Bug Summary

File:tools/clang/lib/CodeGen/CGObjCGNU.cpp
Warning:line 1865, column 20
The result of the left shift is undefined because the left operand is negative

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGObjCGNU.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373386/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn373386/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373386/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373386/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373386/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373386/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373386=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-042503-23017-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp

/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp

1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the GNU runtime. The
10// class in this file generates structures used by the GNU Objective-C runtime
11// library. These structures are defined in objc/objc.h and objc/objc-api.h in
12// the GNU runtime distribution.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGObjCRuntime.h"
17#include "CGCleanup.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "CGCXXABI.h"
21#include "clang/CodeGen/ConstantInitBuilder.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Basic/FileManager.h"
28#include "clang/Basic/SourceManager.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ConvertUTF.h"
37#include <cctype>
38
39using namespace clang;
40using namespace CodeGen;
41
42namespace {
43
44std::string SymbolNameForMethod( StringRef ClassName,
45 StringRef CategoryName, const Selector MethodName,
46 bool isClassMethod) {
47 std::string MethodNameColonStripped = MethodName.getAsString();
48 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
49 ':', '_');
50 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
51 CategoryName + "_" + MethodNameColonStripped).str();
52}
53
54/// Class that lazily initialises the runtime function. Avoids inserting the
55/// types and the function declaration into a module if they're not used, and
56/// avoids constructing the type more than once if it's used more than once.
57class LazyRuntimeFunction {
58 CodeGenModule *CGM;
59 llvm::FunctionType *FTy;
60 const char *FunctionName;
61 llvm::FunctionCallee Function;
62
63public:
64 /// Constructor leaves this class uninitialized, because it is intended to
65 /// be used as a field in another class and not all of the types that are
66 /// used as arguments will necessarily be available at construction time.
67 LazyRuntimeFunction()
68 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
69
70 /// Initialises the lazy function with the name, return type, and the types
71 /// of the arguments.
72 template <typename... Tys>
73 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
74 Tys *... Types) {
75 CGM = Mod;
76 FunctionName = name;
77 Function = nullptr;
78 if(sizeof...(Tys)) {
79 SmallVector<llvm::Type *, 8> ArgTys({Types...});
80 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
81 }
82 else {
83 FTy = llvm::FunctionType::get(RetTy, None, false);
84 }
85 }
86
87 llvm::FunctionType *getType() { return FTy; }
88
89 /// Overloaded cast operator, allows the class to be implicitly cast to an
90 /// LLVM constant.
91 operator llvm::FunctionCallee() {
92 if (!Function) {
93 if (!FunctionName)
94 return nullptr;
95 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
96 }
97 return Function;
98 }
99};
100
101
102/// GNU Objective-C runtime code generation. This class implements the parts of
103/// Objective-C support that are specific to the GNU family of runtimes (GCC,
104/// GNUstep and ObjFW).
105class CGObjCGNU : public CGObjCRuntime {
106protected:
107 /// The LLVM module into which output is inserted
108 llvm::Module &TheModule;
109 /// strut objc_super. Used for sending messages to super. This structure
110 /// contains the receiver (object) and the expected class.
111 llvm::StructType *ObjCSuperTy;
112 /// struct objc_super*. The type of the argument to the superclass message
113 /// lookup functions.
114 llvm::PointerType *PtrToObjCSuperTy;
115 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
116 /// SEL is included in a header somewhere, in which case it will be whatever
117 /// type is declared in that header, most likely {i8*, i8*}.
118 llvm::PointerType *SelectorTy;
119 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
120 /// places where it's used
121 llvm::IntegerType *Int8Ty;
122 /// Pointer to i8 - LLVM type of char*, for all of the places where the
123 /// runtime needs to deal with C strings.
124 llvm::PointerType *PtrToInt8Ty;
125 /// struct objc_protocol type
126 llvm::StructType *ProtocolTy;
127 /// Protocol * type.
128 llvm::PointerType *ProtocolPtrTy;
129 /// Instance Method Pointer type. This is a pointer to a function that takes,
130 /// at a minimum, an object and a selector, and is the generic type for
131 /// Objective-C methods. Due to differences between variadic / non-variadic
132 /// calling conventions, it must always be cast to the correct type before
133 /// actually being used.
134 llvm::PointerType *IMPTy;
135 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
136 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
137 /// but if the runtime header declaring it is included then it may be a
138 /// pointer to a structure.
139 llvm::PointerType *IdTy;
140 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
141 /// message lookup function and some GC-related functions.
142 llvm::PointerType *PtrToIdTy;
143 /// The clang type of id. Used when using the clang CGCall infrastructure to
144 /// call Objective-C methods.
145 CanQualType ASTIdTy;
146 /// LLVM type for C int type.
147 llvm::IntegerType *IntTy;
148 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
149 /// used in the code to document the difference between i8* meaning a pointer
150 /// to a C string and i8* meaning a pointer to some opaque type.
151 llvm::PointerType *PtrTy;
152 /// LLVM type for C long type. The runtime uses this in a lot of places where
153 /// it should be using intptr_t, but we can't fix this without breaking
154 /// compatibility with GCC...
155 llvm::IntegerType *LongTy;
156 /// LLVM type for C size_t. Used in various runtime data structures.
157 llvm::IntegerType *SizeTy;
158 /// LLVM type for C intptr_t.
159 llvm::IntegerType *IntPtrTy;
160 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
161 llvm::IntegerType *PtrDiffTy;
162 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
163 /// variables.
164 llvm::PointerType *PtrToIntTy;
165 /// LLVM type for Objective-C BOOL type.
166 llvm::Type *BoolTy;
167 /// 32-bit integer type, to save us needing to look it up every time it's used.
168 llvm::IntegerType *Int32Ty;
169 /// 64-bit integer type, to save us needing to look it up every time it's used.
170 llvm::IntegerType *Int64Ty;
171 /// The type of struct objc_property.
172 llvm::StructType *PropertyMetadataTy;
173 /// Metadata kind used to tie method lookups to message sends. The GNUstep
174 /// runtime provides some LLVM passes that can use this to do things like
175 /// automatic IMP caching and speculative inlining.
176 unsigned msgSendMDKind;
177 /// Does the current target use SEH-based exceptions? False implies
178 /// Itanium-style DWARF unwinding.
179 bool usesSEHExceptions;
180
181 /// Helper to check if we are targeting a specific runtime version or later.
182 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
183 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
184 return (R.getKind() == kind) &&
185 (R.getVersion() >= VersionTuple(major, minor));
186 }
187
188 std::string ManglePublicSymbol(StringRef Name) {
189 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
190 }
191
192 std::string SymbolForProtocol(Twine Name) {
193 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
194 }
195
196 std::string SymbolForProtocolRef(StringRef Name) {
197 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
198 }
199
200
201 /// Helper function that generates a constant string and returns a pointer to
202 /// the start of the string. The result of this function can be used anywhere
203 /// where the C code specifies const char*.
204 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
205 ConstantAddress Array = CGM.GetAddrOfConstantCString(Str, Name);
206 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
207 Array.getPointer(), Zeros);
208 }
209
210 /// Emits a linkonce_odr string, whose name is the prefix followed by the
211 /// string value. This allows the linker to combine the strings between
212 /// different modules. Used for EH typeinfo names, selector strings, and a
213 /// few other things.
214 llvm::Constant *ExportUniqueString(const std::string &Str,
215 const std::string &prefix,
216 bool Private=false) {
217 std::string name = prefix + Str;
218 auto *ConstStr = TheModule.getGlobalVariable(name);
219 if (!ConstStr) {
220 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
221 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
222 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
223 GV->setComdat(TheModule.getOrInsertComdat(name));
224 if (Private)
225 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
226 ConstStr = GV;
227 }
228 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
229 ConstStr, Zeros);
230 }
231
232 /// Returns a property name and encoding string.
233 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
234 const Decl *Container) {
235 assert(!isRuntime(ObjCRuntime::GNUstep, 2))((!isRuntime(ObjCRuntime::GNUstep, 2)) ? static_cast<void>
(0) : __assert_fail ("!isRuntime(ObjCRuntime::GNUstep, 2)", "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 235, __PRETTY_FUNCTION__))
;
236 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
237 std::string NameAndAttributes;
238 std::string TypeStr =
239 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
240 NameAndAttributes += '\0';
241 NameAndAttributes += TypeStr.length() + 3;
242 NameAndAttributes += TypeStr;
243 NameAndAttributes += '\0';
244 NameAndAttributes += PD->getNameAsString();
245 return MakeConstantString(NameAndAttributes);
246 }
247 return MakeConstantString(PD->getNameAsString());
248 }
249
250 /// Push the property attributes into two structure fields.
251 void PushPropertyAttributes(ConstantStructBuilder &Fields,
252 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
253 isDynamic=true) {
254 int attrs = property->getPropertyAttributes();
255 // For read-only properties, clear the copy and retain flags
256 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
257 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
258 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
259 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
260 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
261 }
262 // The first flags field has the same attribute values as clang uses internally
263 Fields.addInt(Int8Ty, attrs & 0xff);
264 attrs >>= 8;
265 attrs <<= 2;
266 // For protocol properties, synthesized and dynamic have no meaning, so we
267 // reuse these flags to indicate that this is a protocol property (both set
268 // has no meaning, as a property can't be both synthesized and dynamic)
269 attrs |= isSynthesized ? (1<<0) : 0;
270 attrs |= isDynamic ? (1<<1) : 0;
271 // The second field is the next four fields left shifted by two, with the
272 // low bit set to indicate whether the field is synthesized or dynamic.
273 Fields.addInt(Int8Ty, attrs & 0xff);
274 // Two padding fields
275 Fields.addInt(Int8Ty, 0);
276 Fields.addInt(Int8Ty, 0);
277 }
278
279 virtual llvm::Constant *GenerateCategoryProtocolList(const
280 ObjCCategoryDecl *OCD);
281 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
282 int count) {
283 // int count;
284 Fields.addInt(IntTy, count);
285 // int size; (only in GNUstep v2 ABI.
286 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
287 llvm::DataLayout td(&TheModule);
288 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
289 CGM.getContext().getCharWidth());
290 }
291 // struct objc_property_list *next;
292 Fields.add(NULLPtr);
293 // struct objc_property properties[]
294 return Fields.beginArray(PropertyMetadataTy);
295 }
296 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
297 const ObjCPropertyDecl *property,
298 const Decl *OCD,
299 bool isSynthesized=true, bool
300 isDynamic=true) {
301 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
302 ASTContext &Context = CGM.getContext();
303 Fields.add(MakePropertyEncodingString(property, OCD));
304 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
305 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
306 if (accessor) {
307 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
308 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
309 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
310 Fields.add(TypeEncoding);
311 } else {
312 Fields.add(NULLPtr);
313 Fields.add(NULLPtr);
314 }
315 };
316 addPropertyMethod(property->getGetterMethodDecl());
317 addPropertyMethod(property->getSetterMethodDecl());
318 Fields.finishAndAddTo(PropertiesArray);
319 }
320
321 /// Ensures that the value has the required type, by inserting a bitcast if
322 /// required. This function lets us avoid inserting bitcasts that are
323 /// redundant.
324 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
325 if (V->getType() == Ty) return V;
326 return B.CreateBitCast(V, Ty);
327 }
328 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
329 if (V.getType() == Ty) return V;
330 return B.CreateBitCast(V, Ty);
331 }
332
333 // Some zeros used for GEPs in lots of places.
334 llvm::Constant *Zeros[2];
335 /// Null pointer value. Mainly used as a terminator in various arrays.
336 llvm::Constant *NULLPtr;
337 /// LLVM context.
338 llvm::LLVMContext &VMContext;
339
340protected:
341
342 /// Placeholder for the class. Lots of things refer to the class before we've
343 /// actually emitted it. We use this alias as a placeholder, and then replace
344 /// it with a pointer to the class structure before finally emitting the
345 /// module.
346 llvm::GlobalAlias *ClassPtrAlias;
347 /// Placeholder for the metaclass. Lots of things refer to the class before
348 /// we've / actually emitted it. We use this alias as a placeholder, and then
349 /// replace / it with a pointer to the metaclass structure before finally
350 /// emitting the / module.
351 llvm::GlobalAlias *MetaClassPtrAlias;
352 /// All of the classes that have been generated for this compilation units.
353 std::vector<llvm::Constant*> Classes;
354 /// All of the categories that have been generated for this compilation units.
355 std::vector<llvm::Constant*> Categories;
356 /// All of the Objective-C constant strings that have been generated for this
357 /// compilation units.
358 std::vector<llvm::Constant*> ConstantStrings;
359 /// Map from string values to Objective-C constant strings in the output.
360 /// Used to prevent emitting Objective-C strings more than once. This should
361 /// not be required at all - CodeGenModule should manage this list.
362 llvm::StringMap<llvm::Constant*> ObjCStrings;
363 /// All of the protocols that have been declared.
364 llvm::StringMap<llvm::Constant*> ExistingProtocols;
365 /// For each variant of a selector, we store the type encoding and a
366 /// placeholder value. For an untyped selector, the type will be the empty
367 /// string. Selector references are all done via the module's selector table,
368 /// so we create an alias as a placeholder and then replace it with the real
369 /// value later.
370 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
371 /// Type of the selector map. This is roughly equivalent to the structure
372 /// used in the GNUstep runtime, which maintains a list of all of the valid
373 /// types for a selector in a table.
374 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
375 SelectorMap;
376 /// A map from selectors to selector types. This allows us to emit all
377 /// selectors of the same name and type together.
378 SelectorMap SelectorTable;
379
380 /// Selectors related to memory management. When compiling in GC mode, we
381 /// omit these.
382 Selector RetainSel, ReleaseSel, AutoreleaseSel;
383 /// Runtime functions used for memory management in GC mode. Note that clang
384 /// supports code generation for calling these functions, but neither GNU
385 /// runtime actually supports this API properly yet.
386 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
387 WeakAssignFn, GlobalAssignFn;
388
389 typedef std::pair<std::string, std::string> ClassAliasPair;
390 /// All classes that have aliases set for them.
391 std::vector<ClassAliasPair> ClassAliases;
392
393protected:
394 /// Function used for throwing Objective-C exceptions.
395 LazyRuntimeFunction ExceptionThrowFn;
396 /// Function used for rethrowing exceptions, used at the end of \@finally or
397 /// \@synchronize blocks.
398 LazyRuntimeFunction ExceptionReThrowFn;
399 /// Function called when entering a catch function. This is required for
400 /// differentiating Objective-C exceptions and foreign exceptions.
401 LazyRuntimeFunction EnterCatchFn;
402 /// Function called when exiting from a catch block. Used to do exception
403 /// cleanup.
404 LazyRuntimeFunction ExitCatchFn;
405 /// Function called when entering an \@synchronize block. Acquires the lock.
406 LazyRuntimeFunction SyncEnterFn;
407 /// Function called when exiting an \@synchronize block. Releases the lock.
408 LazyRuntimeFunction SyncExitFn;
409
410private:
411 /// Function called if fast enumeration detects that the collection is
412 /// modified during the update.
413 LazyRuntimeFunction EnumerationMutationFn;
414 /// Function for implementing synthesized property getters that return an
415 /// object.
416 LazyRuntimeFunction GetPropertyFn;
417 /// Function for implementing synthesized property setters that return an
418 /// object.
419 LazyRuntimeFunction SetPropertyFn;
420 /// Function used for non-object declared property getters.
421 LazyRuntimeFunction GetStructPropertyFn;
422 /// Function used for non-object declared property setters.
423 LazyRuntimeFunction SetStructPropertyFn;
424
425protected:
426 /// The version of the runtime that this class targets. Must match the
427 /// version in the runtime.
428 int RuntimeVersion;
429 /// The version of the protocol class. Used to differentiate between ObjC1
430 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
431 /// components and can not contain declared properties. We always emit
432 /// Objective-C 2 property structures, but we have to pretend that they're
433 /// Objective-C 1 property structures when targeting the GCC runtime or it
434 /// will abort.
435 const int ProtocolVersion;
436 /// The version of the class ABI. This value is used in the class structure
437 /// and indicates how various fields should be interpreted.
438 const int ClassABIVersion;
439 /// Generates an instance variable list structure. This is a structure
440 /// containing a size and an array of structures containing instance variable
441 /// metadata. This is used purely for introspection in the fragile ABI. In
442 /// the non-fragile ABI, it's used for instance variable fixup.
443 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
444 ArrayRef<llvm::Constant *> IvarTypes,
445 ArrayRef<llvm::Constant *> IvarOffsets,
446 ArrayRef<llvm::Constant *> IvarAlign,
447 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
448
449 /// Generates a method list structure. This is a structure containing a size
450 /// and an array of structures containing method metadata.
451 ///
452 /// This structure is used by both classes and categories, and contains a next
453 /// pointer allowing them to be chained together in a linked list.
454 llvm::Constant *GenerateMethodList(StringRef ClassName,
455 StringRef CategoryName,
456 ArrayRef<const ObjCMethodDecl*> Methods,
457 bool isClassMethodList);
458
459 /// Emits an empty protocol. This is used for \@protocol() where no protocol
460 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
461 /// real protocol.
462 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
463
464 /// Generates a list of property metadata structures. This follows the same
465 /// pattern as method and instance variable metadata lists.
466 llvm::Constant *GeneratePropertyList(const Decl *Container,
467 const ObjCContainerDecl *OCD,
468 bool isClassProperty=false,
469 bool protocolOptionalProperties=false);
470
471 /// Generates a list of referenced protocols. Classes, categories, and
472 /// protocols all use this structure.
473 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
474
475 /// To ensure that all protocols are seen by the runtime, we add a category on
476 /// a class defined in the runtime, declaring no methods, but adopting the
477 /// protocols. This is a horribly ugly hack, but it allows us to collect all
478 /// of the protocols without changing the ABI.
479 void GenerateProtocolHolderCategory();
480
481 /// Generates a class structure.
482 llvm::Constant *GenerateClassStructure(
483 llvm::Constant *MetaClass,
484 llvm::Constant *SuperClass,
485 unsigned info,
486 const char *Name,
487 llvm::Constant *Version,
488 llvm::Constant *InstanceSize,
489 llvm::Constant *IVars,
490 llvm::Constant *Methods,
491 llvm::Constant *Protocols,
492 llvm::Constant *IvarOffsets,
493 llvm::Constant *Properties,
494 llvm::Constant *StrongIvarBitmap,
495 llvm::Constant *WeakIvarBitmap,
496 bool isMeta=false);
497
498 /// Generates a method list. This is used by protocols to define the required
499 /// and optional methods.
500 virtual llvm::Constant *GenerateProtocolMethodList(
501 ArrayRef<const ObjCMethodDecl*> Methods);
502 /// Emits optional and required method lists.
503 template<class T>
504 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
505 llvm::Constant *&Optional) {
506 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
507 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
508 for (const auto *I : Methods)
509 if (I->isOptional())
510 OptionalMethods.push_back(I);
511 else
512 RequiredMethods.push_back(I);
513 Required = GenerateProtocolMethodList(RequiredMethods);
514 Optional = GenerateProtocolMethodList(OptionalMethods);
515 }
516
517 /// Returns a selector with the specified type encoding. An empty string is
518 /// used to return an untyped selector (with the types field set to NULL).
519 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
520 const std::string &TypeEncoding);
521
522 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
523 /// contains the class and ivar names, in the v2 ABI this contains the type
524 /// encoding as well.
525 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
526 const ObjCIvarDecl *Ivar) {
527 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
528 + '.' + Ivar->getNameAsString();
529 return Name;
530 }
531 /// Returns the variable used to store the offset of an instance variable.
532 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
533 const ObjCIvarDecl *Ivar);
534 /// Emits a reference to a class. This allows the linker to object if there
535 /// is no class of the matching name.
536 void EmitClassRef(const std::string &className);
537
538 /// Emits a pointer to the named class
539 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
540 const std::string &Name, bool isWeak);
541
542 /// Looks up the method for sending a message to the specified object. This
543 /// mechanism differs between the GCC and GNU runtimes, so this method must be
544 /// overridden in subclasses.
545 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
546 llvm::Value *&Receiver,
547 llvm::Value *cmd,
548 llvm::MDNode *node,
549 MessageSendInfo &MSI) = 0;
550
551 /// Looks up the method for sending a message to a superclass. This
552 /// mechanism differs between the GCC and GNU runtimes, so this method must
553 /// be overridden in subclasses.
554 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
555 Address ObjCSuper,
556 llvm::Value *cmd,
557 MessageSendInfo &MSI) = 0;
558
559 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
560 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
561 /// bits set to their values, LSB first, while larger ones are stored in a
562 /// structure of this / form:
563 ///
564 /// struct { int32_t length; int32_t values[length]; };
565 ///
566 /// The values in the array are stored in host-endian format, with the least
567 /// significant bit being assumed to come first in the bitfield. Therefore,
568 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
569 /// while a bitfield / with the 63rd bit set will be 1<<64.
