
1595
1596 Mask = RHS;
1597
1598 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1599
1600 // Mask off the high bits of each shuffle index.
1601 Value *MaskBits =
1602 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1603 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1604
1605 // newv = undef
1606 // mask = mask & maskbits
1607 // for each elt
1608 // n = extract mask i
1609 // x = extract val n
1610 // newv = insert newv, x, i
1611 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1612 MTy->getNumElements());
1613 Value* NewV = llvm::UndefValue::get(RTy);
1614 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1615 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1616 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1617
1618 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1619 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1620 }
1621 return NewV;
1622 }
1623
1624 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1625 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1626
1627 SmallVector<llvm::Constant*, 32> indices;
1628 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1629 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1630 // Check for -1 and output it as undef in the IR.
1631 if (Idx.isSigned() && Idx.isAllOnesValue())
1632 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1633 else
1634 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1635 }
1636
1637 Value *SV = llvm::ConstantVector::get(indices);
1638 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1639}
1640
1641Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1642 QualType SrcType = E->getSrcExpr()->getType(),
1643 DstType = E->getType();
1644
1645 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1646
1647 SrcType = CGF.getContext().getCanonicalType(SrcType);
1648 DstType = CGF.getContext().getCanonicalType(DstType);
1649 if (SrcType == DstType) return Src;
1650
1651 assert(SrcType->isVectorType() &&((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1652, __PRETTY_FUNCTION__))
1652 "ConvertVector source type must be a vector")((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1652, __PRETTY_FUNCTION__))
;
1653 assert(DstType->isVectorType() &&((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1654, __PRETTY_FUNCTION__))
1654 "ConvertVector destination type must be a vector")((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1654, __PRETTY_FUNCTION__))
;
1655
1656 llvm::Type *SrcTy = Src->getType();
1657 llvm::Type *DstTy = ConvertType(DstType);
1658
1659 // Ignore conversions like int -> uint.
1660 if (SrcTy == DstTy)
1661 return Src;
1662
1663 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1664 DstEltType = DstType->getAs<VectorType>()->getElementType();
1665
1666 assert(SrcTy->isVectorTy() &&((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1667, __PRETTY_FUNCTION__))
1667 "ConvertVector source IR type must be a vector")((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1667, __PRETTY_FUNCTION__))
;
1668 assert(DstTy->isVectorTy() &&((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1669, __PRETTY_FUNCTION__))
1669 "ConvertVector destination IR type must be a vector")((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1669, __PRETTY_FUNCTION__))
;
1670
1671 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1672 *DstEltTy = DstTy->getVectorElementType();
1673
1674 if (DstEltType->isBooleanType()) {
1675 assert((SrcEltTy->isFloatingPointTy() ||(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1676, __PRETTY_FUNCTION__))
1676 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion")(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1676, __PRETTY_FUNCTION__))
;
1677
1678 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1679 if (SrcEltTy->isFloatingPointTy()) {
1680 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1681 } else {
1682 return Builder.CreateICmpNE(Src, Zero, "tobool");
1683 }
1684 }
1685
1686 // We have the arithmetic types: real int/float.
1687 Value *Res = nullptr;
1688
1689 if (isa<llvm::IntegerType>(SrcEltTy)) {
1690 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1691 if (isa<llvm::IntegerType>(DstEltTy))
1692 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1693 else if (InputSigned)
1694 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1695 else
1696 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1697 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1698 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1698, __PRETTY_FUNCTION__))
;
1699 if (DstEltType->isSignedIntegerOrEnumerationType())
1700 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1701 else
1702 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1703 } else {
1704 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1705, __PRETTY_FUNCTION__))
1705 "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1705, __PRETTY_FUNCTION__))
;
1706 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1707 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1708 else
1709 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1710 }
1711
1712 return Res;
1713}
1714
1715Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1716 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1717 CGF.EmitIgnoredExpr(E->getBase());
1718 return CGF.emitScalarConstant(Constant, E);
1719 } else {
1720 Expr::EvalResult Result;
1721 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1722 llvm::APSInt Value = Result.Val.getInt();
1723 CGF.EmitIgnoredExpr(E->getBase());
1724 return Builder.getInt(Value);
1725 }
1726 }
1727
1728 return EmitLoadOfLValue(E);
1729}
1730
1731Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1732 TestAndClearIgnoreResultAssign();
1733
1734 // Emit subscript expressions in rvalue context's. For most cases, this just
1735 // loads the lvalue formed by the subscript expr. However, we have to be
1736 // careful, because the base of a vector subscript is occasionally an rvalue,
1737 // so we can't get it as an lvalue.
1738 if (!E->getBase()->getType()->isVectorType())
1739 return EmitLoadOfLValue(E);
1740
1741 // Handle the vector case. The base must be a vector, the index must be an
1742 // integer value.
1743 Value *Base = Visit(E->getBase());
1744 Value *Idx = Visit(E->getIdx());
1745 QualType IdxTy = E->getIdx()->getType();
1746
1747 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1748 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1749
1750 return Builder.CreateExtractElement(Base, Idx, "vecext");
1751}
1752
1753static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1754 unsigned Off, llvm::Type *I32Ty) {
1755 int MV = SVI->getMaskValue(Idx);
1756 if (MV == -1)
1757 return llvm::UndefValue::get(I32Ty);
1758 return llvm::ConstantInt::get(I32Ty, Off+MV);
1759}
1760
1761static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1762 if (C->getBitWidth() != 32) {
1763 assert(llvm::ConstantInt::isValueValidForType(I32Ty,((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1765, __PRETTY_FUNCTION__))
1764 C->getZExtValue()) &&((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1765, __PRETTY_FUNCTION__))
1765 "Index operand too large for shufflevector mask!")((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1765, __PRETTY_FUNCTION__))
;
1766 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1767 }
1768 return C;
1769}
1770
1771Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1772 bool Ignore = TestAndClearIgnoreResultAssign();
1773 (void)Ignore;
1774 assert (Ignore == false && "init list ignored")((Ignore == false && "init list ignored") ? static_cast
<void> (0) : __assert_fail ("Ignore == false && \"init list ignored\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1774, __PRETTY_FUNCTION__))
;
1775 unsigned NumInitElements = E->getNumInits();
1776
1777 if (E->hadArrayRangeDesignator())
1778 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1779
1780 llvm::VectorType *VType =
1781 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1782
1783 if (!VType) {
1784 if (NumInitElements == 0) {
1785 // C++11 value-initialization for the scalar.
1786 return EmitNullValue(E->getType());
1787 }
1788 // We have a scalar in braces. Just use the first element.
1789 return Visit(E->getInit(0));
1790 }
1791
1792 unsigned ResElts = VType->getNumElements();
1793
1794 // Loop over initializers collecting the Value for each, and remembering
1795 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1796 // us to fold the shuffle for the swizzle into the shuffle for the vector
1797 // initializer, since LLVM optimizers generally do not want to touch
1798 // shuffles.
1799 unsigned CurIdx = 0;
1800 bool VIsUndefShuffle = false;
1801 llvm::Value *V = llvm::UndefValue::get(VType);
1802 for (unsigned i = 0; i != NumInitElements; ++i) {
1803 Expr *IE = E->getInit(i);
1804 Value *Init = Visit(IE);
1805 SmallVector<llvm::Constant*, 16> Args;
1806
1807 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1808
1809 // Handle scalar elements. If the scalar initializer is actually one
1810 // element of a different vector of the same width, use shuffle instead of
1811 // extract+insert.
1812 if (!VVT) {
1813 if (isa<ExtVectorElementExpr>(IE)) {
1814 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1815
1816 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1817 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1818 Value *LHS = nullptr, *RHS = nullptr;
1819 if (CurIdx == 0) {
1820 // insert into undef -> shuffle (src, undef)
1821 // shufflemask must use an i32
1822 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1823 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1824
1825 LHS = EI->getVectorOperand();
1826 RHS = V;
1827 VIsUndefShuffle = true;
1828 } else if (VIsUndefShuffle) {
1829 // insert into undefshuffle && size match -> shuffle (v, src)
1830 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1831 for (unsigned j = 0; j != CurIdx; ++j)
1832 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1833 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1834 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1835
1836 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1837 RHS = EI->getVectorOperand();
1838 VIsUndefShuffle = false;
1839 }
1840 if (!Args.empty()) {
1841 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1842 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1843 ++CurIdx;
1844 continue;
1845 }
1846 }
1847 }
1848 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1849 "vecinit");
1850 VIsUndefShuffle = false;
1851 ++CurIdx;
1852 continue;
1853 }
1854
1855 unsigned InitElts = VVT->getNumElements();
1856
1857 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1858 // input is the same width as the vector being constructed, generate an
1859 // optimized shuffle of the swizzle input into the result.
1860 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1861 if (isa<ExtVectorElementExpr>(IE)) {
1862 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1863 Value *SVOp = SVI->getOperand(0);
1864 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1865
1866 if (OpTy->getNumElements() == ResElts) {
1867 for (unsigned j = 0; j != CurIdx; ++j) {
1868 // If the current vector initializer is a shuffle with undef, merge
1869 // this shuffle directly into it.
1870 if (VIsUndefShuffle) {
1871 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1872 CGF.Int32Ty));
1873 } else {
1874 Args.push_back(Builder.getInt32(j));
1875 }
1876 }
1877 for (unsigned j = 0, je = InitElts; j != je; ++j)
1878 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1879 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1880
1881 if (VIsUndefShuffle)
1882 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1883
1884 Init = SVOp;
1885 }
1886 }
1887
1888 // Extend init to result vector length, and then shuffle its contribution
1889 // to the vector initializer into V.
1890 if (Args.empty()) {
1891 for (unsigned j = 0; j != InitElts; ++j)
1892 Args.push_back(Builder.getInt32(j));
1893 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1894 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1895 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1896 Mask, "vext");
1897
1898 Args.clear();
1899 for (unsigned j = 0; j != CurIdx; ++j)
1900 Args.push_back(Builder.getInt32(j));
1901 for (unsigned j = 0; j != InitElts; ++j)
1902 Args.push_back(Builder.getInt32(j+Offset));
1903 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1904 }
1905
1906 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1907 // merging subsequent shuffles into this one.
1908 if (CurIdx == 0)
1909 std::swap(V, Init);
1910 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1911 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1912 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1913 CurIdx += InitElts;
1914 }
1915
1916 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1917 // Emit remaining default initializers.
1918 llvm::Type *EltTy = VType->getElementType();
1919
1920 // Emit remaining default initializers
1921 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1922 Value *Idx = Builder.getInt32(CurIdx);
1923 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1924 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1925 }
1926 return V;
1927}
1928
1929bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1930 const Expr *E = CE->getSubExpr();
1931
1932 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1933 return false;
1934
1935 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1936 // We always assume that 'this' is never null.
1937 return false;
1938 }
1939
1940 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1941 // And that glvalue casts are never null.
1942 if (ICE->getValueKind() != VK_RValue)
1943 return false;
1944 }
1945
1946 return true;
1947}
1948
1949// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1950// have to handle a more broad range of conversions than explicit casts, as they
1951// handle things like function to ptr-to-function decay etc.
1952Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1953 Expr *E = CE->getSubExpr();
1954 QualType DestTy = CE->getType();
1955 CastKind Kind = CE->getCastKind();
1956
1957 // These cases are generally not written to ignore the result of
1958 // evaluating their sub-expressions, so we clear this now.
1959 bool Ignored = TestAndClearIgnoreResultAssign();
1960
1961 // Since almost all cast kinds apply to scalars, this switch doesn't have
1962 // a default case, so the compiler will warn on a missing case. The cases
1963 // are in the same order as in the CastKind enum.
