Bug Summary

File:clang/lib/CodeGen/CGObjC.cpp
Warning:line 3143, column 3
Undefined or garbage value returned to caller

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-26-234817-15343-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp
1//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Objective-C code as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Analysis/ObjCARCUtil.h"
27#include "llvm/BinaryFormat/MachO.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/InlineAsm.h"
30using namespace clang;
31using namespace CodeGen;
32
33typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
34static TryEmitResult
35tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
36static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
37 QualType ET,
38 RValue Result);
39
40/// Given the address of a variable of pointer type, find the correct
41/// null to store into it.
42static llvm::Constant *getNullForVariable(Address addr) {
43 llvm::Type *type = addr.getElementType();
44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45}
46
47/// Emits an instance of NSConstantString representing the object.
48llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49{
50 llvm::Constant *C =
51 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
52 // FIXME: This bitcast should just be made an invariant on the Runtime.
53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54}
55
56/// EmitObjCBoxedExpr - This routine generates code to call
57/// the appropriate expression boxing method. This will either be
58/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59/// or [NSValue valueWithBytes:objCType:].
60///
61llvm::Value *
62CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
63 // Generate the correct selector for this literal's concrete type.
64 // Get the method.
65 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66 const Expr *SubExpr = E->getSubExpr();
67
68 if (E->isExpressibleAsConstantInitializer()) {
69 ConstantEmitter ConstEmitter(CGM);
70 return ConstEmitter.tryEmitAbstract(E, E->getType());
71 }
72
73 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method")(static_cast <bool> (BoxingMethod->isClassMethod() &&
"BoxingMethod must be a class method") ? void (0) : __assert_fail
("BoxingMethod->isClassMethod() && \"BoxingMethod must be a class method\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 73, __extension__ __PRETTY_FUNCTION__))
;
74 Selector Sel = BoxingMethod->getSelector();
75
76 // Generate a reference to the class pointer, which will be the receiver.
77 // Assumes that the method was introduced in the class that should be
78 // messaged (avoids pulling it out of the result type).
79 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
80 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
81 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
82
83 CallArgList Args;
84 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
85 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
86
87 // ObjCBoxedExpr supports boxing of structs and unions
88 // via [NSValue valueWithBytes:objCType:]
89 const QualType ValueType(SubExpr->getType().getCanonicalType());
90 if (ValueType->isObjCBoxableRecordType()) {
91 // Emit CodeGen for first parameter
92 // and cast value to correct type
93 Address Temporary = CreateMemTemp(SubExpr->getType());
94 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
95 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
96 Args.add(RValue::get(BitCast.getPointer()), ArgQT);
97
98 // Create char array to store type encoding
99 std::string Str;
100 getContext().getObjCEncodingForType(ValueType, Str);
101 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
102
103 // Cast type encoding to correct type
104 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
105 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
106 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
107
108 Args.add(RValue::get(Cast), EncodingQT);
109 } else {
110 Args.add(EmitAnyExpr(SubExpr), ArgQT);
111 }
112
113 RValue result = Runtime.GenerateMessageSend(
114 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
115 Args, ClassDecl, BoxingMethod);
116 return Builder.CreateBitCast(result.getScalarVal(),
117 ConvertType(E->getType()));
118}
119
120llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
121 const ObjCMethodDecl *MethodWithObjects) {
122 ASTContext &Context = CGM.getContext();
123 const ObjCDictionaryLiteral *DLE = nullptr;
124 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
125 if (!ALE)
126 DLE = cast<ObjCDictionaryLiteral>(E);
127
128 // Optimize empty collections by referencing constants, when available.
129 uint64_t NumElements =
130 ALE ? ALE->getNumElements() : DLE->getNumElements();
131 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
132 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
133 QualType IdTy(CGM.getContext().getObjCIdType());
134 llvm::Constant *Constant =
135 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
136 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
137 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
138 cast<llvm::LoadInst>(Ptr)->setMetadata(
139 CGM.getModule().getMDKindID("invariant.load"),
140 llvm::MDNode::get(getLLVMContext(), None));
141 return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
142 }
143
144 // Compute the type of the array we're initializing.
145 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
146 NumElements);
147 QualType ElementType = Context.getObjCIdType().withConst();
148 QualType ElementArrayType
149 = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
150 ArrayType::Normal, /*IndexTypeQuals=*/0);
151
152 // Allocate the temporary array(s).
153 Address Objects = CreateMemTemp(ElementArrayType, "objects");
154 Address Keys = Address::invalid();
155 if (DLE)
156 Keys = CreateMemTemp(ElementArrayType, "keys");
157
158 // In ARC, we may need to do extra work to keep all the keys and
159 // values alive until after the call.
160 SmallVector<llvm::Value *, 16> NeededObjects;
161 bool TrackNeededObjects =
162 (getLangOpts().ObjCAutoRefCount &&
163 CGM.getCodeGenOpts().OptimizationLevel != 0);
164
165 // Perform the actual initialialization of the array(s).
166 for (uint64_t i = 0; i < NumElements; i++) {
167 if (ALE) {
168 // Emit the element and store it to the appropriate array slot.
169 const Expr *Rhs = ALE->getElement(i);
170 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
171 ElementType, AlignmentSource::Decl);
172
173 llvm::Value *value = EmitScalarExpr(Rhs);
174 EmitStoreThroughLValue(RValue::get(value), LV, true);
175 if (TrackNeededObjects) {
176 NeededObjects.push_back(value);
177 }
178 } else {
179 // Emit the key and store it to the appropriate array slot.
180 const Expr *Key = DLE->getKeyValueElement(i).Key;
181 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
182 ElementType, AlignmentSource::Decl);
183 llvm::Value *keyValue = EmitScalarExpr(Key);
184 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
185
186 // Emit the value and store it to the appropriate array slot.
187 const Expr *Value = DLE->getKeyValueElement(i).Value;
188 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
189 ElementType, AlignmentSource::Decl);
190 llvm::Value *valueValue = EmitScalarExpr(Value);
191 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
192 if (TrackNeededObjects) {
193 NeededObjects.push_back(keyValue);
194 NeededObjects.push_back(valueValue);
195 }
196 }
197 }
198
199 // Generate the argument list.
200 CallArgList Args;
201 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
202 const ParmVarDecl *argDecl = *PI++;
203 QualType ArgQT = argDecl->getType().getUnqualifiedType();
204 Args.add(RValue::get(Objects.getPointer()), ArgQT);
205 if (DLE) {
206 argDecl = *PI++;
207 ArgQT = argDecl->getType().getUnqualifiedType();
208 Args.add(RValue::get(Keys.getPointer()), ArgQT);
209 }
210 argDecl = *PI;
211 ArgQT = argDecl->getType().getUnqualifiedType();
212 llvm::Value *Count =
213 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
214 Args.add(RValue::get(Count), ArgQT);
215
216 // Generate a reference to the class pointer, which will be the receiver.
217 Selector Sel = MethodWithObjects->getSelector();
218 QualType ResultType = E->getType();
219 const ObjCObjectPointerType *InterfacePointerType
220 = ResultType->getAsObjCInterfacePointerType();
221 ObjCInterfaceDecl *Class
222 = InterfacePointerType->getObjectType()->getInterface();
223 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
224 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
225
226 // Generate the message send.
227 RValue result = Runtime.GenerateMessageSend(
228 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
229 Receiver, Args, Class, MethodWithObjects);
230
231 // The above message send needs these objects, but in ARC they are
232 // passed in a buffer that is essentially __unsafe_unretained.
233 // Therefore we must prevent the optimizer from releasing them until
234 // after the call.
235 if (TrackNeededObjects) {
236 EmitARCIntrinsicUse(NeededObjects);
237 }
238
239 return Builder.CreateBitCast(result.getScalarVal(),
240 ConvertType(E->getType()));
241}
242
243llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
244 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
245}
246
247llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
248 const ObjCDictionaryLiteral *E) {
249 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
250}
251
252/// Emit a selector.
253llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
254 // Untyped selector.
255 // Note that this implementation allows for non-constant strings to be passed
256 // as arguments to @selector(). Currently, the only thing preventing this
257 // behaviour is the type checking in the front end.
258 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
259}
260
261llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
262 // FIXME: This should pass the Decl not the name.
263 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
264}
265
266/// Adjust the type of an Objective-C object that doesn't match up due
267/// to type erasure at various points, e.g., related result types or the use
268/// of parameterized classes.
269static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
270 RValue Result) {
271 if (!ExpT->isObjCRetainableType())
272 return Result;
273
274 // If the converted types are the same, we're done.
275 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
276 if (ExpLLVMTy == Result.getScalarVal()->getType())
277 return Result;
278
279 // We have applied a substitution. Cast the rvalue appropriately.
280 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
281 ExpLLVMTy));
282}
283
284/// Decide whether to extend the lifetime of the receiver of a
285/// returns-inner-pointer message.
286static bool
287shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
288 switch (message->getReceiverKind()) {
289
290 // For a normal instance message, we should extend unless the
291 // receiver is loaded from a variable with precise lifetime.
292 case ObjCMessageExpr::Instance: {
293 const Expr *receiver = message->getInstanceReceiver();
294
295 // Look through OVEs.
296 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
297 if (opaque->getSourceExpr())
298 receiver = opaque->getSourceExpr()->IgnoreParens();
299 }
300
301 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
302 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
303 receiver = ice->getSubExpr()->IgnoreParens();
304
305 // Look through OVEs.
306 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
307 if (opaque->getSourceExpr())
308 receiver = opaque->getSourceExpr()->IgnoreParens();
309 }
310
311 // Only __strong variables.
312 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
313 return true;
314
315 // All ivars and fields have precise lifetime.
316 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
317 return false;
318
319 // Otherwise, check for variables.
320 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
321 if (!declRef) return true;
322 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
323 if (!var) return true;
324
325 // All variables have precise lifetime except local variables with
326 // automatic storage duration that aren't specially marked.
327 return (var->hasLocalStorage() &&
328 !var->hasAttr<ObjCPreciseLifetimeAttr>());
329 }
330
331 case ObjCMessageExpr::Class:
332 case ObjCMessageExpr::SuperClass:
333 // It's never necessary for class objects.
334 return false;
335
336 case ObjCMessageExpr::SuperInstance:
337 // We generally assume that 'self' lives throughout a method call.
338 return false;
339 }
340
341 llvm_unreachable("invalid receiver kind")::llvm::llvm_unreachable_internal("invalid receiver kind", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 341)
;
342}
343
344/// Given an expression of ObjC pointer type, check whether it was
345/// immediately loaded from an ARC __weak l-value.
346static const Expr *findWeakLValue(const Expr *E) {
347 assert(E->getType()->isObjCRetainableType())(static_cast <bool> (E->getType()->isObjCRetainableType
()) ? void (0) : __assert_fail ("E->getType()->isObjCRetainableType()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 347, __extension__ __PRETTY_FUNCTION__))
;
348 E = E->IgnoreParens();
349 if (auto CE = dyn_cast<CastExpr>(E)) {
350 if (CE->getCastKind() == CK_LValueToRValue) {
351 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
352 return CE->getSubExpr();
353 }
354 }
355
356 return nullptr;
357}
358
359/// The ObjC runtime may provide entrypoints that are likely to be faster
360/// than an ordinary message send of the appropriate selector.
361///
362/// The entrypoints are guaranteed to be equivalent to just sending the
363/// corresponding message. If the entrypoint is implemented naively as just a
364/// message send, using it is a trade-off: it sacrifices a few cycles of
365/// overhead to save a small amount of code. However, it's possible for
366/// runtimes to detect and special-case classes that use "standard"
367/// behavior; if that's dynamically a large proportion of all objects, using
368/// the entrypoint will also be faster than using a message send.
369///
370/// If the runtime does support a required entrypoint, then this method will
371/// generate a call and return the resulting value. Otherwise it will return
372/// None and the caller can generate a msgSend instead.
373static Optional<llvm::Value *>
374tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
375 llvm::Value *Receiver,
376 const CallArgList& Args, Selector Sel,
377 const ObjCMethodDecl *method,
378 bool isClassMessage) {
379 auto &CGM = CGF.CGM;
380 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
381 return None;
382
383 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
384 switch (Sel.getMethodFamily()) {
385 case OMF_alloc:
386 if (isClassMessage &&
387 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
388 ResultType->isObjCObjectPointerType()) {
389 // [Foo alloc] -> objc_alloc(Foo) or
390 // [self alloc] -> objc_alloc(self)
391 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
392 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
393 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
394 // [self allocWithZone:nil] -> objc_allocWithZone(self)
395 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
396 Args.size() == 1 && Args.front().getType()->isPointerType() &&
397 Sel.getNameForSlot(0) == "allocWithZone") {
398 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
399 if (isa<llvm::ConstantPointerNull>(arg))
400 return CGF.EmitObjCAllocWithZone(Receiver,
401 CGF.ConvertType(ResultType));
402 return None;
403 }
404 }
405 break;
406
407 case OMF_autorelease:
408 if (ResultType->isObjCObjectPointerType() &&
409 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
410 Runtime.shouldUseARCFunctionsForRetainRelease())
411 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
412 break;
413
414 case OMF_retain:
415 if (ResultType->isObjCObjectPointerType() &&
416 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
417 Runtime.shouldUseARCFunctionsForRetainRelease())
418 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
419 break;
420
421 case OMF_release:
422 if (ResultType->isVoidType() &&
423 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
424 Runtime.shouldUseARCFunctionsForRetainRelease()) {
425 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
426 return nullptr;
427 }
428 break;
429
430 default:
431 break;
432 }
433 return None;
434}
435
436CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
437 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
438 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
439 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
440 bool isClassMessage) {
441 if (Optional<llvm::Value *> SpecializedResult =
442 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
443 Sel, Method, isClassMessage)) {
444 return RValue::get(SpecializedResult.getValue());
445 }
446 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
447 Method);
448}
449
450static void AppendFirstImpliedRuntimeProtocols(
451 const ObjCProtocolDecl *PD,
452 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
453 if (!PD->isNonRuntimeProtocol()) {
454 const auto *Can = PD->getCanonicalDecl();
455 PDs.insert(Can);
456 return;
457 }
458
459 for (const auto *ParentPD : PD->protocols())
460 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
461}
462
463std::vector<const ObjCProtocolDecl *>
464CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
465 ObjCProtocolDecl::protocol_iterator end) {
466 std::vector<const ObjCProtocolDecl *> RuntimePds;
467 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
468
469 for (; begin != end; ++begin) {
470 const auto *It = *begin;
471 const auto *Can = It->getCanonicalDecl();
472 if (Can->isNonRuntimeProtocol())
473 NonRuntimePDs.insert(Can);
474 else
475 RuntimePds.push_back(Can);
476 }
477
478 // If there are no non-runtime protocols then we can just stop now.
479 if (NonRuntimePDs.empty())
480 return RuntimePds;
481
482 // Else we have to search through the non-runtime protocol's inheritancy
483 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
484 // a non-runtime protocol without any parents. These are the "first-implied"
485 // protocols from a non-runtime protocol.
486 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
487 for (const auto *PD : NonRuntimePDs)
488 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
489
490 // Walk the Runtime list to get all protocols implied via the inclusion of
491 // this protocol, e.g. all protocols it inherits from including itself.
492 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
493 for (const auto *PD : RuntimePds) {
494 const auto *Can = PD->getCanonicalDecl();
495 AllImpliedProtocols.insert(Can);
496 Can->getImpliedProtocols(AllImpliedProtocols);
497 }
498
499 // Similar to above, walk the list of first-implied protocols to find the set
500 // all the protocols implied excluding the listed protocols themselves since
501 // they are not yet a part of the `RuntimePds` list.
502 for (const auto *PD : FirstImpliedProtos) {
503 PD->getImpliedProtocols(AllImpliedProtocols);
504 }
505
506 // From the first-implied list we have to finish building the final protocol
507 // list. If a protocol in the first-implied list was already implied via some
508 // inheritance path through some other protocols then it would be redundant to
509 // add it here and so we skip over it.
510 for (const auto *PD : FirstImpliedProtos) {
511 if (!AllImpliedProtocols.contains(PD)) {
512 RuntimePds.push_back(PD);
513 }
514 }
515
516 return RuntimePds;
517}
518
519/// Instead of '[[MyClass alloc] init]', try to generate
520/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
521/// caller side, as well as the optimized objc_alloc.
