Bug Summary

File:include/llvm/IR/Instructions.h
Warning:line 1200, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprScalar.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp

1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/FixedPoint.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/IR/Module.h"
38#include <cstdarg>
39
40using namespace clang;
41using namespace CodeGen;
42using llvm::Value;
43
44//===----------------------------------------------------------------------===//
45// Scalar Expression Emitter
46//===----------------------------------------------------------------------===//
47
48namespace {
49
50/// Determine whether the given binary operation may overflow.
51/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53/// the returned overflow check is precise. The returned value is 'true' for
54/// all other opcodes, to be conservative.
55bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56 BinaryOperator::Opcode Opcode, bool Signed,
57 llvm::APInt &Result) {
58 // Assume overflow is possible, unless we can prove otherwise.
59 bool Overflow = true;
60 const auto &LHSAP = LHS->getValue();
61 const auto &RHSAP = RHS->getValue();
62 if (Opcode == BO_Add) {
63 if (Signed)
64 Result = LHSAP.sadd_ov(RHSAP, Overflow);
65 else
66 Result = LHSAP.uadd_ov(RHSAP, Overflow);
67 } else if (Opcode == BO_Sub) {
68 if (Signed)
69 Result = LHSAP.ssub_ov(RHSAP, Overflow);
70 else
71 Result = LHSAP.usub_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Mul) {
73 if (Signed)
74 Result = LHSAP.smul_ov(RHSAP, Overflow);
75 else
76 Result = LHSAP.umul_ov(RHSAP, Overflow);
77 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78 if (Signed && !RHS->isZero())
79 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80 else
81 return false;
82 }
83 return Overflow;
84}
85
86struct BinOpInfo {
87 Value *LHS;
88 Value *RHS;
89 QualType Ty; // Computation Type.
90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91 FPOptions FPFeatures;
92 const Expr *E; // Entire expr, for error unsupported. May not be binop.
93
94 /// Check if the binop can result in integer overflow.
95 bool mayHaveIntegerOverflow() const {
96 // Without constant input, we can't rule out overflow.
97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99 if (!LHSCI || !RHSCI)
100 return true;
101
102 llvm::APInt Result;
103 return ::mayHaveIntegerOverflow(
104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105 }
106
107 /// Check if the binop computes a division or a remainder.
108 bool isDivremOp() const {
109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110 Opcode == BO_RemAssign;
111 }
112
113 /// Check if the binop can result in an integer division by zero.
114 bool mayHaveIntegerDivisionByZero() const {
115 if (isDivremOp())
116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117 return CI->isZero();
118 return true;
119 }
120
121 /// Check if the binop can result in a float division by zero.
122 bool mayHaveFloatDivisionByZero() const {
123 if (isDivremOp())
124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125 return CFP->isZero();
126 return true;
127 }
128
129 /// Check if either operand is a fixed point type or integer type, with at
130 /// least one being a fixed point type. In any case, this
131 /// operation did not follow usual arithmetic conversion and both operands may
132 /// not be the same.
133 bool isFixedPointBinOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140 }
141 return false;
142 }
143};
144
145static bool MustVisitNullValue(const Expr *E) {
146 // If a null pointer expression's type is the C++0x nullptr_t, then
147 // it's not necessarily a simple constant and it must be evaluated
148 // for its potential side effects.
149 return E->getType()->isNullPtrType();
150}
151
152/// If \p E is a widened promoted integer, get its base (unpromoted) type.
153static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154 const Expr *E) {
155 const Expr *Base = E->IgnoreImpCasts();
156 if (E == Base)
157 return llvm::None;
158
159 QualType BaseTy = Base->getType();
160 if (!BaseTy->isPromotableIntegerType() ||
161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162 return llvm::None;
163
164 return BaseTy;
165}
166
167/// Check if \p E is a widened promoted integer.
168static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169 return getUnwidenedIntegerType(Ctx, E).hasValue();
170}
171
172/// Check if we can skip the overflow check for \p Op.
173static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 175, __PRETTY_FUNCTION__))
175 "Expected a unary or binary operator")(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 175, __PRETTY_FUNCTION__))
;
176
177 // If the binop has constant inputs and we can prove there is no overflow,
178 // we can elide the overflow check.
179 if (!Op.mayHaveIntegerOverflow())
180 return true;
181
182 // If a unary op has a widened operand, the op cannot overflow.
183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184 return !UO->canOverflow();
185
186 // We usually don't need overflow checks for binops with widened operands.
187 // Multiplication with promoted unsigned operands is a special case.
188 const auto *BO = cast<BinaryOperator>(Op.E);
189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190 if (!OptionalLHSTy)
191 return false;
192
193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194 if (!OptionalRHSTy)
195 return false;
196
197 QualType LHSTy = *OptionalLHSTy;
198 QualType RHSTy = *OptionalRHSTy;
199
200 // This is the simple case: binops without unsigned multiplication, and with
201 // widened operands. No overflow check is needed here.
202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204 return true;
205
206 // For unsigned multiplication the overflow check can be elided if either one
207 // of the unpromoted types are less than half the size of the promoted type.
208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211}
212
213/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215 FPOptions FPFeatures) {
216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217}
218
219/// Propagate fast-math flags from \p Op to the instruction in \p V.
220static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221 if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222 llvm::FastMathFlags FMF = I->getFastMathFlags();
223 updateFastMathFlags(FMF, Op.FPFeatures);
224 I->setFastMathFlags(FMF);
225 }
226 return V;
227}
228
229class ScalarExprEmitter
230 : public StmtVisitor<ScalarExprEmitter, Value*> {
231 CodeGenFunction &CGF;
232 CGBuilderTy &Builder;
233 bool IgnoreResultAssign;
234 llvm::LLVMContext &VMContext;
235public:
236
237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239 VMContext(cgf.getLLVMContext()) {
240 }
241
242 //===--------------------------------------------------------------------===//
243 // Utilities
244 //===--------------------------------------------------------------------===//
245
246 bool TestAndClearIgnoreResultAssign() {
247 bool I = IgnoreResultAssign;
248 IgnoreResultAssign = false;
249 return I;
250 }
251
252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255 return CGF.EmitCheckedLValue(E, TCK);
256 }
257
258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259 const BinOpInfo &Info);
260
261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263 }
264
265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266 const AlignValueAttr *AVAttr = nullptr;
267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268 const ValueDecl *VD = DRE->getDecl();
269
270 if (VD->getType()->isReferenceType()) {
271 if (const auto *TTy =
272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274 } else {
275 // Assumptions for function parameters are emitted at the start of the
276 // function, so there is no need to repeat that here,
277 // unless the alignment-assumption sanitizer is enabled,
278 // then we prefer the assumption over alignment attribute
279 // on IR function param.
280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281 return;
282
283 AVAttr = VD->getAttr<AlignValueAttr>();
284 }
285 }
286
287 if (!AVAttr)
288 if (const auto *TTy =
289 dyn_cast<TypedefType>(E->getType()))
290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291
292 if (!AVAttr)
293 return;
294
295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(),
298 AlignmentCI->getZExtValue());
299 }
300
301 /// EmitLoadOfLValue - Given an expression with complex type that represents a
302 /// value l-value, this method emits the address of the l-value, then loads
303 /// and returns the result.
304 Value *EmitLoadOfLValue(const Expr *E) {
305 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
306 E->getExprLoc());
307
308 EmitLValueAlignmentAssumption(E, V);
309 return V;
310 }
311
312 /// EmitConversionToBool - Convert the specified expression value to a
313 /// boolean (i1) truth value. This is equivalent to "Val != 0".
314 Value *EmitConversionToBool(Value *Src, QualType DstTy);
315
316 /// Emit a check that a conversion to or from a floating-point type does not
317 /// overflow.
318 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
319 Value *Src, QualType SrcType, QualType DstType,
320 llvm::Type *DstTy, SourceLocation Loc);
321
322 /// Known implicit conversion check kinds.
323 /// Keep in sync with the enum of the same name in ubsan_handlers.h
324 enum ImplicitConversionCheckKind : unsigned char {
325 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
326 ICCK_UnsignedIntegerTruncation = 1,
327 ICCK_SignedIntegerTruncation = 2,
328 ICCK_IntegerSignChange = 3,
329 ICCK_SignedIntegerTruncationOrSignChange = 4,
330 };
331
332 /// Emit a check that an [implicit] truncation of an integer does not
333 /// discard any bits. It is not UB, so we use the value after truncation.
334 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
335 QualType DstType, SourceLocation Loc);
336
337 /// Emit a check that an [implicit] conversion of an integer does not change
338 /// the sign of the value. It is not UB, so we use the value after conversion.
339 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
340 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
341 QualType DstType, SourceLocation Loc);
342
343 /// Emit a conversion from the specified type to the specified destination
344 /// type, both of which are LLVM scalar types.
345 struct ScalarConversionOpts {
346 bool TreatBooleanAsSigned;
347 bool EmitImplicitIntegerTruncationChecks;
348 bool EmitImplicitIntegerSignChangeChecks;
349
350 ScalarConversionOpts()
351 : TreatBooleanAsSigned(false),
352 EmitImplicitIntegerTruncationChecks(false),
353 EmitImplicitIntegerSignChangeChecks(false) {}
354
355 ScalarConversionOpts(clang::SanitizerSet SanOpts)
356 : TreatBooleanAsSigned(false),
357 EmitImplicitIntegerTruncationChecks(
358 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
359 EmitImplicitIntegerSignChangeChecks(
360 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
361 };
362 Value *
363 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
364 SourceLocation Loc,
365 ScalarConversionOpts Opts = ScalarConversionOpts());
366
367 /// Convert between either a fixed point and other fixed point or fixed point
368 /// and an integer.
369 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
370 SourceLocation Loc);
371 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
372 FixedPointSemantics &DstFixedSema,
373 SourceLocation Loc,
374 bool DstIsInteger = false);
375
376 /// Emit a conversion from the specified complex type to the specified
377 /// destination type, where the destination type is an LLVM scalar type.
378 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
379 QualType SrcTy, QualType DstTy,
380 SourceLocation Loc);
381
382 /// EmitNullValue - Emit a value that corresponds to null for the given type.
383 Value *EmitNullValue(QualType Ty);
384
385 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
386 Value *EmitFloatToBoolConversion(Value *V) {
387 // Compare against 0.0 for fp scalars.
388 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
389 return Builder.CreateFCmpUNE(V, Zero, "tobool");
390 }
391
392 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
393 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
394 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
395
396 return Builder.CreateICmpNE(V, Zero, "tobool");
397 }
398
399 Value *EmitIntToBoolConversion(Value *V) {
400 // Because of the type rules of C, we often end up computing a
401 // logical value, then zero extending it to int, then wanting it
402 // as a logical value again. Optimize this common case.
403 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
404 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
405 Value *Result = ZI->getOperand(0);
406 // If there aren't any more uses, zap the instruction to save space.
407 // Note that there can be more uses, for example if this
408 // is the result of an assignment.
409 if (ZI->use_empty())
410 ZI->eraseFromParent();
411 return Result;
412 }
413 }
414
415 return Builder.CreateIsNotNull(V, "tobool");
416 }
417
418 //===--------------------------------------------------------------------===//
419 // Visitor Methods
420 //===--------------------------------------------------------------------===//
421
422 Value *Visit(Expr *E) {
423 ApplyDebugLocation DL(CGF, E);
424 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
425 }
426
427 Value *VisitStmt(Stmt *S) {
428 S->dump(CGF.getContext().getSourceManager());
429 llvm_unreachable("Stmt can't have complex result type!")::llvm::llvm_unreachable_internal("Stmt can't have complex result type!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 429)
;
430 }
431 Value *VisitExpr(Expr *S);
432
433 Value *VisitConstantExpr(ConstantExpr *E) {
434 return Visit(E->getSubExpr());
435 }
436 Value *VisitParenExpr(ParenExpr *PE) {
437 return Visit(PE->getSubExpr());
438 }
439 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
440 return Visit(E->getReplacement());
441 }
442 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
443 return Visit(GE->getResultExpr());
444 }
445 Value *VisitCoawaitExpr(CoawaitExpr *S) {
446 return CGF.EmitCoawaitExpr(*S).getScalarVal();
447 }
448 Value *VisitCoyieldExpr(CoyieldExpr *S) {
449 return CGF.EmitCoyieldExpr(*S).getScalarVal();
450 }
451 Value *VisitUnaryCoawait(const UnaryOperator *E) {
452 return Visit(E->getSubExpr());
453 }
454
455 // Leaves.
456 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
457 return Builder.getInt(E->getValue());
458 }
459 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
460 return Builder.getInt(E->getValue());
461 }
462 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
463 return llvm::ConstantFP::get(VMContext, E->getValue());
464 }
465 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
466 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467 }
468 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
469 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
470 }
471 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
472 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
473 }
474 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
475 return EmitNullValue(E->getType());
476 }
477 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
478 return EmitNullValue(E->getType());
479 }
480 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
481 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
482 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
483 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
484 return Builder.CreateBitCast(V, ConvertType(E->getType()));
485 }
486
487 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
488 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
489 }
490
491 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
492 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
493 }
494
495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496 if (E->isGLValue())
497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498 E->getExprLoc());
499
500 // Otherwise, assume the mapping is the scalar directly.
501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502 }
503
504 // l-values.
505 Value *VisitDeclRefExpr(DeclRefExpr *E) {
506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507 return CGF.emitScalarConstant(Constant, E);
508 return EmitLoadOfLValue(E);
509 }
510
511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512 return CGF.EmitObjCSelectorExpr(E);
513 }
514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515 return CGF.EmitObjCProtocolExpr(E);
516 }
517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518 return EmitLoadOfLValue(E);
519 }
520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521 if (E->getMethodDecl() &&
522 E->getMethodDecl()->getReturnType()->isReferenceType())
523 return EmitLoadOfLValue(E);
524 return CGF.EmitObjCMessageExpr(E).getScalarVal();
525 }
526
527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528 LValue LV = CGF.EmitObjCIsaExpr(E);
529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530 return V;
531 }
532
533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534 VersionTuple Version = E->getVersion();
535
536 // If we're checking for a platform older than our minimum deployment
537 // target, we can fold the check away.
538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540
541 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
542 llvm::Value *Args[] = {
543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
545 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
546 };
547
548 return CGF.EmitBuiltinAvailable(Args);
549 }
550
551 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
552 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
553 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
554 Value *VisitMemberExpr(MemberExpr *E);
555 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
556 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
557 return EmitLoadOfLValue(E);
558 }
559
560 Value *VisitInitListExpr(InitListExpr *E);
561
562 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563 assert(CGF.getArrayInitIndex() &&((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 564, __PRETTY_FUNCTION__))
564 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?")((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 564, __PRETTY_FUNCTION__))
;
565 return CGF.getArrayInitIndex();
566 }
567
568 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569 return EmitNullValue(E->getType());
570 }
571 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573 return VisitCastExpr(E);
574 }
575 Value *VisitCastExpr(CastExpr *E);
576
577 Value *VisitCallExpr(const CallExpr *E) {
578 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579 return EmitLoadOfLValue(E);
580
581 Value *V = CGF.EmitCallExpr(E).getScalarVal();
582
583 EmitLValueAlignmentAssumption(E, V);
584 return V;
585 }
586
587 Value *VisitStmtExpr(const StmtExpr *E);
588
589 // Unary Operators.
590 Value *VisitUnaryPostDec(const UnaryOperator *E) {
591 LValue LV = EmitLValue(E->getSubExpr());
592 return EmitScalarPrePostIncDec(E, LV, false, false);
593 }
594 Value *VisitUnaryPostInc(const UnaryOperator *E) {
595 LValue LV = EmitLValue(E->getSubExpr());
596 return EmitScalarPrePostIncDec(E, LV, true, false);
597 }
598 Value *VisitUnaryPreDec(const UnaryOperator *E) {
599 LValue LV = EmitLValue(E->getSubExpr());
600 return EmitScalarPrePostIncDec(E, LV, false, true);
601 }
602 Value *VisitUnaryPreInc(const UnaryOperator *E) {
603 LValue LV = EmitLValue(E->getSubExpr());
604 return EmitScalarPrePostIncDec(E, LV, true, true);
605 }
606
607 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608 llvm::Value *InVal,
609 bool IsInc);
610
611 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612 bool isInc, bool isPre);
613
614
615 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616 if (isa<MemberPointerType>(E->getType())) // never sugared
617 return CGF.CGM.getMemberPointerConstant(E);
618
619 return EmitLValue(E->getSubExpr()).getPointer();
620 }
621 Value *VisitUnaryDeref(const UnaryOperator *E) {
622 if (E->getType()->isVoidType())
623 return Visit(E->getSubExpr()); // the actual value should be unused
624 return EmitLoadOfLValue(E);
625 }
626 Value *VisitUnaryPlus(const UnaryOperator *E) {
627 // This differs from gcc, though, most likely due to a bug in gcc.
628 TestAndClearIgnoreResultAssign();
629 return Visit(E->getSubExpr());
630 }
631 Value *VisitUnaryMinus (const UnaryOperator *E);
632 Value *VisitUnaryNot (const UnaryOperator *E);
633 Value *VisitUnaryLNot (const UnaryOperator *E);
634 Value *VisitUnaryReal (const UnaryOperator *E);
635 Value *VisitUnaryImag (const UnaryOperator *E);
636 Value *VisitUnaryExtension(const UnaryOperator *E) {
637 return Visit(E->getSubExpr());
638 }
639
640 // C++
641 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642 return EmitLoadOfLValue(E);
643 }
644 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645 auto &Ctx = CGF.getContext();
646 APValue Evaluated =
647 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648 return ConstantEmitter(CGF.CGM, &CGF)
649 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
650 }
651
652 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654 return Visit(DAE->getExpr());
655 }
656 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658 return Visit(DIE->getExpr());
659 }
660 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661 return CGF.LoadCXXThis();
662 }
663
664 Value *VisitExprWithCleanups(ExprWithCleanups *E);
665 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666 return CGF.EmitCXXNewExpr(E);
667 }
668 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669 CGF.EmitCXXDeleteExpr(E);
670 return nullptr;
671 }
672
673 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675 }
676
677 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
678 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
679 }
680
681 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
682 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
683 }
684
685 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
686 // C++ [expr.pseudo]p1:
687 // The result shall only be used as the operand for the function call
688 // operator (), and the result of such a call has type void. The only
689 // effect is the evaluation of the postfix-expression before the dot or
690 // arrow.
691 CGF.EmitScalarExpr(E->getBase());
692 return nullptr;
693 }
694
695 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
696 return EmitNullValue(E->getType());
697 }
698
699 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
700 CGF.EmitCXXThrowExpr(E);
701 return nullptr;
702 }
703
704 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
705 return Builder.getInt1(E->getValue());
706 }
707
708 // Binary Operators.
709 Value *EmitMul(const BinOpInfo &Ops) {
710 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
711 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
712 case LangOptions::SOB_Defined:
713 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
714 case LangOptions::SOB_Undefined:
715 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
716 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
717 LLVM_FALLTHROUGH[[clang::fallthrough]];
718 case LangOptions::SOB_Trapping:
719 if (CanElideOverflowCheck(CGF.getContext(), Ops))
720 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
721 return EmitOverflowCheckedBinOp(Ops);
722 }
723 }
724
725 if (Ops.Ty->isUnsignedIntegerType() &&
726 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
727 !CanElideOverflowCheck(CGF.getContext(), Ops))
728 return EmitOverflowCheckedBinOp(Ops);
729
730 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
731 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
732 return propagateFMFlags(V, Ops);
733 }
734 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
735 }
736 /// Create a binary op that checks for overflow.
737 /// Currently only supports +, - and *.
738 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
739
740 // Check for undefined division and modulus behaviors.
741 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
742 llvm::Value *Zero,bool isDiv);
743 // Common helper for getting how wide LHS of shift is.
744 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
745 Value *EmitDiv(const BinOpInfo &Ops);
746 Value *EmitRem(const BinOpInfo &Ops);
747 Value *EmitAdd(const BinOpInfo &Ops);
748 Value *EmitSub(const BinOpInfo &Ops);
749 Value *EmitShl(const BinOpInfo &Ops);
750 Value *EmitShr(const BinOpInfo &Ops);
751 Value *EmitAnd(const BinOpInfo &Ops) {
752 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
753 }
754 Value *EmitXor(const BinOpInfo &Ops) {
755 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
756 }
757 Value *EmitOr (const BinOpInfo &Ops) {
758 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
759 }
760
761 // Helper functions for fixed point binary operations.
762 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
763
764 BinOpInfo EmitBinOps(const BinaryOperator *E);
765 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
766 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
767 Value *&Result);
768
769 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
770 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
771
772 // Binary operators and binary compound assignment operators.
773#define HANDLEBINOP(OP) \
774 Value *VisitBin ## OP(const BinaryOperator *E) { \
775 return Emit ## OP(EmitBinOps(E)); \
776 } \
777 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
778 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
779 }
780 HANDLEBINOP(Mul)
781 HANDLEBINOP(Div)
782 HANDLEBINOP(Rem)
783 HANDLEBINOP(Add)
784 HANDLEBINOP(Sub)
785 HANDLEBINOP(Shl)
786 HANDLEBINOP(Shr)
787 HANDLEBINOP(And)
788 HANDLEBINOP(Xor)
789 HANDLEBINOP(Or)
790#undef HANDLEBINOP
791
792 // Comparisons.
793 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
794 llvm::CmpInst::Predicate SICmpOpc,
795 llvm::CmpInst::Predicate FCmpOpc);
796#define VISITCOMP(CODE, UI, SI, FP) \
797 Value *VisitBin##CODE(const BinaryOperator *E) { \
798 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
799 llvm::FCmpInst::FP); }
800 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
801 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
802 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
803 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
804 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
805 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
806#undef VISITCOMP
807
808 Value *VisitBinAssign (const BinaryOperator *E);
809
810 Value *VisitBinLAnd (const BinaryOperator *E);
811 Value *VisitBinLOr (const BinaryOperator *E);
812 Value *VisitBinComma (const BinaryOperator *E);
813
814 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
815 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
816
817 // Other Operators.
818 Value *VisitBlockExpr(const BlockExpr *BE);
819 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
820 Value *VisitChooseExpr(ChooseExpr *CE);
821 Value *VisitVAArgExpr(VAArgExpr *VE);
822 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
823 return CGF.EmitObjCStringLiteral(E);
824 }
825 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
826 return CGF.EmitObjCBoxedExpr(E);
827 }
828 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
829 return CGF.EmitObjCArrayLiteral(E);
830 }
831 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
832 return CGF.EmitObjCDictionaryLiteral(E);
833 }
834 Value *VisitAsTypeExpr(AsTypeExpr *CE);
835 Value *VisitAtomicExpr(AtomicExpr *AE);
836};
837} // end anonymous namespace.
838
839//===----------------------------------------------------------------------===//
840// Utilities
841//===----------------------------------------------------------------------===//
842
843/// EmitConversionToBool - Convert the specified expression value to a
844/// boolean (i1) truth value. This is equivalent to "Val != 0".
845Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
846 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs")((SrcType.isCanonical() && "EmitScalarConversion strips typedefs"
) ? static_cast<void> (0) : __assert_fail ("SrcType.isCanonical() && \"EmitScalarConversion strips typedefs\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 846, __PRETTY_FUNCTION__))
;
847
848 if (SrcType->isRealFloatingType())
849 return EmitFloatToBoolConversion(Src);
850
851 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
852 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
853
854 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 855, __PRETTY_FUNCTION__))
855 "Unknown scalar type to convert")(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 855, __PRETTY_FUNCTION__))
;
856
857 if (isa<llvm::IntegerType>(Src->getType()))
858 return EmitIntToBoolConversion(Src);
859
860 assert(isa<llvm::PointerType>(Src->getType()))((isa<llvm::PointerType>(Src->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::PointerType>(Src->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 860, __PRETTY_FUNCTION__))
;
861 return EmitPointerToBoolConversion(Src, SrcType);
862}
863
864void ScalarExprEmitter::EmitFloatConversionCheck(
865 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
866 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
867 CodeGenFunction::SanitizerScope SanScope(&CGF);
868 using llvm::APFloat;
869 using llvm::APSInt;
870
871 llvm::Type *SrcTy = Src->getType();
872
873 llvm::Value *Check = nullptr;
874 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
875 // Integer to floating-point. This can fail for unsigned short -> __half
876 // or unsigned __int128 -> float.
877 assert(DstType->isFloatingType())((DstType->isFloatingType()) ? static_cast<void> (0)
: __assert_fail ("DstType->isFloatingType()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 877, __PRETTY_FUNCTION__))
;
878 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
879
880 APFloat LargestFloat =
881 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
882 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
883
884 bool IsExact;
885 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
886 &IsExact) != APFloat::opOK)
887 // The range of representable values of this floating point type includes
888 // all values of this integer type. Don't need an overflow check.
889 return;
890
891 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
892 if (SrcIsUnsigned)
893 Check = Builder.CreateICmpULE(Src, Max);
894 else {
895 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
896 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
897 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
898 Check = Builder.CreateAnd(GE, LE);
899 }
900 } else {
901 const llvm::fltSemantics &SrcSema =
902 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
903 if (isa<llvm::IntegerType>(DstTy)) {
904 // Floating-point to integer. This has undefined behavior if the source is
905 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
906 // to an integer).
907 unsigned Width = CGF.getContext().getIntWidth(DstType);
908 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
909
910 APSInt Min = APSInt::getMinValue(Width, Unsigned);
911 APFloat MinSrc(SrcSema, APFloat::uninitialized);
912 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
913 APFloat::opOverflow)
914 // Don't need an overflow check for lower bound. Just check for
915 // -Inf/NaN.
916 MinSrc = APFloat::getInf(SrcSema, true);
917 else
918 // Find the largest value which is too small to represent (before
919 // truncation toward zero).
920 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
921
922 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
923 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
924 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
925 APFloat::opOverflow)
926 // Don't need an overflow check for upper bound. Just check for
927 // +Inf/NaN.
928 MaxSrc = APFloat::getInf(SrcSema, false);
929 else
930 // Find the smallest value which is too large to represent (before
931 // truncation toward zero).
932 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
933
934 // If we're converting from __half, convert the range to float to match
935 // the type of src.
936 if (OrigSrcType->isHalfType()) {
937 const llvm::fltSemantics &Sema =
938 CGF.getContext().getFloatTypeSemantics(SrcType);
939 bool IsInexact;
940 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
941 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
942 }
943
944 llvm::Value *GE =
945 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
946 llvm::Value *LE =
947 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
948 Check = Builder.CreateAnd(GE, LE);
949 } else {
950 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
951 //
952 // Floating-point to floating-point. This has undefined behavior if the
953 // source is not in the range of representable values of the destination
954 // type. The C and C++ standards are spectacularly unclear here. We
955 // diagnose finite out-of-range conversions, but allow infinities and NaNs
956 // to convert to the corresponding value in the smaller type.
957 //
958 // C11 Annex F gives all such conversions defined behavior for IEC 60559
959 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
960 // does not.
961
962 // Converting from a lower rank to a higher rank can never have
963 // undefined behavior, since higher-rank types must have a superset
964 // of values of lower-rank types.
965 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
966 return;
967
968 assert(!OrigSrcType->isHalfType() &&((!OrigSrcType->isHalfType() && "should not check conversion from __half, it has the lowest rank"
) ? static_cast<void> (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 969, __PRETTY_FUNCTION__))
969 "should not check conversion from __half, it has the lowest rank")((!OrigSrcType->isHalfType() && "should not check conversion from __half, it has the lowest rank"
) ? static_cast<void> (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 969, __PRETTY_FUNCTION__))
;
970
971 const llvm::fltSemantics &DstSema =
972 CGF.getContext().getFloatTypeSemantics(DstType);
973 APFloat MinBad = APFloat::getLargest(DstSema, false);
974 APFloat MaxBad = APFloat::getInf(DstSema, false);
975
976 bool IsInexact;
977 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
978 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
979
980 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
981 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
982 llvm::Value *GE =
983 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
984 llvm::Value *LE =
985 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
986 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
987 }
988 }
989
990 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
991 CGF.EmitCheckTypeDescriptor(OrigSrcType),
992 CGF.EmitCheckTypeDescriptor(DstType)};
993 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
994 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
995}
996
997// Should be called within CodeGenFunction::SanitizerScope RAII scope.
998// Returns 'i1 false' when the truncation Src -> Dst was lossy.
999static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1000 std::pair<llvm::Value *, SanitizerMask>>
1001EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1002 QualType DstType, CGBuilderTy &Builder) {
1003 llvm::Type *SrcTy = Src->getType();
1004 llvm::Type *DstTy = Dst->getType();
1005 (void)DstTy; // Only used in assert()
1006
1007 // This should be truncation of integral types.
1008 assert(Src != Dst)((Src != Dst) ? static_cast<void> (0) : __assert_fail (
"Src != Dst", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1008, __PRETTY_FUNCTION__))
;
1009 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits())((SrcTy->getScalarSizeInBits() > Dst->getType()->
getScalarSizeInBits()) ? static_cast<void> (0) : __assert_fail
("SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1009, __PRETTY_FUNCTION__))
;
1010 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1011, __PRETTY_FUNCTION__))
1011 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1011, __PRETTY_FUNCTION__))
;
1012
1013 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1014 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1015
1016 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1017 // Else, it is a signed truncation.
1018 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1019 SanitizerMask Mask;
1020 if (!SrcSigned && !DstSigned) {
1021 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1022 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1023 } else {
1024 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1025 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1026 }
1027
1028 llvm::Value *Check = nullptr;
1029 // 1. Extend the truncated value back to the same width as the Src.
1030 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1031 // 2. Equality-compare with the original source value
1032 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1033 // If the comparison result is 'i1 false', then the truncation was lossy.
1034 return std::make_pair(Kind, std::make_pair(Check, Mask));
1035}
1036
1037void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1038 Value *Dst, QualType DstType,
1039 SourceLocation Loc) {
1040 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1041 return;
1042
1043 // We only care about int->int conversions here.
1044 // We ignore conversions to/from pointer and/or bool.
1045 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1046 return;
1047
1048 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1049 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1050 // This must be truncation. Else we do not care.
1051 if (SrcBits <= DstBits)
1052 return;
1053
1054 assert(!DstType->isBooleanType() && "we should not get here with booleans.")((!DstType->isBooleanType() && "we should not get here with booleans."
) ? static_cast<void> (0) : __assert_fail ("!DstType->isBooleanType() && \"we should not get here with booleans.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1054, __PRETTY_FUNCTION__))
;
1055
1056 // If the integer sign change sanitizer is enabled,
1057 // and we are truncating from larger unsigned type to smaller signed type,
1058 // let that next sanitizer deal with it.
1059 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1060 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1061 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1062 (!SrcSigned && DstSigned))
1063 return;
1064
1065 CodeGenFunction::SanitizerScope SanScope(&CGF);
1066
1067 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1068 std::pair<llvm::Value *, SanitizerMask>>
1069 Check =
1070 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1071 // If the comparison result is 'i1 false', then the truncation was lossy.
1072
1073 // Do we care about this type of truncation?
1074 if (!CGF.SanOpts.has(Check.second.second))
1075 return;
1076
1077 llvm::Constant *StaticArgs[] = {
1078 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1079 CGF.EmitCheckTypeDescriptor(DstType),
1080 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1081 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1082 {Src, Dst});
1083}
1084
1085// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1086// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1087static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1088 std::pair<llvm::Value *, SanitizerMask>>
1089EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1090 QualType DstType, CGBuilderTy &Builder) {
1091 llvm::Type *SrcTy = Src->getType();
1092 llvm::Type *DstTy = Dst->getType();
1093
1094 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1095, __PRETTY_FUNCTION__))
1095 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1095, __PRETTY_FUNCTION__))
;
1096
1097 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1098 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1099 (void)SrcSigned; // Only used in assert()
1100 (void)DstSigned; // Only used in assert()
1101 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1102 unsigned DstBits = DstTy->getScalarSizeInBits();
1103 (void)SrcBits; // Only used in assert()
1104 (void)DstBits; // Only used in assert()
1105
1106 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1107, __PRETTY_FUNCTION__))
1107 "either the widths should be different, or the signednesses.")((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1107, __PRETTY_FUNCTION__))
;
1108
1109 // NOTE: zero value is considered to be non-negative.
1110 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1111 const char *Name) -> Value * {
1112 // Is this value a signed type?
1113 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1114 llvm::Type *VTy = V->getType();
1115 if (!VSigned) {
1116 // If the value is unsigned, then it is never negative.
1117 // FIXME: can we encounter non-scalar VTy here?
1118 return llvm::ConstantInt::getFalse(VTy->getContext());
1119 }
1120 // Get the zero of the same type with which we will be comparing.
1121 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1122 // %V.isnegative = icmp slt %V, 0
1123 // I.e is %V *strictly* less than zero, does it have negative value?
1124 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1125 llvm::Twine(Name) + "." + V->getName() +
1126 ".negativitycheck");
1127 };
1128
1129 // 1. Was the old Value negative?
1130 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1131 // 2. Is the new Value negative?
1132 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1133 // 3. Now, was the 'negativity status' preserved during the conversion?
1134 // NOTE: conversion from negative to zero is considered to change the sign.
1135 // (We want to get 'false' when the conversion changed the sign)
1136 // So we should just equality-compare the negativity statuses.
1137 llvm::Value *Check = nullptr;
1138 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1139 // If the comparison result is 'false', then the conversion changed the sign.
1140 return std::make_pair(
1141 ScalarExprEmitter::ICCK_IntegerSignChange,
1142 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1143}
1144
1145void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1146 Value *Dst, QualType DstType,
1147 SourceLocation Loc) {
1148 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1149 return;
1150
1151 llvm::Type *SrcTy = Src->getType();
1152 llvm::Type *DstTy = Dst->getType();
1153
1154 // We only care about int->int conversions here.
1155 // We ignore conversions to/from pointer and/or bool.
1156 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1157 return;
1158
1159 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1160 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1161 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1162 unsigned DstBits = DstTy->getScalarSizeInBits();
1163
1164 // Now, we do not need to emit the check in *all* of the cases.
1165 // We can avoid emitting it in some obvious cases where it would have been
1166 // dropped by the opt passes (instcombine) always anyways.
1167 // If it's a cast between effectively the same type, no check.
1168 // NOTE: this is *not* equivalent to checking the canonical types.
1169 if (SrcSigned == DstSigned && SrcBits == DstBits)
1170 return;
1171 // At least one of the values needs to have signed type.
1172 // If both are unsigned, then obviously, neither of them can be negative.
1173 if (!SrcSigned && !DstSigned)
1174 return;
1175 // If the conversion is to *larger* *signed* type, then no check is needed.
1176 // Because either sign-extension happens (so the sign will remain),
1177 // or zero-extension will happen (the sign bit will be zero.)
1178 if ((DstBits > SrcBits) && DstSigned)
1179 return;
1180 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1181 (SrcBits > DstBits) && SrcSigned) {
1182 // If the signed integer truncation sanitizer is enabled,
1183 // and this is a truncation from signed type, then no check is needed.
1184 // Because here sign change check is interchangeable with truncation check.
1185 return;
1186 }
1187 // That's it. We can't rule out any more cases with the data we have.
1188
1189 CodeGenFunction::SanitizerScope SanScope(&CGF);
1190
1191 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1192 std::pair<llvm::Value *, SanitizerMask>>
1193 Check;
1194
1195 // Each of these checks needs to return 'false' when an issue was detected.
1196 ImplicitConversionCheckKind CheckKind;
1197 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1198 // So we can 'and' all the checks together, and still get 'false',
1199 // if at least one of the checks detected an issue.
1200
1201 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1202 CheckKind = Check.first;
1203 Checks.emplace_back(Check.second);
1204
1205 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1206 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1207 // If the signed integer truncation sanitizer was enabled,
1208 // and we are truncating from larger unsigned type to smaller signed type,
1209 // let's handle the case we skipped in that check.
1210 Check =
1211 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1212 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1213 Checks.emplace_back(Check.second);
1214 // If the comparison result is 'i1 false', then the truncation was lossy.
1215 }
1216
1217 llvm::Constant *StaticArgs[] = {
1218 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1219 CGF.EmitCheckTypeDescriptor(DstType),
1220 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1221 // EmitCheck() will 'and' all the checks together.
1222 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1223 {Src, Dst});
1224}
1225
1226/// Emit a conversion from the specified type to the specified destination type,
1227/// both of which are LLVM scalar types.
1228Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1229 QualType DstType,
1230 SourceLocation Loc,
1231 ScalarConversionOpts Opts) {
1232 // All conversions involving fixed point types should be handled by the
1233 // EmitFixedPoint family functions. This is done to prevent bloating up this
1234 // function more, and although fixed point numbers are represented by
1235 // integers, we do not want to follow any logic that assumes they should be
1236 // treated as integers.
1237 // TODO(leonardchan): When necessary, add another if statement checking for
1238 // conversions to fixed point types from other types.
1239 if (SrcType->isFixedPointType()) {
1240 if (DstType->isBooleanType())
1241 // It is important that we check this before checking if the dest type is
1242 // an integer because booleans are technically integer types.
1243 // We do not need to check the padding bit on unsigned types if unsigned
1244 // padding is enabled because overflow into this bit is undefined
1245 // behavior.
1246 return Builder.CreateIsNotNull(Src, "tobool");
1247 if (DstType->isFixedPointType() || DstType->isIntegerType())
1248 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1249
1250 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion from a fixed point type to another type."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1251)
1251 "Unhandled scalar conversion from a fixed point type to another type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion from a fixed point type to another type."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1251)
;
1252 } else if (DstType->isFixedPointType()) {
1253 if (SrcType->isIntegerType())
1254 // This also includes converting booleans and enums to fixed point types.
1255 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1256
1257 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion to a fixed point type from another type."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1258)
1258 "Unhandled scalar conversion to a fixed point type from another type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion to a fixed point type from another type."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1258)
;
1259 }
1260
1261 QualType NoncanonicalSrcType = SrcType;
1262 QualType NoncanonicalDstType = DstType;
1263
1264 SrcType = CGF.getContext().getCanonicalType(SrcType);
1265 DstType = CGF.getContext().getCanonicalType(DstType);
1266 if (SrcType == DstType) return Src;
1267
1268 if (DstType->isVoidType()) return nullptr;
1269
1270 llvm::Value *OrigSrc = Src;
1271 QualType OrigSrcType = SrcType;
1272 llvm::Type *SrcTy = Src->getType();
1273
1274 // Handle conversions to bool first, they are special: comparisons against 0.
1275 if (DstType->isBooleanType())
1276 return EmitConversionToBool(Src, SrcType);
1277
1278 llvm::Type *DstTy = ConvertType(DstType);
1279
1280 // Cast from half through float if half isn't a native type.
1281 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1282 // Cast to FP using the intrinsic if the half type itself isn't supported.
1283 if (DstTy->isFloatingPointTy()) {
1284 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1285 return Builder.CreateCall(
1286 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1287 Src);
1288 } else {
1289 // Cast to other types through float, using either the intrinsic or FPExt,
1290 // depending on whether the half type itself is supported
1291 // (as opposed to operations on half, available with NativeHalfType).
1292 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1293 Src = Builder.CreateCall(
1294 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1295 CGF.CGM.FloatTy),
1296 Src);
1297 } else {
1298 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1299 }
1300 SrcType = CGF.getContext().FloatTy;
1301 SrcTy = CGF.FloatTy;
1302 }
1303 }
1304
1305 // Ignore conversions like int -> uint.
1306 if (SrcTy == DstTy) {
1307 if (Opts.EmitImplicitIntegerSignChangeChecks)
1308 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1309 NoncanonicalDstType, Loc);
1310
1311 return Src;
1312 }
1313
1314 // Handle pointer conversions next: pointers can only be converted to/from
1315 // other pointers and integers. Check for pointer types in terms of LLVM, as
1316 // some native types (like Obj-C id) may map to a pointer type.
1317 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1318 // The source value may be an integer, or a pointer.
1319 if (isa<llvm::PointerType>(SrcTy))
1320 return Builder.CreateBitCast(Src, DstTy, "conv");
1321
1322 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?")((SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isIntegerType() && \"Not ptr->ptr or int->ptr conversion?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1322, __PRETTY_FUNCTION__))
;
1323 // First, convert to the correct width so that we control the kind of
1324 // extension.
1325 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1326 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1327 llvm::Value* IntResult =
1328 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1329 // Then, cast to pointer.
1330 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1331 }
1332
1333 if (isa<llvm::PointerType>(SrcTy)) {
1334 // Must be an ptr to int cast.
1335 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?")((isa<llvm::IntegerType>(DstTy) && "not ptr->int?"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::IntegerType>(DstTy) && \"not ptr->int?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1335, __PRETTY_FUNCTION__))
;
1336 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1337 }
1338
1339 // A scalar can be splatted to an extended vector of the same element type
1340 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1341 // Sema should add casts to make sure that the source expression's type is
1342 // the same as the vector's element type (sans qualifiers)
1343 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1345, __PRETTY_FUNCTION__))
1344 SrcType.getTypePtr() &&((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1345, __PRETTY_FUNCTION__))
1345 "Splatted expr doesn't match with vector element type?")((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1345, __PRETTY_FUNCTION__))
;
1346
1347 // Splat the element across to all elements
1348 unsigned NumElements = DstTy->getVectorNumElements();
1349 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1350 }
1351
1352 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1353 // Allow bitcast from vector to integer/fp of the same size.
1354 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1355 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1356 if (SrcSize == DstSize)
1357 return Builder.CreateBitCast(Src, DstTy, "conv");
1358
1359 // Conversions between vectors of different sizes are not allowed except
1360 // when vectors of half are involved. Operations on storage-only half
1361 // vectors require promoting half vector operands to float vectors and
1362 // truncating the result, which is either an int or float vector, to a
1363 // short or half vector.
1364
1365 // Source and destination are both expected to be vectors.
1366 llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1367 llvm::Type *DstElementTy = DstTy->getVectorElementType();
1368 (void)DstElementTy;
1369
1370 assert(((SrcElementTy->isIntegerTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1375, __PRETTY_FUNCTION__))
1371 DstElementTy->isIntegerTy()) ||((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1375, __PRETTY_FUNCTION__))
1372 (SrcElementTy->isFloatingPointTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1375, __PRETTY_FUNCTION__))
1373 DstElementTy->isFloatingPointTy())) &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1375, __PRETTY_FUNCTION__))
1374 "unexpected conversion between a floating-point vector and an "((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1375, __PRETTY_FUNCTION__))
1375 "integer vector")((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1375, __PRETTY_FUNCTION__))
;
1376
1377 // Truncate an i32 vector to an i16 vector.
1378 if (SrcElementTy->isIntegerTy())
1379 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1380
1381 // Truncate a float vector to a half vector.
1382 if (SrcSize > DstSize)
1383 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1384
1385 // Promote a half vector to a float vector.
1386 return Builder.CreateFPExt(Src, DstTy, "conv");
1387 }
1388
1389 // Finally, we have the arithmetic types: real int/float.
1390 Value *Res = nullptr;
1391 llvm::Type *ResTy = DstTy;
1392
1393 // An overflowing conversion has undefined behavior if either the source type
1394 // or the destination type is a floating-point type.
1395 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1396 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1397 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1398 Loc);
1399
1400 // Cast to half through float if half isn't a native type.
1401 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1402 // Make sure we cast in a single step if from another FP type.
1403 if (SrcTy->isFloatingPointTy()) {
1404 // Use the intrinsic if the half type itself isn't supported
1405 // (as opposed to operations on half, available with NativeHalfType).
1406 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1407 return Builder.CreateCall(
1408 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1409 // If the half type is supported, just use an fptrunc.
1410 return Builder.CreateFPTrunc(Src, DstTy);
1411 }
1412 DstTy = CGF.FloatTy;
1413 }
1414
1415 if (isa<llvm::IntegerType>(SrcTy)) {
1416 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1417 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1418 InputSigned = true;
1419 }
1420 if (isa<llvm::IntegerType>(DstTy))
1421 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422 else if (InputSigned)
1423 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1424 else
1425 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1426 } else if (isa<llvm::IntegerType>(DstTy)) {
1427 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion")((SrcTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1427, __PRETTY_FUNCTION__))
;
1428 if (DstType->isSignedIntegerOrEnumerationType())
1429 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1430 else
1431 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1432 } else {
1433 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1434, __PRETTY_FUNCTION__))
1434 "Unknown real conversion")((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1434, __PRETTY_FUNCTION__))
;
1435 if (DstTy->getTypeID() < SrcTy->getTypeID())
1436 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1437 else
1438 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1439 }
1440
1441 if (DstTy != ResTy) {
1442 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1443 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion")((ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"
) ? static_cast<void> (0) : __assert_fail ("ResTy->isIntegerTy(16) && \"Only half FP requires extra conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1443, __PRETTY_FUNCTION__))
;
1444 Res = Builder.CreateCall(
1445 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1446 Res);
1447 } else {
1448 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1449 }
1450 }
1451
1452 if (Opts.EmitImplicitIntegerTruncationChecks)
1453 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1454 NoncanonicalDstType, Loc);
1455
1456 if (Opts.EmitImplicitIntegerSignChangeChecks)
1457 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1458 NoncanonicalDstType, Loc);
1459
1460 return Res;
1461}
1462
1463Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1464 QualType DstTy,
1465 SourceLocation Loc) {
1466 FixedPointSemantics SrcFPSema =
1467 CGF.getContext().getFixedPointSemantics(SrcTy);
1468 FixedPointSemantics DstFPSema =
1469 CGF.getContext().getFixedPointSemantics(DstTy);
1470 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1471 DstTy->isIntegerType());
1472}
1473
1474Value *ScalarExprEmitter::EmitFixedPointConversion(
1475 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1476 SourceLocation Loc, bool DstIsInteger) {
1477 using llvm::APInt;
1478 using llvm::ConstantInt;
1479 using llvm::Value;
1480
1481 unsigned SrcWidth = SrcFPSema.getWidth();
1482 unsigned DstWidth = DstFPSema.getWidth();
1483 unsigned SrcScale = SrcFPSema.getScale();
1484 unsigned DstScale = DstFPSema.getScale();
1485 bool SrcIsSigned = SrcFPSema.isSigned();
1486 bool DstIsSigned = DstFPSema.isSigned();
1487
1488 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1489
1490 Value *Result = Src;
1491 unsigned ResultWidth = SrcWidth;
1492
1493 // Downscale.