1964 switch (Kind) {
1965 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!")::llvm::llvm_unreachable_internal("dependent cast kind in IR gen!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1965)
;
1966 case CK_BuiltinFnToFnPtr:
1967 llvm_unreachable("builtin functions are handled elsewhere")::llvm::llvm_unreachable_internal("builtin functions are handled elsewhere"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1967)
;
1968
1969 case CK_LValueBitCast:
1970 case CK_ObjCObjectLValueCast: {
1971 Address Addr = EmitLValue(E).getAddress();
1972 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1973 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1974 return EmitLoadOfLValue(LV, CE->getExprLoc());
1975 }
1976
1977 case CK_CPointerToObjCPointerCast:
1978 case CK_BlockPointerToObjCPointerCast:
1979 case CK_AnyPointerToBlockPointerCast:
1980 case CK_BitCast: {
1981 Value *Src = Visit(const_cast<Expr*>(E));
1982 llvm::Type *SrcTy = Src->getType();
1983 llvm::Type *DstTy = ConvertType(DestTy);
1984 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1985 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1986 llvm_unreachable("wrong cast for pointers in different address spaces"::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1987)
1987 "(must be an address space cast)!")::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1987)
;
1988 }
1989
1990 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1991 if (auto PT = DestTy->getAs<PointerType>())
1992 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1993 /*MayBeNull=*/true,
1994 CodeGenFunction::CFITCK_UnrelatedCast,
1995 CE->getBeginLoc());
1996 }
1997
1998 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1999 const QualType SrcType = E->getType();
2000
2001 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2002 // Casting to pointer that could carry dynamic information (provided by
2003 // invariant.group) requires launder.
2004 Src = Builder.CreateLaunderInvariantGroup(Src);
2005 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2006 // Casting to pointer that does not carry dynamic information (provided
2007 // by invariant.group) requires stripping it. Note that we don't do it
2008 // if the source could not be dynamic type and destination could be
2009 // dynamic because dynamic information is already laundered. It is
2010 // because launder(strip(src)) == launder(src), so there is no need to
2011 // add extra strip before launder.
2012 Src = Builder.CreateStripInvariantGroup(Src);
2013 }
2014 }
2015
2016 return Builder.CreateBitCast(Src, DstTy);
2017 }
2018 case CK_AddressSpaceConversion: {
2019 Expr::EvalResult Result;
2020 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2021 Result.Val.isNullPointer()) {
2022 // If E has side effect, it is emitted even if its final result is a
2023 // null pointer. In that case, a DCE pass should be able to
2024 // eliminate the useless instructions emitted during translating E.
2025 if (Result.HasSideEffects)
2026 Visit(E);
2027 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2028 ConvertType(DestTy)), DestTy);
2029 }
2030 // Since target may map different address spaces in AST to the same address
2031 // space, an address space conversion may end up as a bitcast.
2032 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2033 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2034 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2035 }
2036 case CK_AtomicToNonAtomic:
2037 case CK_NonAtomicToAtomic:
2038 case CK_NoOp:
2039 case CK_UserDefinedConversion:
2040 return Visit(const_cast<Expr*>(E));
2041
2042 case CK_BaseToDerived: {
2043 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2044 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!")((DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"
) ? static_cast<void> (0) : __assert_fail ("DerivedClassDecl && \"BaseToDerived arg isn't a C++ object pointer!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2044, __PRETTY_FUNCTION__))
;
2045
2046 Address Base = CGF.EmitPointerWithAlignment(E);
2047 Address Derived =
2048 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2049 CE->path_begin(), CE->path_end(),
2050 CGF.ShouldNullCheckClassCastValue(CE));
2051
2052 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2053 // performed and the object is not of the derived type.
2054 if (CGF.sanitizePerformTypeCheck())
2055 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2056 Derived.getPointer(), DestTy->getPointeeType());
2057
2058 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2059 CGF.EmitVTablePtrCheckForCast(
2060 DestTy->getPointeeType(), Derived.getPointer(),
2061 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2062 CE->getBeginLoc());
2063
2064 return Derived.getPointer();
2065 }
2066 case CK_UncheckedDerivedToBase:
2067 case CK_DerivedToBase: {
2068 // The EmitPointerWithAlignment path does this fine; just discard
2069 // the alignment.
2070 return CGF.EmitPointerWithAlignment(CE).getPointer();
2071 }
2072
2073 case CK_Dynamic: {
2074 Address V = CGF.EmitPointerWithAlignment(E);
2075 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2076 return CGF.EmitDynamicCast(V, DCE);
2077 }
2078
2079 case CK_ArrayToPointerDecay:
2080 return CGF.EmitArrayToPointerDecay(E).getPointer();
2081 case CK_FunctionToPointerDecay:
2082 return EmitLValue(E).getPointer();
2083
2084 case CK_NullToPointer:
2085 if (MustVisitNullValue(E))
2086 (void) Visit(E);
2087
2088 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2089 DestTy);
2090
2091 case CK_NullToMemberPointer: {
2092 if (MustVisitNullValue(E))
2093 (void) Visit(E);
2094
2095 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2096 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2097 }
2098
2099 case CK_ReinterpretMemberPointer:
2100 case CK_BaseToDerivedMemberPointer:
2101 case CK_DerivedToBaseMemberPointer: {
2102 Value *Src = Visit(E);
2103
2104 // Note that the AST doesn't distinguish between checked and
2105 // unchecked member pointer conversions, so we always have to
2106 // implement checked conversions here. This is inefficient when
2107 // actual control flow may be required in order to perform the
2108 // check, which it is for data member pointers (but not member
2109 // function pointers on Itanium and ARM).
2110 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2111 }
2112
2113 case CK_ARCProduceObject:
2114 return CGF.EmitARCRetainScalarExpr(E);
2115 case CK_ARCConsumeObject:
2116 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2117 case CK_ARCReclaimReturnedObject:
2118 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2119 case CK_ARCExtendBlockObject:
2120 return CGF.EmitARCExtendBlockObject(E);
2121
2122 case CK_CopyAndAutoreleaseBlockObject:
2123 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2124
2125 case CK_FloatingRealToComplex:
2126 case CK_FloatingComplexCast:
2127 case CK_IntegralRealToComplex:
2128 case CK_IntegralComplexCast:
2129 case CK_IntegralComplexToFloatingComplex:
2130 case CK_FloatingComplexToIntegralComplex:
2131 case CK_ConstructorConversion:
2132 case CK_ToUnion:
2133 llvm_unreachable("scalar cast to non-scalar value")::llvm::llvm_unreachable_internal("scalar cast to non-scalar value"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2133)
;
2134
2135 case CK_LValueToRValue:
2136 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy))((CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy
)) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2136, __PRETTY_FUNCTION__))
;
2137 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!")((E->isGLValue() && "lvalue-to-rvalue applied to r-value!"
) ? static_cast<void> (0) : __assert_fail ("E->isGLValue() && \"lvalue-to-rvalue applied to r-value!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2137, __PRETTY_FUNCTION__))
;
2138 return Visit(const_cast<Expr*>(E));
2139
2140 case CK_IntegralToPointer: {
2141 Value *Src = Visit(const_cast<Expr*>(E));
2142
2143 // First, convert to the correct width so that we control the kind of
2144 // extension.
2145 auto DestLLVMTy = ConvertType(DestTy);
2146 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2147 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2148 llvm::Value* IntResult =
2149 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2150
2151 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2152
2153 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2154 // Going from integer to pointer that could be dynamic requires reloading
2155 // dynamic information from invariant.group.
2156 if (DestTy.mayBeDynamicClass())
2157 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2158 }
2159 return IntToPtr;
2160 }
2161 case CK_PointerToIntegral: {
2162 assert(!DestTy->isBooleanType() && "bool should use PointerToBool")((!DestTy->isBooleanType() && "bool should use PointerToBool"
) ? static_cast<void> (0) : __assert_fail ("!DestTy->isBooleanType() && \"bool should use PointerToBool\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2162, __PRETTY_FUNCTION__))
;
2163 auto *PtrExpr = Visit(E);
2164
2165 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2166 const QualType SrcType = E->getType();
2167
2168 // Casting to integer requires stripping dynamic information as it does
2169 // not carries it.
2170 if (SrcType.mayBeDynamicClass())
2171 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2172 }
2173
2174 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2175 }
2176 case CK_ToVoid: {
2177 CGF.EmitIgnoredExpr(E);
2178 return nullptr;
2179 }
2180 case CK_VectorSplat: {
2181 llvm::Type *DstTy = ConvertType(DestTy);
2182 Value *Elt = Visit(const_cast<Expr*>(E));
2183 // Splat the element across to all elements
2184 unsigned NumElements = DstTy->getVectorNumElements();
2185 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2186 }
2187
2188 case CK_FixedPointCast:
2189 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2190 CE->getExprLoc());
2191
2192 case CK_FixedPointToBoolean:
2193 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2194, __PRETTY_FUNCTION__))
2194 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2194, __PRETTY_FUNCTION__))
;
2195 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type")((DestTy->isBooleanType() && "Expected dest type to be boolean type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isBooleanType() && \"Expected dest type to be boolean type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2197 CE->getExprLoc());
2198
2199 case CK_IntegralCast: {
2200 ScalarConversionOpts Opts;
2201 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2202 if (!ICE->isPartOfExplicitCast())
2203 Opts = ScalarConversionOpts(CGF.SanOpts);
2204 }
2205 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2206 CE->getExprLoc(), Opts);
2207 }
2208 case CK_IntegralToFloating:
2209 case CK_FloatingToIntegral:
2210 case CK_FloatingCast:
2211 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2212 CE->getExprLoc());
2213 case CK_BooleanToSignedIntegral: {
2214 ScalarConversionOpts Opts;
2215 Opts.TreatBooleanAsSigned = true;
2216 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2217 CE->getExprLoc(), Opts);
2218 }
2219 case CK_IntegralToBoolean:
2220 return EmitIntToBoolConversion(Visit(E));
2221 case CK_PointerToBoolean:
2222 return EmitPointerToBoolConversion(Visit(E), E->getType());
2223 case CK_FloatingToBoolean:
2224 return EmitFloatToBoolConversion(Visit(E));
2225 case CK_MemberPointerToBoolean: {
2226 llvm::Value *MemPtr = Visit(E);
2227 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2228 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2229 }
2230
2231 case CK_FloatingComplexToReal:
2232 case CK_IntegralComplexToReal:
2233 return CGF.EmitComplexExpr(E, false, true).first;
2234
2235 case CK_FloatingComplexToBoolean:
2236 case CK_IntegralComplexToBoolean: {
2237 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2238
2239 // TODO: kill this function off, inline appropriate case here
2240 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2241 CE->getExprLoc());
2242 }
2243
2244 case CK_ZeroToOCLOpaqueType: {
2245 assert((DestTy->isEventT() || DestTy->isQueueT() ||(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2247, __PRETTY_FUNCTION__))
2246 DestTy->isOCLIntelSubgroupAVCType()) &&(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2247, __PRETTY_FUNCTION__))
2247 "CK_ZeroToOCLEvent cast on non-event type")(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 return llvm::Constant::getNullValue(ConvertType(DestTy));
2249 }
2250
2251 case CK_IntToOCLSampler:
2252 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2253
2254 } // end of switch
2255
2256 llvm_unreachable("unknown scalar cast")::llvm::llvm_unreachable_internal("unknown scalar cast", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2256)
;
2257}
2258
2259Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2260 CodeGenFunction::StmtExprEvaluation eval(CGF);
2261 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2262 !E->getType()->isVoidType());
2263 if (!RetAlloca.isValid())
2264 return nullptr;
2265 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2266 E->getExprLoc());
2267}
2268
2269Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2270 CGF.enterFullExpression(E);
2271 CodeGenFunction::RunCleanupsScope Scope(CGF);
2272 Value *V = Visit(E->getSubExpr());
2273 // Defend against dominance problems caused by jumps out of expression
2274 // evaluation through the shared cleanup block.