522static Optional<llvm::Value *>
523tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
524 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
525 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
526 return None;
527
528 // Match the exact pattern '[[MyClass alloc] init]'.
529 Selector Sel = OME->getSelector();
530 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
531 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
532 Sel.getNameForSlot(0) != "init")
533 return None;
534
535 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
536 // with 'cls' a Class.
537 auto *SubOME =
538 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
539 if (!SubOME)
540 return None;
541 Selector SubSel = SubOME->getSelector();
542
543 if (!SubOME->getType()->isObjCObjectPointerType() ||
544 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
545 return None;
546
547 llvm::Value *Receiver = nullptr;
548 switch (SubOME->getReceiverKind()) {
549 case ObjCMessageExpr::Instance:
550 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
551 return None;
552 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
553 break;
554
555 case ObjCMessageExpr::Class: {
556 QualType ReceiverType = SubOME->getClassReceiver();
557 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
558 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
559 assert(ID && "null interface should be impossible here")(static_cast <bool> (ID && "null interface should be impossible here"
) ? void (0) : __assert_fail ("ID && \"null interface should be impossible here\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 559, __extension__ __PRETTY_FUNCTION__))
;
560 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
561 break;
562 }
563 case ObjCMessageExpr::SuperInstance:
564 case ObjCMessageExpr::SuperClass:
565 return None;
566 }
567
568 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
569}
570
571RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
572 ReturnValueSlot Return) {
573 // Only the lookup mechanism and first two arguments of the method
574 // implementation vary between runtimes. We can get the receiver and
575 // arguments in generic code.
576
577 bool isDelegateInit = E->isDelegateInitCall();
578
579 const ObjCMethodDecl *method = E->getMethodDecl();
580
581 // If the method is -retain, and the receiver's being loaded from
582 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
583 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
584 method->getMethodFamily() == OMF_retain) {
585 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
586 LValue lvalue = EmitLValue(lvalueExpr);
587 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
588 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
589 }
590 }
591
592 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
593 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
594
595 // We don't retain the receiver in delegate init calls, and this is
596 // safe because the receiver value is always loaded from 'self',
597 // which we zero out. We don't want to Block_copy block receivers,
598 // though.
599 bool retainSelf =
600 (!isDelegateInit &&
601 CGM.getLangOpts().ObjCAutoRefCount &&
602 method &&
603 method->hasAttr<NSConsumesSelfAttr>());
604
605 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
606 bool isSuperMessage = false;
607 bool isClassMessage = false;
608 ObjCInterfaceDecl *OID = nullptr;
609 // Find the receiver
610 QualType ReceiverType;
611 llvm::Value *Receiver = nullptr;
612 switch (E->getReceiverKind()) {
613 case ObjCMessageExpr::Instance:
614 ReceiverType = E->getInstanceReceiver()->getType();
615 isClassMessage = ReceiverType->isObjCClassType();
616 if (retainSelf) {
617 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
618 E->getInstanceReceiver());
619 Receiver = ter.getPointer();
620 if (ter.getInt()) retainSelf = false;
621 } else
622 Receiver = EmitScalarExpr(E->getInstanceReceiver());
623 break;
624
625 case ObjCMessageExpr::Class: {
626 ReceiverType = E->getClassReceiver();
627 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
628 assert(OID && "Invalid Objective-C class message send")(static_cast <bool> (OID && "Invalid Objective-C class message send"
) ? void (0) : __assert_fail ("OID && \"Invalid Objective-C class message send\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 628, __extension__ __PRETTY_FUNCTION__))
;
629 Receiver = Runtime.GetClass(*this, OID);
630 isClassMessage = true;
631 break;
632 }
633
634 case ObjCMessageExpr::SuperInstance:
635 ReceiverType = E->getSuperType();
636 Receiver = LoadObjCSelf();
637 isSuperMessage = true;
638 break;
639
640 case ObjCMessageExpr::SuperClass:
641 ReceiverType = E->getSuperType();
642 Receiver = LoadObjCSelf();
643 isSuperMessage = true;
644 isClassMessage = true;
645 break;
646 }
647
648 if (retainSelf)
649 Receiver = EmitARCRetainNonBlock(Receiver);
650
651 // In ARC, we sometimes want to "extend the lifetime"
652 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
653 // messages.
654 if (getLangOpts().ObjCAutoRefCount && method &&
655 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
656 shouldExtendReceiverForInnerPointerMessage(E))
657 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
658
659 QualType ResultType = method ? method->getReturnType() : E->getType();
660
661 CallArgList Args;
662 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
663
664 // For delegate init calls in ARC, do an unsafe store of null into
665 // self. This represents the call taking direct ownership of that
666 // value. We have to do this after emitting the other call
667 // arguments because they might also reference self, but we don't
668 // have to worry about any of them modifying self because that would
669 // be an undefined read and write of an object in unordered
670 // expressions.
671 if (isDelegateInit) {
672 assert(getLangOpts().ObjCAutoRefCount &&(static_cast <bool> (getLangOpts().ObjCAutoRefCount &&
"delegate init calls should only be marked in ARC") ? void (
0) : __assert_fail ("getLangOpts().ObjCAutoRefCount && \"delegate init calls should only be marked in ARC\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 673, __extension__ __PRETTY_FUNCTION__))
673 "delegate init calls should only be marked in ARC")(static_cast <bool> (getLangOpts().ObjCAutoRefCount &&
"delegate init calls should only be marked in ARC") ? void (
0) : __assert_fail ("getLangOpts().ObjCAutoRefCount && \"delegate init calls should only be marked in ARC\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 673, __extension__ __PRETTY_FUNCTION__))
;
674
675 // Do an unsafe store of null into self.
676 Address selfAddr =
677 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
678 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
679 }
680
681 RValue result;
682 if (isSuperMessage) {
683 // super is only valid in an Objective-C method
684 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
685 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
686 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
687 E->getSelector(),
688 OMD->getClassInterface(),
689 isCategoryImpl,
690 Receiver,
691 isClassMessage,
692 Args,
693 method);
694 } else {
695 // Call runtime methods directly if we can.
696 result = Runtime.GeneratePossiblySpecializedMessageSend(
697 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
698 method, isClassMessage);
699 }
700
701 // For delegate init calls in ARC, implicitly store the result of
702 // the call back into self. This takes ownership of the value.
703 if (isDelegateInit) {
704 Address selfAddr =
705 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
706 llvm::Value *newSelf = result.getScalarVal();
707
708 // The delegate return type isn't necessarily a matching type; in
709 // fact, it's quite likely to be 'id'.
710 llvm::Type *selfTy = selfAddr.getElementType();
711 newSelf = Builder.CreateBitCast(newSelf, selfTy);
712
713 Builder.CreateStore(newSelf, selfAddr);
714 }
715
716 return AdjustObjCObjectType(*this, E->getType(), result);
717}
718
719namespace {
720struct FinishARCDealloc final : EHScopeStack::Cleanup {
721 void Emit(CodeGenFunction &CGF, Flags flags) override {
722 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
723
724 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
725 const ObjCInterfaceDecl *iface = impl->getClassInterface();
726 if (!iface->getSuperClass()) return;
727
728 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
729
730 // Call [super dealloc] if we have a superclass.
731 llvm::Value *self = CGF.LoadObjCSelf();
732
733 CallArgList args;
734 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
735 CGF.getContext().VoidTy,
736 method->getSelector(),
737 iface,
738 isCategory,
739 self,
740 /*is class msg*/ false,
741 args,
742 method);
743 }
744};
745}
746
747/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
748/// the LLVM function and sets the other context used by
749/// CodeGenFunction.
750void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
751 const ObjCContainerDecl *CD) {
752 SourceLocation StartLoc = OMD->getBeginLoc();
753 FunctionArgList args;
754 // Check if we should generate debug info for this method.
755 if (OMD->hasAttr<NoDebugAttr>())
756 DebugInfo = nullptr; // disable debug info indefinitely for this function
757
758 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
759
760 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
761 if (OMD->isDirectMethod()) {
762 Fn->setVisibility(llvm::Function::HiddenVisibility);
763 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
764 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
765 } else {
766 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
767 }
768
769 args.push_back(OMD->getSelfDecl());
770 args.push_back(OMD->getCmdDecl());
771
772 args.append(OMD->param_begin(), OMD->param_end());
773
774 CurGD = OMD;
775 CurEHLocation = OMD->getEndLoc();
776
777 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
778 OMD->getLocation(), StartLoc);
779
780 if (OMD->isDirectMethod()) {
781 // This function is a direct call, it has to implement a nil check
782 // on entry.
783 //
784 // TODO: possibly have several entry points to elide the check
785 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
786 }
787
788 // In ARC, certain methods get an extra cleanup.
789 if (CGM.getLangOpts().ObjCAutoRefCount &&
790 OMD->isInstanceMethod() &&
791 OMD->getSelector().isUnarySelector()) {
792 const IdentifierInfo *ident =
793 OMD->getSelector().getIdentifierInfoForSlot(0);
794 if (ident->isStr("dealloc"))
795 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
796 }
797}
798
799static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
800 LValue lvalue, QualType type);
801
802/// Generate an Objective-C method. An Objective-C method is a C function with
803/// its pointer, name, and types registered in the class structure.
804void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
805 StartObjCMethod(OMD, OMD->getClassInterface());
806 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
807 assert(isa<CompoundStmt>(OMD->getBody()))(static_cast <bool> (isa<CompoundStmt>(OMD->getBody
())) ? void (0) : __assert_fail ("isa<CompoundStmt>(OMD->getBody())"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 807, __extension__ __PRETTY_FUNCTION__))
;
808 incrementProfileCounter(OMD->getBody());
809 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
810 FinishFunction(OMD->getBodyRBrace());
811}
812
813/// emitStructGetterCall - Call the runtime function to load a property
814/// into the return value slot.
815static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
816 bool isAtomic, bool hasStrong) {
817 ASTContext &Context = CGF.getContext();
818
819 Address src =
820 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
821 .getAddress(CGF);
822
823 // objc_copyStruct (ReturnValue, &structIvar,
824 // sizeof (Type of Ivar), isAtomic, false);
825 CallArgList args;
826
827 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
828 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
829
830 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
831 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
832
833 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
834 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
835 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
836 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
837
838 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
839 CGCallee callee = CGCallee::forDirect(fn);
840 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
841 callee, ReturnValueSlot(), args);
842}
843
844/// Determine whether the given architecture supports unaligned atomic
845/// accesses. They don't have to be fast, just faster than a function
846/// call and a mutex.
847static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
848 // FIXME: Allow unaligned atomic load/store on x86. (It is not
849 // currently supported by the backend.)
850 return 0;
851}
852
853/// Return the maximum size that permits atomic accesses for the given
854/// architecture.
855static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
856 llvm::Triple::ArchType arch) {
857 // ARM has 8-byte atomic accesses, but it's not clear whether we
858 // want to rely on them here.
859
860 // In the default case, just assume that any size up to a pointer is
861 // fine given adequate alignment.
862 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
863}
864
865namespace {
866 class PropertyImplStrategy {
867 public:
868 enum StrategyKind {
869 /// The 'native' strategy is to use the architecture's provided
870 /// reads and writes.
871 Native,
872
873 /// Use objc_setProperty and objc_getProperty.
874 GetSetProperty,
875
876 /// Use objc_setProperty for the setter, but use expression
877 /// evaluation for the getter.
878 SetPropertyAndExpressionGet,
879
880 /// Use objc_copyStruct.
881 CopyStruct,
882
883 /// The 'expression' strategy is to emit normal assignment or
884 /// lvalue-to-rvalue expressions.
885 Expression
886 };
887
888 StrategyKind getKind() const { return StrategyKind(Kind); }
889
890 bool hasStrongMember() const { return HasStrong; }
891 bool isAtomic() const { return IsAtomic; }
892 bool isCopy() const { return IsCopy; }
893
894 CharUnits getIvarSize() const { return IvarSize; }
895 CharUnits getIvarAlignment() const { return IvarAlignment; }
896
897 PropertyImplStrategy(CodeGenModule &CGM,
898 const ObjCPropertyImplDecl *propImpl);
899
900 private:
901 unsigned Kind : 8;
902 unsigned IsAtomic : 1;
903 unsigned IsCopy : 1;
904 unsigned HasStrong : 1;
905
906 CharUnits IvarSize;
907 CharUnits IvarAlignment;
908 };
909}
910
911/// Pick an implementation strategy for the given property synthesis.
912PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
913 const ObjCPropertyImplDecl *propImpl) {
914 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
915 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
916
917 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
918 IsAtomic = prop->isAtomic();
919 HasStrong = false; // doesn't matter here.
920
921 // Evaluate the ivar's size and alignment.
922 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
923 QualType ivarType = ivar->getType();
924 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
925 IvarSize = TInfo.Width;
926 IvarAlignment = TInfo.Align;
927
928 // If we have a copy property, we always have to use setProperty.
929 // If the property is atomic we need to use getProperty, but in
930 // the nonatomic case we can just use expression.
931 if (IsCopy) {
932 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
933 return;
934 }
935
936 // Handle retain.
937 if (setterKind == ObjCPropertyDecl::Retain) {
938 // In GC-only, there's nothing special that needs to be done.
939 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
940 // fallthrough
941
942 // In ARC, if the property is non-atomic, use expression emission,
943 // which translates to objc_storeStrong. This isn't required, but
944 // it's slightly nicer.
945 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
946 // Using standard expression emission for the setter is only
947 // acceptable if the ivar is __strong, which won't be true if
948 // the property is annotated with __attribute__((NSObject)).
949 // TODO: falling all the way back to objc_setProperty here is
950 // just laziness, though; we could still use objc_storeStrong
951 // if we hacked it right.
952 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
953 Kind = Expression;
954 else
955 Kind = SetPropertyAndExpressionGet;
956 return;
957
958 // Otherwise, we need to at least use setProperty. However, if
959 // the property isn't atomic, we can use normal expression
960 // emission for the getter.
961 } else if (!IsAtomic) {
962 Kind = SetPropertyAndExpressionGet;
963 return;
964
965 // Otherwise, we have to use both setProperty and getProperty.
966 } else {
967 Kind = GetSetProperty;
968 return;
969 }
970 }
971
972 // If we're not atomic, just use expression accesses.
973 if (!IsAtomic) {
974 Kind = Expression;
975 return;
976 }
977
978 // Properties on bitfield ivars need to be emitted using expression
979 // accesses even if they're nominally atomic.
980 if (ivar->isBitField()) {
981 Kind = Expression;
982 return;
983 }
984
985 // GC-qualified or ARC-qualified ivars need to be emitted as
986 // expressions. This actually works out to being atomic anyway,
987 // except for ARC __strong, but that should trigger the above code.
988 if (ivarType.hasNonTrivialObjCLifetime() ||
989 (CGM.getLangOpts().getGC() &&
990 CGM.getContext().getObjCGCAttrKind(ivarType))) {
991 Kind = Expression;
992 return;
993 }
994
995 // Compute whether the ivar has strong members.
996 if (CGM.getLangOpts().getGC())
997 if (const RecordType *recordType = ivarType->getAs<RecordType>())
998 HasStrong = recordType->getDecl()->hasObjectMember();
999
1000 // We can never access structs with object members with a native
1001 // access, because we need to use write barriers. This is what
1002 // objc_copyStruct is for.
1003 if (HasStrong) {
1004 Kind = CopyStruct;
1005 return;
1006 }
1007
1008 // Otherwise, this is target-dependent and based on the size and
1009 // alignment of the ivar.
1010
1011 // If the size of the ivar is not a power of two, give up. We don't
1012 // want to get into the business of doing compare-and-swaps.
1013 if (!IvarSize.isPowerOfTwo()) {
1014 Kind = CopyStruct;
1015 return;
1016 }
1017
1018 llvm::Triple::ArchType arch =
1019 CGM.getTarget().getTriple().getArch();
1020
1021 // Most architectures require memory to fit within a single cache
1022 // line, so the alignment has to be at least the size of the access.
1023 // Otherwise we have to grab a lock.
1024 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1025 Kind = CopyStruct;
1026 return;
1027 }
1028
1029 // If the ivar's size exceeds the architecture's maximum atomic
1030 // access size, we have to use CopyStruct.
1031 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1032 Kind = CopyStruct;
1033 return;
1034 }
1035
1036 // Otherwise, we can use native loads and stores.
1037 Kind = Native;
1038}
1039
1040/// Generate an Objective-C property getter function.