570 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
571
572public:
573 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
574 unsigned protocolClassVersion, unsigned classABI=1);
575
576 ConstantAddress GenerateConstantString(const StringLiteral *) override;
577
578 RValue
579 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
580 QualType ResultType, Selector Sel,
581 llvm::Value *Receiver, const CallArgList &CallArgs,
582 const ObjCInterfaceDecl *Class,
583 const ObjCMethodDecl *Method) override;
584 RValue
585 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
586 QualType ResultType, Selector Sel,
587 const ObjCInterfaceDecl *Class,
588 bool isCategoryImpl, llvm::Value *Receiver,
589 bool IsClassMessage, const CallArgList &CallArgs,
590 const ObjCMethodDecl *Method) override;
591 llvm::Value *GetClass(CodeGenFunction &CGF,
592 const ObjCInterfaceDecl *OID) override;
593 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
594 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
595 llvm::Value *GetSelector(CodeGenFunction &CGF,
596 const ObjCMethodDecl *Method) override;
597 virtual llvm::Constant *GetConstantSelector(Selector Sel,
598 const std::string &TypeEncoding) {
599 llvm_unreachable("Runtime unable to generate constant selector")::llvm::llvm_unreachable_internal("Runtime unable to generate constant selector"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 599)
;
600 }
601 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
602 return GetConstantSelector(M->getSelector(),
603 CGM.getContext().getObjCEncodingForMethodDecl(M));
604 }
605 llvm::Constant *GetEHType(QualType T) override;
606
607 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
608 const ObjCContainerDecl *CD) override;
609 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
610 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
611 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
612 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
613 const ObjCProtocolDecl *PD) override;
614 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
615 llvm::Function *ModuleInitFunction() override;
616 llvm::FunctionCallee GetPropertyGetFunction() override;
617 llvm::FunctionCallee GetPropertySetFunction() override;
618 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
619 bool copy) override;
620 llvm::FunctionCallee GetSetStructFunction() override;
621 llvm::FunctionCallee GetGetStructFunction() override;
622 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
623 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
624 llvm::FunctionCallee EnumerationMutationFunction() override;
625
626 void EmitTryStmt(CodeGenFunction &CGF,
627 const ObjCAtTryStmt &S) override;
628 void EmitSynchronizedStmt(CodeGenFunction &CGF,
629 const ObjCAtSynchronizedStmt &S) override;
630 void EmitThrowStmt(CodeGenFunction &CGF,
631 const ObjCAtThrowStmt &S,
632 bool ClearInsertionPoint=true) override;
633 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
634 Address AddrWeakObj) override;
635 void EmitObjCWeakAssign(CodeGenFunction &CGF,
636 llvm::Value *src, Address dst) override;
637 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
638 llvm::Value *src, Address dest,
639 bool threadlocal=false) override;
640 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
641 Address dest, llvm::Value *ivarOffset) override;
642 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
643 llvm::Value *src, Address dest) override;
644 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
645 Address SrcPtr,
646 llvm::Value *Size) override;
647 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
648 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
649 unsigned CVRQualifiers) override;
650 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
651 const ObjCInterfaceDecl *Interface,
652 const ObjCIvarDecl *Ivar) override;
653 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
654 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
655 const CGBlockInfo &blockInfo) override {
656 return NULLPtr;
657 }
658 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
659 const CGBlockInfo &blockInfo) override {
660 return NULLPtr;
661 }
662
663 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
664 return NULLPtr;
665 }
666};
667
668/// Class representing the legacy GCC Objective-C ABI. This is the default when
669/// -fobjc-nonfragile-abi is not specified.
670///
671/// The GCC ABI target actually generates code that is approximately compatible
672/// with the new GNUstep runtime ABI, but refrains from using any features that
673/// would not work with the GCC runtime. For example, clang always generates
674/// the extended form of the class structure, and the extra fields are simply
675/// ignored by GCC libobjc.
676class CGObjCGCC : public CGObjCGNU {
677 /// The GCC ABI message lookup function. Returns an IMP pointing to the
678 /// method implementation for this message.
679 LazyRuntimeFunction MsgLookupFn;
680 /// The GCC ABI superclass message lookup function. Takes a pointer to a
681 /// structure describing the receiver and the class, and a selector as
682 /// arguments. Returns the IMP for the corresponding method.
683 LazyRuntimeFunction MsgLookupSuperFn;
684
685protected:
686 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
687 llvm::Value *cmd, llvm::MDNode *node,
688 MessageSendInfo &MSI) override {
689 CGBuilderTy &Builder = CGF.Builder;
690 llvm::Value *args[] = {
691 EnforceType(Builder, Receiver, IdTy),
692 EnforceType(Builder, cmd, SelectorTy) };
693 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
694 imp->setMetadata(msgSendMDKind, node);
695 return imp;
696 }
697
698 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
699 llvm::Value *cmd, MessageSendInfo &MSI) override {
700 CGBuilderTy &Builder = CGF.Builder;
701 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
702 PtrToObjCSuperTy).getPointer(), cmd};
703 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
704 }
705
706public:
707 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
708 // IMP objc_msg_lookup(id, SEL);
709 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
710 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
711 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
712 PtrToObjCSuperTy, SelectorTy);
713 }
714};
715
716/// Class used when targeting the new GNUstep runtime ABI.
717class CGObjCGNUstep : public CGObjCGNU {
718 /// The slot lookup function. Returns a pointer to a cacheable structure
719 /// that contains (among other things) the IMP.
720 LazyRuntimeFunction SlotLookupFn;
721 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
722 /// a structure describing the receiver and the class, and a selector as
723 /// arguments. Returns the slot for the corresponding method. Superclass
724 /// message lookup rarely changes, so this is a good caching opportunity.
725 LazyRuntimeFunction SlotLookupSuperFn;
726 /// Specialised function for setting atomic retain properties
727 LazyRuntimeFunction SetPropertyAtomic;
728 /// Specialised function for setting atomic copy properties
729 LazyRuntimeFunction SetPropertyAtomicCopy;
730 /// Specialised function for setting nonatomic retain properties
731 LazyRuntimeFunction SetPropertyNonAtomic;
732 /// Specialised function for setting nonatomic copy properties
733 LazyRuntimeFunction SetPropertyNonAtomicCopy;
734 /// Function to perform atomic copies of C++ objects with nontrivial copy
735 /// constructors from Objective-C ivars.
736 LazyRuntimeFunction CxxAtomicObjectGetFn;
737 /// Function to perform atomic copies of C++ objects with nontrivial copy
738 /// constructors to Objective-C ivars.
739 LazyRuntimeFunction CxxAtomicObjectSetFn;
740 /// Type of an slot structure pointer. This is returned by the various
741 /// lookup functions.
742 llvm::Type *SlotTy;
743
744 public:
745 llvm::Constant *GetEHType(QualType T) override;
746
747 protected:
748 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
749 llvm::Value *cmd, llvm::MDNode *node,
750 MessageSendInfo &MSI) override {
751 CGBuilderTy &Builder = CGF.Builder;
752 llvm::FunctionCallee LookupFn = SlotLookupFn;
753
754 // Store the receiver on the stack so that we can reload it later
755 Address ReceiverPtr =
756 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
757 Builder.CreateStore(Receiver, ReceiverPtr);
758
759 llvm::Value *self;
760
761 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
762 self = CGF.LoadObjCSelf();
763 } else {
764 self = llvm::ConstantPointerNull::get(IdTy);
765 }
766
767 // The lookup function is guaranteed not to capture the receiver pointer.
768 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
769 LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
770
771 llvm::Value *args[] = {
772 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
773 EnforceType(Builder, cmd, SelectorTy),
774 EnforceType(Builder, self, IdTy) };
775 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
776 slot->setOnlyReadsMemory();
777 slot->setMetadata(msgSendMDKind, node);
778
779 // Load the imp from the slot
780 llvm::Value *imp = Builder.CreateAlignedLoad(
781 Builder.CreateStructGEP(nullptr, slot, 4), CGF.getPointerAlign());
782
783 // The lookup function may have changed the receiver, so make sure we use
784 // the new one.
785 Receiver = Builder.CreateLoad(ReceiverPtr, true);
786 return imp;
787 }
788
789 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
790 llvm::Value *cmd,
791 MessageSendInfo &MSI) override {
792 CGBuilderTy &Builder = CGF.Builder;
793 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
794
795 llvm::CallInst *slot =
796 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
797 slot->setOnlyReadsMemory();
798
799 return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
800 CGF.getPointerAlign());
801 }
802
803 public:
804 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
805 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
806 unsigned ClassABI) :
807 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
808 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
809
810 llvm::StructType *SlotStructTy =
811 llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
812 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
813 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
814 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
815 SelectorTy, IdTy);
816 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
817 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
818 PtrToObjCSuperTy, SelectorTy);
819 // If we're in ObjC++ mode, then we want to make
820 if (usesSEHExceptions) {
821 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
822 // void objc_exception_rethrow(void)
823 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
824 } else if (CGM.getLangOpts().CPlusPlus) {
825 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
826 // void *__cxa_begin_catch(void *e)
827 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
828 // void __cxa_end_catch(void)
829 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
830 // void _Unwind_Resume_or_Rethrow(void*)
831 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
832 PtrTy);
833 } else if (R.getVersion() >= VersionTuple(1, 7)) {
834 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
835 // id objc_begin_catch(void *e)
836 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
837 // void objc_end_catch(void)
838 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
839 // void _Unwind_Resume_or_Rethrow(void*)
840 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
841 }
842 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
843 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
844 SelectorTy, IdTy, PtrDiffTy);
845 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
846 IdTy, SelectorTy, IdTy, PtrDiffTy);
847 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
848 IdTy, SelectorTy, IdTy, PtrDiffTy);
849 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
850 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
851 // void objc_setCppObjectAtomic(void *dest, const void *src, void
852 // *helper);
853 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
854 PtrTy, PtrTy);
855 // void objc_getCppObjectAtomic(void *dest, const void *src, void
856 // *helper);
857 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
858 PtrTy, PtrTy);
859 }
860
861 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
862 // The optimised functions were added in version 1.7 of the GNUstep
863 // runtime.
864 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 865, __PRETTY_FUNCTION__))
865 VersionTuple(1, 7))((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 865, __PRETTY_FUNCTION__))
;
866 return CxxAtomicObjectGetFn;
867 }
868
869 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
870 // The optimised functions were added in version 1.7 of the GNUstep
871 // runtime.
872 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 873, __PRETTY_FUNCTION__))
873 VersionTuple(1, 7))((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 873, __PRETTY_FUNCTION__))
;
874 return CxxAtomicObjectSetFn;
875 }
876
877 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
878 bool copy) override {
879 // The optimised property functions omit the GC check, and so are not
880 // safe to use in GC mode. The standard functions are fast in GC mode,
881 // so there is less advantage in using them.
882 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC))(((CGM.getLangOpts().getGC() == LangOptions::NonGC)) ? static_cast
<void> (0) : __assert_fail ("(CGM.getLangOpts().getGC() == LangOptions::NonGC)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 882, __PRETTY_FUNCTION__))
;
883 // The optimised functions were added in version 1.7 of the GNUstep
884 // runtime.
885 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 886, __PRETTY_FUNCTION__))
886 VersionTuple(1, 7))((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 886, __PRETTY_FUNCTION__))
;
887
888 if (atomic) {
889 if (copy) return SetPropertyAtomicCopy;
890 return SetPropertyAtomic;
891 }
892
893 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
894 }
895};
896
897/// GNUstep Objective-C ABI version 2 implementation.
898/// This is the ABI that provides a clean break with the legacy GCC ABI and
899/// cleans up a number of things that were added to work around 1980s linkers.
900class CGObjCGNUstep2 : public CGObjCGNUstep {
901 enum SectionKind
902 {
903 SelectorSection = 0,
904 ClassSection,
905 ClassReferenceSection,
906 CategorySection,
907 ProtocolSection,
908 ProtocolReferenceSection,
909 ClassAliasSection,
910 ConstantStringSection
911 };
912 static const char *const SectionsBaseNames[8];
913 static const char *const PECOFFSectionsBaseNames[8];
914 template<SectionKind K>
915 std::string sectionName() {
916 if (CGM.getTriple().isOSBinFormatCOFF()) {
917 std::string name(PECOFFSectionsBaseNames[K]);
918 name += "$m";
919 return name;
920 }
921 return SectionsBaseNames[K];
922 }
923 /// The GCC ABI superclass message lookup function. Takes a pointer to a
924 /// structure describing the receiver and the class, and a selector as
925 /// arguments. Returns the IMP for the corresponding method.
926 LazyRuntimeFunction MsgLookupSuperFn;
927 /// A flag indicating if we've emitted at least one protocol.
928 /// If we haven't, then we need to emit an empty protocol, to ensure that the
929 /// __start__objc_protocols and __stop__objc_protocols sections exist.
930 bool EmittedProtocol = false;
931 /// A flag indicating if we've emitted at least one protocol reference.
932 /// If we haven't, then we need to emit an empty protocol, to ensure that the
933 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
934 /// exist.
935 bool EmittedProtocolRef = false;
936 /// A flag indicating if we've emitted at least one class.
937 /// If we haven't, then we need to emit an empty protocol, to ensure that the
938 /// __start__objc_classes and __stop__objc_classes sections / exist.
939 bool EmittedClass = false;
940 /// Generate the name of a symbol for a reference to a class. Accesses to
941 /// classes should be indirected via this.
942
943 typedef std::pair<std::string, std::pair<llvm::Constant*, int>> EarlyInitPair;
944 std::vector<EarlyInitPair> EarlyInitList;
945
946 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
947 if (isWeak)
948 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
949 else
950 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
951 }
952 /// Generate the name of a class symbol.
953 std::string SymbolForClass(StringRef Name) {
954 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
955 }
956 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
957 ArrayRef<llvm::Value*> Args) {
958 SmallVector<llvm::Type *,8> Types;
959 for (auto *Arg : Args)
960 Types.push_back(Arg->getType());
961 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
962 false);
963 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
964 B.CreateCall(Fn, Args);
965 }
966
967 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
968
969 auto Str = SL->getString();
970 CharUnits Align = CGM.getPointerAlign();
971
972 // Look for an existing one
973 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
974 if (old != ObjCStrings.end())
975 return ConstantAddress(old->getValue(), Align);
976
977 bool isNonASCII = SL->containsNonAscii();
978
979 auto LiteralLength = SL->getLength();
980
981 if ((CGM.getTarget().getPointerWidth(0) == 64) &&
982 (LiteralLength < 9) && !isNonASCII) {
983 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
984 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
985 // 3-bit tag (which is always 4).
986 uint64_t str = 0;
987 // Fill in the characters
988 for (unsigned i=0 ; i<LiteralLength ; i++)
989 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
990 // Fill in the length
991 str |= LiteralLength << 3;
992 // Set the tag
993 str |= 4;
994 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
995 llvm::ConstantInt::get(Int64Ty, str), IdTy);
996 ObjCStrings[Str] = ObjCStr;
997 return ConstantAddress(ObjCStr, Align);
998 }
999
1000 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1001
1002 if (StringClass.empty()) StringClass = "NSConstantString";
1003
1004 std::string Sym = SymbolForClass(StringClass);
1005
1006 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1007
1008 if (!isa) {
1009 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1010 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1011 if (CGM.getTriple().isOSBinFormatCOFF()) {
1012 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1013 }
1014 } else if (isa->getType() != PtrToIdTy)
1015 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1016
1017 // struct
1018 // {
1019 // Class isa;
1020 // uint32_t flags;
1021 // uint32_t length; // Number of codepoints
1022 // uint32_t size; // Number of bytes
1023 // uint32_t hash;
1024 // const char *data;
1025 // };
1026
1027 ConstantInitBuilder Builder(CGM);
1028 auto Fields = Builder.beginStruct();
1029 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1030 Fields.add(isa);
1031 } else {
1032 Fields.addNullPointer(PtrTy);
1033 }
1034 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1035 // number of bytes is simply double the number of UTF-16 codepoints. In
1036 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1037 // codepoints.
1038 if (isNonASCII) {
1039 unsigned NumU8CodeUnits = Str.size();
1040 // A UTF-16 representation of a unicode string contains at most the same
1041 // number of code units as a UTF-8 representation. Allocate that much
1042 // space, plus one for the final null character.
1043 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1044 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1045 llvm::UTF16 *ToPtr = &ToBuf[0];
1046 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1047 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1048 uint32_t StringLength = ToPtr - &ToBuf[0];
1049 // Add null terminator
1050 *ToPtr = 0;
1051 // Flags: 2 indicates UTF-16 encoding
1052 Fields.addInt(Int32Ty, 2);
1053 // Number of UTF-16 codepoints
1054 Fields.addInt(Int32Ty, StringLength);
1055 // Number of bytes
1056 Fields.addInt(Int32Ty, StringLength * 2);
1057 // Hash. Not currently initialised by the compiler.
1058 Fields.addInt(Int32Ty, 0);
1059 // pointer to the data string.
1060 auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1);
1061 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1062 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1063 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1064 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1065 Fields.add(Buffer);
1066 } else {
1067 // Flags: 0 indicates ASCII encoding
1068 Fields.addInt(Int32Ty, 0);
1069 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1070 Fields.addInt(Int32Ty, Str.size());
1071 // Number of bytes
1072 Fields.addInt(Int32Ty, Str.size());
1073 // Hash. Not currently initialised by the compiler.
1074 Fields.addInt(Int32Ty, 0);
1075 // Data pointer
1076 Fields.add(MakeConstantString(Str));
1077 }
1078 std::string StringName;
1079 bool isNamed = !isNonASCII;
1080 if (isNamed) {
1081 StringName = ".objc_str_";
1082 for (int i=0,e=Str.size() ; i<e ; ++i) {
1083 unsigned char c = Str[i];
1084 if (isalnum(c))
1085 StringName += c;
1086 else if (c == ' ')
1087 StringName += '_';
1088 else {
1089 isNamed = false;
1090 break;
1091 }
1092 }
1093 }
1094 auto *ObjCStrGV =
1095 Fields.finishAndCreateGlobal(
1096 isNamed ? StringRef(StringName) : ".objc_string",
1097 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1098 : llvm::GlobalValue::PrivateLinkage);
1099 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1100 if (isNamed) {
1101 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1102 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1103 }
1104 if (CGM.getTriple().isOSBinFormatCOFF()) {
1105 std::pair<llvm::Constant*, int> v{ObjCStrGV, 0};
1106 EarlyInitList.emplace_back(Sym, v);
1107 }
1108 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1109 ObjCStrings[Str] = ObjCStr;
1110 ConstantStrings.push_back(ObjCStr);
1111 return ConstantAddress(ObjCStr, Align);
1112 }
1113
1114 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1115 const ObjCPropertyDecl *property,
1116 const Decl *OCD,
1117 bool isSynthesized=true, bool
1118 isDynamic=true) override {
1119 // struct objc_property
1120 // {
1121 // const char *name;
1122 // const char *attributes;
1123 // const char *type;
1124 // SEL getter;
1125 // SEL setter;
1126 // };
1127 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1128 ASTContext &Context = CGM.getContext();
1129 Fields.add(MakeConstantString(property->getNameAsString()));
1130 std::string TypeStr =
1131 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1132 Fields.add(MakeConstantString(TypeStr));
1133 std::string typeStr;
1134 Context.getObjCEncodingForType(property->getType(), typeStr);
1135 Fields.add(MakeConstantString(typeStr));
1136 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1137 if (accessor) {
1138 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1139 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1140 } else {
1141 Fields.add(NULLPtr);
1142 }
1143 };
1144 addPropertyMethod(property->getGetterMethodDecl());
1145 addPropertyMethod(property->getSetterMethodDecl());
1146 Fields.finishAndAddTo(PropertiesArray);
1147 }
1148
1149 llvm::Constant *
1150 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1151 // struct objc_protocol_method_description
1152 // {
1153 // SEL selector;
1154 // const char *types;
1155 // };
1156 llvm::StructType *ObjCMethodDescTy =
1157 llvm::StructType::get(CGM.getLLVMContext(),
1158 { PtrToInt8Ty, PtrToInt8Ty });
1159 ASTContext &Context = CGM.getContext();
1160 ConstantInitBuilder Builder(CGM);
1161 // struct objc_protocol_method_description_list
1162 // {
1163 // int count;
1164 // int size;
1165 // struct objc_protocol_method_description methods[];
1166 // };
1167 auto MethodList = Builder.beginStruct();
1168 // int count;
1169 MethodList.addInt(IntTy, Methods.size());
1170 // int size; // sizeof(struct objc_method_description)
1171 llvm::DataLayout td(&TheModule);
1172 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1173 CGM.getContext().getCharWidth());
1174 // struct objc_method_description[]
1175 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1176 for (auto *M : Methods) {
1177 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1178 Method.add(CGObjCGNU::GetConstantSelector(M));
1179 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1180 Method.finishAndAddTo(MethodArray);
1181 }
1182 MethodArray.finishAndAddTo(MethodList);
1183 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1184 CGM.getPointerAlign());
1185 }
1186 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1187 override {
1188 SmallVector<llvm::Constant*, 16> Protocols;
1189 for (const auto *PI : OCD->getReferencedProtocols())
1190 Protocols.push_back(
1191 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1192 ProtocolPtrTy));
1193 return GenerateProtocolList(Protocols);
1194 }
1195
1196 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1197 llvm::Value *cmd, MessageSendInfo &MSI) override {
1198 // Don't access the slot unless we're trying to cache the result.
1199 CGBuilderTy &Builder = CGF.Builder;
1200 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper,
1201 PtrToObjCSuperTy).getPointer(), cmd};
1202 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1203 }
1204
1205 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1206 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1207 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1208 if (ClassSymbol)
1209 return ClassSymbol;
1210 ClassSymbol = new llvm::GlobalVariable(TheModule,
1211 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1212 nullptr, SymbolName);
1213 // If this is a weak symbol, then we are creating a valid definition for
1214 // the symbol, pointing to a weak definition of the real class pointer. If
1215 // this is not a weak reference, then we are expecting another compilation
1216 // unit to provide the real indirection symbol.