2275 Scope.ForceCleanup({&V});
2276 return V;
2277}
2278
2279//===----------------------------------------------------------------------===//
2280// Unary Operators
2281//===----------------------------------------------------------------------===//
2282
2283static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2284 llvm::Value *InVal, bool IsInc) {
2285 BinOpInfo BinOp;
2286 BinOp.LHS = InVal;
2287 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2288 BinOp.Ty = E->getType();
2289 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2290 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2291 BinOp.E = E;
2292 return BinOp;
2293}
2294
2295llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2296 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2297 llvm::Value *Amount =
2298 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2299 StringRef Name = IsInc ? "inc" : "dec";
2300 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2301 case LangOptions::SOB_Defined:
2302 return Builder.CreateAdd(InVal, Amount, Name);
2303 case LangOptions::SOB_Undefined:
2304 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2305 return Builder.CreateNSWAdd(InVal, Amount, Name);
2306 LLVM_FALLTHROUGH[[clang::fallthrough]];
2307 case LangOptions::SOB_Trapping:
2308 if (!E->canOverflow())
2309 return Builder.CreateNSWAdd(InVal, Amount, Name);
2310 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2311 }
2312 llvm_unreachable("Unknown SignedOverflowBehaviorTy")::llvm::llvm_unreachable_internal("Unknown SignedOverflowBehaviorTy"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2312)
;
2313}
2314
2315llvm::Value *
2316ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2317 bool isInc, bool isPre) {
2318
2319 QualType type = E->getSubExpr()->getType();
2320 llvm::PHINode *atomicPHI = nullptr;
2321 llvm::Value *value;
2322 llvm::Value *input;
2323
2324 int amount = (isInc ? 1 : -1);
2325 bool isSubtraction = !isInc;
2326
2327 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2328 type = atomicTy->getValueType();
2329 if (isInc && type->isBooleanType()) {
2330 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2331 if (isPre) {
2332 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2333 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2334 return Builder.getTrue();
2335 }
2336 // For atomic bool increment, we just store true and return it for
2337 // preincrement, do an atomic swap with true for postincrement
2338 return Builder.CreateAtomicRMW(
2339 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2340 llvm::AtomicOrdering::SequentiallyConsistent);
2341 }
2342 // Special case for atomic increment / decrement on integers, emit
2343 // atomicrmw instructions. We skip this if we want to be doing overflow
2344 // checking, and fall into the slow path with the atomic cmpxchg loop.
2345 if (!type->isBooleanType() && type->isIntegerType() &&
2346 !(type->isUnsignedIntegerType() &&
2347 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2348 CGF.getLangOpts().getSignedOverflowBehavior() !=
2349 LangOptions::SOB_Trapping) {
2350 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2351 llvm::AtomicRMWInst::Sub;
2352 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2353 llvm::Instruction::Sub;
2354 llvm::Value *amt = CGF.EmitToMemory(
2355 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2356 llvm::Value *old = Builder.CreateAtomicRMW(aop,
2357 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2358 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2359 }
2360 value = EmitLoadOfLValue(LV, E->getExprLoc());
2361 input = value;
2362 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2363 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2364 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2365 value = CGF.EmitToMemory(value, type);
2366 Builder.CreateBr(opBB);
2367 Builder.SetInsertPoint(opBB);
2368 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2369 atomicPHI->addIncoming(value, startBB);
2370 value = atomicPHI;
2371 } else {
2372 value = EmitLoadOfLValue(LV, E->getExprLoc());
2373 input = value;
2374 }
2375
2376 // Special case of integer increment that we have to check first: bool++.
2377 // Due to promotion rules, we get:
2378 // bool++ -> bool = bool + 1
2379 // -> bool = (int)bool + 1
2380 // -> bool = ((int)bool + 1 != 0)
2381 // An interesting aspect of this is that increment is always true.
2382 // Decrement does not have this property.
2383 if (isInc && type->isBooleanType()) {
2384 value = Builder.getTrue();
2385
2386 // Most common case by far: integer increment.
2387 } else if (type->isIntegerType()) {
2388 // Note that signed integer inc/dec with width less than int can't
2389 // overflow because of promotion rules; we're just eliding a few steps here.
2390 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2391 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2392 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2393 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2394 value =
2395 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2396 } else {
2397 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2398 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2399 }
2400
2401 // Next most common: pointer increment.
2402 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2403 QualType type = ptr->getPointeeType();
2404
2405 // VLA types don't have constant size.
2406 if (const VariableArrayType *vla
2407 = CGF.getContext().getAsVariableArrayType(type)) {
2408 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2409 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2410 if (CGF.getLangOpts().isSignedOverflowDefined())
2411 value = Builder.CreateGEP(value, numElts, "vla.inc");
2412 else
2413 value = CGF.EmitCheckedInBoundsGEP(
2414 value, numElts, /*SignedIndices=*/false, isSubtraction,
2415 E->getExprLoc(), "vla.inc");
2416
2417 // Arithmetic on function pointers (!) is just +-1.
2418 } else if (type->isFunctionType()) {
2419 llvm::Value *amt = Builder.getInt32(amount);
2420
2421 value = CGF.EmitCastToVoidPtr(value);
2422 if (CGF.getLangOpts().isSignedOverflowDefined())
2423 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2424 else
2425 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2426 isSubtraction, E->getExprLoc(),
2427 "incdec.funcptr");
2428 value = Builder.CreateBitCast(value, input->getType());
2429
2430 // For everything else, we can just do a simple increment.
2431 } else {
2432 llvm::Value *amt = Builder.getInt32(amount);
2433 if (CGF.getLangOpts().isSignedOverflowDefined())
2434 value = Builder.CreateGEP(value, amt, "incdec.ptr");
2435 else
2436 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2437 isSubtraction, E->getExprLoc(),
2438 "incdec.ptr");
2439 }
2440
2441 // Vector increment/decrement.
2442 } else if (type->isVectorType()) {
2443 if (type->hasIntegerRepresentation()) {
2444 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2445
2446 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2447 } else {
2448 value = Builder.CreateFAdd(
2449 value,
2450 llvm::ConstantFP::get(value->getType(), amount),
2451 isInc ? "inc" : "dec");
2452 }
2453
2454 // Floating point.
2455 } else if (type->isRealFloatingType()) {
2456 // Add the inc/dec to the real part.
2457 llvm::Value *amt;
2458
2459 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2460 // Another special case: half FP increment should be done via float
2461 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2462 value = Builder.CreateCall(
2463 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2464 CGF.CGM.FloatTy),
2465 input, "incdec.conv");
2466 } else {
2467 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2468 }
2469 }
2470
2471 if (value->getType()->isFloatTy())
2472 amt = llvm::ConstantFP::get(VMContext,
2473 llvm::APFloat(static_cast<float>(amount)));
2474 else if (value->getType()->isDoubleTy())
2475 amt = llvm::ConstantFP::get(VMContext,
2476 llvm::APFloat(static_cast<double>(amount)));
2477 else {
2478 // Remaining types are Half, LongDouble or __float128. Convert from float.
2479 llvm::APFloat F(static_cast<float>(amount));
2480 bool ignored;
2481 const llvm::fltSemantics *FS;
2482 // Don't use getFloatTypeSemantics because Half isn't
2483 // necessarily represented using the "half" LLVM type.
2484 if (value->getType()->isFP128Ty())
2485 FS = &CGF.getTarget().getFloat128Format();
2486 else if (value->getType()->isHalfTy())
2487 FS = &CGF.getTarget().getHalfFormat();
2488 else
2489 FS = &CGF.getTarget().getLongDoubleFormat();
2490 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2491 amt = llvm::ConstantFP::get(VMContext, F);
2492 }
2493 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2494
2495 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2496 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2497 value = Builder.CreateCall(
2498 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2499 CGF.CGM.FloatTy),
2500 value, "incdec.conv");
2501 } else {
2502 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2503 }
2504 }
2505
2506 // Objective-C pointer types.
2507 } else {
2508 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2509 value = CGF.EmitCastToVoidPtr(value);
2510
2511 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2512 if (!isInc) size = -size;
2513 llvm::Value *sizeValue =
2514 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2515
2516 if (CGF.getLangOpts().isSignedOverflowDefined())
2517 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2518 else
2519 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2520 /*SignedIndices=*/false, isSubtraction,
2521 E->getExprLoc(), "incdec.objptr");
2522 value = Builder.CreateBitCast(value, input->getType());
2523 }
2524
2525 if (atomicPHI) {
2526 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2527 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2528 auto Pair = CGF.EmitAtomicCompareExchange(
2529 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2530 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2531 llvm::Value *success = Pair.second;
2532 atomicPHI->addIncoming(old, opBB);
2533 Builder.CreateCondBr(success, contBB, opBB);
2534 Builder.SetInsertPoint(contBB);
2535 return isPre ? value : input;
2536 }
2537
2538 // Store the updated result through the lvalue.
2539 if (LV.isBitField())
2540 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2541 else
2542 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2543
2544 // If this is a postinc, return the value read from memory, otherwise use the
2545 // updated value.
2546 return isPre ? value : input;
2547}
2548
2549
2550
2551Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2552 TestAndClearIgnoreResultAssign();
2553 // Emit unary minus with EmitSub so we handle overflow cases etc.
2554 BinOpInfo BinOp;
2555 BinOp.RHS = Visit(E->getSubExpr());
2556
2557 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2558 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2559 else
2560 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2561 BinOp.Ty = E->getType();
2562 BinOp.Opcode = BO_Sub;
2563 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2564 BinOp.E = E;
2565 return EmitSub(BinOp);
2566}
2567
2568Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2569 TestAndClearIgnoreResultAssign();
2570 Value *Op = Visit(E->getSubExpr());
2571 return Builder.CreateNot(Op, "neg");
2572}
2573
2574Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2575 // Perform vector logical not on comparison with zero vector.
2576 if (E->getType()->isExtVectorType()) {
2577 Value *Oper = Visit(E->getSubExpr());
2578 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2579 Value *Result;
2580 if (Oper->getType()->isFPOrFPVectorTy())
2581 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2582 else
2583 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2584 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2585 }
2586
2587 // Compare operand to zero.
2588 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2589
2590 // Invert value.
2591 // TODO: Could dynamically modify easy computations here. For example, if
2592 // the operand is an icmp ne, turn into icmp eq.
2593 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2594
2595 // ZExt result to the expr type.
2596 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2597}
2598
2599Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2600 // Try folding the offsetof to a constant.
2601 Expr::EvalResult EVResult;
2602 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2603 llvm::APSInt Value = EVResult.Val.getInt();
2604 return Builder.getInt(Value);
2605 }
2606
2607 // Loop over the components of the offsetof to compute the value.
2608 unsigned n = E->getNumComponents();
2609 llvm::Type* ResultType = ConvertType(E->getType());
2610 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2611 QualType CurrentType = E->getTypeSourceInfo()->getType();
2612 for (unsigned i = 0; i != n; ++i) {
2613 OffsetOfNode ON = E->getComponent(i);
2614 llvm::Value *Offset = nullptr;
2615 switch (ON.getKind()) {
2616 case OffsetOfNode::Array: {
2617 // Compute the index
2618 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2619 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2620 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2621 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2622
2623 // Save the element type
2624 CurrentType =
2625 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2626
2627 // Compute the element size
2628 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2629 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2630
2631 // Multiply out to compute the result
2632 Offset = Builder.CreateMul(Idx, ElemSize);
2633 break;
2634 }
2635
2636 case OffsetOfNode::Field: {
2637 FieldDecl *MemberDecl = ON.getField();
2638 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2639 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2640
2641 // Compute the index of the field in its parent.
2642 unsigned i = 0;
2643 // FIXME: It would be nice if we didn't have to loop here!