1041///
1042/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1043/// is illegal within a category.
1044void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1045 const ObjCPropertyImplDecl *PID) {
1046 llvm::Constant *AtomicHelperFn =
1047 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1048 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1049 assert(OMD && "Invalid call to generate getter (empty method)")(static_cast <bool> (OMD && "Invalid call to generate getter (empty method)"
) ? void (0) : __assert_fail ("OMD && \"Invalid call to generate getter (empty method)\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1049, __extension__ __PRETTY_FUNCTION__))
;
1050 StartObjCMethod(OMD, IMP->getClassInterface());
1051
1052 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1053
1054 FinishFunction(OMD->getEndLoc());
1055}
1056
1057static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1058 const Expr *getter = propImpl->getGetterCXXConstructor();
1059 if (!getter) return true;
1060
1061 // Sema only makes only of these when the ivar has a C++ class type,
1062 // so the form is pretty constrained.
1063
1064 // If the property has a reference type, we might just be binding a
1065 // reference, in which case the result will be a gl-value. We should
1066 // treat this as a non-trivial operation.
1067 if (getter->isGLValue())
1068 return false;
1069
1070 // If we selected a trivial copy-constructor, we're okay.
1071 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1072 return (construct->getConstructor()->isTrivial());
1073
1074 // The constructor might require cleanups (in which case it's never
1075 // trivial).
1076 assert(isa<ExprWithCleanups>(getter))(static_cast <bool> (isa<ExprWithCleanups>(getter
)) ? void (0) : __assert_fail ("isa<ExprWithCleanups>(getter)"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1076, __extension__ __PRETTY_FUNCTION__))
;
1077 return false;
1078}
1079
1080/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1081/// copy the ivar into the resturn slot.
1082static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1083 llvm::Value *returnAddr,
1084 ObjCIvarDecl *ivar,
1085 llvm::Constant *AtomicHelperFn) {
1086 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1087 // AtomicHelperFn);
1088 CallArgList args;
1089
1090 // The 1st argument is the return Slot.
1091 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1092
1093 // The 2nd argument is the address of the ivar.
1094 llvm::Value *ivarAddr =
1095 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1096 .getPointer(CGF);
1097 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1098 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1099
1100 // Third argument is the helper function.
1101 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1102
1103 llvm::FunctionCallee copyCppAtomicObjectFn =
1104 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1105 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1106 CGF.EmitCall(
1107 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1108 callee, ReturnValueSlot(), args);
1109}
1110
1111void
1112CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1113 const ObjCPropertyImplDecl *propImpl,
1114 const ObjCMethodDecl *GetterMethodDecl,
1115 llvm::Constant *AtomicHelperFn) {
1116 // If there's a non-trivial 'get' expression, we just have to emit that.
1117 if (!hasTrivialGetExpr(propImpl)) {
1118 if (!AtomicHelperFn) {
1119 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1120 propImpl->getGetterCXXConstructor(),
1121 /* NRVOCandidate=*/nullptr);
1122 EmitReturnStmt(*ret);
1123 }
1124 else {
1125 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1126 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1127 ivar, AtomicHelperFn);
1128 }
1129 return;
1130 }
1131
1132 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1133 QualType propType = prop->getType();
1134 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1135
1136 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1137
1138 // Pick an implementation strategy.
1139 PropertyImplStrategy strategy(CGM, propImpl);
1140 switch (strategy.getKind()) {
1141 case PropertyImplStrategy::Native: {
1142 // We don't need to do anything for a zero-size struct.
1143 if (strategy.getIvarSize().isZero())
1144 return;
1145
1146 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1147
1148 // Currently, all atomic accesses have to be through integer
1149 // types, so there's no point in trying to pick a prettier type.
1150 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1151 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1152 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1153
1154 // Perform an atomic load. This does not impose ordering constraints.
1155 Address ivarAddr = LV.getAddress(*this);
1156 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1157 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1158 load->setAtomic(llvm::AtomicOrdering::Unordered);
1159
1160 // Store that value into the return address. Doing this with a
1161 // bitcast is likely to produce some pretty ugly IR, but it's not
1162 // the *most* terrible thing in the world.
1163 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1164 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1165 llvm::Value *ivarVal = load;
1166 if (ivarSize > retTySize) {
1167 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1168 ivarVal = Builder.CreateTrunc(load, newTy);
1169 bitcastType = newTy->getPointerTo();
1170 }
1171 Builder.CreateStore(ivarVal,
1172 Builder.CreateBitCast(ReturnValue, bitcastType));
1173
1174 // Make sure we don't do an autorelease.
1175 AutoreleaseResult = false;
1176 return;
1177 }
1178
1179 case PropertyImplStrategy::GetSetProperty: {
1180 llvm::FunctionCallee getPropertyFn =
1181 CGM.getObjCRuntime().GetPropertyGetFunction();
1182 if (!getPropertyFn) {
1183 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1184 return;
1185 }
1186 CGCallee callee = CGCallee::forDirect(getPropertyFn);
1187
1188 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1189 // FIXME: Can't this be simpler? This might even be worse than the
1190 // corresponding gcc code.
1191 llvm::Value *cmd =
1192 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1193 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1194 llvm::Value *ivarOffset =
1195 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1196
1197 CallArgList args;
1198 args.add(RValue::get(self), getContext().getObjCIdType());
1199 args.add(RValue::get(cmd), getContext().getObjCSelType());
1200 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1201 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1202 getContext().BoolTy);
1203
1204 // FIXME: We shouldn't need to get the function info here, the
1205 // runtime already should have computed it to build the function.
1206 llvm::CallBase *CallInstruction;
1207 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1208 getContext().getObjCIdType(), args),
1209 callee, ReturnValueSlot(), args, &CallInstruction);
1210 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1211 call->setTailCall();
1212
1213 // We need to fix the type here. Ivars with copy & retain are
1214 // always objects so we don't need to worry about complex or
1215 // aggregates.
1216 RV = RValue::get(Builder.CreateBitCast(
1217 RV.getScalarVal(),
1218 getTypes().ConvertType(getterMethod->getReturnType())));
1219
1220 EmitReturnOfRValue(RV, propType);
1221
1222 // objc_getProperty does an autorelease, so we should suppress ours.
1223 AutoreleaseResult = false;
1224
1225 return;
1226 }
1227
1228 case PropertyImplStrategy::CopyStruct:
1229 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1230 strategy.hasStrongMember());
1231 return;
1232
1233 case PropertyImplStrategy::Expression:
1234 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1235 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1236
1237 QualType ivarType = ivar->getType();
1238 switch (getEvaluationKind(ivarType)) {
1239 case TEK_Complex: {
1240 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1241 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1242 /*init*/ true);
1243 return;
1244 }
1245 case TEK_Aggregate: {
1246 // The return value slot is guaranteed to not be aliased, but
1247 // that's not necessarily the same as "on the stack", so
1248 // we still potentially need objc_memmove_collectable.
1249 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1250 /* Src= */ LV, ivarType, getOverlapForReturnValue());
1251 return;
1252 }
1253 case TEK_Scalar: {
1254 llvm::Value *value;
1255 if (propType->isReferenceType()) {
1256 value = LV.getAddress(*this).getPointer();
1257 } else {
1258 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1259 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260 if (getLangOpts().ObjCAutoRefCount) {
1261 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1262 } else {
1263 value = EmitARCLoadWeak(LV.getAddress(*this));
1264 }
1265
1266 // Otherwise we want to do a simple load, suppressing the
1267 // final autorelease.
1268 } else {
1269 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1270 AutoreleaseResult = false;
1271 }
1272
1273 value = Builder.CreateBitCast(
1274 value, ConvertType(GetterMethodDecl->getReturnType()));
1275 }
1276
1277 EmitReturnOfRValue(RValue::get(value), propType);
1278 return;
1279 }
1280 }
1281 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1281)
;
1282 }
1283
1284 }
1285 llvm_unreachable("bad @property implementation strategy!")::llvm::llvm_unreachable_internal("bad @property implementation strategy!"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1285)
;
1286}
1287
1288/// emitStructSetterCall - Call the runtime function to store the value
1289/// from the first formal parameter into the given ivar.
1290static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1291 ObjCIvarDecl *ivar) {
1292 // objc_copyStruct (&structIvar, &Arg,
1293 // sizeof (struct something), true, false);
1294 CallArgList args;
1295
1296 // The first argument is the address of the ivar.
1297 llvm::Value *ivarAddr =
1298 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1299 .getPointer(CGF);
1300 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1301 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1302
1303 // The second argument is the address of the parameter variable.
1304 ParmVarDecl *argVar = *OMD->param_begin();
1305 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1306 argVar->getType().getNonReferenceType(), VK_LValue,
1307 SourceLocation());
1308 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1309 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1310 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1311
1312 // The third argument is the sizeof the type.
1313 llvm::Value *size =
1314 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1315 args.add(RValue::get(size), CGF.getContext().getSizeType());
1316
1317 // The fourth argument is the 'isAtomic' flag.
1318 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1319
1320 // The fifth argument is the 'hasStrong' flag.
1321 // FIXME: should this really always be false?
1322 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1323
1324 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1325 CGCallee callee = CGCallee::forDirect(fn);
1326 CGF.EmitCall(
1327 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1328 callee, ReturnValueSlot(), args);
1329}
1330
1331/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1332/// the value from the first formal parameter into the given ivar, using
1333/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1334static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1335 ObjCMethodDecl *OMD,
1336 ObjCIvarDecl *ivar,
1337 llvm::Constant *AtomicHelperFn) {
1338 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1339 // AtomicHelperFn);
1340 CallArgList args;
1341
1342 // The first argument is the address of the ivar.
1343 llvm::Value *ivarAddr =
1344 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1345 .getPointer(CGF);
1346 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1347 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1348
1349 // The second argument is the address of the parameter variable.
1350 ParmVarDecl *argVar = *OMD->param_begin();
1351 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1352 argVar->getType().getNonReferenceType(), VK_LValue,
1353 SourceLocation());
1354 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1355 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1356 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1357
1358 // Third argument is the helper function.
1359 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1360
1361 llvm::FunctionCallee fn =
1362 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1363 CGCallee callee = CGCallee::forDirect(fn);
1364 CGF.EmitCall(
1365 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1366 callee, ReturnValueSlot(), args);
1367}
1368
1369
1370static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1371 Expr *setter = PID->getSetterCXXAssignment();
1372 if (!setter) return true;
1373
1374 // Sema only makes only of these when the ivar has a C++ class type,
1375 // so the form is pretty constrained.
1376
1377 // An operator call is trivial if the function it calls is trivial.
1378 // This also implies that there's nothing non-trivial going on with
1379 // the arguments, because operator= can only be trivial if it's a
1380 // synthesized assignment operator and therefore both parameters are
1381 // references.
1382 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1383 if (const FunctionDecl *callee
1384 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1385 if (callee->isTrivial())
1386 return true;
1387 return false;
1388 }
1389
1390 assert(isa<ExprWithCleanups>(setter))(static_cast <bool> (isa<ExprWithCleanups>(setter
)) ? void (0) : __assert_fail ("isa<ExprWithCleanups>(setter)"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1390, __extension__ __PRETTY_FUNCTION__))
;
1391 return false;
1392}
1393
1394static bool UseOptimizedSetter(CodeGenModule &CGM) {
1395 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1396 return false;
1397 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1398}
1399
1400void
1401CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1402 const ObjCPropertyImplDecl *propImpl,
1403 llvm::Constant *AtomicHelperFn) {
1404 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1405 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1406
1407 // Just use the setter expression if Sema gave us one and it's
1408 // non-trivial.
1409 if (!hasTrivialSetExpr(propImpl)) {
1410 if (!AtomicHelperFn)
1411 // If non-atomic, assignment is called directly.
1412 EmitStmt(propImpl->getSetterCXXAssignment());
1413 else
1414 // If atomic, assignment is called via a locking api.
1415 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1416 AtomicHelperFn);
1417 return;
1418 }
1419
1420 PropertyImplStrategy strategy(CGM, propImpl);
1421 switch (strategy.getKind()) {
1422 case PropertyImplStrategy::Native: {
1423 // We don't need to do anything for a zero-size struct.
1424 if (strategy.getIvarSize().isZero())
1425 return;
1426
1427 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1428
1429 LValue ivarLValue =
1430 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1431 Address ivarAddr = ivarLValue.getAddress(*this);
1432
1433 // Currently, all atomic accesses have to be through integer
1434 // types, so there's no point in trying to pick a prettier type.
1435 llvm::Type *bitcastType =
1436 llvm::Type::getIntNTy(getLLVMContext(),
1437 getContext().toBits(strategy.getIvarSize()));
1438
1439 // Cast both arguments to the chosen operation type.
1440 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1441 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1442
1443 // This bitcast load is likely to cause some nasty IR.
1444 llvm::Value *load = Builder.CreateLoad(argAddr);
1445
1446 // Perform an atomic store. There are no memory ordering requirements.
1447 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1448 store->setAtomic(llvm::AtomicOrdering::Unordered);
1449 return;
1450 }
1451
1452 case PropertyImplStrategy::GetSetProperty:
1453 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1454
1455 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1456 llvm::FunctionCallee setPropertyFn = nullptr;
1457 if (UseOptimizedSetter(CGM)) {
1458 // 10.8 and iOS 6.0 code and GC is off
1459 setOptimizedPropertyFn =
1460 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1461 strategy.isAtomic(), strategy.isCopy());
1462 if (!setOptimizedPropertyFn) {
1463 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1464 return;
1465 }
1466 }
1467 else {
1468 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1469 if (!setPropertyFn) {
1470 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1471 return;
1472 }
1473 }
1474
1475 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1476 // <is-atomic>, <is-copy>).
1477 llvm::Value *cmd =
1478 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1479 llvm::Value *self =
1480 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1481 llvm::Value *ivarOffset =
1482 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1483 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1484 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1485 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1486
1487 CallArgList args;
1488 args.add(RValue::get(self), getContext().getObjCIdType());
1489 args.add(RValue::get(cmd), getContext().getObjCSelType());
1490 if (setOptimizedPropertyFn) {
1491 args.add(RValue::get(arg), getContext().getObjCIdType());
1492 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1493 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1494 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1495 callee, ReturnValueSlot(), args);
1496 } else {
1497 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1498 args.add(RValue::get(arg), getContext().getObjCIdType());
1499 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1500 getContext().BoolTy);
1501 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1502 getContext().BoolTy);
1503 // FIXME: We shouldn't need to get the function info here, the runtime
1504 // already should have computed it to build the function.
1505 CGCallee callee = CGCallee::forDirect(setPropertyFn);
1506 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1507 callee, ReturnValueSlot(), args);
1508 }
1509
1510 return;
1511 }
1512
1513 case PropertyImplStrategy::CopyStruct:
1514 emitStructSetterCall(*this, setterMethod, ivar);
1515 return;
1516
1517 case PropertyImplStrategy::Expression:
1518 break;
1519 }
1520
1521 // Otherwise, fake up some ASTs and emit a normal assignment.
1522 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1523 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1524 VK_LValue, SourceLocation());
1525 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1526 CK_LValueToRValue, &self, VK_PRValue,
1527 FPOptionsOverride());
1528 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1529 SourceLocation(), SourceLocation(),
1530 &selfLoad, true, true);
1531
1532 ParmVarDecl *argDecl = *setterMethod->param_begin();
1533 QualType argType = argDecl->getType().getNonReferenceType();
1534 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1535 SourceLocation());
1536 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1537 argType.getUnqualifiedType(), CK_LValueToRValue,
1538 &arg, VK_PRValue, FPOptionsOverride());
1539
1540 // The property type can differ from the ivar type in some situations with
1541 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1542 // The following absurdity is just to ensure well-formed IR.
1543 CastKind argCK = CK_NoOp;
1544 if (ivarRef.getType()->isObjCObjectPointerType()) {
1545 if (argLoad.getType()->isObjCObjectPointerType())
1546 argCK = CK_BitCast;
1547 else if (argLoad.getType()->isBlockPointerType())
1548 argCK = CK_BlockPointerToObjCPointerCast;
1549 else
1550 argCK = CK_CPointerToObjCPointerCast;
1551 } else if (ivarRef.getType()->isBlockPointerType()) {
1552 if (argLoad.getType()->isBlockPointerType())
1553 argCK = CK_BitCast;
1554 else
1555 argCK = CK_AnyPointerToBlockPointerCast;
1556 } else if (ivarRef.getType()->isPointerType()) {
1557 argCK = CK_BitCast;
1558 }
1559 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1560 &argLoad, VK_PRValue, FPOptionsOverride());
1561 Expr *finalArg = &argLoad;
1562 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1563 argLoad.getType()))
1564 finalArg = &argCast;
1565
1566 BinaryOperator *assign = BinaryOperator::Create(
1567 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1568 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1569 EmitStmt(assign);
1570}
1571
1572/// Generate an Objective-C property setter function.