1217 if (isWeak)
1218 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1219 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1220 nullptr, SymbolForClass(Name)));
1221 else {
1222 if (CGM.getTriple().isOSBinFormatCOFF()) {
1223 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1224 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1225 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1226
1227 const ObjCInterfaceDecl *OID = nullptr;
1228 for (const auto &Result : DC->lookup(&II))
1229 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1230 break;
1231
1232 // The first Interface we find may be a @class,
1233 // which should only be treated as the source of
1234 // truth in the absence of a true declaration.
1235 const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1236 if (OIDDef != nullptr)
1237 OID = OIDDef;
1238
1239 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1240 if (OID->hasAttr<DLLImportAttr>())
1241 Storage = llvm::GlobalValue::DLLImportStorageClass;
1242 else if (OID->hasAttr<DLLExportAttr>())
1243 Storage = llvm::GlobalValue::DLLExportStorageClass;
1244
1245 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1246 }
1247 }
1248 assert(ClassSymbol->getName() == SymbolName)((ClassSymbol->getName() == SymbolName) ? static_cast<void
> (0) : __assert_fail ("ClassSymbol->getName() == SymbolName"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1248, __PRETTY_FUNCTION__))
;
1249 return ClassSymbol;
1250 }
1251 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1252 const std::string &Name,
1253 bool isWeak) override {
1254 return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak),
1255 CGM.getPointerAlign()));
1256 }
1257 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1258 // typedef enum {
1259 // ownership_invalid = 0,
1260 // ownership_strong = 1,
1261 // ownership_weak = 2,
1262 // ownership_unsafe = 3
1263 // } ivar_ownership;
1264 int Flag;
1265 switch (Ownership) {
1266 case Qualifiers::OCL_Strong:
1267 Flag = 1;
1268 break;
1269 case Qualifiers::OCL_Weak:
1270 Flag = 2;
1271 break;
1272 case Qualifiers::OCL_ExplicitNone:
1273 Flag = 3;
1274 break;
1275 case Qualifiers::OCL_None:
1276 case Qualifiers::OCL_Autoreleasing:
1277 assert(Ownership != Qualifiers::OCL_Autoreleasing)((Ownership != Qualifiers::OCL_Autoreleasing) ? static_cast<
void> (0) : __assert_fail ("Ownership != Qualifiers::OCL_Autoreleasing"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1277, __PRETTY_FUNCTION__))
;
1278 Flag = 0;
1279 }
1280 return Flag;
1281 }
1282 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1283 ArrayRef<llvm::Constant *> IvarTypes,
1284 ArrayRef<llvm::Constant *> IvarOffsets,
1285 ArrayRef<llvm::Constant *> IvarAlign,
1286 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1287 llvm_unreachable("Method should not be called!")::llvm::llvm_unreachable_internal("Method should not be called!"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1287)
;
1288 }
1289
1290 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1291 std::string Name = SymbolForProtocol(ProtocolName);
1292 auto *GV = TheModule.getGlobalVariable(Name);
1293 if (!GV) {
1294 // Emit a placeholder symbol.
1295 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1296 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1297 GV->setAlignment(CGM.getPointerAlign().getQuantity());
1298 }
1299 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1300 }
1301
1302 /// Existing protocol references.
1303 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1304
1305 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1306 const ObjCProtocolDecl *PD) override {
1307 auto Name = PD->getNameAsString();
1308 auto *&Ref = ExistingProtocolRefs[Name];
1309 if (!Ref) {
1310 auto *&Protocol = ExistingProtocols[Name];
1311 if (!Protocol)
1312 Protocol = GenerateProtocolRef(PD);
1313 std::string RefName = SymbolForProtocolRef(Name);
1314 assert(!TheModule.getGlobalVariable(RefName))((!TheModule.getGlobalVariable(RefName)) ? static_cast<void
> (0) : __assert_fail ("!TheModule.getGlobalVariable(RefName)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1314, __PRETTY_FUNCTION__))
;
1315 // Emit a reference symbol.
1316 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1317 false, llvm::GlobalValue::LinkOnceODRLinkage,
1318 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1319 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1320 GV->setSection(sectionName<ProtocolReferenceSection>());
1321 GV->setAlignment(CGM.getPointerAlign().getQuantity());
1322 Ref = GV;
1323 }
1324 EmittedProtocolRef = true;
1325 return CGF.Builder.CreateAlignedLoad(Ref, CGM.getPointerAlign());
1326 }
1327
1328 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1329 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1330 Protocols.size());
1331 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1332 Protocols);
1333 ConstantInitBuilder builder(CGM);
1334 auto ProtocolBuilder = builder.beginStruct();
1335 ProtocolBuilder.addNullPointer(PtrTy);
1336 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1337 ProtocolBuilder.add(ProtocolArray);
1338 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1339 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1340 }
1341
1342 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1343 // Do nothing - we only emit referenced protocols.
1344 }
1345 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) {
1346 std::string ProtocolName = PD->getNameAsString();
1347 auto *&Protocol = ExistingProtocols[ProtocolName];
1348 if (Protocol)
1349 return Protocol;
1350
1351 EmittedProtocol = true;
1352
1353 auto SymName = SymbolForProtocol(ProtocolName);
1354 auto *OldGV = TheModule.getGlobalVariable(SymName);
1355
1356 // Use the protocol definition, if there is one.
1357 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1358 PD = Def;
1359 else {
1360 // If there is no definition, then create an external linkage symbol and
1361 // hope that someone else fills it in for us (and fail to link if they
1362 // don't).
1363 assert(!OldGV)((!OldGV) ? static_cast<void> (0) : __assert_fail ("!OldGV"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1363, __PRETTY_FUNCTION__))
;
1364 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1365 /*isConstant*/false,
1366 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1367 return Protocol;
1368 }
1369
1370 SmallVector<llvm::Constant*, 16> Protocols;
1371 for (const auto *PI : PD->protocols())
1372 Protocols.push_back(
1373 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1374 ProtocolPtrTy));
1375 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1376
1377 // Collect information about methods
1378 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1379 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1380 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1381 OptionalInstanceMethodList);
1382 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1383 OptionalClassMethodList);
1384
1385 // The isa pointer must be set to a magic number so the runtime knows it's
1386 // the correct layout.
1387 ConstantInitBuilder builder(CGM);
1388 auto ProtocolBuilder = builder.beginStruct();
1389 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1390 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1391 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1392 ProtocolBuilder.add(ProtocolList);
1393 ProtocolBuilder.add(InstanceMethodList);
1394 ProtocolBuilder.add(ClassMethodList);
1395 ProtocolBuilder.add(OptionalInstanceMethodList);
1396 ProtocolBuilder.add(OptionalClassMethodList);
1397 // Required instance properties
1398 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1399 // Optional instance properties
1400 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1401 // Required class properties
1402 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1403 // Optional class properties
1404 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1405
1406 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1407 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1408 GV->setSection(sectionName<ProtocolSection>());
1409 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1410 if (OldGV) {
1411 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1412 OldGV->getType()));
1413 OldGV->removeFromParent();
1414 GV->setName(SymName);
1415 }
1416 Protocol = GV;
1417 return GV;
1418 }
1419 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1420 if (Val->getType() == Ty)
1421 return Val;
1422 return llvm::ConstantExpr::getBitCast(Val, Ty);
1423 }
1424 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1425 const std::string &TypeEncoding) override {
1426 return GetConstantSelector(Sel, TypeEncoding);
1427 }
1428 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1429 if (TypeEncoding.empty())
1430 return NULLPtr;
1431 std::string MangledTypes = TypeEncoding;
1432 std::replace(MangledTypes.begin(), MangledTypes.end(),
1433 '@', '\1');
1434 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1435 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1436 if (!TypesGlobal) {
1437 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1438 TypeEncoding);
1439 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1440 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1441 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1442 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1443 TypesGlobal = GV;
1444 }
1445 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1446 TypesGlobal, Zeros);
1447 }
1448 llvm::Constant *GetConstantSelector(Selector Sel,
1449 const std::string &TypeEncoding) override {
1450 // @ is used as a special character in symbol names (used for symbol
1451 // versioning), so mangle the name to not include it. Replace it with a
1452 // character that is not a valid type encoding character (and, being
1453 // non-printable, never will be!)
1454 std::string MangledTypes = TypeEncoding;
1455 std::replace(MangledTypes.begin(), MangledTypes.end(),
1456 '@', '\1');
1457 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1458 MangledTypes).str();
1459 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1460 return EnforceType(GV, SelectorTy);
1461 ConstantInitBuilder builder(CGM);
1462 auto SelBuilder = builder.beginStruct();
1463 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1464 true));
1465 SelBuilder.add(GetTypeString(TypeEncoding));
1466 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1467 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1468 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1469 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1470 GV->setSection(sectionName<SelectorSection>());
1471 auto *SelVal = EnforceType(GV, SelectorTy);
1472 return SelVal;
1473 }
1474 llvm::StructType *emptyStruct = nullptr;
1475
1476 /// Return pointers to the start and end of a section. On ELF platforms, we
1477 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1478 /// to the start and end of section names, as long as those section names are
1479 /// valid identifiers and the symbols are referenced but not defined. On
1480 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1481 /// by subsections and place everything that we want to reference in a middle
1482 /// subsection and then insert zero-sized symbols in subsections a and z.
1483 std::pair<llvm::Constant*,llvm::Constant*>
1484 GetSectionBounds(StringRef Section) {
1485 if (CGM.getTriple().isOSBinFormatCOFF()) {
1486 if (emptyStruct == nullptr) {
1487 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1488 emptyStruct->setBody({}, /*isPacked*/true);
1489 }
1490 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1491 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1492 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1493 /*isConstant*/false,
1494 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1495 Section);
1496 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1497 Sym->setSection((Section + SecSuffix).str());
1498 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1499 Section).str()));
1500 Sym->setAlignment(CGM.getPointerAlign().getQuantity());
1501 return Sym;
1502 };
1503 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1504 }
1505 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1506 /*isConstant*/false,
1507 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1508 Section);
1509 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1510 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1511 /*isConstant*/false,
1512 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1513 Section);
1514 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1515 return { Start, Stop };
1516 }
1517 CatchTypeInfo getCatchAllTypeInfo() override {
1518 return CGM.getCXXABI().getCatchAllTypeInfo();
1519 }
1520 llvm::Function *ModuleInitFunction() override {
1521 llvm::Function *LoadFunction = llvm::Function::Create(
1522 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1523 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1524 &TheModule);
1525 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1526 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1527
1528 llvm::BasicBlock *EntryBB =
1529 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1530 CGBuilderTy B(CGM, VMContext);
1531 B.SetInsertPoint(EntryBB);
1532 ConstantInitBuilder builder(CGM);
1533 auto InitStructBuilder = builder.beginStruct();
1534 InitStructBuilder.addInt(Int64Ty, 0);
1535 auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1536 for (auto *s : sectionVec) {
1537 auto bounds = GetSectionBounds(s);
1538 InitStructBuilder.add(bounds.first);
1539 InitStructBuilder.add(bounds.second);
1540 }
1541 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1542 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1543 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1544 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1545
1546 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1547 B.CreateRetVoid();
1548 // Make sure that the optimisers don't delete this function.
1549 CGM.addCompilerUsedGlobal(LoadFunction);
1550 // FIXME: Currently ELF only!
1551 // We have to do this by hand, rather than with @llvm.ctors, so that the
1552 // linker can remove the duplicate invocations.
1553 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1554 /*isConstant*/true, llvm::GlobalValue::LinkOnceAnyLinkage,
1555 LoadFunction, ".objc_ctor");
1556 // Check that this hasn't been renamed. This shouldn't happen, because
1557 // this function should be called precisely once.
1558 assert(InitVar->getName() == ".objc_ctor")((InitVar->getName() == ".objc_ctor") ? static_cast<void
> (0) : __assert_fail ("InitVar->getName() == \".objc_ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1558, __PRETTY_FUNCTION__))
;
1559 // In Windows, initialisers are sorted by the suffix. XCL is for library
1560 // initialisers, which run before user initialisers. We are running
1561 // Objective-C loads at the end of library load. This means +load methods
1562 // will run before any other static constructors, but that static
1563 // constructors can see a fully initialised Objective-C state.
1564 if (CGM.getTriple().isOSBinFormatCOFF())
1565 InitVar->setSection(".CRT$XCLz");
1566 else
1567 {
1568 if (CGM.getCodeGenOpts().UseInitArray)
1569 InitVar->setSection(".init_array");
1570 else
1571 InitVar->setSection(".ctors");
1572 }
1573 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1574 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1575 CGM.addUsedGlobal(InitVar);
1576 for (auto *C : Categories) {
1577 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1578 Cat->setSection(sectionName<CategorySection>());
1579 CGM.addUsedGlobal(Cat);
1580 }
1581 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1582 StringRef Section) {
1583 auto nullBuilder = builder.beginStruct();
1584 for (auto *F : Init)
1585 nullBuilder.add(F);
1586 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1587 false, llvm::GlobalValue::LinkOnceODRLinkage);
1588 GV->setSection(Section);
1589 GV->setComdat(TheModule.getOrInsertComdat(Name));
1590 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1591 CGM.addUsedGlobal(GV);
1592 return GV;
1593 };
1594 for (auto clsAlias : ClassAliases)
1595 createNullGlobal(std::string(".objc_class_alias") +
1596 clsAlias.second, { MakeConstantString(clsAlias.second),
1597 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1598 // On ELF platforms, add a null value for each special section so that we
1599 // can always guarantee that the _start and _stop symbols will exist and be
1600 // meaningful. This is not required on COFF platforms, where our start and
1601 // stop symbols will create the section.
1602 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1603 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1604 sectionName<SelectorSection>());
1605 if (Categories.empty())
1606 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1607 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1608 sectionName<CategorySection>());
1609 if (!EmittedClass) {
1610 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1611 sectionName<ClassSection>());
1612 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1613 sectionName<ClassReferenceSection>());
1614 }
1615 if (!EmittedProtocol)
1616 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1617 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1618 NULLPtr}, sectionName<ProtocolSection>());
1619 if (!EmittedProtocolRef)
1620 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1621 sectionName<ProtocolReferenceSection>());
1622 if (ClassAliases.empty())
1623 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1624 sectionName<ClassAliasSection>());
1625 if (ConstantStrings.empty()) {
1626 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1627 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1628 i32Zero, i32Zero, i32Zero, NULLPtr },
1629 sectionName<ConstantStringSection>());
1630 }
1631 }
1632 ConstantStrings.clear();
1633 Categories.clear();
1634 Classes.clear();
1635
1636 if (EarlyInitList.size() > 0) {
1637 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1638 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1639 &CGM.getModule());
1640 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1641 Init));
1642 for (const auto &lateInit : EarlyInitList) {
1643 auto *global = TheModule.getGlobalVariable(lateInit.first);
1644 if (global) {
1645 b.CreateAlignedStore(global,
1646 b.CreateStructGEP(lateInit.second.first, lateInit.second.second), CGM.getPointerAlign().getQuantity());
1647 }
1648 }
1649 b.CreateRetVoid();
1650 // We can't use the normal LLVM global initialisation array, because we
1651 // need to specify that this runs early in library initialisation.
1652 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1653 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1654 Init, ".objc_early_init_ptr");
1655 InitVar->setSection(".CRT$XCLb");
1656 CGM.addUsedGlobal(InitVar);
1657 }
1658 return nullptr;
1659 }
1660 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1661 /// to trigger linker failures if the types don't match.
1662 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1663 const ObjCIvarDecl *Ivar) override {
1664 std::string TypeEncoding;
1665 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1666 // Prevent the @ from being interpreted as a symbol version.
1667 std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1668 '@', '\1');
1669 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1670 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1671 return Name;
1672 }
1673 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1674 const ObjCInterfaceDecl *Interface,
1675 const ObjCIvarDecl *Ivar) override {
1676 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1677 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1678 if (!IvarOffsetPointer)
1679 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1680 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1681 CharUnits Align = CGM.getIntAlign();
1682 llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(IvarOffsetPointer, Align);
1683 if (Offset->getType() != PtrDiffTy)
1684 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1685 return Offset;
1686 }
1687 void GenerateClass(const ObjCImplementationDecl *OID) override {
1688 ASTContext &Context = CGM.getContext();
1689 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1690
1691 // Get the class name
1692 ObjCInterfaceDecl *classDecl =
1693 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1694 std::string className = classDecl->getNameAsString();
1695 auto *classNameConstant = MakeConstantString(className);
1696
1697 ConstantInitBuilder builder(CGM);
1698 auto metaclassFields = builder.beginStruct();
1699 // struct objc_class *isa;
1700 metaclassFields.addNullPointer(PtrTy);
1701 // struct objc_class *super_class;
1702 metaclassFields.addNullPointer(PtrTy);
1703 // const char *name;
1704 metaclassFields.add(classNameConstant);
1705 // long version;
1706 metaclassFields.addInt(LongTy, 0);
1707 // unsigned long info;
1708 // objc_class_flag_meta
1709 metaclassFields.addInt(LongTy, 1);
1710 // long instance_size;
1711 // Setting this to zero is consistent with the older ABI, but it might be
1712 // more sensible to set this to sizeof(struct objc_class)
1713 metaclassFields.addInt(LongTy, 0);
1714 // struct objc_ivar_list *ivars;
1715 metaclassFields.addNullPointer(PtrTy);
1716 // struct objc_method_list *methods
1717 // FIXME: Almost identical code is copied and pasted below for the
1718 // class, but refactoring it cleanly requires C++14 generic lambdas.
1719 if (OID->classmeth_begin() == OID->classmeth_end())
1
Taking false branch
1720 metaclassFields.addNullPointer(PtrTy);
1721 else {
1722 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1723 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1724 OID->classmeth_end());
1725 metaclassFields.addBitCast(
1726 GenerateMethodList(className, "", ClassMethods, true),
1727 PtrTy);
1728 }
1729 // void *dtable;
1730 metaclassFields.addNullPointer(PtrTy);
1731 // IMP cxx_construct;
1732 metaclassFields.addNullPointer(PtrTy);
1733 // IMP cxx_destruct;
1734 metaclassFields.addNullPointer(PtrTy);
1735 // struct objc_class *subclass_list
1736 metaclassFields.addNullPointer(PtrTy);
1737 // struct objc_class *sibling_class
1738 metaclassFields.addNullPointer(PtrTy);
1739 // struct objc_protocol_list *protocols;
1740 metaclassFields.addNullPointer(PtrTy);
1741 // struct reference_list *extra_data;
1742 metaclassFields.addNullPointer(PtrTy);
1743 // long abi_version;
1744 metaclassFields.addInt(LongTy, 0);
1745 // struct objc_property_list *properties
1746 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1747
1748 auto *metaclass = metaclassFields.finishAndCreateGlobal(
1749 ManglePublicSymbol("OBJC_METACLASS_") + className,
1750 CGM.getPointerAlign());
1751
1752 auto classFields = builder.beginStruct();
1753 // struct objc_class *isa;
1754 classFields.add(metaclass);
1755 // struct objc_class *super_class;
1756 // Get the superclass name.
1757 const ObjCInterfaceDecl * SuperClassDecl =
1758 OID->getClassInterface()->getSuperClass();
1759 llvm::Constant *SuperClass = nullptr;
1760 if (SuperClassDecl) {
2
Assuming 'SuperClassDecl' is null
3
Taking false branch
1761 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1762 SuperClass = TheModule.getNamedGlobal(SuperClassName);
1763 if (!SuperClass)
1764 {
1765 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1766 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1767 if (IsCOFF) {
1768 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1769 if (SuperClassDecl->hasAttr<DLLImportAttr>())
1770 Storage = llvm::GlobalValue::DLLImportStorageClass;
1771 else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1772 Storage = llvm::GlobalValue::DLLExportStorageClass;
1773
1774 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1775 }
1776 }
1777 if (!IsCOFF)
1778 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1779 else
1780 classFields.addNullPointer(PtrTy);
1781 } else
1782 classFields.addNullPointer(PtrTy);
1783 // const char *name;
1784 classFields.add(classNameConstant);
1785 // long version;
1786 classFields.addInt(LongTy, 0);
1787 // unsigned long info;
1788 // !objc_class_flag_meta
1789 classFields.addInt(LongTy, 0);
1790 // long instance_size;
1791 int superInstanceSize = !SuperClassDecl
3.1
'SuperClassDecl' is null
3.1
'SuperClassDecl' is null
? 0 :
4
'?' condition is true
1792 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1793 // Instance size is negative for classes that have not yet had their ivar
1794 // layout calculated.