2644 for (RecordDecl::field_iterator Field = RD->field_begin(),
2645 FieldEnd = RD->field_end();
2646 Field != FieldEnd; ++Field, ++i) {
2647 if (*Field == MemberDecl)
2648 break;
2649 }
2650 assert(i < RL.getFieldCount() && "offsetof field in wrong type")((i < RL.getFieldCount() && "offsetof field in wrong type"
) ? static_cast<void> (0) : __assert_fail ("i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2650, __PRETTY_FUNCTION__))
;
2651
2652 // Compute the offset to the field
2653 int64_t OffsetInt = RL.getFieldOffset(i) /
2654 CGF.getContext().getCharWidth();
2655 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2656
2657 // Save the element type.
2658 CurrentType = MemberDecl->getType();
2659 break;
2660 }
2661
2662 case OffsetOfNode::Identifier:
2663 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2663)
;
2664
2665 case OffsetOfNode::Base: {
2666 if (ON.getBase()->isVirtual()) {
2667 CGF.ErrorUnsupported(E, "virtual base in offsetof");
2668 continue;
2669 }
2670
2671 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2672 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2673
2674 // Save the element type.
2675 CurrentType = ON.getBase()->getType();
2676
2677 // Compute the offset to the base.
2678 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2679 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2680 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2681 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2682 break;
2683 }
2684 }
2685 Result = Builder.CreateAdd(Result, Offset);
2686 }
2687 return Result;
2688}
2689
2690/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2691/// argument of the sizeof expression as an integer.
2692Value *
2693ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2694 const UnaryExprOrTypeTraitExpr *E) {
2695 QualType TypeToSize = E->getTypeOfArgument();
2696 if (E->getKind() == UETT_SizeOf) {
2697 if (const VariableArrayType *VAT =
2698 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2699 if (E->isArgumentType()) {
2700 // sizeof(type) - make sure to emit the VLA size.
2701 CGF.EmitVariablyModifiedType(TypeToSize);
2702 } else {
2703 // C99 6.5.3.4p2: If the argument is an expression of type
2704 // VLA, it is evaluated.
2705 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2706 }
2707
2708 auto VlaSize = CGF.getVLASize(VAT);
2709 llvm::Value *size = VlaSize.NumElts;
2710
2711 // Scale the number of non-VLA elements by the non-VLA element size.
2712 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2713 if (!eltSize.isOne())
2714 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2715
2716 return size;
2717 }
2718 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2719 auto Alignment =
2720 CGF.getContext()
2721 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2722 E->getTypeOfArgument()->getPointeeType()))
2723 .getQuantity();
2724 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2725 }
2726
2727 // If this isn't sizeof(vla), the result must be constant; use the constant
2728 // folding logic so we don't have to duplicate it here.
2729 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2730}
2731
2732Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2733 Expr *Op = E->getSubExpr();
2734 if (Op->getType()->isAnyComplexType()) {
2735 // If it's an l-value, load through the appropriate subobject l-value.
2736 // Note that we have to ask E because Op might be an l-value that
2737 // this won't work for, e.g. an Obj-C property.
2738 if (E->isGLValue())
2739 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2740 E->getExprLoc()).getScalarVal();
2741
2742 // Otherwise, calculate and project.
2743 return CGF.EmitComplexExpr(Op, false, true).first;
2744 }
2745
2746 return Visit(Op);
2747}
2748
2749Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2750 Expr *Op = E->getSubExpr();
2751 if (Op->getType()->isAnyComplexType()) {
2752 // If it's an l-value, load through the appropriate subobject l-value.
2753 // Note that we have to ask E because Op might be an l-value that
2754 // this won't work for, e.g. an Obj-C property.
2755 if (Op->isGLValue())
2756 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2757 E->getExprLoc()).getScalarVal();
2758
2759 // Otherwise, calculate and project.
2760 return CGF.EmitComplexExpr(Op, true, false).second;
2761 }
2762
2763 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2764 // effects are evaluated, but not the actual value.
2765 if (Op->isGLValue())
2766 CGF.EmitLValue(Op);
2767 else
2768 CGF.EmitScalarExpr(Op, true);
2769 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2770}
2771
2772//===----------------------------------------------------------------------===//
2773// Binary Operators
2774//===----------------------------------------------------------------------===//
2775
2776BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2777 TestAndClearIgnoreResultAssign();
2778 BinOpInfo Result;
2779 Result.LHS = Visit(E->getLHS());
2780 Result.RHS = Visit(E->getRHS());
2781 Result.Ty = E->getType();
2782 Result.Opcode = E->getOpcode();
2783 Result.FPFeatures = E->getFPFeatures();
2784 Result.E = E;
2785 return Result;
2786}
2787
2788LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2789 const CompoundAssignOperator *E,
2790 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2791 Value *&Result) {
2792 QualType LHSTy = E->getLHS()->getType();
2793 BinOpInfo OpInfo;
2794
2795 if (E->getComputationResultType()->isAnyComplexType())
4
Taking false branch
2796 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2797
2798 // Emit the RHS first. __block variables need to have the rhs evaluated
2799 // first, plus this should improve codegen a little.
2800 OpInfo.RHS = Visit(E->getRHS());
2801 OpInfo.Ty = E->getComputationResultType();
2802 OpInfo.Opcode = E->getOpcode();
2803 OpInfo.FPFeatures = E->getFPFeatures();
2804 OpInfo.E = E;
2805 // Load/convert the LHS.
2806 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2807
2808 llvm::PHINode *atomicPHI = nullptr;
2809 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
5
Taking true branch
2810 QualType type = atomicTy->getValueType();
2811 if (!type->isBooleanType() && type->isIntegerType() &&
8
Taking true branch
2812 !(type->isUnsignedIntegerType() &&
6
Assuming the condition is false
2813 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2814 CGF.getLangOpts().getSignedOverflowBehavior() !=
7
Assuming the condition is true
2815 LangOptions::SOB_Trapping) {
2816 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2817 switch (OpInfo.Opcode) {
9
Control jumps to 'case BO_OrAssign:' at line 2836
2818 // We don't have atomicrmw operands for *, %, /, <<, >>
2819 case BO_MulAssign: case BO_DivAssign:
2820 case BO_RemAssign:
2821 case BO_ShlAssign:
2822 case BO_ShrAssign:
2823 break;
2824 case BO_AddAssign:
2825 aop = llvm::AtomicRMWInst::Add;
2826 break;
2827 case BO_SubAssign:
2828 aop = llvm::AtomicRMWInst::Sub;
2829 break;
2830 case BO_AndAssign:
2831 aop = llvm::AtomicRMWInst::And;
2832 break;
2833 case BO_XorAssign:
2834 aop = llvm::AtomicRMWInst::Xor;
2835 break;
2836 case BO_OrAssign:
2837 aop = llvm::AtomicRMWInst::Or;
2838 break;
10
Execution continues on line 2842
2839 default:
2840 llvm_unreachable("Invalid compound assignment type")::llvm::llvm_unreachable_internal("Invalid compound assignment type"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2840)
;
2841 }
2842 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
11
Taking true branch
2843 llvm::Value *amt = CGF.EmitToMemory(
2844 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2845 E->getExprLoc()),
2846 LHSTy);
2847 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2848 llvm::AtomicOrdering::SequentiallyConsistent);
2849 return LHSLV;
12
Returning without writing to 'Result'
2850 }
2851 }
2852 // FIXME: For floating point types, we should be saving and restoring the
2853 // floating point environment in the loop.
2854 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2855 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2856 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2857 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2858 Builder.CreateBr(opBB);
2859 Builder.SetInsertPoint(opBB);
2860 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2861 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2862 OpInfo.LHS = atomicPHI;
2863 }
2864 else
2865 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2866
2867 SourceLocation Loc = E->getExprLoc();
2868 OpInfo.LHS =
2869 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2870
2871 // Expand the binary operator.
2872 Result = (this->*Func)(OpInfo);
2873
2874 // Convert the result back to the LHS type,
2875 // potentially with Implicit Conversion sanitizer check.
2876 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2877 Loc, ScalarConversionOpts(CGF.SanOpts));
2878
2879 if (atomicPHI) {
2880 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2881 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2882 auto Pair = CGF.EmitAtomicCompareExchange(
2883 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2884 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2885 llvm::Value *success = Pair.second;
2886 atomicPHI->addIncoming(old, opBB);
2887 Builder.CreateCondBr(success, contBB, opBB);
2888 Builder.SetInsertPoint(contBB);
2889 return LHSLV;
2890 }
2891
2892 // Store the result value into the LHS lvalue. Bit-fields are handled
2893 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2894 // 'An assignment expression has the value of the left operand after the
2895 // assignment...'.
2896 if (LHSLV.isBitField())
2897 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2898 else
2899 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2900
2901 return LHSLV;
2902}
2903
2904Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2905 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2906 bool Ignore = TestAndClearIgnoreResultAssign();
2907 Value *RHS;
2
'RHS' declared without an initial value
2908 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3
Calling 'ScalarExprEmitter::EmitCompoundAssignLValue'
13
Returning from 'ScalarExprEmitter::EmitCompoundAssignLValue'
2909
2910 // If the result is clearly ignored, return now.
2911 if (Ignore)
14
Assuming 'Ignore' is 0
15
Taking false branch
2912 return nullptr;
2913
2914 // The result of an assignment in C is the assigned r-value.
2915 if (!CGF.getLangOpts().CPlusPlus)
16
Assuming the condition is false
17
Taking false branch
2916 return RHS;
2917
2918 // If the lvalue is non-volatile, return the computed value of the assignment.
2919 if (!LHS.isVolatileQualified())
18
Assuming the condition is true
19
Taking true branch
2920 return RHS;
20
Undefined or garbage value returned to caller
2921
2922 // Otherwise, reload the value.
2923 return EmitLoadOfLValue(LHS, E->getExprLoc());
2924}
2925
2926void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2927 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2928 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2929
2930 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2931 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2932 SanitizerKind::IntegerDivideByZero));
2933 }
2934
2935 const auto *BO = cast<BinaryOperator>(Ops.E);
2936 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2937 Ops.Ty->hasSignedIntegerRepresentation() &&
2938 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2939 Ops.mayHaveIntegerOverflow()) {
2940 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2941
2942 llvm::Value *IntMin =
2943 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2944 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2945
2946 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2947 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2948 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2949 Checks.push_back(
2950 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2951 }
2952
2953 if (Checks.size() > 0)
2954 EmitBinOpCheck(Checks, Ops);
2955}
2956
2957Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2958 {
2959 CodeGenFunction::SanitizerScope SanScope(&CGF);
2960 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2961 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2962 Ops.Ty->isIntegerType() &&
2963 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2964 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2965 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2966 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2967 Ops.Ty->isRealFloatingType() &&
2968 Ops.mayHaveFloatDivisionByZero()) {
2969 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2970 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2971 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2972 Ops);
2973 }
2974 }
2975
2976 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2977 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2978 if (CGF.getLangOpts().OpenCL &&
2979 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2980 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2981 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2982 // build option allows an application to specify that single precision
2983 // floating-point divide (x/y and 1/x) and sqrt used in the program
2984 // source are correctly rounded.
2985 llvm::Type *ValTy = Val->getType();
2986 if (ValTy->isFloatTy() ||
2987 (isa<llvm::VectorType>(ValTy) &&
2988 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2989 CGF.SetFPAccuracy(Val, 2.5);
2990 }
2991 return Val;
2992 }
2993 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2994 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2995 else
2996 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2997}
2998
2999Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3000 // Rem in C can't be a floating point type: C99 6.5.5p2.