1494 if (DstScale < SrcScale) {
1495 // When converting to integers, we round towards zero. For negative numbers,
1496 // right shifting rounds towards negative infinity. In this case, we can
1497 // just round up before shifting.
1498 if (DstIsInteger && SrcIsSigned) {
1499 Value *Zero = llvm::Constant::getNullValue(Result->getType());
1500 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1501 Value *LowBits = ConstantInt::get(
1502 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1503 Value *Rounded = Builder.CreateAdd(Result, LowBits);
1504 Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1505 }
1506
1507 Result = SrcIsSigned
1508 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1509 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1510 }
1511
1512 if (!DstFPSema.isSaturated()) {
1513 // Resize.
1514 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1515
1516 // Upscale.
1517 if (DstScale > SrcScale)
1518 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1519 } else {
1520 // Adjust the number of fractional bits.
1521 if (DstScale > SrcScale) {
1522 // Compare to DstWidth to prevent resizing twice.
1523 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1524 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1525 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1526 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1527 }
1528
1529 // Handle saturation.
1530 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1531 if (LessIntBits) {
1532 Value *Max = ConstantInt::get(
1533 CGF.getLLVMContext(),
1534 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1535 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1536 : Builder.CreateICmpUGT(Result, Max);
1537 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1538 }
1539 // Cannot overflow min to dest type if src is unsigned since all fixed
1540 // point types can cover the unsigned min of 0.
1541 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1542 Value *Min = ConstantInt::get(
1543 CGF.getLLVMContext(),
1544 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1545 Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1546 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1547 }
1548
1549 // Resize the integer part to get the final destination size.
1550 if (ResultWidth != DstWidth)
1551 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1552 }
1553 return Result;
1554}
1555
1556/// Emit a conversion from the specified complex type to the specified
1557/// destination type, where the destination type is an LLVM scalar type.
1558Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1559 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1560 SourceLocation Loc) {
1561 // Get the source element type.
1562 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1563
1564 // Handle conversions to bool first, they are special: comparisons against 0.
1565 if (DstTy->isBooleanType()) {
1566 // Complex != 0 -> (Real != 0) | (Imag != 0)
1567 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1569 return Builder.CreateOr(Src.first, Src.second, "tobool");
1570 }
1571
1572 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1573 // the imaginary part of the complex value is discarded and the value of the
1574 // real part is converted according to the conversion rules for the
1575 // corresponding real type.
1576 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1577}
1578
1579Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1580 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1581}
1582
1583/// Emit a sanitization check for the given "binary" operation (which
1584/// might actually be a unary increment which has been lowered to a binary
1585/// operation). The check passes if all values in \p Checks (which are \c i1),
1586/// are \c true.
1587void ScalarExprEmitter::EmitBinOpCheck(
1588 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1589 assert(CGF.IsSanitizerScope)((CGF.IsSanitizerScope) ? static_cast<void> (0) : __assert_fail
("CGF.IsSanitizerScope", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1589, __PRETTY_FUNCTION__))
;
1590 SanitizerHandler Check;
1591 SmallVector<llvm::Constant *, 4> StaticData;
1592 SmallVector<llvm::Value *, 2> DynamicData;
1593
1594 BinaryOperatorKind Opcode = Info.Opcode;
1595 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1596 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1597
1598 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1599 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1600 if (UO && UO->getOpcode() == UO_Minus) {
1601 Check = SanitizerHandler::NegateOverflow;
1602 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1603 DynamicData.push_back(Info.RHS);
1604 } else {
1605 if (BinaryOperator::isShiftOp(Opcode)) {
1606 // Shift LHS negative or too large, or RHS out of bounds.
1607 Check = SanitizerHandler::ShiftOutOfBounds;
1608 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1609 StaticData.push_back(
1610 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1611 StaticData.push_back(
1612 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1613 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1614 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1615 Check = SanitizerHandler::DivremOverflow;
1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617 } else {
1618 // Arithmetic overflow (+, -, *).
1619 switch (Opcode) {
1620 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1621 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1622 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1623 default: llvm_unreachable("unexpected opcode for bin op check")::llvm::llvm_unreachable_internal("unexpected opcode for bin op check"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1623)
;
1624 }
1625 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1626 }
1627 DynamicData.push_back(Info.LHS);
1628 DynamicData.push_back(Info.RHS);
1629 }
1630
1631 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1632}
1633
1634//===----------------------------------------------------------------------===//
1635// Visitor Methods
1636//===----------------------------------------------------------------------===//
1637
1638Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1639 CGF.ErrorUnsupported(E, "scalar expression");
1640 if (E->getType()->isVoidType())
1641 return nullptr;
1642 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1643}
1644
1645Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1646 // Vector Mask Case
1647 if (E->getNumSubExprs() == 2) {
1648 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1649 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1650 Value *Mask;
1651
1652 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1653 unsigned LHSElts = LTy->getNumElements();
1654
1655 Mask = RHS;
1656
1657 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1658
1659 // Mask off the high bits of each shuffle index.
1660 Value *MaskBits =
1661 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1662 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1663
1664 // newv = undef
1665 // mask = mask & maskbits
1666 // for each elt
1667 // n = extract mask i
1668 // x = extract val n
1669 // newv = insert newv, x, i
1670 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1671 MTy->getNumElements());
1672 Value* NewV = llvm::UndefValue::get(RTy);
1673 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1674 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1675 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1676
1677 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1678 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1679 }
1680 return NewV;
1681 }
1682
1683 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1684 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1685
1686 SmallVector<llvm::Constant*, 32> indices;
1687 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1688 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1689 // Check for -1 and output it as undef in the IR.
1690 if (Idx.isSigned() && Idx.isAllOnesValue())
1691 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1692 else
1693 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1694 }
1695
1696 Value *SV = llvm::ConstantVector::get(indices);
1697 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1698}
1699
1700Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1701 QualType SrcType = E->getSrcExpr()->getType(),
1702 DstType = E->getType();
1703
1704 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1705
1706 SrcType = CGF.getContext().getCanonicalType(SrcType);
1707 DstType = CGF.getContext().getCanonicalType(DstType);
1708 if (SrcType == DstType) return Src;
1709
1710 assert(SrcType->isVectorType() &&((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1711, __PRETTY_FUNCTION__))
1711 "ConvertVector source type must be a vector")((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1711, __PRETTY_FUNCTION__))
;
1712 assert(DstType->isVectorType() &&((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1713, __PRETTY_FUNCTION__))
1713 "ConvertVector destination type must be a vector")((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1713, __PRETTY_FUNCTION__))
;
1714
1715 llvm::Type *SrcTy = Src->getType();
1716 llvm::Type *DstTy = ConvertType(DstType);
1717
1718 // Ignore conversions like int -> uint.
1719 if (SrcTy == DstTy)
1720 return Src;
1721
1722 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1723 DstEltType = DstType->getAs<VectorType>()->getElementType();
1724
1725 assert(SrcTy->isVectorTy() &&((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1726, __PRETTY_FUNCTION__))
1726 "ConvertVector source IR type must be a vector")((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1726, __PRETTY_FUNCTION__))
;
1727 assert(DstTy->isVectorTy() &&((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1728, __PRETTY_FUNCTION__))
1728 "ConvertVector destination IR type must be a vector")((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1728, __PRETTY_FUNCTION__))
;
1729
1730 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1731 *DstEltTy = DstTy->getVectorElementType();
1732
1733 if (DstEltType->isBooleanType()) {
1734 assert((SrcEltTy->isFloatingPointTy() ||(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1735, __PRETTY_FUNCTION__))
1735 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion")(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1735, __PRETTY_FUNCTION__))
;
1736
1737 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1738 if (SrcEltTy->isFloatingPointTy()) {
1739 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1740 } else {
1741 return Builder.CreateICmpNE(Src, Zero, "tobool");
1742 }
1743 }
1744
1745 // We have the arithmetic types: real int/float.
1746 Value *Res = nullptr;
1747
1748 if (isa<llvm::IntegerType>(SrcEltTy)) {
1749 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1750 if (isa<llvm::IntegerType>(DstEltTy))
1751 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1752 else if (InputSigned)
1753 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1754 else
1755 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1756 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1757 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1757, __PRETTY_FUNCTION__))
;
1758 if (DstEltType->isSignedIntegerOrEnumerationType())
1759 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1760 else
1761 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1762 } else {
1763 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1764, __PRETTY_FUNCTION__))
1764 "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1764, __PRETTY_FUNCTION__))
;
1765 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1766 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1767 else
1768 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1769 }
1770
1771 return Res;
1772}
1773
1774Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1775 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1776 CGF.EmitIgnoredExpr(E->getBase());
1777 return CGF.emitScalarConstant(Constant, E);
1778 } else {
1779 Expr::EvalResult Result;
1780 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1781 llvm::APSInt Value = Result.Val.getInt();
1782 CGF.EmitIgnoredExpr(E->getBase());
1783 return Builder.getInt(Value);
1784 }
1785 }
1786
1787 return EmitLoadOfLValue(E);
1788}
1789
1790Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1791 TestAndClearIgnoreResultAssign();
1792
1793 // Emit subscript expressions in rvalue context's. For most cases, this just
1794 // loads the lvalue formed by the subscript expr. However, we have to be
1795 // careful, because the base of a vector subscript is occasionally an rvalue,
1796 // so we can't get it as an lvalue.
1797 if (!E->getBase()->getType()->isVectorType())
1798 return EmitLoadOfLValue(E);
1799
1800 // Handle the vector case. The base must be a vector, the index must be an
1801 // integer value.
1802 Value *Base = Visit(E->getBase());
1803 Value *Idx = Visit(E->getIdx());
1804 QualType IdxTy = E->getIdx()->getType();
1805
1806 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1807 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1808
1809 return Builder.CreateExtractElement(Base, Idx, "vecext");
1810}
1811
1812static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1813 unsigned Off, llvm::Type *I32Ty) {
1814 int MV = SVI->getMaskValue(Idx);
1815 if (MV == -1)
1816 return llvm::UndefValue::get(I32Ty);
1817 return llvm::ConstantInt::get(I32Ty, Off+MV);
1818}
1819
1820static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1821 if (C->getBitWidth() != 32) {
1822 assert(llvm::ConstantInt::isValueValidForType(I32Ty,((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1824, __PRETTY_FUNCTION__))
1823 C->getZExtValue()) &&((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1824, __PRETTY_FUNCTION__))
1824 "Index operand too large for shufflevector mask!")((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1824, __PRETTY_FUNCTION__))
;
1825 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1826 }
1827 return C;
1828}
1829
1830Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1831 bool Ignore = TestAndClearIgnoreResultAssign();
1832 (void)Ignore;
1833 assert (Ignore == false && "init list ignored")((Ignore == false && "init list ignored") ? static_cast
<void> (0) : __assert_fail ("Ignore == false && \"init list ignored\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1833, __PRETTY_FUNCTION__))
;
1834 unsigned NumInitElements = E->getNumInits();
1835
1836 if (E->hadArrayRangeDesignator())
1837 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1838
1839 llvm::VectorType *VType =
1840 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1841
1842 if (!VType) {
1843 if (NumInitElements == 0) {
1844 // C++11 value-initialization for the scalar.
1845 return EmitNullValue(E->getType());
1846 }
1847 // We have a scalar in braces. Just use the first element.
1848 return Visit(E->getInit(0));
1849 }
1850
1851 unsigned ResElts = VType->getNumElements();
1852
1853 // Loop over initializers collecting the Value for each, and remembering
1854 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1855 // us to fold the shuffle for the swizzle into the shuffle for the vector
1856 // initializer, since LLVM optimizers generally do not want to touch
1857 // shuffles.
1858 unsigned CurIdx = 0;
1859 bool VIsUndefShuffle = false;
1860 llvm::Value *V = llvm::UndefValue::get(VType);
1861 for (unsigned i = 0; i != NumInitElements; ++i) {
1862 Expr *IE = E->getInit(i);
1863 Value *Init = Visit(IE);
1864 SmallVector<llvm::Constant*, 16> Args;
1865
1866 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1867
1868 // Handle scalar elements. If the scalar initializer is actually one
1869 // element of a different vector of the same width, use shuffle instead of
1870 // extract+insert.
1871 if (!VVT) {
1872 if (isa<ExtVectorElementExpr>(IE)) {
1873 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1874
1875 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1876 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1877 Value *LHS = nullptr, *RHS = nullptr;
1878 if (CurIdx == 0) {
1879 // insert into undef -> shuffle (src, undef)
1880 // shufflemask must use an i32
1881 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1882 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1883
1884 LHS = EI->getVectorOperand();
1885 RHS = V;
1886 VIsUndefShuffle = true;
1887 } else if (VIsUndefShuffle) {
1888 // insert into undefshuffle && size match -> shuffle (v, src)
1889 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1890 for (unsigned j = 0; j != CurIdx; ++j)
1891 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1892 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1893 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1894
1895 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1896 RHS = EI->getVectorOperand();
1897 VIsUndefShuffle = false;
1898 }
1899 if (!Args.empty()) {
1900 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1901 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1902 ++CurIdx;
1903 continue;
1904 }
1905 }
1906 }
1907 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1908 "vecinit");
1909 VIsUndefShuffle = false;
1910 ++CurIdx;
1911 continue;
1912 }
1913
1914 unsigned InitElts = VVT->getNumElements();
1915
1916 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1917 // input is the same width as the vector being constructed, generate an
1918 // optimized shuffle of the swizzle input into the result.
1919 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1920 if (isa<ExtVectorElementExpr>(IE)) {
1921 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1922 Value *SVOp = SVI->getOperand(0);
1923 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1924
1925 if (OpTy->getNumElements() == ResElts) {
1926 for (unsigned j = 0; j != CurIdx; ++j) {
1927 // If the current vector initializer is a shuffle with undef, merge
1928 // this shuffle directly into it.
1929 if (VIsUndefShuffle) {
1930 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1931 CGF.Int32Ty));
1932 } else {
1933 Args.push_back(Builder.getInt32(j));
1934 }
1935 }
1936 for (unsigned j = 0, je = InitElts; j != je; ++j)
1937 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1938 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1939
1940 if (VIsUndefShuffle)
1941 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1942
1943 Init = SVOp;
1944 }
1945 }
1946
1947 // Extend init to result vector length, and then shuffle its contribution
1948 // to the vector initializer into V.
1949 if (Args.empty()) {
1950 for (unsigned j = 0; j != InitElts; ++j)
1951 Args.push_back(Builder.getInt32(j));
1952 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1953 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1954 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1955 Mask, "vext");
1956
1957 Args.clear();
1958 for (unsigned j = 0; j != CurIdx; ++j)
1959 Args.push_back(Builder.getInt32(j));
1960 for (unsigned j = 0; j != InitElts; ++j)
1961 Args.push_back(Builder.getInt32(j+Offset));
1962 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1963 }
1964
1965 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1966 // merging subsequent shuffles into this one.
1967 if (CurIdx == 0)
1968 std::swap(V, Init);
1969 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1970 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1971 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1972 CurIdx += InitElts;
1973 }
1974
1975 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1976 // Emit remaining default initializers.
1977 llvm::Type *EltTy = VType->getElementType();
1978
1979 // Emit remaining default initializers
1980 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1981 Value *Idx = Builder.getInt32(CurIdx);
1982 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1983 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1984 }
1985 return V;
1986}
1987
1988bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1989 const Expr *E = CE->getSubExpr();
1990
1991 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1992 return false;
1993
1994 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1995 // We always assume that 'this' is never null.
1996 return false;
1997 }
1998
1999 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2000 // And that glvalue casts are never null.
2001 if (ICE->getValueKind() != VK_RValue)
2002 return false;
2003 }
2004
2005 return true;
2006}
2007
2008// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2009// have to handle a more broad range of conversions than explicit casts, as they
2010// handle things like function to ptr-to-function decay etc.
2011Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2012 Expr *E = CE->getSubExpr();
2013 QualType DestTy = CE->getType();
2014 CastKind Kind = CE->getCastKind();
2015
2016 // These cases are generally not written to ignore the result of
2017 // evaluating their sub-expressions, so we clear this now.
2018 bool Ignored = TestAndClearIgnoreResultAssign();
2019
2020 // Since almost all cast kinds apply to scalars, this switch doesn't have
2021 // a default case, so the compiler will warn on a missing case. The cases
2022 // are in the same order as in the CastKind enum.
2023 switch (Kind) {
2024 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!")::llvm::llvm_unreachable_internal("dependent cast kind in IR gen!"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2024)
;
2025 case CK_BuiltinFnToFnPtr:
2026 llvm_unreachable("builtin functions are handled elsewhere")::llvm::llvm_unreachable_internal("builtin functions are handled elsewhere"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2026)
;
2027
2028 case CK_LValueBitCast:
2029 case CK_ObjCObjectLValueCast: {
2030 Address Addr = EmitLValue(E).getAddress();
2031 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2032 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2033 return EmitLoadOfLValue(LV, CE->getExprLoc());
2034 }
2035
2036 case CK_CPointerToObjCPointerCast:
2037 case CK_BlockPointerToObjCPointerCast:
2038 case CK_AnyPointerToBlockPointerCast:
2039 case CK_BitCast: {
2040 Value *Src = Visit(const_cast<Expr*>(E));
2041 llvm::Type *SrcTy = Src->getType();
2042 llvm::Type *DstTy = ConvertType(DestTy);
2043 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2044 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2045 llvm_unreachable("wrong cast for pointers in different address spaces"::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2046)
2046 "(must be an address space cast)!")::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2046)
;
2047 }
2048
2049 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2050 if (auto PT = DestTy->getAs<PointerType>())
2051 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2052 /*MayBeNull=*/true,
2053 CodeGenFunction::CFITCK_UnrelatedCast,
2054 CE->getBeginLoc());
2055 }
2056
2057 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2058 const QualType SrcType = E->getType();
2059
2060 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2061 // Casting to pointer that could carry dynamic information (provided by
2062 // invariant.group) requires launder.
2063 Src = Builder.CreateLaunderInvariantGroup(Src);
2064 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2065 // Casting to pointer that does not carry dynamic information (provided
2066 // by invariant.group) requires stripping it. Note that we don't do it
2067 // if the source could not be dynamic type and destination could be
2068 // dynamic because dynamic information is already laundered. It is
2069 // because launder(strip(src)) == launder(src), so there is no need to
2070 // add extra strip before launder.
2071 Src = Builder.CreateStripInvariantGroup(Src);
2072 }
2073 }
2074
2075 // Update heapallocsite metadata when there is an explicit cast.
2076 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2077 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2078 CGF.getDebugInfo()->
2079 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2080
2081 return Builder.CreateBitCast(Src, DstTy);
2082 }
2083 case CK_AddressSpaceConversion: {
2084 Expr::EvalResult Result;
2085 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2086 Result.Val.isNullPointer()) {
2087 // If E has side effect, it is emitted even if its final result is a
2088 // null pointer. In that case, a DCE pass should be able to
2089 // eliminate the useless instructions emitted during translating E.
2090 if (Result.HasSideEffects)
2091 Visit(E);
2092 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2093 ConvertType(DestTy)), DestTy);
2094 }
2095 // Since target may map different address spaces in AST to the same address
2096 // space, an address space conversion may end up as a bitcast.
2097 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2098 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2099 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2100 }
2101 case CK_AtomicToNonAtomic:
2102 case CK_NonAtomicToAtomic:
2103 case CK_NoOp:
2104 case CK_UserDefinedConversion:
2105 return Visit(const_cast<Expr*>(E));
2106
2107 case CK_BaseToDerived: {
2108 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2109 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!")((DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"
) ? static_cast<void> (0) : __assert_fail ("DerivedClassDecl && \"BaseToDerived arg isn't a C++ object pointer!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2109, __PRETTY_FUNCTION__))
;
2110
2111 Address Base = CGF.EmitPointerWithAlignment(E);
2112 Address Derived =
2113 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2114 CE->path_begin(), CE->path_end(),
2115 CGF.ShouldNullCheckClassCastValue(CE));
2116
2117 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2118 // performed and the object is not of the derived type.
2119 if (CGF.sanitizePerformTypeCheck())
2120 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2121 Derived.getPointer(), DestTy->getPointeeType());
2122
2123 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2124 CGF.EmitVTablePtrCheckForCast(
2125 DestTy->getPointeeType(), Derived.getPointer(),
2126 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2127 CE->getBeginLoc());
2128
2129 return Derived.getPointer();
2130 }
2131 case CK_UncheckedDerivedToBase:
2132 case CK_DerivedToBase: {
2133 // The EmitPointerWithAlignment path does this fine; just discard
2134 // the alignment.
2135 return CGF.EmitPointerWithAlignment(CE).getPointer();
2136 }
2137
2138 case CK_Dynamic: {
2139 Address V = CGF.EmitPointerWithAlignment(E);
2140 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2141 return CGF.EmitDynamicCast(V, DCE);
2142 }
2143
2144 case CK_ArrayToPointerDecay:
2145 return CGF.EmitArrayToPointerDecay(E).getPointer();
2146 case CK_FunctionToPointerDecay:
2147 return EmitLValue(E).getPointer();
2148
2149 case CK_NullToPointer:
2150 if (MustVisitNullValue(E))
2151 (void) Visit(E);
2152
2153 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2154 DestTy);
2155
2156 case CK_NullToMemberPointer: {
2157 if (MustVisitNullValue(E))
2158 (void) Visit(E);
2159
2160 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2161 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2162 }
2163
2164 case CK_ReinterpretMemberPointer:
2165 case CK_BaseToDerivedMemberPointer:
2166 case CK_DerivedToBaseMemberPointer: {
2167 Value *Src = Visit(E);
2168
2169 // Note that the AST doesn't distinguish between checked and
2170 // unchecked member pointer conversions, so we always have to
2171 // implement checked conversions here. This is inefficient when
2172 // actual control flow may be required in order to perform the
2173 // check, which it is for data member pointers (but not member
2174 // function pointers on Itanium and ARM).
2175 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2176 }
2177
2178 case CK_ARCProduceObject:
2179 return CGF.EmitARCRetainScalarExpr(E);
2180 case CK_ARCConsumeObject:
2181 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2182 case CK_ARCReclaimReturnedObject:
2183 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2184 case CK_ARCExtendBlockObject:
2185 return CGF.EmitARCExtendBlockObject(E);
2186
2187 case CK_CopyAndAutoreleaseBlockObject:
2188 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2189
2190 case CK_FloatingRealToComplex:
2191 case CK_FloatingComplexCast:
2192 case CK_IntegralRealToComplex:
2193 case CK_IntegralComplexCast:
2194 case CK_IntegralComplexToFloatingComplex:
2195 case CK_FloatingComplexToIntegralComplex:
2196 case CK_ConstructorConversion:
2197 case CK_ToUnion:
2198 llvm_unreachable("scalar cast to non-scalar value")::llvm::llvm_unreachable_internal("scalar cast to non-scalar value"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2198)
;
2199
2200 case CK_LValueToRValue:
2201 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy))((CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy
)) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2201, __PRETTY_FUNCTION__))
;
2202 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!")((E->isGLValue() && "lvalue-to-rvalue applied to r-value!"