1795 classFields.addInt(LongTy,
1796 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1797 superInstanceSize));
1798
1799 if (classDecl->all_declared_ivar_begin() == nullptr)
5
Assuming the condition is false
6
Taking false branch
1800 classFields.addNullPointer(PtrTy);
1801 else {
1802 int ivar_count = 0;
1803 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
7
Loop condition is false. Execution continues on line 1805
1804 IVD = IVD->getNextIvar()) ivar_count++;
1805 llvm::DataLayout td(&TheModule);
1806 // struct objc_ivar_list *ivars;
1807 ConstantInitBuilder b(CGM);
1808 auto ivarListBuilder = b.beginStruct();
1809 // int count;
1810 ivarListBuilder.addInt(IntTy, ivar_count);
1811 // size_t size;
1812 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1813 PtrToInt8Ty,
1814 PtrToInt8Ty,
1815 PtrToInt8Ty,
1816 Int32Ty,
1817 Int32Ty);
1818 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1819 CGM.getContext().getCharWidth());
1820 // struct objc_ivar ivars[]
1821 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1822 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
8
Loop condition is true. Entering loop body
1823 IVD = IVD->getNextIvar()) {
1824 auto ivarTy = IVD->getType();
1825 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1826 // const char *name;
1827 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1828 // const char *type;
1829 std::string TypeStr;
1830 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1831 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1832 ivarBuilder.add(MakeConstantString(TypeStr));
1833 // int *offset;
1834 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1835 uint64_t Offset = BaseOffset - superInstanceSize;
1836 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1837 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1838 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1839 if (OffsetVar)
9
Assuming 'OffsetVar' is null
10
Taking false branch
1840 OffsetVar->setInitializer(OffsetValue);
1841 else
1842 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1843 false, llvm::GlobalValue::ExternalLinkage,
1844 OffsetValue, OffsetName);
1845 auto ivarVisibility =
1846 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
11
Assuming the condition is false
14
'?' condition is false
1847 IVD->getAccessControl() == ObjCIvarDecl::Package ||
12
Assuming the condition is false
1848 classDecl->getVisibility() == HiddenVisibility) ?
13
Assuming the condition is false
1849 llvm::GlobalValue::HiddenVisibility :
1850 llvm::GlobalValue::DefaultVisibility;
1851 OffsetVar->setVisibility(ivarVisibility);
1852 ivarBuilder.add(OffsetVar);
1853 // Ivar size
1854 ivarBuilder.addInt(Int32Ty,
1855 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1856 // Alignment will be stored as a base-2 log of the alignment.
1857 int align = llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
15
Calling 'Log2_32'
17
Returning from 'Log2_32'
18
'align' initialized to -1
1858 // Objects that require more than 2^64-byte alignment should be impossible!
1859 assert
18.1
'align' is < 64
18.1
'align' is < 64
(align < 64)((align < 64) ? static_cast<void> (0) : __assert_fail
("align < 64", "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1859, __PRETTY_FUNCTION__))
;
19
'?' condition is true
1860 // uint32_t flags;
1861 // Bits 0-1 are ownership.
1862 // Bit 2 indicates an extended type encoding
1863 // Bits 3-8 contain log2(aligment)
1864 ivarBuilder.addInt(Int32Ty,
1865 (align << 3) | (1<<2) |
20
The result of the left shift is undefined because the left operand is negative
1866 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1867 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1868 }
1869 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1870 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1871 CGM.getPointerAlign(), /*constant*/ false,
1872 llvm::GlobalValue::PrivateLinkage);
1873 classFields.add(ivarList);
1874 }
1875 // struct objc_method_list *methods
1876 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1877 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1878 OID->instmeth_end());
1879 for (auto *propImpl : OID->property_impls())
1880 if (propImpl->getPropertyImplementation() ==
1881 ObjCPropertyImplDecl::Synthesize) {
1882 ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1883 auto addIfExists = [&](const ObjCMethodDecl* OMD) {
1884 if (OMD)
1885 InstanceMethods.push_back(OMD);
1886 };
1887 addIfExists(prop->getGetterMethodDecl());
1888 addIfExists(prop->getSetterMethodDecl());
1889 }
1890
1891 if (InstanceMethods.size() == 0)
1892 classFields.addNullPointer(PtrTy);
1893 else
1894 classFields.addBitCast(
1895 GenerateMethodList(className, "", InstanceMethods, false),
1896 PtrTy);
1897 // void *dtable;
1898 classFields.addNullPointer(PtrTy);
1899 // IMP cxx_construct;
1900 classFields.addNullPointer(PtrTy);
1901 // IMP cxx_destruct;
1902 classFields.addNullPointer(PtrTy);
1903 // struct objc_class *subclass_list
1904 classFields.addNullPointer(PtrTy);
1905 // struct objc_class *sibling_class
1906 classFields.addNullPointer(PtrTy);
1907 // struct objc_protocol_list *protocols;
1908 SmallVector<llvm::Constant*, 16> Protocols;
1909 for (const auto *I : classDecl->protocols())
1910 Protocols.push_back(
1911 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1912 ProtocolPtrTy));
1913 if (Protocols.empty())
1914 classFields.addNullPointer(PtrTy);
1915 else
1916 classFields.add(GenerateProtocolList(Protocols));
1917 // struct reference_list *extra_data;
1918 classFields.addNullPointer(PtrTy);
1919 // long abi_version;
1920 classFields.addInt(LongTy, 0);
1921 // struct objc_property_list *properties
1922 classFields.add(GeneratePropertyList(OID, classDecl));
1923
1924 auto *classStruct =
1925 classFields.finishAndCreateGlobal(SymbolForClass(className),
1926 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1927
1928 auto *classRefSymbol = GetClassVar(className);
1929 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1930 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1931
1932 if (IsCOFF) {
1933 // we can't import a class struct.
1934 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1935 cast<llvm::GlobalValue>(classStruct)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1936 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1937 }
1938
1939 if (SuperClass) {
1940 std::pair<llvm::Constant*, int> v{classStruct, 1};
1941 EarlyInitList.emplace_back(SuperClass->getName(), std::move(v));
1942 }
1943
1944 }
1945
1946
1947 // Resolve the class aliases, if they exist.
1948 // FIXME: Class pointer aliases shouldn't exist!
1949 if (ClassPtrAlias) {
1950 ClassPtrAlias->replaceAllUsesWith(
1951 llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1952 ClassPtrAlias->eraseFromParent();
1953 ClassPtrAlias = nullptr;
1954 }
1955 if (auto Placeholder =
1956 TheModule.getNamedGlobal(SymbolForClass(className)))
1957 if (Placeholder != classStruct) {
1958 Placeholder->replaceAllUsesWith(
1959 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1960 Placeholder->eraseFromParent();
1961 classStruct->setName(SymbolForClass(className));
1962 }
1963 if (MetaClassPtrAlias) {
1964 MetaClassPtrAlias->replaceAllUsesWith(
1965 llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1966 MetaClassPtrAlias->eraseFromParent();
1967 MetaClassPtrAlias = nullptr;
1968 }
1969 assert(classStruct->getName() == SymbolForClass(className))((classStruct->getName() == SymbolForClass(className)) ? static_cast
<void> (0) : __assert_fail ("classStruct->getName() == SymbolForClass(className)"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1969, __PRETTY_FUNCTION__))
;
1970
1971 auto classInitRef = new llvm::GlobalVariable(TheModule,
1972 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1973 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
1974 classInitRef->setSection(sectionName<ClassSection>());
1975 CGM.addUsedGlobal(classInitRef);
1976
1977 EmittedClass = true;
1978 }
1979 public:
1980 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
1981 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1982 PtrToObjCSuperTy, SelectorTy);
1983 // struct objc_property
1984 // {
1985 // const char *name;
1986 // const char *attributes;
1987 // const char *type;
1988 // SEL getter;
1989 // SEL setter;
1990 // }
1991 PropertyMetadataTy =
1992 llvm::StructType::get(CGM.getLLVMContext(),
1993 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
1994 }
1995
1996};
1997
1998const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
1999{
2000"__objc_selectors",
2001"__objc_classes",
2002"__objc_class_refs",
2003"__objc_cats",
2004"__objc_protocols",
2005"__objc_protocol_refs",
2006"__objc_class_aliases",
2007"__objc_constant_string"
2008};
2009
2010const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2011{
2012".objcrt$SEL",
2013".objcrt$CLS",
2014".objcrt$CLR",
2015".objcrt$CAT",
2016".objcrt$PCL",
2017".objcrt$PCR",
2018".objcrt$CAL",
2019".objcrt$STR"
2020};
2021
2022/// Support for the ObjFW runtime.
2023class CGObjCObjFW: public CGObjCGNU {
2024protected:
2025 /// The GCC ABI message lookup function. Returns an IMP pointing to the
2026 /// method implementation for this message.
2027 LazyRuntimeFunction MsgLookupFn;
2028 /// stret lookup function. While this does not seem to make sense at the
2029 /// first look, this is required to call the correct forwarding function.
2030 LazyRuntimeFunction MsgLookupFnSRet;
2031 /// The GCC ABI superclass message lookup function. Takes a pointer to a
2032 /// structure describing the receiver and the class, and a selector as
2033 /// arguments. Returns the IMP for the corresponding method.
2034 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2035
2036 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2037 llvm::Value *cmd, llvm::MDNode *node,
2038 MessageSendInfo &MSI) override {
2039 CGBuilderTy &Builder = CGF.Builder;
2040 llvm::Value *args[] = {
2041 EnforceType(Builder, Receiver, IdTy),
2042 EnforceType(Builder, cmd, SelectorTy) };
2043
2044 llvm::CallBase *imp;
2045 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2046 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2047 else
2048 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2049
2050 imp->setMetadata(msgSendMDKind, node);
2051 return imp;
2052 }
2053
2054 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2055 llvm::Value *cmd, MessageSendInfo &MSI) override {
2056 CGBuilderTy &Builder = CGF.Builder;
2057 llvm::Value *lookupArgs[] = {
2058 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
2059 };
2060
2061 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2062 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2063 else
2064 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2065 }
2066
2067 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2068 bool isWeak) override {
2069 if (isWeak)
2070 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2071
2072 EmitClassRef(Name);
2073 std::string SymbolName = "_OBJC_CLASS_" + Name;
2074 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2075 if (!ClassSymbol)
2076 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2077 llvm::GlobalValue::ExternalLinkage,
2078 nullptr, SymbolName);
2079 return ClassSymbol;
2080 }
2081
2082public:
2083 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2084 // IMP objc_msg_lookup(id, SEL);
2085 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2086 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2087 SelectorTy);
2088 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2089 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2090 PtrToObjCSuperTy, SelectorTy);
2091 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2092 PtrToObjCSuperTy, SelectorTy);
2093 }
2094};
2095} // end anonymous namespace
2096
2097/// Emits a reference to a dummy variable which is emitted with each class.
2098/// This ensures that a linker error will be generated when trying to link
2099/// together modules where a referenced class is not defined.
2100void CGObjCGNU::EmitClassRef(const std::string &className) {
2101 std::string symbolRef = "__objc_class_ref_" + className;
2102 // Don't emit two copies of the same symbol
2103 if (TheModule.getGlobalVariable(symbolRef))
2104 return;
2105 std::string symbolName = "__objc_class_name_" + className;
2106 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2107 if (!ClassSymbol) {
2108 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2109 llvm::GlobalValue::ExternalLinkage,
2110 nullptr, symbolName);
2111 }
2112 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2113 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2114}
2115
2116CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2117 unsigned protocolClassVersion, unsigned classABI)
2118 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2119 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2120 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2121 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2122
2123 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2124 usesSEHExceptions =
2125 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2126
2127 CodeGenTypes &Types = CGM.getTypes();
2128 IntTy = cast<llvm::IntegerType>(
2129 Types.ConvertType(CGM.getContext().IntTy));
2130 LongTy = cast<llvm::IntegerType>(
2131 Types.ConvertType(CGM.getContext().LongTy));
2132 SizeTy = cast<llvm::IntegerType>(
2133 Types.ConvertType(CGM.getContext().getSizeType()));
2134 PtrDiffTy = cast<llvm::IntegerType>(
2135 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2136 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2137
2138 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2139 // C string type. Used in lots of places.
2140 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2141 ProtocolPtrTy = llvm::PointerType::getUnqual(
2142 Types.ConvertType(CGM.getContext().getObjCProtoType()));
2143
2144 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2145 Zeros[1] = Zeros[0];
2146 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2147 // Get the selector Type.
2148 QualType selTy = CGM.getContext().getObjCSelType();
2149 if (QualType() == selTy) {
2150 SelectorTy = PtrToInt8Ty;
2151 } else {
2152 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2153 }
2154
2155 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2156 PtrTy = PtrToInt8Ty;
2157
2158 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2159 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2160
2161 IntPtrTy =
2162 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2163
2164 // Object type
2165 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2166 ASTIdTy = CanQualType();
2167 if (UnqualIdTy != QualType()) {
2168 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2169 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2170 } else {
2171 IdTy = PtrToInt8Ty;
2172 }
2173 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2174 ProtocolTy = llvm::StructType::get(IdTy,
2175 PtrToInt8Ty, // name
2176 PtrToInt8Ty, // protocols
2177 PtrToInt8Ty, // instance methods
2178 PtrToInt8Ty, // class methods
2179 PtrToInt8Ty, // optional instance methods
2180 PtrToInt8Ty, // optional class methods
2181 PtrToInt8Ty, // properties
2182 PtrToInt8Ty);// optional properties
2183
2184 // struct objc_property_gsv1
2185 // {
2186 // const char *name;
2187 // char attributes;
2188 // char attributes2;
2189 // char unused1;
2190 // char unused2;
2191 // const char *getter_name;
2192 // const char *getter_types;
2193 // const char *setter_name;
2194 // const char *setter_types;
2195 // }
2196 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2197 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2198 PtrToInt8Ty, PtrToInt8Ty });
2199
2200 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2201 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2202
2203 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2204
2205 // void objc_exception_throw(id);
2206 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2207 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2208 // int objc_sync_enter(id);
2209 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2210 // int objc_sync_exit(id);
2211 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2212
2213 // void objc_enumerationMutation (id)
2214 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2215
2216 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2217 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2218 PtrDiffTy, BoolTy);
2219 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2220 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2221 PtrDiffTy, IdTy, BoolTy, BoolTy);
2222 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2223 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2224 PtrDiffTy, BoolTy, BoolTy);
2225 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2226 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2227 PtrDiffTy, BoolTy, BoolTy);
2228
2229 // IMP type
2230 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2231 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2232 true));
2233
2234 const LangOptions &Opts = CGM.getLangOpts();
2235 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2236 RuntimeVersion = 10;
2237
2238 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2239 if (Opts.getGC() != LangOptions::NonGC) {
2240 // This is a bit of an hack. We should sort this out by having a proper
2241 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2242 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2243 // Get selectors needed in GC mode
2244 RetainSel = GetNullarySelector("retain", CGM.getContext());
2245 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2246 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2247
2248 // Get functions needed in GC mode
2249
2250 // id objc_assign_ivar(id, id, ptrdiff_t);
2251 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2252 // id objc_assign_strongCast (id, id*)
2253 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2254 PtrToIdTy);
2255 // id objc_assign_global(id, id*);
2256 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2257 // id objc_assign_weak(id, id*);
2258 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2259 // id objc_read_weak(id*);
2260 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2261 // void *objc_memmove_collectable(void*, void *, size_t);
2262 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2263 SizeTy);
2264 }
2265}
2266
2267llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2268 const std::string &Name, bool isWeak) {
2269 llvm::Constant *ClassName = MakeConstantString(Name);
2270 // With the incompatible ABI, this will need to be replaced with a direct
2271 // reference to the class symbol. For the compatible nonfragile ABI we are
2272 // still performing this lookup at run time but emitting the symbol for the
2273 // class externally so that we can make the switch later.
2274 //
2275 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2276 // with memoized versions or with static references if it's safe to do so.
2277 if (!isWeak)
2278 EmitClassRef(Name);
2279
2280 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2281 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2282 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2283}
2284
2285// This has to perform the lookup every time, since posing and related
2286// techniques can modify the name -> class mapping.
2287llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2288 const ObjCInterfaceDecl *OID) {
2289 auto *Value =
2290 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2291 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2292 CGM.setGVProperties(ClassSymbol, OID);
2293 return Value;
2294}
2295
2296llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2297 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2298 if (CGM.getTriple().isOSBinFormatCOFF()) {
2299 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2300 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2301 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2302 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2303
2304 const VarDecl *VD = nullptr;
2305 for (const auto &Result : DC->lookup(&II))
2306 if ((VD = dyn_cast<VarDecl>(Result)))
2307 break;
2308
2309 CGM.setGVProperties(ClassSymbol, VD);
2310 }
2311 }
2312 return Value;
2313}
2314
2315llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2316 const std::string &TypeEncoding) {
2317 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2318 llvm::GlobalAlias *SelValue = nullptr;
2319
2320 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2321 e = Types.end() ; i!=e ; i++) {
2322 if (i->first == TypeEncoding) {
2323 SelValue = i->second;
2324 break;
2325 }
2326 }
2327 if (!SelValue) {
2328 SelValue = llvm::GlobalAlias::create(
2329 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
2330 ".objc_selector_" + Sel.getAsString(), &TheModule);
2331 Types.emplace_back(TypeEncoding, SelValue);
2332 }
2333
2334 return SelValue;
2335}
2336
2337Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2338 llvm::Value *SelValue = GetSelector(CGF, Sel);
2339
2340 // Store it to a temporary. Does this satisfy the semantics of
2341 // GetAddrOfSelector? Hopefully.
2342 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2343 CGF.getPointerAlign());
2344 CGF.Builder.CreateStore(SelValue, tmp);
2345 return tmp;
2346}
2347
2348llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2349 return GetTypedSelector(CGF, Sel, std::string());
2350}
2351
2352llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2353 const ObjCMethodDecl *Method) {
2354 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2355 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2356}
2357
2358llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2359 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2360 // With the old ABI, there was only one kind of catchall, which broke
2361 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2362 // a pointer indicating object catchalls, and NULL to indicate real
2363 // catchalls
2364 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2365 return MakeConstantString("@id");
2366 } else {
2367 return nullptr;
2368 }
2369 }
2370
2371 // All other types should be Objective-C interface pointer types.
2372 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2373 assert(OPT && "Invalid @catch type.")((OPT && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("OPT && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2373, __PRETTY_FUNCTION__))
;
2374 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2375 assert(IDecl && "Invalid @catch type.")((IDecl && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("IDecl && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2375, __PRETTY_FUNCTION__))
;
2376 return MakeConstantString(IDecl->getIdentifier()->getName());
2377}
2378
2379llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2380 if (usesSEHExceptions)
2381 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2382
2383 if (!CGM.getLangOpts().CPlusPlus)
2384 return CGObjCGNU::GetEHType(T);
2385
2386 // For Objective-C++, we want to provide the ability to catch both C++ and
2387 // Objective-C objects in the same function.
2388
2389 // There's a particular fixed type info for 'id'.
2390 if (T->isObjCIdType() ||
2391 T->isObjCQualifiedIdType()) {
2392 llvm::Constant *IDEHType =
2393 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2394 if (!IDEHType)
2395 IDEHType =
2396 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2397 false,
2398 llvm::GlobalValue::ExternalLinkage,
2399 nullptr, "__objc_id_type_info");
2400 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2401 }
2402
2403 const ObjCObjectPointerType *PT =
2404 T->getAs<ObjCObjectPointerType>();
2405 assert(PT && "Invalid @catch type.")((PT && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("PT && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2405, __PRETTY_FUNCTION__))
;
2406 const ObjCInterfaceType *IT = PT->getInterfaceType();
2407 assert(IT && "Invalid @catch type.")((IT && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("IT && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2407, __PRETTY_FUNCTION__))
;
2408 std::string className = IT->getDecl()->getIdentifier()->getName();
2409
2410 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2411
2412 // Return the existing typeinfo if it exists
2413 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2414 if (typeinfo)
2415 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2416
2417 // Otherwise create it.
2418
2419 // vtable for gnustep::libobjc::__objc_class_type_info
2420 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2421 // platform's name mangling.
2422 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2423 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2424 if (!Vtable) {
2425 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2426 llvm::GlobalValue::ExternalLinkage,
2427 nullptr, vtableName);
2428 }
2429 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2430 auto *BVtable = llvm::ConstantExpr::getBitCast(
2431 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2432 PtrToInt8Ty);
2433
2434 llvm::Constant *typeName =
2435 ExportUniqueString(className, "__objc_eh_typename_");
2436
2437 ConstantInitBuilder builder(CGM);
2438 auto fields = builder.beginStruct();
2439 fields.add(BVtable);
2440 fields.add(typeName);
2441 llvm::Constant *TI =
2442 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2443 CGM.getPointerAlign(),
2444 /*constant*/ false,
2445 llvm::GlobalValue::LinkOnceODRLinkage);
2446 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2447}
2448
2449/// Generate an NSConstantString object.
2450ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2451
2452 std::string Str = SL->getString().str();
2453 CharUnits Align = CGM.getPointerAlign();
2454
2455 // Look for an existing one
2456 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2457 if (old != ObjCStrings.end())
2458 return ConstantAddress(old->getValue(), Align);
2459
2460 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2461
2462 if (StringClass.empty()) StringClass = "NSConstantString";
2463
2464 std::string Sym = "_OBJC_CLASS_";
2465 Sym += StringClass;
2466
2467 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2468
2469 if (!isa)
2470 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2471 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2472 else if (isa->getType() != PtrToIdTy)
2473 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2474
2475 ConstantInitBuilder Builder(CGM);
2476 auto Fields = Builder.beginStruct();
2477 Fields.add(isa);
2478 Fields.add(MakeConstantString(Str));
2479 Fields.addInt(IntTy, Str.size());
2480 llvm::Constant *ObjCStr =
2481 Fields.finishAndCreateGlobal(".objc_str", Align);
2482 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2483 ObjCStrings[Str] = ObjCStr;
2484 ConstantStrings.push_back(ObjCStr);
2485 return ConstantAddress(ObjCStr, Align);
2486}
2487
2488///Generates a message send where the super is the receiver. This is a message
2489///send to self with special delivery semantics indicating which class's method
2490///should be called.