3001 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3002 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3003 Ops.Ty->isIntegerType() &&
3004 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3005 CodeGenFunction::SanitizerScope SanScope(&CGF);
3006 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3007 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3008 }
3009
3010 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3011 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3012 else
3013 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3014}
3015
3016Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3017 unsigned IID;
3018 unsigned OpID = 0;
3019
3020 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3021 switch (Ops.Opcode) {
3022 case BO_Add:
3023 case BO_AddAssign:
3024 OpID = 1;
3025 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3026 llvm::Intrinsic::uadd_with_overflow;
3027 break;
3028 case BO_Sub:
3029 case BO_SubAssign:
3030 OpID = 2;
3031 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3032 llvm::Intrinsic::usub_with_overflow;
3033 break;
3034 case BO_Mul:
3035 case BO_MulAssign:
3036 OpID = 3;
3037 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3038 llvm::Intrinsic::umul_with_overflow;
3039 break;
3040 default:
3041 llvm_unreachable("Unsupported operation for overflow detection")::llvm::llvm_unreachable_internal("Unsupported operation for overflow detection"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3041)
;
3042 }
3043 OpID <<= 1;
3044 if (isSigned)
3045 OpID |= 1;
3046
3047 CodeGenFunction::SanitizerScope SanScope(&CGF);
3048 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3049
3050 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3051
3052 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3053 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3054 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3055
3056 // Handle overflow with llvm.trap if no custom handler has been specified.
3057 const std::string *handlerName =
3058 &CGF.getLangOpts().OverflowHandler;
3059 if (handlerName->empty()) {
3060 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3061 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3062 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3063 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3064 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3065 : SanitizerKind::UnsignedIntegerOverflow;
3066 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3067 } else
3068 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3069 return result;
3070 }
3071
3072 // Branch in case of overflow.
3073 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3074 llvm::BasicBlock *continueBB =
3075 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3076 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3077
3078 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3079
3080 // If an overflow handler is set, then we want to call it and then use its
3081 // result, if it returns.
3082 Builder.SetInsertPoint(overflowBB);
3083
3084 // Get the overflow handler.
3085 llvm::Type *Int8Ty = CGF.Int8Ty;
3086 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3087 llvm::FunctionType *handlerTy =
3088 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3089 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3090
3091 // Sign extend the args to 64-bit, so that we can use the same handler for
3092 // all types of overflow.
3093 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3094 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3095
3096 // Call the handler with the two arguments, the operation, and the size of
3097 // the result.
3098 llvm::Value *handlerArgs[] = {
3099 lhs,
3100 rhs,
3101 Builder.getInt8(OpID),
3102 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3103 };
3104 llvm::Value *handlerResult =
3105 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3106
3107 // Truncate the result back to the desired size.
3108 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3109 Builder.CreateBr(continueBB);
3110
3111 Builder.SetInsertPoint(continueBB);
3112 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3113 phi->addIncoming(result, initialBB);
3114 phi->addIncoming(handlerResult, overflowBB);
3115
3116 return phi;
3117}
3118
3119/// Emit pointer + index arithmetic.
3120static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3121 const BinOpInfo &op,
3122 bool isSubtraction) {
3123 // Must have binary (not unary) expr here. Unary pointer
3124 // increment/decrement doesn't use this path.
3125 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3126
3127 Value *pointer = op.LHS;
3128 Expr *pointerOperand = expr->getLHS();
3129 Value *index = op.RHS;
3130 Expr *indexOperand = expr->getRHS();
3131
3132 // In a subtraction, the LHS is always the pointer.
3133 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3134 std::swap(pointer, index);
3135 std::swap(pointerOperand, indexOperand);
3136 }
3137
3138 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3139
3140 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3141 auto &DL = CGF.CGM.getDataLayout();
3142 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3143
3144 // Some versions of glibc and gcc use idioms (particularly in their malloc
3145 // routines) that add a pointer-sized integer (known to be a pointer value)
3146 // to a null pointer in order to cast the value back to an integer or as
3147 // part of a pointer alignment algorithm. This is undefined behavior, but
3148 // we'd like to be able to compile programs that use it.
3149 //
3150 // Normally, we'd generate a GEP with a null-pointer base here in response
3151 // to that code, but it's also UB to dereference a pointer created that
3152 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3153 // generate a direct cast of the integer value to a pointer.
3154 //
3155 // The idiom (p = nullptr + N) is not met if any of the following are true:
3156 //
3157 // The operation is subtraction.
3158 // The index is not pointer-sized.
3159 // The pointer type is not byte-sized.
3160 //
3161 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3162 op.Opcode,
3163 expr->getLHS(),
3164 expr->getRHS()))
3165 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3166
3167 if (width != DL.getTypeSizeInBits(PtrTy)) {
3168 // Zero-extend or sign-extend the pointer value according to
3169 // whether the index is signed or not.
3170 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3171 "idx.ext");
3172 }
3173
3174 // If this is subtraction, negate the index.
3175 if (isSubtraction)
3176 index = CGF.Builder.CreateNeg(index, "idx.neg");
3177
3178 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3179 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3180 /*Accessed*/ false);
3181
3182 const PointerType *pointerType
3183 = pointerOperand->getType()->getAs<PointerType>();
3184 if (!pointerType) {
3185 QualType objectType = pointerOperand->getType()
3186 ->castAs<ObjCObjectPointerType>()
3187 ->getPointeeType();
3188 llvm::Value *objectSize
3189 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3190
3191 index = CGF.Builder.CreateMul(index, objectSize);
3192
3193 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3194 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3195 return CGF.Builder.CreateBitCast(result, pointer->getType());
3196 }
3197
3198 QualType elementType = pointerType->getPointeeType();
3199 if (const VariableArrayType *vla
3200 = CGF.getContext().getAsVariableArrayType(elementType)) {
3201 // The element count here is the total number of non-VLA elements.
3202 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3203
3204 // Effectively, the multiply by the VLA size is part of the GEP.
3205 // GEP indexes are signed, and scaling an index isn't permitted to
3206 // signed-overflow, so we use the same semantics for our explicit
3207 // multiply. We suppress this if overflow is not undefined behavior.
3208 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3209 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3210 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3211 } else {
3212 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3213 pointer =
3214 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3215 op.E->getExprLoc(), "add.ptr");
3216 }
3217 return pointer;
3218 }
3219
3220 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3221 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3222 // future proof.
3223 if (elementType->isVoidType() || elementType->isFunctionType()) {
3224 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3225 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3226 return CGF.Builder.CreateBitCast(result, pointer->getType());
3227 }
3228
3229 if (CGF.getLangOpts().isSignedOverflowDefined())
3230 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3231
3232 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3233 op.E->getExprLoc(), "add.ptr");
3234}
3235
3236// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3237// Addend. Use negMul and negAdd to negate the first operand of the Mul or
3238// the add operand respectively. This allows fmuladd to represent a*b-c, or
3239// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3240// efficient operations.
3241static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3242 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3243 bool negMul, bool negAdd) {
3244 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.")((!(negMul && negAdd) && "Only one of negMul and negAdd should be set."
) ? static_cast<void> (0) : __assert_fail ("!(negMul && negAdd) && \"Only one of negMul and negAdd should be set.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3244, __PRETTY_FUNCTION__))
;
3245
3246 Value *MulOp0 = MulOp->getOperand(0);
3247 Value *MulOp1 = MulOp->getOperand(1);
3248 if (negMul) {
3249 MulOp0 =
3250 Builder.CreateFSub(
3251 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3252 "neg");
3253 } else if (negAdd) {
3254 Addend =
3255 Builder.CreateFSub(
3256 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3257 "neg");
3258 }
3259
3260 Value *FMulAdd = Builder.CreateCall(
3261 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3262 {MulOp0, MulOp1, Addend});
3263 MulOp->eraseFromParent();
3264
3265 return FMulAdd;
3266}
3267
3268// Check whether it would be legal to emit an fmuladd intrinsic call to
3269// represent op and if so, build the fmuladd.
3270//
3271// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3272// Does NOT check the type of the operation - it's assumed that this function
3273// will be called from contexts where it's known that the type is contractable.
3274static Value* tryEmitFMulAdd(const BinOpInfo &op,
3275 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3276 bool isSub=false) {
3277
3278 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3280, __PRETTY_FUNCTION__))
3279 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3280, __PRETTY_FUNCTION__))
3280 "Only fadd/fsub can be the root of an fmuladd.")(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3280, __PRETTY_FUNCTION__))
;
3281
3282 // Check whether this op is marked as fusable.
3283 if (!op.FPFeatures.allowFPContractWithinStatement())
3284 return nullptr;
3285
3286 // We have a potentially fusable op. Look for a mul on one of the operands.
3287 // Also, make sure that the mul result isn't used directly. In that case,
3288 // there's no point creating a muladd operation.
3289 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3290 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3291 LHSBinOp->use_empty())
3292 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3293 }
3294 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3295 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3296 RHSBinOp->use_empty())
3297 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3298 }
3299
3300 return nullptr;
3301}
3302
3303Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3304 if (op.LHS->getType()->isPointerTy() ||
3305 op.RHS->getType()->isPointerTy())
3306 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3307
3308 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3309 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3310 case LangOptions::SOB_Defined:
3311 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3312 case LangOptions::SOB_Undefined:
3313 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3314 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3315 LLVM_FALLTHROUGH[[clang::fallthrough]];
3316 case LangOptions::SOB_Trapping:
3317 if (CanElideOverflowCheck(CGF.getContext(), op))
3318 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3319 return EmitOverflowCheckedBinOp(op);
3320 }
3321 }
3322
3323 if (op.Ty->isUnsignedIntegerType() &&
3324 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3325 !CanElideOverflowCheck(CGF.getContext(), op))
3326 return EmitOverflowCheckedBinOp(op);
3327
3328 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3329 // Try to form an fmuladd.
3330 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3331 return FMulAdd;
3332
3333 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3334 return propagateFMFlags(V, op);
3335 }
3336
3337 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3338}
3339
3340Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3341 // The LHS is always a pointer if either side is.
3342 if (!op.LHS->getType()->isPointerTy()) {
3343 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3344 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3345 case LangOptions::SOB_Defined:
3346 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3347 case LangOptions::SOB_Undefined:
3348 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3349 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3350 LLVM_FALLTHROUGH[[clang::fallthrough]];
3351 case LangOptions::SOB_Trapping:
3352 if (CanElideOverflowCheck(CGF.getContext(), op))
3353 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3354 return EmitOverflowCheckedBinOp(op);
3355 }
3356 }
3357
3358 if (op.Ty->isUnsignedIntegerType() &&
3359 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3360 !CanElideOverflowCheck(CGF.getContext(), op))
3361 return EmitOverflowCheckedBinOp(op);
3362
3363 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3364 // Try to form an fmuladd.
3365 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3366 return FMulAdd;
3367 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3368 return propagateFMFlags(V, op);
3369 }
3370
3371 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3372 }
3373
3374 // If the RHS is not a pointer, then we have normal pointer
3375 // arithmetic.
3376 if (!op.RHS->getType()->isPointerTy())
3377 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3378
3379 // Otherwise, this is a pointer subtraction.
3380
3381 // Do the raw subtraction part.
3382 llvm::Value *LHS
3383 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3384 llvm::Value *RHS
3385 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3386 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3387
3388 // Okay, figure out the element size.
3389 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3390 QualType elementType = expr->getLHS()->getType()->getPointeeType();
3391
3392 llvm::Value *divisor = nullptr;
3393
3394 // For a variable-length array, this is going to be non-constant.
3395 if (const VariableArrayType *vla
3396 = CGF.getContext().getAsVariableArrayType(elementType)) {
3397 auto VlaSize = CGF.getVLASize(vla);
3398 elementType = VlaSize.Type;
3399 divisor = VlaSize.NumElts;
3400
3401 // Scale the number of non-VLA elements by the non-VLA element size.
3402 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3403 if (!eltSize.isOne())
3404 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3405
3406 // For everything elese, we can just compute it, safe in the
3407 // assumption that Sema won't let anything through that we can't
3408 // safely compute the size of.