) ? static_cast<void> (0) : __assert_fail ("E->isGLValue() && \"lvalue-to-rvalue applied to r-value!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2202, __PRETTY_FUNCTION__))
;
2203 return Visit(const_cast<Expr*>(E));
2204
2205 case CK_IntegralToPointer: {
2206 Value *Src = Visit(const_cast<Expr*>(E));
2207
2208 // First, convert to the correct width so that we control the kind of
2209 // extension.
2210 auto DestLLVMTy = ConvertType(DestTy);
2211 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2212 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2213 llvm::Value* IntResult =
2214 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2215
2216 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2217
2218 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2219 // Going from integer to pointer that could be dynamic requires reloading
2220 // dynamic information from invariant.group.
2221 if (DestTy.mayBeDynamicClass())
2222 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2223 }
2224 return IntToPtr;
2225 }
2226 case CK_PointerToIntegral: {
2227 assert(!DestTy->isBooleanType() && "bool should use PointerToBool")((!DestTy->isBooleanType() && "bool should use PointerToBool"
) ? static_cast<void> (0) : __assert_fail ("!DestTy->isBooleanType() && \"bool should use PointerToBool\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2227, __PRETTY_FUNCTION__))
;
2228 auto *PtrExpr = Visit(E);
2229
2230 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2231 const QualType SrcType = E->getType();
2232
2233 // Casting to integer requires stripping dynamic information as it does
2234 // not carries it.
2235 if (SrcType.mayBeDynamicClass())
2236 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2237 }
2238
2239 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2240 }
2241 case CK_ToVoid: {
2242 CGF.EmitIgnoredExpr(E);
2243 return nullptr;
2244 }
2245 case CK_VectorSplat: {
2246 llvm::Type *DstTy = ConvertType(DestTy);
2247 Value *Elt = Visit(const_cast<Expr*>(E));
2248 // Splat the element across to all elements
2249 unsigned NumElements = DstTy->getVectorNumElements();
2250 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2251 }
2252
2253 case CK_FixedPointCast:
2254 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2255 CE->getExprLoc());
2256
2257 case CK_FixedPointToBoolean:
2258 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2259, __PRETTY_FUNCTION__))
2259 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2259, __PRETTY_FUNCTION__))
;
2260 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type")((DestTy->isBooleanType() && "Expected dest type to be boolean type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isBooleanType() && \"Expected dest type to be boolean type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2260, __PRETTY_FUNCTION__))
;
2261 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2262 CE->getExprLoc());
2263
2264 case CK_FixedPointToIntegral:
2265 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2266, __PRETTY_FUNCTION__))
2266 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2266, __PRETTY_FUNCTION__))
;
2267 assert(DestTy->isIntegerType() && "Expected dest type to be an integer")((DestTy->isIntegerType() && "Expected dest type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isIntegerType() && \"Expected dest type to be an integer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2267, __PRETTY_FUNCTION__))
;
2268 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2269 CE->getExprLoc());
2270
2271 case CK_IntegralToFixedPoint:
2272 assert(E->getType()->isIntegerType() &&((E->getType()->isIntegerType() && "Expected src type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isIntegerType() && \"Expected src type to be an integer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2273, __PRETTY_FUNCTION__))
2273 "Expected src type to be an integer")((E->getType()->isIntegerType() && "Expected src type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isIntegerType() && \"Expected src type to be an integer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2273, __PRETTY_FUNCTION__))
;
2274 assert(DestTy->isFixedPointType() &&((DestTy->isFixedPointType() && "Expected dest type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isFixedPointType() && \"Expected dest type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2275, __PRETTY_FUNCTION__))
2275 "Expected dest type to be fixed point type")((DestTy->isFixedPointType() && "Expected dest type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isFixedPointType() && \"Expected dest type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2275, __PRETTY_FUNCTION__))
;
2276 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2277 CE->getExprLoc());
2278
2279 case CK_IntegralCast: {
2280 ScalarConversionOpts Opts;
2281 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2282 if (!ICE->isPartOfExplicitCast())
2283 Opts = ScalarConversionOpts(CGF.SanOpts);
2284 }
2285 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2286 CE->getExprLoc(), Opts);
2287 }
2288 case CK_IntegralToFloating:
2289 case CK_FloatingToIntegral:
2290 case CK_FloatingCast:
2291 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2292 CE->getExprLoc());
2293 case CK_BooleanToSignedIntegral: {
2294 ScalarConversionOpts Opts;
2295 Opts.TreatBooleanAsSigned = true;
2296 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2297 CE->getExprLoc(), Opts);
2298 }
2299 case CK_IntegralToBoolean:
2300 return EmitIntToBoolConversion(Visit(E));
2301 case CK_PointerToBoolean:
2302 return EmitPointerToBoolConversion(Visit(E), E->getType());
2303 case CK_FloatingToBoolean:
2304 return EmitFloatToBoolConversion(Visit(E));
2305 case CK_MemberPointerToBoolean: {
2306 llvm::Value *MemPtr = Visit(E);
2307 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2308 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2309 }
2310
2311 case CK_FloatingComplexToReal:
2312 case CK_IntegralComplexToReal:
2313 return CGF.EmitComplexExpr(E, false, true).first;
2314
2315 case CK_FloatingComplexToBoolean:
2316 case CK_IntegralComplexToBoolean: {
2317 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2318
2319 // TODO: kill this function off, inline appropriate case here
2320 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2321 CE->getExprLoc());
2322 }
2323
2324 case CK_ZeroToOCLOpaqueType: {
2325 assert((DestTy->isEventT() || DestTy->isQueueT() ||(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2327, __PRETTY_FUNCTION__))
2326 DestTy->isOCLIntelSubgroupAVCType()) &&(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2327, __PRETTY_FUNCTION__))
2327 "CK_ZeroToOCLEvent cast on non-event type")(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2327, __PRETTY_FUNCTION__))
;
2328 return llvm::Constant::getNullValue(ConvertType(DestTy));
2329 }
2330
2331 case CK_IntToOCLSampler:
2332 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2333
2334 } // end of switch
2335
2336 llvm_unreachable("unknown scalar cast")::llvm::llvm_unreachable_internal("unknown scalar cast", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2336)
;
2337}
2338
2339Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2340 CodeGenFunction::StmtExprEvaluation eval(CGF);
2341 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2342 !E->getType()->isVoidType());
2343 if (!RetAlloca.isValid())
2344 return nullptr;
2345 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2346 E->getExprLoc());
2347}
2348
2349Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2350 CGF.enterFullExpression(E);
2351 CodeGenFunction::RunCleanupsScope Scope(CGF);
2352 Value *V = Visit(E->getSubExpr());
2353 // Defend against dominance problems caused by jumps out of expression
2354 // evaluation through the shared cleanup block.
2355 Scope.ForceCleanup({&V});
2356 return V;
2357}
2358
2359//===----------------------------------------------------------------------===//
2360// Unary Operators
2361//===----------------------------------------------------------------------===//
2362
2363static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2364 llvm::Value *InVal, bool IsInc) {
2365 BinOpInfo BinOp;
2366 BinOp.LHS = InVal;
2367 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2368 BinOp.Ty = E->getType();
2369 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2370 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2371 BinOp.E = E;
2372 return BinOp;
2373}
2374
2375llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2376 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2377 llvm::Value *Amount =
2378 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2379 StringRef Name = IsInc ? "inc" : "dec";
2380 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2381 case LangOptions::SOB_Defined:
2382 return Builder.CreateAdd(InVal, Amount, Name);
2383 case LangOptions::SOB_Undefined:
2384 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2385 return Builder.CreateNSWAdd(InVal, Amount, Name);
2386 LLVM_FALLTHROUGH[[clang::fallthrough]];
2387 case LangOptions::SOB_Trapping:
2388 if (!E->canOverflow())
2389 return Builder.CreateNSWAdd(InVal, Amount, Name);
2390 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2391 }
2392 llvm_unreachable("Unknown SignedOverflowBehaviorTy")::llvm::llvm_unreachable_internal("Unknown SignedOverflowBehaviorTy"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2392)
;
2393}
2394
2395llvm::Value *
2396ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2397 bool isInc, bool isPre) {
2398
2399 QualType type = E->getSubExpr()->getType();
2400 llvm::PHINode *atomicPHI = nullptr;
2401 llvm::Value *value;
2402 llvm::Value *input;
2403
2404 int amount = (isInc ? 1 : -1);
2405 bool isSubtraction = !isInc;
2406
2407 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2408 type = atomicTy->getValueType();
2409 if (isInc && type->isBooleanType()) {
2410 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2411 if (isPre) {
2412 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2413 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2414 return Builder.getTrue();
2415 }
2416 // For atomic bool increment, we just store true and return it for
2417 // preincrement, do an atomic swap with true for postincrement
2418 return Builder.CreateAtomicRMW(
2419 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2420 llvm::AtomicOrdering::SequentiallyConsistent);
2421 }
2422 // Special case for atomic increment / decrement on integers, emit
2423 // atomicrmw instructions. We skip this if we want to be doing overflow
2424 // checking, and fall into the slow path with the atomic cmpxchg loop.
2425 if (!type->isBooleanType() && type->isIntegerType() &&
2426 !(type->isUnsignedIntegerType() &&
2427 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2428 CGF.getLangOpts().getSignedOverflowBehavior() !=
2429 LangOptions::SOB_Trapping) {
2430 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2431 llvm::AtomicRMWInst::Sub;
2432 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2433 llvm::Instruction::Sub;
2434 llvm::Value *amt = CGF.EmitToMemory(
2435 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2436 llvm::Value *old = Builder.CreateAtomicRMW(aop,
2437 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2438 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2439 }
2440 value = EmitLoadOfLValue(LV, E->getExprLoc());
2441 input = value;
2442 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2443 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2444 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2445 value = CGF.EmitToMemory(value, type);
2446 Builder.CreateBr(opBB);
2447 Builder.SetInsertPoint(opBB);
2448 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2449 atomicPHI->addIncoming(value, startBB);
2450 value = atomicPHI;
2451 } else {
2452 value = EmitLoadOfLValue(LV, E->getExprLoc());
2453 input = value;
2454 }
2455
2456 // Special case of integer increment that we have to check first: bool++.
2457 // Due to promotion rules, we get:
2458 // bool++ -> bool = bool + 1
2459 // -> bool = (int)bool + 1
2460 // -> bool = ((int)bool + 1 != 0)
2461 // An interesting aspect of this is that increment is always true.
2462 // Decrement does not have this property.
2463 if (isInc && type->isBooleanType()) {
2464 value = Builder.getTrue();
2465
2466 // Most common case by far: integer increment.
2467 } else if (type->isIntegerType()) {
2468 // Note that signed integer inc/dec with width less than int can't
2469 // overflow because of promotion rules; we're just eliding a few steps here.
2470 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2471 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2472 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2473 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2474 value =
2475 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2476 } else {
2477 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2478 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2479 }
2480
2481 // Next most common: pointer increment.
2482 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2483 QualType type = ptr->getPointeeType();
2484
2485 // VLA types don't have constant size.
2486 if (const VariableArrayType *vla
2487 = CGF.getContext().getAsVariableArrayType(type)) {
2488 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2489 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2490 if (CGF.getLangOpts().isSignedOverflowDefined())
2491 value = Builder.CreateGEP(value, numElts, "vla.inc");
2492 else
2493 value = CGF.EmitCheckedInBoundsGEP(
2494 value, numElts, /*SignedIndices=*/false, isSubtraction,
2495 E->getExprLoc(), "vla.inc");
2496
2497 // Arithmetic on function pointers (!) is just +-1.
2498 } else if (type->isFunctionType()) {
2499 llvm::Value *amt = Builder.getInt32(amount);
2500
2501 value = CGF.EmitCastToVoidPtr(value);
2502 if (CGF.getLangOpts().isSignedOverflowDefined())
2503 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2504 else
2505 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2506 isSubtraction, E->getExprLoc(),
2507 "incdec.funcptr");
2508 value = Builder.CreateBitCast(value, input->getType());
2509
2510 // For everything else, we can just do a simple increment.
2511 } else {
2512 llvm::Value *amt = Builder.getInt32(amount);
2513 if (CGF.getLangOpts().isSignedOverflowDefined())
2514 value = Builder.CreateGEP(value, amt, "incdec.ptr");
2515 else
2516 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2517 isSubtraction, E->getExprLoc(),
2518 "incdec.ptr");
2519 }
2520
2521 // Vector increment/decrement.
2522 } else if (type->isVectorType()) {
2523 if (type->hasIntegerRepresentation()) {
2524 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2525
2526 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2527 } else {
2528 value = Builder.CreateFAdd(
2529 value,
2530 llvm::ConstantFP::get(value->getType(), amount),
2531 isInc ? "inc" : "dec");
2532 }
2533
2534 // Floating point.
2535 } else if (type->isRealFloatingType()) {
2536 // Add the inc/dec to the real part.
2537 llvm::Value *amt;
2538
2539 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2540 // Another special case: half FP increment should be done via float
2541 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2542 value = Builder.CreateCall(
2543 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2544 CGF.CGM.FloatTy),
2545 input, "incdec.conv");
2546 } else {
2547 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2548 }
2549 }
2550
2551 if (value->getType()->isFloatTy())
2552 amt = llvm::ConstantFP::get(VMContext,
2553 llvm::APFloat(static_cast<float>(amount)));
2554 else if (value->getType()->isDoubleTy())
2555 amt = llvm::ConstantFP::get(VMContext,
2556 llvm::APFloat(static_cast<double>(amount)));
2557 else {
2558 // Remaining types are Half, LongDouble or __float128. Convert from float.
2559 llvm::APFloat F(static_cast<float>(amount));
2560 bool ignored;
2561 const llvm::fltSemantics *FS;
2562 // Don't use getFloatTypeSemantics because Half isn't
2563 // necessarily represented using the "half" LLVM type.
2564 if (value->getType()->isFP128Ty())
2565 FS = &CGF.getTarget().getFloat128Format();
2566 else if (value->getType()->isHalfTy())
2567 FS = &CGF.getTarget().getHalfFormat();
2568 else
2569 FS = &CGF.getTarget().getLongDoubleFormat();
2570 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2571 amt = llvm::ConstantFP::get(VMContext, F);
2572 }
2573 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2574
2575 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2576 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2577 value = Builder.CreateCall(
2578 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2579 CGF.CGM.FloatTy),
2580 value, "incdec.conv");
2581 } else {
2582 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2583 }
2584 }
2585
2586 // Objective-C pointer types.
2587 } else {
2588 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2589 value = CGF.EmitCastToVoidPtr(value);
2590
2591 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2592 if (!isInc) size = -size;
2593 llvm::Value *sizeValue =
2594 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2595
2596 if (CGF.getLangOpts().isSignedOverflowDefined())
2597 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2598 else
2599 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2600 /*SignedIndices=*/false, isSubtraction,
2601 E->getExprLoc(), "incdec.objptr");
2602 value = Builder.CreateBitCast(value, input->getType());
2603 }
2604
2605 if (atomicPHI) {
2606 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2607 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2608 auto Pair = CGF.EmitAtomicCompareExchange(
2609 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2610 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2611 llvm::Value *success = Pair.second;
2612 atomicPHI->addIncoming(old, curBlock);
2613 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2614 Builder.SetInsertPoint(contBB);
2615 return isPre ? value : input;
2616 }
2617
2618 // Store the updated result through the lvalue.
2619 if (LV.isBitField())
2620 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2621 else
2622 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2623
2624 // If this is a postinc, return the value read from memory, otherwise use the
2625 // updated value.
2626 return isPre ? value : input;
2627}
2628
2629
2630
2631Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2632 TestAndClearIgnoreResultAssign();
2633 // Emit unary minus with EmitSub so we handle overflow cases etc.
2634 BinOpInfo BinOp;
2635 BinOp.RHS = Visit(E->getSubExpr());
2636
2637 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1
Taking false branch
2638 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2639 else
2640 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2641 BinOp.Ty = E->getType();
2642 BinOp.Opcode = BO_Sub;
2643 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2644 BinOp.E = E;
2645 return EmitSub(BinOp);
2
Calling 'ScalarExprEmitter::EmitSub'
2646}
2647
2648Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2649 TestAndClearIgnoreResultAssign();
2650 Value *Op = Visit(E->getSubExpr());
2651 return Builder.CreateNot(Op, "neg");
2652}
2653
2654Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2655 // Perform vector logical not on comparison with zero vector.
2656 if (E->getType()->isExtVectorType()) {
2657 Value *Oper = Visit(E->getSubExpr());
2658 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2659 Value *Result;
2660 if (Oper->getType()->isFPOrFPVectorTy())
2661 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2662 else
2663 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2664 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2665 }
2666
2667 // Compare operand to zero.
2668 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2669
2670 // Invert value.
2671 // TODO: Could dynamically modify easy computations here. For example, if
2672 // the operand is an icmp ne, turn into icmp eq.
2673 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2674
2675 // ZExt result to the expr type.
2676 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2677}
2678
2679Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2680 // Try folding the offsetof to a constant.
2681 Expr::EvalResult EVResult;
2682 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2683 llvm::APSInt Value = EVResult.Val.getInt();
2684 return Builder.getInt(Value);
2685 }
2686
2687 // Loop over the components of the offsetof to compute the value.
2688 unsigned n = E->getNumComponents();
2689 llvm::Type* ResultType = ConvertType(E->getType());
2690 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2691 QualType CurrentType = E->getTypeSourceInfo()->getType();
2692 for (unsigned i = 0; i != n; ++i) {
2693 OffsetOfNode ON = E->getComponent(i);
2694 llvm::Value *Offset = nullptr;
2695 switch (ON.getKind()) {
2696 case OffsetOfNode::Array: {
2697 // Compute the index
2698 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2699 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2700 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2701 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2702
2703 // Save the element type
2704 CurrentType =
2705 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2706
2707 // Compute the element size
2708 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2709 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2710
2711 // Multiply out to compute the result
2712 Offset = Builder.CreateMul(Idx, ElemSize);
2713 break;
2714 }
2715
2716 case OffsetOfNode::Field: {
2717 FieldDecl *MemberDecl = ON.getField();
2718 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2719 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2720
2721 // Compute the index of the field in its parent.
2722 unsigned i = 0;
2723 // FIXME: It would be nice if we didn't have to loop here!
2724 for (RecordDecl::field_iterator Field = RD->field_begin(),
2725 FieldEnd = RD->field_end();
2726 Field != FieldEnd; ++Field, ++i) {
2727 if (*Field == MemberDecl)
2728 break;
2729 }
2730 assert(i < RL.getFieldCount() && "offsetof field in wrong type")((i < RL.getFieldCount() && "offsetof field in wrong type"
) ? static_cast<void> (0) : __assert_fail ("i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2730, __PRETTY_FUNCTION__))
;
2731
2732 // Compute the offset to the field
2733 int64_t OffsetInt = RL.getFieldOffset(i) /
2734 CGF.getContext().getCharWidth();
2735 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2736
2737 // Save the element type.
2738 CurrentType = MemberDecl->getType();
2739 break;
2740 }
2741
2742 case OffsetOfNode::Identifier:
2743 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2743)
;
2744
2745 case OffsetOfNode::Base: {
2746 if (ON.getBase()->isVirtual()) {
2747 CGF.ErrorUnsupported(E, "virtual base in offsetof");
2748 continue;
2749 }
2750
2751 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2752 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2753
2754 // Save the element type.
2755 CurrentType = ON.getBase()->getType();
2756
2757 // Compute the offset to the base.
2758 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2759 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2760 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2761 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2762 break;
2763 }
2764 }
2765 Result = Builder.CreateAdd(Result, Offset);
2766 }
2767 return Result;
2768}
2769
2770/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2771/// argument of the sizeof expression as an integer.
2772Value *
2773ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2774 const UnaryExprOrTypeTraitExpr *E) {
2775 QualType TypeToSize = E->getTypeOfArgument();
2776 if (E->getKind() == UETT_SizeOf) {
2777 if (const VariableArrayType *VAT =
2778 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2779 if (E->isArgumentType()) {
2780 // sizeof(type) - make sure to emit the VLA size.
2781 CGF.EmitVariablyModifiedType(TypeToSize);
2782 } else {
2783 // C99 6.5.3.4p2: If the argument is an expression of type
2784 // VLA, it is evaluated.
2785 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2786 }
2787
2788 auto VlaSize = CGF.getVLASize(VAT);
2789 llvm::Value *size = VlaSize.NumElts;
2790
2791 // Scale the number of non-VLA elements by the non-VLA element size.
2792 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2793 if (!eltSize.isOne())
2794 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2795
2796 return size;
2797 }
2798 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2799 auto Alignment =
2800 CGF.getContext()
2801 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2802 E->getTypeOfArgument()->getPointeeType()))
2803 .getQuantity();
2804 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2805 }
2806
2807 // If this isn't sizeof(vla), the result must be constant; use the constant
2808 // folding logic so we don't have to duplicate it here.
2809 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2810}
2811
2812Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2813 Expr *Op = E->getSubExpr();
2814 if (Op->getType()->isAnyComplexType()) {
2815 // If it's an l-value, load through the appropriate subobject l-value.
2816 // Note that we have to ask E because Op might be an l-value that
2817 // this won't work for, e.g. an Obj-C property.
2818 if (E->isGLValue())
2819 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2820 E->getExprLoc()).getScalarVal();
2821
2822 // Otherwise, calculate and project.
2823 return CGF.EmitComplexExpr(Op, false, true).first;
2824 }
2825
2826 return Visit(Op);
2827}
2828
2829Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2830 Expr *Op = E->getSubExpr();
2831 if (Op->getType()->isAnyComplexType()) {
2832 // If it's an l-value, load through the appropriate subobject l-value.
2833 // Note that we have to ask E because Op might be an l-value that
2834 // this won't work for, e.g. an Obj-C property.
2835 if (Op->isGLValue())
2836 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2837 E->getExprLoc()).getScalarVal();
2838
2839 // Otherwise, calculate and project.
2840 return CGF.EmitComplexExpr(Op, true, false).second;
2841 }
2842
2843 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2844 // effects are evaluated, but not the actual value.
2845 if (Op->isGLValue())
2846 CGF.EmitLValue(Op);
2847 else
2848 CGF.EmitScalarExpr(Op, true);
2849 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2850}
2851
2852//===----------------------------------------------------------------------===//
2853// Binary Operators
2854//===----------------------------------------------------------------------===//
2855
2856BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2857 TestAndClearIgnoreResultAssign();
2858 BinOpInfo Result;
2859 Result.LHS = Visit(E->getLHS());
2860 Result.RHS = Visit(E->getRHS());
2861 Result.Ty = E->getType();
2862 Result.Opcode = E->getOpcode();
2863 Result.FPFeatures = E->getFPFeatures();
2864 Result.E = E;
2865 return Result;
2866}
2867
2868LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2869 const CompoundAssignOperator *E,
2870 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2871 Value *&Result) {
2872 QualType LHSTy = E->getLHS()->getType();
2873 BinOpInfo OpInfo;
2874
2875 if (E->getComputationResultType()->isAnyComplexType())
2876 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2877
2878 // Emit the RHS first. __block variables need to have the rhs evaluated
2879 // first, plus this should improve codegen a little.