1573///
1574/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1575/// is illegal within a category.
1576void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1577 const ObjCPropertyImplDecl *PID) {
1578 llvm::Constant *AtomicHelperFn =
1579 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1580 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1581 assert(OMD && "Invalid call to generate setter (empty method)")(static_cast <bool> (OMD && "Invalid call to generate setter (empty method)"
) ? void (0) : __assert_fail ("OMD && \"Invalid call to generate setter (empty method)\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1581, __extension__ __PRETTY_FUNCTION__))
;
1582 StartObjCMethod(OMD, IMP->getClassInterface());
1583
1584 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1585
1586 FinishFunction(OMD->getEndLoc());
1587}
1588
1589namespace {
1590 struct DestroyIvar final : EHScopeStack::Cleanup {
1591 private:
1592 llvm::Value *addr;
1593 const ObjCIvarDecl *ivar;
1594 CodeGenFunction::Destroyer *destroyer;
1595 bool useEHCleanupForArray;
1596 public:
1597 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1598 CodeGenFunction::Destroyer *destroyer,
1599 bool useEHCleanupForArray)
1600 : addr(addr), ivar(ivar), destroyer(destroyer),
1601 useEHCleanupForArray(useEHCleanupForArray) {}
1602
1603 void Emit(CodeGenFunction &CGF, Flags flags) override {
1604 LValue lvalue
1605 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1606 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1607 flags.isForNormalCleanup() && useEHCleanupForArray);
1608 }
1609 };
1610}
1611
1612/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1613static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1614 Address addr,
1615 QualType type) {
1616 llvm::Value *null = getNullForVariable(addr);
1617 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1618}
1619
1620static void emitCXXDestructMethod(CodeGenFunction &CGF,
1621 ObjCImplementationDecl *impl) {
1622 CodeGenFunction::RunCleanupsScope scope(CGF);
1623
1624 llvm::Value *self = CGF.LoadObjCSelf();
1625
1626 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1627 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1628 ivar; ivar = ivar->getNextIvar()) {
1629 QualType type = ivar->getType();
1630
1631 // Check whether the ivar is a destructible type.
1632 QualType::DestructionKind dtorKind = type.isDestructedType();
1633 if (!dtorKind) continue;
1634
1635 CodeGenFunction::Destroyer *destroyer = nullptr;
1636
1637 // Use a call to objc_storeStrong to destroy strong ivars, for the
1638 // general benefit of the tools.
1639 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1640 destroyer = destroyARCStrongWithStore;
1641
1642 // Otherwise use the default for the destruction kind.
1643 } else {
1644 destroyer = CGF.getDestroyer(dtorKind);
1645 }
1646
1647 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1648
1649 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1650 cleanupKind & EHCleanup);
1651 }
1652
1653 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?")(static_cast <bool> (scope.requiresCleanups() &&
"nothing to do in .cxx_destruct?") ? void (0) : __assert_fail
("scope.requiresCleanups() && \"nothing to do in .cxx_destruct?\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1653, __extension__ __PRETTY_FUNCTION__))
;
1654}
1655
1656void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1657 ObjCMethodDecl *MD,
1658 bool ctor) {
1659 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1660 StartObjCMethod(MD, IMP->getClassInterface());
1661
1662 // Emit .cxx_construct.
1663 if (ctor) {
1664 // Suppress the final autorelease in ARC.
1665 AutoreleaseResult = false;
1666
1667 for (const auto *IvarInit : IMP->inits()) {
1668 FieldDecl *Field = IvarInit->getAnyMember();
1669 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1670 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1671 LoadObjCSelf(), Ivar, 0);
1672 EmitAggExpr(IvarInit->getInit(),
1673 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1674 AggValueSlot::DoesNotNeedGCBarriers,
1675 AggValueSlot::IsNotAliased,
1676 AggValueSlot::DoesNotOverlap));
1677 }
1678 // constructor returns 'self'.
1679 CodeGenTypes &Types = CGM.getTypes();
1680 QualType IdTy(CGM.getContext().getObjCIdType());
1681 llvm::Value *SelfAsId =
1682 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1683 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1684
1685 // Emit .cxx_destruct.
1686 } else {
1687 emitCXXDestructMethod(*this, IMP);
1688 }
1689 FinishFunction();
1690}
1691
1692llvm::Value *CodeGenFunction::LoadObjCSelf() {
1693 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1694 DeclRefExpr DRE(getContext(), Self,
1695 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1696 Self->getType(), VK_LValue, SourceLocation());
1697 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1698}
1699
1700QualType CodeGenFunction::TypeOfSelfObject() {
1701 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1702 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1703 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1704 getContext().getCanonicalType(selfDecl->getType()));
1705 return PTy->getPointeeType();
1706}
1707
1708void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1709 llvm::FunctionCallee EnumerationMutationFnPtr =
1710 CGM.getObjCRuntime().EnumerationMutationFunction();
1711 if (!EnumerationMutationFnPtr) {
1712 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1713 return;
1714 }
1715 CGCallee EnumerationMutationFn =
1716 CGCallee::forDirect(EnumerationMutationFnPtr);
1717
1718 CGDebugInfo *DI = getDebugInfo();
1719 if (DI)
1720 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1721
1722 RunCleanupsScope ForScope(*this);
1723
1724 // The local variable comes into scope immediately.
1725 AutoVarEmission variable = AutoVarEmission::invalid();
1726 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1727 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1728
1729 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1730
1731 // Fast enumeration state.
1732 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1733 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1734 EmitNullInitialization(StatePtr, StateTy);
1735
1736 // Number of elements in the items array.
1737 static const unsigned NumItems = 16;
1738
1739 // Fetch the countByEnumeratingWithState:objects:count: selector.
1740 IdentifierInfo *II[] = {
1741 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1742 &CGM.getContext().Idents.get("objects"),
1743 &CGM.getContext().Idents.get("count")
1744 };
1745 Selector FastEnumSel =
1746 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1747
1748 QualType ItemsTy =
1749 getContext().getConstantArrayType(getContext().getObjCIdType(),
1750 llvm::APInt(32, NumItems), nullptr,
1751 ArrayType::Normal, 0);
1752 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1753
1754 // Emit the collection pointer. In ARC, we do a retain.
1755 llvm::Value *Collection;
1756 if (getLangOpts().ObjCAutoRefCount) {
1757 Collection = EmitARCRetainScalarExpr(S.getCollection());
1758
1759 // Enter a cleanup to do the release.
1760 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1761 } else {
1762 Collection = EmitScalarExpr(S.getCollection());
1763 }
1764
1765 // The 'continue' label needs to appear within the cleanup for the
1766 // collection object.
1767 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1768
1769 // Send it our message:
1770 CallArgList Args;
1771
1772 // The first argument is a temporary of the enumeration-state type.
1773 Args.add(RValue::get(StatePtr.getPointer()),
1774 getContext().getPointerType(StateTy));
1775
1776 // The second argument is a temporary array with space for NumItems
1777 // pointers. We'll actually be loading elements from the array
1778 // pointer written into the control state; this buffer is so that
1779 // collections that *aren't* backed by arrays can still queue up
1780 // batches of elements.
1781 Args.add(RValue::get(ItemsPtr.getPointer()),
1782 getContext().getPointerType(ItemsTy));
1783
1784 // The third argument is the capacity of that temporary array.
1785 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1786 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1787 Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1788
1789 // Start the enumeration.
1790 RValue CountRV =
1791 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1792 getContext().getNSUIntegerType(),
1793 FastEnumSel, Collection, Args);
1794
1795 // The initial number of objects that were returned in the buffer.
1796 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1797
1798 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1799 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1800
1801 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1802
1803 // If the limit pointer was zero to begin with, the collection is
1804 // empty; skip all this. Set the branch weight assuming this has the same
1805 // probability of exiting the loop as any other loop exit.
1806 uint64_t EntryCount = getCurrentProfileCount();
1807 Builder.CreateCondBr(
1808 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1809 LoopInitBB,
1810 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1811
1812 // Otherwise, initialize the loop.
1813 EmitBlock(LoopInitBB);
1814
1815 // Save the initial mutations value. This is the value at an
1816 // address that was written into the state object by
1817 // countByEnumeratingWithState:objects:count:.
1818 Address StateMutationsPtrPtr =
1819 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1820 llvm::Value *StateMutationsPtr
1821 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1822
1823 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1824 llvm::Value *initialMutations =
1825 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1826 getPointerAlign(), "forcoll.initial-mutations");
1827
1828 // Start looping. This is the point we return to whenever we have a
1829 // fresh, non-empty batch of objects.
1830 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1831 EmitBlock(LoopBodyBB);
1832
1833 // The current index into the buffer.
1834 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1835 index->addIncoming(zero, LoopInitBB);
1836
1837 // The current buffer size.
1838 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1839 count->addIncoming(initialBufferLimit, LoopInitBB);
1840
1841 incrementProfileCounter(&S);
1842
1843 // Check whether the mutations value has changed from where it was
1844 // at start. StateMutationsPtr should actually be invariant between
1845 // refreshes.
1846 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1847 llvm::Value *currentMutations
1848 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1849 getPointerAlign(), "statemutations");
1850
1851 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1852 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1853
1854 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1855 WasNotMutatedBB, WasMutatedBB);
1856
1857 // If so, call the enumeration-mutation function.
1858 EmitBlock(WasMutatedBB);
1859 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1860 llvm::Value *V =
1861 Builder.CreateBitCast(Collection, ObjCIdType);
1862 CallArgList Args2;
1863 Args2.add(RValue::get(V), getContext().getObjCIdType());
1864 // FIXME: We shouldn't need to get the function info here, the runtime already
1865 // should have computed it to build the function.
1866 EmitCall(
1867 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1868 EnumerationMutationFn, ReturnValueSlot(), Args2);
1869
1870 // Otherwise, or if the mutation function returns, just continue.
1871 EmitBlock(WasNotMutatedBB);
1872
1873 // Initialize the element variable.
1874 RunCleanupsScope elementVariableScope(*this);
1875 bool elementIsVariable;
1876 LValue elementLValue;
1877 QualType elementType;
1878 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1879 // Initialize the variable, in case it's a __block variable or something.
1880 EmitAutoVarInit(variable);
1881
1882 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1883 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1884 D->getType(), VK_LValue, SourceLocation());
1885 elementLValue = EmitLValue(&tempDRE);
1886 elementType = D->getType();
1887 elementIsVariable = true;
1888
1889 if (D->isARCPseudoStrong())
1890 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1891 } else {
1892 elementLValue = LValue(); // suppress warning
1893 elementType = cast<Expr>(S.getElement())->getType();
1894 elementIsVariable = false;
1895 }
1896 llvm::Type *convertedElementType = ConvertType(elementType);
1897
1898 // Fetch the buffer out of the enumeration state.
1899 // TODO: this pointer should actually be invariant between
1900 // refreshes, which would help us do certain loop optimizations.
1901 Address StateItemsPtr =
1902 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1903 llvm::Value *EnumStateItems =
1904 Builder.CreateLoad(StateItemsPtr, "stateitems");
1905
1906 // Fetch the value at the current index from the buffer.
1907 llvm::Value *CurrentItemPtr = Builder.CreateGEP(
1908 EnumStateItems->getType()->getPointerElementType(), EnumStateItems, index,
1909 "currentitem.ptr");
1910 llvm::Value *CurrentItem =
1911 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1912
1913 if (SanOpts.has(SanitizerKind::ObjCCast)) {
1914 // Before using an item from the collection, check that the implicit cast
1915 // from id to the element type is valid. This is done with instrumentation
1916 // roughly corresponding to:
1917 //
1918 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1919 const ObjCObjectPointerType *ObjPtrTy =
1920 elementType->getAsObjCInterfacePointerType();
1921 const ObjCInterfaceType *InterfaceTy =
1922 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1923 if (InterfaceTy) {
1924 SanitizerScope SanScope(this);
1925 auto &C = CGM.getContext();
1926 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type")(static_cast <bool> (InterfaceTy->getDecl() &&
"No decl for ObjC interface type") ? void (0) : __assert_fail
("InterfaceTy->getDecl() && \"No decl for ObjC interface type\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 1926, __extension__ __PRETTY_FUNCTION__))
;
1927 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1928 CallArgList IsKindOfClassArgs;
1929 llvm::Value *Cls =
1930 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1931 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1932 llvm::Value *IsClass =
1933 CGM.getObjCRuntime()
1934 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1935 IsKindOfClassSel, CurrentItem,
1936 IsKindOfClassArgs)
1937 .getScalarVal();
1938 llvm::Constant *StaticData[] = {
1939 EmitCheckSourceLocation(S.getBeginLoc()),
1940 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1941 EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1942 SanitizerHandler::InvalidObjCCast,
1943 ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1944 }
1945 }
1946
1947 // Cast that value to the right type.
1948 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1949 "currentitem");
1950
1951 // Make sure we have an l-value. Yes, this gets evaluated every
1952 // time through the loop.
1953 if (!elementIsVariable) {
1954 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1955 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1956 } else {
1957 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1958 /*isInit*/ true);
1959 }
1960
1961 // If we do have an element variable, this assignment is the end of
1962 // its initialization.
1963 if (elementIsVariable)
1964 EmitAutoVarCleanups(variable);
1965
1966 // Perform the loop body, setting up break and continue labels.
1967 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1968 {
1969 RunCleanupsScope Scope(*this);
1970 EmitStmt(S.getBody());
1971 }
1972 BreakContinueStack.pop_back();
1973
1974 // Destroy the element variable now.
1975 elementVariableScope.ForceCleanup();
1976
1977 // Check whether there are more elements.
1978 EmitBlock(AfterBody.getBlock());
1979
1980 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1981
1982 // First we check in the local buffer.
1983 llvm::Value *indexPlusOne =
1984 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1985
1986 // If we haven't overrun the buffer yet, we can continue.
1987 // Set the branch weights based on the simplifying assumption that this is
1988 // like a while-loop, i.e., ignoring that the false branch fetches more
1989 // elements and then returns to the loop.
1990 Builder.CreateCondBr(
1991 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1992 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1993
1994 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1995 count->addIncoming(count, AfterBody.getBlock());
1996
1997 // Otherwise, we have to fetch more elements.
1998 EmitBlock(FetchMoreBB);
1999
2000 CountRV =
2001 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2002 getContext().getNSUIntegerType(),
2003 FastEnumSel, Collection, Args);
2004
2005 // If we got a zero count, we're done.
2006 llvm::Value *refetchCount = CountRV.getScalarVal();
2007
2008 // (note that the message send might split FetchMoreBB)
2009 index->addIncoming(zero, Builder.GetInsertBlock());
2010 count->addIncoming(refetchCount, Builder.GetInsertBlock());
2011
2012 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2013 EmptyBB, LoopBodyBB);
2014
2015 // No more elements.
2016 EmitBlock(EmptyBB);
2017
2018 if (!elementIsVariable) {
2019 // If the element was not a declaration, set it to be null.
2020
2021 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2022 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2023 EmitStoreThroughLValue(RValue::get(null), elementLValue);
2024 }
2025
2026 if (DI)
2027 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2028
2029 ForScope.ForceCleanup();
2030 EmitBlock(LoopEnd.getBlock());
2031}
2032
2033void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2034 CGM.getObjCRuntime().EmitTryStmt(*this, S);
2035}
2036
2037void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2038 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2039}
2040
2041void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2042 const ObjCAtSynchronizedStmt &S) {
2043 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2044}
2045
2046namespace {
2047 struct CallObjCRelease final : EHScopeStack::Cleanup {
2048 CallObjCRelease(llvm::Value *object) : object(object) {}
2049 llvm::Value *object;
2050
2051 void Emit(CodeGenFunction &CGF, Flags flags) override {
2052 // Releases at the end of the full-expression are imprecise.
2053 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2054 }
2055 };
2056}
2057
2058/// Produce the code for a CK_ARCConsumeObject. Does a primitive
2059/// release at the end of the full-expression.
2060llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2061 llvm::Value *object) {
2062 // If we're in a conditional branch, we need to make the cleanup
2063 // conditional.
2064 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2065 return object;
2066}
2067
2068llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2069 llvm::Value *value) {
2070 return EmitARCRetainAutorelease(type, value);
2071}
2072
2073/// Given a number of pointers, inform the optimizer that they're
2074/// being intrinsically used up until this point in the program.
2075void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2076 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2077 if (!fn)
2078 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2079
2080 // This isn't really a "runtime" function, but as an intrinsic it
2081 // doesn't really matter as long as we align things up.
2082 EmitNounwindRuntimeCall(fn, values);
2083}
2084
2085/// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2086/// that has operand bundle "clang.arc.attachedcall".
2087void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2088 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2089 if (!fn)
2090 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2091 EmitNounwindRuntimeCall(fn, values);
2092}
2093
2094static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2095 if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2096 // If the target runtime doesn't naturally support ARC, emit weak
2097 // references to the runtime support library. We don't really
2098 // permit this to fail, but we need a particular relocation style.
2099 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2100 !CGM.getTriple().isOSBinFormatCOFF()) {
2101 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2102 }
2103 }
2104}
2105
2106static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2107 llvm::FunctionCallee RTF) {
2108 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2109}
2110
2111static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2112 CodeGenModule &CGM) {
2113 llvm::Function *fn = CGM.getIntrinsic(IntID);
2114 setARCRuntimeFunctionLinkage(CGM, fn);
2115 return fn;
2116}
2117
2118/// Perform an operation having the signature
2119/// i8* (i8*)
2120/// where a null input causes a no-op and returns null.
2121static llvm::Value *emitARCValueOperation(
2122 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2123 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2124 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2125 if (isa<llvm::ConstantPointerNull>(value))
2126 return value;
2127
2128 if (!fn)
2129 fn = getARCIntrinsic(IntID, CGF.CGM);
2130
2131 // Cast the argument to 'id'.
2132 llvm::Type *origType = returnType ? returnType : value->getType();
2133 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2134
2135 // Call the function.
2136 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2137 call->setTailCallKind(tailKind);
2138
2139 // Cast the result back to the original type.
2140 return CGF.Builder.CreateBitCast(call, origType);
2141}
2142
2143/// Perform an operation having the following signature:
2144/// i8* (i8**)
2145static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2146 llvm::Function *&fn,
2147 llvm::Intrinsic::ID IntID) {
2148 if (!fn)
2149 fn = getARCIntrinsic(IntID, CGF.CGM);
2150
2151 // Cast the argument to 'id*'.
2152 llvm::Type *origType = addr.getElementType();
2153 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2154
2155 // Call the function.
2156 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2157
2158 // Cast the result back to a dereference of the original type.
2159 if (origType != CGF.Int8PtrTy)
2160 result = CGF.Builder.CreateBitCast(result, origType);
2161
2162 return result;
2163}
2164
2165/// Perform an operation having the following signature:
2166/// i8* (i8**, i8*)
2167static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2168 llvm::Value *value,
2169 llvm::Function *&fn,
2170 llvm::Intrinsic::ID IntID,
2171 bool ignored) {
2172 assert(addr.getElementType() == value->getType())(static_cast <bool> (addr.getElementType() == value->
getType()) ? void (0) : __assert_fail ("addr.getElementType() == value->getType()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2172, __extension__ __PRETTY_FUNCTION__))
;
2173
2174 if (!fn)
2175 fn = getARCIntrinsic(IntID, CGF.CGM);
2176
2177 llvm::Type *origType = value->getType();
2178
2179 llvm::Value *args[] = {
2180 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2181 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2182 };
2183 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2184
2185 if (ignored) return nullptr;
2186
2187 return CGF.Builder.CreateBitCast(result, origType);
2188}
2189
2190/// Perform an operation having the following signature:
2191/// void (i8**, i8**)
2192static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2193 llvm::Function *&fn,
2194 llvm::Intrinsic::ID IntID) {
2195 assert(dst.getType() == src.getType())(static_cast <bool> (dst.getType() == src.getType()) ? void
(0) : __assert_fail ("dst.getType() == src.getType()", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2195, __extension__ __PRETTY_FUNCTION__))
;
2196
2197 if (!fn)
2198 fn = getARCIntrinsic(IntID, CGF.CGM);
2199
2200 llvm::Value *args[] = {
2201 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2202 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2203 };
2204 CGF.EmitNounwindRuntimeCall(fn, args);
2205}
2206
2207/// Perform an operation having the signature
2208/// i8* (i8*)
2209/// where a null input causes a no-op and returns null.
2210static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2211 llvm::Value *value,
2212 llvm::Type *returnType,
2213 llvm::FunctionCallee &fn,
2214 StringRef fnName) {
2215 if (isa<llvm::ConstantPointerNull>(value))
2216 return value;
2217
2218 if (!fn) {
2219 llvm::FunctionType *fnType =
2220 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2221 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2222
2223 // We have Native ARC, so set nonlazybind attribute for performance
2224 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2225 if (fnName == "objc_retain")
2226 f->addFnAttr(llvm::Attribute::NonLazyBind);
2227 }
2228
2229 // Cast the argument to 'id'.
2230 llvm::Type *origType = returnType ? returnType : value->getType();
2231 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2232
2233 // Call the function.
2234 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2235
2236 // Mark calls to objc_autorelease as tail on the assumption that methods
2237 // overriding autorelease do not touch anything on the stack.
2238 if (fnName == "objc_autorelease")
2239 if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2240 Call->setTailCall();
2241
2242 // Cast the result back to the original type.
2243 return CGF.Builder.CreateBitCast(Inst, origType);
2244}
2245
2246/// Produce the code to do a retain. Based on the type, calls one of:
2247/// call i8* \@objc_retain(i8* %value)
2248/// call i8* \@objc_retainBlock(i8* %value)
2249llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2250 if (type->isBlockPointerType())
2251 return EmitARCRetainBlock(value, /*mandatory*/ false);
2252 else
2253 return EmitARCRetainNonBlock(value);
2254}
2255
2256/// Retain the given object, with normal retain semantics.
2257/// call i8* \@objc_retain(i8* %value)
2258llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2259 return emitARCValueOperation(*this, value, nullptr,
2260 CGM.getObjCEntrypoints().objc_retain,
2261 llvm::Intrinsic::objc_retain);
2262}
2263
2264/// Retain the given block, with _Block_copy semantics.
2265/// call i8* \@objc_retainBlock(i8* %value)
2266///
2267/// \param mandatory - If false, emit the call with metadata
2268/// indicating that it's okay for the optimizer to eliminate this call
2269/// if it can prove that the block never escapes except down the stack.
2270llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2271 bool mandatory) {
2272 llvm::Value *result
2273 = emitARCValueOperation(*this, value, nullptr,
2274 CGM.getObjCEntrypoints().objc_retainBlock,
2275 llvm::Intrinsic::objc_retainBlock);
2276
2277 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2278 // tell the optimizer that it doesn't need to do this copy if the
2279 // block doesn't escape, where being passed as an argument doesn't
2280 // count as escaping.
2281 if (!mandatory && isa<llvm::Instruction>(result)) {
2282 llvm::CallInst *call
2283 = cast<llvm::CallInst>(result->stripPointerCasts());
2284 assert(call->getCalledOperand() ==(static_cast <bool> (call->getCalledOperand() == CGM
.getObjCEntrypoints().objc_retainBlock) ? void (0) : __assert_fail
("call->getCalledOperand() == CGM.getObjCEntrypoints().objc_retainBlock"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2285, __extension__ __PRETTY_FUNCTION__))
2285 CGM.getObjCEntrypoints().objc_retainBlock)(static_cast <bool> (call->getCalledOperand() == CGM
.getObjCEntrypoints().objc_retainBlock) ? void (0) : __assert_fail
("call->getCalledOperand() == CGM.getObjCEntrypoints().objc_retainBlock"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2285, __extension__ __PRETTY_FUNCTION__))
;
2286
2287 call->setMetadata("clang.arc.copy_on_escape",
2288 llvm::MDNode::get(Builder.getContext(), None));
2289 }
2290
2291 return result;
2292}
2293
2294static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2295 // Fetch the void(void) inline asm which marks that we're going to
2296 // do something with the autoreleased return value.
2297 llvm::InlineAsm *&marker
2298 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2299 if (!marker) {
2300 StringRef assembly
2301 = CGF.CGM.getTargetCodeGenInfo()
2302 .getARCRetainAutoreleasedReturnValueMarker();
2303
2304 // If we have an empty assembly string, there's nothing to do.
2305 if (assembly.empty()) {
2306
2307 // Otherwise, at -O0, build an inline asm that we're going to call
2308 // in a moment.
2309 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2310 llvm::FunctionType *type =
2311 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2312
2313 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2314
2315 // If we're at -O1 and above, we don't want to litter the code
2316 // with this marker yet, so leave a breadcrumb for the ARC
2317 // optimizer to pick up.
2318 } else {
2319 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2320 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2321 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2322 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2323 retainRVMarkerKey, str);
2324 }
2325 }
2326 }
2327
2328 // Call the marker asm if we made one, which we do only at -O0.
2329 if (marker)
2330 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2331}
2332
2333static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2334 bool IsRetainRV,
2335 CodeGenFunction &CGF) {
2336 emitAutoreleasedReturnValueMarker(CGF);
2337
2338 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2339 // retainRV or claimRV calls in the IR. We currently do this only when the
2340 // optimization level isn't -O0 since global-isel, which is currently run at
2341 // -O0, doesn't know about the operand bundle.
2342 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2343 llvm::Function *&EP = IsRetainRV
2344 ? EPs.objc_retainAutoreleasedReturnValue
2345 : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2346 llvm::Intrinsic::ID IID =
2347 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2348 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2349 EP = getARCIntrinsic(IID, CGF.CGM);
2350
2351 // FIXME: Do this when the target isn't aarch64.
2352 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2353 CGF.CGM.getTarget().getTriple().isAArch64()) {
2354 llvm::Value *bundleArgs[] = {EP};
2355 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2356 auto *oldCall = cast<llvm::CallBase>(value);
2357 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2358 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2359 newCall->copyMetadata(*oldCall);
2360 oldCall->replaceAllUsesWith(newCall);
2361 oldCall->eraseFromParent();
2362 CGF.EmitARCNoopIntrinsicUse(newCall);
2363 return newCall;
2364 }
2365
2366 bool isNoTail =
2367 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2368 llvm::CallInst::TailCallKind tailKind =
2369 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2370 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2371}
2372
2373/// Retain the given object which is the result of a function call.
2374/// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2375///
2376/// Yes, this function name is one character away from a different
2377/// call with completely different semantics.
2378llvm::Value *
2379CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2380 return emitOptimizedARCReturnCall(value, true, *this);
2381}
2382
2383/// Claim a possibly-autoreleased return value at +0. This is only
2384/// valid to do in contexts which do not rely on the retain to keep
2385/// the object valid for all of its uses; for example, when
2386/// the value is ignored, or when it is being assigned to an
2387/// __unsafe_unretained variable.
2388///
2389/// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2390llvm::Value *
2391CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2392 return emitOptimizedARCReturnCall(value, false, *this);
2393}
2394
2395/// Release the given object.
2396/// call void \@objc_release(i8* %value)
2397void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2398 ARCPreciseLifetime_t precise) {
2399 if (isa<llvm::ConstantPointerNull>(value)) return;
2400
2401 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2402 if (!fn)
2403 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2404
2405 // Cast the argument to 'id'.
2406 value = Builder.CreateBitCast(value, Int8PtrTy);
2407
2408 // Call objc_release.
2409 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2410
2411 if (precise == ARCImpreciseLifetime) {
2412 call->setMetadata("clang.imprecise_release",
2413 llvm::MDNode::get(Builder.getContext(), None));
2414 }
2415}
2416
2417/// Destroy a __strong variable.
2418///
2419/// At -O0, emit a call to store 'null' into the address;
2420/// instrumenting tools prefer this because the address is exposed,
2421/// but it's relatively cumbersome to optimize.
2422///
2423/// At -O1 and above, just load and call objc_release.
2424///
2425/// call void \@objc_storeStrong(i8** %addr, i8* null)
2426void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2427 ARCPreciseLifetime_t precise) {
2428 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2429 llvm::Value *null = getNullForVariable(addr);
2430 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2431 return;
2432 }
2433
2434 llvm::Value *value = Builder.CreateLoad(addr);
2435 EmitARCRelease(value, precise);
2436}
2437
2438/// Store into a strong object. Always calls this:
2439/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2440llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2441 llvm::Value *value,
2442 bool ignored) {
2443 assert(addr.getElementType() == value->getType())(static_cast <bool> (addr.getElementType() == value->
getType()) ? void (0) : __assert_fail ("addr.getElementType() == value->getType()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2443, __extension__ __PRETTY_FUNCTION__))
;
2444
2445 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2446 if (!fn)
2447 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2448
2449 llvm::Value *args[] = {
2450 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2451 Builder.CreateBitCast(value, Int8PtrTy)
2452 };
2453 EmitNounwindRuntimeCall(fn, args);
2454
2455 if (ignored) return nullptr;
2456 return value;
2457}
2458
2459/// Store into a strong object. Sometimes calls this:
2460/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2461/// Other times, breaks it down into components.
2462llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2463 llvm::Value *newValue,
2464 bool ignored) {
2465 QualType type = dst.getType();
2466 bool isBlock = type->isBlockPointerType();
2467
2468 // Use a store barrier at -O0 unless this is a block type or the
2469 // lvalue is inadequately aligned.
2470 if (shouldUseFusedARCCalls() &&
2471 !isBlock &&
2472 (dst.getAlignment().isZero() ||
2473 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2474 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2475 }
2476
2477 // Otherwise, split it out.
2478
2479 // Retain the new value.
2480 newValue = EmitARCRetain(type, newValue);
2481
2482 // Read the old value.
2483 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2484
2485 // Store. We do this before the release so that any deallocs won't
2486 // see the old value.
2487 EmitStoreOfScalar(newValue, dst);
2488
2489 // Finally, release the old value.
2490 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2491
2492 return newValue;
2493}
2494
2495/// Autorelease the given object.
2496/// call i8* \@objc_autorelease(i8* %value)
2497llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2498 return emitARCValueOperation(*this, value, nullptr,
2499 CGM.getObjCEntrypoints().objc_autorelease,
2500 llvm::Intrinsic::objc_autorelease);
2501}
2502
2503/// Autorelease the given object.
2504/// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2505llvm::Value *
2506CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2507 return emitARCValueOperation(*this, value, nullptr,
2508 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2509 llvm::Intrinsic::objc_autoreleaseReturnValue,
2510 llvm::CallInst::TCK_Tail);
2511}
2512
2513/// Do a fused retain/autorelease of the given object.
2514/// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2515llvm::Value *
2516CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2517 return emitARCValueOperation(*this, value, nullptr,
2518 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2519 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2520 llvm::CallInst::TCK_Tail);
2521}
2522
2523/// Do a fused retain/autorelease of the given object.
2524/// call i8* \@objc_retainAutorelease(i8* %value)
2525/// or
2526/// %retain = call i8* \@objc_retainBlock(i8* %value)
2527/// call i8* \@objc_autorelease(i8* %retain)
2528llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2529 llvm::Value *value) {
2530 if (!type->isBlockPointerType())
2531 return EmitARCRetainAutoreleaseNonBlock(value);
2532
2533 if (isa<llvm::ConstantPointerNull>(value)) return value;
2534
2535 llvm::Type *origType = value->getType();
2536 value = Builder.CreateBitCast(value, Int8PtrTy);
2537 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2538 value = EmitARCAutorelease(value);
2539 return Builder.CreateBitCast(value, origType);
2540}
2541
2542/// Do a fused retain/autorelease of the given object.
2543/// call i8* \@objc_retainAutorelease(i8* %value)
2544llvm::Value *
2545CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2546 return emitARCValueOperation(*this, value, nullptr,
2547 CGM.getObjCEntrypoints().objc_retainAutorelease,
2548 llvm::Intrinsic::objc_retainAutorelease);
2549}
2550
2551/// i8* \@objc_loadWeak(i8** %addr)
2552/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2553llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2554 return emitARCLoadOperation(*this, addr,
2555 CGM.getObjCEntrypoints().objc_loadWeak,
2556 llvm::Intrinsic::objc_loadWeak);
2557}
2558
2559/// i8* \@objc_loadWeakRetained(i8** %addr)
2560llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2561 return emitARCLoadOperation(*this, addr,
2562 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2563 llvm::Intrinsic::objc_loadWeakRetained);
2564}
2565
2566/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2567/// Returns %value.