3409 } else {
3410 CharUnits elementSize;
3411 // Handle GCC extension for pointer arithmetic on void* and
3412 // function pointer types.
3413 if (elementType->isVoidType() || elementType->isFunctionType())
3414 elementSize = CharUnits::One();
3415 else
3416 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3417
3418 // Don't even emit the divide for element size of 1.
3419 if (elementSize.isOne())
3420 return diffInChars;
3421
3422 divisor = CGF.CGM.getSize(elementSize);
3423 }
3424
3425 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3426 // pointer difference in C is only defined in the case where both operands
3427 // are pointing to elements of an array.
3428 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3429}
3430
3431Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3432 llvm::IntegerType *Ty;
3433 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3434 Ty = cast<llvm::IntegerType>(VT->getElementType());
3435 else
3436 Ty = cast<llvm::IntegerType>(LHS->getType());
3437 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3438}
3439
3440Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3441 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3442 // RHS to the same size as the LHS.
3443 Value *RHS = Ops.RHS;
3444 if (Ops.LHS->getType() != RHS->getType())
3445 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3446
3447 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3448 Ops.Ty->hasSignedIntegerRepresentation() &&
3449 !CGF.getLangOpts().isSignedOverflowDefined();
3450 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3451 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3452 if (CGF.getLangOpts().OpenCL)
3453 RHS =
3454 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3455 else if ((SanitizeBase || SanitizeExponent) &&
3456 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3457 CodeGenFunction::SanitizerScope SanScope(&CGF);
3458 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3459 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3460 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3461
3462 if (SanitizeExponent) {
3463 Checks.push_back(
3464 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3465 }
3466
3467 if (SanitizeBase) {
3468 // Check whether we are shifting any non-zero bits off the top of the
3469 // integer. We only emit this check if exponent is valid - otherwise
3470 // instructions below will have undefined behavior themselves.
3471 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3472 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3473 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3474 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3475 llvm::Value *PromotedWidthMinusOne =
3476 (RHS == Ops.RHS) ? WidthMinusOne
3477 : GetWidthMinusOneValue(Ops.LHS, RHS);
3478 CGF.EmitBlock(CheckShiftBase);
3479 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3480 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3481 /*NUW*/ true, /*NSW*/ true),
3482 "shl.check");
3483 if (CGF.getLangOpts().CPlusPlus) {
3484 // In C99, we are not permitted to shift a 1 bit into the sign bit.
3485 // Under C++11's rules, shifting a 1 bit into the sign bit is
3486 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3487 // define signed left shifts, so we use the C99 and C++11 rules there).
3488 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3489 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3490 }
3491 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3492 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3493 CGF.EmitBlock(Cont);
3494 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3495 BaseCheck->addIncoming(Builder.getTrue(), Orig);
3496 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3497 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3498 }
3499
3500 assert(!Checks.empty())((!Checks.empty()) ? static_cast<void> (0) : __assert_fail
("!Checks.empty()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3500, __PRETTY_FUNCTION__))
;
3501 EmitBinOpCheck(Checks, Ops);
3502 }
3503
3504 return Builder.CreateShl(Ops.LHS, RHS, "shl");
3505}
3506
3507Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3508 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3509 // RHS to the same size as the LHS.
3510 Value *RHS = Ops.RHS;
3511 if (Ops.LHS->getType() != RHS->getType())
3512 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3513
3514 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3515 if (CGF.getLangOpts().OpenCL)
3516 RHS =
3517 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3518 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3519 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3520 CodeGenFunction::SanitizerScope SanScope(&CGF);
3521 llvm::Value *Valid =
3522 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3523 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3524 }
3525
3526 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3527 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3528 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3529}
3530
3531enum IntrinsicType { VCMPEQ, VCMPGT };
3532// return corresponding comparison intrinsic for given vector type
3533static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3534 BuiltinType::Kind ElemKind) {
3535 switch (ElemKind) {
3536 default: llvm_unreachable("unexpected element type")::llvm::llvm_unreachable_internal("unexpected element type", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3536)
;
3537 case BuiltinType::Char_U:
3538 case BuiltinType::UChar:
3539 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3540 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3541 case BuiltinType::Char_S:
3542 case BuiltinType::SChar:
3543 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3544 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3545 case BuiltinType::UShort:
3546 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3547 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3548 case BuiltinType::Short:
3549 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3550 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3551 case BuiltinType::UInt:
3552 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3553 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3554 case BuiltinType::Int:
3555 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3556 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3557 case BuiltinType::ULong:
3558 case BuiltinType::ULongLong:
3559 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3560 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3561 case BuiltinType::Long:
3562 case BuiltinType::LongLong:
3563 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3564 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3565 case BuiltinType::Float:
3566 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3567 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3568 case BuiltinType::Double:
3569 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3570 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3571 }
3572}
3573
3574Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3575 llvm::CmpInst::Predicate UICmpOpc,
3576 llvm::CmpInst::Predicate SICmpOpc,
3577 llvm::CmpInst::Predicate FCmpOpc) {
3578 TestAndClearIgnoreResultAssign();
3579 Value *Result;
3580 QualType LHSTy = E->getLHS()->getType();
3581 QualType RHSTy = E->getRHS()->getType();
3582 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3583 assert(E->getOpcode() == BO_EQ ||((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3584, __PRETTY_FUNCTION__))
3584 E->getOpcode() == BO_NE)((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3584, __PRETTY_FUNCTION__))
;
3585 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3586 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3587 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3588 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3589 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3590 Value *LHS = Visit(E->getLHS());
3591 Value *RHS = Visit(E->getRHS());
3592
3593 // If AltiVec, the comparison results in a numeric type, so we use
3594 // intrinsics comparing vectors and giving 0 or 1 as a result
3595 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3596 // constants for mapping CR6 register bits to predicate result
3597 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3598
3599 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3600
3601 // in several cases vector arguments order will be reversed
3602 Value *FirstVecArg = LHS,
3603 *SecondVecArg = RHS;
3604
3605 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3606 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3607 BuiltinType::Kind ElementKind = BTy->getKind();
3608
3609 switch(E->getOpcode()) {
3610 default: llvm_unreachable("is not a comparison operation")::llvm::llvm_unreachable_internal("is not a comparison operation"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3610)
;
3611 case BO_EQ:
3612 CR6 = CR6_LT;
3613 ID = GetIntrinsic(VCMPEQ, ElementKind);
3614 break;
3615 case BO_NE:
3616 CR6 = CR6_EQ;
3617 ID = GetIntrinsic(VCMPEQ, ElementKind);
3618 break;
3619 case BO_LT:
3620 CR6 = CR6_LT;
3621 ID = GetIntrinsic(VCMPGT, ElementKind);
3622 std::swap(FirstVecArg, SecondVecArg);
3623 break;
3624 case BO_GT:
3625 CR6 = CR6_LT;
3626 ID = GetIntrinsic(VCMPGT, ElementKind);
3627 break;
3628 case BO_LE:
3629 if (ElementKind == BuiltinType::Float) {
3630 CR6 = CR6_LT;
3631 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3632 std::swap(FirstVecArg, SecondVecArg);
3633 }
3634 else {
3635 CR6 = CR6_EQ;
3636 ID = GetIntrinsic(VCMPGT, ElementKind);
3637 }
3638 break;
3639 case BO_GE:
3640 if (ElementKind == BuiltinType::Float) {
3641 CR6 = CR6_LT;
3642 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3643 }
3644 else {
3645 CR6 = CR6_EQ;
3646 ID = GetIntrinsic(VCMPGT, ElementKind);
3647 std::swap(FirstVecArg, SecondVecArg);
3648 }
3649 break;
3650 }
3651
3652 Value *CR6Param = Builder.getInt32(CR6);
3653 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3654 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3655
3656 // The result type of intrinsic may not be same as E->getType().
3657 // If E->getType() is not BoolTy, EmitScalarConversion will do the
3658 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3659 // do nothing, if ResultTy is not i1 at the same time, it will cause
3660 // crash later.
3661 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3662 if (ResultTy->getBitWidth() > 1 &&
3663 E->getType() == CGF.getContext().BoolTy)
3664 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3665 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3666 E->getExprLoc());
3667 }
3668
3669 if (LHS->getType()->isFPOrFPVectorTy()) {
3670 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3671 } else if (LHSTy->hasSignedIntegerRepresentation()) {
3672 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3673 } else {
3674 // Unsigned integers and pointers.
3675
3676 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3677 !isa<llvm::ConstantPointerNull>(LHS) &&
3678 !isa<llvm::ConstantPointerNull>(RHS)) {
3679
3680 // Dynamic information is required to be stripped for comparisons,
3681 // because it could leak the dynamic information. Based on comparisons
3682 // of pointers to dynamic objects, the optimizer can replace one pointer
3683 // with another, which might be incorrect in presence of invariant
3684 // groups. Comparison with null is safe because null does not carry any
3685 // dynamic information.
3686 if (LHSTy.mayBeDynamicClass())
3687 LHS = Builder.CreateStripInvariantGroup(LHS);
3688 if (RHSTy.mayBeDynamicClass())
3689 RHS = Builder.CreateStripInvariantGroup(RHS);
3690 }
3691
3692 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3693 }
3694
3695 // If this is a vector comparison, sign extend the result to the appropriate
3696 // vector integer type and return it (don't convert to bool).
3697 if (LHSTy->isVectorType())
3698 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3699
3700 } else {
3701 // Complex Comparison: can only be an equality comparison.
3702 CodeGenFunction::ComplexPairTy LHS, RHS;
3703 QualType CETy;
3704 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3705 LHS = CGF.EmitComplexExpr(E->getLHS());
3706 CETy = CTy->getElementType();
3707 } else {
3708 LHS.first = Visit(E->getLHS());
3709 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3710 CETy = LHSTy;
3711 }
3712 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3713 RHS = CGF.EmitComplexExpr(E->getRHS());
3714 assert(CGF.getContext().hasSameUnqualifiedType(CETy,((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3716, __PRETTY_FUNCTION__))
3715 CTy->getElementType()) &&((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3716, __PRETTY_FUNCTION__))
3716 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3716, __PRETTY_FUNCTION__))
;
3717 (void)CTy;
3718 } else {
3719 RHS.first = Visit(E->getRHS());
3720 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3721 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3722, __PRETTY_FUNCTION__))
3722 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3722, __PRETTY_FUNCTION__))
;
3723 }
3724
3725 Value *ResultR, *ResultI;
3726 if (CETy->isRealFloatingType()) {
3727 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3728 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3729 } else {
3730 // Complex comparisons can only be equality comparisons. As such, signed
3731 // and unsigned opcodes are the same.
3732 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3733 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3734 }
3735
3736 if (E->getOpcode() == BO_EQ) {
3737 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3738 } else {
3739 assert(E->getOpcode() == BO_NE &&((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3740, __PRETTY_FUNCTION__))
3740 "Complex comparison other than == or != ?")((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3740, __PRETTY_FUNCTION__))
;
3741 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3742 }
3743 }
3744
3745 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3746 E->getExprLoc());
3747}
3748
3749Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3750 bool Ignore = TestAndClearIgnoreResultAssign();
3751
3752 Value *RHS;
3753 LValue LHS;
3754
3755 switch (E->getLHS()->getType().getObjCLifetime()) {
3756 case Qualifiers::OCL_Strong:
3757 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3758 break;
3759
3760 case Qualifiers::OCL_Autoreleasing:
3761 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3762 break;
3763
3764 case Qualifiers::OCL_ExplicitNone:
3765 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3766 break;
3767
3768 case Qualifiers::OCL_Weak:
3769 RHS = Visit(E->getRHS());
3770 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3771 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3772 break;
3773
3774 case Qualifiers::OCL_None:
3775 // __block variables need to have the rhs evaluated first, plus
3776 // this should improve codegen just a little.