2491RValue
2492CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2493 ReturnValueSlot Return,
2494 QualType ResultType,
2495 Selector Sel,
2496 const ObjCInterfaceDecl *Class,
2497 bool isCategoryImpl,
2498 llvm::Value *Receiver,
2499 bool IsClassMessage,
2500 const CallArgList &CallArgs,
2501 const ObjCMethodDecl *Method) {
2502 CGBuilderTy &Builder = CGF.Builder;
2503 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2504 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2505 return RValue::get(EnforceType(Builder, Receiver,
2506 CGM.getTypes().ConvertType(ResultType)));
2507 }
2508 if (Sel == ReleaseSel) {
2509 return RValue::get(nullptr);
2510 }
2511 }
2512
2513 llvm::Value *cmd = GetSelector(CGF, Sel);
2514 CallArgList ActualArgs;
2515
2516 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2517 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2518 ActualArgs.addFrom(CallArgs);
2519
2520 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2521
2522 llvm::Value *ReceiverClass = nullptr;
2523 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2524 if (isV2ABI) {
2525 ReceiverClass = GetClassNamed(CGF,
2526 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2527 if (IsClassMessage) {
2528 // Load the isa pointer of the superclass is this is a class method.
2529 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2530 llvm::PointerType::getUnqual(IdTy));
2531 ReceiverClass =
2532 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2533 }
2534 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2535 } else {
2536 if (isCategoryImpl) {
2537 llvm::FunctionCallee classLookupFunction = nullptr;
2538 if (IsClassMessage) {
2539 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2540 IdTy, PtrTy, true), "objc_get_meta_class");
2541 } else {
2542 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2543 IdTy, PtrTy, true), "objc_get_class");
2544 }
2545 ReceiverClass = Builder.CreateCall(classLookupFunction,
2546 MakeConstantString(Class->getNameAsString()));
2547 } else {
2548 // Set up global aliases for the metaclass or class pointer if they do not
2549 // already exist. These will are forward-references which will be set to
2550 // pointers to the class and metaclass structure created for the runtime
2551 // load function. To send a message to super, we look up the value of the
2552 // super_class pointer from either the class or metaclass structure.
2553 if (IsClassMessage) {
2554 if (!MetaClassPtrAlias) {
2555 MetaClassPtrAlias = llvm::GlobalAlias::create(
2556 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2557 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2558 }
2559 ReceiverClass = MetaClassPtrAlias;
2560 } else {
2561 if (!ClassPtrAlias) {
2562 ClassPtrAlias = llvm::GlobalAlias::create(
2563 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2564 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2565 }
2566 ReceiverClass = ClassPtrAlias;
2567 }
2568 }
2569 // Cast the pointer to a simplified version of the class structure
2570 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2571 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2572 llvm::PointerType::getUnqual(CastTy));
2573 // Get the superclass pointer
2574 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2575 // Load the superclass pointer
2576 ReceiverClass =
2577 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2578 }
2579 // Construct the structure used to look up the IMP
2580 llvm::StructType *ObjCSuperTy =
2581 llvm::StructType::get(Receiver->getType(), IdTy);
2582
2583 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2584 CGF.getPointerAlign());
2585
2586 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2587 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2588
2589 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
2590
2591 // Get the IMP
2592 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2593 imp = EnforceType(Builder, imp, MSI.MessengerType);
2594
2595 llvm::Metadata *impMD[] = {
2596 llvm::MDString::get(VMContext, Sel.getAsString()),
2597 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2598 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2599 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2600 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2601
2602 CGCallee callee(CGCalleeInfo(), imp);
2603
2604 llvm::CallBase *call;
2605 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2606 call->setMetadata(msgSendMDKind, node);
2607 return msgRet;
2608}
2609
2610/// Generate code for a message send expression.
2611RValue
2612CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2613 ReturnValueSlot Return,
2614 QualType ResultType,
2615 Selector Sel,
2616 llvm::Value *Receiver,
2617 const CallArgList &CallArgs,
2618 const ObjCInterfaceDecl *Class,
2619 const ObjCMethodDecl *Method) {
2620 CGBuilderTy &Builder = CGF.Builder;
2621
2622 // Strip out message sends to retain / release in GC mode
2623 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2624 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2625 return RValue::get(EnforceType(Builder, Receiver,
2626 CGM.getTypes().ConvertType(ResultType)));
2627 }
2628 if (Sel == ReleaseSel) {
2629 return RValue::get(nullptr);
2630 }
2631 }
2632
2633 // If the return type is something that goes in an integer register, the
2634 // runtime will handle 0 returns. For other cases, we fill in the 0 value
2635 // ourselves.
2636 //
2637 // The language spec says the result of this kind of message send is
2638 // undefined, but lots of people seem to have forgotten to read that
2639 // paragraph and insist on sending messages to nil that have structure
2640 // returns. With GCC, this generates a random return value (whatever happens
2641 // to be on the stack / in those registers at the time) on most platforms,
2642 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
2643 // the stack.
2644 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
2645 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
2646
2647 llvm::BasicBlock *startBB = nullptr;
2648 llvm::BasicBlock *messageBB = nullptr;
2649 llvm::BasicBlock *continueBB = nullptr;
2650
2651 if (!isPointerSizedReturn) {
2652 startBB = Builder.GetInsertBlock();
2653 messageBB = CGF.createBasicBlock("msgSend");
2654 continueBB = CGF.createBasicBlock("continue");
2655
2656 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2657 llvm::Constant::getNullValue(Receiver->getType()));
2658 Builder.CreateCondBr(isNil, continueBB, messageBB);
2659 CGF.EmitBlock(messageBB);
2660 }
2661
2662 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2663 llvm::Value *cmd;
2664 if (Method)
2665 cmd = GetSelector(CGF, Method);
2666 else
2667 cmd = GetSelector(CGF, Sel);
2668 cmd = EnforceType(Builder, cmd, SelectorTy);
2669 Receiver = EnforceType(Builder, Receiver, IdTy);
2670
2671 llvm::Metadata *impMD[] = {
2672 llvm::MDString::get(VMContext, Sel.getAsString()),
2673 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2674 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2675 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2676 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2677
2678 CallArgList ActualArgs;
2679 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2680 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2681 ActualArgs.addFrom(CallArgs);
2682
2683 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2684
2685 // Get the IMP to call
2686 llvm::Value *imp;
2687
2688 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2689 // functions. These are not supported on all platforms (or all runtimes on a
2690 // given platform), so we
2691 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2692 case CodeGenOptions::Legacy:
2693 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2694 break;
2695 case CodeGenOptions::Mixed:
2696 case CodeGenOptions::NonLegacy:
2697 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2698 imp =
2699 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2700 "objc_msgSend_fpret")
2701 .getCallee();
2702 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2703 // The actual types here don't matter - we're going to bitcast the
2704 // function anyway
2705 imp =
2706 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2707 "objc_msgSend_stret")
2708 .getCallee();
2709 } else {
2710 imp = CGM.CreateRuntimeFunction(
2711 llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend")
2712 .getCallee();
2713 }
2714 }
2715
2716 // Reset the receiver in case the lookup modified it
2717 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2718
2719 imp = EnforceType(Builder, imp, MSI.MessengerType);
2720
2721 llvm::CallBase *call;
2722 CGCallee callee(CGCalleeInfo(), imp);
2723 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2724 call->setMetadata(msgSendMDKind, node);
2725
2726
2727 if (!isPointerSizedReturn) {
2728 messageBB = CGF.Builder.GetInsertBlock();
2729 CGF.Builder.CreateBr(continueBB);
2730 CGF.EmitBlock(continueBB);
2731 if (msgRet.isScalar()) {
2732 llvm::Value *v = msgRet.getScalarVal();
2733 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2734 phi->addIncoming(v, messageBB);
2735 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
2736 msgRet = RValue::get(phi);
2737 } else if (msgRet.isAggregate()) {
2738 Address v = msgRet.getAggregateAddress();
2739 llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
2740 llvm::Type *RetTy = v.getElementType();
2741 Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
2742 CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
2743 phi->addIncoming(v.getPointer(), messageBB);
2744 phi->addIncoming(NullVal.getPointer(), startBB);
2745 msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
2746 } else /* isComplex() */ {
2747 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2748 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2749 phi->addIncoming(v.first, messageBB);
2750 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2751 startBB);
2752 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2753 phi2->addIncoming(v.second, messageBB);
2754 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2755 startBB);
2756 msgRet = RValue::getComplex(phi, phi2);
2757 }
2758 }
2759 return msgRet;
2760}
2761
2762/// Generates a MethodList. Used in construction of a objc_class and
2763/// objc_category structures.
2764llvm::Constant *CGObjCGNU::
2765GenerateMethodList(StringRef ClassName,
2766 StringRef CategoryName,
2767 ArrayRef<const ObjCMethodDecl*> Methods,
2768 bool isClassMethodList) {
2769 if (Methods.empty())
2770 return NULLPtr;
2771
2772 ConstantInitBuilder Builder(CGM);
2773
2774 auto MethodList = Builder.beginStruct();
2775 MethodList.addNullPointer(CGM.Int8PtrTy);
2776 MethodList.addInt(Int32Ty, Methods.size());
2777
2778 // Get the method structure type.
2779 llvm::StructType *ObjCMethodTy =
2780 llvm::StructType::get(CGM.getLLVMContext(), {
2781 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2782 PtrToInt8Ty, // Method types
2783 IMPTy // Method pointer
2784 });
2785 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2786 if (isV2ABI) {
2787 // size_t size;
2788 llvm::DataLayout td(&TheModule);
2789 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2790 CGM.getContext().getCharWidth());
2791 ObjCMethodTy =
2792 llvm::StructType::get(CGM.getLLVMContext(), {
2793 IMPTy, // Method pointer
2794 PtrToInt8Ty, // Selector
2795 PtrToInt8Ty // Extended type encoding
2796 });
2797 } else {
2798 ObjCMethodTy =
2799 llvm::StructType::get(CGM.getLLVMContext(), {
2800 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2801 PtrToInt8Ty, // Method types
2802 IMPTy // Method pointer
2803 });
2804 }
2805 auto MethodArray = MethodList.beginArray();
2806 ASTContext &Context = CGM.getContext();
2807 for (const auto *OMD : Methods) {
2808 llvm::Constant *FnPtr =
2809 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
2810 OMD->getSelector(),
2811 isClassMethodList));
2812 assert(FnPtr && "Can't generate metadata for method that doesn't exist")((FnPtr && "Can't generate metadata for method that doesn't exist"
) ? static_cast<void> (0) : __assert_fail ("FnPtr && \"Can't generate metadata for method that doesn't exist\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2812, __PRETTY_FUNCTION__))
;
2813 auto Method = MethodArray.beginStruct(ObjCMethodTy);
2814 if (isV2ABI) {
2815 Method.addBitCast(FnPtr, IMPTy);
2816 Method.add(GetConstantSelector(OMD->getSelector(),
2817 Context.getObjCEncodingForMethodDecl(OMD)));
2818 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2819 } else {
2820 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2821 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2822 Method.addBitCast(FnPtr, IMPTy);
2823 }
2824 Method.finishAndAddTo(MethodArray);
2825 }
2826 MethodArray.finishAndAddTo(MethodList);
2827
2828 // Create an instance of the structure
2829 return MethodList.finishAndCreateGlobal(".objc_method_list",
2830 CGM.getPointerAlign());
2831}
2832
2833/// Generates an IvarList. Used in construction of a objc_class.
2834llvm::Constant *CGObjCGNU::
2835GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2836 ArrayRef<llvm::Constant *> IvarTypes,
2837 ArrayRef<llvm::Constant *> IvarOffsets,
2838 ArrayRef<llvm::Constant *> IvarAlign,
2839 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2840 if (IvarNames.empty())
2841 return NULLPtr;
2842
2843 ConstantInitBuilder Builder(CGM);
2844
2845 // Structure containing array count followed by array.
2846 auto IvarList = Builder.beginStruct();
2847 IvarList.addInt(IntTy, (int)IvarNames.size());
2848
2849 // Get the ivar structure type.
2850 llvm::StructType *ObjCIvarTy =
2851 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2852
2853 // Array of ivar structures.
2854 auto Ivars = IvarList.beginArray(ObjCIvarTy);
2855 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2856 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2857 Ivar.add(IvarNames[i]);
2858 Ivar.add(IvarTypes[i]);
2859 Ivar.add(IvarOffsets[i]);
2860 Ivar.finishAndAddTo(Ivars);
2861 }
2862 Ivars.finishAndAddTo(IvarList);
2863
2864 // Create an instance of the structure
2865 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2866 CGM.getPointerAlign());
2867}
2868
2869/// Generate a class structure
2870llvm::Constant *CGObjCGNU::GenerateClassStructure(
2871 llvm::Constant *MetaClass,
2872 llvm::Constant *SuperClass,
2873 unsigned info,
2874 const char *Name,
2875 llvm::Constant *Version,
2876 llvm::Constant *InstanceSize,
2877 llvm::Constant *IVars,
2878 llvm::Constant *Methods,
2879 llvm::Constant *Protocols,
2880 llvm::Constant *IvarOffsets,
2881 llvm::Constant *Properties,
2882 llvm::Constant *StrongIvarBitmap,
2883 llvm::Constant *WeakIvarBitmap,
2884 bool isMeta) {
2885 // Set up the class structure
2886 // Note: Several of these are char*s when they should be ids. This is
2887 // because the runtime performs this translation on load.
2888 //
2889 // Fields marked New ABI are part of the GNUstep runtime. We emit them
2890 // anyway; the classes will still work with the GNU runtime, they will just
2891 // be ignored.
2892 llvm::StructType *ClassTy = llvm::StructType::get(
2893 PtrToInt8Ty, // isa
2894 PtrToInt8Ty, // super_class
2895 PtrToInt8Ty, // name
2896 LongTy, // version
2897 LongTy, // info
2898 LongTy, // instance_size
2899 IVars->getType(), // ivars
2900 Methods->getType(), // methods
2901 // These are all filled in by the runtime, so we pretend
2902 PtrTy, // dtable
2903 PtrTy, // subclass_list
2904 PtrTy, // sibling_class
2905 PtrTy, // protocols
2906 PtrTy, // gc_object_type
2907 // New ABI:
2908 LongTy, // abi_version
2909 IvarOffsets->getType(), // ivar_offsets
2910 Properties->getType(), // properties
2911 IntPtrTy, // strong_pointers
2912 IntPtrTy // weak_pointers
2913 );
2914
2915 ConstantInitBuilder Builder(CGM);
2916 auto Elements = Builder.beginStruct(ClassTy);
2917
2918 // Fill in the structure
2919
2920 // isa
2921 Elements.addBitCast(MetaClass, PtrToInt8Ty);
2922 // super_class
2923 Elements.add(SuperClass);
2924 // name
2925 Elements.add(MakeConstantString(Name, ".class_name"));
2926 // version
2927 Elements.addInt(LongTy, 0);
2928 // info
2929 Elements.addInt(LongTy, info);
2930 // instance_size
2931 if (isMeta) {
2932 llvm::DataLayout td(&TheModule);
2933 Elements.addInt(LongTy,
2934 td.getTypeSizeInBits(ClassTy) /
2935 CGM.getContext().getCharWidth());
2936 } else
2937 Elements.add(InstanceSize);
2938 // ivars
2939 Elements.add(IVars);
2940 // methods
2941 Elements.add(Methods);
2942 // These are all filled in by the runtime, so we pretend
2943 // dtable
2944 Elements.add(NULLPtr);
2945 // subclass_list
2946 Elements.add(NULLPtr);
2947 // sibling_class
2948 Elements.add(NULLPtr);
2949 // protocols
2950 Elements.addBitCast(Protocols, PtrTy);
2951 // gc_object_type
2952 Elements.add(NULLPtr);
2953 // abi_version
2954 Elements.addInt(LongTy, ClassABIVersion);
2955 // ivar_offsets
2956 Elements.add(IvarOffsets);
2957 // properties
2958 Elements.add(Properties);
2959 // strong_pointers
2960 Elements.add(StrongIvarBitmap);
2961 // weak_pointers
2962 Elements.add(WeakIvarBitmap);
2963 // Create an instance of the structure
2964 // This is now an externally visible symbol, so that we can speed up class
2965 // messages in the next ABI. We may already have some weak references to
2966 // this, so check and fix them properly.
2967 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
2968 std::string(Name));
2969 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
2970 llvm::Constant *Class =
2971 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
2972 llvm::GlobalValue::ExternalLinkage);
2973 if (ClassRef) {
2974 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
2975 ClassRef->getType()));
2976 ClassRef->removeFromParent();
2977 Class->setName(ClassSym);
2978 }
2979 return Class;
2980}
2981
2982llvm::Constant *CGObjCGNU::
2983GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
2984 // Get the method structure type.
2985 llvm::StructType *ObjCMethodDescTy =
2986 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
2987 ASTContext &Context = CGM.getContext();
2988 ConstantInitBuilder Builder(CGM);
2989 auto MethodList = Builder.beginStruct();
2990 MethodList.addInt(IntTy, Methods.size());
2991 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
2992 for (auto *M : Methods) {
2993 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
2994 Method.add(MakeConstantString(M->getSelector().getAsString()));
2995 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
2996 Method.finishAndAddTo(MethodArray);
2997 }
2998 MethodArray.finishAndAddTo(MethodList);
2999 return MethodList.finishAndCreateGlobal(".objc_method_list",
3000 CGM.getPointerAlign());
3001}
3002
3003// Create the protocol list structure used in classes, categories and so on
3004llvm::Constant *
3005CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3006
3007 ConstantInitBuilder Builder(CGM);
3008 auto ProtocolList = Builder.beginStruct();
3009 ProtocolList.add(NULLPtr);
3010 ProtocolList.addInt(LongTy, Protocols.size());
3011
3012 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3013 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3014 iter != endIter ; iter++) {
3015 llvm::Constant *protocol = nullptr;
3016 llvm::StringMap<llvm::Constant*>::iterator value =
3017 ExistingProtocols.find(*iter);
3018 if (value == ExistingProtocols.end()) {
3019 protocol = GenerateEmptyProtocol(*iter);
3020 } else {
3021 protocol = value->getValue();
3022 }
3023 Elements.addBitCast(protocol, PtrToInt8Ty);
3024 }
3025 Elements.finishAndAddTo(ProtocolList);
3026 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3027 CGM.getPointerAlign());
3028}
3029
3030llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3031 const ObjCProtocolDecl *PD) {
3032 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3033 if (!protocol)
3034 GenerateProtocol(PD);
3035 llvm::Type *T =
3036 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3037 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3038}
3039
3040llvm::Constant *
3041CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3042 llvm::Constant *ProtocolList = GenerateProtocolList({});
3043 llvm::Constant *MethodList = GenerateProtocolMethodList({});
3044 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
3045 // Protocols are objects containing lists of the methods implemented and
3046 // protocols adopted.
3047 ConstantInitBuilder Builder(CGM);
3048 auto Elements = Builder.beginStruct();
3049
3050 // The isa pointer must be set to a magic number so the runtime knows it's
3051 // the correct layout.
3052 Elements.add(llvm::ConstantExpr::getIntToPtr(
3053 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3054
3055 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3056 Elements.add(ProtocolList); /* .protocol_list */
3057 Elements.add(MethodList); /* .instance_methods */
3058 Elements.add(MethodList); /* .class_methods */
3059 Elements.add(MethodList); /* .optional_instance_methods */
3060 Elements.add(MethodList); /* .optional_class_methods */
3061 Elements.add(NULLPtr); /* .properties */
3062 Elements.add(NULLPtr); /* .optional_properties */
3063 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3064 CGM.getPointerAlign());
3065}
3066
3067void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3068 std::string ProtocolName = PD->getNameAsString();
3069
3070 // Use the protocol definition, if there is one.
3071 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3072 PD = Def;
3073
3074 SmallVector<std::string, 16> Protocols;
3075 for (const auto *PI : PD->protocols())
3076 Protocols.push_back(PI->getNameAsString());
3077 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3078 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3079 for (const auto *I : PD->instance_methods())
3080 if (I->isOptional())
3081 OptionalInstanceMethods.push_back(I);
3082 else
3083 InstanceMethods.push_back(I);
3084 // Collect information about class methods:
3085 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3086 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3087 for (const auto *I : PD->class_methods())
3088 if (I->isOptional())
3089 OptionalClassMethods.push_back(I);
3090 else
3091 ClassMethods.push_back(I);
3092
3093 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3094 llvm::Constant *InstanceMethodList =
3095 GenerateProtocolMethodList(InstanceMethods);
3096 llvm::Constant *ClassMethodList =
3097 GenerateProtocolMethodList(ClassMethods);
3098 llvm::Constant *OptionalInstanceMethodList =
3099 GenerateProtocolMethodList(OptionalInstanceMethods);
3100 llvm::Constant *OptionalClassMethodList =
3101 GenerateProtocolMethodList(OptionalClassMethods);
3102
3103 // Property metadata: name, attributes, isSynthesized, setter name, setter
3104 // types, getter name, getter types.
3105 // The isSynthesized value is always set to 0 in a protocol. It exists to
3106 // simplify the runtime library by allowing it to use the same data
3107 // structures for protocol metadata everywhere.
3108
3109 llvm::Constant *PropertyList =
3110 GeneratePropertyList(nullptr, PD, false, false);
3111 llvm::Constant *OptionalPropertyList =
3112 GeneratePropertyList(nullptr, PD, false, true);
3113
3114 // Protocols are objects containing lists of the methods implemented and
3115 // protocols adopted.
3116 // The isa pointer must be set to a magic number so the runtime knows it's
3117 // the correct layout.
3118 ConstantInitBuilder Builder(CGM);
3119 auto Elements = Builder.beginStruct();
3120 Elements.add(
3121 llvm::ConstantExpr::getIntToPtr(
3122 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3123 Elements.add(MakeConstantString(ProtocolName));
3124 Elements.add(ProtocolList);
3125 Elements.add(InstanceMethodList);
3126 Elements.add(ClassMethodList);
3127 Elements.add(OptionalInstanceMethodList);
3128 Elements.add(OptionalClassMethodList);
3129 Elements.add(PropertyList);
3130 Elements.add(OptionalPropertyList);
3131 ExistingProtocols[ProtocolName] =
3132 llvm::ConstantExpr::getBitCast(
3133 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3134 IdTy);
3135}
3136void CGObjCGNU::GenerateProtocolHolderCategory() {
3137 // Collect information about instance methods
3138
3139 ConstantInitBuilder Builder(CGM);
3140 auto Elements = Builder.beginStruct();
3141
3142 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3143 const std::string CategoryName = "AnotherHack";
3144 Elements.add(MakeConstantString(CategoryName));
3145 Elements.add(MakeConstantString(ClassName));
3146 // Instance method list
3147 Elements.addBitCast(GenerateMethodList(
3148 ClassName, CategoryName, {}, false), PtrTy);
3149 // Class method list
3150 Elements.addBitCast(GenerateMethodList(
3151 ClassName, CategoryName, {}, true), PtrTy);
3152
3153 // Protocol list
3154 ConstantInitBuilder ProtocolListBuilder(CGM);
3155 auto ProtocolList = ProtocolListBuilder.beginStruct();
3156 ProtocolList.add(NULLPtr);
3157 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3158 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3159 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3160 iter != endIter ; iter++) {
3161 ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3162 }
3163 ProtocolElements.finishAndAddTo(ProtocolList);
3164 Elements.addBitCast(
3165 ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3166 CGM.getPointerAlign()),
3167 PtrTy);
3168 Categories.push_back(llvm::ConstantExpr::getBitCast(
3169 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3170 PtrTy));
3171}
3172
3173/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3174/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3175/// bits set to their values, LSB first, while larger ones are stored in a
3176/// structure of this / form:
3177///
3178/// struct { int32_t length; int32_t values[length]; };
3179///
3180/// The values in the array are stored in host-endian format, with the least
3181/// significant bit being assumed to come first in the bitfield. Therefore, a
3182/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3183/// bitfield / with the 63rd bit set will be 1<<64.
3184llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3185 int bitCount = bits.size();
3186 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3187 if (bitCount < ptrBits) {
3188 uint64_t val = 1;
3189 for (int i=0 ; i<bitCount ; ++i) {
3190 if (bits[i]) val |= 1ULL<<(i+1);
3191 }
3192 return llvm::ConstantInt::get(IntPtrTy, val);
3193 }
3194 SmallVector<llvm::Constant *, 8> values;
3195 int v=0;
3196 while (v < bitCount) {
3197 int32_t word = 0;
3198 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3199 if (bits[v]) word |= 1<<i;
3200 v++;
3201 }
3202 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3203 }
3204
3205 ConstantInitBuilder builder(CGM);
3206 auto fields = builder.beginStruct();
3207 fields.addInt(Int32Ty, values.size());
3208 auto array = fields.beginArray();
3209 for (auto v : values) array.add(v);
3210 array.finishAndAddTo(fields);
3211
3212 llvm::Constant *GS =
3213 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3214 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3215 return ptr;
3216}
3217
3218llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3219 ObjCCategoryDecl *OCD) {
3220 SmallVector<std::string, 16> Protocols;
3221 for (const auto *PD : OCD->getReferencedProtocols())
3222 Protocols.push_back(PD->getNameAsString());
3223 return GenerateProtocolList(Protocols);
3224}
3225
3226void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3227 const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3228 std::string ClassName = Class->getNameAsString();
3229 std::string CategoryName = OCD->getNameAsString();
3230
3231 // Collect the names of referenced protocols
3232 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3233
3234 ConstantInitBuilder Builder(CGM);
3235 auto Elements = Builder.beginStruct();
3236 Elements.add(MakeConstantString(CategoryName));
3237 Elements.add(MakeConstantString(ClassName));
3238 // Instance method list
3239 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3240 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3241 OCD->instmeth_end());
3242 Elements.addBitCast(
3243 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3244 PtrTy);
3245 // Class method list
3246
3247 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3248 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3249 OCD->classmeth_end());
3250 Elements.addBitCast(
3251 GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3252 PtrTy);
3253 // Protocol list
3254 Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy);
3255 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3256 const ObjCCategoryDecl *Category =
3257 Class->FindCategoryDeclaration(OCD->getIdentifier());
3258 if (Category) {
3259 // Instance properties
3260 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3261 // Class properties
3262 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3263 } else {
3264 Elements.addNullPointer(PtrTy);
3265 Elements.addNullPointer(PtrTy);
3266 }
3267 }
3268
3269 Categories.push_back(llvm::ConstantExpr::getBitCast(
3270 Elements.finishAndCreateGlobal(
3271 std::string(".objc_category_")+ClassName+CategoryName,
3272 CGM.getPointerAlign()),
3273 PtrTy));
3274}
3275
3276llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3277 const ObjCContainerDecl *OCD,
3278 bool isClassProperty,
3279 bool protocolOptionalProperties) {
3280
3281 SmallVector<const ObjCPropertyDecl *, 16> Properties;
3282 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3283 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3284 ASTContext &Context = CGM.getContext();
3285
3286 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3287 = [&](const ObjCProtocolDecl *Proto) {
3288 for (const auto *P : Proto->protocols())
3289 collectProtocolProperties(P);
3290 for (const auto *PD : Proto->properties()) {
3291 if (isClassProperty != PD->isClassProperty())
3292 continue;
3293 // Skip any properties that are declared in protocols that this class
3294 // conforms to but are not actually implemented by this class.
3295 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3296 continue;
3297 if (!PropertySet.insert(PD->getIdentifier()).second)
3298 continue;
3299 Properties.push_back(PD);
3300 }
3301 };
3302
3303 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3304 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3305 for (auto *PD : ClassExt->properties()) {
3306 if (isClassProperty != PD->isClassProperty())
3307 continue;
3308 PropertySet.insert(PD->getIdentifier());
3309 Properties.push_back(PD);
3310 }
3311
3312 for (const auto *PD : OCD->properties()) {
3313 if (isClassProperty != PD->isClassProperty())
3314 continue;
3315 // If we're generating a list for a protocol, skip optional / required ones
3316 // when generating the other list.
3317 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3318 continue;
3319 // Don't emit duplicate metadata for properties that were already in a
3320 // class extension.
3321 if (!PropertySet.insert(PD->getIdentifier()).second)
3322 continue;
3323
3324 Properties.push_back(PD);
3325 }
3326
3327 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3328 for (const auto *P : OID->all_referenced_protocols())
3329 collectProtocolProperties(P);
3330 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3331 for (const auto *P : CD->protocols())
3332 collectProtocolProperties(P);
3333
3334 auto numProperties = Properties.size();
3335
3336 if (numProperties == 0)
3337 return NULLPtr;
3338
3339 ConstantInitBuilder builder(CGM);
3340 auto propertyList = builder.beginStruct();
3341 auto properties = PushPropertyListHeader(propertyList, numProperties);
3342
3343 // Add all of the property methods need adding to the method list and to the
3344 // property metadata list.
3345 for (auto *property : Properties) {
3346 bool isSynthesized = false;
3347 bool isDynamic = false;
3348 if (!isProtocol) {
3349 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3350 if (propertyImpl) {
3351 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3352 ObjCPropertyImplDecl::Synthesize);
3353 isDynamic = (propertyImpl->getPropertyImplementation() ==
3354 ObjCPropertyImplDecl::Dynamic);
3355 }
3356 }
3357 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3358 }
3359 properties.finishAndAddTo(propertyList);
3360
3361 return propertyList.finishAndCreateGlobal(".objc_property_list",
3362 CGM.getPointerAlign());
3363}
3364
3365void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3366 // Get the class declaration for which the alias is specified.
3367 ObjCInterfaceDecl *ClassDecl =
3368 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3369 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3370 OAD->getNameAsString());
3371}
3372
3373void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3374 ASTContext &Context = CGM.getContext();
3375
3376 // Get the superclass name.
3377 const ObjCInterfaceDecl * SuperClassDecl =
3378 OID->getClassInterface()->getSuperClass();
3379 std::string SuperClassName;
3380 if (SuperClassDecl) {
3381 SuperClassName = SuperClassDecl->getNameAsString();
3382 EmitClassRef(SuperClassName);
3383 }
3384
3385 // Get the class name
3386 ObjCInterfaceDecl *ClassDecl =
3387 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3388 std::string ClassName = ClassDecl->getNameAsString();
3389
3390 // Emit the symbol that is used to generate linker errors if this class is
3391 // referenced in other modules but not declared.
3392 std::string classSymbolName = "__objc_class_name_" + ClassName;
3393 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3394 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3395 } else {
3396 new llvm::GlobalVariable(TheModule, LongTy, false,
3397 llvm::GlobalValue::ExternalLinkage,
3398 llvm::ConstantInt::get(LongTy, 0),
3399 classSymbolName);
3400 }
3401
3402 // Get the size of instances.
3403 int instanceSize =
3404 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3405
3406 // Collect information about instance variables.
3407 SmallVector<llvm::Constant*, 16> IvarNames;
3408 SmallVector<llvm::Constant*, 16> IvarTypes;
3409 SmallVector<llvm::Constant*, 16> IvarOffsets;
3410 SmallVector<llvm::Constant*, 16> IvarAligns;
3411 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3412
3413 ConstantInitBuilder IvarOffsetBuilder(CGM);
3414 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3415 SmallVector<bool, 16> WeakIvars;
3416 SmallVector<bool, 16> StrongIvars;
3417
3418 int superInstanceSize = !SuperClassDecl ? 0 :
3419 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3420 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3421 // class}. The runtime will then set this to the correct value on load.
3422 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3423 instanceSize = 0 - (instanceSize - superInstanceSize);
3424 }
3425
3426 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3427 IVD = IVD->getNextIvar()) {
3428 // Store the name
3429 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3430 // Get the type encoding for this ivar
3431 std::string TypeStr;
3432 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3433 IvarTypes.push_back(MakeConstantString(TypeStr));
3434 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3435 Context.getTypeSize(IVD->getType())));
3436 // Get the offset
3437 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3438 uint64_t Offset = BaseOffset;
3439 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3440 Offset = BaseOffset - superInstanceSize;
3441 }
3442 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3443 // Create the direct offset value
3444 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3445 IVD->getNameAsString();
3446
3447 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3448 if (OffsetVar) {
3449 OffsetVar->setInitializer(OffsetValue);
3450 // If this is the real definition, change its linkage type so that
3451 // different modules will use this one, rather than their private
3452 // copy.
3453 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3454 } else
3455 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3456 false, llvm::GlobalValue::ExternalLinkage,
3457 OffsetValue, OffsetName);
3458 IvarOffsets.push_back(OffsetValue);
3459 IvarOffsetValues.add(OffsetVar);
3460 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3461 IvarOwnership.push_back(lt);
3462 switch (lt) {
3463 case Qualifiers::OCL_Strong:
3464 StrongIvars.push_back(true);
3465 WeakIvars.push_back(false);
3466 break;
3467 case Qualifiers::OCL_Weak:
3468 StrongIvars.push_back(false);
3469 WeakIvars.push_back(true);
3470 break;
3471 default:
3472 StrongIvars.push_back(false);
3473 WeakIvars.push_back(false);
3474 }
3475 }
3476 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3477 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3478 llvm::GlobalVariable *IvarOffsetArray =
3479 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3480 CGM.getPointerAlign());
3481
3482 // Collect information about instance methods
3483 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3484 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3485 OID->instmeth_end());
3486
3487 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3488 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3489 OID->classmeth_end());
3490
3491 // Collect the same information about synthesized properties, which don't
3492 // show up in the instance method lists.
3493 for (auto *propertyImpl : OID->property_impls())
3494 if (propertyImpl->getPropertyImplementation() ==
3495 ObjCPropertyImplDecl::Synthesize) {
3496 ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
3497 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
3498 if (accessor)
3499 InstanceMethods.push_back(accessor);
3500 };
3501 addPropertyMethod(property->getGetterMethodDecl());
3502 addPropertyMethod(property->getSetterMethodDecl());
3503 }
3504
3505 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3506
3507 // Collect the names of referenced protocols
3508 SmallVector<std::string, 16> Protocols;
3509 for (const auto *I : ClassDecl->protocols())
3510 Protocols.push_back(I->getNameAsString());
3511
3512 // Get the superclass pointer.
3513 llvm::Constant *SuperClass;
3514 if (!SuperClassName.empty()) {
3515 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3516 } else {
3517 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3518 }
3519 // Empty vector used to construct empty method lists
3520 SmallVector<llvm::Constant*, 1> empty;
3521 // Generate the method and instance variable lists
3522 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3523 InstanceMethods, false);
3524 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3525 ClassMethods, true);
3526 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3527 IvarOffsets, IvarAligns, IvarOwnership);
3528 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3529 // we emit a symbol containing the offset for each ivar in the class. This
3530 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3531 // for the legacy ABI, without causing problems. The converse is also
3532 // possible, but causes all ivar accesses to be fragile.
3533
3534 // Offset pointer for getting at the correct field in the ivar list when
3535 // setting up the alias. These are: The base address for the global, the
3536 // ivar array (second field), the ivar in this list (set for each ivar), and
3537 // the offset (third field in ivar structure)
3538 llvm::Type *IndexTy = Int32Ty;
3539 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3540 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3541 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3542
3543 unsigned ivarIndex = 0;
3544 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3545 IVD = IVD->getNextIvar()) {
3546 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3547 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3548 // Get the correct ivar field
3549 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3550 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3551 offsetPointerIndexes);
3552 // Get the existing variable, if one exists.
3553 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3554 if (offset) {
3555 offset->setInitializer(offsetValue);
3556 // If this is the real definition, change its linkage type so that
3557 // different modules will use this one, rather than their private
3558 // copy.
3559 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3560 } else
3561 // Add a new alias if there isn't one already.
3562 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3563 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3564 ++ivarIndex;
3565 }
3566 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3567
3568 //Generate metaclass for class methods
3569 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3570 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3571 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3572 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3573 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3574 OID->getClassInterface());
3575
3576 // Generate the class structure
3577 llvm::Constant *ClassStruct = GenerateClassStructure(
3578 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3579 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3580 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3581 StrongIvarBitmap, WeakIvarBitmap);
3582 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3583 OID->getClassInterface());
3584
3585 // Resolve the class aliases, if they exist.
3586 if (ClassPtrAlias) {
3587 ClassPtrAlias->replaceAllUsesWith(
3588 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3589 ClassPtrAlias->eraseFromParent();
3590 ClassPtrAlias = nullptr;
3591 }
3592 if (MetaClassPtrAlias) {
3593 MetaClassPtrAlias->replaceAllUsesWith(
3594 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3595 MetaClassPtrAlias->eraseFromParent();
3596 MetaClassPtrAlias = nullptr;
3597 }
3598
3599 // Add class structure to list to be added to the symtab later
3600 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3601 Classes.push_back(ClassStruct);
3602}
3603
3604llvm::Function *CGObjCGNU::ModuleInitFunction() {
3605 // Only emit an ObjC load function if no Objective-C stuff has been called
3606 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3607 ExistingProtocols.empty() && SelectorTable.empty())
3608 return nullptr;
3609
3610 // Add all referenced protocols to a category.
3611 GenerateProtocolHolderCategory();
3612
3613 llvm::StructType *selStructTy =
3614 dyn_cast<llvm::StructType>(SelectorTy->getElementType());
3615 llvm::Type *selStructPtrTy = SelectorTy;
3616 if (!selStructTy) {
3617 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3618 { PtrToInt8Ty, PtrToInt8Ty });
3619 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3620 }
3621
3622 // Generate statics list:
3623 llvm::Constant *statics = NULLPtr;
3624 if (!ConstantStrings.empty()) {
3625 llvm::GlobalVariable *fileStatics = [&] {
3626 ConstantInitBuilder builder(CGM);
3627 auto staticsStruct = builder.beginStruct();
3628
3629 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3630 if (stringClass.empty()) stringClass = "NXConstantString";
3631 staticsStruct.add(MakeConstantString(stringClass,
3632 ".objc_static_class_name"));
3633
3634 auto array = staticsStruct.beginArray();
3635 array.addAll(ConstantStrings);
3636 array.add(NULLPtr);
3637 array.finishAndAddTo(staticsStruct);
3638
3639 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3640 CGM.getPointerAlign());
3641 }();
3642
3643 ConstantInitBuilder builder(CGM);
3644 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3645 allStaticsArray.add(fileStatics);
3646 allStaticsArray.addNullPointer(fileStatics->getType());
3647
3648 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3649 CGM.getPointerAlign());
3650 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3651 }
3652
3653 // Array of classes, categories, and constant objects.
3654
3655 SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3656 unsigned selectorCount;
3657
3658 // Pointer to an array of selectors used in this module.
3659 llvm::GlobalVariable *selectorList = [&] {
3660 ConstantInitBuilder builder(CGM);
3661 auto selectors = builder.beginArray(selStructTy);
3662 auto &table = SelectorTable; // MSVC workaround
3663 std::vector<Selector> allSelectors;
3664 for (auto &entry : table)
3665 allSelectors.push_back(entry.first);
3666 llvm::sort(allSelectors);
3667
3668 for (auto &untypedSel : allSelectors) {
3669 std::string selNameStr = untypedSel.getAsString();
3670 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3671
3672 for (TypedSelector &sel : table[untypedSel]) {
3673 llvm::Constant *selectorTypeEncoding = NULLPtr;
3674 if (!sel.first.empty())
3675 selectorTypeEncoding =
3676 MakeConstantString(sel.first, ".objc_sel_types");
3677
3678 auto selStruct = selectors.beginStruct(selStructTy);
3679 selStruct.add(selName);
3680 selStruct.add(selectorTypeEncoding);
3681 selStruct.finishAndAddTo(selectors);
3682
3683 // Store the selector alias for later replacement
3684 selectorAliases.push_back(sel.second);
3685 }
3686 }
3687
3688 // Remember the number of entries in the selector table.
3689 selectorCount = selectors.size();
3690
3691 // NULL-terminate the selector list. This should not actually be required,
3692 // because the selector list has a length field. Unfortunately, the GCC
3693 // runtime decides to ignore the length field and expects a NULL terminator,
3694 // and GCC cooperates with this by always setting the length to 0.
3695 auto selStruct = selectors.beginStruct(selStructTy);
3696 selStruct.add(NULLPtr);
3697 selStruct.add(NULLPtr);
3698 selStruct.finishAndAddTo(selectors);
3699
3700 return selectors.finishAndCreateGlobal(".objc_selector_list",
3701 CGM.getPointerAlign());
3702 }();
3703
3704 // Now that all of the static selectors exist, create pointers to them.
3705 for (unsigned i = 0; i < selectorCount; ++i) {
3706 llvm::Constant *idxs[] = {
3707 Zeros[0],
3708 llvm::ConstantInt::get(Int32Ty, i)
3709 };
3710 // FIXME: We're generating redundant loads and stores here!
3711 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3712 selectorList->getValueType(), selectorList, idxs);
3713 // If selectors are defined as an opaque type, cast the pointer to this
3714 // type.
3715 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3716 selectorAliases[i]->replaceAllUsesWith(selPtr);
3717 selectorAliases[i]->eraseFromParent();
3718 }
3719
3720 llvm::GlobalVariable *symtab = [&] {
3721 ConstantInitBuilder builder(CGM);
3722 auto symtab = builder.beginStruct();
3723
3724 // Number of static selectors
3725 symtab.addInt(LongTy, selectorCount);
3726
3727 symtab.addBitCast(selectorList, selStructPtrTy);
3728
3729 // Number of classes defined.
3730 symtab.addInt(CGM.Int16Ty, Classes.size());
3731 // Number of categories defined
3732 symtab.addInt(CGM.Int16Ty, Categories.size());
3733
3734 // Create an array of classes, then categories, then static object instances
3735 auto classList = symtab.beginArray(PtrToInt8Ty);
3736 classList.addAll(Classes);
3737 classList.addAll(Categories);
3738 // NULL-terminated list of static object instances (mainly constant strings)
3739 classList.add(statics);
3740 classList.add(NULLPtr);
3741 classList.finishAndAddTo(symtab);
3742
3743 // Construct the symbol table.
3744 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3745 }();
3746
3747 // The symbol table is contained in a module which has some version-checking
3748 // constants
3749 llvm::Constant *module = [&] {
3750 llvm::Type *moduleEltTys[] = {
3751 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3752 };
3753 llvm::StructType *moduleTy =
3754 llvm::StructType::get(CGM.getLLVMContext(),
3755 makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3756
3757 ConstantInitBuilder builder(CGM);
3758 auto module = builder.beginStruct(moduleTy);
3759 // Runtime version, used for ABI compatibility checking.