2880 OpInfo.RHS = Visit(E->getRHS());
2881 OpInfo.Ty = E->getComputationResultType();
2882 OpInfo.Opcode = E->getOpcode();
2883 OpInfo.FPFeatures = E->getFPFeatures();
2884 OpInfo.E = E;
2885 // Load/convert the LHS.
2886 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2887
2888 llvm::PHINode *atomicPHI = nullptr;
2889 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2890 QualType type = atomicTy->getValueType();
2891 if (!type->isBooleanType() && type->isIntegerType() &&
2892 !(type->isUnsignedIntegerType() &&
2893 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2894 CGF.getLangOpts().getSignedOverflowBehavior() !=
2895 LangOptions::SOB_Trapping) {
2896 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2897 switch (OpInfo.Opcode) {
2898 // We don't have atomicrmw operands for *, %, /, <<, >>
2899 case BO_MulAssign: case BO_DivAssign:
2900 case BO_RemAssign:
2901 case BO_ShlAssign:
2902 case BO_ShrAssign:
2903 break;
2904 case BO_AddAssign:
2905 aop = llvm::AtomicRMWInst::Add;
2906 break;
2907 case BO_SubAssign:
2908 aop = llvm::AtomicRMWInst::Sub;
2909 break;
2910 case BO_AndAssign:
2911 aop = llvm::AtomicRMWInst::And;
2912 break;
2913 case BO_XorAssign:
2914 aop = llvm::AtomicRMWInst::Xor;
2915 break;
2916 case BO_OrAssign:
2917 aop = llvm::AtomicRMWInst::Or;
2918 break;
2919 default:
2920 llvm_unreachable("Invalid compound assignment type")::llvm::llvm_unreachable_internal("Invalid compound assignment type"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2920)
;
2921 }
2922 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2923 llvm::Value *amt = CGF.EmitToMemory(
2924 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2925 E->getExprLoc()),
2926 LHSTy);
2927 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2928 llvm::AtomicOrdering::SequentiallyConsistent);
2929 return LHSLV;
2930 }
2931 }
2932 // FIXME: For floating point types, we should be saving and restoring the
2933 // floating point environment in the loop.
2934 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2935 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2936 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2937 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2938 Builder.CreateBr(opBB);
2939 Builder.SetInsertPoint(opBB);
2940 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2941 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2942 OpInfo.LHS = atomicPHI;
2943 }
2944 else
2945 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2946
2947 SourceLocation Loc = E->getExprLoc();
2948 OpInfo.LHS =
2949 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2950
2951 // Expand the binary operator.
2952 Result = (this->*Func)(OpInfo);
2953
2954 // Convert the result back to the LHS type,
2955 // potentially with Implicit Conversion sanitizer check.
2956 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2957 Loc, ScalarConversionOpts(CGF.SanOpts));
2958
2959 if (atomicPHI) {
2960 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2961 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2962 auto Pair = CGF.EmitAtomicCompareExchange(
2963 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2964 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2965 llvm::Value *success = Pair.second;
2966 atomicPHI->addIncoming(old, curBlock);
2967 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2968 Builder.SetInsertPoint(contBB);
2969 return LHSLV;
2970 }
2971
2972 // Store the result value into the LHS lvalue. Bit-fields are handled
2973 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2974 // 'An assignment expression has the value of the left operand after the
2975 // assignment...'.
2976 if (LHSLV.isBitField())
2977 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2978 else
2979 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2980
2981 return LHSLV;
2982}
2983
2984Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2985 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2986 bool Ignore = TestAndClearIgnoreResultAssign();
2987 Value *RHS = nullptr;
2988 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2989
2990 // If the result is clearly ignored, return now.
2991 if (Ignore)
2992 return nullptr;
2993
2994 // The result of an assignment in C is the assigned r-value.
2995 if (!CGF.getLangOpts().CPlusPlus)
2996 return RHS;
2997
2998 // If the lvalue is non-volatile, return the computed value of the assignment.
2999 if (!LHS.isVolatileQualified())
3000 return RHS;
3001
3002 // Otherwise, reload the value.
3003 return EmitLoadOfLValue(LHS, E->getExprLoc());
3004}
3005
3006void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3007 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3008 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3009
3010 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3011 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3012 SanitizerKind::IntegerDivideByZero));
3013 }
3014
3015 const auto *BO = cast<BinaryOperator>(Ops.E);
3016 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3017 Ops.Ty->hasSignedIntegerRepresentation() &&
3018 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3019 Ops.mayHaveIntegerOverflow()) {
3020 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3021
3022 llvm::Value *IntMin =
3023 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3024 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3025
3026 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3027 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3028 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3029 Checks.push_back(
3030 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3031 }
3032
3033 if (Checks.size() > 0)
3034 EmitBinOpCheck(Checks, Ops);
3035}
3036
3037Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3038 {
3039 CodeGenFunction::SanitizerScope SanScope(&CGF);
3040 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3041 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3042 Ops.Ty->isIntegerType() &&
3043 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3044 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3045 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3046 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3047 Ops.Ty->isRealFloatingType() &&
3048 Ops.mayHaveFloatDivisionByZero()) {
3049 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3050 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3051 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3052 Ops);
3053 }
3054 }
3055
3056 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3057 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3058 if (CGF.getLangOpts().OpenCL &&
3059 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3060 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3061 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3062 // build option allows an application to specify that single precision
3063 // floating-point divide (x/y and 1/x) and sqrt used in the program
3064 // source are correctly rounded.
3065 llvm::Type *ValTy = Val->getType();
3066 if (ValTy->isFloatTy() ||
3067 (isa<llvm::VectorType>(ValTy) &&
3068 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3069 CGF.SetFPAccuracy(Val, 2.5);
3070 }
3071 return Val;
3072 }
3073 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3074 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3075 else
3076 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3077}
3078
3079Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3080 // Rem in C can't be a floating point type: C99 6.5.5p2.
3081 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3082 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3083 Ops.Ty->isIntegerType() &&
3084 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3085 CodeGenFunction::SanitizerScope SanScope(&CGF);
3086 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3087 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3088 }
3089
3090 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3091 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3092 else
3093 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3094}
3095
3096Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3097 unsigned IID;
3098 unsigned OpID = 0;
3099
3100 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3101 switch (Ops.Opcode) {
3102 case BO_Add:
3103 case BO_AddAssign:
3104 OpID = 1;
3105 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3106 llvm::Intrinsic::uadd_with_overflow;
3107 break;
3108 case BO_Sub:
3109 case BO_SubAssign:
3110 OpID = 2;
3111 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3112 llvm::Intrinsic::usub_with_overflow;
3113 break;
3114 case BO_Mul:
3115 case BO_MulAssign:
3116 OpID = 3;
3117 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3118 llvm::Intrinsic::umul_with_overflow;
3119 break;
3120 default:
3121 llvm_unreachable("Unsupported operation for overflow detection")::llvm::llvm_unreachable_internal("Unsupported operation for overflow detection"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3121)
;
3122 }
3123 OpID <<= 1;
3124 if (isSigned)
3125 OpID |= 1;
3126
3127 CodeGenFunction::SanitizerScope SanScope(&CGF);
3128 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3129
3130 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3131
3132 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3133 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3134 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3135
3136 // Handle overflow with llvm.trap if no custom handler has been specified.
3137 const std::string *handlerName =
3138 &CGF.getLangOpts().OverflowHandler;
3139 if (handlerName->empty()) {
3140 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3141 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3142 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3143 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3144 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3145 : SanitizerKind::UnsignedIntegerOverflow;
3146 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3147 } else
3148 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3149 return result;
3150 }
3151
3152 // Branch in case of overflow.
3153 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3154 llvm::BasicBlock *continueBB =
3155 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3156 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3157
3158 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3159
3160 // If an overflow handler is set, then we want to call it and then use its
3161 // result, if it returns.
3162 Builder.SetInsertPoint(overflowBB);
3163
3164 // Get the overflow handler.
3165 llvm::Type *Int8Ty = CGF.Int8Ty;
3166 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3167 llvm::FunctionType *handlerTy =
3168 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3169 llvm::FunctionCallee handler =
3170 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3171
3172 // Sign extend the args to 64-bit, so that we can use the same handler for
3173 // all types of overflow.
3174 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3175 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3176
3177 // Call the handler with the two arguments, the operation, and the size of
3178 // the result.
3179 llvm::Value *handlerArgs[] = {
3180 lhs,
3181 rhs,
3182 Builder.getInt8(OpID),
3183 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3184 };
3185 llvm::Value *handlerResult =
3186 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3187
3188 // Truncate the result back to the desired size.
3189 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3190 Builder.CreateBr(continueBB);
3191
3192 Builder.SetInsertPoint(continueBB);
3193 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3194 phi->addIncoming(result, initialBB);
3195 phi->addIncoming(handlerResult, overflowBB);
3196
3197 return phi;
3198}
3199
3200/// Emit pointer + index arithmetic.
3201static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3202 const BinOpInfo &op,
3203 bool isSubtraction) {
3204 // Must have binary (not unary) expr here. Unary pointer
3205 // increment/decrement doesn't use this path.
3206 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3207
3208 Value *pointer = op.LHS;
3209 Expr *pointerOperand = expr->getLHS();
3210 Value *index = op.RHS;
3211 Expr *indexOperand = expr->getRHS();
3212
3213 // In a subtraction, the LHS is always the pointer.
3214 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3215 std::swap(pointer, index);
3216 std::swap(pointerOperand, indexOperand);
3217 }
3218
3219 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3220
3221 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3222 auto &DL = CGF.CGM.getDataLayout();
3223 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3224
3225 // Some versions of glibc and gcc use idioms (particularly in their malloc
3226 // routines) that add a pointer-sized integer (known to be a pointer value)
3227 // to a null pointer in order to cast the value back to an integer or as
3228 // part of a pointer alignment algorithm. This is undefined behavior, but
3229 // we'd like to be able to compile programs that use it.
3230 //
3231 // Normally, we'd generate a GEP with a null-pointer base here in response
3232 // to that code, but it's also UB to dereference a pointer created that
3233 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3234 // generate a direct cast of the integer value to a pointer.
3235 //
3236 // The idiom (p = nullptr + N) is not met if any of the following are true:
3237 //
3238 // The operation is subtraction.
3239 // The index is not pointer-sized.
3240 // The pointer type is not byte-sized.
3241 //
3242 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
6
Assuming the condition is false
7
Taking false branch
3243 op.Opcode,
3244 expr->getLHS(),
3245 expr->getRHS()))
3246 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3247
3248 if (width != DL.getTypeSizeInBits(PtrTy)) {
8
Assuming the condition is false
9
Taking false branch
3249 // Zero-extend or sign-extend the pointer value according to
3250 // whether the index is signed or not.
3251 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3252 "idx.ext");
3253 }
3254
3255 // If this is subtraction, negate the index.
3256 if (isSubtraction)
10
Taking true branch
3257 index = CGF.Builder.CreateNeg(index, "idx.neg");
3258
3259 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
11
Assuming the condition is false
12
Taking false branch
3260 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3261 /*Accessed*/ false);
3262
3263 const PointerType *pointerType
3264 = pointerOperand->getType()->getAs<PointerType>();
3265 if (!pointerType) {
13
Assuming 'pointerType' is non-null
14
Taking false branch
3266 QualType objectType = pointerOperand->getType()
3267 ->castAs<ObjCObjectPointerType>()
3268 ->getPointeeType();
3269 llvm::Value *objectSize
3270 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3271
3272 index = CGF.Builder.CreateMul(index, objectSize);
3273
3274 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3275 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3276 return CGF.Builder.CreateBitCast(result, pointer->getType());
3277 }
3278
3279 QualType elementType = pointerType->getPointeeType();
3280 if (const VariableArrayType *vla
15
Taking true branch
3281 = CGF.getContext().getAsVariableArrayType(elementType)) {
3282 // The element count here is the total number of non-VLA elements.
3283 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3284
3285 // Effectively, the multiply by the VLA size is part of the GEP.
3286 // GEP indexes are signed, and scaling an index isn't permitted to
3287 // signed-overflow, so we use the same semantics for our explicit
3288 // multiply. We suppress this if overflow is not undefined behavior.
3289 if (CGF.getLangOpts().isSignedOverflowDefined()) {
16
Taking false branch
3290 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3291 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3292 } else {
3293 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3294 pointer =
3295 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
17
Calling 'CodeGenFunction::EmitCheckedInBoundsGEP'
3296 op.E->getExprLoc(), "add.ptr");
3297 }
3298 return pointer;
3299 }
3300
3301 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3302 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3303 // future proof.
3304 if (elementType->isVoidType() || elementType->isFunctionType()) {
3305 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3306 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3307 return CGF.Builder.CreateBitCast(result, pointer->getType());
3308 }
3309
3310 if (CGF.getLangOpts().isSignedOverflowDefined())
3311 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3312
3313 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3314 op.E->getExprLoc(), "add.ptr");
3315}
3316
3317// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3318// Addend. Use negMul and negAdd to negate the first operand of the Mul or
3319// the add operand respectively. This allows fmuladd to represent a*b-c, or
3320// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3321// efficient operations.
3322static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3323 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3324 bool negMul, bool negAdd) {
3325 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.")((!(negMul && negAdd) && "Only one of negMul and negAdd should be set."
) ? static_cast<void> (0) : __assert_fail ("!(negMul && negAdd) && \"Only one of negMul and negAdd should be set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3325, __PRETTY_FUNCTION__))
;
3326
3327 Value *MulOp0 = MulOp->getOperand(0);
3328 Value *MulOp1 = MulOp->getOperand(1);
3329 if (negMul) {
3330 MulOp0 =
3331 Builder.CreateFSub(
3332 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3333 "neg");
3334 } else if (negAdd) {
3335 Addend =
3336 Builder.CreateFSub(
3337 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3338 "neg");
3339 }
3340
3341 Value *FMulAdd = Builder.CreateCall(
3342 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3343 {MulOp0, MulOp1, Addend});
3344 MulOp->eraseFromParent();
3345
3346 return FMulAdd;
3347}
3348
3349// Check whether it would be legal to emit an fmuladd intrinsic call to
3350// represent op and if so, build the fmuladd.
3351//
3352// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3353// Does NOT check the type of the operation - it's assumed that this function
3354// will be called from contexts where it's known that the type is contractable.
3355static Value* tryEmitFMulAdd(const BinOpInfo &op,
3356 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3357 bool isSub=false) {
3358
3359 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3361, __PRETTY_FUNCTION__))
3360 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3361, __PRETTY_FUNCTION__))
3361 "Only fadd/fsub can be the root of an fmuladd.")(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3361, __PRETTY_FUNCTION__))
;
3362
3363 // Check whether this op is marked as fusable.
3364 if (!op.FPFeatures.allowFPContractWithinStatement())
3365 return nullptr;
3366
3367 // We have a potentially fusable op. Look for a mul on one of the operands.
3368 // Also, make sure that the mul result isn't used directly. In that case,
3369 // there's no point creating a muladd operation.
3370 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3371 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3372 LHSBinOp->use_empty())
3373 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3374 }
3375 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3376 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3377 RHSBinOp->use_empty())
3378 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3379 }
3380
3381 return nullptr;
3382}
3383
3384Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3385 if (op.LHS->getType()->isPointerTy() ||
3386 op.RHS->getType()->isPointerTy())
3387 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3388
3389 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3390 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3391 case LangOptions::SOB_Defined:
3392 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3393 case LangOptions::SOB_Undefined:
3394 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3395 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3396 LLVM_FALLTHROUGH[[clang::fallthrough]];
3397 case LangOptions::SOB_Trapping:
3398 if (CanElideOverflowCheck(CGF.getContext(), op))
3399 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3400 return EmitOverflowCheckedBinOp(op);
3401 }
3402 }
3403
3404 if (op.Ty->isUnsignedIntegerType() &&
3405 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3406 !CanElideOverflowCheck(CGF.getContext(), op))
3407 return EmitOverflowCheckedBinOp(op);
3408
3409 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3410 // Try to form an fmuladd.
3411 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3412 return FMulAdd;
3413
3414 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3415 return propagateFMFlags(V, op);
3416 }
3417
3418 if (op.isFixedPointBinOp())
3419 return EmitFixedPointBinOp(op);
3420
3421 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3422}
3423
3424/// The resulting value must be calculated with exact precision, so the operands
3425/// may not be the same type.
3426Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3427 using llvm::APSInt;
3428 using llvm::ConstantInt;
3429
3430 const auto *BinOp = cast<BinaryOperator>(op.E);
3431
3432 // The result is a fixed point type and at least one of the operands is fixed
3433 // point while the other is either fixed point or an int. This resulting type
3434 // should be determined by Sema::handleFixedPointConversions().
3435 QualType ResultTy = op.Ty;
3436 QualType LHSTy = BinOp->getLHS()->getType();
3437 QualType RHSTy = BinOp->getRHS()->getType();
3438 ASTContext &Ctx = CGF.getContext();
3439 Value *LHS = op.LHS;
3440 Value *RHS = op.RHS;
3441
3442 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3443 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3444 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3445 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3446
3447 // Convert the operands to the full precision type.
3448 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3449 BinOp->getExprLoc());
3450 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3451 BinOp->getExprLoc());
3452
3453 // Perform the actual addition.
3454 Value *Result;
3455 switch (BinOp->getOpcode()) {
3456 case BO_Add: {
3457 if (ResultFixedSema.isSaturated()) {
3458 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3459 ? llvm::Intrinsic::sadd_sat
3460 : llvm::Intrinsic::uadd_sat;
3461 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3462 } else {
3463 Result = Builder.CreateAdd(FullLHS, FullRHS);
3464 }
3465 break;
3466 }
3467 case BO_Sub: {
3468 if (ResultFixedSema.isSaturated()) {
3469 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3470 ? llvm::Intrinsic::ssub_sat
3471 : llvm::Intrinsic::usub_sat;
3472 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3473 } else {
3474 Result = Builder.CreateSub(FullLHS, FullRHS);
3475 }
3476 break;
3477 }
3478 case BO_LT:
3479 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3480 : Builder.CreateICmpULT(FullLHS, FullRHS);
3481 case BO_GT:
3482 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3483 : Builder.CreateICmpUGT(FullLHS, FullRHS);
3484 case BO_LE:
3485 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3486 : Builder.CreateICmpULE(FullLHS, FullRHS);
3487 case BO_GE:
3488 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3489 : Builder.CreateICmpUGE(FullLHS, FullRHS);
3490 case BO_EQ:
3491 // For equality operations, we assume any padding bits on unsigned types are
3492 // zero'd out. They could be overwritten through non-saturating operations
3493 // that cause overflow, but this leads to undefined behavior.
3494 return Builder.CreateICmpEQ(FullLHS, FullRHS);
3495 case BO_NE:
3496 return Builder.CreateICmpNE(FullLHS, FullRHS);
3497 case BO_Mul:
3498 case BO_Div:
3499 case BO_Shl:
3500 case BO_Shr:
3501 case BO_Cmp:
3502 case BO_LAnd:
3503 case BO_LOr:
3504 case BO_MulAssign:
3505 case BO_DivAssign:
3506 case BO_AddAssign:
3507 case BO_SubAssign:
3508 case BO_ShlAssign:
3509 case BO_ShrAssign:
3510 llvm_unreachable("Found unimplemented fixed point binary operation")::llvm::llvm_unreachable_internal("Found unimplemented fixed point binary operation"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3510)
;
3511 case BO_PtrMemD:
3512 case BO_PtrMemI:
3513 case BO_Rem:
3514 case BO_Xor:
3515 case BO_And:
3516 case BO_Or:
3517 case BO_Assign:
3518 case BO_RemAssign:
3519 case BO_AndAssign:
3520 case BO_XorAssign:
3521 case BO_OrAssign:
3522 case BO_Comma:
3523 llvm_unreachable("Found unsupported binary operation for fixed point types.")::llvm::llvm_unreachable_internal("Found unsupported binary operation for fixed point types."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3523)
;
3524 }
3525
3526 // Convert to the result type.
3527 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3528 BinOp->getExprLoc());
3529}
3530
3531Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3532 // The LHS is always a pointer if either side is.
3533 if (!op.LHS->getType()->isPointerTy()) {
3
Taking false branch
3534 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3535 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3536 case LangOptions::SOB_Defined:
3537 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3538 case LangOptions::SOB_Undefined:
3539 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3540 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3541 LLVM_FALLTHROUGH[[clang::fallthrough]];
3542 case LangOptions::SOB_Trapping:
3543 if (CanElideOverflowCheck(CGF.getContext(), op))
3544 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3545 return EmitOverflowCheckedBinOp(op);
3546 }
3547 }
3548
3549 if (op.Ty->isUnsignedIntegerType() &&
3550 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3551 !CanElideOverflowCheck(CGF.getContext(), op))
3552 return EmitOverflowCheckedBinOp(op);
3553
3554 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3555 // Try to form an fmuladd.
3556 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3557 return FMulAdd;
3558 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3559 return propagateFMFlags(V, op);
3560 }
3561
3562 if (op.isFixedPointBinOp())
3563 return EmitFixedPointBinOp(op);
3564
3565 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3566 }
3567
3568 // If the RHS is not a pointer, then we have normal pointer
3569 // arithmetic.
3570 if (!op.RHS->getType()->isPointerTy())
4
Taking true branch
3571 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
5
Calling 'emitPointerArithmetic'
3572
3573 // Otherwise, this is a pointer subtraction.
3574
3575 // Do the raw subtraction part.
3576 llvm::Value *LHS
3577 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3578 llvm::Value *RHS
3579 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3580 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3581
3582 // Okay, figure out the element size.
3583 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3584 QualType elementType = expr->getLHS()->getType()->getPointeeType();
3585
3586 llvm::Value *divisor = nullptr;
3587
3588 // For a variable-length array, this is going to be non-constant.
3589 if (const VariableArrayType *vla
3590 = CGF.getContext().getAsVariableArrayType(elementType)) {
3591 auto VlaSize = CGF.getVLASize(vla);
3592 elementType = VlaSize.Type;
3593 divisor = VlaSize.NumElts;
3594
3595 // Scale the number of non-VLA elements by the non-VLA element size.
3596 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3597 if (!eltSize.isOne())
3598 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3599
3600 // For everything elese, we can just compute it, safe in the
3601 // assumption that Sema won't let anything through that we can't
3602 // safely compute the size of.
3603 } else {
3604 CharUnits elementSize;
3605 // Handle GCC extension for pointer arithmetic on void* and
3606 // function pointer types.
3607 if (elementType->isVoidType() || elementType->isFunctionType())
3608 elementSize = CharUnits::One();
3609 else
3610 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3611
3612 // Don't even emit the divide for element size of 1.