3777 RHS = Visit(E->getRHS());
3778 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3779
3780 // Store the value into the LHS. Bit-fields are handled specially
3781 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3782 // 'An assignment expression has the value of the left operand after
3783 // the assignment...'.
3784 if (LHS.isBitField()) {
3785 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3786 } else {
3787 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3788 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3789 }
3790 }
3791
3792 // If the result is clearly ignored, return now.
3793 if (Ignore)
3794 return nullptr;
3795
3796 // The result of an assignment in C is the assigned r-value.
3797 if (!CGF.getLangOpts().CPlusPlus)
3798 return RHS;
3799
3800 // If the lvalue is non-volatile, return the computed value of the assignment.
3801 if (!LHS.isVolatileQualified())
3802 return RHS;
3803
3804 // Otherwise, reload the value.
3805 return EmitLoadOfLValue(LHS, E->getExprLoc());
3806}
3807
3808Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3809 // Perform vector logical and on comparisons with zero vectors.
3810 if (E->getType()->isVectorType()) {
3811 CGF.incrementProfileCounter(E);
3812
3813 Value *LHS = Visit(E->getLHS());
3814 Value *RHS = Visit(E->getRHS());
3815 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3816 if (LHS->getType()->isFPOrFPVectorTy()) {
3817 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3818 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3819 } else {
3820 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3821 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3822 }
3823 Value *And = Builder.CreateAnd(LHS, RHS);
3824 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3825 }
3826
3827 llvm::Type *ResTy = ConvertType(E->getType());
3828
3829 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3830 // If we have 1 && X, just emit X without inserting the control flow.
3831 bool LHSCondVal;
3832 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3833 if (LHSCondVal) { // If we have 1 && X, just emit X.
3834 CGF.incrementProfileCounter(E);
3835
3836 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3837 // ZExt result to int or bool.
3838 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3839 }
3840
3841 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3842 if (!CGF.ContainsLabel(E->getRHS()))
3843 return llvm::Constant::getNullValue(ResTy);
3844 }
3845
3846 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3847 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3848
3849 CodeGenFunction::ConditionalEvaluation eval(CGF);
3850
3851 // Branch on the LHS first. If it is false, go to the failure (cont) block.
3852 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3853 CGF.getProfileCount(E->getRHS()));
3854
3855 // Any edges into the ContBlock are now from an (indeterminate number of)
3856 // edges from this first condition. All of these values will be false. Start
3857 // setting up the PHI node in the Cont Block for this.
3858 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3859 "", ContBlock);
3860 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3861 PI != PE; ++PI)
3862 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3863
3864 eval.begin(CGF);
3865 CGF.EmitBlock(RHSBlock);
3866 CGF.incrementProfileCounter(E);
3867 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3868 eval.end(CGF);
3869
3870 // Reaquire the RHS block, as there may be subblocks inserted.
3871 RHSBlock = Builder.GetInsertBlock();
3872
3873 // Emit an unconditional branch from this block to ContBlock.
3874 {
3875 // There is no need to emit line number for unconditional branch.
3876 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3877 CGF.EmitBlock(ContBlock);
3878 }
3879 // Insert an entry into the phi node for the edge with the value of RHSCond.
3880 PN->addIncoming(RHSCond, RHSBlock);
3881
3882 // Artificial location to preserve the scope information
3883 {
3884 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
3885 PN->setDebugLoc(Builder.getCurrentDebugLocation());
3886 }
3887
3888 // ZExt result to int.
3889 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3890}
3891
3892Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3893 // Perform vector logical or on comparisons with zero vectors.
3894 if (E->getType()->isVectorType()) {
3895 CGF.incrementProfileCounter(E);
3896
3897 Value *LHS = Visit(E->getLHS());
3898 Value *RHS = Visit(E->getRHS());
3899 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3900 if (LHS->getType()->isFPOrFPVectorTy()) {
3901 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3902 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3903 } else {
3904 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3905 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3906 }
3907 Value *Or = Builder.CreateOr(LHS, RHS);
3908 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3909 }
3910
3911 llvm::Type *ResTy = ConvertType(E->getType());
3912
3913 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3914 // If we have 0 || X, just emit X without inserting the control flow.
3915 bool LHSCondVal;
3916 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3917 if (!LHSCondVal) { // If we have 0 || X, just emit X.
3918 CGF.incrementProfileCounter(E);
3919
3920 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3921 // ZExt result to int or bool.
3922 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3923 }
3924
3925 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3926 if (!CGF.ContainsLabel(E->getRHS()))
3927 return llvm::ConstantInt::get(ResTy, 1);
3928 }
3929
3930 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3931 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3932
3933 CodeGenFunction::ConditionalEvaluation eval(CGF);
3934
3935 // Branch on the LHS first. If it is true, go to the success (cont) block.
3936 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3937 CGF.getCurrentProfileCount() -
3938 CGF.getProfileCount(E->getRHS()));
3939
3940 // Any edges into the ContBlock are now from an (indeterminate number of)
3941 // edges from this first condition. All of these values will be true. Start
3942 // setting up the PHI node in the Cont Block for this.
3943 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3944 "", ContBlock);
3945 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3946 PI != PE; ++PI)
3947 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3948
3949 eval.begin(CGF);
3950
3951 // Emit the RHS condition as a bool value.
3952 CGF.EmitBlock(RHSBlock);
3953 CGF.incrementProfileCounter(E);
3954 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3955
3956 eval.end(CGF);
3957
3958 // Reaquire the RHS block, as there may be subblocks inserted.
3959 RHSBlock = Builder.GetInsertBlock();
3960
3961 // Emit an unconditional branch from this block to ContBlock. Insert an entry
3962 // into the phi node for the edge with the value of RHSCond.
3963 CGF.EmitBlock(ContBlock);
3964 PN->addIncoming(RHSCond, RHSBlock);
3965
3966 // ZExt result to int.
3967 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3968}
3969
3970Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3971 CGF.EmitIgnoredExpr(E->getLHS());
3972 CGF.EnsureInsertPoint();
3973 return Visit(E->getRHS());
3974}
3975
3976//===----------------------------------------------------------------------===//
3977// Other Operators
3978//===----------------------------------------------------------------------===//
3979
3980/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3981/// expression is cheap enough and side-effect-free enough to evaluate
3982/// unconditionally instead of conditionally. This is used to convert control
3983/// flow into selects in some cases.
3984static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3985 CodeGenFunction &CGF) {
3986 // Anything that is an integer or floating point constant is fine.
3987 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3988
3989 // Even non-volatile automatic variables can't be evaluated unconditionally.
3990 // Referencing a thread_local may cause non-trivial initialization work to
3991 // occur. If we're inside a lambda and one of the variables is from the scope
3992 // outside the lambda, that function may have returned already. Reading its
3993 // locals is a bad idea. Also, these reads may introduce races there didn't
3994 // exist in the source-level program.
3995}
3996
3997
3998Value *ScalarExprEmitter::
3999VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4000 TestAndClearIgnoreResultAssign();
4001
4002 // Bind the common expression if necessary.
4003 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4004
4005 Expr *condExpr = E->getCond();
4006 Expr *lhsExpr = E->getTrueExpr();
4007 Expr *rhsExpr = E->getFalseExpr();
4008
4009 // If the condition constant folds and can be elided, try to avoid emitting
4010 // the condition and the dead arm.
4011 bool CondExprBool;
4012 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4013 Expr *live = lhsExpr, *dead = rhsExpr;
4014 if (!CondExprBool) std::swap(live, dead);
4015
4016 // If the dead side doesn't have labels we need, just emit the Live part.
4017 if (!CGF.ContainsLabel(dead)) {
4018 if (CondExprBool)
4019 CGF.incrementProfileCounter(E);
4020 Value *Result = Visit(live);
4021
4022 // If the live part is a throw expression, it acts like it has a void
4023 // type, so evaluating it returns a null Value*. However, a conditional
4024 // with non-void type must return a non-null Value*.
4025 if (!Result && !E->getType()->isVoidType())
4026 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4027
4028 return Result;
4029 }
4030 }
4031
4032 // OpenCL: If the condition is a vector, we can treat this condition like
4033 // the select function.
4034 if (CGF.getLangOpts().OpenCL
4035 && condExpr->getType()->isVectorType()) {
4036 CGF.incrementProfileCounter(E);
4037
4038 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4039 llvm::Value *LHS = Visit(lhsExpr);
4040 llvm::Value *RHS = Visit(rhsExpr);
4041
4042 llvm::Type *condType = ConvertType(condExpr->getType());
4043 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4044
4045 unsigned numElem = vecTy->getNumElements();
4046 llvm::Type *elemType = vecTy->getElementType();
4047
4048 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4049 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4050 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4051 llvm::VectorType::get(elemType,
4052 numElem),
4053 "sext");
4054 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4055
4056 // Cast float to int to perform ANDs if necessary.
4057 llvm::Value *RHSTmp = RHS;
4058 llvm::Value *LHSTmp = LHS;
4059 bool wasCast = false;
4060 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4061 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4062 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4063 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4064 wasCast = true;
4065 }
4066
4067 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4068 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4069 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4070 if (wasCast)
4071 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4072
4073 return tmp5;
4074 }
4075
4076 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4077 // select instead of as control flow. We can only do this if it is cheap and
4078 // safe to evaluate the LHS and RHS unconditionally.
4079 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4080 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4081 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4082 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4083
4084 CGF.incrementProfileCounter(E, StepV);
4085
4086 llvm::Value *LHS = Visit(lhsExpr);
4087 llvm::Value *RHS = Visit(rhsExpr);
4088 if (!LHS) {
4089 // If the conditional has void type, make sure we return a null Value*.
4090 assert(!RHS && "LHS and RHS types must match")((!RHS && "LHS and RHS types must match") ? static_cast
<void> (0) : __assert_fail ("!RHS && \"LHS and RHS types must match\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4090, __PRETTY_FUNCTION__))
;
4091 return nullptr;
4092 }
4093 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4094 }
4095
4096 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4097 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4098 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4099
4100 CodeGenFunction::ConditionalEvaluation eval(CGF);
4101 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4102 CGF.getProfileCount(lhsExpr));
4103
4104 CGF.EmitBlock(LHSBlock);
4105 CGF.incrementProfileCounter(E);
4106 eval.begin(CGF);
4107 Value *LHS = Visit(lhsExpr);
4108 eval.end(CGF);
4109
4110 LHSBlock = Builder.GetInsertBlock();
4111 Builder.CreateBr(ContBlock);
4112
4113 CGF.EmitBlock(RHSBlock);
4114 eval.begin(CGF);
4115 Value *RHS = Visit(rhsExpr);
4116 eval.end(CGF);
4117
4118 RHSBlock = Builder.GetInsertBlock();
4119 CGF.EmitBlock(ContBlock);
4120
4121 // If the LHS or RHS is a throw expression, it will be legitimately null.
4122 if (!LHS)
4123 return RHS;
4124 if (!RHS)
4125 return LHS;
4126
4127 // Create a PHI node for the real part.
4128 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4129 PN->addIncoming(LHS, LHSBlock);
4130 PN->addIncoming(RHS, RHSBlock);
4131 return PN;
4132}
4133
4134Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4135 return Visit(E->getChosenSubExpr());
4136}
4137
4138Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4139 QualType Ty = VE->getType();
4140
4141 if (Ty->isVariablyModifiedType())
4142 CGF.EmitVariablyModifiedType(Ty);
4143
4144 Address ArgValue = Address::invalid();
4145 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4146
4147 llvm::Type *ArgTy = ConvertType(VE->getType());
4148
4149 // If EmitVAArg fails, emit an error.
4150 if (!ArgPtr.isValid()) {
4151 CGF.ErrorUnsupported(VE, "va_arg expression");
4152 return llvm::UndefValue::get(ArgTy);
4153 }
4154
4155 // FIXME Volatility.