3760 module.addInt(LongTy, RuntimeVersion);
3761 // sizeof(ModuleTy)
3762 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3763
3764 // The path to the source file where this module was declared
3765 SourceManager &SM = CGM.getContext().getSourceManager();
3766 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
3767 std::string path =
3768 (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str();
3769 module.add(MakeConstantString(path, ".objc_source_file_name"));
3770 module.add(symtab);
3771
3772 if (RuntimeVersion >= 10) {
3773 switch (CGM.getLangOpts().getGC()) {
3774 case LangOptions::GCOnly:
3775 module.addInt(IntTy, 2);
3776 break;
3777 case LangOptions::NonGC:
3778 if (CGM.getLangOpts().ObjCAutoRefCount)
3779 module.addInt(IntTy, 1);
3780 else
3781 module.addInt(IntTy, 0);
3782 break;
3783 case LangOptions::HybridGC:
3784 module.addInt(IntTy, 1);
3785 break;
3786 }
3787 }
3788
3789 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3790 }();
3791
3792 // Create the load function calling the runtime entry point with the module
3793 // structure
3794 llvm::Function * LoadFunction = llvm::Function::Create(
3795 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3796 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3797 &TheModule);
3798 llvm::BasicBlock *EntryBB =
3799 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3800 CGBuilderTy Builder(CGM, VMContext);
3801 Builder.SetInsertPoint(EntryBB);
3802
3803 llvm::FunctionType *FT =
3804 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3805 llvm::FunctionCallee Register =
3806 CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3807 Builder.CreateCall(Register, module);
3808
3809 if (!ClassAliases.empty()) {
3810 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3811 llvm::FunctionType *RegisterAliasTy =
3812 llvm::FunctionType::get(Builder.getVoidTy(),
3813 ArgTypes, false);
3814 llvm::Function *RegisterAlias = llvm::Function::Create(
3815 RegisterAliasTy,
3816 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3817 &TheModule);
3818 llvm::BasicBlock *AliasBB =
3819 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3820 llvm::BasicBlock *NoAliasBB =
3821 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3822
3823 // Branch based on whether the runtime provided class_registerAlias_np()
3824 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3825 llvm::Constant::getNullValue(RegisterAlias->getType()));
3826 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3827
3828 // The true branch (has alias registration function):
3829 Builder.SetInsertPoint(AliasBB);
3830 // Emit alias registration calls:
3831 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3832 iter != ClassAliases.end(); ++iter) {
3833 llvm::Constant *TheClass =
3834 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3835 if (TheClass) {
3836 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3837 Builder.CreateCall(RegisterAlias,
3838 {TheClass, MakeConstantString(iter->second)});
3839 }
3840 }
3841 // Jump to end:
3842 Builder.CreateBr(NoAliasBB);
3843
3844 // Missing alias registration function, just return from the function:
3845 Builder.SetInsertPoint(NoAliasBB);
3846 }
3847 Builder.CreateRetVoid();
3848
3849 return LoadFunction;
3850}
3851
3852llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3853 const ObjCContainerDecl *CD) {
3854 const ObjCCategoryImplDecl *OCD =
3855 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
3856 StringRef CategoryName = OCD ? OCD->getName() : "";
3857 StringRef ClassName = CD->getName();
3858 Selector MethodName = OMD->getSelector();
3859 bool isClassMethod = !OMD->isInstanceMethod();
3860
3861 CodeGenTypes &Types = CGM.getTypes();
3862 llvm::FunctionType *MethodTy =
3863 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3864 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
3865 MethodName, isClassMethod);
3866
3867 llvm::Function *Method
3868 = llvm::Function::Create(MethodTy,
3869 llvm::GlobalValue::InternalLinkage,
3870 FunctionName,
3871 &TheModule);
3872 return Method;
3873}
3874
3875llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
3876 return GetPropertyFn;
3877}
3878
3879llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
3880 return SetPropertyFn;
3881}
3882
3883llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3884 bool copy) {
3885 return nullptr;
3886}
3887
3888llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
3889 return GetStructPropertyFn;
3890}
3891
3892llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
3893 return SetStructPropertyFn;
3894}
3895
3896llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
3897 return nullptr;
3898}
3899
3900llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
3901 return nullptr;
3902}
3903
3904llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
3905 return EnumerationMutationFn;
3906}
3907
3908void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3909 const ObjCAtSynchronizedStmt &S) {
3910 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3911}
3912
3913
3914void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3915 const ObjCAtTryStmt &S) {
3916 // Unlike the Apple non-fragile runtimes, which also uses
3917 // unwind-based zero cost exceptions, the GNU Objective C runtime's
3918 // EH support isn't a veneer over C++ EH. Instead, exception
3919 // objects are created by objc_exception_throw and destroyed by
3920 // the personality function; this avoids the need for bracketing
3921 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3922 // (or even _Unwind_DeleteException), but probably doesn't
3923 // interoperate very well with foreign exceptions.
3924 //
3925 // In Objective-C++ mode, we actually emit something equivalent to the C++
3926 // exception handler.
3927 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3928}
3929
3930void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3931 const ObjCAtThrowStmt &S,
3932 bool ClearInsertionPoint) {
3933 llvm::Value *ExceptionAsObject;
3934 bool isRethrow = false;
3935
3936 if (const Expr *ThrowExpr = S.getThrowExpr()) {
3937 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
3938 ExceptionAsObject = Exception;
3939 } else {
3940 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&(((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack
.back()) && "Unexpected rethrow outside @catch block."
) ? static_cast<void> (0) : __assert_fail ("(!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && \"Unexpected rethrow outside @catch block.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 3941, __PRETTY_FUNCTION__))
3941 "Unexpected rethrow outside @catch block.")(((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack
.back()) && "Unexpected rethrow outside @catch block."
) ? static_cast<void> (0) : __assert_fail ("(!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && \"Unexpected rethrow outside @catch block.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 3941, __PRETTY_FUNCTION__))
;
3942 ExceptionAsObject = CGF.ObjCEHValueStack.back();
3943 isRethrow = true;
3944 }
3945 if (isRethrow && usesSEHExceptions) {
3946 // For SEH, ExceptionAsObject may be undef, because the catch handler is
3947 // not passed it for catchalls and so it is not visible to the catch
3948 // funclet. The real thrown object will still be live on the stack at this
3949 // point and will be rethrown. If we are explicitly rethrowing the object
3950 // that was passed into the `@catch` block, then this code path is not
3951 // reached and we will instead call `objc_exception_throw` with an explicit
3952 // argument.
3953 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
3954 Throw->setDoesNotReturn();
3955 }
3956 else {
3957 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
3958 llvm::CallBase *Throw =
3959 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
3960 Throw->setDoesNotReturn();
3961 }
3962 CGF.Builder.CreateUnreachable();
3963 if (ClearInsertionPoint)
3964 CGF.Builder.ClearInsertionPoint();
3965}
3966
3967llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
3968 Address AddrWeakObj) {
3969 CGBuilderTy &B = CGF.Builder;
3970 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
3971 return B.CreateCall(WeakReadFn, AddrWeakObj.getPointer());
3972}
3973
3974void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
3975 llvm::Value *src, Address dst) {
3976 CGBuilderTy &B = CGF.Builder;
3977 src = EnforceType(B, src, IdTy);
3978 dst = EnforceType(B, dst, PtrToIdTy);
3979 B.CreateCall(WeakAssignFn, {src, dst.getPointer()});
3980}
3981
3982void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
3983 llvm::Value *src, Address dst,
3984 bool threadlocal) {
3985 CGBuilderTy &B = CGF.Builder;
3986 src = EnforceType(B, src, IdTy);
3987 dst = EnforceType(B, dst, PtrToIdTy);
3988 // FIXME. Add threadloca assign API
3989 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI")((!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"
) ? static_cast<void> (0) : __assert_fail ("!threadlocal && \"EmitObjCGlobalAssign - Threal Local API NYI\""
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 3989, __PRETTY_FUNCTION__))
;
3990 B.CreateCall(GlobalAssignFn, {src, dst.getPointer()});
3991}
3992
3993void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
3994 llvm::Value *src, Address dst,
3995 llvm::Value *ivarOffset) {
3996 CGBuilderTy &B = CGF.Builder;
3997 src = EnforceType(B, src, IdTy);
3998 dst = EnforceType(B, dst, IdTy);
3999 B.CreateCall(IvarAssignFn, {src, dst.getPointer(), ivarOffset});
4000}
4001
4002void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4003 llvm::Value *src, Address dst) {
4004 CGBuilderTy &B = CGF.Builder;
4005 src = EnforceType(B, src, IdTy);
4006 dst = EnforceType(B, dst, PtrToIdTy);
4007 B.CreateCall(StrongCastAssignFn, {src, dst.getPointer()});
4008}
4009
4010void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4011 Address DestPtr,
4012 Address SrcPtr,
4013 llvm::Value *Size) {
4014 CGBuilderTy &B = CGF.Builder;
4015 DestPtr = EnforceType(B, DestPtr, PtrTy);
4016 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
4017
4018 B.CreateCall(MemMoveFn, {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
4019}
4020
4021llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4022 const ObjCInterfaceDecl *ID,
4023 const ObjCIvarDecl *Ivar) {
4024 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4025 // Emit the variable and initialize it with what we think the correct value
4026 // is. This allows code compiled with non-fragile ivars to work correctly
4027 // when linked against code which isn't (most of the time).
4028 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4029 if (!IvarOffsetPointer)
4030 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
4031 llvm::Type::getInt32PtrTy(VMContext), false,
4032 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4033 return IvarOffsetPointer;
4034}
4035
4036LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4037 QualType ObjectTy,
4038 llvm::Value *BaseValue,
4039 const ObjCIvarDecl *Ivar,
4040 unsigned CVRQualifiers) {
4041 const ObjCInterfaceDecl *ID =
4042 ObjectTy->getAs<ObjCObjectType>()->getInterface();
4043 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4044 EmitIvarOffset(CGF, ID, Ivar));
4045}
4046
4047static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4048 const ObjCInterfaceDecl *OID,
4049 const ObjCIvarDecl *OIVD) {
4050 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4051 next = next->getNextIvar()) {
4052 if (OIVD == next)
4053 return OID;
4054 }
4055
4056 // Otherwise check in the super class.
4057 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4058 return FindIvarInterface(Context, Super, OIVD);
4059
4060 return nullptr;
4061}
4062
4063llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4064 const ObjCInterfaceDecl *Interface,
4065 const ObjCIvarDecl *Ivar) {
4066 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4067 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4068
4069 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4070 // and ExternalLinkage, so create a reference to the ivar global and rely on
4071 // the definition being created as part of GenerateClass.
4072 if (RuntimeVersion < 10 ||
4073 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4074 return CGF.Builder.CreateZExtOrBitCast(
4075 CGF.Builder.CreateAlignedLoad(
4076 Int32Ty, CGF.Builder.CreateAlignedLoad(
4077 ObjCIvarOffsetVariable(Interface, Ivar),
4078 CGF.getPointerAlign(), "ivar"),
4079 CharUnits::fromQuantity(4)),
4080 PtrDiffTy);
4081 std::string name = "__objc_ivar_offset_value_" +
4082 Interface->getNameAsString() +"." + Ivar->getNameAsString();
4083 CharUnits Align = CGM.getIntAlign();
4084 llvm::Value *Offset = TheModule.getGlobalVariable(name);
4085 if (!Offset) {
4086 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4087 false, llvm::GlobalValue::LinkOnceAnyLinkage,
4088 llvm::Constant::getNullValue(IntTy), name);
4089 GV->setAlignment(Align.getQuantity());
4090 Offset = GV;
4091 }
4092 Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
4093 if (Offset->getType() != PtrDiffTy)
4094 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4095 return Offset;
4096 }
4097 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4098 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4099}
4100
4101CGObjCRuntime *
4102clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4103 auto Runtime = CGM.getLangOpts().ObjCRuntime;
4104 switch (Runtime.getKind()) {
4105 case ObjCRuntime::GNUstep:
4106 if (Runtime.getVersion() >= VersionTuple(2, 0))
4107 return new CGObjCGNUstep2(CGM);
4108 return new CGObjCGNUstep(CGM);
4109
4110 case ObjCRuntime::GCC:
4111 return new CGObjCGCC(CGM);
4112
4113 case ObjCRuntime::ObjFW:
4114 return new CGObjCObjFW(CGM);
4115
4116 case ObjCRuntime::FragileMacOSX:
4117 case ObjCRuntime::MacOSX:
4118 case ObjCRuntime::iOS:
4119 case ObjCRuntime::WatchOS:
4120 llvm_unreachable("these runtimes are not GNU runtimes")::llvm::llvm_unreachable_internal("these runtimes are not GNU runtimes"
, "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 4120)
;
4121 }
4122 llvm_unreachable("bad runtime")::llvm::llvm_unreachable_internal("bad runtime", "/build/llvm-toolchain-snapshot-10~svn373386/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 4122)
;
4123}

/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/SwapByteOrder.h"
18#include <algorithm>
19#include <cassert>
20#include <climits>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42/// The behavior an operation has on an input of 0.
43enum ZeroBehavior {
44 /// The returned value is undefined.
45 ZB_Undefined,
46 /// The returned value is numeric_limits<T>::max()
47 ZB_Max,
48 /// The returned value is numeric_limits<T>::digits
49 ZB_Width
50};
51
52namespace detail {
53template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
54 static unsigned count(T Val, ZeroBehavior) {
55 if (!Val)
56 return std::numeric_limits<T>::digits;
57 if (Val & 0x1)
58 return 0;
59
60 // Bisection method.
61 unsigned ZeroBits = 0;
62 T Shift = std::numeric_limits<T>::digits >> 1;
63 T Mask = std::numeric_limits<T>::max() >> Shift;
64 while (Shift) {
65 if ((Val & Mask) == 0) {
66 Val >>= Shift;
67 ZeroBits |= Shift;
68 }
69 Shift >>= 1;
70 Mask >>= Shift;
71 }
72 return ZeroBits;
73 }
74};
75
76#if defined(__GNUC__4) || defined(_MSC_VER)
77template <typename T> struct TrailingZerosCounter<T, 4> {
78 static unsigned count(T Val, ZeroBehavior ZB) {
79 if (ZB != ZB_Undefined && Val == 0)
80 return 32;
81
82#if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4)
83 return __builtin_ctz(Val);
84#elif defined(_MSC_VER)
85 unsigned long Index;
86 _BitScanForward(&Index, Val);
87 return Index;
88#endif
89 }
90};
91
92#if !defined(_MSC_VER) || defined(_M_X64)
93template <typename T> struct TrailingZerosCounter<T, 8> {
94 static unsigned count(T Val, ZeroBehavior ZB) {
95 if (ZB != ZB_Undefined && Val == 0)
96 return 64;
97
98#if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4)
99 return __builtin_ctzll(Val);
100#elif defined(_MSC_VER)
101 unsigned long Index;
102 _BitScanForward64(&Index, Val);
103 return Index;
104#endif
105 }
106};
107#endif
108#endif
109} // namespace detail
110
111/// Count number of 0's from the least significant bit to the most
112/// stopping at the first 1.
113///
114/// Only unsigned integral types are allowed.
115///
116/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
117/// valid arguments.
118template <typename T>
119unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
120 static_assert(std::numeric_limits<T>::is_integer &&
121 !std::numeric_limits<T>::is_signed,
122 "Only unsigned integral types are allowed.");
123 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
124}
125
126namespace detail {
127template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
128 static unsigned count(T Val, ZeroBehavior) {
129 if (!Val)
130 return std::numeric_limits<T>::digits;
131
132 // Bisection method.
133 unsigned ZeroBits = 0;
134 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
135 T Tmp = Val >> Shift;
136 if (Tmp)
137 Val = Tmp;
138 else
139 ZeroBits |= Shift;
140 }
141 return ZeroBits;
142 }
143};
144
145#if defined(__GNUC__4) || defined(_MSC_VER)
146template <typename T> struct LeadingZerosCounter<T, 4> {
147 static unsigned count(T Val, ZeroBehavior ZB) {
148 if (ZB != ZB_Undefined && Val == 0)
149 return 32;
150
151#if __has_builtin(__builtin_clz)1 || defined(__GNUC__4)
152 return __builtin_clz(Val);
153#elif defined(_MSC_VER)
154 unsigned long Index;
155 _BitScanReverse(&Index, Val);
156 return Index ^ 31;
157#endif
158 }
159};
160
161#if !defined(_MSC_VER) || defined(_M_X64)
162template <typename T> struct LeadingZerosCounter<T, 8> {
163 static unsigned count(T Val, ZeroBehavior ZB) {
164 if (ZB != ZB_Undefined && Val == 0)
165 return 64;
166
167#if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4)
168 return __builtin_clzll(Val);
169#elif defined(_MSC_VER)
170 unsigned long Index;
171 _BitScanReverse64(&Index, Val);
172 return Index ^ 63;
173#endif
174 }
175};
176#endif
177#endif
178} // namespace detail
179
180/// Count number of 0's from the most significant bit to the least
181/// stopping at the first 1.
182///
183/// Only unsigned integral types are allowed.
184///
185/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
186/// valid arguments.
187template <typename T>
188unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
189 static_assert(std::numeric_limits<T>::is_integer &&
190 !std::numeric_limits<T>::is_signed,
191 "Only unsigned integral types are allowed.");
192 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
193}
194
195/// Get the index of the first set bit starting from the least
196/// significant bit.
197///
198/// Only unsigned integral types are allowed.
199///
200/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
201/// valid arguments.
202template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
203 if (ZB == ZB_Max && Val == 0)
204 return std::numeric_limits<T>::max();
205
206 return countTrailingZeros(Val, ZB_Undefined);
207}
208
209/// Create a bitmask with the N right-most bits set to 1, and all other
210/// bits set to 0. Only unsigned types are allowed.
211template <typename T> T maskTrailingOnes(unsigned N) {
212 static_assert(std::is_unsigned<T>::value, "Invalid type!");
213 const unsigned Bits = CHAR_BIT8 * sizeof(T);
214 assert(N <= Bits && "Invalid bit index")((N <= Bits && "Invalid bit index") ? static_cast<
void> (0) : __assert_fail ("N <= Bits && \"Invalid bit index\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 214, __PRETTY_FUNCTION__))
;
215 return N == 0 ? 0 : (T(-1) >> (Bits - N));
216}
217
218/// Create a bitmask with the N left-most bits set to 1, and all other
219/// bits set to 0. Only unsigned types are allowed.
220template <typename T> T maskLeadingOnes(unsigned N) {
221 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
222}
223
224/// Create a bitmask with the N right-most bits set to 0, and all other
225/// bits set to 1. Only unsigned types are allowed.
226template <typename T> T maskTrailingZeros(unsigned N) {
227 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
228}
229
230/// Create a bitmask with the N left-most bits set to 0, and all other
231/// bits set to 1. Only unsigned types are allowed.
232template <typename T> T maskLeadingZeros(unsigned N) {
233 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
234}
235
236/// Get the index of the last set bit starting from the least
237/// significant bit.
238///
239/// Only unsigned integral types are allowed.
240///
241/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
242/// valid arguments.
243template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
244 if (ZB == ZB_Max && Val == 0)
245 return std::numeric_limits<T>::max();
246
247 // Use ^ instead of - because both gcc and llvm can remove the associated ^
248 // in the __builtin_clz intrinsic on x86.
249 return countLeadingZeros(Val, ZB_Undefined) ^
250 (std::numeric_limits<T>::digits - 1);
251}
252
253/// Macro compressed bit reversal table for 256 bits.
254///
255/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
256static const unsigned char BitReverseTable256[256] = {
257#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
258#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
259#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
260 R6(0), R6(2), R6(1), R6(3)
261#undef R2
262#undef R4
263#undef R6
264};
265
266/// Reverse the bits in \p Val.
267template <typename T>
268T reverseBits(T Val) {
269 unsigned char in[sizeof(Val)];
270 unsigned char out[sizeof(Val)];
271 std::memcpy(in, &Val, sizeof(Val));
272 for (unsigned i = 0; i < sizeof(Val); ++i)
273 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
274 std::memcpy(&Val, out, sizeof(Val));
275 return Val;
276}
277
278// NOTE: The following support functions use the _32/_64 extensions instead of
279// type overloading so that signed and unsigned integers can be used without
280// ambiguity.
281
282/// Return the high 32 bits of a 64 bit value.
283constexpr inline uint32_t Hi_32(uint64_t Value) {
284 return static_cast<uint32_t>(Value >> 32);
285}
286
287/// Return the low 32 bits of a 64 bit value.
288constexpr inline uint32_t Lo_32(uint64_t Value) {
289 return static_cast<uint32_t>(Value);
290}
291
292/// Make a 64-bit integer from a high / low pair of 32-bit integers.
293constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
294 return ((uint64_t)High << 32) | (uint64_t)Low;
295}
296
297/// Checks if an integer fits into the given bit width.
298template <unsigned N> constexpr inline bool isInt(int64_t x) {
299 return N >= 64 || (-(INT64_C(1)1L<<(N-1)) <= x && x < (INT64_C(1)1L<<(N-1)));
300}
301// Template specializations to get better code for common cases.
302template <> constexpr inline bool isInt<8>(int64_t x) {
303 return static_cast<int8_t>(x) == x;
304}
305template <> constexpr inline bool isInt<16>(int64_t x) {
306 return static_cast<int16_t>(x) == x;
307}
308template <> constexpr inline bool isInt<32>(int64_t x) {
309 return static_cast<int32_t>(x) == x;
310}
311
312/// Checks if a signed integer is an N bit number shifted left by S.
313template <unsigned N, unsigned S>
314constexpr inline bool isShiftedInt(int64_t x) {
315 static_assert(
316 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
317 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
318 return isInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
319}
320
321/// Checks if an unsigned integer fits into the given bit width.
322///
323/// This is written as two functions rather than as simply
324///
325/// return N >= 64 || X < (UINT64_C(1) << N);
326///
327/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
328/// left too many places.
329template <unsigned N>
330constexpr inline typename std::enable_if<(N < 64), bool>::type
331isUInt(uint64_t X) {
332 static_assert(N > 0, "isUInt<0> doesn't make sense");
333 return X < (UINT64_C(1)1UL << (N));
334}
335template <unsigned N>
336constexpr inline typename std::enable_if<N >= 64, bool>::type
337isUInt(uint64_t X) {
338 return true;
339}
340
341// Template specializations to get better code for common cases.
342template <> constexpr inline bool isUInt<8>(uint64_t x) {
343 return static_cast<uint8_t>(x) == x;
344}
345template <> constexpr inline bool isUInt<16>(uint64_t x) {
346 return static_cast<uint16_t>(x) == x;
347}
348template <> constexpr inline bool isUInt<32>(uint64_t x) {
349 return static_cast<uint32_t>(x) == x;
350}
351
352/// Checks if a unsigned integer is an N bit number shifted left by S.
353template <unsigned N, unsigned S>
354constexpr inline bool isShiftedUInt(uint64_t x) {
355 static_assert(
356 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
357 static_assert(N + S <= 64,
358 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
359 // Per the two static_asserts above, S must be strictly less than 64. So
360 // 1 << S is not undefined behavior.
361 return isUInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
362}
363
364/// Gets the maximum value for a N-bit unsigned integer.
365inline uint64_t maxUIntN(uint64_t N) {
366 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 366, __PRETTY_FUNCTION__))
;
367
368 // uint64_t(1) << 64 is undefined behavior, so we can't do
369 // (uint64_t(1) << N) - 1
370 // without checking first that N != 64. But this works and doesn't have a
371 // branch.
372 return UINT64_MAX(18446744073709551615UL) >> (64 - N);
373}
374
375/// Gets the minimum value for a N-bit signed integer.
376inline int64_t minIntN(int64_t N) {
377 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 377, __PRETTY_FUNCTION__))
;
378
379 return -(UINT64_C(1)1UL<<(N-1));
380}
381
382/// Gets the maximum value for a N-bit signed integer.
383inline int64_t maxIntN(int64_t N) {
384 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 384, __PRETTY_FUNCTION__))
;
385
386 // This relies on two's complement wraparound when N == 64, so we convert to
387 // int64_t only at the very end to avoid UB.
388 return (UINT64_C(1)1UL << (N - 1)) - 1;
389}
390
391/// Checks if an unsigned integer fits into the given (dynamic) bit width.
392inline bool isUIntN(unsigned N, uint64_t x) {
393 return N >= 64 || x <= maxUIntN(N);
394}
395
396/// Checks if an signed integer fits into the given (dynamic) bit width.
397inline bool isIntN(unsigned N, int64_t x) {
398 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
399}
400
401/// Return true if the argument is a non-empty sequence of ones starting at the
402/// least significant bit with the remainder zero (32 bit version).
403/// Ex. isMask_32(0x0000FFFFU) == true.
404constexpr inline bool isMask_32(uint32_t Value) {
405 return Value && ((Value + 1) & Value) == 0;
406}
407
408/// Return true if the argument is a non-empty sequence of ones starting at the
409/// least significant bit with the remainder zero (64 bit version).
410constexpr inline bool isMask_64(uint64_t Value) {
411 return Value && ((Value + 1) & Value) == 0;
412}
413
414/// Return true if the argument contains a non-empty sequence of ones with the
415/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
416constexpr inline bool isShiftedMask_32(uint32_t Value) {
417 return Value && isMask_32((Value - 1) | Value);
418}
419
420/// Return true if the argument contains a non-empty sequence of ones with the
421/// remainder zero (64 bit version.)
422constexpr inline bool isShiftedMask_64(uint64_t Value) {
423 return Value && isMask_64((Value - 1) | Value);
424}
425
426/// Return true if the argument is a power of two > 0.
427/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
428constexpr inline bool isPowerOf2_32(uint32_t Value) {
429 return Value && !(Value & (Value - 1));
430}
431
432/// Return true if the argument is a power of two > 0 (64 bit edition.)
433constexpr inline bool isPowerOf2_64(uint64_t Value) {
434 return Value && !(Value & (Value - 1));
435}
436
437/// Return a byte-swapped representation of the 16-bit argument.
438inline uint16_t ByteSwap_16(uint16_t Value) {
439 return sys::SwapByteOrder_16(Value);
440}
441
442/// Return a byte-swapped representation of the 32-bit argument.
443inline uint32_t ByteSwap_32(uint32_t Value) {
444 return sys::SwapByteOrder_32(Value);
445}
446
447/// Return a byte-swapped representation of the 64-bit argument.
448inline uint64_t ByteSwap_64(uint64_t Value) {
449 return sys::SwapByteOrder_64(Value);
450}
451
452/// Count the number of ones from the most significant bit to the first
453/// zero bit.
454///
455/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
456/// Only unsigned integral types are allowed.
457///
458/// \param ZB the behavior on an input of all ones. Only ZB_Width and
459/// ZB_Undefined are valid arguments.
460template <typename T>
461unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
462 static_assert(std::numeric_limits<T>::is_integer &&
463 !std::numeric_limits<T>::is_signed,
464 "Only unsigned integral types are allowed.");
465 return countLeadingZeros<T>(~Value, ZB);
466}
467
468/// Count the number of ones from the least significant bit to the first
469/// zero bit.
470///
471/// Ex. countTrailingOnes(0x00FF00FF) == 8.
472/// Only unsigned integral types are allowed.
473///
474/// \param ZB the behavior on an input of all ones. Only ZB_Width and
475/// ZB_Undefined are valid arguments.
476template <typename T>
477unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
478 static_assert(std::numeric_limits<T>::is_integer &&
479 !std::numeric_limits<T>::is_signed,
480 "Only unsigned integral types are allowed.");
481 return countTrailingZeros<T>(~Value, ZB);
482}
483
484namespace detail {
485template <typename T, std::size_t SizeOfT> struct PopulationCounter {
486 static unsigned count(T Value) {
487 // Generic version, forward to 32 bits.
488 static_assert(SizeOfT <= 4, "Not implemented!");
489#if defined(__GNUC__4)
490 return __builtin_popcount(Value);
491#else
492 uint32_t v = Value;
493 v = v - ((v >> 1) & 0x55555555);
494 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
495 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
496#endif
497 }
498};
499
500template <typename T> struct PopulationCounter<T, 8> {
501 static unsigned count(T Value) {
502#if defined(__GNUC__4)
503 return __builtin_popcountll(Value);
504#else
505 uint64_t v = Value;
506 v = v - ((v >> 1) & 0x5555555555555555ULL);
507 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
508 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
509 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
510#endif
511 }
512};
513} // namespace detail
514
515/// Count the number of set bits in a value.
516/// Ex. countPopulation(0xF000F000) = 8
517/// Returns 0 if the word is zero.
518template <typename T>
519inline unsigned countPopulation(T Value) {
520 static_assert(std::numeric_limits<T>::is_integer &&
521 !std::numeric_limits<T>::is_signed,
522 "Only unsigned integral types are allowed.");
523 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
524}
525
526/// Return the log base 2 of the specified value.
527inline double Log2(double Value) {
528#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
529 return __builtin_log(Value) / __builtin_log(2.0);
530#else
531 return log2(Value);
532#endif
533}
534
535/// Return the floor log base 2 of the specified value, -1 if the value is zero.
536/// (32 bit edition.)
537/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
538inline unsigned Log2_32(uint32_t Value) {
539 return 31 - countLeadingZeros(Value);
16
Returning the value 4294967295
540}
541
542/// Return the floor log base 2 of the specified value, -1 if the value is zero.
543/// (64 bit edition.)
544inline unsigned Log2_64(uint64_t Value) {
545 return 63 - countLeadingZeros(Value);
546}
547
548/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
549/// (32 bit edition).
550/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
551inline unsigned Log2_32_Ceil(uint32_t Value) {
552 return 32 - countLeadingZeros(Value - 1);
553}
554
555/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
556/// (64 bit edition.)
557inline unsigned Log2_64_Ceil(uint64_t Value) {
558 return 64 - countLeadingZeros(Value - 1);
559}
560
561/// Return the greatest common divisor of the values using Euclid's algorithm.
562template <typename T>
563inline T greatestCommonDivisor(T A, T B) {
564 while (B) {
565 T Tmp = B;
566 B = A % B;
567 A = Tmp;
568 }
569 return A;
570}
571
572inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
573 return greatestCommonDivisor<uint64_t>(A, B);
574}
575
576/// This function takes a 64-bit integer and returns the bit equivalent double.
577inline double BitsToDouble(uint64_t Bits) {
578 double D;
579 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
580 memcpy(&D, &Bits, sizeof(Bits));
581 return D;
582}
583
584/// This function takes a 32-bit integer and returns the bit equivalent float.
585inline float BitsToFloat(uint32_t Bits) {
586 float F;
587 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
588 memcpy(&F, &Bits, sizeof(Bits));
589 return F;
590}
591
592/// This function takes a double and returns the bit equivalent 64-bit integer.
593/// Note that copying doubles around changes the bits of NaNs on some hosts,
594/// notably x86, so this routine cannot be used if these bits are needed.
595inline uint64_t DoubleToBits(double Double) {
596 uint64_t Bits;
597 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
598 memcpy(&Bits, &Double, sizeof(Double));
599 return Bits;
600}
601
602/// This function takes a float and returns the bit equivalent 32-bit integer.
603/// Note that copying floats around changes the bits of NaNs on some hosts,
604/// notably x86, so this routine cannot be used if these bits are needed.
605inline uint32_t FloatToBits(float Float) {
606 uint32_t Bits;
607 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
608 memcpy(&Bits, &Float, sizeof(Float));
609 return Bits;
610}
611
612/// A and B are either alignments or offsets. Return the minimum alignment that
613/// may be assumed after adding the two together.
614constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
615 // The largest power of 2 that divides both A and B.
616 //
617 // Replace "-Value" by "1+~Value" in the following commented code to avoid
618 // MSVC warning C4146
619 // return (A | B) & -(A | B);
620 return (A | B) & (1 + ~(A | B));
621}
622
623/// Aligns \c Addr to \c Alignment bytes, rounding up.
624///
625/// Alignment should be a power of two. This method rounds up, so
626/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
627inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
628 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&((Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!") ? static_cast<void>
(0) : __assert_fail ("Alignment && isPowerOf2_64((uint64_t)Alignment) && \"Alignment is not a power of two!\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 629, __PRETTY_FUNCTION__))
629 "Alignment is not a power of two!")((Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!") ? static_cast<void>
(0) : __assert_fail ("Alignment && isPowerOf2_64((uint64_t)Alignment) && \"Alignment is not a power of two!\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 629, __PRETTY_FUNCTION__))
;
630
631 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr)(((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr) ? static_cast
<void> (0) : __assert_fail ("(uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr"
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 631, __PRETTY_FUNCTION__))
;
632
633 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
634}
635
636/// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
637/// bytes, rounding up.
638inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
639 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
640}
641
642/// Returns the next power of two (in 64-bits) that is strictly greater than A.
643/// Returns zero on overflow.
644inline uint64_t NextPowerOf2(uint64_t A) {
645 A |= (A >> 1);
646 A |= (A >> 2);
647 A |= (A >> 4);
648 A |= (A >> 8);
649 A |= (A >> 16);
650 A |= (A >> 32);
651 return A + 1;
652}
653
654/// Returns the power of two which is less than or equal to the given value.
655/// Essentially, it is a floor operation across the domain of powers of two.
656inline uint64_t PowerOf2Floor(uint64_t A) {
657 if (!A) return 0;
658 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
659}
660
661/// Returns the power of two which is greater than or equal to the given value.
662/// Essentially, it is a ceil operation across the domain of powers of two.
663inline uint64_t PowerOf2Ceil(uint64_t A) {
664 if (!A)
665 return 0;
666 return NextPowerOf2(A - 1);
667}
668
669/// Returns the next integer (mod 2**64) that is greater than or equal to
670/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
671///
672/// If non-zero \p Skew is specified, the return value will be a minimal
673/// integer that is greater than or equal to \p Value and equal to
674/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
675/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
676///
677/// Examples:
678/// \code
679/// alignTo(5, 8) = 8
680/// alignTo(17, 8) = 24
681/// alignTo(~0LL, 8) = 0
682/// alignTo(321, 255) = 510
683///
684/// alignTo(5, 8, 7) = 7
685/// alignTo(17, 8, 1) = 17
686/// alignTo(~0LL, 8, 3) = 3
687/// alignTo(321, 255, 42) = 552
688/// \endcode
689inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
690 assert(Align != 0u && "Align can't be 0.")((Align != 0u && "Align can't be 0.") ? static_cast<
void> (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 690, __PRETTY_FUNCTION__))
;
691 Skew %= Align;
692 return (Value + Align - 1 - Skew) / Align * Align + Skew;
693}
694
695/// Returns the next integer (mod 2**64) that is greater than or equal to
696/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
697template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
698 static_assert(Align != 0u, "Align must be non-zero");
699 return (Value + Align - 1) / Align * Align;
700}
701
702/// Returns the integer ceil(Numerator / Denominator).
703inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
704 return alignTo(Numerator, Denominator) / Denominator;
705}
706
707/// Returns the largest uint64_t less than or equal to \p Value and is
708/// \p Skew mod \p Align. \p Align must be non-zero
709inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
710 assert(Align != 0u && "Align can't be 0.")((Align != 0u && "Align can't be 0.") ? static_cast<
void> (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 710, __PRETTY_FUNCTION__))
;
711 Skew %= Align;
712 return (Value - Skew) / Align * Align + Skew;
713}
714
715/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
716/// Requires 0 < B <= 32.
717template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
718 static_assert(B > 0, "Bit width can't be 0.");
719 static_assert(B <= 32, "Bit width out of range.");
720 return int32_t(X << (32 - B)) >> (32 - B);
721}
722
723/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
724/// Requires 0 < B < 32.
725inline int32_t SignExtend32(uint32_t X, unsigned B) {
726 assert(B > 0 && "Bit width can't be 0.")((B > 0 && "Bit width can't be 0.") ? static_cast<
void> (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 726, __PRETTY_FUNCTION__))
;
727 assert(B <= 32 && "Bit width out of range.")((B <= 32 && "Bit width out of range.") ? static_cast
<void> (0) : __assert_fail ("B <= 32 && \"Bit width out of range.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 727, __PRETTY_FUNCTION__))
;
728 return int32_t(X << (32 - B)) >> (32 - B);
729}
730
731/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
732/// Requires 0 < B < 64.
733template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
734 static_assert(B > 0, "Bit width can't be 0.");
735 static_assert(B <= 64, "Bit width out of range.");
736 return int64_t(x << (64 - B)) >> (64 - B);
737}
738
739/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
740/// Requires 0 < B < 64.
741inline int64_t SignExtend64(uint64_t X, unsigned B) {
742 assert(B > 0 && "Bit width can't be 0.")((B > 0 && "Bit width can't be 0.") ? static_cast<
void> (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 742, __PRETTY_FUNCTION__))
;
743 assert(B <= 64 && "Bit width out of range.")((B <= 64 && "Bit width out of range.") ? static_cast
<void> (0) : __assert_fail ("B <= 64 && \"Bit width out of range.\""
, "/build/llvm-toolchain-snapshot-10~svn373386/include/llvm/Support/MathExtras.h"
, 743, __PRETTY_FUNCTION__))
;
744 return int64_t(X << (64 - B)) >> (64 - B);
745}
746
747/// Subtract two unsigned integers, X and Y, of type T and return the absolute
748/// value of the result.
749template <typename T>
750typename std::enable_if<std::is_unsigned<T>::value, T>::type
751AbsoluteDifference(T X, T Y) {
752 return std::max(X, Y) - std::min(X, Y);
753}
754
755/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
756/// maximum representable value of T on overflow. ResultOverflowed indicates if
757/// the result is larger than the maximum representable value of type T.
758template <typename T>
759typename std::enable_if<std::is_unsigned<T>::value, T>::type
760SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
761 bool Dummy;
762 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
763 // Hacker's Delight, p. 29
764 T Z = X + Y;
765 Overflowed = (Z < X || Z < Y);
766 if (Overflowed)
767 return std::numeric_limits<T>::max();
768 else
769 return Z;
770}
771
772/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
773/// maximum representable value of T on overflow. ResultOverflowed indicates if
774/// the result is larger than the maximum representable value of type T.
775template <typename T>
776typename std::enable_if<std::is_unsigned<T>::value, T>::type
777SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
778 bool Dummy;
779 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
780
781 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
782 // because it fails for uint16_t (where multiplication can have undefined
783 // behavior due to promotion to int), and requires a division in addition
784 // to the multiplication.
785
786 Overflowed = false;
787
788 // Log2(Z) would be either Log2Z or Log2Z + 1.
789 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
790 // will necessarily be less than Log2Max as desired.
791 int Log2Z = Log2_64(X) + Log2_64(Y);
792 const T Max = std::numeric_limits<T>::max();
793 int Log2Max = Log2_64(Max);
794 if (Log2Z < Log2Max) {
795 return X * Y;
796 }
797 if (Log2Z > Log2Max) {
798 Overflowed = true;
799 return Max;
800 }
801
802 // We're going to use the top bit, and maybe overflow one
803 // bit past it. Multiply all but the bottom bit then add
804 // that on at the end.
805 T Z = (X >> 1) * Y;
806 if (Z & ~(Max >> 1)) {
807 Overflowed = true;
808 return Max;
809 }
810 Z <<= 1;
811 if (X & 1)
812 return SaturatingAdd(Z, Y, ResultOverflowed);
813
814 return Z;
815}
816
817/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
818/// the product. Clamp the result to the maximum representable value of T on
819/// overflow. ResultOverflowed indicates if the result is larger than the
820/// maximum representable value of type T.
821template <typename T>
822typename std::enable_if<std::is_unsigned<T>::value, T>::type
823SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
824 bool Dummy;
825 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
826
827 T Product = SaturatingMultiply(X, Y, &Overflowed);
828 if (Overflowed)
829 return Product;
830
831 return SaturatingAdd(A, Product, &Overflowed);
832}
833
834/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
835extern const float huge_valf;
836
837
838/// Add two signed integers, computing the two's complement truncated result,
839/// returning true if overflow occured.
840template <typename T>
841typename std::enable_if<std::is_signed<T>::value, T>::type
842AddOverflow(T X, T Y, T &Result) {
843#if __has_builtin(__builtin_add_overflow)1
844 return __builtin_add_overflow(X, Y, &Result);
845#else
846 // Perform the unsigned addition.
847 using U = typename std::make_unsigned<T>::type;
848 const U UX = static_cast<U>(X);
849 const U UY = static_cast<U>(Y);
850 const U UResult = UX + UY;
851
852 // Convert to signed.
853 Result = static_cast<T>(UResult);
854
855 // Adding two positive numbers should result in a positive number.
856 if (X > 0 && Y > 0)
857 return Result <= 0;
858 // Adding two negatives should result in a negative number.
859 if (X < 0 && Y < 0)
860 return Result >= 0;
861 return false;
862#endif
863}
864
865/// Subtract two signed integers, computing the two's complement truncated
866/// result, returning true if an overflow ocurred.
867template <typename T>
868typename std::enable_if<std::is_signed<T>::value, T>::type
869SubOverflow(T X, T Y, T &Result) {
870#if __has_builtin(__builtin_sub_overflow)1
871 return __builtin_sub_overflow(X, Y, &Result);
872#else
873 // Perform the unsigned addition.
874 using U = typename std::make_unsigned<T>::type;
875 const U UX = static_cast<U>(X);
876 const U UY = static_cast<U>(Y);
877 const U UResult = UX - UY;
878
879 // Convert to signed.
880 Result = static_cast<T>(UResult);
881
882 // Subtracting a positive number from a negative results in a negative number.
883 if (X <= 0 && Y > 0)
884 return Result >= 0;
885 // Subtracting a negative number from a positive results in a positive number.
886 if (X >= 0 && Y < 0)
887 return Result <= 0;
888 return false;
889#endif
890}
891
892
893/// Multiply two signed integers, computing the two's complement truncated
894/// result, returning true if an overflow ocurred.
895template <typename T>
896typename std::enable_if<std::is_signed<T>::value, T>::type
897MulOverflow(T X, T Y, T &Result) {
898 // Perform the unsigned multiplication on absolute values.
899 using U = typename std::make_unsigned<T>::type;
900 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
901 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
902 const U UResult = UX * UY;
903
904 // Convert to signed.
905 const bool IsNegative = (X < 0) ^ (Y < 0);
906 Result = IsNegative ? (0 - UResult) : UResult;
907
908 // If any of the args was 0, result is 0 and no overflow occurs.
909 if (UX == 0 || UY == 0)
910 return false;
911
912 // UX and UY are in [1, 2^n], where n is the number of digits.
913 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
914 // positive) divided by an argument compares to the other.
915 if (IsNegative)
916 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
917 else
918 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
919}
920
921} // End llvm namespace
922
923#endif