2568llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2569 llvm::Value *value,
2570 bool ignored) {
2571 return emitARCStoreOperation(*this, addr, value,
2572 CGM.getObjCEntrypoints().objc_storeWeak,
2573 llvm::Intrinsic::objc_storeWeak, ignored);
2574}
2575
2576/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2577/// Returns %value. %addr is known to not have a current weak entry.
2578/// Essentially equivalent to:
2579/// *addr = nil; objc_storeWeak(addr, value);
2580void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2581 // If we're initializing to null, just write null to memory; no need
2582 // to get the runtime involved. But don't do this if optimization
2583 // is enabled, because accounting for this would make the optimizer
2584 // much more complicated.
2585 if (isa<llvm::ConstantPointerNull>(value) &&
2586 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2587 Builder.CreateStore(value, addr);
2588 return;
2589 }
2590
2591 emitARCStoreOperation(*this, addr, value,
2592 CGM.getObjCEntrypoints().objc_initWeak,
2593 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2594}
2595
2596/// void \@objc_destroyWeak(i8** %addr)
2597/// Essentially objc_storeWeak(addr, nil).
2598void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2599 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2600 if (!fn)
2601 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2602
2603 // Cast the argument to 'id*'.
2604 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2605
2606 EmitNounwindRuntimeCall(fn, addr.getPointer());
2607}
2608
2609/// void \@objc_moveWeak(i8** %dest, i8** %src)
2610/// Disregards the current value in %dest. Leaves %src pointing to nothing.
2611/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2612void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2613 emitARCCopyOperation(*this, dst, src,
2614 CGM.getObjCEntrypoints().objc_moveWeak,
2615 llvm::Intrinsic::objc_moveWeak);
2616}
2617
2618/// void \@objc_copyWeak(i8** %dest, i8** %src)
2619/// Disregards the current value in %dest. Essentially
2620/// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2621void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2622 emitARCCopyOperation(*this, dst, src,
2623 CGM.getObjCEntrypoints().objc_copyWeak,
2624 llvm::Intrinsic::objc_copyWeak);
2625}
2626
2627void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2628 Address SrcAddr) {
2629 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2630 Object = EmitObjCConsumeObject(Ty, Object);
2631 EmitARCStoreWeak(DstAddr, Object, false);
2632}
2633
2634void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2635 Address SrcAddr) {
2636 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2637 Object = EmitObjCConsumeObject(Ty, Object);
2638 EmitARCStoreWeak(DstAddr, Object, false);
2639 EmitARCDestroyWeak(SrcAddr);
2640}
2641
2642/// Produce the code to do a objc_autoreleasepool_push.
2643/// call i8* \@objc_autoreleasePoolPush(void)
2644llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2645 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2646 if (!fn)
2647 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2648
2649 return EmitNounwindRuntimeCall(fn);
2650}
2651
2652/// Produce the code to do a primitive release.
2653/// call void \@objc_autoreleasePoolPop(i8* %ptr)
2654void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2655 assert(value->getType() == Int8PtrTy)(static_cast <bool> (value->getType() == Int8PtrTy) ?
void (0) : __assert_fail ("value->getType() == Int8PtrTy"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2655, __extension__ __PRETTY_FUNCTION__))
;
2656
2657 if (getInvokeDest()) {
2658 // Call the runtime method not the intrinsic if we are handling exceptions
2659 llvm::FunctionCallee &fn =
2660 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2661 if (!fn) {
2662 llvm::FunctionType *fnType =
2663 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2664 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2665 setARCRuntimeFunctionLinkage(CGM, fn);
2666 }
2667
2668 // objc_autoreleasePoolPop can throw.
2669 EmitRuntimeCallOrInvoke(fn, value);
2670 } else {
2671 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2672 if (!fn)
2673 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2674
2675 EmitRuntimeCall(fn, value);
2676 }
2677}
2678
2679/// Produce the code to do an MRR version objc_autoreleasepool_push.
2680/// Which is: [[NSAutoreleasePool alloc] init];
2681/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2682/// init is declared as: - (id) init; in its NSObject super class.
2683///
2684llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2685 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2686 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2687 // [NSAutoreleasePool alloc]
2688 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2689 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2690 CallArgList Args;
2691 RValue AllocRV =
2692 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2693 getContext().getObjCIdType(),
2694 AllocSel, Receiver, Args);
2695
2696 // [Receiver init]
2697 Receiver = AllocRV.getScalarVal();
2698 II = &CGM.getContext().Idents.get("init");
2699 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2700 RValue InitRV =
2701 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2702 getContext().getObjCIdType(),
2703 InitSel, Receiver, Args);
2704 return InitRV.getScalarVal();
2705}
2706
2707/// Allocate the given objc object.
2708/// call i8* \@objc_alloc(i8* %value)
2709llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2710 llvm::Type *resultType) {
2711 return emitObjCValueOperation(*this, value, resultType,
2712 CGM.getObjCEntrypoints().objc_alloc,
2713 "objc_alloc");
2714}
2715
2716/// Allocate the given objc object.
2717/// call i8* \@objc_allocWithZone(i8* %value)
2718llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2719 llvm::Type *resultType) {
2720 return emitObjCValueOperation(*this, value, resultType,
2721 CGM.getObjCEntrypoints().objc_allocWithZone,
2722 "objc_allocWithZone");
2723}
2724
2725llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2726 llvm::Type *resultType) {
2727 return emitObjCValueOperation(*this, value, resultType,
2728 CGM.getObjCEntrypoints().objc_alloc_init,
2729 "objc_alloc_init");
2730}
2731
2732/// Produce the code to do a primitive release.
2733/// [tmp drain];
2734void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2735 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2736 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2737 CallArgList Args;
2738 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2739 getContext().VoidTy, DrainSel, Arg, Args);
2740}
2741
2742void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2743 Address addr,
2744 QualType type) {
2745 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2746}
2747
2748void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2749 Address addr,
2750 QualType type) {
2751 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2752}
2753
2754void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2755 Address addr,
2756 QualType type) {
2757 CGF.EmitARCDestroyWeak(addr);
2758}
2759
2760void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2761 QualType type) {
2762 llvm::Value *value = CGF.Builder.CreateLoad(addr);
2763 CGF.EmitARCIntrinsicUse(value);
2764}
2765
2766/// Autorelease the given object.
2767/// call i8* \@objc_autorelease(i8* %value)
2768llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2769 llvm::Type *returnType) {
2770 return emitObjCValueOperation(
2771 *this, value, returnType,
2772 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2773 "objc_autorelease");
2774}
2775
2776/// Retain the given object, with normal retain semantics.
2777/// call i8* \@objc_retain(i8* %value)
2778llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2779 llvm::Type *returnType) {
2780 return emitObjCValueOperation(
2781 *this, value, returnType,
2782 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2783}
2784
2785/// Release the given object.
2786/// call void \@objc_release(i8* %value)
2787void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2788 ARCPreciseLifetime_t precise) {
2789 if (isa<llvm::ConstantPointerNull>(value)) return;
2790
2791 llvm::FunctionCallee &fn =
2792 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2793 if (!fn) {
2794 llvm::FunctionType *fnType =
2795 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2796 fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2797 setARCRuntimeFunctionLinkage(CGM, fn);
2798 // We have Native ARC, so set nonlazybind attribute for performance
2799 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2800 f->addFnAttr(llvm::Attribute::NonLazyBind);
2801 }
2802
2803 // Cast the argument to 'id'.
2804 value = Builder.CreateBitCast(value, Int8PtrTy);
2805
2806 // Call objc_release.
2807 llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2808
2809 if (precise == ARCImpreciseLifetime) {
2810 call->setMetadata("clang.imprecise_release",
2811 llvm::MDNode::get(Builder.getContext(), None));
2812 }
2813}
2814
2815namespace {
2816 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2817 llvm::Value *Token;
2818
2819 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2820
2821 void Emit(CodeGenFunction &CGF, Flags flags) override {
2822 CGF.EmitObjCAutoreleasePoolPop(Token);
2823 }
2824 };
2825 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2826 llvm::Value *Token;
2827
2828 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2829
2830 void Emit(CodeGenFunction &CGF, Flags flags) override {
2831 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2832 }
2833 };
2834}
2835
2836void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2837 if (CGM.getLangOpts().ObjCAutoRefCount)
2838 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2839 else
2840 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2841}
2842
2843static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2844 switch (lifetime) {
2845 case Qualifiers::OCL_None:
2846 case Qualifiers::OCL_ExplicitNone:
2847 case Qualifiers::OCL_Strong:
2848 case Qualifiers::OCL_Autoreleasing:
2849 return true;
2850
2851 case Qualifiers::OCL_Weak:
2852 return false;
2853 }
2854
2855 llvm_unreachable("impossible lifetime!")::llvm::llvm_unreachable_internal("impossible lifetime!", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2855)
;
2856}
2857
2858static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2859 LValue lvalue,
2860 QualType type) {
2861 llvm::Value *result;
2862 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2863 if (shouldRetain) {
2864 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2865 } else {
2866 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak)(static_cast <bool> (type.getObjCLifetime() == Qualifiers
::OCL_Weak) ? void (0) : __assert_fail ("type.getObjCLifetime() == Qualifiers::OCL_Weak"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 2866, __extension__ __PRETTY_FUNCTION__))
;
2867 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2868 }
2869 return TryEmitResult(result, !shouldRetain);
2870}
2871
2872static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2873 const Expr *e) {
2874 e = e->IgnoreParens();
2875 QualType type = e->getType();
2876
2877 // If we're loading retained from a __strong xvalue, we can avoid
2878 // an extra retain/release pair by zeroing out the source of this
2879 // "move" operation.
2880 if (e->isXValue() &&
2881 !type.isConstQualified() &&
2882 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2883 // Emit the lvalue.
2884 LValue lv = CGF.EmitLValue(e);
2885
2886 // Load the object pointer.
2887 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2888 SourceLocation()).getScalarVal();
2889
2890 // Set the source pointer to NULL.
2891 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2892
2893 return TryEmitResult(result, true);
2894 }
2895
2896 // As a very special optimization, in ARC++, if the l-value is the
2897 // result of a non-volatile assignment, do a simple retain of the
2898 // result of the call to objc_storeWeak instead of reloading.
2899 if (CGF.getLangOpts().CPlusPlus &&
2900 !type.isVolatileQualified() &&
2901 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2902 isa<BinaryOperator>(e) &&
2903 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2904 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2905
2906 // Try to emit code for scalar constant instead of emitting LValue and
2907 // loading it because we are not guaranteed to have an l-value. One of such
2908 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2909 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2910 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2911 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2912 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2913 !shouldRetainObjCLifetime(type.getObjCLifetime()));
2914 }
2915
2916 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2917}
2918
2919typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2920 llvm::Value *value)>
2921 ValueTransform;
2922
2923/// Insert code immediately after a call.
2924
2925// FIXME: We should find a way to emit the runtime call immediately
2926// after the call is emitted to eliminate the need for this function.
2927static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2928 llvm::Value *value,
2929 ValueTransform doAfterCall,
2930 ValueTransform doFallback) {
2931 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2932 auto *callBase = dyn_cast<llvm::CallBase>(value);
2933
2934 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2935 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2936 value = doFallback(CGF, value);
2937 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2938 // Place the retain immediately following the call.
2939 CGF.Builder.SetInsertPoint(call->getParent(),
2940 ++llvm::BasicBlock::iterator(call));
2941 value = doAfterCall(CGF, value);
2942 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2943 // Place the retain at the beginning of the normal destination block.
2944 llvm::BasicBlock *BB = invoke->getNormalDest();
2945 CGF.Builder.SetInsertPoint(BB, BB->begin());
2946 value = doAfterCall(CGF, value);
2947
2948 // Bitcasts can arise because of related-result returns. Rewrite
2949 // the operand.
2950 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2951 // Change the insert point to avoid emitting the fall-back call after the
2952 // bitcast.
2953 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2954 llvm::Value *operand = bitcast->getOperand(0);
2955 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2956 bitcast->setOperand(0, operand);
2957 value = bitcast;
2958 } else {
2959 auto *phi = dyn_cast<llvm::PHINode>(value);
2960 if (phi && phi->getNumIncomingValues() == 2 &&
2961 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2962 isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2963 // Handle phi instructions that are generated when it's necessary to check
2964 // whether the receiver of a message is null.
2965 llvm::Value *inVal = phi->getIncomingValue(0);
2966 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
2967 phi->setIncomingValue(0, inVal);
2968 value = phi;
2969 } else {
2970 // Generic fall-back case.
2971 // Retain using the non-block variant: we never need to do a copy
2972 // of a block that's been returned to us.
2973 value = doFallback(CGF, value);
2974 }
2975 }
2976
2977 CGF.Builder.restoreIP(ip);
2978 return value;
2979}
2980
2981/// Given that the given expression is some sort of call (which does
2982/// not return retained), emit a retain following it.
2983static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2984 const Expr *e) {
2985 llvm::Value *value = CGF.EmitScalarExpr(e);
2986 return emitARCOperationAfterCall(CGF, value,
2987 [](CodeGenFunction &CGF, llvm::Value *value) {
2988 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2989 },
2990 [](CodeGenFunction &CGF, llvm::Value *value) {
2991 return CGF.EmitARCRetainNonBlock(value);
2992 });
2993}
2994
2995/// Given that the given expression is some sort of call (which does
2996/// not return retained), perform an unsafeClaim following it.
2997static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2998 const Expr *e) {
2999 llvm::Value *value = CGF.EmitScalarExpr(e);
3000 return emitARCOperationAfterCall(CGF, value,
3001 [](CodeGenFunction &CGF, llvm::Value *value) {
3002 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3003 },
3004 [](CodeGenFunction &CGF, llvm::Value *value) {
3005 return value;
3006 });
3007}
3008
3009llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3010 bool allowUnsafeClaim) {
3011 if (allowUnsafeClaim &&
3012 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3013 return emitARCUnsafeClaimCallResult(*this, E);
3014 } else {
3015 llvm::Value *value = emitARCRetainCallResult(*this, E);
3016 return EmitObjCConsumeObject(E->getType(), value);
3017 }
3018}
3019
3020/// Determine whether it might be important to emit a separate
3021/// objc_retain_block on the result of the given expression, or
3022/// whether it's okay to just emit it in a +1 context.
3023static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3024 assert(e->getType()->isBlockPointerType())(static_cast <bool> (e->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("e->getType()->isBlockPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3024, __extension__ __PRETTY_FUNCTION__))
;
3025 e = e->IgnoreParens();
3026
3027 // For future goodness, emit block expressions directly in +1
3028 // contexts if we can.
3029 if (isa<BlockExpr>(e))
3030 return false;
3031
3032 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3033 switch (cast->getCastKind()) {
3034 // Emitting these operations in +1 contexts is goodness.
3035 case CK_LValueToRValue:
3036 case CK_ARCReclaimReturnedObject:
3037 case CK_ARCConsumeObject:
3038 case CK_ARCProduceObject:
3039 return false;
3040
3041 // These operations preserve a block type.
3042 case CK_NoOp:
3043 case CK_BitCast:
3044 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3045
3046 // These operations are known to be bad (or haven't been considered).
3047 case CK_AnyPointerToBlockPointerCast:
3048 default:
3049 return true;
3050 }
3051 }
3052
3053 return true;
3054}
3055
3056namespace {
3057/// A CRTP base class for emitting expressions of retainable object
3058/// pointer type in ARC.
3059template <typename Impl, typename Result> class ARCExprEmitter {
3060protected:
3061 CodeGenFunction &CGF;
3062 Impl &asImpl() { return *static_cast<Impl*>(this); }
3063
3064 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3065
3066public:
3067 Result visit(const Expr *e);
3068 Result visitCastExpr(const CastExpr *e);
3069 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3070 Result visitBlockExpr(const BlockExpr *e);
3071 Result visitBinaryOperator(const BinaryOperator *e);
3072 Result visitBinAssign(const BinaryOperator *e);
3073 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3074 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3075 Result visitBinAssignWeak(const BinaryOperator *e);
3076 Result visitBinAssignStrong(const BinaryOperator *e);
3077
3078 // Minimal implementation:
3079 // Result visitLValueToRValue(const Expr *e)
3080 // Result visitConsumeObject(const Expr *e)
3081 // Result visitExtendBlockObject(const Expr *e)
3082 // Result visitReclaimReturnedObject(const Expr *e)
3083 // Result visitCall(const Expr *e)
3084 // Result visitExpr(const Expr *e)
3085 //
3086 // Result emitBitCast(Result result, llvm::Type *resultType)
3087 // llvm::Value *getValueOfResult(Result result)
3088};
3089}
3090
3091/// Try to emit a PseudoObjectExpr under special ARC rules.
3092///
3093/// This massively duplicates emitPseudoObjectRValue.
3094template <typename Impl, typename Result>
3095Result
3096ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3097 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3098
3099 // Find the result expression.
3100 const Expr *resultExpr = E->getResultExpr();
3101 assert(resultExpr)(static_cast <bool> (resultExpr) ? void (0) : __assert_fail
("resultExpr", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3101, __extension__ __PRETTY_FUNCTION__))
;
18
Assuming 'resultExpr' is non-null
19
'?' condition is true
3102 Result result;
20
'result' declared without an initial value
3103
3104 for (PseudoObjectExpr::const_semantics_iterator
21
Loop condition is false. Execution continues on line 3140
3105 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3106 const Expr *semantic = *i;
3107
3108 // If this semantic expression is an opaque value, bind it
3109 // to the result of its source expression.
3110 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3111 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3112 OVMA opaqueData;
3113
3114 // If this semantic is the result of the pseudo-object
3115 // expression, try to evaluate the source as +1.
3116 if (ov == resultExpr) {
3117 assert(!OVMA::shouldBindAsLValue(ov))(static_cast <bool> (!OVMA::shouldBindAsLValue(ov)) ? void
(0) : __assert_fail ("!OVMA::shouldBindAsLValue(ov)", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3117, __extension__ __PRETTY_FUNCTION__))
;
3118 result = asImpl().visit(ov->getSourceExpr());
3119 opaqueData = OVMA::bind(CGF, ov,
3120 RValue::get(asImpl().getValueOfResult(result)));
3121
3122 // Otherwise, just bind it.
3123 } else {
3124 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3125 }
3126 opaques.push_back(opaqueData);
3127
3128 // Otherwise, if the expression is the result, evaluate it
3129 // and remember the result.
3130 } else if (semantic == resultExpr) {
3131 result = asImpl().visit(semantic);
3132
3133 // Otherwise, evaluate the expression in an ignored context.
3134 } else {
3135 CGF.EmitIgnoredExpr(semantic);
3136 }
3137 }
3138
3139 // Unbind all the opaques now.
3140 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
22
Assuming 'i' is equal to 'e'
23
Loop condition is false. Execution continues on line 3143
3141 opaques[i].unbind(CGF);
3142
3143 return result;
24
Undefined or garbage value returned to caller
3144}
3145
3146template <typename Impl, typename Result>
3147Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3148 // The default implementation just forwards the expression to visitExpr.
3149 return asImpl().visitExpr(e);
3150}
3151
3152template <typename Impl, typename Result>
3153Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3154 switch (e->getCastKind()) {
3155
3156 // No-op casts don't change the type, so we just ignore them.
3157 case CK_NoOp:
3158 return asImpl().visit(e->getSubExpr());
3159
3160 // These casts can change the type.
3161 case CK_CPointerToObjCPointerCast:
3162 case CK_BlockPointerToObjCPointerCast:
3163 case CK_AnyPointerToBlockPointerCast:
3164 case CK_BitCast: {
3165 llvm::Type *resultType = CGF.ConvertType(e->getType());
3166 assert(e->getSubExpr()->getType()->hasPointerRepresentation())(static_cast <bool> (e->getSubExpr()->getType()->
hasPointerRepresentation()) ? void (0) : __assert_fail ("e->getSubExpr()->getType()->hasPointerRepresentation()"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3166, __extension__ __PRETTY_FUNCTION__))
;
3167 Result result = asImpl().visit(e->getSubExpr());
3168 return asImpl().emitBitCast(result, resultType);
3169 }
3170
3171 // Handle some casts specially.
3172 case CK_LValueToRValue:
3173 return asImpl().visitLValueToRValue(e->getSubExpr());
3174 case CK_ARCConsumeObject:
3175 return asImpl().visitConsumeObject(e->getSubExpr());
3176 case CK_ARCExtendBlockObject:
3177 return asImpl().visitExtendBlockObject(e->getSubExpr());
3178 case CK_ARCReclaimReturnedObject:
3179 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3180
3181 // Otherwise, use the default logic.
3182 default:
3183 return asImpl().visitExpr(e);
3184 }
3185}
3186
3187template <typename Impl, typename Result>
3188Result
3189ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3190 switch (e->getOpcode()) {
3191 case BO_Comma:
3192 CGF.EmitIgnoredExpr(e->getLHS());
3193 CGF.EnsureInsertPoint();
3194 return asImpl().visit(e->getRHS());
3195
3196 case BO_Assign:
3197 return asImpl().visitBinAssign(e);
3198
3199 default:
3200 return asImpl().visitExpr(e);
3201 }
3202}
3203
3204template <typename Impl, typename Result>
3205Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3206 switch (e->getLHS()->getType().getObjCLifetime()) {
3207 case Qualifiers::OCL_ExplicitNone:
3208 return asImpl().visitBinAssignUnsafeUnretained(e);
3209
3210 case Qualifiers::OCL_Weak:
3211 return asImpl().visitBinAssignWeak(e);
3212
3213 case Qualifiers::OCL_Autoreleasing:
3214 return asImpl().visitBinAssignAutoreleasing(e);
3215
3216 case Qualifiers::OCL_Strong:
3217 return asImpl().visitBinAssignStrong(e);
3218
3219 case Qualifiers::OCL_None:
3220 return asImpl().visitExpr(e);
3221 }
3222 llvm_unreachable("bad ObjC ownership qualifier")::llvm::llvm_unreachable_internal("bad ObjC ownership qualifier"
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3222)
;
3223}
3224
3225/// The default rule for __unsafe_unretained emits the RHS recursively,
3226/// stores into the unsafe variable, and propagates the result outward.
3227template <typename Impl, typename Result>
3228Result ARCExprEmitter<Impl,Result>::
3229 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3230 // Recursively emit the RHS.
3231 // For __block safety, do this before emitting the LHS.
3232 Result result = asImpl().visit(e->getRHS());
3233
3234 // Perform the store.
3235 LValue lvalue =
3236 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3237 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3238 lvalue);
3239
3240 return result;
3241}
3242
3243template <typename Impl, typename Result>
3244Result
3245ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3246 return asImpl().visitExpr(e);
3247}
3248
3249template <typename Impl, typename Result>
3250Result
3251ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3252 return asImpl().visitExpr(e);
3253}
3254
3255template <typename Impl, typename Result>
3256Result
3257ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3258 return asImpl().visitExpr(e);
3259}
3260
3261/// The general expression-emission logic.
3262template <typename Impl, typename Result>
3263Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3264 // We should *never* see a nested full-expression here, because if
3265 // we fail to emit at +1, our caller must not retain after we close
3266 // out the full-expression. This isn't as important in the unsafe
3267 // emitter.
3268 assert(!isa<ExprWithCleanups>(e))(static_cast <bool> (!isa<ExprWithCleanups>(e)) ?
void (0) : __assert_fail ("!isa<ExprWithCleanups>(e)",
"/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3268, __extension__ __PRETTY_FUNCTION__))
;
8
'e' is not a 'ExprWithCleanups'
9
'?' condition is true
3269
3270 // Look through parens, __extension__, generic selection, etc.
3271 e = e->IgnoreParens();
3272
3273 // Handle certain kinds of casts.
3274 if (const CastExpr *ce
10.1
'ce' is null
= dyn_cast<CastExpr>(e)) {
10
Assuming 'e' is not a 'CastExpr'
11
Taking false branch
3275 return asImpl().visitCastExpr(ce);
3276
3277 // Handle the comma operator.
3278 } else if (auto op
12.1
'op' is null
= dyn_cast<BinaryOperator>(e)) {
12
Assuming 'e' is not a 'BinaryOperator'
3279 return asImpl().visitBinaryOperator(op);
3280
3281 // TODO: handle conditional operators here
3282
3283 // For calls and message sends, use the retained-call logic.
3284 // Delegate inits are a special case in that they're the only
3285 // returns-retained expression that *isn't* surrounded by
3286 // a consume.
3287 } else if (isa<CallExpr>(e) ||
13
Assuming 'e' is not a 'CallExpr'
3288 (isa<ObjCMessageExpr>(e) &&
14
Assuming 'e' is not a 'ObjCMessageExpr'
3289 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3290 return asImpl().visitCall(e);
3291
3292 // Look through pseudo-object expressions.
3293 } else if (const PseudoObjectExpr *pseudo
15.1
'pseudo' is non-null
= dyn_cast<PseudoObjectExpr>(e)) {
15
Assuming 'e' is a 'PseudoObjectExpr'
16
Taking true branch
3294 return asImpl().visitPseudoObjectExpr(pseudo);
17
Calling 'ARCExprEmitter::visitPseudoObjectExpr'
3295 } else if (auto *be = dyn_cast<BlockExpr>(e))
3296 return asImpl().visitBlockExpr(be);
3297
3298 return asImpl().visitExpr(e);
3299}
3300
3301namespace {
3302
3303/// An emitter for +1 results.
3304struct ARCRetainExprEmitter :
3305 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3306
3307 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3308
3309 llvm::Value *getValueOfResult(TryEmitResult result) {
3310 return result.getPointer();
3311 }
3312
3313 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3314 llvm::Value *value = result.getPointer();
3315 value = CGF.Builder.CreateBitCast(value, resultType);
3316 result.setPointer(value);
3317 return result;
3318 }
3319
3320 TryEmitResult visitLValueToRValue(const Expr *e) {
3321 return tryEmitARCRetainLoadOfScalar(CGF, e);
3322 }
3323
3324 /// For consumptions, just emit the subexpression and thus elide
3325 /// the retain/release pair.
3326 TryEmitResult visitConsumeObject(const Expr *e) {
3327 llvm::Value *result = CGF.EmitScalarExpr(e);
3328 return TryEmitResult(result, true);
3329 }
3330
3331 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3332 TryEmitResult result = visitExpr(e);
3333 // Avoid the block-retain if this is a block literal that doesn't need to be
3334 // copied to the heap.
3335 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3336 e->getBlockDecl()->canAvoidCopyToHeap())
3337 result.setInt(true);
3338 return result;
3339 }
3340
3341 /// Block extends are net +0. Naively, we could just recurse on
3342 /// the subexpression, but actually we need to ensure that the
3343 /// value is copied as a block, so there's a little filter here.
3344 TryEmitResult visitExtendBlockObject(const Expr *e) {
3345 llvm::Value *result; // will be a +0 value
3346
3347 // If we can't safely assume the sub-expression will produce a
3348 // block-copied value, emit the sub-expression at +0.
3349 if (shouldEmitSeparateBlockRetain(e)) {
3350 result = CGF.EmitScalarExpr(e);
3351
3352 // Otherwise, try to emit the sub-expression at +1 recursively.
3353 } else {
3354 TryEmitResult subresult = asImpl().visit(e);
3355
3356 // If that produced a retained value, just use that.
3357 if (subresult.getInt()) {
3358 return subresult;
3359 }
3360
3361 // Otherwise it's +0.
3362 result = subresult.getPointer();
3363 }
3364
3365 // Retain the object as a block.
3366 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3367 return TryEmitResult(result, true);
3368 }
3369
3370 /// For reclaims, emit the subexpression as a retained call and
3371 /// skip the consumption.
3372 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3373 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3374 return TryEmitResult(result, true);
3375 }
3376
3377 /// When we have an undecorated call, retroactively do a claim.
3378 TryEmitResult visitCall(const Expr *e) {
3379 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3380 return TryEmitResult(result, true);
3381 }
3382
3383 // TODO: maybe special-case visitBinAssignWeak?
3384
3385 TryEmitResult visitExpr(const Expr *e) {
3386 // We didn't find an obvious production, so emit what we've got and
3387 // tell the caller that we didn't manage to retain.
3388 llvm::Value *result = CGF.EmitScalarExpr(e);
3389 return TryEmitResult(result, false);
3390 }
3391};
3392}
3393
3394static TryEmitResult
3395tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3396 return ARCRetainExprEmitter(CGF).visit(e);
3397}
3398
3399static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3400 LValue lvalue,
3401 QualType type) {
3402 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3403 llvm::Value *value = result.getPointer();
3404 if (!result.getInt())
3405 value = CGF.EmitARCRetain(type, value);
3406 return value;
3407}
3408
3409/// EmitARCRetainScalarExpr - Semantically equivalent to
3410/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3411/// best-effort attempt to peephole expressions that naturally produce
3412/// retained objects.
3413llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3414 // The retain needs to happen within the full-expression.
3415 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3416 RunCleanupsScope scope(*this);
3417 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3418 }
3419
3420 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3421 llvm::Value *value = result.getPointer();
3422 if (!result.getInt())
3423 value = EmitARCRetain(e->getType(), value);
3424 return value;
3425}
3426
3427llvm::Value *
3428CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3429 // The retain needs to happen within the full-expression.
3430 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3431 RunCleanupsScope scope(*this);
3432 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3433 }
3434
3435 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3436 llvm::Value *value = result.getPointer();
3437 if (result.getInt())
3438 value = EmitARCAutorelease(value);
3439 else
3440 value = EmitARCRetainAutorelease(e->getType(), value);
3441 return value;
3442}
3443
3444llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3445 llvm::Value *result;
3446 bool doRetain;
3447
3448 if (shouldEmitSeparateBlockRetain(e)) {
3449 result = EmitScalarExpr(e);
3450 doRetain = true;
3451 } else {
3452 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3453 result = subresult.getPointer();
3454 doRetain = !subresult.getInt();
3455 }
3456
3457 if (doRetain)
3458 result = EmitARCRetainBlock(result, /*mandatory*/ true);
3459 return EmitObjCConsumeObject(e->getType(), result);
3460}
3461
3462llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3463 // In ARC, retain and autorelease the expression.
3464 if (getLangOpts().ObjCAutoRefCount) {
3465 // Do so before running any cleanups for the full-expression.
3466 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3467 return EmitARCRetainAutoreleaseScalarExpr(expr);
3468 }
3469
3470 // Otherwise, use the normal scalar-expression emission. The
3471 // exception machinery doesn't do anything special with the
3472 // exception like retaining it, so there's no safety associated with
3473 // only running cleanups after the throw has started, and when it
3474 // matters it tends to be substantially inferior code.
3475 return EmitScalarExpr(expr);
3476}
3477
3478namespace {
3479
3480/// An emitter for assigning into an __unsafe_unretained context.
3481struct ARCUnsafeUnretainedExprEmitter :
3482 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3483
3484 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3485
3486 llvm::Value *getValueOfResult(llvm::Value *value) {
3487 return value;
3488 }
3489
3490 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3491 return CGF.Builder.CreateBitCast(value, resultType);
3492 }
3493
3494 llvm::Value *visitLValueToRValue(const Expr *e) {
3495 return CGF.EmitScalarExpr(e);
3496 }
3497
3498 /// For consumptions, just emit the subexpression and perform the
3499 /// consumption like normal.
3500 llvm::Value *visitConsumeObject(const Expr *e) {
3501 llvm::Value *value = CGF.EmitScalarExpr(e);
3502 return CGF.EmitObjCConsumeObject(e->getType(), value);
3503 }
3504
3505 /// No special logic for block extensions. (This probably can't
3506 /// actually happen in this emitter, though.)
3507 llvm::Value *visitExtendBlockObject(const Expr *e) {
3508 return CGF.EmitARCExtendBlockObject(e);
3509 }
3510
3511 /// For reclaims, perform an unsafeClaim if that's enabled.
3512 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3513 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3514 }
3515
3516 /// When we have an undecorated call, just emit it without adding
3517 /// the unsafeClaim.
3518 llvm::Value *visitCall(const Expr *e) {
3519 return CGF.EmitScalarExpr(e);
3520 }
3521
3522 /// Just do normal scalar emission in the default case.
3523 llvm::Value *visitExpr(const Expr *e) {
3524 return CGF.EmitScalarExpr(e);
3525 }
3526};
3527}
3528
3529static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3530 const Expr *e) {
3531 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
7
Calling 'ARCExprEmitter::visit'
3532}
3533
3534/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3535/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3536/// avoiding any spurious retains, including by performing reclaims
3537/// with objc_unsafeClaimAutoreleasedReturnValue.
3538llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3539 // Look through full-expressions.
3540 if (const ExprWithCleanups *cleanups
4.1
'cleanups' is null
= dyn_cast<ExprWithCleanups>(e)) {
4
Assuming 'e' is not a 'ExprWithCleanups'
5
Taking false branch
3541 RunCleanupsScope scope(*this);
3542 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3543 }
3544
3545 return emitARCUnsafeUnretainedScalarExpr(*this, e);
6
Calling 'emitARCUnsafeUnretainedScalarExpr'
3546}
3547
3548std::pair<LValue,llvm::Value*>
3549CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3550 bool ignored) {
3551 // Evaluate the RHS first. If we're ignoring the result, assume
3552 // that we can emit at an unsafe +0.
3553 llvm::Value *value;
3554 if (ignored) {
1
Assuming 'ignored' is true
2
Taking true branch
3555 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3
Calling 'CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr'
3556 } else {
3557 value = EmitScalarExpr(e->getRHS());
3558 }
3559
3560 // Emit the LHS and perform the store.
3561 LValue lvalue = EmitLValue(e->getLHS());
3562 EmitStoreOfScalar(value, lvalue);
3563
3564 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3565}
3566
3567std::pair<LValue,llvm::Value*>
3568CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3569 bool ignored) {
3570 // Evaluate the RHS first.
3571 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3572 llvm::Value *value = result.getPointer();
3573
3574 bool hasImmediateRetain = result.getInt();
3575
3576 // If we didn't emit a retained object, and the l-value is of block
3577 // type, then we need to emit the block-retain immediately in case
3578 // it invalidates the l-value.
3579 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3580 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3581 hasImmediateRetain = true;
3582 }
3583
3584 LValue lvalue = EmitLValue(e->getLHS());
3585
3586 // If the RHS was emitted retained, expand this.
3587 if (hasImmediateRetain) {
3588 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3589 EmitStoreOfScalar(value, lvalue);
3590 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3591 } else {
3592 value = EmitARCStoreStrong(lvalue, value, ignored);
3593 }
3594
3595 return std::pair<LValue,llvm::Value*>(lvalue, value);
3596}
3597
3598std::pair<LValue,llvm::Value*>
3599CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3600 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3601 LValue lvalue = EmitLValue(e->getLHS());
3602
3603 EmitStoreOfScalar(value, lvalue);
3604
3605 return std::pair<LValue,llvm::Value*>(lvalue, value);
3606}
3607
3608void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3609 const ObjCAutoreleasePoolStmt &ARPS) {
3610 const Stmt *subStmt = ARPS.getSubStmt();
3611 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3612
3613 CGDebugInfo *DI = getDebugInfo();
3614 if (DI)
3615 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3616
3617 // Keep track of the current cleanup stack depth.
3618 RunCleanupsScope Scope(*this);
3619 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3620 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3621 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3622 } else {
3623 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3624 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3625 }
3626
3627 for (const auto *I : S.body())
3628 EmitStmt(I);
3629
3630 if (DI)
3631 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3632}
3633
3634/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3635/// make sure it survives garbage collection until this point.
3636void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3637 // We just use an inline assembly.
3638 llvm::FunctionType *extenderType
3639 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3640 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3641 /* assembly */ "",
3642 /* constraints */ "r",
3643 /* side effects */ true);
3644
3645 object = Builder.CreateBitCast(object, VoidPtrTy);
3646 EmitNounwindRuntimeCall(extender, object);
3647}
3648
3649/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3650/// non-trivial copy assignment function, produce following helper function.
3651/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3652///
3653llvm::Constant *
3654CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3655 const ObjCPropertyImplDecl *PID) {
3656 if (!getLangOpts().CPlusPlus ||
3657 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3658 return nullptr;
3659 QualType Ty = PID->getPropertyIvarDecl()->getType();
3660 if (!Ty->isRecordType())
3661 return nullptr;
3662 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3663 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3664 return nullptr;
3665 llvm::Constant *HelperFn = nullptr;
3666 if (hasTrivialSetExpr(PID))
3667 return nullptr;
3668 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null")(static_cast <bool> (PID->getSetterCXXAssignment() &&
"SetterCXXAssignment - null") ? void (0) : __assert_fail ("PID->getSetterCXXAssignment() && \"SetterCXXAssignment - null\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3668, __extension__ __PRETTY_FUNCTION__))
;
3669 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3670 return HelperFn;
3671
3672 ASTContext &C = getContext();
3673 IdentifierInfo *II
3674 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3675
3676 QualType ReturnTy = C.VoidTy;
3677 QualType DestTy = C.getPointerType(Ty);
3678 QualType SrcTy = Ty;
3679 SrcTy.addConst();
3680 SrcTy = C.getPointerType(SrcTy);
3681
3682 SmallVector<QualType, 2> ArgTys;
3683 ArgTys.push_back(DestTy);
3684 ArgTys.push_back(SrcTy);
3685 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3686
3687 FunctionDecl *FD = FunctionDecl::Create(
3688 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3689 FunctionTy, nullptr, SC_Static, false, false, false);
3690
3691 FunctionArgList args;
3692 ParmVarDecl *Params[2];
3693 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3694 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3695 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3696 /*DefArg=*/nullptr);
3697 args.push_back(Params[0] = DstDecl);
3698 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3699 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3700 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3701 /*DefArg=*/nullptr);
3702 args.push_back(Params[1] = SrcDecl);
3703 FD->setParams(Params);
3704
3705 const CGFunctionInfo &FI =
3706 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3707
3708 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3709
3710 llvm::Function *Fn =
3711 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3712 "__assign_helper_atomic_property_",
3713 &CGM.getModule());
3714
3715 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3716
3717 StartFunction(FD, ReturnTy, Fn, FI, args);
3718
3719 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3720 UnaryOperator *DST = UnaryOperator::Create(
3721 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3722 SourceLocation(), false, FPOptionsOverride());
3723
3724 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3725 UnaryOperator *SRC = UnaryOperator::Create(
3726 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3727 SourceLocation(), false, FPOptionsOverride());
3728
3729 Expr *Args[2] = {DST, SRC};
3730 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3731 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3732 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3733 VK_LValue, SourceLocation(), FPOptionsOverride());
3734
3735 EmitStmt(TheCall);
3736
3737 FinishFunction();
3738 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3739 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3740 return HelperFn;
3741}
3742
3743llvm::Constant *
3744CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3745 const ObjCPropertyImplDecl *PID) {
3746 if (!getLangOpts().CPlusPlus ||
3747 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3748 return nullptr;
3749 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3750 QualType Ty = PD->getType();
3751 if (!Ty->isRecordType())
3752 return nullptr;
3753 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3754 return nullptr;
3755 llvm::Constant *HelperFn = nullptr;
3756 if (hasTrivialGetExpr(PID))
3757 return nullptr;
3758 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null")(static_cast <bool> (PID->getGetterCXXConstructor() &&
"getGetterCXXConstructor - null") ? void (0) : __assert_fail
("PID->getGetterCXXConstructor() && \"getGetterCXXConstructor - null\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3758, __extension__ __PRETTY_FUNCTION__))
;
3759 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3760 return HelperFn;
3761
3762 ASTContext &C = getContext();
3763 IdentifierInfo *II =
3764 &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3765
3766 QualType ReturnTy = C.VoidTy;
3767 QualType DestTy = C.getPointerType(Ty);
3768 QualType SrcTy = Ty;
3769 SrcTy.addConst();
3770 SrcTy = C.getPointerType(SrcTy);
3771
3772 SmallVector<QualType, 2> ArgTys;
3773 ArgTys.push_back(DestTy);
3774 ArgTys.push_back(SrcTy);
3775 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3776
3777 FunctionDecl *FD = FunctionDecl::Create(
3778 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3779 FunctionTy, nullptr, SC_Static, false, false, false);
3780
3781 FunctionArgList args;
3782 ParmVarDecl *Params[2];
3783 ParmVarDecl *DstDecl = ParmVarDecl::Create(
3784 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3785 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3786 /*DefArg=*/nullptr);
3787 args.push_back(Params[0] = DstDecl);
3788 ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3789 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3790 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3791 /*DefArg=*/nullptr);
3792 args.push_back(Params[1] = SrcDecl);
3793 FD->setParams(Params);
3794
3795 const CGFunctionInfo &FI =
3796 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3797
3798 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3799
3800 llvm::Function *Fn = llvm::Function::Create(
3801 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3802 &CGM.getModule());
3803
3804 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3805
3806 StartFunction(FD, ReturnTy, Fn, FI, args);
3807
3808 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3809 SourceLocation());
3810
3811 UnaryOperator *SRC = UnaryOperator::Create(
3812 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3813 SourceLocation(), false, FPOptionsOverride());
3814
3815 CXXConstructExpr *CXXConstExpr =
3816 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3817
3818 SmallVector<Expr*, 4> ConstructorArgs;
3819 ConstructorArgs.push_back(SRC);
3820 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3821 CXXConstExpr->arg_end());
3822
3823 CXXConstructExpr *TheCXXConstructExpr =
3824 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3825 CXXConstExpr->getConstructor(),
3826 CXXConstExpr->isElidable(),
3827 ConstructorArgs,
3828 CXXConstExpr->hadMultipleCandidates(),
3829 CXXConstExpr->isListInitialization(),
3830 CXXConstExpr->isStdInitListInitialization(),
3831 CXXConstExpr->requiresZeroInitialization(),
3832 CXXConstExpr->getConstructionKind(),
3833 SourceRange());
3834
3835 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3836 SourceLocation());
3837
3838 RValue DV = EmitAnyExpr(&DstExpr);
3839 CharUnits Alignment
3840 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3841 EmitAggExpr(TheCXXConstructExpr,
3842 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3843 Qualifiers(),
3844 AggValueSlot::IsDestructed,
3845 AggValueSlot::DoesNotNeedGCBarriers,
3846 AggValueSlot::IsNotAliased,
3847 AggValueSlot::DoesNotOverlap));
3848
3849 FinishFunction();
3850 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3851 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3852 return HelperFn;
3853}
3854
3855llvm::Value *
3856CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3857 // Get selectors for retain/autorelease.
3858 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3859 Selector CopySelector =
3860 getContext().Selectors.getNullarySelector(CopyID);
3861 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3862 Selector AutoreleaseSelector =
3863 getContext().Selectors.getNullarySelector(AutoreleaseID);
3864
3865 // Emit calls to retain/autorelease.
3866 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3867 llvm::Value *Val = Block;
3868 RValue Result;
3869 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3870 Ty, CopySelector,
3871 Val, CallArgList(), nullptr, nullptr);
3872 Val = Result.getScalarVal();
3873 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3874 Ty, AutoreleaseSelector,
3875 Val, CallArgList(), nullptr, nullptr);
3876 Val = Result.getScalarVal();
3877 return Val;
3878}
3879
3880static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3881 switch (TT.getOS()) {
3882 case llvm::Triple::Darwin:
3883 case llvm::Triple::MacOSX:
3884 return llvm::MachO::PLATFORM_MACOS;
3885 case llvm::Triple::IOS:
3886 return llvm::MachO::PLATFORM_IOS;
3887 case llvm::Triple::TvOS:
3888 return llvm::MachO::PLATFORM_TVOS;
3889 case llvm::Triple::WatchOS:
3890 return llvm::MachO::PLATFORM_WATCHOS;
3891 default:
3892 return /*Unknown platform*/ 0;
3893 }
3894}
3895
3896static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3897 const VersionTuple &Version) {
3898 CodeGenModule &CGM = CGF.CGM;
3899 // Note: we intend to support multi-platform version checks, so reserve
3900 // the room for a dual platform checking invocation that will be
3901 // implemented in the future.
3902 llvm::SmallVector<llvm::Value *, 8> Args;
3903
3904 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3905 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3906 Args.push_back(
3907 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3908 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3909 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0));
3910 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0));
3911 };
3912
3913 assert(!Version.empty() && "unexpected empty version")(static_cast <bool> (!Version.empty() && "unexpected empty version"
) ? void (0) : __assert_fail ("!Version.empty() && \"unexpected empty version\""
, "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3913, __extension__ __PRETTY_FUNCTION__))
;
3914 EmitArgs(Version, CGM.getTarget().getTriple());
3915
3916 if (!CGM.IsPlatformVersionAtLeastFn) {
3917 llvm::FunctionType *FTy = llvm::FunctionType::get(
3918 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3919 false);
3920 CGM.IsPlatformVersionAtLeastFn =
3921 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3922 }
3923
3924 llvm::Value *Check =
3925 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3926 return CGF.Builder.CreateICmpNE(Check,
3927 llvm::Constant::getNullValue(CGM.Int32Ty));
3928}
3929
3930llvm::Value *
3931CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3932 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3933 if (CGM.getTarget().getTriple().isOSDarwin())
3934 return emitIsPlatformVersionAtLeast(*this, Version);
3935
3936 if (!CGM.IsOSVersionAtLeastFn) {
3937 llvm::FunctionType *FTy =
3938 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3939 CGM.IsOSVersionAtLeastFn =
3940 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3941 }
3942
3943 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
3944 llvm::Value *Args[] = {
3945 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
3946 llvm::ConstantInt::get(CGM.Int32Ty, Min ? *Min : 0),
3947 llvm::ConstantInt::get(CGM.Int32Ty, SMin ? *SMin : 0),
3948 };
3949
3950 llvm::Value *CallRes =
3951 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3952
3953 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3954}
3955
3956static bool isFoundationNeededForDarwinAvailabilityCheck(
3957 const llvm::Triple &TT, const VersionTuple &TargetVersion) {
3958 VersionTuple FoundationDroppedInVersion;
3959 switch (TT.getOS()) {
3960 case llvm::Triple::IOS:
3961 case llvm::Triple::TvOS:
3962 FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
3963 break;
3964 case llvm::Triple::WatchOS:
3965 FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
3966 break;
3967 case llvm::Triple::Darwin:
3968 case llvm::Triple::MacOSX:
3969 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
3970 break;
3971 default:
3972 llvm_unreachable("Unexpected OS")::llvm::llvm_unreachable_internal("Unexpected OS", "/build/llvm-toolchain-snapshot-14~++20210926122410+d23fd8ae8906/clang/lib/CodeGen/CGObjC.cpp"
, 3972)
;
3973 }
3974 return TargetVersion < FoundationDroppedInVersion;
3975}
3976
3977void CodeGenModule::emitAtAvailableLinkGuard() {
3978 if (!IsPlatformVersionAtLeastFn)
3979 return;
3980 // @available requires CoreFoundation only on Darwin.
3981 if (!Target.getTriple().isOSDarwin())
3982 return;
3983 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3984 // watchOS 6+.
3985 if (!isFoundationNeededForDarwinAvailabilityCheck(
3986 Target.getTriple(), Target.getPlatformMinVersion()))
3987 return;
3988 // Add -framework CoreFoundation to the linker commands. We still want to
3989 // emit the core foundation reference down below because otherwise if
3990 // CoreFoundation is not used in the code, the linker won't link the
3991 // framework.
3992 auto &Context = getLLVMContext();
3993 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3994 llvm::MDString::get(Context, "CoreFoundation")};
3995 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3996 // Emit a reference to a symbol from CoreFoundation to ensure that
3997 // CoreFoundation is linked into the final binary.
3998 llvm::FunctionType *FTy =
3999 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4000 llvm::FunctionCallee CFFunc =
4001 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4002
4003 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4004 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4005 CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4006 llvm::AttributeList(), /*Local=*/true);
4007 llvm::Function *CFLinkCheckFunc =
4008 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4009 if (CFLinkCheckFunc->empty()) {
4010 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4011 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4012 CodeGenFunction CGF(*this);
4013 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4014 CGF.EmitNounwindRuntimeCall(CFFunc,
4015 llvm::Constant::getNullValue(VoidPtrTy));
4016 CGF.Builder.CreateUnreachable();
4017 addCompilerUsedGlobal(CFLinkCheckFunc);
4018 }
4019}
4020
4021CGObjCRuntime::~CGObjCRuntime() {}