3613 if (elementSize.isOne())
3614 return diffInChars;
3615
3616 divisor = CGF.CGM.getSize(elementSize);
3617 }
3618
3619 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3620 // pointer difference in C is only defined in the case where both operands
3621 // are pointing to elements of an array.
3622 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3623}
3624
3625Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3626 llvm::IntegerType *Ty;
3627 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3628 Ty = cast<llvm::IntegerType>(VT->getElementType());
3629 else
3630 Ty = cast<llvm::IntegerType>(LHS->getType());
3631 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3632}
3633
3634Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3635 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3636 // RHS to the same size as the LHS.
3637 Value *RHS = Ops.RHS;
3638 if (Ops.LHS->getType() != RHS->getType())
3639 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3640
3641 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3642 Ops.Ty->hasSignedIntegerRepresentation() &&
3643 !CGF.getLangOpts().isSignedOverflowDefined();
3644 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3645 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3646 if (CGF.getLangOpts().OpenCL)
3647 RHS =
3648 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3649 else if ((SanitizeBase || SanitizeExponent) &&
3650 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3651 CodeGenFunction::SanitizerScope SanScope(&CGF);
3652 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3653 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3654 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3655
3656 if (SanitizeExponent) {
3657 Checks.push_back(
3658 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3659 }
3660
3661 if (SanitizeBase) {
3662 // Check whether we are shifting any non-zero bits off the top of the
3663 // integer. We only emit this check if exponent is valid - otherwise
3664 // instructions below will have undefined behavior themselves.
3665 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3666 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3667 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3668 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3669 llvm::Value *PromotedWidthMinusOne =
3670 (RHS == Ops.RHS) ? WidthMinusOne
3671 : GetWidthMinusOneValue(Ops.LHS, RHS);
3672 CGF.EmitBlock(CheckShiftBase);
3673 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3674 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3675 /*NUW*/ true, /*NSW*/ true),
3676 "shl.check");
3677 if (CGF.getLangOpts().CPlusPlus) {
3678 // In C99, we are not permitted to shift a 1 bit into the sign bit.
3679 // Under C++11's rules, shifting a 1 bit into the sign bit is
3680 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3681 // define signed left shifts, so we use the C99 and C++11 rules there).
3682 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3683 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3684 }
3685 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3686 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3687 CGF.EmitBlock(Cont);
3688 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3689 BaseCheck->addIncoming(Builder.getTrue(), Orig);
3690 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3691 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3692 }
3693
3694 assert(!Checks.empty())((!Checks.empty()) ? static_cast<void> (0) : __assert_fail
("!Checks.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3694, __PRETTY_FUNCTION__))
;
3695 EmitBinOpCheck(Checks, Ops);
3696 }
3697
3698 return Builder.CreateShl(Ops.LHS, RHS, "shl");
3699}
3700
3701Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3702 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3703 // RHS to the same size as the LHS.
3704 Value *RHS = Ops.RHS;
3705 if (Ops.LHS->getType() != RHS->getType())
3706 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3707
3708 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3709 if (CGF.getLangOpts().OpenCL)
3710 RHS =
3711 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3712 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3713 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3714 CodeGenFunction::SanitizerScope SanScope(&CGF);
3715 llvm::Value *Valid =
3716 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3717 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3718 }
3719
3720 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3721 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3722 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3723}
3724
3725enum IntrinsicType { VCMPEQ, VCMPGT };
3726// return corresponding comparison intrinsic for given vector type
3727static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3728 BuiltinType::Kind ElemKind) {
3729 switch (ElemKind) {
3730 default: llvm_unreachable("unexpected element type")::llvm::llvm_unreachable_internal("unexpected element type", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3730)
;
3731 case BuiltinType::Char_U:
3732 case BuiltinType::UChar:
3733 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3734 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3735 case BuiltinType::Char_S:
3736 case BuiltinType::SChar:
3737 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3738 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3739 case BuiltinType::UShort:
3740 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3741 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3742 case BuiltinType::Short:
3743 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3744 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3745 case BuiltinType::UInt:
3746 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3747 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3748 case BuiltinType::Int:
3749 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3750 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3751 case BuiltinType::ULong:
3752 case BuiltinType::ULongLong:
3753 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3754 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3755 case BuiltinType::Long:
3756 case BuiltinType::LongLong:
3757 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3758 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3759 case BuiltinType::Float:
3760 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3761 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3762 case BuiltinType::Double:
3763 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3764 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3765 }
3766}
3767
3768Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3769 llvm::CmpInst::Predicate UICmpOpc,
3770 llvm::CmpInst::Predicate SICmpOpc,
3771 llvm::CmpInst::Predicate FCmpOpc) {
3772 TestAndClearIgnoreResultAssign();
3773 Value *Result;
3774 QualType LHSTy = E->getLHS()->getType();
3775 QualType RHSTy = E->getRHS()->getType();
3776 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3777 assert(E->getOpcode() == BO_EQ ||((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3778, __PRETTY_FUNCTION__))
3778 E->getOpcode() == BO_NE)((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3778, __PRETTY_FUNCTION__))
;
3779 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3780 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3781 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3782 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3783 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3784 BinOpInfo BOInfo = EmitBinOps(E);
3785 Value *LHS = BOInfo.LHS;
3786 Value *RHS = BOInfo.RHS;
3787
3788 // If AltiVec, the comparison results in a numeric type, so we use
3789 // intrinsics comparing vectors and giving 0 or 1 as a result
3790 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3791 // constants for mapping CR6 register bits to predicate result
3792 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3793
3794 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3795
3796 // in several cases vector arguments order will be reversed
3797 Value *FirstVecArg = LHS,
3798 *SecondVecArg = RHS;
3799
3800 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3801 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3802 BuiltinType::Kind ElementKind = BTy->getKind();
3803
3804 switch(E->getOpcode()) {
3805 default: llvm_unreachable("is not a comparison operation")::llvm::llvm_unreachable_internal("is not a comparison operation"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3805)
;
3806 case BO_EQ:
3807 CR6 = CR6_LT;
3808 ID = GetIntrinsic(VCMPEQ, ElementKind);
3809 break;
3810 case BO_NE:
3811 CR6 = CR6_EQ;
3812 ID = GetIntrinsic(VCMPEQ, ElementKind);
3813 break;
3814 case BO_LT:
3815 CR6 = CR6_LT;
3816 ID = GetIntrinsic(VCMPGT, ElementKind);
3817 std::swap(FirstVecArg, SecondVecArg);
3818 break;
3819 case BO_GT:
3820 CR6 = CR6_LT;
3821 ID = GetIntrinsic(VCMPGT, ElementKind);
3822 break;
3823 case BO_LE:
3824 if (ElementKind == BuiltinType::Float) {
3825 CR6 = CR6_LT;
3826 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3827 std::swap(FirstVecArg, SecondVecArg);
3828 }
3829 else {
3830 CR6 = CR6_EQ;
3831 ID = GetIntrinsic(VCMPGT, ElementKind);
3832 }
3833 break;
3834 case BO_GE:
3835 if (ElementKind == BuiltinType::Float) {
3836 CR6 = CR6_LT;
3837 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3838 }
3839 else {
3840 CR6 = CR6_EQ;
3841 ID = GetIntrinsic(VCMPGT, ElementKind);
3842 std::swap(FirstVecArg, SecondVecArg);
3843 }
3844 break;
3845 }
3846
3847 Value *CR6Param = Builder.getInt32(CR6);
3848 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3849 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3850
3851 // The result type of intrinsic may not be same as E->getType().
3852 // If E->getType() is not BoolTy, EmitScalarConversion will do the
3853 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3854 // do nothing, if ResultTy is not i1 at the same time, it will cause
3855 // crash later.
3856 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3857 if (ResultTy->getBitWidth() > 1 &&
3858 E->getType() == CGF.getContext().BoolTy)
3859 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3860 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3861 E->getExprLoc());
3862 }
3863
3864 if (BOInfo.isFixedPointBinOp()) {
3865 Result = EmitFixedPointBinOp(BOInfo);
3866 } else if (LHS->getType()->isFPOrFPVectorTy()) {
3867 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3868 } else if (LHSTy->hasSignedIntegerRepresentation()) {
3869 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3870 } else {
3871 // Unsigned integers and pointers.
3872
3873 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3874 !isa<llvm::ConstantPointerNull>(LHS) &&
3875 !isa<llvm::ConstantPointerNull>(RHS)) {
3876
3877 // Dynamic information is required to be stripped for comparisons,
3878 // because it could leak the dynamic information. Based on comparisons
3879 // of pointers to dynamic objects, the optimizer can replace one pointer
3880 // with another, which might be incorrect in presence of invariant
3881 // groups. Comparison with null is safe because null does not carry any
3882 // dynamic information.
3883 if (LHSTy.mayBeDynamicClass())
3884 LHS = Builder.CreateStripInvariantGroup(LHS);
3885 if (RHSTy.mayBeDynamicClass())
3886 RHS = Builder.CreateStripInvariantGroup(RHS);
3887 }
3888
3889 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3890 }
3891
3892 // If this is a vector comparison, sign extend the result to the appropriate
3893 // vector integer type and return it (don't convert to bool).
3894 if (LHSTy->isVectorType())
3895 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3896
3897 } else {
3898 // Complex Comparison: can only be an equality comparison.
3899 CodeGenFunction::ComplexPairTy LHS, RHS;
3900 QualType CETy;
3901 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3902 LHS = CGF.EmitComplexExpr(E->getLHS());
3903 CETy = CTy->getElementType();
3904 } else {
3905 LHS.first = Visit(E->getLHS());
3906 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3907 CETy = LHSTy;
3908 }
3909 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3910 RHS = CGF.EmitComplexExpr(E->getRHS());
3911 assert(CGF.getContext().hasSameUnqualifiedType(CETy,((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3913, __PRETTY_FUNCTION__))
3912 CTy->getElementType()) &&((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3913, __PRETTY_FUNCTION__))
3913 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3913, __PRETTY_FUNCTION__))
;
3914 (void)CTy;
3915 } else {
3916 RHS.first = Visit(E->getRHS());
3917 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3918 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3919, __PRETTY_FUNCTION__))
3919 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3919, __PRETTY_FUNCTION__))
;
3920 }
3921
3922 Value *ResultR, *ResultI;
3923 if (CETy->isRealFloatingType()) {
3924 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3925 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3926 } else {
3927 // Complex comparisons can only be equality comparisons. As such, signed
3928 // and unsigned opcodes are the same.
3929 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3930 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3931 }
3932
3933 if (E->getOpcode() == BO_EQ) {
3934 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3935 } else {
3936 assert(E->getOpcode() == BO_NE &&((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3937, __PRETTY_FUNCTION__))
3937 "Complex comparison other than == or != ?")((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3937, __PRETTY_FUNCTION__))
;
3938 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3939 }
3940 }
3941
3942 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3943 E->getExprLoc());
3944}
3945
3946Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3947 bool Ignore = TestAndClearIgnoreResultAssign();
3948
3949 Value *RHS;
3950 LValue LHS;
3951
3952 switch (E->getLHS()->getType().getObjCLifetime()) {
3953 case Qualifiers::OCL_Strong:
3954 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3955 break;
3956
3957 case Qualifiers::OCL_Autoreleasing:
3958 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3959 break;
3960
3961 case Qualifiers::OCL_ExplicitNone:
3962 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3963 break;
3964
3965 case Qualifiers::OCL_Weak:
3966 RHS = Visit(E->getRHS());
3967 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3968 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3969 break;
3970
3971 case Qualifiers::OCL_None:
3972 // __block variables need to have the rhs evaluated first, plus
3973 // this should improve codegen just a little.
3974 RHS = Visit(E->getRHS());
3975 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3976
3977 // Store the value into the LHS. Bit-fields are handled specially
3978 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3979 // 'An assignment expression has the value of the left operand after
3980 // the assignment...'.
3981 if (LHS.isBitField()) {
3982 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3983 } else {
3984 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3985 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3986 }
3987 }
3988
3989 // If the result is clearly ignored, return now.
3990 if (Ignore)
3991 return nullptr;
3992
3993 // The result of an assignment in C is the assigned r-value.
3994 if (!CGF.getLangOpts().CPlusPlus)
3995 return RHS;
3996
3997 // If the lvalue is non-volatile, return the computed value of the assignment.
3998 if (!LHS.isVolatileQualified())
3999 return RHS;
4000
4001 // Otherwise, reload the value.
4002 return EmitLoadOfLValue(LHS, E->getExprLoc());
4003}
4004
4005Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4006 // Perform vector logical and on comparisons with zero vectors.
4007 if (E->getType()->isVectorType()) {
4008 CGF.incrementProfileCounter(E);
4009
4010 Value *LHS = Visit(E->getLHS());
4011 Value *RHS = Visit(E->getRHS());
4012 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4013 if (LHS->getType()->isFPOrFPVectorTy()) {
4014 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4015 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4016 } else {
4017 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4018 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4019 }
4020 Value *And = Builder.CreateAnd(LHS, RHS);
4021 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4022 }
4023
4024 llvm::Type *ResTy = ConvertType(E->getType());
4025
4026 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4027 // If we have 1 && X, just emit X without inserting the control flow.
4028 bool LHSCondVal;
4029 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4030 if (LHSCondVal) { // If we have 1 && X, just emit X.
4031 CGF.incrementProfileCounter(E);
4032
4033 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4034 // ZExt result to int or bool.
4035 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4036 }
4037
4038 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4039 if (!CGF.ContainsLabel(E->getRHS()))
4040 return llvm::Constant::getNullValue(ResTy);
4041 }
4042
4043 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4044 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4045
4046 CodeGenFunction::ConditionalEvaluation eval(CGF);
4047
4048 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4049 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4050 CGF.getProfileCount(E->getRHS()));
4051
4052 // Any edges into the ContBlock are now from an (indeterminate number of)
4053 // edges from this first condition. All of these values will be false. Start
4054 // setting up the PHI node in the Cont Block for this.
4055 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4056 "", ContBlock);
4057 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4058 PI != PE; ++PI)
4059 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4060
4061 eval.begin(CGF);
4062 CGF.EmitBlock(RHSBlock);
4063 CGF.incrementProfileCounter(E);
4064 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4065 eval.end(CGF);
4066
4067 // Reaquire the RHS block, as there may be subblocks inserted.
4068 RHSBlock = Builder.GetInsertBlock();
4069
4070 // Emit an unconditional branch from this block to ContBlock.
4071 {
4072 // There is no need to emit line number for unconditional branch.
4073 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4074 CGF.EmitBlock(ContBlock);
4075 }
4076 // Insert an entry into the phi node for the edge with the value of RHSCond.
4077 PN->addIncoming(RHSCond, RHSBlock);
4078
4079 // Artificial location to preserve the scope information
4080 {
4081 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4082 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4083 }
4084
4085 // ZExt result to int.
4086 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4087}
4088
4089Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4090 // Perform vector logical or on comparisons with zero vectors.
4091 if (E->getType()->isVectorType()) {
4092 CGF.incrementProfileCounter(E);
4093
4094 Value *LHS = Visit(E->getLHS());
4095 Value *RHS = Visit(E->getRHS());
4096 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4097 if (LHS->getType()->isFPOrFPVectorTy()) {
4098 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4099 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4100 } else {
4101 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4102 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4103 }
4104 Value *Or = Builder.CreateOr(LHS, RHS);
4105 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4106 }
4107
4108 llvm::Type *ResTy = ConvertType(E->getType());
4109
4110 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4111 // If we have 0 || X, just emit X without inserting the control flow.
4112 bool LHSCondVal;
4113 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4114 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4115 CGF.incrementProfileCounter(E);
4116
4117 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4118 // ZExt result to int or bool.
4119 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4120 }
4121
4122 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4123 if (!CGF.ContainsLabel(E->getRHS()))
4124 return llvm::ConstantInt::get(ResTy, 1);
4125 }
4126
4127 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4128 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4129
4130 CodeGenFunction::ConditionalEvaluation eval(CGF);
4131
4132 // Branch on the LHS first. If it is true, go to the success (cont) block.
4133 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4134 CGF.getCurrentProfileCount() -
4135 CGF.getProfileCount(E->getRHS()));
4136
4137 // Any edges into the ContBlock are now from an (indeterminate number of)
4138 // edges from this first condition. All of these values will be true. Start
4139 // setting up the PHI node in the Cont Block for this.
4140 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4141 "", ContBlock);
4142 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4143 PI != PE; ++PI)
4144 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4145
4146 eval.begin(CGF);
4147
4148 // Emit the RHS condition as a bool value.
4149 CGF.EmitBlock(RHSBlock);
4150 CGF.incrementProfileCounter(E);
4151 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4152
4153 eval.end(CGF);
4154
4155 // Reaquire the RHS block, as there may be subblocks inserted.
4156 RHSBlock = Builder.GetInsertBlock();
4157
4158 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4159 // into the phi node for the edge with the value of RHSCond.
4160 CGF.EmitBlock(ContBlock);
4161 PN->addIncoming(RHSCond, RHSBlock);
4162
4163 // ZExt result to int.
4164 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4165}
4166
4167Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4168 CGF.EmitIgnoredExpr(E->getLHS());
4169 CGF.EnsureInsertPoint();
4170 return Visit(E->getRHS());
4171}
4172
4173//===----------------------------------------------------------------------===//
4174// Other Operators
4175//===----------------------------------------------------------------------===//
4176
4177/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4178/// expression is cheap enough and side-effect-free enough to evaluate
4179/// unconditionally instead of conditionally. This is used to convert control
4180/// flow into selects in some cases.
4181static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4182 CodeGenFunction &CGF) {
4183 // Anything that is an integer or floating point constant is fine.
4184 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4185
4186 // Even non-volatile automatic variables can't be evaluated unconditionally.
4187 // Referencing a thread_local may cause non-trivial initialization work to
4188 // occur. If we're inside a lambda and one of the variables is from the scope
4189 // outside the lambda, that function may have returned already. Reading its
4190 // locals is a bad idea. Also, these reads may introduce races there didn't
4191 // exist in the source-level program.
4192}
4193
4194
4195Value *ScalarExprEmitter::
4196VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4197 TestAndClearIgnoreResultAssign();
4198
4199 // Bind the common expression if necessary.
4200 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4201
4202 Expr *condExpr = E->getCond();
4203 Expr *lhsExpr = E->getTrueExpr();
4204 Expr *rhsExpr = E->getFalseExpr();
4205
4206 // If the condition constant folds and can be elided, try to avoid emitting
4207 // the condition and the dead arm.
4208 bool CondExprBool;
4209 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4210 Expr *live = lhsExpr, *dead = rhsExpr;
4211 if (!CondExprBool) std::swap(live, dead);
4212
4213 // If the dead side doesn't have labels we need, just emit the Live part.
4214 if (!CGF.ContainsLabel(dead)) {
4215 if (CondExprBool)
4216 CGF.incrementProfileCounter(E);
4217 Value *Result = Visit(live);
4218
4219 // If the live part is a throw expression, it acts like it has a void
4220 // type, so evaluating it returns a null Value*. However, a conditional
4221 // with non-void type must return a non-null Value*.
4222 if (!Result && !E->getType()->isVoidType())
4223 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4224
4225 return Result;
4226 }
4227 }
4228
4229 // OpenCL: If the condition is a vector, we can treat this condition like
4230 // the select function.
4231 if (CGF.getLangOpts().OpenCL
4232 && condExpr->getType()->isVectorType()) {
4233 CGF.incrementProfileCounter(E);
4234
4235 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4236 llvm::Value *LHS = Visit(lhsExpr);
4237 llvm::Value *RHS = Visit(rhsExpr);
4238
4239 llvm::Type *condType = ConvertType(condExpr->getType());
4240 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4241
4242 unsigned numElem = vecTy->getNumElements();
4243 llvm::Type *elemType = vecTy->getElementType();
4244
4245 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4246 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4247 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4248 llvm::VectorType::get(elemType,
4249 numElem),
4250 "sext");
4251 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4252
4253 // Cast float to int to perform ANDs if necessary.
4254 llvm::Value *RHSTmp = RHS;
4255 llvm::Value *LHSTmp = LHS;
4256 bool wasCast = false;
4257 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4258 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4259 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4260 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4261 wasCast = true;
4262 }
4263
4264 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4265 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4266 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4267 if (wasCast)
4268 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4269
4270 return tmp5;
4271 }
4272
4273 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4274 // select instead of as control flow. We can only do this if it is cheap and
4275 // safe to evaluate the LHS and RHS unconditionally.
4276 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4277 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4278 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4279 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4280
4281 CGF.incrementProfileCounter(E, StepV);
4282
4283 llvm::Value *LHS = Visit(lhsExpr);
4284 llvm::Value *RHS = Visit(rhsExpr);
4285 if (!LHS) {
4286 // If the conditional has void type, make sure we return a null Value*.
4287 assert(!RHS && "LHS and RHS types must match")((!RHS && "LHS and RHS types must match") ? static_cast
<void> (0) : __assert_fail ("!RHS && \"LHS and RHS types must match\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4287, __PRETTY_FUNCTION__))
;
4288 return nullptr;
4289 }
4290 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4291 }
4292
4293 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4294 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4295 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4296
4297 CodeGenFunction::ConditionalEvaluation eval(CGF);
4298 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4299 CGF.getProfileCount(lhsExpr));
4300
4301 CGF.EmitBlock(LHSBlock);
4302 CGF.incrementProfileCounter(E);
4303 eval.begin(CGF);
4304 Value *LHS = Visit(lhsExpr);
4305 eval.end(CGF);
4306
4307 LHSBlock = Builder.GetInsertBlock();
4308 Builder.CreateBr(ContBlock);
4309
4310 CGF.EmitBlock(RHSBlock);
4311 eval.begin(CGF);
4312 Value *RHS = Visit(rhsExpr);
4313 eval.end(CGF);
4314
4315 RHSBlock = Builder.GetInsertBlock();
4316 CGF.EmitBlock(ContBlock);
4317
4318 // If the LHS or RHS is a throw expression, it will be legitimately null.
4319 if (!LHS)
4320 return RHS;
4321 if (!RHS)
4322 return LHS;
4323
4324 // Create a PHI node for the real part.
4325 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4326 PN->addIncoming(LHS, LHSBlock);
4327 PN->addIncoming(RHS, RHSBlock);
4328 return PN;
4329}
4330
4331Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4332 return Visit(E->getChosenSubExpr());
4333}
4334
4335Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4336 QualType Ty = VE->getType();
4337
4338 if (Ty->isVariablyModifiedType())
4339 CGF.EmitVariablyModifiedType(Ty);
4340
4341 Address ArgValue = Address::invalid();
4342 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4343
4344 llvm::Type *ArgTy = ConvertType(VE->getType());
4345
4346 // If EmitVAArg fails, emit an error.
4347 if (!ArgPtr.isValid()) {
4348 CGF.ErrorUnsupported(VE, "va_arg expression");
4349 return llvm::UndefValue::get(ArgTy);
4350 }
4351
4352 // FIXME Volatility.
4353 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4354
4355 // If EmitVAArg promoted the type, we must truncate it.