4156 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4157
4158 // If EmitVAArg promoted the type, we must truncate it.
4159 if (ArgTy != Val->getType()) {
4160 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4161 Val = Builder.CreateIntToPtr(Val, ArgTy);
4162 else
4163 Val = Builder.CreateTrunc(Val, ArgTy);
4164 }
4165
4166 return Val;
4167}
4168
4169Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4170 return CGF.EmitBlockLiteral(block);
4171}
4172
4173// Convert a vec3 to vec4, or vice versa.
4174static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4175 Value *Src, unsigned NumElementsDst) {
4176 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4177 SmallVector<llvm::Constant*, 4> Args;
4178 Args.push_back(Builder.getInt32(0));
4179 Args.push_back(Builder.getInt32(1));
4180 Args.push_back(Builder.getInt32(2));
4181 if (NumElementsDst == 4)
4182 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4183 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4184 return Builder.CreateShuffleVector(Src, UnV, Mask);
4185}
4186
4187// Create cast instructions for converting LLVM value \p Src to LLVM type \p
4188// DstTy. \p Src has the same size as \p DstTy. Both are single value types
4189// but could be scalar or vectors of different lengths, and either can be
4190// pointer.
4191// There are 4 cases:
4192// 1. non-pointer -> non-pointer : needs 1 bitcast
4193// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4194// 3. pointer -> non-pointer
4195// a) pointer -> intptr_t : needs 1 ptrtoint
4196// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4197// 4. non-pointer -> pointer
4198// a) intptr_t -> pointer : needs 1 inttoptr
4199// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4200// Note: for cases 3b and 4b two casts are required since LLVM casts do not
4201// allow casting directly between pointer types and non-integer non-pointer
4202// types.
4203static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4204 const llvm::DataLayout &DL,
4205 Value *Src, llvm::Type *DstTy,
4206 StringRef Name = "") {
4207 auto SrcTy = Src->getType();
4208
4209 // Case 1.
4210 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4211 return Builder.CreateBitCast(Src, DstTy, Name);
4212
4213 // Case 2.
4214 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4215 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4216
4217 // Case 3.
4218 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4219 // Case 3b.
4220 if (!DstTy->isIntegerTy())
4221 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4222 // Cases 3a and 3b.
4223 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4224 }
4225
4226 // Case 4b.
4227 if (!SrcTy->isIntegerTy())
4228 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4229 // Cases 4a and 4b.
4230 return Builder.CreateIntToPtr(Src, DstTy, Name);
4231}
4232
4233Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4234 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4235 llvm::Type *DstTy = ConvertType(E->getType());
4236
4237 llvm::Type *SrcTy = Src->getType();
4238 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4239 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4240 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4241 cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4242
4243 // Going from vec3 to non-vec3 is a special case and requires a shuffle
4244 // vector to get a vec4, then a bitcast if the target type is different.
4245 if (NumElementsSrc == 3 && NumElementsDst != 3) {
4246 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4247
4248 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4249 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4250 DstTy);
4251 }
4252
4253 Src->setName("astype");
4254 return Src;
4255 }
4256
4257 // Going from non-vec3 to vec3 is a special case and requires a bitcast
4258 // to vec4 if the original type is not vec4, then a shuffle vector to
4259 // get a vec3.
4260 if (NumElementsSrc != 3 && NumElementsDst == 3) {
4261 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4262 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4263 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4264 Vec4Ty);
4265 }
4266
4267 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4268 Src->setName("astype");
4269 return Src;
4270 }
4271
4272 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4273 Src, DstTy, "astype");
4274}
4275
4276Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4277 return CGF.EmitAtomicExpr(E).getScalarVal();
4278}
4279
4280//===----------------------------------------------------------------------===//
4281// Entry Point into this File
4282//===----------------------------------------------------------------------===//
4283
4284/// Emit the computation of the specified expression of scalar type, ignoring
4285/// the result.
4286Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4287 assert(E && hasScalarEvaluationKind(E->getType()) &&((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4288, __PRETTY_FUNCTION__))
4288 "Invalid scalar expression to emit")((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4288, __PRETTY_FUNCTION__))
;
4289
4290 return ScalarExprEmitter(*this, IgnoreResultAssign)
4291 .Visit(const_cast<Expr *>(E));
4292}
4293
4294/// Emit a conversion from the specified type to the specified destination type,
4295/// both of which are LLVM scalar types.
4296Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4297 QualType DstTy,
4298 SourceLocation Loc) {
4299 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4300, __PRETTY_FUNCTION__))
4300 "Invalid scalar expression to emit")((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4300, __PRETTY_FUNCTION__))
;
4301 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4302}
4303
4304/// Emit a conversion from the specified complex type to the specified
4305/// destination type, where the destination type is an LLVM scalar type.
4306Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4307 QualType SrcTy,
4308 QualType DstTy,
4309 SourceLocation Loc) {
4310 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4311, __PRETTY_FUNCTION__))
4311 "Invalid complex -> scalar conversion")((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4311, __PRETTY_FUNCTION__))
;
4312 return ScalarExprEmitter(*this)
4313 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4314}
4315
4316
4317llvm::Value *CodeGenFunction::
4318EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4319 bool isInc, bool isPre) {
4320 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4321}
4322
4323LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4324 // object->isa or (*object).isa
4325 // Generate code as for: *(Class*)object
4326
4327 Expr *BaseExpr = E->getBase();
4328 Address Addr = Address::invalid();
4329 if (BaseExpr->isRValue()) {
4330 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4331 } else {
4332 Addr = EmitLValue(BaseExpr).getAddress();
4333 }
4334
4335 // Cast the address to Class*.
4336 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4337 return MakeAddrLValue(Addr, E->getType());
4338}
4339
4340
4341LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4342 const CompoundAssignOperator *E) {
4343 ScalarExprEmitter Scalar(*this);
4344 Value *Result = nullptr;
4345 switch (E->getOpcode()) {
4346#define COMPOUND_OP(Op) \
4347 case BO_##Op##Assign: \
4348 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4349 Result)
4350 COMPOUND_OP(Mul);
4351 COMPOUND_OP(Div);
4352 COMPOUND_OP(Rem);
4353 COMPOUND_OP(Add);
4354 COMPOUND_OP(Sub);
4355 COMPOUND_OP(Shl);
4356 COMPOUND_OP(Shr);
4357 COMPOUND_OP(And);
4358 COMPOUND_OP(Xor);
4359 COMPOUND_OP(Or);
4360#undef COMPOUND_OP
4361
4362 case BO_PtrMemD:
4363 case BO_PtrMemI:
4364 case BO_Mul:
4365 case BO_Div:
4366 case BO_Rem:
4367 case BO_Add:
4368 case BO_Sub:
4369 case BO_Shl:
4370 case BO_Shr:
4371 case BO_LT:
4372 case BO_GT:
4373 case BO_LE:
4374 case BO_GE:
4375 case BO_EQ:
4376 case BO_NE:
4377 case BO_Cmp:
4378 case BO_And:
4379 case BO_Xor:
4380 case BO_Or:
4381 case BO_LAnd:
4382 case BO_LOr:
4383 case BO_Assign:
4384 case BO_Comma:
4385 llvm_unreachable("Not valid compound assignment operators")::llvm::llvm_unreachable_internal("Not valid compound assignment operators"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4385)
;
4386 }
4387
4388 llvm_unreachable("Unhandled compound assignment operator")::llvm::llvm_unreachable_internal("Unhandled compound assignment operator"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4388)
;
4389}
4390
4391Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4392 ArrayRef<Value *> IdxList,
4393 bool SignedIndices,
4394 bool IsSubtraction,
4395 SourceLocation Loc,
4396 const Twine &Name) {
4397 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4398
4399 // If the pointer overflow sanitizer isn't enabled, do nothing.
4400 if (!SanOpts.has(SanitizerKind::PointerOverflow))
4401 return GEPVal;
4402
4403 // If the GEP has already been reduced to a constant, leave it be.
4404 if (isa<llvm::Constant>(GEPVal))
4405 return GEPVal;
4406
4407 // Only check for overflows in the default address space.
4408 if (GEPVal->getType()->getPointerAddressSpace())
4409 return GEPVal;
4410
4411 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4412 assert(GEP->isInBounds() && "Expected inbounds GEP")((GEP->isInBounds() && "Expected inbounds GEP") ? static_cast
<void> (0) : __assert_fail ("GEP->isInBounds() && \"Expected inbounds GEP\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4412, __PRETTY_FUNCTION__))
;
4413
4414 SanitizerScope SanScope(this);
4415 auto &VMContext = getLLVMContext();
4416 const auto &DL = CGM.getDataLayout();
4417 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4418
4419 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4420 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4421 auto *SAddIntrinsic =
4422 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4423 auto *SMulIntrinsic =
4424 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4425
4426 // The total (signed) byte offset for the GEP.
4427 llvm::Value *TotalOffset = nullptr;
4428 // The offset overflow flag - true if the total offset overflows.
4429 llvm::Value *OffsetOverflows = Builder.getFalse();
4430
4431 /// Return the result of the given binary operation.
4432 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4433 llvm::Value *RHS) -> llvm::Value * {
4434 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop")(((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == BO_Add || Opcode == BO_Mul) && \"Can't eval binop\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4434, __PRETTY_FUNCTION__))
;
4435
4436 // If the operands are constants, return a constant result.
4437 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4438 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4439 llvm::APInt N;
4440 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4441 /*Signed=*/true, N);
4442 if (HasOverflow)
4443 OffsetOverflows = Builder.getTrue();
4444 return llvm::ConstantInt::get(VMContext, N);
4445 }
4446 }
4447
4448 // Otherwise, compute the result with checked arithmetic.
4449 auto *ResultAndOverflow = Builder.CreateCall(
4450 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4451 OffsetOverflows = Builder.CreateOr(
4452 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4453 return Builder.CreateExtractValue(ResultAndOverflow, 0);
4454 };
4455
4456 // Determine the total byte offset by looking at each GEP operand.
4457 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4458 GTI != GTE; ++GTI) {
4459 llvm::Value *LocalOffset;
4460 auto *Index = GTI.getOperand();
4461 // Compute the local offset contributed by this indexing step:
4462 if (auto *STy = GTI.getStructTypeOrNull()) {
4463 // For struct indexing, the local offset is the byte position of the
4464 // specified field.
4465 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4466 LocalOffset = llvm::ConstantInt::get(
4467 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4468 } else {
4469 // Otherwise this is array-like indexing. The local offset is the index
4470 // multiplied by the element size.
4471 auto *ElementSize = llvm::ConstantInt::get(
4472 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4473 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4474 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4475 }
4476
4477 // If this is the first offset, set it as the total offset. Otherwise, add
4478 // the local offset into the running total.
4479 if (!TotalOffset || TotalOffset == Zero)
4480 TotalOffset = LocalOffset;
4481 else
4482 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4483 }
4484
4485 // Common case: if the total offset is zero, don't emit a check.
4486 if (TotalOffset == Zero)
4487 return GEPVal;
4488
4489 // Now that we've computed the total offset, add it to the base pointer (with
4490 // wrapping semantics).
4491 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4492 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4493
4494 // The GEP is valid if:
4495 // 1) The total offset doesn't overflow, and
4496 // 2) The sign of the difference between the computed address and the base
4497 // pointer matches the sign of the total offset.
4498 llvm::Value *ValidGEP;
4499 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4500 if (SignedIndices) {
4501 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4502 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4503 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4504 ValidGEP = Builder.CreateAnd(
4505 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4506 NoOffsetOverflow);
4507 } else if (!SignedIndices && !IsSubtraction) {
4508 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4509 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4510 } else {
4511 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4512 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4513 }
4514
4515 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4516 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4517 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4518 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4519 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4520
4521 return GEPVal;
4522}