4356 if (ArgTy != Val->getType()) {
4357 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4358 Val = Builder.CreateIntToPtr(Val, ArgTy);
4359 else
4360 Val = Builder.CreateTrunc(Val, ArgTy);
4361 }
4362
4363 return Val;
4364}
4365
4366Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4367 return CGF.EmitBlockLiteral(block);
4368}
4369
4370// Convert a vec3 to vec4, or vice versa.
4371static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4372 Value *Src, unsigned NumElementsDst) {
4373 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4374 SmallVector<llvm::Constant*, 4> Args;
4375 Args.push_back(Builder.getInt32(0));
4376 Args.push_back(Builder.getInt32(1));
4377 Args.push_back(Builder.getInt32(2));
4378 if (NumElementsDst == 4)
4379 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4380 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4381 return Builder.CreateShuffleVector(Src, UnV, Mask);
4382}
4383
4384// Create cast instructions for converting LLVM value \p Src to LLVM type \p
4385// DstTy. \p Src has the same size as \p DstTy. Both are single value types
4386// but could be scalar or vectors of different lengths, and either can be
4387// pointer.
4388// There are 4 cases:
4389// 1. non-pointer -> non-pointer : needs 1 bitcast
4390// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4391// 3. pointer -> non-pointer
4392// a) pointer -> intptr_t : needs 1 ptrtoint
4393// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4394// 4. non-pointer -> pointer
4395// a) intptr_t -> pointer : needs 1 inttoptr
4396// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4397// Note: for cases 3b and 4b two casts are required since LLVM casts do not
4398// allow casting directly between pointer types and non-integer non-pointer
4399// types.
4400static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4401 const llvm::DataLayout &DL,
4402 Value *Src, llvm::Type *DstTy,
4403 StringRef Name = "") {
4404 auto SrcTy = Src->getType();
4405
4406 // Case 1.
4407 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4408 return Builder.CreateBitCast(Src, DstTy, Name);
4409
4410 // Case 2.
4411 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4412 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4413
4414 // Case 3.
4415 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4416 // Case 3b.
4417 if (!DstTy->isIntegerTy())
4418 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4419 // Cases 3a and 3b.
4420 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4421 }
4422
4423 // Case 4b.
4424 if (!SrcTy->isIntegerTy())
4425 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4426 // Cases 4a and 4b.
4427 return Builder.CreateIntToPtr(Src, DstTy, Name);
4428}
4429
4430Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4431 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4432 llvm::Type *DstTy = ConvertType(E->getType());
4433
4434 llvm::Type *SrcTy = Src->getType();
4435 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4436 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4437 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4438 cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4439
4440 // Going from vec3 to non-vec3 is a special case and requires a shuffle
4441 // vector to get a vec4, then a bitcast if the target type is different.
4442 if (NumElementsSrc == 3 && NumElementsDst != 3) {
4443 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4444
4445 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4446 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4447 DstTy);
4448 }
4449
4450 Src->setName("astype");
4451 return Src;
4452 }
4453
4454 // Going from non-vec3 to vec3 is a special case and requires a bitcast
4455 // to vec4 if the original type is not vec4, then a shuffle vector to
4456 // get a vec3.
4457 if (NumElementsSrc != 3 && NumElementsDst == 3) {
4458 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4459 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4460 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4461 Vec4Ty);
4462 }
4463
4464 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4465 Src->setName("astype");
4466 return Src;
4467 }
4468
4469 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4470 Src, DstTy, "astype");
4471}
4472
4473Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4474 return CGF.EmitAtomicExpr(E).getScalarVal();
4475}
4476
4477//===----------------------------------------------------------------------===//
4478// Entry Point into this File
4479//===----------------------------------------------------------------------===//
4480
4481/// Emit the computation of the specified expression of scalar type, ignoring
4482/// the result.
4483Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4484 assert(E && hasScalarEvaluationKind(E->getType()) &&((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4485, __PRETTY_FUNCTION__))
4485 "Invalid scalar expression to emit")((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4485, __PRETTY_FUNCTION__))
;
4486
4487 return ScalarExprEmitter(*this, IgnoreResultAssign)
4488 .Visit(const_cast<Expr *>(E));
4489}
4490
4491/// Emit a conversion from the specified type to the specified destination type,
4492/// both of which are LLVM scalar types.
4493Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4494 QualType DstTy,
4495 SourceLocation Loc) {
4496 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4497, __PRETTY_FUNCTION__))
4497 "Invalid scalar expression to emit")((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4497, __PRETTY_FUNCTION__))
;
4498 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4499}
4500
4501/// Emit a conversion from the specified complex type to the specified
4502/// destination type, where the destination type is an LLVM scalar type.
4503Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4504 QualType SrcTy,
4505 QualType DstTy,
4506 SourceLocation Loc) {
4507 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4508, __PRETTY_FUNCTION__))
4508 "Invalid complex -> scalar conversion")((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4508, __PRETTY_FUNCTION__))
;
4509 return ScalarExprEmitter(*this)
4510 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4511}
4512
4513
4514llvm::Value *CodeGenFunction::
4515EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4516 bool isInc, bool isPre) {
4517 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4518}
4519
4520LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4521 // object->isa or (*object).isa
4522 // Generate code as for: *(Class*)object
4523
4524 Expr *BaseExpr = E->getBase();
4525 Address Addr = Address::invalid();
4526 if (BaseExpr->isRValue()) {
4527 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4528 } else {
4529 Addr = EmitLValue(BaseExpr).getAddress();
4530 }
4531
4532 // Cast the address to Class*.
4533 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4534 return MakeAddrLValue(Addr, E->getType());
4535}
4536
4537
4538LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4539 const CompoundAssignOperator *E) {
4540 ScalarExprEmitter Scalar(*this);
4541 Value *Result = nullptr;
4542 switch (E->getOpcode()) {
4543#define COMPOUND_OP(Op) \
4544 case BO_##Op##Assign: \
4545 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4546 Result)
4547 COMPOUND_OP(Mul);
4548 COMPOUND_OP(Div);
4549 COMPOUND_OP(Rem);
4550 COMPOUND_OP(Add);
4551 COMPOUND_OP(Sub);
4552 COMPOUND_OP(Shl);
4553 COMPOUND_OP(Shr);
4554 COMPOUND_OP(And);
4555 COMPOUND_OP(Xor);
4556 COMPOUND_OP(Or);
4557#undef COMPOUND_OP
4558
4559 case BO_PtrMemD:
4560 case BO_PtrMemI:
4561 case BO_Mul:
4562 case BO_Div:
4563 case BO_Rem:
4564 case BO_Add:
4565 case BO_Sub:
4566 case BO_Shl:
4567 case BO_Shr:
4568 case BO_LT:
4569 case BO_GT:
4570 case BO_LE:
4571 case BO_GE:
4572 case BO_EQ:
4573 case BO_NE:
4574 case BO_Cmp:
4575 case BO_And:
4576 case BO_Xor:
4577 case BO_Or:
4578 case BO_LAnd:
4579 case BO_LOr:
4580 case BO_Assign:
4581 case BO_Comma:
4582 llvm_unreachable("Not valid compound assignment operators")::llvm::llvm_unreachable_internal("Not valid compound assignment operators"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4582)
;
4583 }
4584
4585 llvm_unreachable("Unhandled compound assignment operator")::llvm::llvm_unreachable_internal("Unhandled compound assignment operator"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4585)
;
4586}
4587
4588Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4589 ArrayRef<Value *> IdxList,
4590 bool SignedIndices,
4591 bool IsSubtraction,
4592 SourceLocation Loc,
4593 const Twine &Name) {
4594 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4595
4596 // If the pointer overflow sanitizer isn't enabled, do nothing.
4597 if (!SanOpts.has(SanitizerKind::PointerOverflow))
18
Assuming the condition is false
19
Taking false branch
4598 return GEPVal;
4599
4600 // If the GEP has already been reduced to a constant, leave it be.
4601 if (isa<llvm::Constant>(GEPVal))
20
Taking false branch
4602 return GEPVal;
4603
4604 // Only check for overflows in the default address space.
4605 if (GEPVal->getType()->getPointerAddressSpace())
21
Assuming the condition is false
22
Taking false branch
4606 return GEPVal;
4607
4608 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4609 assert(GEP->isInBounds() && "Expected inbounds GEP")((GEP->isInBounds() && "Expected inbounds GEP") ? static_cast
<void> (0) : __assert_fail ("GEP->isInBounds() && \"Expected inbounds GEP\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4609, __PRETTY_FUNCTION__))
;
23
Assuming the condition is true
24
'?' condition is true
4610
4611 SanitizerScope SanScope(this);
4612 auto &VMContext = getLLVMContext();
4613 const auto &DL = CGM.getDataLayout();
4614 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4615
4616 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4617 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4618 auto *SAddIntrinsic =
4619 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4620 auto *SMulIntrinsic =
4621 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4622
4623 // The total (signed) byte offset for the GEP.
4624 llvm::Value *TotalOffset = nullptr;
25
'TotalOffset' initialized to a null pointer value
4625 // The offset overflow flag - true if the total offset overflows.
4626 llvm::Value *OffsetOverflows = Builder.getFalse();
4627
4628 /// Return the result of the given binary operation.
4629 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4630 llvm::Value *RHS) -> llvm::Value * {
4631 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop")(((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == BO_Add || Opcode == BO_Mul) && \"Can't eval binop\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4631, __PRETTY_FUNCTION__))
;
4632
4633 // If the operands are constants, return a constant result.
4634 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4635 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4636 llvm::APInt N;
4637 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4638 /*Signed=*/true, N);
4639 if (HasOverflow)
4640 OffsetOverflows = Builder.getTrue();
4641 return llvm::ConstantInt::get(VMContext, N);
4642 }
4643 }
4644
4645 // Otherwise, compute the result with checked arithmetic.
4646 auto *ResultAndOverflow = Builder.CreateCall(
4647 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4648 OffsetOverflows = Builder.CreateOr(
4649 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4650 return Builder.CreateExtractValue(ResultAndOverflow, 0);
4651 };
4652
4653 // Determine the total byte offset by looking at each GEP operand.
4654 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
26
Loop condition is false. Execution continues on line 4683
4655 GTI != GTE; ++GTI) {
4656 llvm::Value *LocalOffset;
4657 auto *Index = GTI.getOperand();
4658 // Compute the local offset contributed by this indexing step:
4659 if (auto *STy = GTI.getStructTypeOrNull()) {
4660 // For struct indexing, the local offset is the byte position of the
4661 // specified field.
4662 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4663 LocalOffset = llvm::ConstantInt::get(
4664 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4665 } else {
4666 // Otherwise this is array-like indexing. The local offset is the index
4667 // multiplied by the element size.
4668 auto *ElementSize = llvm::ConstantInt::get(
4669 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4670 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4671 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4672 }
4673
4674 // If this is the first offset, set it as the total offset. Otherwise, add
4675 // the local offset into the running total.
4676 if (!TotalOffset || TotalOffset == Zero)
4677 TotalOffset = LocalOffset;
4678 else
4679 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4680 }
4681
4682 // Common case: if the total offset is zero, don't emit a check.
4683 if (TotalOffset == Zero)
27
Assuming 'TotalOffset' is not equal to 'Zero'
28
Taking false branch
4684 return GEPVal;
4685
4686 // Now that we've computed the total offset, add it to the base pointer (with
4687 // wrapping semantics).
4688 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4689 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4690
4691 // The GEP is valid if:
4692 // 1) The total offset doesn't overflow, and
4693 // 2) The sign of the difference between the computed address and the base
4694 // pointer matches the sign of the total offset.
4695 llvm::Value *ValidGEP;
4696 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4697 if (SignedIndices) {
29
Assuming 'SignedIndices' is not equal to 0
30
Taking true branch
4698 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4699 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
31
Passing null pointer value via 1st parameter 'LHS'
32
Calling 'IRBuilder::CreateICmpSGE'
4700 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4701 ValidGEP = Builder.CreateAnd(
4702 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4703 NoOffsetOverflow);
4704 } else if (!SignedIndices && !IsSubtraction) {
4705 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4706 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4707 } else {
4708 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4709 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4710 }
4711
4712 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4713 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4714 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4715 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4716 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4717
4718 return GEPVal;
4719}

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the IRBuilder class, which is used as a convenient way
10// to create LLVM instructions with a consistent and simplified interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_IRBUILDER_H
15#define LLVM_IR_IRBUILDER_H
16
17#include "llvm-c/Types.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/ConstantFolder.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Value.h"
40#include "llvm/IR/ValueHandle.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/CBindingWrapping.h"
43#include "llvm/Support/Casting.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <functional>
48#include <utility>
49
50namespace llvm {
51
52class APInt;
53class MDNode;
54class Use;
55
56/// This provides the default implementation of the IRBuilder
57/// 'InsertHelper' method that is called whenever an instruction is created by
58/// IRBuilder and needs to be inserted.
59///
60/// By default, this inserts the instruction at the insertion point.
61class IRBuilderDefaultInserter {
62protected:
63 void InsertHelper(Instruction *I, const Twine &Name,
64 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
65 if (BB) BB->getInstList().insert(InsertPt, I);
66 I->setName(Name);
67 }
68};
69
70/// Provides an 'InsertHelper' that calls a user-provided callback after
71/// performing the default insertion.
72class IRBuilderCallbackInserter : IRBuilderDefaultInserter {
73 std::function<void(Instruction *)> Callback;
74
75public:
76 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
77 : Callback(std::move(Callback)) {}
78
79protected:
80 void InsertHelper(Instruction *I, const Twine &Name,
81 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
82 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
83 Callback(I);
84 }
85};
86
87/// Common base class shared among various IRBuilders.
88class IRBuilderBase {
89 DebugLoc CurDbgLocation;
90
91protected:
92 BasicBlock *BB;
93 BasicBlock::iterator InsertPt;
94 LLVMContext &Context;
95
96 MDNode *DefaultFPMathTag;
97 FastMathFlags FMF;
98
99 ArrayRef<OperandBundleDef> DefaultOperandBundles;
100
101public:
102 IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr,
103 ArrayRef<OperandBundleDef> OpBundles = None)
104 : Context(context), DefaultFPMathTag(FPMathTag),
105 DefaultOperandBundles(OpBundles) {
106 ClearInsertionPoint();
107 }
108
109 //===--------------------------------------------------------------------===//
110 // Builder configuration methods
111 //===--------------------------------------------------------------------===//
112
113 /// Clear the insertion point: created instructions will not be
114 /// inserted into a block.
115 void ClearInsertionPoint() {
116 BB = nullptr;
117 InsertPt = BasicBlock::iterator();
118 }
119
120 BasicBlock *GetInsertBlock() const { return BB; }
121 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
122 LLVMContext &getContext() const { return Context; }
123
124 /// This specifies that created instructions should be appended to the
125 /// end of the specified block.
126 void SetInsertPoint(BasicBlock *TheBB) {
127 BB = TheBB;
128 InsertPt = BB->end();
129 }
130
131 /// This specifies that created instructions should be inserted before
132 /// the specified instruction.
133 void SetInsertPoint(Instruction *I) {
134 BB = I->getParent();
135 InsertPt = I->getIterator();
136 assert(InsertPt != BB->end() && "Can't read debug loc from end()")((InsertPt != BB->end() && "Can't read debug loc from end()"
) ? static_cast<void> (0) : __assert_fail ("InsertPt != BB->end() && \"Can't read debug loc from end()\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/IRBuilder.h"
, 136, __PRETTY_FUNCTION__))
;
137 SetCurrentDebugLocation(I->getDebugLoc());
138 }
139
140 /// This specifies that created instructions should be inserted at the
141 /// specified point.
142 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
143 BB = TheBB;
144 InsertPt = IP;
145 if (IP != TheBB->end())
146 SetCurrentDebugLocation(IP->getDebugLoc());
147 }
148
149 /// Set location information used by debugging information.
150 void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); }
151
152 /// Get location information used by debugging information.
153 const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; }
154
155 /// If this builder has a current debug location, set it on the
156 /// specified instruction.
157 void SetInstDebugLocation(Instruction *I) const {
158 if (CurDbgLocation)
159 I->setDebugLoc(CurDbgLocation);
160 }
161
162 /// Get the return type of the current function that we're emitting
163 /// into.
164 Type *getCurrentFunctionReturnType() const;
165
166 /// InsertPoint - A saved insertion point.
167 class InsertPoint {
168 BasicBlock *Block = nullptr;
169 BasicBlock::iterator Point;
170
171 public:
172 /// Creates a new insertion point which doesn't point to anything.
173 InsertPoint() = default;
174
175 /// Creates a new insertion point at the given location.
176 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
177 : Block(InsertBlock), Point(InsertPoint) {}
178
179 /// Returns true if this insert point is set.
180 bool isSet() const { return (Block != nullptr); }
181
182 BasicBlock *getBlock() const { return Block; }
183 BasicBlock::iterator getPoint() const { return Point; }
184 };
185
186 /// Returns the current insert point.
187 InsertPoint saveIP() const {
188 return InsertPoint(GetInsertBlock(), GetInsertPoint());
189 }
190
191 /// Returns the current insert point, clearing it in the process.
192 InsertPoint saveAndClearIP() {
193 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
194 ClearInsertionPoint();
195 return IP;
196 }
197
198 /// Sets the current insert point to a previously-saved location.
199 void restoreIP(InsertPoint IP) {
200 if (IP.isSet())
201 SetInsertPoint(IP.getBlock(), IP.getPoint());
202 else
203 ClearInsertionPoint();
204 }
205
206 /// Get the floating point math metadata being used.
207 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
208
209 /// Get the flags to be applied to created floating point ops
210 FastMathFlags getFastMathFlags() const { return FMF; }
211
212 /// Clear the fast-math flags.
213 void clearFastMathFlags() { FMF.clear(); }
214
215 /// Set the floating point math metadata to be used.
216 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
217
218 /// Set the fast-math flags to be used with generated fp-math operators
219 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
220
221 //===--------------------------------------------------------------------===//
222 // RAII helpers.
223 //===--------------------------------------------------------------------===//
224
225 // RAII object that stores the current insertion point and restores it
226 // when the object is destroyed. This includes the debug location.
227 class InsertPointGuard {
228 IRBuilderBase &Builder;
229 AssertingVH<BasicBlock> Block;
230 BasicBlock::iterator Point;
231 DebugLoc DbgLoc;
232
233 public:
234 InsertPointGuard(IRBuilderBase &B)
235 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
236 DbgLoc(B.getCurrentDebugLocation()) {}
237
238 InsertPointGuard(const InsertPointGuard &) = delete;
239 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
240
241 ~InsertPointGuard() {
242 Builder.restoreIP(InsertPoint(Block, Point));
243 Builder.SetCurrentDebugLocation(DbgLoc);
244 }
245 };
246
247 // RAII object that stores the current fast math settings and restores
248 // them when the object is destroyed.
249 class FastMathFlagGuard {
250 IRBuilderBase &Builder;
251 FastMathFlags FMF;
252 MDNode *FPMathTag;
253
254 public:
255 FastMathFlagGuard(IRBuilderBase &B)
256 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
257
258 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
259 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
260
261 ~FastMathFlagGuard() {
262 Builder.FMF = FMF;
263 Builder.DefaultFPMathTag = FPMathTag;
264 }
265 };
266
267 //===--------------------------------------------------------------------===//
268 // Miscellaneous creation methods.
269 //===--------------------------------------------------------------------===//
270
271 /// Make a new global variable with initializer type i8*
272 ///
273 /// Make a new global variable with an initializer that has array of i8 type
274 /// filled in with the null terminated string value specified. The new global
275 /// variable will be marked mergable with any others of the same contents. If
276 /// Name is specified, it is the name of the global variable created.
277 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
278 unsigned AddressSpace = 0);
279
280 /// Get a constant value representing either true or false.
281 ConstantInt *getInt1(bool V) {
282 return ConstantInt::get(getInt1Ty(), V);
283 }
284
285 /// Get the constant value for i1 true.
286 ConstantInt *getTrue() {
287 return ConstantInt::getTrue(Context);
288 }
289
290 /// Get the constant value for i1 false.
291 ConstantInt *getFalse() {
292 return ConstantInt::getFalse(Context);
293 }
294
295 /// Get a constant 8-bit value.
296 ConstantInt *getInt8(uint8_t C) {
297 return ConstantInt::get(getInt8Ty(), C);
298 }
299
300 /// Get a constant 16-bit value.
301 ConstantInt *getInt16(uint16_t C) {
302 return ConstantInt::get(getInt16Ty(), C);
303 }
304
305 /// Get a constant 32-bit value.
306 ConstantInt *getInt32(uint32_t C) {
307 return ConstantInt::get(getInt32Ty(), C);
308 }
309
310 /// Get a constant 64-bit value.
311 ConstantInt *getInt64(uint64_t C) {
312 return ConstantInt::get(getInt64Ty(), C);
313 }
314
315 /// Get a constant N-bit value, zero extended or truncated from
316 /// a 64-bit value.
317 ConstantInt *getIntN(unsigned N, uint64_t C) {
318 return ConstantInt::get(getIntNTy(N), C);
319 }
320
321 /// Get a constant integer value.
322 ConstantInt *getInt(const APInt &AI) {
323 return ConstantInt::get(Context, AI);
324 }
325
326 //===--------------------------------------------------------------------===//
327 // Type creation methods
328 //===--------------------------------------------------------------------===//
329
330 /// Fetch the type representing a single bit
331 IntegerType *getInt1Ty() {
332 return Type::getInt1Ty(Context);
333 }
334
335 /// Fetch the type representing an 8-bit integer.
336 IntegerType *getInt8Ty() {
337 return Type::getInt8Ty(Context);
338 }
339
340 /// Fetch the type representing a 16-bit integer.
341 IntegerType *getInt16Ty() {
342 return Type::getInt16Ty(Context);
343 }
344
345 /// Fetch the type representing a 32-bit integer.
346 IntegerType *getInt32Ty() {
347 return Type::getInt32Ty(Context);
348 }
349
350 /// Fetch the type representing a 64-bit integer.
351 IntegerType *getInt64Ty() {
352 return Type::getInt64Ty(Context);
353 }
354
355 /// Fetch the type representing a 128-bit integer.
356 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
357
358 /// Fetch the type representing an N-bit integer.
359 IntegerType *getIntNTy(unsigned N) {
360 return Type::getIntNTy(Context, N);
361 }
362
363 /// Fetch the type representing a 16-bit floating point value.
364 Type *getHalfTy() {
365 return Type::getHalfTy(Context);
366 }
367
368 /// Fetch the type representing a 32-bit floating point value.
369 Type *getFloatTy() {
370 return Type::getFloatTy(Context);
371 }
372
373 /// Fetch the type representing a 64-bit floating point value.
374 Type *getDoubleTy() {
375 return Type::getDoubleTy(Context);
376 }
377
378 /// Fetch the type representing void.
379 Type *getVoidTy() {
380 return Type::getVoidTy(Context);
381 }
382
383 /// Fetch the type representing a pointer to an 8-bit integer value.
384 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
385 return Type::getInt8PtrTy(Context, AddrSpace);
386 }
387
388 /// Fetch the type representing a pointer to an integer value.
389 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
390 return DL.getIntPtrType(Context, AddrSpace);
391 }
392
393 //===--------------------------------------------------------------------===//
394 // Intrinsic creation methods
395 //===--------------------------------------------------------------------===//
396
397 /// Create and insert a memset to the specified pointer and the
398 /// specified value.
399 ///
400 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
401 /// specified, it will be added to the instruction. Likewise with alias.scope
402 /// and noalias tags.
403 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
404 bool isVolatile = false, MDNode *TBAATag = nullptr,
405 MDNode *ScopeTag = nullptr,
406 MDNode *NoAliasTag = nullptr) {
407 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
408 TBAATag, ScopeTag, NoAliasTag);
409 }
410
411 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
412 bool isVolatile = false, MDNode *TBAATag = nullptr,
413 MDNode *ScopeTag = nullptr,
414 MDNode *NoAliasTag = nullptr);
415
416 /// Create and insert an element unordered-atomic memset of the region of
417 /// memory starting at the given pointer to the given value.
418 ///
419 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
420 /// specified, it will be added to the instruction. Likewise with alias.scope
421 /// and noalias tags.
422 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
423 uint64_t Size, unsigned Align,
424 uint32_t ElementSize,
425 MDNode *TBAATag = nullptr,
426 MDNode *ScopeTag = nullptr,
427 MDNode *NoAliasTag = nullptr) {
428 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size), Align,
429 ElementSize, TBAATag, ScopeTag,
430 NoAliasTag);
431 }
432
433 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
434 Value *Size, unsigned Align,
435 uint32_t ElementSize,
436 MDNode *TBAATag = nullptr,
437 MDNode *ScopeTag = nullptr,
438 MDNode *NoAliasTag = nullptr);
439
440 /// Create and insert a memcpy between the specified pointers.
441 ///
442 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
443 /// specified, it will be added to the instruction. Likewise with alias.scope
444 /// and noalias tags.
445 CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,
446 unsigned SrcAlign, uint64_t Size,
447 bool isVolatile = false, MDNode *TBAATag = nullptr,
448 MDNode *TBAAStructTag = nullptr,
449 MDNode *ScopeTag = nullptr,
450 MDNode *NoAliasTag = nullptr) {
451 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
452 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
453 NoAliasTag);
454 }
455
456 CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,
457 unsigned SrcAlign, Value *Size,
458 bool isVolatile = false, MDNode *TBAATag = nullptr,
459 MDNode *TBAAStructTag = nullptr,
460 MDNode *ScopeTag = nullptr,
461 MDNode *NoAliasTag = nullptr);
462
463 /// Create and insert an element unordered-atomic memcpy between the
464 /// specified pointers.
465 ///
466 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
467 ///
468 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
469 /// specified, it will be added to the instruction. Likewise with alias.scope
470 /// and noalias tags.
471 CallInst *CreateElementUnorderedAtomicMemCpy(
472 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
473 uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr,
474 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
475 MDNode *NoAliasTag = nullptr) {
476 return CreateElementUnorderedAtomicMemCpy(
477 Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag,
478 TBAAStructTag, ScopeTag, NoAliasTag);
479 }
480
481 CallInst *CreateElementUnorderedAtomicMemCpy(
482 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
483 uint32_t ElementSize, MDNode *TBAATag = nullptr,
484 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
485 MDNode *NoAliasTag = nullptr);
486
487 /// Create and insert a memmove between the specified
488 /// pointers.
489 ///
490 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
491 /// specified, it will be added to the instruction. Likewise with alias.scope
492 /// and noalias tags.
493 CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
494 uint64_t Size, bool isVolatile = false,
495 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
496 MDNode *NoAliasTag = nullptr) {
497 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile,
498 TBAATag, ScopeTag, NoAliasTag);
499 }
500
501 CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
502 Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr,
503 MDNode *ScopeTag = nullptr,
504 MDNode *NoAliasTag = nullptr);
505
506 /// \brief Create and insert an element unordered-atomic memmove between the
507 /// specified pointers.
508 ///
509 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
510 /// respectively.
511 ///
512 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
513 /// specified, it will be added to the instruction. Likewise with alias.scope
514 /// and noalias tags.
515 CallInst *CreateElementUnorderedAtomicMemMove(
516 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
517 uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr,
518 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
519 MDNode *NoAliasTag = nullptr) {
520 return CreateElementUnorderedAtomicMemMove(
521 Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag,
522 TBAAStructTag, ScopeTag, NoAliasTag);
523 }
524
525 CallInst *CreateElementUnorderedAtomicMemMove(
526 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
527 uint32_t ElementSize, MDNode *TBAATag = nullptr,
528 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
529 MDNode *NoAliasTag = nullptr);
530
531 /// Create a vector fadd reduction intrinsic of the source vector.
532 /// The first parameter is a scalar accumulator value for ordered reductions.
533 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
534
535 /// Create a vector fmul reduction intrinsic of the source vector.
536 /// The first parameter is a scalar accumulator value for ordered reductions.
537 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
538
539 /// Create a vector int add reduction intrinsic of the source vector.
540 CallInst *CreateAddReduce(Value *Src);
541
542 /// Create a vector int mul reduction intrinsic of the source vector.
543 CallInst *CreateMulReduce(Value *Src);
544
545 /// Create a vector int AND reduction intrinsic of the source vector.
546 CallInst *CreateAndReduce(Value *Src);
547
548 /// Create a vector int OR reduction intrinsic of the source vector.
549 CallInst *CreateOrReduce(Value *Src);
550
551 /// Create a vector int XOR reduction intrinsic of the source vector.
552 CallInst *CreateXorReduce(Value *Src);
553
554 /// Create a vector integer max reduction intrinsic of the source
555 /// vector.
556 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
557
558 /// Create a vector integer min reduction intrinsic of the source
559 /// vector.
560 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
561
562 /// Create a vector float max reduction intrinsic of the source
563 /// vector.
564 CallInst *CreateFPMaxReduce(Value *Src, bool NoNaN = false);
565
566 /// Create a vector float min reduction intrinsic of the source
567 /// vector.
568 CallInst *CreateFPMinReduce(Value *Src, bool NoNaN = false);
569
570 /// Create a lifetime.start intrinsic.
571 ///
572 /// If the pointer isn't i8* it will be converted.
573 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
574
575 /// Create a lifetime.end intrinsic.
576 ///
577 /// If the pointer isn't i8* it will be converted.
578 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
579
580 /// Create a call to invariant.start intrinsic.
581 ///
582 /// If the pointer isn't i8* it will be converted.
583 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
584
585 /// Create a call to Masked Load intrinsic
586 CallInst *CreateMaskedLoad(Value *Ptr, unsigned Align, Value *Mask,
587 Value *PassThru = nullptr, const Twine &Name = "");
588
589 /// Create a call to Masked Store intrinsic
590 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Align,
591 Value *Mask);
592
593 /// Create a call to Masked Gather intrinsic
594 CallInst *CreateMaskedGather(Value *Ptrs, unsigned Align,
595 Value *Mask = nullptr,
596 Value *PassThru = nullptr,
597 const Twine& Name = "");
598
599 /// Create a call to Masked Scatter intrinsic
600 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned Align,
601 Value *Mask = nullptr);
602
603 /// Create an assume intrinsic call that allows the optimizer to
604 /// assume that the provided condition will be true.
605 CallInst *CreateAssumption(Value *Cond);
606
607 /// Create a call to the experimental.gc.statepoint intrinsic to
608 /// start a new statepoint sequence.
609 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
610 Value *ActualCallee,
611 ArrayRef<Value *> CallArgs,
612 ArrayRef<Value *> DeoptArgs,
613 ArrayRef<Value *> GCArgs,
614 const Twine &Name = "");
615
616 /// Create a call to the experimental.gc.statepoint intrinsic to
617 /// start a new statepoint sequence.
618 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
619 Value *ActualCallee, uint32_t Flags,
620 ArrayRef<Use> CallArgs,
621 ArrayRef<Use> TransitionArgs,
622 ArrayRef<Use> DeoptArgs,
623 ArrayRef<Value *> GCArgs,
624 const Twine &Name = "");
625
626 /// Conveninence function for the common case when CallArgs are filled
627 /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
628 /// .get()'ed to get the Value pointer.
629 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
630 Value *ActualCallee, ArrayRef<Use> CallArgs,
631 ArrayRef<Value *> DeoptArgs,
632 ArrayRef<Value *> GCArgs,
633 const Twine &Name = "");
634
635 /// Create an invoke to the experimental.gc.statepoint intrinsic to
636 /// start a new statepoint sequence.
637 InvokeInst *
638 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
639 Value *ActualInvokee, BasicBlock *NormalDest,
640 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
641 ArrayRef<Value *> DeoptArgs,
642 ArrayRef<Value *> GCArgs, const Twine &Name = "");
643
644 /// Create an invoke to the experimental.gc.statepoint intrinsic to
645 /// start a new statepoint sequence.
646 InvokeInst *CreateGCStatepointInvoke(
647 uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
648 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
649 ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
650 ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs,
651 const Twine &Name = "");
652
653 // Convenience function for the common case when CallArgs are filled in using
654 // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
655 // get the Value *.
656 InvokeInst *
657 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
658 Value *ActualInvokee, BasicBlock *NormalDest,
659 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
660 ArrayRef<Value *> DeoptArgs,
661 ArrayRef<Value *> GCArgs, const Twine &Name = "");
662
663 /// Create a call to the experimental.gc.result intrinsic to extract
664 /// the result from a call wrapped in a statepoint.
665 CallInst *CreateGCResult(Instruction *Statepoint,
666 Type *ResultType,
667 const Twine &Name = "");
668
669 /// Create a call to the experimental.gc.relocate intrinsics to
670 /// project the relocated value of one pointer from the statepoint.
671 CallInst *CreateGCRelocate(Instruction *Statepoint,
672 int BaseOffset,
673 int DerivedOffset,
674 Type *ResultType,
675 const Twine &Name = "");
676
677 /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
678 /// type.
679 CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
680 Instruction *FMFSource = nullptr,
681 const Twine &Name = "");
682
683 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
684 /// first type.
685 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
686 Instruction *FMFSource = nullptr,
687 const Twine &Name = "");
688
689 /// Create a call to intrinsic \p ID with \p args, mangled using \p Types. If
690 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
691 /// the intrinsic.
692 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
693 ArrayRef<Value *> Args,
694 Instruction *FMFSource = nullptr,
695 const Twine &Name = "");
696
697 /// Create call to the minnum intrinsic.
698 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
699 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
700 }
701
702 /// Create call to the maxnum intrinsic.
703 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
704 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
705 }
706
707 /// Create call to the minimum intrinsic.
708 CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
709 return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
710 }
711
712 /// Create call to the maximum intrinsic.
713 CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
714 return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
715 }
716
717private:
718 /// Create a call to a masked intrinsic with given Id.
719 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
720 ArrayRef<Type *> OverloadedTypes,
721 const Twine &Name = "");
722
723 Value *getCastedInt8PtrValue(Value *Ptr);
724};
725
726/// This provides a uniform API for creating instructions and inserting
727/// them into a basic block: either at the end of a BasicBlock, or at a specific
728/// iterator location in a block.
729///
730/// Note that the builder does not expose the full generality of LLVM
731/// instructions. For access to extra instruction properties, use the mutators
732/// (e.g. setVolatile) on the instructions after they have been
733/// created. Convenience state exists to specify fast-math flags and fp-math
734/// tags.
735///
736/// The first template argument specifies a class to use for creating constants.
737/// This defaults to creating minimally folded constants. The second template
738/// argument allows clients to specify custom insertion hooks that are called on
739/// every newly created insertion.
740template <typename T = ConstantFolder,
741 typename Inserter = IRBuilderDefaultInserter>
742class IRBuilder : public IRBuilderBase, public Inserter {
743 T Folder;
744
745public:
746 IRBuilder(LLVMContext &C, const T &F, Inserter I = Inserter(),
747 MDNode *FPMathTag = nullptr,
748 ArrayRef<OperandBundleDef> OpBundles = None)
749 : IRBuilderBase(C, FPMathTag, OpBundles), Inserter(std::move(I)),
750 Folder(F) {}
751
752 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
753 ArrayRef<OperandBundleDef> OpBundles = None)
754 : IRBuilderBase(C, FPMathTag, OpBundles) {}
755
756 explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr,
757 ArrayRef<OperandBundleDef> OpBundles = None)
758 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) {
759 SetInsertPoint(TheBB);
760 }
761
762 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
763 ArrayRef<OperandBundleDef> OpBundles = None)
764 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) {
765 SetInsertPoint(TheBB);
766 }
767
768 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
769 ArrayRef<OperandBundleDef> OpBundles = None)
770 : IRBuilderBase(IP->getContext(), FPMathTag, OpBundles) {
771 SetInsertPoint(IP);
772 }
773
774 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T &F,
775 MDNode *FPMathTag = nullptr,
776 ArrayRef<OperandBundleDef> OpBundles = None)
777 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) {
778 SetInsertPoint(TheBB, IP);
779 }
780
781 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
782 MDNode *FPMathTag = nullptr,
783 ArrayRef<OperandBundleDef> OpBundles = None)
784 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) {
785 SetInsertPoint(TheBB, IP);
786 }
787
788 /// Get the constant folder being used.
789 const T &getFolder() { return Folder; }
790
791 /// Insert and return the specified instruction.
792 template<typename InstTy>
793 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
794 this->InsertHelper(I, Name, BB, InsertPt);
795 this->SetInstDebugLocation(I);
796 return I;
797 }
798
799 /// No-op overload to handle constants.
800 Constant *Insert(Constant *C, const Twine& = "") const {
801 return C;
802 }
803
804 //===--------------------------------------------------------------------===//
805 // Instruction creation methods: Terminators
806 //===--------------------------------------------------------------------===//
807
808private:
809 /// Helper to add branch weight and unpredictable metadata onto an
810 /// instruction.
811 /// \returns The annotated instruction.
812 template <typename InstTy>
813 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
814 if (Weights)
815 I->setMetadata(LLVMContext::MD_prof, Weights);
816 if (Unpredictable)
817 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
818 return I;
819 }
820
821public:
822 /// Create a 'ret void' instruction.
823 ReturnInst *CreateRetVoid() {
824 return Insert(ReturnInst::Create(Context));
825 }
826
827 /// Create a 'ret <val>' instruction.
828 ReturnInst *CreateRet(Value *V) {
829 return Insert(ReturnInst::Create(Context, V));
830 }
831
832 /// Create a sequence of N insertvalue instructions,
833 /// with one Value from the retVals array each, that build a aggregate
834 /// return value one value at a time, and a ret instruction to return
835 /// the resulting aggregate value.
836 ///
837 /// This is a convenience function for code that uses aggregate return values
838 /// as a vehicle for having multiple return values.
839 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
840 Value *V = UndefValue::get(getCurrentFunctionReturnType());
841 for (unsigned i = 0; i != N; ++i)
842 V = CreateInsertValue(V, retVals[i], i, "mrv");
843 return Insert(ReturnInst::Create(Context, V));
844 }
845
846 /// Create an unconditional 'br label X' instruction.
847 BranchInst *CreateBr(BasicBlock *Dest) {
848 return Insert(BranchInst::Create(Dest));
849 }
850
851 /// Create a conditional 'br Cond, TrueDest, FalseDest'
852 /// instruction.
853 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
854 MDNode *BranchWeights = nullptr,
855 MDNode *Unpredictable = nullptr) {
856 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
857 BranchWeights, Unpredictable));
858 }
859
860 /// Create a conditional 'br Cond, TrueDest, FalseDest'
861 /// instruction. Copy branch meta data if available.
862 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
863 Instruction *MDSrc) {
864 BranchInst *Br = BranchInst::Create(True, False, Cond);
865 if (MDSrc) {
866 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
867 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
868 Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
869 }
870 return Insert(Br);
871 }
872
873 /// Create a switch instruction with the specified value, default dest,
874 /// and with a hint for the number of cases that will be added (for efficient
875 /// allocation).
876 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
877 MDNode *BranchWeights = nullptr,
878 MDNode *Unpredictable = nullptr) {
879 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
880 BranchWeights, Unpredictable));
881 }
882
883 /// Create an indirect branch instruction with the specified address
884 /// operand, with an optional hint for the number of destinations that will be
885 /// added (for efficient allocation).
886 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
887 return Insert(IndirectBrInst::Create(Addr, NumDests));
888 }
889
890 /// Create an invoke instruction.
891 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
892 BasicBlock *NormalDest, BasicBlock *UnwindDest,
893 ArrayRef<Value *> Args,
894 ArrayRef<OperandBundleDef> OpBundles,
895 const Twine &Name = "") {
896 return Insert(
897 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles),
898 Name);
899 }
900 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
901 BasicBlock *NormalDest, BasicBlock *UnwindDest,
902 ArrayRef<Value *> Args = None,
903 const Twine &Name = "") {
904 return Insert(InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args),
905 Name);
906 }
907
908 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
909 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
910 ArrayRef<OperandBundleDef> OpBundles,
911 const Twine &Name = "") {
912 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
913 NormalDest, UnwindDest, Args, OpBundles, Name);
914 }
915
916 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
917 BasicBlock *UnwindDest,
918 ArrayRef<Value *> Args = None,
919 const Twine &Name = "") {
920 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
921 NormalDest, UnwindDest, Args, Name);
922 }
923
924 // Deprecated [opaque pointer types]
925 InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
926 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
927 ArrayRef<OperandBundleDef> OpBundles,
928 const Twine &Name = "") {
929 return CreateInvoke(
930 cast<FunctionType>(
931 cast<PointerType>(Callee->getType())->getElementType()),
932 Callee, NormalDest, UnwindDest, Args, OpBundles, Name);
933 }
934
935 // Deprecated [opaque pointer types]
936 InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
937 BasicBlock *UnwindDest,
938 ArrayRef<Value *> Args = None,
939 const Twine &Name = "") {
940 return CreateInvoke(
941 cast<FunctionType>(
942 cast<PointerType>(Callee->getType())->getElementType()),
943 Callee, NormalDest, UnwindDest, Args, Name);
944 }
945
946 /// \brief Create a callbr instruction.
947 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
948 BasicBlock *DefaultDest,
949 ArrayRef<BasicBlock *> IndirectDests,
950 ArrayRef<Value *> Args = None,
951 const Twine &Name = "") {
952 return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
953 Args), Name);
954 }
955 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
956 BasicBlock *DefaultDest,
957 ArrayRef<BasicBlock *> IndirectDests,
958 ArrayRef<Value *> Args,
959 ArrayRef<OperandBundleDef> OpBundles,
960 const Twine &Name = "") {
961 return Insert(
962 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
963 OpBundles), Name);
964 }
965
966 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
967 ArrayRef<BasicBlock *> IndirectDests,
968 ArrayRef<Value *> Args = None,
969 const Twine &Name = "") {
970 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
971 DefaultDest, IndirectDests, Args, Name);
972 }
973 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
974 ArrayRef<BasicBlock *> IndirectDests,
975 ArrayRef<Value *> Args,
976 ArrayRef<OperandBundleDef> OpBundles,
977 const Twine &Name = "") {
978 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
979 DefaultDest, IndirectDests, Args, Name);
980 }
981
982 ResumeInst *CreateResume(Value *Exn) {
983 return Insert(ResumeInst::Create(Exn));
984 }
985
986 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
987 BasicBlock *UnwindBB = nullptr) {
988 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
989 }
990
991 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
992 unsigned NumHandlers,
993 const Twine &Name = "") {
994 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
995 Name);
996 }
997
998 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
999 const Twine &Name = "") {
1000 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1001 }
1002
1003 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1004 ArrayRef<Value *> Args = None,
1005 const Twine &Name = "") {
1006 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1007 }
1008
1009 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1010 return Insert(CatchReturnInst::Create(CatchPad, BB));
1011 }
1012
1013 UnreachableInst *CreateUnreachable() {
1014 return Insert(new UnreachableInst(Context));
1015 }
1016
1017 //===--------------------------------------------------------------------===//
1018 // Instruction creation methods: Binary Operators
1019 //===--------------------------------------------------------------------===//
1020private:
1021 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1022 Value *LHS, Value *RHS,
1023 const Twine &Name,
1024 bool HasNUW, bool HasNSW) {
1025 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1026 if (HasNUW) BO->setHasNoUnsignedWrap();
1027 if (HasNSW) BO->setHasNoSignedWrap();
1028 return BO;
1029 }
1030
1031 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1032 FastMathFlags FMF) const {
1033 if (!FPMD)
1034 FPMD = DefaultFPMathTag;
1035 if (FPMD)
1036 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1037 I->setFastMathFlags(FMF);
1038 return I;
1039 }
1040
1041 Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
1042 Value *R, const Twine &Name) const {
1043 auto *LC = dyn_cast<Constant>(L);
1044 auto *RC = dyn_cast<Constant>(R);
1045 return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
1046 }
1047
1048public:
1049 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1050 bool HasNUW = false, bool HasNSW = false) {
1051 if (auto *LC = dyn_cast<Constant>(LHS))
1052 if (auto *RC = dyn_cast<Constant>(RHS))
1053 return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
1054 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
1055 HasNUW, HasNSW);
1056 }
1057
1058 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1059 return CreateAdd(LHS, RHS, Name, false, true);
1060 }
1061
1062 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1063 return CreateAdd(LHS, RHS, Name, true, false);
1064 }
1065
1066 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1067 bool HasNUW = false, bool HasNSW = false) {
1068 if (auto *LC = dyn_cast<Constant>(LHS))
1069 if (auto *RC = dyn_cast<Constant>(RHS))
1070 return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
1071 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
1072 HasNUW, HasNSW);
1073 }
1074
1075 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1076 return CreateSub(LHS, RHS, Name, false, true);
1077 }
1078
1079 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1080 return CreateSub(LHS, RHS, Name, true, false);
1081 }
1082
1083 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1084 bool HasNUW = false, bool HasNSW = false) {
1085 if (auto *LC = dyn_cast<Constant>(LHS))
1086 if (auto *RC = dyn_cast<Constant>(RHS))
1087 return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
1088 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
1089 HasNUW, HasNSW);
1090 }
1091
1092 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1093 return CreateMul(LHS, RHS, Name, false, true);
1094 }
1095
1096 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1097 return CreateMul(LHS, RHS, Name, true, false);
1098 }
1099
1100 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1101 bool isExact = false) {
1102 if (auto *LC = dyn_cast<Constant>(LHS))
1103 if (auto *RC = dyn_cast<Constant>(RHS))
1104 return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
1105 if (!isExact)
1106 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1107 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1108 }
1109
1110 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1111 return CreateUDiv(LHS, RHS, Name, true);
1112 }
1113
1114 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1115 bool isExact = false) {
1116 if (auto *LC = dyn_cast<Constant>(LHS))
1117 if (auto *RC = dyn_cast<Constant>(RHS))
1118 return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
1119 if (!isExact)
1120 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1121 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1122 }
1123
1124 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1125 return CreateSDiv(LHS, RHS, Name, true);
1126 }
1127
1128 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1129 if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
1130 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1131 }
1132
1133 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {