Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
Warning:line 1448, column 5
Value stored to 'Size' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CGOpenMPRuntimeGPU.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
1//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides a generalized class for OpenMP runtime code generation
10// specialized by GPU targets NVPTX and AMDGCN.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGOpenMPRuntimeGPU.h"
15#include "CodeGenFunction.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclOpenMP.h"
18#include "clang/AST/StmtOpenMP.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/Cuda.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/Frontend/OpenMP/OMPGridValues.h"
23#include "llvm/Support/MathExtras.h"
24
25using namespace clang;
26using namespace CodeGen;
27using namespace llvm::omp;
28
29namespace {
30/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31class NVPTXActionTy final : public PrePostActionTy {
32 llvm::FunctionCallee EnterCallee = nullptr;
33 ArrayRef<llvm::Value *> EnterArgs;
34 llvm::FunctionCallee ExitCallee = nullptr;
35 ArrayRef<llvm::Value *> ExitArgs;
36 bool Conditional = false;
37 llvm::BasicBlock *ContBlock = nullptr;
38
39public:
40 NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41 ArrayRef<llvm::Value *> EnterArgs,
42 llvm::FunctionCallee ExitCallee,
43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45 ExitArgs(ExitArgs), Conditional(Conditional) {}
46 void Enter(CodeGenFunction &CGF) override {
47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48 if (Conditional) {
49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51 ContBlock = CGF.createBasicBlock("omp_if.end");
52 // Generate the branch (If-stmt)
53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54 CGF.EmitBlock(ThenBlock);
55 }
56 }
57 void Done(CodeGenFunction &CGF) {
58 // Emit the rest of blocks/branches
59 CGF.EmitBranch(ContBlock);
60 CGF.EmitBlock(ContBlock, true);
61 }
62 void Exit(CodeGenFunction &CGF) override {
63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64 }
65};
66
67/// A class to track the execution mode when codegening directives within
68/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69/// to the target region and used by containing directives such as 'parallel'
70/// to emit optimized code.
71class ExecutionRuntimeModesRAII {
72private:
73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74 CGOpenMPRuntimeGPU::EM_Unknown;
75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76 bool SavedRuntimeMode = false;
77 bool *RuntimeMode = nullptr;
78
79public:
80 /// Constructor for Non-SPMD mode.
81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82 : ExecMode(ExecMode) {
83 SavedExecMode = ExecMode;
84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85 }
86 /// Constructor for SPMD mode.
87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88 bool &RuntimeMode, bool FullRuntimeMode)
89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90 SavedExecMode = ExecMode;
91 SavedRuntimeMode = RuntimeMode;
92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93 RuntimeMode = FullRuntimeMode;
94 }
95 ~ExecutionRuntimeModesRAII() {
96 ExecMode = SavedExecMode;
97 if (RuntimeMode)
98 *RuntimeMode = SavedRuntimeMode;
99 }
100};
101
102/// GPU Configuration: This information can be derived from cuda registers,
103/// however, providing compile time constants helps generate more efficient
104/// code. For all practical purposes this is fine because the configuration
105/// is the same for all known NVPTX architectures.
106enum MachineConfiguration : unsigned {
107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109
110 /// Global memory alignment for performance.
111 GlobalMemoryAlignment = 128,
112
113 /// Maximal size of the shared memory buffer.
114 SharedMemorySize = 128,
115};
116
117static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118 RefExpr = RefExpr->IgnoreParens();
119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122 Base = TempASE->getBase()->IgnoreParenImpCasts();
123 RefExpr = Base;
124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127 Base = TempOASE->getBase()->IgnoreParenImpCasts();
128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129 Base = TempASE->getBase()->IgnoreParenImpCasts();
130 RefExpr = Base;
131 }
132 RefExpr = RefExpr->IgnoreParenImpCasts();
133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135 const auto *ME = cast<MemberExpr>(RefExpr);
136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137}
138
139
140static RecordDecl *buildRecordForGlobalizedVars(
141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144 &MappedDeclsFields, int BufSize) {
145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147 return nullptr;
148 SmallVector<VarsDataTy, 4> GlobalizedVars;
149 for (const ValueDecl *D : EscapedDecls)
150 GlobalizedVars.emplace_back(
151 CharUnits::fromQuantity(std::max(
152 C.getDeclAlign(D).getQuantity(),
153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154 D);
155 for (const ValueDecl *D : EscapedDeclsForTeams)
156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158 return L.first > R.first;
159 });
160
161 // Build struct _globalized_locals_ty {
162 // /* globalized vars */[WarSize] align (max(decl_align,
163 // GlobalMemoryAlignment))
164 // /* globalized vars */ for EscapedDeclsForTeams
165 // };
166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167 GlobalizedRD->startDefinition();
168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170 for (const auto &Pair : GlobalizedVars) {
171 const ValueDecl *VD = Pair.second;
172 QualType Type = VD->getType();
173 if (Type->isLValueReferenceType())
174 Type = C.getPointerType(Type.getNonReferenceType());
175 else
176 Type = Type.getNonReferenceType();
177 SourceLocation Loc = VD->getLocation();
178 FieldDecl *Field;
179 if (SingleEscaped.count(VD)) {
180 Field = FieldDecl::Create(
181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183 /*BW=*/nullptr, /*Mutable=*/false,
184 /*InitStyle=*/ICIS_NoInit);
185 Field->setAccess(AS_public);
186 if (VD->hasAttrs()) {
187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188 E(VD->getAttrs().end());
189 I != E; ++I)
190 Field->addAttr(*I);
191 }
192 } else {
193 llvm::APInt ArraySize(32, BufSize);
194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195 0);
196 Field = FieldDecl::Create(
197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199 /*BW=*/nullptr, /*Mutable=*/false,
200 /*InitStyle=*/ICIS_NoInit);
201 Field->setAccess(AS_public);
202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203 static_cast<CharUnits::QuantityType>(
204 GlobalMemoryAlignment)));
205 Field->addAttr(AlignedAttr::CreateImplicit(
206 C, /*IsAlignmentExpr=*/true,
207 IntegerLiteral::Create(C, Align,
208 C.getIntTypeForBitwidth(32, /*Signed=*/0),
209 SourceLocation()),
210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211 }
212 GlobalizedRD->addDecl(Field);
213 MappedDeclsFields.try_emplace(VD, Field);
214 }
215 GlobalizedRD->completeDefinition();
216 return GlobalizedRD;
217}
218
219/// Get the list of variables that can escape their declaration context.
220class CheckVarsEscapingDeclContext final
221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222 CodeGenFunction &CGF;
223 llvm::SetVector<const ValueDecl *> EscapedDecls;
224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226 RecordDecl *GlobalizedRD = nullptr;
227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228 bool AllEscaped = false;
229 bool IsForCombinedParallelRegion = false;
230
231 void markAsEscaped(const ValueDecl *VD) {
232 // Do not globalize declare target variables.
233 if (!isa<VarDecl>(VD) ||
234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235 return;
236 VD = cast<ValueDecl>(VD->getCanonicalDecl());
237 // Use user-specified allocation.
238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239 return;
240 // Variables captured by value must be globalized.
241 if (auto *CSI = CGF.CapturedStmtInfo) {
242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243 // Check if need to capture the variable that was already captured by
244 // value in the outer region.
245 if (!IsForCombinedParallelRegion) {
246 if (!FD->hasAttrs())
247 return;
248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249 if (!Attr)
250 return;
251 if (((Attr->getCaptureKind() != OMPC_map) &&
252 !isOpenMPPrivate(Attr->getCaptureKind())) ||
253 ((Attr->getCaptureKind() == OMPC_map) &&
254 !FD->getType()->isAnyPointerType()))
255 return;
256 }
257 if (!FD->getType()->isReferenceType()) {
258 assert(!VD->getType()->isVariablyModifiedType() &&(static_cast <bool> (!VD->getType()->isVariablyModifiedType
() && "Parameter captured by value with variably modified type"
) ? void (0) : __assert_fail ("!VD->getType()->isVariablyModifiedType() && \"Parameter captured by value with variably modified type\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 259, __extension__
__PRETTY_FUNCTION__))
259 "Parameter captured by value with variably modified type")(static_cast <bool> (!VD->getType()->isVariablyModifiedType
() && "Parameter captured by value with variably modified type"
) ? void (0) : __assert_fail ("!VD->getType()->isVariablyModifiedType() && \"Parameter captured by value with variably modified type\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 259, __extension__
__PRETTY_FUNCTION__))
;
260 EscapedParameters.insert(VD);
261 } else if (!IsForCombinedParallelRegion) {
262 return;
263 }
264 }
265 }
266 if ((!CGF.CapturedStmtInfo ||
267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268 VD->getType()->isReferenceType())
269 // Do not globalize variables with reference type.
270 return;
271 if (VD->getType()->isVariablyModifiedType())
272 EscapedVariableLengthDecls.insert(VD);
273 else
274 EscapedDecls.insert(VD);
275 }
276
277 void VisitValueDecl(const ValueDecl *VD) {
278 if (VD->getType()->isLValueReferenceType())
279 markAsEscaped(VD);
280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282 const bool SavedAllEscaped = AllEscaped;
283 AllEscaped = VD->getType()->isLValueReferenceType();
284 Visit(VarD->getInit());
285 AllEscaped = SavedAllEscaped;
286 }
287 }
288 }
289 void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290 ArrayRef<OMPClause *> Clauses,
291 bool IsCombinedParallelRegion) {
292 if (!S)
293 return;
294 for (const CapturedStmt::Capture &C : S->captures()) {
295 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296 const ValueDecl *VD = C.getCapturedVar();
297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298 if (IsCombinedParallelRegion) {
299 // Check if the variable is privatized in the combined construct and
300 // those private copies must be shared in the inner parallel
301 // directive.
302 IsForCombinedParallelRegion = false;
303 for (const OMPClause *C : Clauses) {
304 if (!isOpenMPPrivate(C->getClauseKind()) ||
305 C->getClauseKind() == OMPC_reduction ||
306 C->getClauseKind() == OMPC_linear ||
307 C->getClauseKind() == OMPC_private)
308 continue;
309 ArrayRef<const Expr *> Vars;
310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311 Vars = PC->getVarRefs();
312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313 Vars = PC->getVarRefs();
314 else
315 llvm_unreachable("Unexpected clause.")::llvm::llvm_unreachable_internal("Unexpected clause.", "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp"
, 315)
;
316 for (const auto *E : Vars) {
317 const Decl *D =
318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319 if (D == VD->getCanonicalDecl()) {
320 IsForCombinedParallelRegion = true;
321 break;
322 }
323 }
324 if (IsForCombinedParallelRegion)
325 break;
326 }
327 }
328 markAsEscaped(VD);
329 if (isa<OMPCapturedExprDecl>(VD))
330 VisitValueDecl(VD);
331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332 }
333 }
334 }
335
336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337 assert(!GlobalizedRD &&(static_cast <bool> (!GlobalizedRD && "Record for globalized variables is built already."
) ? void (0) : __assert_fail ("!GlobalizedRD && \"Record for globalized variables is built already.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 338, __extension__
__PRETTY_FUNCTION__))
338 "Record for globalized variables is built already.")(static_cast <bool> (!GlobalizedRD && "Record for globalized variables is built already."
) ? void (0) : __assert_fail ("!GlobalizedRD && \"Record for globalized variables is built already.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 338, __extension__
__PRETTY_FUNCTION__))
;
339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341 if (IsInTTDRegion)
342 EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343 else
344 EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345 GlobalizedRD = ::buildRecordForGlobalizedVars(
346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347 MappedDeclsFields, WarpSize);
348 }
349
350public:
351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352 ArrayRef<const ValueDecl *> TeamsReductions)
353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354 }
355 virtual ~CheckVarsEscapingDeclContext() = default;
356 void VisitDeclStmt(const DeclStmt *S) {
357 if (!S)
358 return;
359 for (const Decl *D : S->decls())
360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361 VisitValueDecl(VD);
362 }
363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364 if (!D)
365 return;
366 if (!D->hasAssociatedStmt())
367 return;
368 if (const auto *S =
369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370 // Do not analyze directives that do not actually require capturing,
371 // like `omp for` or `omp simd` directives.
372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375 VisitStmt(S->getCapturedStmt());
376 return;
377 }
378 VisitOpenMPCapturedStmt(
379 S, D->clauses(),
380 CaptureRegions.back() == OMPD_parallel &&
381 isOpenMPDistributeDirective(D->getDirectiveKind()));
382 }
383 }
384 void VisitCapturedStmt(const CapturedStmt *S) {
385 if (!S)
386 return;
387 for (const CapturedStmt::Capture &C : S->captures()) {
388 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389 const ValueDecl *VD = C.getCapturedVar();
390 markAsEscaped(VD);
391 if (isa<OMPCapturedExprDecl>(VD))
392 VisitValueDecl(VD);
393 }
394 }
395 }
396 void VisitLambdaExpr(const LambdaExpr *E) {
397 if (!E)
398 return;
399 for (const LambdaCapture &C : E->captures()) {
400 if (C.capturesVariable()) {
401 if (C.getCaptureKind() == LCK_ByRef) {
402 const ValueDecl *VD = C.getCapturedVar();
403 markAsEscaped(VD);
404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405 VisitValueDecl(VD);
406 }
407 }
408 }
409 }
410 void VisitBlockExpr(const BlockExpr *E) {
411 if (!E)
412 return;
413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414 if (C.isByRef()) {
415 const VarDecl *VD = C.getVariable();
416 markAsEscaped(VD);
417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418 VisitValueDecl(VD);
419 }
420 }
421 }
422 void VisitCallExpr(const CallExpr *E) {
423 if (!E)
424 return;
425 for (const Expr *Arg : E->arguments()) {
426 if (!Arg)
427 continue;
428 if (Arg->isLValue()) {
429 const bool SavedAllEscaped = AllEscaped;
430 AllEscaped = true;
431 Visit(Arg);
432 AllEscaped = SavedAllEscaped;
433 } else {
434 Visit(Arg);
435 }
436 }
437 Visit(E->getCallee());
438 }
439 void VisitDeclRefExpr(const DeclRefExpr *E) {
440 if (!E)
441 return;
442 const ValueDecl *VD = E->getDecl();
443 if (AllEscaped)
444 markAsEscaped(VD);
445 if (isa<OMPCapturedExprDecl>(VD))
446 VisitValueDecl(VD);
447 else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448 if (VarD->isInitCapture())
449 VisitValueDecl(VD);
450 }
451 void VisitUnaryOperator(const UnaryOperator *E) {
452 if (!E)
453 return;
454 if (E->getOpcode() == UO_AddrOf) {
455 const bool SavedAllEscaped = AllEscaped;
456 AllEscaped = true;
457 Visit(E->getSubExpr());
458 AllEscaped = SavedAllEscaped;
459 } else {
460 Visit(E->getSubExpr());
461 }
462 }
463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464 if (!E)
465 return;
466 if (E->getCastKind() == CK_ArrayToPointerDecay) {
467 const bool SavedAllEscaped = AllEscaped;
468 AllEscaped = true;
469 Visit(E->getSubExpr());
470 AllEscaped = SavedAllEscaped;
471 } else {
472 Visit(E->getSubExpr());
473 }
474 }
475 void VisitExpr(const Expr *E) {
476 if (!E)
477 return;
478 bool SavedAllEscaped = AllEscaped;
479 if (!E->isLValue())
480 AllEscaped = false;
481 for (const Stmt *Child : E->children())
482 if (Child)
483 Visit(Child);
484 AllEscaped = SavedAllEscaped;
485 }
486 void VisitStmt(const Stmt *S) {
487 if (!S)
488 return;
489 for (const Stmt *Child : S->children())
490 if (Child)
491 Visit(Child);
492 }
493
494 /// Returns the record that handles all the escaped local variables and used
495 /// instead of their original storage.
496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497 if (!GlobalizedRD)
498 buildRecordForGlobalizedVars(IsInTTDRegion);
499 return GlobalizedRD;
500 }
501
502 /// Returns the field in the globalized record for the escaped variable.
503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504 assert(GlobalizedRD &&(static_cast <bool> (GlobalizedRD && "Record for globalized variables must be generated already."
) ? void (0) : __assert_fail ("GlobalizedRD && \"Record for globalized variables must be generated already.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 505, __extension__
__PRETTY_FUNCTION__))
505 "Record for globalized variables must be generated already.")(static_cast <bool> (GlobalizedRD && "Record for globalized variables must be generated already."
) ? void (0) : __assert_fail ("GlobalizedRD && \"Record for globalized variables must be generated already.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 505, __extension__
__PRETTY_FUNCTION__))
;
506 auto I = MappedDeclsFields.find(VD);
507 if (I == MappedDeclsFields.end())
508 return nullptr;
509 return I->getSecond();
510 }
511
512 /// Returns the list of the escaped local variables/parameters.
513 ArrayRef<const ValueDecl *> getEscapedDecls() const {
514 return EscapedDecls.getArrayRef();
515 }
516
517 /// Checks if the escaped local variable is actually a parameter passed by
518 /// value.
519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520 return EscapedParameters;
521 }
522
523 /// Returns the list of the escaped variables with the variably modified
524 /// types.
525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526 return EscapedVariableLengthDecls.getArrayRef();
527 }
528};
529} // anonymous namespace
530
531/// Get the id of the warp in the block.
532/// We assume that the warp size is 32, which is always the case
533/// on the NVPTX device, to generate more efficient code.
534static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535 CGBuilderTy &Bld = CGF.Builder;
536 unsigned LaneIDBits =
537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540}
541
542/// Get the id of the current lane in the Warp.
543/// We assume that the warp size is 32, which is always the case
544/// on the NVPTX device, to generate more efficient code.
545static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546 CGBuilderTy &Bld = CGF.Builder;
547 unsigned LaneIDBits =
548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552 "nvptx_lane_id");
553}
554
555CGOpenMPRuntimeGPU::ExecutionMode
556CGOpenMPRuntimeGPU::getExecutionMode() const {
557 return CurrentExecutionMode;
558}
559
560static CGOpenMPRuntimeGPU::DataSharingMode
561getDataSharingMode(CodeGenModule &CGM) {
562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563 : CGOpenMPRuntimeGPU::Generic;
564}
565
566/// Check for inner (nested) SPMD construct, if any
567static bool hasNestedSPMDDirective(ASTContext &Ctx,
568 const OMPExecutableDirective &D) {
569 const auto *CS = D.getInnermostCapturedStmt();
570 const auto *Body =
571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573
574 if (const auto *NestedDir =
575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577 switch (D.getDirectiveKind()) {
578 case OMPD_target:
579 if (isOpenMPParallelDirective(DKind))
580 return true;
581 if (DKind == OMPD_teams) {
582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583 /*IgnoreCaptured=*/true);
584 if (!Body)
585 return false;
586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587 if (const auto *NND =
588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589 DKind = NND->getDirectiveKind();
590 if (isOpenMPParallelDirective(DKind))
591 return true;
592 }
593 }
594 return false;
595 case OMPD_target_teams:
596 return isOpenMPParallelDirective(DKind);
597 case OMPD_target_simd:
598 case OMPD_target_parallel:
599 case OMPD_target_parallel_for:
600 case OMPD_target_parallel_for_simd:
601 case OMPD_target_teams_distribute:
602 case OMPD_target_teams_distribute_simd:
603 case OMPD_target_teams_distribute_parallel_for:
604 case OMPD_target_teams_distribute_parallel_for_simd:
605 case OMPD_parallel:
606 case OMPD_for:
607 case OMPD_parallel_for:
608 case OMPD_parallel_master:
609 case OMPD_parallel_sections:
610 case OMPD_for_simd:
611 case OMPD_parallel_for_simd:
612 case OMPD_cancel:
613 case OMPD_cancellation_point:
614 case OMPD_ordered:
615 case OMPD_threadprivate:
616 case OMPD_allocate:
617 case OMPD_task:
618 case OMPD_simd:
619 case OMPD_sections:
620 case OMPD_section:
621 case OMPD_single:
622 case OMPD_master:
623 case OMPD_critical:
624 case OMPD_taskyield:
625 case OMPD_barrier:
626 case OMPD_taskwait:
627 case OMPD_taskgroup:
628 case OMPD_atomic:
629 case OMPD_flush:
630 case OMPD_depobj:
631 case OMPD_scan:
632 case OMPD_teams:
633 case OMPD_target_data:
634 case OMPD_target_exit_data:
635 case OMPD_target_enter_data:
636 case OMPD_distribute:
637 case OMPD_distribute_simd:
638 case OMPD_distribute_parallel_for:
639 case OMPD_distribute_parallel_for_simd:
640 case OMPD_teams_distribute:
641 case OMPD_teams_distribute_simd:
642 case OMPD_teams_distribute_parallel_for:
643 case OMPD_teams_distribute_parallel_for_simd:
644 case OMPD_target_update:
645 case OMPD_declare_simd:
646 case OMPD_declare_variant:
647 case OMPD_begin_declare_variant:
648 case OMPD_end_declare_variant:
649 case OMPD_declare_target:
650 case OMPD_end_declare_target:
651 case OMPD_declare_reduction:
652 case OMPD_declare_mapper:
653 case OMPD_taskloop:
654 case OMPD_taskloop_simd:
655 case OMPD_master_taskloop:
656 case OMPD_master_taskloop_simd:
657 case OMPD_parallel_master_taskloop:
658 case OMPD_parallel_master_taskloop_simd:
659 case OMPD_requires:
660 case OMPD_unknown:
661 default:
662 llvm_unreachable("Unexpected directive.")::llvm::llvm_unreachable_internal("Unexpected directive.", "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp"
, 662)
;
663 }
664 }
665
666 return false;
667}
668
669static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670 const OMPExecutableDirective &D) {
671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672 switch (DirectiveKind) {
673 case OMPD_target:
674 case OMPD_target_teams:
675 return hasNestedSPMDDirective(Ctx, D);
676 case OMPD_target_parallel:
677 case OMPD_target_parallel_for:
678 case OMPD_target_parallel_for_simd:
679 case OMPD_target_teams_distribute_parallel_for:
680 case OMPD_target_teams_distribute_parallel_for_simd:
681 case OMPD_target_simd:
682 case OMPD_target_teams_distribute_simd:
683 return true;
684 case OMPD_target_teams_distribute:
685 return false;
686 case OMPD_parallel:
687 case OMPD_for:
688 case OMPD_parallel_for:
689 case OMPD_parallel_master:
690 case OMPD_parallel_sections:
691 case OMPD_for_simd:
692 case OMPD_parallel_for_simd:
693 case OMPD_cancel:
694 case OMPD_cancellation_point:
695 case OMPD_ordered:
696 case OMPD_threadprivate:
697 case OMPD_allocate:
698 case OMPD_task:
699 case OMPD_simd:
700 case OMPD_sections:
701 case OMPD_section:
702 case OMPD_single:
703 case OMPD_master:
704 case OMPD_critical:
705 case OMPD_taskyield:
706 case OMPD_barrier:
707 case OMPD_taskwait:
708 case OMPD_taskgroup:
709 case OMPD_atomic:
710 case OMPD_flush:
711 case OMPD_depobj:
712 case OMPD_scan:
713 case OMPD_teams:
714 case OMPD_target_data:
715 case OMPD_target_exit_data:
716 case OMPD_target_enter_data:
717 case OMPD_distribute:
718 case OMPD_distribute_simd:
719 case OMPD_distribute_parallel_for:
720 case OMPD_distribute_parallel_for_simd:
721 case OMPD_teams_distribute:
722 case OMPD_teams_distribute_simd:
723 case OMPD_teams_distribute_parallel_for:
724 case OMPD_teams_distribute_parallel_for_simd:
725 case OMPD_target_update:
726 case OMPD_declare_simd:
727 case OMPD_declare_variant:
728 case OMPD_begin_declare_variant:
729 case OMPD_end_declare_variant:
730 case OMPD_declare_target:
731 case OMPD_end_declare_target:
732 case OMPD_declare_reduction:
733 case OMPD_declare_mapper:
734 case OMPD_taskloop:
735 case OMPD_taskloop_simd:
736 case OMPD_master_taskloop:
737 case OMPD_master_taskloop_simd:
738 case OMPD_parallel_master_taskloop:
739 case OMPD_parallel_master_taskloop_simd:
740 case OMPD_requires:
741 case OMPD_unknown:
742 default:
743 break;
744 }
745 llvm_unreachable(::llvm::llvm_unreachable_internal("Unknown programming model for OpenMP directive on NVPTX target."
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 746)
746 "Unknown programming model for OpenMP directive on NVPTX target.")::llvm::llvm_unreachable_internal("Unknown programming model for OpenMP directive on NVPTX target."
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 746)
;
747}
748
749/// Check if the directive is loops based and has schedule clause at all or has
750/// static scheduling.
751static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&(static_cast <bool> (isOpenMPWorksharingDirective(D.getDirectiveKind
()) && isOpenMPLoopDirective(D.getDirectiveKind()) &&
"Expected loop-based directive.") ? void (0) : __assert_fail
("isOpenMPWorksharingDirective(D.getDirectiveKind()) && isOpenMPLoopDirective(D.getDirectiveKind()) && \"Expected loop-based directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 754, __extension__
__PRETTY_FUNCTION__))
753 isOpenMPLoopDirective(D.getDirectiveKind()) &&(static_cast <bool> (isOpenMPWorksharingDirective(D.getDirectiveKind
()) && isOpenMPLoopDirective(D.getDirectiveKind()) &&
"Expected loop-based directive.") ? void (0) : __assert_fail
("isOpenMPWorksharingDirective(D.getDirectiveKind()) && isOpenMPLoopDirective(D.getDirectiveKind()) && \"Expected loop-based directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 754, __extension__
__PRETTY_FUNCTION__))
754 "Expected loop-based directive.")(static_cast <bool> (isOpenMPWorksharingDirective(D.getDirectiveKind
()) && isOpenMPLoopDirective(D.getDirectiveKind()) &&
"Expected loop-based directive.") ? void (0) : __assert_fail
("isOpenMPWorksharingDirective(D.getDirectiveKind()) && isOpenMPLoopDirective(D.getDirectiveKind()) && \"Expected loop-based directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 754, __extension__
__PRETTY_FUNCTION__))
;
755 return !D.hasClausesOfKind<OMPOrderedClause>() &&
756 (!D.hasClausesOfKind<OMPScheduleClause>() ||
757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758 [](const OMPScheduleClause *C) {
759 return C->getScheduleKind() == OMPC_SCHEDULE_static;
760 }));
761}
762
763/// Check for inner (nested) lightweight runtime construct, if any
764static bool hasNestedLightweightDirective(ASTContext &Ctx,
765 const OMPExecutableDirective &D) {
766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.")(static_cast <bool> (supportsSPMDExecutionMode(Ctx, D) &&
"Expected SPMD mode directive.") ? void (0) : __assert_fail (
"supportsSPMDExecutionMode(Ctx, D) && \"Expected SPMD mode directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 766, __extension__
__PRETTY_FUNCTION__))
;
767 const auto *CS = D.getInnermostCapturedStmt();
768 const auto *Body =
769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771
772 if (const auto *NestedDir =
773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775 switch (D.getDirectiveKind()) {
776 case OMPD_target:
777 if (isOpenMPParallelDirective(DKind) &&
778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779 hasStaticScheduling(*NestedDir))
780 return true;
781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782 return true;
783 if (DKind == OMPD_parallel) {
784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785 /*IgnoreCaptured=*/true);
786 if (!Body)
787 return false;
788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789 if (const auto *NND =
790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791 DKind = NND->getDirectiveKind();
792 if (isOpenMPWorksharingDirective(DKind) &&
793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794 return true;
795 }
796 } else if (DKind == OMPD_teams) {
797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798 /*IgnoreCaptured=*/true);
799 if (!Body)
800 return false;
801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802 if (const auto *NND =
803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804 DKind = NND->getDirectiveKind();
805 if (isOpenMPParallelDirective(DKind) &&
806 isOpenMPWorksharingDirective(DKind) &&
807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808 return true;
809 if (DKind == OMPD_parallel) {
810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811 /*IgnoreCaptured=*/true);
812 if (!Body)
813 return false;
814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815 if (const auto *NND =
816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817 DKind = NND->getDirectiveKind();
818 if (isOpenMPWorksharingDirective(DKind) &&
819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820 return true;
821 }
822 }
823 }
824 }
825 return false;
826 case OMPD_target_teams:
827 if (isOpenMPParallelDirective(DKind) &&
828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829 hasStaticScheduling(*NestedDir))
830 return true;
831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832 return true;
833 if (DKind == OMPD_parallel) {
834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835 /*IgnoreCaptured=*/true);
836 if (!Body)
837 return false;
838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839 if (const auto *NND =
840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841 DKind = NND->getDirectiveKind();
842 if (isOpenMPWorksharingDirective(DKind) &&
843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844 return true;
845 }
846 }
847 return false;
848 case OMPD_target_parallel:
849 if (DKind == OMPD_simd)
850 return true;
851 return isOpenMPWorksharingDirective(DKind) &&
852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853 case OMPD_target_teams_distribute:
854 case OMPD_target_simd:
855 case OMPD_target_parallel_for:
856 case OMPD_target_parallel_for_simd:
857 case OMPD_target_teams_distribute_simd:
858 case OMPD_target_teams_distribute_parallel_for:
859 case OMPD_target_teams_distribute_parallel_for_simd:
860 case OMPD_parallel:
861 case OMPD_for:
862 case OMPD_parallel_for:
863 case OMPD_parallel_master:
864 case OMPD_parallel_sections:
865 case OMPD_for_simd:
866 case OMPD_parallel_for_simd:
867 case OMPD_cancel:
868 case OMPD_cancellation_point:
869 case OMPD_ordered:
870 case OMPD_threadprivate:
871 case OMPD_allocate:
872 case OMPD_task:
873 case OMPD_simd:
874 case OMPD_sections:
875 case OMPD_section:
876 case OMPD_single:
877 case OMPD_master:
878 case OMPD_critical:
879 case OMPD_taskyield:
880 case OMPD_barrier:
881 case OMPD_taskwait:
882 case OMPD_taskgroup:
883 case OMPD_atomic:
884 case OMPD_flush:
885 case OMPD_depobj:
886 case OMPD_scan:
887 case OMPD_teams:
888 case OMPD_target_data:
889 case OMPD_target_exit_data:
890 case OMPD_target_enter_data:
891 case OMPD_distribute:
892 case OMPD_distribute_simd:
893 case OMPD_distribute_parallel_for:
894 case OMPD_distribute_parallel_for_simd:
895 case OMPD_teams_distribute:
896 case OMPD_teams_distribute_simd:
897 case OMPD_teams_distribute_parallel_for:
898 case OMPD_teams_distribute_parallel_for_simd:
899 case OMPD_target_update:
900 case OMPD_declare_simd:
901 case OMPD_declare_variant:
902 case OMPD_begin_declare_variant:
903 case OMPD_end_declare_variant:
904 case OMPD_declare_target:
905 case OMPD_end_declare_target:
906 case OMPD_declare_reduction:
907 case OMPD_declare_mapper:
908 case OMPD_taskloop:
909 case OMPD_taskloop_simd:
910 case OMPD_master_taskloop:
911 case OMPD_master_taskloop_simd:
912 case OMPD_parallel_master_taskloop:
913 case OMPD_parallel_master_taskloop_simd:
914 case OMPD_requires:
915 case OMPD_unknown:
916 default:
917 llvm_unreachable("Unexpected directive.")::llvm::llvm_unreachable_internal("Unexpected directive.", "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp"
, 917)
;
918 }
919 }
920
921 return false;
922}
923
924/// Checks if the construct supports lightweight runtime. It must be SPMD
925/// construct + inner loop-based construct with static scheduling.
926static bool supportsLightweightRuntime(ASTContext &Ctx,
927 const OMPExecutableDirective &D) {
928 if (!supportsSPMDExecutionMode(Ctx, D))
929 return false;
930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931 switch (DirectiveKind) {
932 case OMPD_target:
933 case OMPD_target_teams:
934 case OMPD_target_parallel:
935 return hasNestedLightweightDirective(Ctx, D);
936 case OMPD_target_parallel_for:
937 case OMPD_target_parallel_for_simd:
938 case OMPD_target_teams_distribute_parallel_for:
939 case OMPD_target_teams_distribute_parallel_for_simd:
940 // (Last|First)-privates must be shared in parallel region.
941 return hasStaticScheduling(D);
942 case OMPD_target_simd:
943 case OMPD_target_teams_distribute_simd:
944 return true;
945 case OMPD_target_teams_distribute:
946 return false;
947 case OMPD_parallel:
948 case OMPD_for:
949 case OMPD_parallel_for:
950 case OMPD_parallel_master:
951 case OMPD_parallel_sections:
952 case OMPD_for_simd:
953 case OMPD_parallel_for_simd:
954 case OMPD_cancel:
955 case OMPD_cancellation_point:
956 case OMPD_ordered:
957 case OMPD_threadprivate:
958 case OMPD_allocate:
959 case OMPD_task:
960 case OMPD_simd:
961 case OMPD_sections:
962 case OMPD_section:
963 case OMPD_single:
964 case OMPD_master:
965 case OMPD_critical:
966 case OMPD_taskyield:
967 case OMPD_barrier:
968 case OMPD_taskwait:
969 case OMPD_taskgroup:
970 case OMPD_atomic:
971 case OMPD_flush:
972 case OMPD_depobj:
973 case OMPD_scan:
974 case OMPD_teams:
975 case OMPD_target_data:
976 case OMPD_target_exit_data:
977 case OMPD_target_enter_data:
978 case OMPD_distribute:
979 case OMPD_distribute_simd:
980 case OMPD_distribute_parallel_for:
981 case OMPD_distribute_parallel_for_simd:
982 case OMPD_teams_distribute:
983 case OMPD_teams_distribute_simd:
984 case OMPD_teams_distribute_parallel_for:
985 case OMPD_teams_distribute_parallel_for_simd:
986 case OMPD_target_update:
987 case OMPD_declare_simd:
988 case OMPD_declare_variant:
989 case OMPD_begin_declare_variant:
990 case OMPD_end_declare_variant:
991 case OMPD_declare_target:
992 case OMPD_end_declare_target:
993 case OMPD_declare_reduction:
994 case OMPD_declare_mapper:
995 case OMPD_taskloop:
996 case OMPD_taskloop_simd:
997 case OMPD_master_taskloop:
998 case OMPD_master_taskloop_simd:
999 case OMPD_parallel_master_taskloop:
1000 case OMPD_parallel_master_taskloop_simd:
1001 case OMPD_requires:
1002 case OMPD_unknown:
1003 default:
1004 break;
1005 }
1006 llvm_unreachable(::llvm::llvm_unreachable_internal("Unknown programming model for OpenMP directive on NVPTX target."
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1007)
1007 "Unknown programming model for OpenMP directive on NVPTX target.")::llvm::llvm_unreachable_internal("Unknown programming model for OpenMP directive on NVPTX target."
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1007)
;
1008}
1009
1010void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011 StringRef ParentName,
1012 llvm::Function *&OutlinedFn,
1013 llvm::Constant *&OutlinedFnID,
1014 bool IsOffloadEntry,
1015 const RegionCodeGenTy &CodeGen) {
1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017 EntryFunctionState EST;
1018 WrapperFunctionsMap.clear();
1019
1020 // Emit target region as a standalone region.
1021 class NVPTXPrePostActionTy : public PrePostActionTy {
1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023
1024 public:
1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026 : EST(EST) {}
1027 void Enter(CodeGenFunction &CGF) override {
1028 auto &RT =
1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031 // Skip target region initialization.
1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033 }
1034 void Exit(CodeGenFunction &CGF) override {
1035 auto &RT =
1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037 RT.clearLocThreadIdInsertPt(CGF);
1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039 }
1040 } Action(EST);
1041 CodeGen.setAction(Action);
1042 IsInTTDRegion = true;
1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044 IsOffloadEntry, CodeGen);
1045 IsInTTDRegion = false;
1046}
1047
1048void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049 EntryFunctionState &EST, bool IsSPMD) {
1050 CGBuilderTy &Bld = CGF.Builder;
1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052 IsInTargetMasterThreadRegion = IsSPMD;
1053 if (!IsSPMD)
1054 emitGenericVarsProlog(CGF, EST.Loc);
1055}
1056
1057void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058 EntryFunctionState &EST,
1059 bool IsSPMD) {
1060 if (!IsSPMD)
1061 emitGenericVarsEpilog(CGF);
1062
1063 CGBuilderTy &Bld = CGF.Builder;
1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065}
1066
1067void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068 StringRef ParentName,
1069 llvm::Function *&OutlinedFn,
1070 llvm::Constant *&OutlinedFnID,
1071 bool IsOffloadEntry,
1072 const RegionCodeGenTy &CodeGen) {
1073 ExecutionRuntimeModesRAII ModeRAII(
1074 CurrentExecutionMode, RequiresFullRuntime,
1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076 !supportsLightweightRuntime(CGM.getContext(), D));
1077 EntryFunctionState EST;
1078
1079 // Emit target region as a standalone region.
1080 class NVPTXPrePostActionTy : public PrePostActionTy {
1081 CGOpenMPRuntimeGPU &RT;
1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083
1084 public:
1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087 : RT(RT), EST(EST) {}
1088 void Enter(CodeGenFunction &CGF) override {
1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090 // Skip target region initialization.
1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092 }
1093 void Exit(CodeGenFunction &CGF) override {
1094 RT.clearLocThreadIdInsertPt(CGF);
1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096 }
1097 } Action(*this, EST);
1098 CodeGen.setAction(Action);
1099 IsInTTDRegion = true;
1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101 IsOffloadEntry, CodeGen);
1102 IsInTTDRegion = false;
1103}
1104
1105// Create a unique global variable to indicate the execution mode of this target
1106// region. The execution mode is either 'generic', or 'spmd' depending on the
1107// target directive. This variable is picked up by the offload library to setup
1108// the device appropriately before kernel launch. If the execution mode is
1109// 'generic', the runtime reserves one warp for the master, otherwise, all
1110// warps participate in parallel work.
1111static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112 bool Mode) {
1113 auto *GVMode = new llvm::GlobalVariable(
1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115 llvm::GlobalValue::WeakAnyLinkage,
1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117 : OMP_TGT_EXEC_MODE_GENERIC),
1118 Twine(Name, "_exec_mode"));
1119 CGM.addCompilerUsedGlobal(GVMode);
1120}
1121
1122void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123 llvm::Constant *Addr,
1124 uint64_t Size, int32_t,
1125 llvm::GlobalValue::LinkageTypes) {
1126 // TODO: Add support for global variables on the device after declare target
1127 // support.
1128 llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129 if (!Fn)
1130 return;
1131
1132 llvm::Module &M = CGM.getModule();
1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134
1135 // Get "nvvm.annotations" metadata node.
1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137
1138 llvm::Metadata *MDVals[] = {
1139 llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140 llvm::ConstantAsMetadata::get(
1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142 // Append metadata to nvvm.annotations.
1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144
1145 // Add a function attribute for the kernel.
1146 Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147}
1148
1149void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150 const OMPExecutableDirective &D, StringRef ParentName,
1151 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153 if (!IsOffloadEntry) // Nothing to do.
1154 return;
1155
1156 assert(!ParentName.empty() && "Invalid target region parent name!")(static_cast <bool> (!ParentName.empty() && "Invalid target region parent name!"
) ? void (0) : __assert_fail ("!ParentName.empty() && \"Invalid target region parent name!\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1156, __extension__
__PRETTY_FUNCTION__))
;
1157
1158 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159 if (Mode)
1160 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161 CodeGen);
1162 else
1163 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164 CodeGen);
1165
1166 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167}
1168
1169namespace {
1170LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()using ::llvm::BitmaskEnumDetail::operator~; using ::llvm::BitmaskEnumDetail
::operator|; using ::llvm::BitmaskEnumDetail::operator&; using
::llvm::BitmaskEnumDetail::operator^; using ::llvm::BitmaskEnumDetail
::operator|=; using ::llvm::BitmaskEnumDetail::operator&=
; using ::llvm::BitmaskEnumDetail::operator^=
;
1171/// Enum for accesseing the reserved_2 field of the ident_t struct.
1172enum ModeFlagsTy : unsigned {
1173 /// Bit set to 1 when in SPMD mode.
1174 KMP_IDENT_SPMD_MODE = 0x01,
1175 /// Bit set to 1 when a simplified runtime is used.
1176 KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)LLVM_BITMASK_LARGEST_ENUMERATOR = KMP_IDENT_SIMPLE_RT_MODE
1178};
1179
1180/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181static const ModeFlagsTy UndefinedMode =
1182 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183} // anonymous namespace
1184
1185unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186 switch (getExecutionMode()) {
1187 case EM_SPMD:
1188 if (requiresFullRuntime())
1189 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191 case EM_NonSPMD:
1192 assert(requiresFullRuntime() && "Expected full runtime.")(static_cast <bool> (requiresFullRuntime() && "Expected full runtime."
) ? void (0) : __assert_fail ("requiresFullRuntime() && \"Expected full runtime.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1192, __extension__
__PRETTY_FUNCTION__))
;
1193 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194 case EM_Unknown:
1195 return UndefinedMode;
1196 }
1197 llvm_unreachable("Unknown flags are requested.")::llvm::llvm_unreachable_internal("Unknown flags are requested."
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1197)
;
1198}
1199
1200CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201 : CGOpenMPRuntime(CGM, "_", "$") {
1202 if (!CGM.getLangOpts().OpenMPIsDevice)
1203 llvm_unreachable("OpenMP can only handle device code.")::llvm::llvm_unreachable_internal("OpenMP can only handle device code."
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1203)
;
1204
1205 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206 if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
1207 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1208 "__omp_rtl_debug_kind");
1209 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1210 "__omp_rtl_assume_teams_oversubscription");
1211 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1212 "__omp_rtl_assume_threads_oversubscription");
1213 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
1214 "__omp_rtl_assume_no_thread_state");
1215 }
1216}
1217
1218void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1219 ProcBindKind ProcBind,
1220 SourceLocation Loc) {
1221 // Do nothing in case of SPMD mode and L0 parallel.
1222 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1223 return;
1224
1225 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1226}
1227
1228void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1229 llvm::Value *NumThreads,
1230 SourceLocation Loc) {
1231 // Nothing to do.
1232}
1233
1234void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1235 const Expr *NumTeams,
1236 const Expr *ThreadLimit,
1237 SourceLocation Loc) {}
1238
1239llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1240 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1241 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1242 // Emit target region as a standalone region.
1243 class NVPTXPrePostActionTy : public PrePostActionTy {
1244 bool &IsInParallelRegion;
1245 bool PrevIsInParallelRegion;
1246
1247 public:
1248 NVPTXPrePostActionTy(bool &IsInParallelRegion)
1249 : IsInParallelRegion(IsInParallelRegion) {}
1250 void Enter(CodeGenFunction &CGF) override {
1251 PrevIsInParallelRegion = IsInParallelRegion;
1252 IsInParallelRegion = true;
1253 }
1254 void Exit(CodeGenFunction &CGF) override {
1255 IsInParallelRegion = PrevIsInParallelRegion;
1256 }
1257 } Action(IsInParallelRegion);
1258 CodeGen.setAction(Action);
1259 bool PrevIsInTTDRegion = IsInTTDRegion;
1260 IsInTTDRegion = false;
1261 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1262 IsInTargetMasterThreadRegion = false;
1263 auto *OutlinedFun =
1264 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1265 D, ThreadIDVar, InnermostKind, CodeGen));
1266 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1267 IsInTTDRegion = PrevIsInTTDRegion;
1268 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1269 !IsInParallelRegion) {
1270 llvm::Function *WrapperFun =
1271 createParallelDataSharingWrapper(OutlinedFun, D);
1272 WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1273 }
1274
1275 return OutlinedFun;
1276}
1277
1278/// Get list of lastprivate variables from the teams distribute ... or
1279/// teams {distribute ...} directives.
1280static void
1281getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1282 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1283 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&(static_cast <bool> (isOpenMPTeamsDirective(D.getDirectiveKind
()) && "expected teams directive.") ? void (0) : __assert_fail
("isOpenMPTeamsDirective(D.getDirectiveKind()) && \"expected teams directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1284, __extension__
__PRETTY_FUNCTION__))
1284 "expected teams directive.")(static_cast <bool> (isOpenMPTeamsDirective(D.getDirectiveKind
()) && "expected teams directive.") ? void (0) : __assert_fail
("isOpenMPTeamsDirective(D.getDirectiveKind()) && \"expected teams directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1284, __extension__
__PRETTY_FUNCTION__))
;
1285 const OMPExecutableDirective *Dir = &D;
1286 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1287 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1288 Ctx,
1289 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1290 /*IgnoreCaptured=*/true))) {
1291 Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1292 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1293 Dir = nullptr;
1294 }
1295 }
1296 if (!Dir)
1297 return;
1298 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1299 for (const Expr *E : C->getVarRefs())
1300 Vars.push_back(getPrivateItem(E));
1301 }
1302}
1303
1304/// Get list of reduction variables from the teams ... directives.
1305static void
1306getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1307 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1308 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&(static_cast <bool> (isOpenMPTeamsDirective(D.getDirectiveKind
()) && "expected teams directive.") ? void (0) : __assert_fail
("isOpenMPTeamsDirective(D.getDirectiveKind()) && \"expected teams directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1309, __extension__
__PRETTY_FUNCTION__))
1309 "expected teams directive.")(static_cast <bool> (isOpenMPTeamsDirective(D.getDirectiveKind
()) && "expected teams directive.") ? void (0) : __assert_fail
("isOpenMPTeamsDirective(D.getDirectiveKind()) && \"expected teams directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1309, __extension__
__PRETTY_FUNCTION__))
;
1310 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1311 for (const Expr *E : C->privates())
1312 Vars.push_back(getPrivateItem(E));
1313 }
1314}
1315
1316llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1317 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1318 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1319 SourceLocation Loc = D.getBeginLoc();
1320
1321 const RecordDecl *GlobalizedRD = nullptr;
1322 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1323 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1324 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1325 // Globalize team reductions variable unconditionally in all modes.
1326 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1327 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1328 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1329 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1330 if (!LastPrivatesReductions.empty()) {
1331 GlobalizedRD = ::buildRecordForGlobalizedVars(
1332 CGM.getContext(), llvm::None, LastPrivatesReductions,
1333 MappedDeclsFields, WarpSize);
1334 }
1335 } else if (!LastPrivatesReductions.empty()) {
1336 assert(!TeamAndReductions.first &&(static_cast <bool> (!TeamAndReductions.first &&
"Previous team declaration is not expected.") ? void (0) : __assert_fail
("!TeamAndReductions.first && \"Previous team declaration is not expected.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1337, __extension__
__PRETTY_FUNCTION__))
1337 "Previous team declaration is not expected.")(static_cast <bool> (!TeamAndReductions.first &&
"Previous team declaration is not expected.") ? void (0) : __assert_fail
("!TeamAndReductions.first && \"Previous team declaration is not expected.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1337, __extension__
__PRETTY_FUNCTION__))
;
1338 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1339 std::swap(TeamAndReductions.second, LastPrivatesReductions);
1340 }
1341
1342 // Emit target region as a standalone region.
1343 class NVPTXPrePostActionTy : public PrePostActionTy {
1344 SourceLocation &Loc;
1345 const RecordDecl *GlobalizedRD;
1346 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1347 &MappedDeclsFields;
1348
1349 public:
1350 NVPTXPrePostActionTy(
1351 SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1352 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1353 &MappedDeclsFields)
1354 : Loc(Loc), GlobalizedRD(GlobalizedRD),
1355 MappedDeclsFields(MappedDeclsFields) {}
1356 void Enter(CodeGenFunction &CGF) override {
1357 auto &Rt =
1358 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1359 if (GlobalizedRD) {
1360 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1361 I->getSecond().MappedParams =
1362 std::make_unique<CodeGenFunction::OMPMapVars>();
1363 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1364 for (const auto &Pair : MappedDeclsFields) {
1365 assert(Pair.getFirst()->isCanonicalDecl() &&(static_cast <bool> (Pair.getFirst()->isCanonicalDecl
() && "Expected canonical declaration") ? void (0) : __assert_fail
("Pair.getFirst()->isCanonicalDecl() && \"Expected canonical declaration\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1366, __extension__
__PRETTY_FUNCTION__))
1366 "Expected canonical declaration")(static_cast <bool> (Pair.getFirst()->isCanonicalDecl
() && "Expected canonical declaration") ? void (0) : __assert_fail
("Pair.getFirst()->isCanonicalDecl() && \"Expected canonical declaration\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1366, __extension__
__PRETTY_FUNCTION__))
;
1367 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1368 }
1369 }
1370 Rt.emitGenericVarsProlog(CGF, Loc);
1371 }
1372 void Exit(CodeGenFunction &CGF) override {
1373 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1374 .emitGenericVarsEpilog(CGF);
1375 }
1376 } Action(Loc, GlobalizedRD, MappedDeclsFields);
1377 CodeGen.setAction(Action);
1378 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1379 D, ThreadIDVar, InnermostKind, CodeGen);
1380
1381 return OutlinedFun;
1382}
1383
1384void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1385 SourceLocation Loc,
1386 bool WithSPMDCheck) {
1387 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1388 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1389 return;
1390
1391 CGBuilderTy &Bld = CGF.Builder;
1392
1393 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1394 if (I == FunctionGlobalizedDecls.end())
1395 return;
1396
1397 for (auto &Rec : I->getSecond().LocalVarData) {
1398 const auto *VD = cast<VarDecl>(Rec.first);
1399 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1400 QualType VarTy = VD->getType();
1401
1402 // Get the local allocation of a firstprivate variable before sharing
1403 llvm::Value *ParValue;
1404 if (EscapedParam) {
1405 LValue ParLVal =
1406 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1407 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1408 }
1409
1410 // Allocate space for the variable to be globalized
1411 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1412 llvm::CallBase *VoidPtr =
1413 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1414 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1415 AllocArgs, VD->getName());
1416 // FIXME: We should use the variables actual alignment as an argument.
1417 VoidPtr->addRetAttr(llvm::Attribute::get(
1418 CGM.getLLVMContext(), llvm::Attribute::Alignment,
1419 CGM.getContext().getTargetInfo().getNewAlign() / 8));
1420
1421 // Cast the void pointer and get the address of the globalized variable.
1422 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1423 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1424 VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1425 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1426 Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1427 Rec.second.GlobalizedVal = VoidPtr;
1428
1429 // Assign the local allocation to the newly globalized location.
1430 if (EscapedParam) {
1431 CGF.EmitStoreOfScalar(ParValue, VarAddr);
1432 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1433 }
1434 if (auto *DI = CGF.getDebugInfo())
1435 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1436 }
1437 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1438 // Use actual memory size of the VLA object including the padding
1439 // for alignment purposes.
1440 llvm::Value *Size = CGF.getTypeSize(VD->getType());
1441 CharUnits Align = CGM.getContext().getDeclAlign(VD);
1442 Size = Bld.CreateNUWAdd(
1443 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1444 llvm::Value *AlignVal =
1445 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1446
1447 Size = Bld.CreateUDiv(Size, AlignVal);
1448 Size = Bld.CreateNUWMul(Size, AlignVal);
Value stored to 'Size' is never read
1449
1450 // Allocate space for this VLA object to be globalized.
1451 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1452 llvm::CallBase *VoidPtr =
1453 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1454 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1455 AllocArgs, VD->getName());
1456 VoidPtr->addRetAttr(
1457 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1458 CGM.getContext().getTargetInfo().getNewAlign()));
1459
1460 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1461 std::pair<llvm::Value *, llvm::Value *>(
1462 {VoidPtr, CGF.getTypeSize(VD->getType())}));
1463 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1464 CGM.getContext().getDeclAlign(VD),
1465 AlignmentSource::Decl);
1466 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1467 Base.getAddress(CGF));
1468 }
1469 I->getSecond().MappedParams->apply(CGF);
1470}
1471
1472void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1473 bool WithSPMDCheck) {
1474 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1475 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1476 return;
1477
1478 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1479 if (I != FunctionGlobalizedDecls.end()) {
1480 // Deallocate the memory for each globalized VLA object
1481 for (auto AddrSizePair :
1482 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1483 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1484 CGM.getModule(), OMPRTL___kmpc_free_shared),
1485 {AddrSizePair.first, AddrSizePair.second});
1486 }
1487 // Deallocate the memory for each globalized value
1488 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1489 const auto *VD = cast<VarDecl>(Rec.first);
1490 I->getSecond().MappedParams->restore(CGF);
1491
1492 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1493 CGF.getTypeSize(VD->getType())};
1494 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1495 CGM.getModule(), OMPRTL___kmpc_free_shared),
1496 FreeArgs);
1497 }
1498 }
1499}
1500
1501void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1502 const OMPExecutableDirective &D,
1503 SourceLocation Loc,
1504 llvm::Function *OutlinedFn,
1505 ArrayRef<llvm::Value *> CapturedVars) {
1506 if (!CGF.HaveInsertPoint())
1507 return;
1508
1509 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1510 /*Name=*/".zero.addr");
1511 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1512 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1513 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1514 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1515 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1516 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1517}
1518
1519void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1520 SourceLocation Loc,
1521 llvm::Function *OutlinedFn,
1522 ArrayRef<llvm::Value *> CapturedVars,
1523 const Expr *IfCond,
1524 llvm::Value *NumThreads) {
1525 if (!CGF.HaveInsertPoint())
1526 return;
1527
1528 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1529 NumThreads](CodeGenFunction &CGF,
1530 PrePostActionTy &Action) {
1531 CGBuilderTy &Bld = CGF.Builder;
1532 llvm::Value *NumThreadsVal = NumThreads;
1533 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1534 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1535 if (WFn)
1536 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1537 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1538
1539 // Create a private scope that will globalize the arguments
1540 // passed from the outside of the target region.
1541 // TODO: Is that needed?
1542 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1543
1544 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1545 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1546 "captured_vars_addrs");
1547 // There's something to share.
1548 if (!CapturedVars.empty()) {
1549 // Prepare for parallel region. Indicate the outlined function.
1550 ASTContext &Ctx = CGF.getContext();
1551 unsigned Idx = 0;
1552 for (llvm::Value *V : CapturedVars) {
1553 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1554 llvm::Value *PtrV;
1555 if (V->getType()->isIntegerTy())
1556 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1557 else
1558 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1559 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1560 Ctx.getPointerType(Ctx.VoidPtrTy));
1561 ++Idx;
1562 }
1563 }
1564
1565 llvm::Value *IfCondVal = nullptr;
1566 if (IfCond)
1567 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1568 /* isSigned */ false);
1569 else
1570 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1571
1572 if (!NumThreadsVal)
1573 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1574 else
1575 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1576
1577 assert(IfCondVal && "Expected a value")(static_cast <bool> (IfCondVal && "Expected a value"
) ? void (0) : __assert_fail ("IfCondVal && \"Expected a value\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1577, __extension__
__PRETTY_FUNCTION__))
;
1578 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1579 llvm::Value *Args[] = {
1580 RTLoc,
1581 getThreadID(CGF, Loc),
1582 IfCondVal,
1583 NumThreadsVal,
1584 llvm::ConstantInt::get(CGF.Int32Ty, -1),
1585 FnPtr,
1586 ID,
1587 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1588 CGF.VoidPtrPtrTy),
1589 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1590 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1591 CGM.getModule(), OMPRTL___kmpc_parallel_51),
1592 Args);
1593 };
1594
1595 RegionCodeGenTy RCG(ParallelGen);
1596 RCG(CGF);
1597}
1598
1599void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1600 // Always emit simple barriers!
1601 if (!CGF.HaveInsertPoint())
1602 return;
1603 // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1604 // This function does not use parameters, so we can emit just default values.
1605 llvm::Value *Args[] = {
1606 llvm::ConstantPointerNull::get(
1607 cast<llvm::PointerType>(getIdentTyPointerTy())),
1608 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1609 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1610 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1611 Args);
1612}
1613
1614void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1615 SourceLocation Loc,
1616 OpenMPDirectiveKind Kind, bool,
1617 bool) {
1618 // Always emit simple barriers!
1619 if (!CGF.HaveInsertPoint())
1620 return;
1621 // Build call __kmpc_cancel_barrier(loc, thread_id);
1622 unsigned Flags = getDefaultFlagsForBarriers(Kind);
1623 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1624 getThreadID(CGF, Loc)};
1625
1626 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1627 CGM.getModule(), OMPRTL___kmpc_barrier),
1628 Args);
1629}
1630
1631void CGOpenMPRuntimeGPU::emitCriticalRegion(
1632 CodeGenFunction &CGF, StringRef CriticalName,
1633 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1634 const Expr *Hint) {
1635 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1636 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1637 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1638 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1639 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1640
1641 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1642
1643 // Get the mask of active threads in the warp.
1644 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1645 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1646 // Fetch team-local id of the thread.
1647 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1648
1649 // Get the width of the team.
1650 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1651
1652 // Initialize the counter variable for the loop.
1653 QualType Int32Ty =
1654 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1655 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1656 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1657 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1658 /*isInit=*/true);
1659
1660 // Block checks if loop counter exceeds upper bound.
1661 CGF.EmitBlock(LoopBB);
1662 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1664 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1665
1666 // Block tests which single thread should execute region, and which threads
1667 // should go straight to synchronisation point.
1668 CGF.EmitBlock(TestBB);
1669 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1670 llvm::Value *CmpThreadToCounter =
1671 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1672 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1673
1674 // Block emits the body of the critical region.
1675 CGF.EmitBlock(BodyBB);
1676
1677 // Output the critical statement.
1678 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1679 Hint);
1680
1681 // After the body surrounded by the critical region, the single executing
1682 // thread will jump to the synchronisation point.
1683 // Block waits for all threads in current team to finish then increments the
1684 // counter variable and returns to the loop.
1685 CGF.EmitBlock(SyncBB);
1686 // Reconverge active threads in the warp.
1687 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1688 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1689 Mask);
1690
1691 llvm::Value *IncCounterVal =
1692 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1693 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1694 CGF.EmitBranch(LoopBB);
1695
1696 // Block that is reached when all threads in the team complete the region.
1697 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1698}
1699
1700/// Cast value to the specified type.
1701static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1702 QualType ValTy, QualType CastTy,
1703 SourceLocation Loc) {
1704 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&(static_cast <bool> (!CGF.getContext().getTypeSizeInChars
(CastTy).isZero() && "Cast type must sized.") ? void (
0) : __assert_fail ("!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && \"Cast type must sized.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1705, __extension__
__PRETTY_FUNCTION__))
1705 "Cast type must sized.")(static_cast <bool> (!CGF.getContext().getTypeSizeInChars
(CastTy).isZero() && "Cast type must sized.") ? void (
0) : __assert_fail ("!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && \"Cast type must sized.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1705, __extension__
__PRETTY_FUNCTION__))
;
1706 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&(static_cast <bool> (!CGF.getContext().getTypeSizeInChars
(ValTy).isZero() && "Val type must sized.") ? void (0
) : __assert_fail ("!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && \"Val type must sized.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1707, __extension__
__PRETTY_FUNCTION__))
1707 "Val type must sized.")(static_cast <bool> (!CGF.getContext().getTypeSizeInChars
(ValTy).isZero() && "Val type must sized.") ? void (0
) : __assert_fail ("!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && \"Val type must sized.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1707, __extension__
__PRETTY_FUNCTION__))
;
1708 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1709 if (ValTy == CastTy)
1710 return Val;
1711 if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1712 CGF.getContext().getTypeSizeInChars(CastTy))
1713 return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1714 if (CastTy->isIntegerType() && ValTy->isIntegerType())
1715 return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1716 CastTy->hasSignedIntegerRepresentation());
1717 Address CastItem = CGF.CreateMemTemp(CastTy);
1718 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1719 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1720 Val->getType());
1721 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1722 LValueBaseInfo(AlignmentSource::Type),
1723 TBAAAccessInfo());
1724 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1725 LValueBaseInfo(AlignmentSource::Type),
1726 TBAAAccessInfo());
1727}
1728
1729/// This function creates calls to one of two shuffle functions to copy
1730/// variables between lanes in a warp.
1731static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1732 llvm::Value *Elem,
1733 QualType ElemType,
1734 llvm::Value *Offset,
1735 SourceLocation Loc) {
1736 CodeGenModule &CGM = CGF.CGM;
1737 CGBuilderTy &Bld = CGF.Builder;
1738 CGOpenMPRuntimeGPU &RT =
1739 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1740 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1741
1742 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1743 assert(Size.getQuantity() <= 8 &&(static_cast <bool> (Size.getQuantity() <= 8 &&
"Unsupported bitwidth in shuffle instruction.") ? void (0) :
__assert_fail ("Size.getQuantity() <= 8 && \"Unsupported bitwidth in shuffle instruction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1744, __extension__
__PRETTY_FUNCTION__))
1744 "Unsupported bitwidth in shuffle instruction.")(static_cast <bool> (Size.getQuantity() <= 8 &&
"Unsupported bitwidth in shuffle instruction.") ? void (0) :
__assert_fail ("Size.getQuantity() <= 8 && \"Unsupported bitwidth in shuffle instruction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 1744, __extension__
__PRETTY_FUNCTION__))
;
1745
1746 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1747 ? OMPRTL___kmpc_shuffle_int32
1748 : OMPRTL___kmpc_shuffle_int64;
1749
1750 // Cast all types to 32- or 64-bit values before calling shuffle routines.
1751 QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1752 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1753 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1754 llvm::Value *WarpSize =
1755 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1756
1757 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1758 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1759 {ElemCast, Offset, WarpSize});
1760
1761 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1762}
1763
1764static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1765 Address DestAddr, QualType ElemType,
1766 llvm::Value *Offset, SourceLocation Loc) {
1767 CGBuilderTy &Bld = CGF.Builder;
1768
1769 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1770 // Create the loop over the big sized data.
1771 // ptr = (void*)Elem;
1772 // ptrEnd = (void*) Elem + 1;
1773 // Step = 8;
1774 // while (ptr + Step < ptrEnd)
1775 // shuffle((int64_t)*ptr);
1776 // Step = 4;
1777 // while (ptr + Step < ptrEnd)
1778 // shuffle((int32_t)*ptr);
1779 // ...
1780 Address ElemPtr = DestAddr;
1781 Address Ptr = SrcAddr;
1782 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1783 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1784 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1785 if (Size < CharUnits::fromQuantity(IntSize))
1786 continue;
1787 QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1788 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1789 /*Signed=*/1);
1790 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1791 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1792 IntTy);
1793 ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1794 ElemPtr, IntTy->getPointerTo(), IntTy);
1795 if (Size.getQuantity() / IntSize > 1) {
1796 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1797 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1798 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1799 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1800 CGF.EmitBlock(PreCondBB);
1801 llvm::PHINode *PhiSrc =
1802 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1803 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1804 llvm::PHINode *PhiDest =
1805 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1806 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1807 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1808 ElemPtr =
1809 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1810 llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1811 CGF.Int8Ty, PtrEnd.getPointer(),
1812 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1813 CGF.VoidPtrTy));
1814 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1815 ThenBB, ExitBB);
1816 CGF.EmitBlock(ThenBB);
1817 llvm::Value *Res = createRuntimeShuffleFunction(
1818 CGF,
1819 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1820 LValueBaseInfo(AlignmentSource::Type),
1821 TBAAAccessInfo()),
1822 IntType, Offset, Loc);
1823 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1824 LValueBaseInfo(AlignmentSource::Type),
1825 TBAAAccessInfo());
1826 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1827 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1828 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1829 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1830 CGF.EmitBranch(PreCondBB);
1831 CGF.EmitBlock(ExitBB);
1832 } else {
1833 llvm::Value *Res = createRuntimeShuffleFunction(
1834 CGF,
1835 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1836 LValueBaseInfo(AlignmentSource::Type),
1837 TBAAAccessInfo()),
1838 IntType, Offset, Loc);
1839 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1840 LValueBaseInfo(AlignmentSource::Type),
1841 TBAAAccessInfo());
1842 Ptr = Bld.CreateConstGEP(Ptr, 1);
1843 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1844 }
1845 Size = Size % IntSize;
1846 }
1847}
1848
1849namespace {
1850enum CopyAction : unsigned {
1851 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1852 // the warp using shuffle instructions.
1853 RemoteLaneToThread,
1854 // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1855 ThreadCopy,
1856 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1857 ThreadToScratchpad,
1858 // ScratchpadToThread: Copy from a scratchpad array in global memory
1859 // containing team-reduced data to a thread's stack.
1860 ScratchpadToThread,
1861};
1862} // namespace
1863
1864struct CopyOptionsTy {
1865 llvm::Value *RemoteLaneOffset;
1866 llvm::Value *ScratchpadIndex;
1867 llvm::Value *ScratchpadWidth;
1868};
1869
1870/// Emit instructions to copy a Reduce list, which contains partially
1871/// aggregated values, in the specified direction.
1872static void emitReductionListCopy(
1873 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1874 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1875 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1876
1877 CodeGenModule &CGM = CGF.CGM;
1878 ASTContext &C = CGM.getContext();
1879 CGBuilderTy &Bld = CGF.Builder;
1880
1881 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1882 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1883 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1884
1885 // Iterates, element-by-element, through the source Reduce list and
1886 // make a copy.
1887 unsigned Idx = 0;
1888 unsigned Size = Privates.size();
1889 for (const Expr *Private : Privates) {
1890 Address SrcElementAddr = Address::invalid();
1891 Address DestElementAddr = Address::invalid();
1892 Address DestElementPtrAddr = Address::invalid();
1893 // Should we shuffle in an element from a remote lane?
1894 bool ShuffleInElement = false;
1895 // Set to true to update the pointer in the dest Reduce list to a
1896 // newly created element.
1897 bool UpdateDestListPtr = false;
1898 // Increment the src or dest pointer to the scratchpad, for each
1899 // new element.
1900 bool IncrScratchpadSrc = false;
1901 bool IncrScratchpadDest = false;
1902 QualType PrivatePtrType = C.getPointerType(Private->getType());
1903 llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1904
1905 switch (Action) {
1906 case RemoteLaneToThread: {
1907 // Step 1.1: Get the address for the src element in the Reduce list.
1908 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1909 SrcElementAddr =
1910 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1911 SrcElementPtrAddr, PrivateLlvmPtrType),
1912 PrivatePtrType->castAs<PointerType>());
1913
1914 // Step 1.2: Create a temporary to store the element in the destination
1915 // Reduce list.
1916 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1917 DestElementAddr =
1918 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1919 ShuffleInElement = true;
1920 UpdateDestListPtr = true;
1921 break;
1922 }
1923 case ThreadCopy: {
1924 // Step 1.1: Get the address for the src element in the Reduce list.
1925 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1926 SrcElementAddr =
1927 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1928 SrcElementPtrAddr, PrivateLlvmPtrType),
1929 PrivatePtrType->castAs<PointerType>());
1930
1931 // Step 1.2: Get the address for dest element. The destination
1932 // element has already been created on the thread's stack.
1933 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1934 DestElementAddr =
1935 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1936 DestElementPtrAddr, PrivateLlvmPtrType),
1937 PrivatePtrType->castAs<PointerType>());
1938 break;
1939 }
1940 case ThreadToScratchpad: {
1941 // Step 1.1: Get the address for the src element in the Reduce list.
1942 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1943 SrcElementAddr =
1944 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1945 SrcElementPtrAddr, PrivateLlvmPtrType),
1946 PrivatePtrType->castAs<PointerType>());
1947
1948 // Step 1.2: Get the address for dest element:
1949 // address = base + index * ElementSizeInChars.
1950 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1951 llvm::Value *CurrentOffset =
1952 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1953 llvm::Value *ScratchPadElemAbsolutePtrVal =
1954 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1955 ScratchPadElemAbsolutePtrVal =
1956 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1957 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1958 C.getTypeAlignInChars(Private->getType()));
1959 IncrScratchpadDest = true;
1960 break;
1961 }
1962 case ScratchpadToThread: {
1963 // Step 1.1: Get the address for the src element in the scratchpad.
1964 // address = base + index * ElementSizeInChars.
1965 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1966 llvm::Value *CurrentOffset =
1967 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1968 llvm::Value *ScratchPadElemAbsolutePtrVal =
1969 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1970 ScratchPadElemAbsolutePtrVal =
1971 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1972 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1973 C.getTypeAlignInChars(Private->getType()));
1974 IncrScratchpadSrc = true;
1975
1976 // Step 1.2: Create a temporary to store the element in the destination
1977 // Reduce list.
1978 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1979 DestElementAddr =
1980 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1981 UpdateDestListPtr = true;
1982 break;
1983 }
1984 }
1985
1986 // Regardless of src and dest of copy, we emit the load of src
1987 // element as this is required in all directions
1988 SrcElementAddr = Bld.CreateElementBitCast(
1989 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1990 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1991 SrcElementAddr.getElementType());
1992
1993 // Now that all active lanes have read the element in the
1994 // Reduce list, shuffle over the value from the remote lane.
1995 if (ShuffleInElement) {
1996 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1997 RemoteLaneOffset, Private->getExprLoc());
1998 } else {
1999 switch (CGF.getEvaluationKind(Private->getType())) {
2000 case TEK_Scalar: {
2001 llvm::Value *Elem = CGF.EmitLoadOfScalar(
2002 SrcElementAddr, /*Volatile=*/false, Private->getType(),
2003 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
2004 TBAAAccessInfo());
2005 // Store the source element value to the dest element address.
2006 CGF.EmitStoreOfScalar(
2007 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2008 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2009 break;
2010 }
2011 case TEK_Complex: {
2012 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2013 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2014 Private->getExprLoc());
2015 CGF.EmitStoreOfComplex(
2016 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2017 /*isInit=*/false);
2018 break;
2019 }
2020 case TEK_Aggregate:
2021 CGF.EmitAggregateCopy(
2022 CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2023 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2024 Private->getType(), AggValueSlot::DoesNotOverlap);
2025 break;
2026 }
2027 }
2028
2029 // Step 3.1: Modify reference in dest Reduce list as needed.
2030 // Modifying the reference in Reduce list to point to the newly
2031 // created element. The element is live in the current function
2032 // scope and that of functions it invokes (i.e., reduce_function).
2033 // RemoteReduceData[i] = (void*)&RemoteElem
2034 if (UpdateDestListPtr) {
2035 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2036 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2037 DestElementPtrAddr, /*Volatile=*/false,
2038 C.VoidPtrTy);
2039 }
2040
2041 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2042 // address of the next element in scratchpad memory, unless we're currently
2043 // processing the last one. Memory alignment is also taken care of here.
2044 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2045 // FIXME: This code doesn't make any sense, it's trying to perform
2046 // integer arithmetic on pointers.
2047 llvm::Value *ScratchpadBasePtr =
2048 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2049 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2050 ScratchpadBasePtr = Bld.CreateNUWAdd(
2051 ScratchpadBasePtr,
2052 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2053
2054 // Take care of global memory alignment for performance
2055 ScratchpadBasePtr = Bld.CreateNUWSub(
2056 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2057 ScratchpadBasePtr = Bld.CreateUDiv(
2058 ScratchpadBasePtr,
2059 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2060 ScratchpadBasePtr = Bld.CreateNUWAdd(
2061 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2062 ScratchpadBasePtr = Bld.CreateNUWMul(
2063 ScratchpadBasePtr,
2064 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2065
2066 if (IncrScratchpadDest)
2067 DestBase =
2068 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
2069 else /* IncrScratchpadSrc = true */
2070 SrcBase =
2071 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
2072 }
2073
2074 ++Idx;
2075 }
2076}
2077
2078/// This function emits a helper that gathers Reduce lists from the first
2079/// lane of every active warp to lanes in the first warp.
2080///
2081/// void inter_warp_copy_func(void* reduce_data, num_warps)
2082/// shared smem[warp_size];
2083/// For all data entries D in reduce_data:
2084/// sync
2085/// If (I am the first lane in each warp)
2086/// Copy my local D to smem[warp_id]
2087/// sync
2088/// if (I am the first warp)
2089/// Copy smem[thread_id] to my local D
2090static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2091 ArrayRef<const Expr *> Privates,
2092 QualType ReductionArrayTy,
2093 SourceLocation Loc) {
2094 ASTContext &C = CGM.getContext();
2095 llvm::Module &M = CGM.getModule();
2096
2097 // ReduceList: thread local Reduce list.
2098 // At the stage of the computation when this function is called, partially
2099 // aggregated values reside in the first lane of every active warp.
2100 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2101 C.VoidPtrTy, ImplicitParamDecl::Other);
2102 // NumWarps: number of warps active in the parallel region. This could
2103 // be smaller than 32 (max warps in a CTA) for partial block reduction.
2104 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2105 C.getIntTypeForBitwidth(32, /* Signed */ true),
2106 ImplicitParamDecl::Other);
2107 FunctionArgList Args;
2108 Args.push_back(&ReduceListArg);
2109 Args.push_back(&NumWarpsArg);
2110
2111 const CGFunctionInfo &CGFI =
2112 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2113 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2114 llvm::GlobalValue::InternalLinkage,
2115 "_omp_reduction_inter_warp_copy_func", &M);
2116 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2117 Fn->setDoesNotRecurse();
2118 CodeGenFunction CGF(CGM);
2119 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2120
2121 CGBuilderTy &Bld = CGF.Builder;
2122
2123 // This array is used as a medium to transfer, one reduce element at a time,
2124 // the data from the first lane of every warp to lanes in the first warp
2125 // in order to perform the final step of a reduction in a parallel region
2126 // (reduction across warps). The array is placed in NVPTX __shared__ memory
2127 // for reduced latency, as well as to have a distinct copy for concurrently
2128 // executing target regions. The array is declared with common linkage so
2129 // as to be shared across compilation units.
2130 StringRef TransferMediumName =
2131 "__openmp_nvptx_data_transfer_temporary_storage";
2132 llvm::GlobalVariable *TransferMedium =
2133 M.getGlobalVariable(TransferMediumName);
2134 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2135 if (!TransferMedium) {
2136 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2137 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2138 TransferMedium = new llvm::GlobalVariable(
2139 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2140 llvm::UndefValue::get(Ty), TransferMediumName,
2141 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2142 SharedAddressSpace);
2143 CGM.addCompilerUsedGlobal(TransferMedium);
2144 }
2145
2146 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2147 // Get the CUDA thread id of the current OpenMP thread on the GPU.
2148 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2149 // nvptx_lane_id = nvptx_id % warpsize
2150 llvm::Value *LaneID = getNVPTXLaneID(CGF);
2151 // nvptx_warp_id = nvptx_id / warpsize
2152 llvm::Value *WarpID = getNVPTXWarpID(CGF);
2153
2154 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2155 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2156 Address LocalReduceList(
2157 Bld.CreatePointerBitCastOrAddrSpaceCast(
2158 CGF.EmitLoadOfScalar(
2159 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2160 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2161 ElemTy->getPointerTo()),
2162 ElemTy, CGF.getPointerAlign());
2163
2164 unsigned Idx = 0;
2165 for (const Expr *Private : Privates) {
2166 //
2167 // Warp master copies reduce element to transfer medium in __shared__
2168 // memory.
2169 //
2170 unsigned RealTySize =
2171 C.getTypeSizeInChars(Private->getType())
2172 .alignTo(C.getTypeAlignInChars(Private->getType()))
2173 .getQuantity();
2174 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2175 unsigned NumIters = RealTySize / TySize;
2176 if (NumIters == 0)
2177 continue;
2178 QualType CType = C.getIntTypeForBitwidth(
2179 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2180 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2181 CharUnits Align = CharUnits::fromQuantity(TySize);
2182 llvm::Value *Cnt = nullptr;
2183 Address CntAddr = Address::invalid();
2184 llvm::BasicBlock *PrecondBB = nullptr;
2185 llvm::BasicBlock *ExitBB = nullptr;
2186 if (NumIters > 1) {
2187 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2188 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2189 /*Volatile=*/false, C.IntTy);
2190 PrecondBB = CGF.createBasicBlock("precond");
2191 ExitBB = CGF.createBasicBlock("exit");
2192 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2193 // There is no need to emit line number for unconditional branch.
2194 (void)ApplyDebugLocation::CreateEmpty(CGF);
2195 CGF.EmitBlock(PrecondBB);
2196 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2197 llvm::Value *Cmp =
2198 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2199 Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2200 CGF.EmitBlock(BodyBB);
2201 }
2202 // kmpc_barrier.
2203 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2204 /*EmitChecks=*/false,
2205 /*ForceSimpleCall=*/true);
2206 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2207 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2208 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2209
2210 // if (lane_id == 0)
2211 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2212 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2213 CGF.EmitBlock(ThenBB);
2214
2215 // Reduce element = LocalReduceList[i]
2216 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2217 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2218 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2219 // elemptr = ((CopyType*)(elemptrptr)) + I
2220 Address ElemPtr(ElemPtrPtr, CGF.Int8Ty, Align);
2221 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2222 if (NumIters > 1)
2223 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2224
2225 // Get pointer to location in transfer medium.
2226 // MediumPtr = &medium[warp_id]
2227 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2228 TransferMedium->getValueType(), TransferMedium,
2229 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2230 // Casting to actual data type.
2231 // MediumPtr = (CopyType*)MediumPtrAddr;
2232 Address MediumPtr(
2233 Bld.CreateBitCast(
2234 MediumPtrVal,
2235 CopyType->getPointerTo(
2236 MediumPtrVal->getType()->getPointerAddressSpace())),
2237 CopyType, Align);
2238
2239 // elem = *elemptr
2240 //*MediumPtr = elem
2241 llvm::Value *Elem = CGF.EmitLoadOfScalar(
2242 ElemPtr, /*Volatile=*/false, CType, Loc,
2243 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2244 // Store the source element value to the dest element address.
2245 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2246 LValueBaseInfo(AlignmentSource::Type),
2247 TBAAAccessInfo());
2248
2249 Bld.CreateBr(MergeBB);
2250
2251 CGF.EmitBlock(ElseBB);
2252 Bld.CreateBr(MergeBB);
2253
2254 CGF.EmitBlock(MergeBB);
2255
2256 // kmpc_barrier.
2257 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2258 /*EmitChecks=*/false,
2259 /*ForceSimpleCall=*/true);
2260
2261 //
2262 // Warp 0 copies reduce element from transfer medium.
2263 //
2264 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2265 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2266 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2267
2268 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2269 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2270 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2271
2272 // Up to 32 threads in warp 0 are active.
2273 llvm::Value *IsActiveThread =
2274 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2275 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2276
2277 CGF.EmitBlock(W0ThenBB);
2278
2279 // SrcMediumPtr = &medium[tid]
2280 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2281 TransferMedium->getValueType(), TransferMedium,
2282 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2283 // SrcMediumVal = *SrcMediumPtr;
2284 Address SrcMediumPtr(
2285 Bld.CreateBitCast(
2286 SrcMediumPtrVal,
2287 CopyType->getPointerTo(
2288 SrcMediumPtrVal->getType()->getPointerAddressSpace())),
2289 CopyType, Align);
2290
2291 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2292 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2293 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2294 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2295 Address TargetElemPtr(TargetElemPtrVal, CGF.Int8Ty, Align);
2296 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2297 if (NumIters > 1)
2298 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2299
2300 // *TargetElemPtr = SrcMediumVal;
2301 llvm::Value *SrcMediumValue =
2302 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2303 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2304 CType);
2305 Bld.CreateBr(W0MergeBB);
2306
2307 CGF.EmitBlock(W0ElseBB);
2308 Bld.CreateBr(W0MergeBB);
2309
2310 CGF.EmitBlock(W0MergeBB);
2311
2312 if (NumIters > 1) {
2313 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2314 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2315 CGF.EmitBranch(PrecondBB);
2316 (void)ApplyDebugLocation::CreateEmpty(CGF);
2317 CGF.EmitBlock(ExitBB);
2318 }
2319 RealTySize %= TySize;
2320 }
2321 ++Idx;
2322 }
2323
2324 CGF.FinishFunction();
2325 return Fn;
2326}
2327
2328/// Emit a helper that reduces data across two OpenMP threads (lanes)
2329/// in the same warp. It uses shuffle instructions to copy over data from
2330/// a remote lane's stack. The reduction algorithm performed is specified
2331/// by the fourth parameter.
2332///
2333/// Algorithm Versions.
2334/// Full Warp Reduce (argument value 0):
2335/// This algorithm assumes that all 32 lanes are active and gathers
2336/// data from these 32 lanes, producing a single resultant value.
2337/// Contiguous Partial Warp Reduce (argument value 1):
2338/// This algorithm assumes that only a *contiguous* subset of lanes
2339/// are active. This happens for the last warp in a parallel region
2340/// when the user specified num_threads is not an integer multiple of
2341/// 32. This contiguous subset always starts with the zeroth lane.
2342/// Partial Warp Reduce (argument value 2):
2343/// This algorithm gathers data from any number of lanes at any position.
2344/// All reduced values are stored in the lowest possible lane. The set
2345/// of problems every algorithm addresses is a super set of those
2346/// addressable by algorithms with a lower version number. Overhead
2347/// increases as algorithm version increases.
2348///
2349/// Terminology
2350/// Reduce element:
2351/// Reduce element refers to the individual data field with primitive
2352/// data types to be combined and reduced across threads.
2353/// Reduce list:
2354/// Reduce list refers to a collection of local, thread-private
2355/// reduce elements.
2356/// Remote Reduce list:
2357/// Remote Reduce list refers to a collection of remote (relative to
2358/// the current thread) reduce elements.
2359///
2360/// We distinguish between three states of threads that are important to
2361/// the implementation of this function.
2362/// Alive threads:
2363/// Threads in a warp executing the SIMT instruction, as distinguished from
2364/// threads that are inactive due to divergent control flow.
2365/// Active threads:
2366/// The minimal set of threads that has to be alive upon entry to this
2367/// function. The computation is correct iff active threads are alive.
2368/// Some threads are alive but they are not active because they do not
2369/// contribute to the computation in any useful manner. Turning them off
2370/// may introduce control flow overheads without any tangible benefits.
2371/// Effective threads:
2372/// In order to comply with the argument requirements of the shuffle
2373/// function, we must keep all lanes holding data alive. But at most
2374/// half of them perform value aggregation; we refer to this half of
2375/// threads as effective. The other half is simply handing off their
2376/// data.
2377///
2378/// Procedure
2379/// Value shuffle:
2380/// In this step active threads transfer data from higher lane positions
2381/// in the warp to lower lane positions, creating Remote Reduce list.
2382/// Value aggregation:
2383/// In this step, effective threads combine their thread local Reduce list
2384/// with Remote Reduce list and store the result in the thread local
2385/// Reduce list.
2386/// Value copy:
2387/// In this step, we deal with the assumption made by algorithm 2
2388/// (i.e. contiguity assumption). When we have an odd number of lanes
2389/// active, say 2k+1, only k threads will be effective and therefore k
2390/// new values will be produced. However, the Reduce list owned by the
2391/// (2k+1)th thread is ignored in the value aggregation. Therefore
2392/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2393/// that the contiguity assumption still holds.
2394static llvm::Function *emitShuffleAndReduceFunction(
2395 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2396 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2397 ASTContext &C = CGM.getContext();
2398
2399 // Thread local Reduce list used to host the values of data to be reduced.
2400 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2401 C.VoidPtrTy, ImplicitParamDecl::Other);
2402 // Current lane id; could be logical.
2403 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2404 ImplicitParamDecl::Other);
2405 // Offset of the remote source lane relative to the current lane.
2406 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2407 C.ShortTy, ImplicitParamDecl::Other);
2408 // Algorithm version. This is expected to be known at compile time.
2409 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2410 C.ShortTy, ImplicitParamDecl::Other);
2411 FunctionArgList Args;
2412 Args.push_back(&ReduceListArg);
2413 Args.push_back(&LaneIDArg);
2414 Args.push_back(&RemoteLaneOffsetArg);
2415 Args.push_back(&AlgoVerArg);
2416
2417 const CGFunctionInfo &CGFI =
2418 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2419 auto *Fn = llvm::Function::Create(
2420 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2421 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2422 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2423 Fn->setDoesNotRecurse();
2424
2425 CodeGenFunction CGF(CGM);
2426 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2427
2428 CGBuilderTy &Bld = CGF.Builder;
2429
2430 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2431 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2432 Address LocalReduceList(
2433 Bld.CreatePointerBitCastOrAddrSpaceCast(
2434 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2435 C.VoidPtrTy, SourceLocation()),
2436 ElemTy->getPointerTo()),
2437 ElemTy, CGF.getPointerAlign());
2438
2439 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2440 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2441 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2442
2443 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2444 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2445 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2446
2447 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2448 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2449 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2450
2451 // Create a local thread-private variable to host the Reduce list
2452 // from a remote lane.
2453 Address RemoteReduceList =
2454 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2455
2456 // This loop iterates through the list of reduce elements and copies,
2457 // element by element, from a remote lane in the warp to RemoteReduceList,
2458 // hosted on the thread's stack.
2459 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2460 LocalReduceList, RemoteReduceList,
2461 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2462 /*ScratchpadIndex=*/nullptr,
2463 /*ScratchpadWidth=*/nullptr});
2464
2465 // The actions to be performed on the Remote Reduce list is dependent
2466 // on the algorithm version.
2467 //
2468 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2469 // LaneId % 2 == 0 && Offset > 0):
2470 // do the reduction value aggregation
2471 //
2472 // The thread local variable Reduce list is mutated in place to host the
2473 // reduced data, which is the aggregated value produced from local and
2474 // remote lanes.
2475 //
2476 // Note that AlgoVer is expected to be a constant integer known at compile
2477 // time.
2478 // When AlgoVer==0, the first conjunction evaluates to true, making
2479 // the entire predicate true during compile time.
2480 // When AlgoVer==1, the second conjunction has only the second part to be
2481 // evaluated during runtime. Other conjunctions evaluates to false
2482 // during compile time.
2483 // When AlgoVer==2, the third conjunction has only the second part to be
2484 // evaluated during runtime. Other conjunctions evaluates to false
2485 // during compile time.
2486 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2487
2488 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2489 llvm::Value *CondAlgo1 = Bld.CreateAnd(
2490 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2491
2492 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2493 llvm::Value *CondAlgo2 = Bld.CreateAnd(
2494 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2495 CondAlgo2 = Bld.CreateAnd(
2496 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2497
2498 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2499 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2500
2501 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2502 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2503 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2504 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2505
2506 CGF.EmitBlock(ThenBB);
2507 // reduce_function(LocalReduceList, RemoteReduceList)
2508 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2509 LocalReduceList.getPointer(), CGF.VoidPtrTy);
2510 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2511 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2512 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2513 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2514 Bld.CreateBr(MergeBB);
2515
2516 CGF.EmitBlock(ElseBB);
2517 Bld.CreateBr(MergeBB);
2518
2519 CGF.EmitBlock(MergeBB);
2520
2521 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2522 // Reduce list.
2523 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2524 llvm::Value *CondCopy = Bld.CreateAnd(
2525 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2526
2527 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2528 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2529 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2530 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2531
2532 CGF.EmitBlock(CpyThenBB);
2533 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2534 RemoteReduceList, LocalReduceList);
2535 Bld.CreateBr(CpyMergeBB);
2536
2537 CGF.EmitBlock(CpyElseBB);
2538 Bld.CreateBr(CpyMergeBB);
2539
2540 CGF.EmitBlock(CpyMergeBB);
2541
2542 CGF.FinishFunction();
2543 return Fn;
2544}
2545
2546/// This function emits a helper that copies all the reduction variables from
2547/// the team into the provided global buffer for the reduction variables.
2548///
2549/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2550/// For all data entries D in reduce_data:
2551/// Copy local D to buffer.D[Idx]
2552static llvm::Value *emitListToGlobalCopyFunction(
2553 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2554 QualType ReductionArrayTy, SourceLocation Loc,
2555 const RecordDecl *TeamReductionRec,
2556 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2557 &VarFieldMap) {
2558 ASTContext &C = CGM.getContext();
2559
2560 // Buffer: global reduction buffer.
2561 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2562 C.VoidPtrTy, ImplicitParamDecl::Other);
2563 // Idx: index of the buffer.
2564 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2565 ImplicitParamDecl::Other);
2566 // ReduceList: thread local Reduce list.
2567 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2568 C.VoidPtrTy, ImplicitParamDecl::Other);
2569 FunctionArgList Args;
2570 Args.push_back(&BufferArg);
2571 Args.push_back(&IdxArg);
2572 Args.push_back(&ReduceListArg);
2573
2574 const CGFunctionInfo &CGFI =
2575 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2576 auto *Fn = llvm::Function::Create(
2577 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2578 "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2579 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2580 Fn->setDoesNotRecurse();
2581 CodeGenFunction CGF(CGM);
2582 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2583
2584 CGBuilderTy &Bld = CGF.Builder;
2585
2586 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2587 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2588 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2589 Address LocalReduceList(
2590 Bld.CreatePointerBitCastOrAddrSpaceCast(
2591 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2592 C.VoidPtrTy, Loc),
2593 ElemTy->getPointerTo()),
2594 ElemTy, CGF.getPointerAlign());
2595 QualType StaticTy = C.getRecordType(TeamReductionRec);
2596 llvm::Type *LLVMReductionsBufferTy =
2597 CGM.getTypes().ConvertTypeForMem(StaticTy);
2598 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2599 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2600 LLVMReductionsBufferTy->getPointerTo());
2601 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2602 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2603 /*Volatile=*/false, C.IntTy,
2604 Loc)};
2605 unsigned Idx = 0;
2606 for (const Expr *Private : Privates) {
2607 // Reduce element = LocalReduceList[i]
2608 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2609 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2610 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2611 // elemptr = ((CopyType*)(elemptrptr)) + I
2612 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2613 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2614 ElemPtrPtr, ElemTy->getPointerTo());
2615 Address ElemPtr =
2616 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2617 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2618 // Global = Buffer.VD[Idx];
2619 const FieldDecl *FD = VarFieldMap.lookup(VD);
2620 LValue GlobLVal = CGF.EmitLValueForField(
2621 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2622 Address GlobAddr = GlobLVal.getAddress(CGF);
2623 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2624 GlobAddr.getPointer(), Idxs);
2625 GlobLVal.setAddress(Address(BufferPtr,
2626 CGF.ConvertTypeForMem(Private->getType()),
2627 GlobAddr.getAlignment()));
2628 switch (CGF.getEvaluationKind(Private->getType())) {
2629 case TEK_Scalar: {
2630 llvm::Value *V = CGF.EmitLoadOfScalar(
2631 ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2632 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2633 CGF.EmitStoreOfScalar(V, GlobLVal);
2634 break;
2635 }
2636 case TEK_Complex: {
2637 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2638 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2639 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2640 break;
2641 }
2642 case TEK_Aggregate:
2643 CGF.EmitAggregateCopy(GlobLVal,
2644 CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2645 Private->getType(), AggValueSlot::DoesNotOverlap);
2646 break;
2647 }
2648 ++Idx;
2649 }
2650
2651 CGF.FinishFunction();
2652 return Fn;
2653}
2654
2655/// This function emits a helper that reduces all the reduction variables from
2656/// the team into the provided global buffer for the reduction variables.
2657///
2658/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2659/// void *GlobPtrs[];
2660/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2661/// ...
2662/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2663/// reduce_function(GlobPtrs, reduce_data);
2664static llvm::Value *emitListToGlobalReduceFunction(
2665 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2666 QualType ReductionArrayTy, SourceLocation Loc,
2667 const RecordDecl *TeamReductionRec,
2668 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2669 &VarFieldMap,
2670 llvm::Function *ReduceFn) {
2671 ASTContext &C = CGM.getContext();
2672
2673 // Buffer: global reduction buffer.
2674 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2675 C.VoidPtrTy, ImplicitParamDecl::Other);
2676 // Idx: index of the buffer.
2677 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2678 ImplicitParamDecl::Other);
2679 // ReduceList: thread local Reduce list.
2680 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2681 C.VoidPtrTy, ImplicitParamDecl::Other);
2682 FunctionArgList Args;
2683 Args.push_back(&BufferArg);
2684 Args.push_back(&IdxArg);
2685 Args.push_back(&ReduceListArg);
2686
2687 const CGFunctionInfo &CGFI =
2688 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2689 auto *Fn = llvm::Function::Create(
2690 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2691 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2692 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2693 Fn->setDoesNotRecurse();
2694 CodeGenFunction CGF(CGM);
2695 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2696
2697 CGBuilderTy &Bld = CGF.Builder;
2698
2699 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2700 QualType StaticTy = C.getRecordType(TeamReductionRec);
2701 llvm::Type *LLVMReductionsBufferTy =
2702 CGM.getTypes().ConvertTypeForMem(StaticTy);
2703 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2704 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2705 LLVMReductionsBufferTy->getPointerTo());
2706
2707 // 1. Build a list of reduction variables.
2708 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2709 Address ReductionList =
2710 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2711 auto IPriv = Privates.begin();
2712 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2713 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2714 /*Volatile=*/false, C.IntTy,
2715 Loc)};
2716 unsigned Idx = 0;
2717 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2718 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2719 // Global = Buffer.VD[Idx];
2720 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2721 const FieldDecl *FD = VarFieldMap.lookup(VD);
2722 LValue GlobLVal = CGF.EmitLValueForField(
2723 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2724 Address GlobAddr = GlobLVal.getAddress(CGF);
2725 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2726 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2727 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2728 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2729 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2730 // Store array size.
2731 ++Idx;
2732 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2733 llvm::Value *Size = CGF.Builder.CreateIntCast(
2734 CGF.getVLASize(
2735 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2736 .NumElts,
2737 CGF.SizeTy, /*isSigned=*/false);
2738 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2739 Elem);
2740 }
2741 }
2742
2743 // Call reduce_function(GlobalReduceList, ReduceList)
2744 llvm::Value *GlobalReduceList =
2745 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2746 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2747 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2748 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2749 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2750 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2751 CGF.FinishFunction();
2752 return Fn;
2753}
2754
2755/// This function emits a helper that copies all the reduction variables from
2756/// the team into the provided global buffer for the reduction variables.
2757///
2758/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2759/// For all data entries D in reduce_data:
2760/// Copy buffer.D[Idx] to local D;
2761static llvm::Value *emitGlobalToListCopyFunction(
2762 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2763 QualType ReductionArrayTy, SourceLocation Loc,
2764 const RecordDecl *TeamReductionRec,
2765 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2766 &VarFieldMap) {
2767 ASTContext &C = CGM.getContext();
2768
2769 // Buffer: global reduction buffer.
2770 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2771 C.VoidPtrTy, ImplicitParamDecl::Other);
2772 // Idx: index of the buffer.
2773 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2774 ImplicitParamDecl::Other);
2775 // ReduceList: thread local Reduce list.
2776 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2777 C.VoidPtrTy, ImplicitParamDecl::Other);
2778 FunctionArgList Args;
2779 Args.push_back(&BufferArg);
2780 Args.push_back(&IdxArg);
2781 Args.push_back(&ReduceListArg);
2782
2783 const CGFunctionInfo &CGFI =
2784 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2785 auto *Fn = llvm::Function::Create(
2786 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2787 "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2788 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2789 Fn->setDoesNotRecurse();
2790 CodeGenFunction CGF(CGM);
2791 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2792
2793 CGBuilderTy &Bld = CGF.Builder;
2794
2795 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2796 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2797 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2798 Address LocalReduceList(
2799 Bld.CreatePointerBitCastOrAddrSpaceCast(
2800 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2801 C.VoidPtrTy, Loc),
2802 ElemTy->getPointerTo()),
2803 ElemTy, CGF.getPointerAlign());
2804 QualType StaticTy = C.getRecordType(TeamReductionRec);
2805 llvm::Type *LLVMReductionsBufferTy =
2806 CGM.getTypes().ConvertTypeForMem(StaticTy);
2807 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2808 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2809 LLVMReductionsBufferTy->getPointerTo());
2810
2811 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2812 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2813 /*Volatile=*/false, C.IntTy,
2814 Loc)};
2815 unsigned Idx = 0;
2816 for (const Expr *Private : Privates) {
2817 // Reduce element = LocalReduceList[i]
2818 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2819 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2820 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2821 // elemptr = ((CopyType*)(elemptrptr)) + I
2822 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2823 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2824 ElemPtrPtr, ElemTy->getPointerTo());
2825 Address ElemPtr =
2826 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2827 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2828 // Global = Buffer.VD[Idx];
2829 const FieldDecl *FD = VarFieldMap.lookup(VD);
2830 LValue GlobLVal = CGF.EmitLValueForField(
2831 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2832 Address GlobAddr = GlobLVal.getAddress(CGF);
2833 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2834 GlobAddr.getPointer(), Idxs);
2835 GlobLVal.setAddress(Address(BufferPtr,
2836 CGF.ConvertTypeForMem(Private->getType()),
2837 GlobAddr.getAlignment()));
2838 switch (CGF.getEvaluationKind(Private->getType())) {
2839 case TEK_Scalar: {
2840 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2841 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2842 LValueBaseInfo(AlignmentSource::Type),
2843 TBAAAccessInfo());
2844 break;
2845 }
2846 case TEK_Complex: {
2847 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2848 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2849 /*isInit=*/false);
2850 break;
2851 }
2852 case TEK_Aggregate:
2853 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2854 GlobLVal, Private->getType(),
2855 AggValueSlot::DoesNotOverlap);
2856 break;
2857 }
2858 ++Idx;
2859 }
2860
2861 CGF.FinishFunction();
2862 return Fn;
2863}
2864
2865/// This function emits a helper that reduces all the reduction variables from
2866/// the team into the provided global buffer for the reduction variables.
2867///
2868/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2869/// void *GlobPtrs[];
2870/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2871/// ...
2872/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2873/// reduce_function(reduce_data, GlobPtrs);
2874static llvm::Value *emitGlobalToListReduceFunction(
2875 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2876 QualType ReductionArrayTy, SourceLocation Loc,
2877 const RecordDecl *TeamReductionRec,
2878 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2879 &VarFieldMap,
2880 llvm::Function *ReduceFn) {
2881 ASTContext &C = CGM.getContext();
2882
2883 // Buffer: global reduction buffer.
2884 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2885 C.VoidPtrTy, ImplicitParamDecl::Other);
2886 // Idx: index of the buffer.
2887 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2888 ImplicitParamDecl::Other);
2889 // ReduceList: thread local Reduce list.
2890 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2891 C.VoidPtrTy, ImplicitParamDecl::Other);
2892 FunctionArgList Args;
2893 Args.push_back(&BufferArg);
2894 Args.push_back(&IdxArg);
2895 Args.push_back(&ReduceListArg);
2896
2897 const CGFunctionInfo &CGFI =
2898 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2899 auto *Fn = llvm::Function::Create(
2900 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2901 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2902 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2903 Fn->setDoesNotRecurse();
2904 CodeGenFunction CGF(CGM);
2905 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2906
2907 CGBuilderTy &Bld = CGF.Builder;
2908
2909 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2910 QualType StaticTy = C.getRecordType(TeamReductionRec);
2911 llvm::Type *LLVMReductionsBufferTy =
2912 CGM.getTypes().ConvertTypeForMem(StaticTy);
2913 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2914 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2915 LLVMReductionsBufferTy->getPointerTo());
2916
2917 // 1. Build a list of reduction variables.
2918 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2919 Address ReductionList =
2920 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2921 auto IPriv = Privates.begin();
2922 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2923 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2924 /*Volatile=*/false, C.IntTy,
2925 Loc)};
2926 unsigned Idx = 0;
2927 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2928 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2929 // Global = Buffer.VD[Idx];
2930 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2931 const FieldDecl *FD = VarFieldMap.lookup(VD);
2932 LValue GlobLVal = CGF.EmitLValueForField(
2933 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2934 Address GlobAddr = GlobLVal.getAddress(CGF);
2935 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2936 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2937 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2938 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2939 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2940 // Store array size.
2941 ++Idx;
2942 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2943 llvm::Value *Size = CGF.Builder.CreateIntCast(
2944 CGF.getVLASize(
2945 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2946 .NumElts,
2947 CGF.SizeTy, /*isSigned=*/false);
2948 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2949 Elem);
2950 }
2951 }
2952
2953 // Call reduce_function(ReduceList, GlobalReduceList)
2954 llvm::Value *GlobalReduceList =
2955 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2956 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2957 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2958 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2959 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2960 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2961 CGF.FinishFunction();
2962 return Fn;
2963}
2964
2965///
2966/// Design of OpenMP reductions on the GPU
2967///
2968/// Consider a typical OpenMP program with one or more reduction
2969/// clauses:
2970///
2971/// float foo;
2972/// double bar;
2973/// #pragma omp target teams distribute parallel for \
2974/// reduction(+:foo) reduction(*:bar)
2975/// for (int i = 0; i < N; i++) {
2976/// foo += A[i]; bar *= B[i];
2977/// }
2978///
2979/// where 'foo' and 'bar' are reduced across all OpenMP threads in
2980/// all teams. In our OpenMP implementation on the NVPTX device an
2981/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2982/// within a team are mapped to CUDA threads within a threadblock.
2983/// Our goal is to efficiently aggregate values across all OpenMP
2984/// threads such that:
2985///
2986/// - the compiler and runtime are logically concise, and
2987/// - the reduction is performed efficiently in a hierarchical
2988/// manner as follows: within OpenMP threads in the same warp,
2989/// across warps in a threadblock, and finally across teams on
2990/// the NVPTX device.
2991///
2992/// Introduction to Decoupling
2993///
2994/// We would like to decouple the compiler and the runtime so that the
2995/// latter is ignorant of the reduction variables (number, data types)
2996/// and the reduction operators. This allows a simpler interface
2997/// and implementation while still attaining good performance.
2998///
2999/// Pseudocode for the aforementioned OpenMP program generated by the
3000/// compiler is as follows:
3001///
3002/// 1. Create private copies of reduction variables on each OpenMP
3003/// thread: 'foo_private', 'bar_private'
3004/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
3005/// to it and writes the result in 'foo_private' and 'bar_private'
3006/// respectively.
3007/// 3. Call the OpenMP runtime on the GPU to reduce within a team
3008/// and store the result on the team master:
3009///
3010/// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
3011/// reduceData, shuffleReduceFn, interWarpCpyFn)
3012///
3013/// where:
3014/// struct ReduceData {
3015/// double *foo;
3016/// double *bar;
3017/// } reduceData
3018/// reduceData.foo = &foo_private
3019/// reduceData.bar = &bar_private
3020///
3021/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3022/// auxiliary functions generated by the compiler that operate on
3023/// variables of type 'ReduceData'. They aid the runtime perform
3024/// algorithmic steps in a data agnostic manner.
3025///
3026/// 'shuffleReduceFn' is a pointer to a function that reduces data
3027/// of type 'ReduceData' across two OpenMP threads (lanes) in the
3028/// same warp. It takes the following arguments as input:
3029///
3030/// a. variable of type 'ReduceData' on the calling lane,
3031/// b. its lane_id,
3032/// c. an offset relative to the current lane_id to generate a
3033/// remote_lane_id. The remote lane contains the second
3034/// variable of type 'ReduceData' that is to be reduced.
3035/// d. an algorithm version parameter determining which reduction
3036/// algorithm to use.
3037///
3038/// 'shuffleReduceFn' retrieves data from the remote lane using
3039/// efficient GPU shuffle intrinsics and reduces, using the
3040/// algorithm specified by the 4th parameter, the two operands
3041/// element-wise. The result is written to the first operand.
3042///
3043/// Different reduction algorithms are implemented in different
3044/// runtime functions, all calling 'shuffleReduceFn' to perform
3045/// the essential reduction step. Therefore, based on the 4th
3046/// parameter, this function behaves slightly differently to
3047/// cooperate with the runtime to ensure correctness under
3048/// different circumstances.
3049///
3050/// 'InterWarpCpyFn' is a pointer to a function that transfers
3051/// reduced variables across warps. It tunnels, through CUDA
3052/// shared memory, the thread-private data of type 'ReduceData'
3053/// from lane 0 of each warp to a lane in the first warp.
3054/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3055/// The last team writes the global reduced value to memory.
3056///
3057/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
3058/// reduceData, shuffleReduceFn, interWarpCpyFn,
3059/// scratchpadCopyFn, loadAndReduceFn)
3060///
3061/// 'scratchpadCopyFn' is a helper that stores reduced
3062/// data from the team master to a scratchpad array in
3063/// global memory.
3064///
3065/// 'loadAndReduceFn' is a helper that loads data from
3066/// the scratchpad array and reduces it with the input
3067/// operand.
3068///
3069/// These compiler generated functions hide address
3070/// calculation and alignment information from the runtime.
3071/// 5. if ret == 1:
3072/// The team master of the last team stores the reduced
3073/// result to the globals in memory.
3074/// foo += reduceData.foo; bar *= reduceData.bar
3075///
3076///
3077/// Warp Reduction Algorithms
3078///
3079/// On the warp level, we have three algorithms implemented in the
3080/// OpenMP runtime depending on the number of active lanes:
3081///
3082/// Full Warp Reduction
3083///
3084/// The reduce algorithm within a warp where all lanes are active
3085/// is implemented in the runtime as follows:
3086///
3087/// full_warp_reduce(void *reduce_data,
3088/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3089/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3090/// ShuffleReduceFn(reduce_data, 0, offset, 0);
3091/// }
3092///
3093/// The algorithm completes in log(2, WARPSIZE) steps.
3094///
3095/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3096/// not used therefore we save instructions by not retrieving lane_id
3097/// from the corresponding special registers. The 4th parameter, which
3098/// represents the version of the algorithm being used, is set to 0 to
3099/// signify full warp reduction.
3100///
3101/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3102///
3103/// #reduce_elem refers to an element in the local lane's data structure
3104/// #remote_elem is retrieved from a remote lane
3105/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3106/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3107///
3108/// Contiguous Partial Warp Reduction
3109///
3110/// This reduce algorithm is used within a warp where only the first
3111/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
3112/// number of OpenMP threads in a parallel region is not a multiple of
3113/// WARPSIZE. The algorithm is implemented in the runtime as follows:
3114///
3115/// void
3116/// contiguous_partial_reduce(void *reduce_data,
3117/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
3118/// int size, int lane_id) {
3119/// int curr_size;
3120/// int offset;
3121/// curr_size = size;
3122/// mask = curr_size/2;
3123/// while (offset>0) {
3124/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3125/// curr_size = (curr_size+1)/2;
3126/// offset = curr_size/2;
3127/// }
3128/// }
3129///
3130/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3131///
3132/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3133/// if (lane_id < offset)
3134/// reduce_elem = reduce_elem REDUCE_OP remote_elem
3135/// else
3136/// reduce_elem = remote_elem
3137///
3138/// This algorithm assumes that the data to be reduced are located in a
3139/// contiguous subset of lanes starting from the first. When there is
3140/// an odd number of active lanes, the data in the last lane is not
3141/// aggregated with any other lane's dat but is instead copied over.
3142///
3143/// Dispersed Partial Warp Reduction
3144///
3145/// This algorithm is used within a warp when any discontiguous subset of
3146/// lanes are active. It is used to implement the reduction operation
3147/// across lanes in an OpenMP simd region or in a nested parallel region.
3148///
3149/// void
3150/// dispersed_partial_reduce(void *reduce_data,
3151/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3152/// int size, remote_id;
3153/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
3154/// do {
3155/// remote_id = next_active_lane_id_right_after_me();
3156/// # the above function returns 0 of no active lane
3157/// # is present right after the current lane.
3158/// size = number_of_active_lanes_in_this_warp();
3159/// logical_lane_id /= 2;
3160/// ShuffleReduceFn(reduce_data, logical_lane_id,
3161/// remote_id-1-threadIdx.x, 2);
3162/// } while (logical_lane_id % 2 == 0 && size > 1);
3163/// }
3164///
3165/// There is no assumption made about the initial state of the reduction.
3166/// Any number of lanes (>=1) could be active at any position. The reduction
3167/// result is returned in the first active lane.
3168///
3169/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3170///
3171/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3172/// if (lane_id % 2 == 0 && offset > 0)
3173/// reduce_elem = reduce_elem REDUCE_OP remote_elem
3174/// else
3175/// reduce_elem = remote_elem
3176///
3177///
3178/// Intra-Team Reduction
3179///
3180/// This function, as implemented in the runtime call
3181/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3182/// threads in a team. It first reduces within a warp using the
3183/// aforementioned algorithms. We then proceed to gather all such
3184/// reduced values at the first warp.
3185///
3186/// The runtime makes use of the function 'InterWarpCpyFn', which copies
3187/// data from each of the "warp master" (zeroth lane of each warp, where
3188/// warp-reduced data is held) to the zeroth warp. This step reduces (in
3189/// a mathematical sense) the problem of reduction across warp masters in
3190/// a block to the problem of warp reduction.
3191///
3192///
3193/// Inter-Team Reduction
3194///
3195/// Once a team has reduced its data to a single value, it is stored in
3196/// a global scratchpad array. Since each team has a distinct slot, this
3197/// can be done without locking.
3198///
3199/// The last team to write to the scratchpad array proceeds to reduce the
3200/// scratchpad array. One or more workers in the last team use the helper
3201/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3202/// the k'th worker reduces every k'th element.
3203///
3204/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3205/// reduce across workers and compute a globally reduced value.
3206///
3207void CGOpenMPRuntimeGPU::emitReduction(
3208 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3209 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3210 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3211 if (!CGF.HaveInsertPoint())
3212 return;
3213
3214 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3215#ifndef NDEBUG
3216 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3217#endif
3218
3219 if (Options.SimpleReduction) {
3220 assert(!TeamsReduction && !ParallelReduction &&(static_cast <bool> (!TeamsReduction && !ParallelReduction
&& "Invalid reduction selection in emitReduction.") ?
void (0) : __assert_fail ("!TeamsReduction && !ParallelReduction && \"Invalid reduction selection in emitReduction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3221, __extension__
__PRETTY_FUNCTION__))
3221 "Invalid reduction selection in emitReduction.")(static_cast <bool> (!TeamsReduction && !ParallelReduction
&& "Invalid reduction selection in emitReduction.") ?
void (0) : __assert_fail ("!TeamsReduction && !ParallelReduction && \"Invalid reduction selection in emitReduction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3221, __extension__
__PRETTY_FUNCTION__))
;
3222 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3223 ReductionOps, Options);
3224 return;
3225 }
3226
3227 assert((TeamsReduction || ParallelReduction) &&(static_cast <bool> ((TeamsReduction || ParallelReduction
) && "Invalid reduction selection in emitReduction.")
? void (0) : __assert_fail ("(TeamsReduction || ParallelReduction) && \"Invalid reduction selection in emitReduction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3228, __extension__
__PRETTY_FUNCTION__))
3228 "Invalid reduction selection in emitReduction.")(static_cast <bool> ((TeamsReduction || ParallelReduction
) && "Invalid reduction selection in emitReduction.")
? void (0) : __assert_fail ("(TeamsReduction || ParallelReduction) && \"Invalid reduction selection in emitReduction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3228, __extension__
__PRETTY_FUNCTION__))
;
3229
3230 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3231 // RedList, shuffle_reduce_func, interwarp_copy_func);
3232 // or
3233 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3234 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3235 llvm::Value *ThreadId = getThreadID(CGF, Loc);
3236
3237 llvm::Value *Res;
3238 ASTContext &C = CGM.getContext();
3239 // 1. Build a list of reduction variables.
3240 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3241 auto Size = RHSExprs.size();
3242 for (const Expr *E : Privates) {
3243 if (E->getType()->isVariablyModifiedType())
3244 // Reserve place for array size.
3245 ++Size;
3246 }
3247 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3248 QualType ReductionArrayTy =
3249 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3250 /*IndexTypeQuals=*/0);
3251 Address ReductionList =
3252 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3253 auto IPriv = Privates.begin();
3254 unsigned Idx = 0;
3255 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3256 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3257 CGF.Builder.CreateStore(
3258 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3259 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3260 Elem);
3261 if ((*IPriv)->getType()->isVariablyModifiedType()) {
3262 // Store array size.
3263 ++Idx;
3264 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3265 llvm::Value *Size = CGF.Builder.CreateIntCast(
3266 CGF.getVLASize(
3267 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3268 .NumElts,
3269 CGF.SizeTy, /*isSigned=*/false);
3270 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3271 Elem);
3272 }
3273 }
3274
3275 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3276 ReductionList.getPointer(), CGF.VoidPtrTy);
3277 llvm::Function *ReductionFn =
3278 emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
3279 Privates, LHSExprs, RHSExprs, ReductionOps);
3280 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3281 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3282 CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3283 llvm::Value *InterWarpCopyFn =
3284 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3285
3286 if (ParallelReduction) {
3287 llvm::Value *Args[] = {RTLoc,
3288 ThreadId,
3289 CGF.Builder.getInt32(RHSExprs.size()),
3290 ReductionArrayTySize,
3291 RL,
3292 ShuffleAndReduceFn,
3293 InterWarpCopyFn};
3294
3295 Res = CGF.EmitRuntimeCall(
3296 OMPBuilder.getOrCreateRuntimeFunction(
3297 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3298 Args);
3299 } else {
3300 assert(TeamsReduction && "expected teams reduction.")(static_cast <bool> (TeamsReduction && "expected teams reduction."
) ? void (0) : __assert_fail ("TeamsReduction && \"expected teams reduction.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3300, __extension__
__PRETTY_FUNCTION__))
;
3301 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3302 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3303 int Cnt = 0;
3304 for (const Expr *DRE : Privates) {
3305 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3306 ++Cnt;
3307 }
3308 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3309 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3310 C.getLangOpts().OpenMPCUDAReductionBufNum);
3311 TeamsReductions.push_back(TeamReductionRec);
3312 if (!KernelTeamsReductionPtr) {
3313 KernelTeamsReductionPtr = new llvm::GlobalVariable(
3314 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3315 llvm::GlobalValue::InternalLinkage, nullptr,
3316 "_openmp_teams_reductions_buffer_$_$ptr");
3317 }
3318 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3319 Address(KernelTeamsReductionPtr, CGF.VoidPtrTy, CGM.getPointerAlign()),
3320 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3321 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3322 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3323 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3324 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3325 ReductionFn);
3326 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3327 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3328 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3329 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3330 ReductionFn);
3331
3332 llvm::Value *Args[] = {
3333 RTLoc,
3334 ThreadId,
3335 GlobalBufferPtr,
3336 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3337 RL,
3338 ShuffleAndReduceFn,
3339 InterWarpCopyFn,
3340 GlobalToBufferCpyFn,
3341 GlobalToBufferRedFn,
3342 BufferToGlobalCpyFn,
3343 BufferToGlobalRedFn};
3344
3345 Res = CGF.EmitRuntimeCall(
3346 OMPBuilder.getOrCreateRuntimeFunction(
3347 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3348 Args);
3349 }
3350
3351 // 5. Build if (res == 1)
3352 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3353 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3354 llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3355 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3356 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3357
3358 // 6. Build then branch: where we have reduced values in the master
3359 // thread in each team.
3360 // __kmpc_end_reduce{_nowait}(<gtid>);
3361 // break;
3362 CGF.EmitBlock(ThenBB);
3363
3364 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3365 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3366 this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3367 auto IPriv = Privates.begin();
3368 auto ILHS = LHSExprs.begin();
3369 auto IRHS = RHSExprs.begin();
3370 for (const Expr *E : ReductionOps) {
3371 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3372 cast<DeclRefExpr>(*IRHS));
3373 ++IPriv;
3374 ++ILHS;
3375 ++IRHS;
3376 }
3377 };
3378 llvm::Value *EndArgs[] = {ThreadId};
3379 RegionCodeGenTy RCG(CodeGen);
3380 NVPTXActionTy Action(
3381 nullptr, llvm::None,
3382 OMPBuilder.getOrCreateRuntimeFunction(
3383 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3384 EndArgs);
3385 RCG.setAction(Action);
3386 RCG(CGF);
3387 // There is no need to emit line number for unconditional branch.
3388 (void)ApplyDebugLocation::CreateEmpty(CGF);
3389 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3390}
3391
3392const VarDecl *
3393CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3394 const VarDecl *NativeParam) const {
3395 if (!NativeParam->getType()->isReferenceType())
3396 return NativeParam;
3397 QualType ArgType = NativeParam->getType();
3398 QualifierCollector QC;
3399 const Type *NonQualTy = QC.strip(ArgType);
3400 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3401 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3402 if (Attr->getCaptureKind() == OMPC_map) {
3403 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3404 LangAS::opencl_global);
3405 }
3406 }
3407 ArgType = CGM.getContext().getPointerType(PointeeTy);
3408 QC.addRestrict();
3409 enum { NVPTX_local_addr = 5 };
3410 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3411 ArgType = QC.apply(CGM.getContext(), ArgType);
3412 if (isa<ImplicitParamDecl>(NativeParam))
3413 return ImplicitParamDecl::Create(
3414 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3415 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3416 return ParmVarDecl::Create(
3417 CGM.getContext(),
3418 const_cast<DeclContext *>(NativeParam->getDeclContext()),
3419 NativeParam->getBeginLoc(), NativeParam->getLocation(),
3420 NativeParam->getIdentifier(), ArgType,
3421 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3422}
3423
3424Address
3425CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3426 const VarDecl *NativeParam,
3427 const VarDecl *TargetParam) const {
3428 assert(NativeParam != TargetParam &&(static_cast <bool> (NativeParam != TargetParam &&
NativeParam->getType()->isReferenceType() && "Native arg must not be the same as target arg."
) ? void (0) : __assert_fail ("NativeParam != TargetParam && NativeParam->getType()->isReferenceType() && \"Native arg must not be the same as target arg.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3430, __extension__
__PRETTY_FUNCTION__))
3429 NativeParam->getType()->isReferenceType() &&(static_cast <bool> (NativeParam != TargetParam &&
NativeParam->getType()->isReferenceType() && "Native arg must not be the same as target arg."
) ? void (0) : __assert_fail ("NativeParam != TargetParam && NativeParam->getType()->isReferenceType() && \"Native arg must not be the same as target arg.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3430, __extension__
__PRETTY_FUNCTION__))
3430 "Native arg must not be the same as target arg.")(static_cast <bool> (NativeParam != TargetParam &&
NativeParam->getType()->isReferenceType() && "Native arg must not be the same as target arg."
) ? void (0) : __assert_fail ("NativeParam != TargetParam && NativeParam->getType()->isReferenceType() && \"Native arg must not be the same as target arg.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3430, __extension__
__PRETTY_FUNCTION__))
;
3431 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3432 QualType NativeParamType = NativeParam->getType();
3433 QualifierCollector QC;
3434 const Type *NonQualTy = QC.strip(NativeParamType);
3435 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3436 unsigned NativePointeeAddrSpace =
3437 CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3438 QualType TargetTy = TargetParam->getType();
3439 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3440 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3441 // First cast to generic.
3442 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3443 TargetAddr, llvm::PointerType::getWithSamePointeeType(
3444 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3445 // Cast from generic to native address space.
3446 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3447 TargetAddr, llvm::PointerType::getWithSamePointeeType(
3448 cast<llvm::PointerType>(TargetAddr->getType()),
3449 NativePointeeAddrSpace));
3450 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3451 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3452 NativeParamType);
3453 return NativeParamAddr;
3454}
3455
3456void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3457 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3458 ArrayRef<llvm::Value *> Args) const {
3459 SmallVector<llvm::Value *, 4> TargetArgs;
3460 TargetArgs.reserve(Args.size());
3461 auto *FnType = OutlinedFn.getFunctionType();
3462 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3463 if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3464 TargetArgs.append(std::next(Args.begin(), I), Args.end());
3465 break;
3466 }
3467 llvm::Type *TargetType = FnType->getParamType(I);
3468 llvm::Value *NativeArg = Args[I];
3469 if (!TargetType->isPointerTy()) {
3470 TargetArgs.emplace_back(NativeArg);
3471 continue;
3472 }
3473 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3474 NativeArg, llvm::PointerType::getWithSamePointeeType(
3475 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3476 TargetArgs.emplace_back(
3477 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3478 }
3479 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3480}
3481
3482/// Emit function which wraps the outline parallel region
3483/// and controls the arguments which are passed to this function.
3484/// The wrapper ensures that the outlined function is called
3485/// with the correct arguments when data is shared.
3486llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3487 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3488 ASTContext &Ctx = CGM.getContext();
3489 const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3490
3491 // Create a function that takes as argument the source thread.
3492 FunctionArgList WrapperArgs;
3493 QualType Int16QTy =
3494 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3495 QualType Int32QTy =
3496 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3497 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3498 /*Id=*/nullptr, Int16QTy,
3499 ImplicitParamDecl::Other);
3500 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3501 /*Id=*/nullptr, Int32QTy,
3502 ImplicitParamDecl::Other);
3503 WrapperArgs.emplace_back(&ParallelLevelArg);
3504 WrapperArgs.emplace_back(&WrapperArg);
3505
3506 const CGFunctionInfo &CGFI =
3507 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3508
3509 auto *Fn = llvm::Function::Create(
3510 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3511 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3512
3513 // Ensure we do not inline the function. This is trivially true for the ones
3514 // passed to __kmpc_fork_call but the ones calles in serialized regions
3515 // could be inlined. This is not a perfect but it is closer to the invariant
3516 // we want, namely, every data environment starts with a new function.
3517 // TODO: We should pass the if condition to the runtime function and do the
3518 // handling there. Much cleaner code.
3519 Fn->addFnAttr(llvm::Attribute::NoInline);
3520
3521 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3522 Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3523 Fn->setDoesNotRecurse();
3524
3525 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3526 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3527 D.getBeginLoc(), D.getBeginLoc());
3528
3529 const auto *RD = CS.getCapturedRecordDecl();
3530 auto CurField = RD->field_begin();
3531
3532 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3533 /*Name=*/".zero.addr");
3534 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3535 // Get the array of arguments.
3536 SmallVector<llvm::Value *, 8> Args;
3537
3538 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3539 Args.emplace_back(ZeroAddr.getPointer());
3540
3541 CGBuilderTy &Bld = CGF.Builder;
3542 auto CI = CS.capture_begin();
3543
3544 // Use global memory for data sharing.
3545 // Handle passing of global args to workers.
3546 Address GlobalArgs =
3547 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3548 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3549 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3550 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3551 CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3552 DataSharingArgs);
3553
3554 // Retrieve the shared variables from the list of references returned
3555 // by the runtime. Pass the variables to the outlined function.
3556 Address SharedArgListAddress = Address::invalid();
3557 if (CS.capture_size() > 0 ||
3558 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3559 SharedArgListAddress = CGF.EmitLoadOfPointer(
3560 GlobalArgs, CGF.getContext()
3561 .getPointerType(CGF.getContext().VoidPtrTy)
3562 .castAs<PointerType>());
3563 }
3564 unsigned Idx = 0;
3565 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3566 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3567 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3568 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3569 llvm::Value *LB = CGF.EmitLoadOfScalar(
3570 TypedAddress,
3571 /*Volatile=*/false,
3572 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3573 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3574 Args.emplace_back(LB);
3575 ++Idx;
3576 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3577 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3578 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3579 llvm::Value *UB = CGF.EmitLoadOfScalar(
3580 TypedAddress,
3581 /*Volatile=*/false,
3582 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3583 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3584 Args.emplace_back(UB);
3585 ++Idx;
3586 }
3587 if (CS.capture_size() > 0) {
3588 ASTContext &CGFContext = CGF.getContext();
3589 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3590 QualType ElemTy = CurField->getType();
3591 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3592 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3593 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3594 CGF.ConvertTypeForMem(ElemTy));
3595 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3596 /*Volatile=*/false,
3597 CGFContext.getPointerType(ElemTy),
3598 CI->getLocation());
3599 if (CI->capturesVariableByCopy() &&
3600 !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3601 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3602 CI->getLocation());
3603 }
3604 Args.emplace_back(Arg);
3605 }
3606 }
3607
3608 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3609 CGF.FinishFunction();
3610 return Fn;
3611}
3612
3613void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3614 const Decl *D) {
3615 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3616 return;
3617
3618 assert(D && "Expected function or captured|block decl.")(static_cast <bool> (D && "Expected function or captured|block decl."
) ? void (0) : __assert_fail ("D && \"Expected function or captured|block decl.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3618, __extension__
__PRETTY_FUNCTION__))
;
3619 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&(static_cast <bool> (FunctionGlobalizedDecls.count(CGF.
CurFn) == 0 && "Function is registered already.") ? void
(0) : __assert_fail ("FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && \"Function is registered already.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
3620 "Function is registered already.")(static_cast <bool> (FunctionGlobalizedDecls.count(CGF.
CurFn) == 0 && "Function is registered already.") ? void
(0) : __assert_fail ("FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && \"Function is registered already.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
;
3621 assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&(static_cast <bool> ((!TeamAndReductions.first || TeamAndReductions
.first == D) && "Team is set but not processed.") ? void
(0) : __assert_fail ("(!TeamAndReductions.first || TeamAndReductions.first == D) && \"Team is set but not processed.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3622, __extension__
__PRETTY_FUNCTION__))
3622 "Team is set but not processed.")(static_cast <bool> ((!TeamAndReductions.first || TeamAndReductions
.first == D) && "Team is set but not processed.") ? void
(0) : __assert_fail ("(!TeamAndReductions.first || TeamAndReductions.first == D) && \"Team is set but not processed.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3622, __extension__
__PRETTY_FUNCTION__))
;
3623 const Stmt *Body = nullptr;
3624 bool NeedToDelayGlobalization = false;
3625 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3626 Body = FD->getBody();
3627 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3628 Body = BD->getBody();
3629 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3630 Body = CD->getBody();
3631 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3632 if (NeedToDelayGlobalization &&
3633 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3634 return;
3635 }
3636 if (!Body)
3637 return;
3638 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3639 VarChecker.Visit(Body);
3640 const RecordDecl *GlobalizedVarsRecord =
3641 VarChecker.getGlobalizedRecord(IsInTTDRegion);
3642 TeamAndReductions.first = nullptr;
3643 TeamAndReductions.second.clear();
3644 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3645 VarChecker.getEscapedVariableLengthDecls();
3646 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3647 return;
3648 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3649 I->getSecond().MappedParams =
3650 std::make_unique<CodeGenFunction::OMPMapVars>();
3651 I->getSecond().EscapedParameters.insert(
3652 VarChecker.getEscapedParameters().begin(),
3653 VarChecker.getEscapedParameters().end());
3654 I->getSecond().EscapedVariableLengthDecls.append(
3655 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3656 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3657 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3658 assert(VD->isCanonicalDecl() && "Expected canonical declaration")(static_cast <bool> (VD->isCanonicalDecl() &&
"Expected canonical declaration") ? void (0) : __assert_fail
("VD->isCanonicalDecl() && \"Expected canonical declaration\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3658, __extension__
__PRETTY_FUNCTION__))
;
3659 Data.insert(std::make_pair(VD, MappedVarData()));
3660 }
3661 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3662 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3663 VarChecker.Visit(Body);
3664 I->getSecond().SecondaryLocalVarData.emplace();
3665 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3666 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3667 assert(VD->isCanonicalDecl() && "Expected canonical declaration")(static_cast <bool> (VD->isCanonicalDecl() &&
"Expected canonical declaration") ? void (0) : __assert_fail
("VD->isCanonicalDecl() && \"Expected canonical declaration\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3667, __extension__
__PRETTY_FUNCTION__))
;
3668 Data.insert(std::make_pair(VD, MappedVarData()));
3669 }
3670 }
3671 if (!NeedToDelayGlobalization) {
3672 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3673 struct GlobalizationScope final : EHScopeStack::Cleanup {
3674 GlobalizationScope() = default;
3675
3676 void Emit(CodeGenFunction &CGF, Flags flags) override {
3677 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3678 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3679 }
3680 };
3681 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3682 }
3683}
3684
3685Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3686 const VarDecl *VD) {
3687 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3688 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3689 auto AS = LangAS::Default;
3690 switch (A->getAllocatorType()) {
3691 // Use the default allocator here as by default local vars are
3692 // threadlocal.
3693 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3694 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3695 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3696 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3697 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3698 // Follow the user decision - use default allocation.
3699 return Address::invalid();
3700 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3701 // TODO: implement aupport for user-defined allocators.
3702 return Address::invalid();
3703 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3704 AS = LangAS::cuda_constant;
3705 break;
3706 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3707 AS = LangAS::cuda_shared;
3708 break;
3709 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3710 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3711 break;
3712 }
3713 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3714 auto *GV = new llvm::GlobalVariable(
3715 CGM.getModule(), VarTy, /*isConstant=*/false,
3716 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3717 VD->getName(),
3718 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3719 CGM.getContext().getTargetAddressSpace(AS));
3720 CharUnits Align = CGM.getContext().getDeclAlign(VD);
3721 GV->setAlignment(Align.getAsAlign());
3722 return Address(
3723 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3724 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3725 VD->getType().getAddressSpace()))),
3726 VarTy, Align);
3727 }
3728
3729 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3730 return Address::invalid();
3731
3732 VD = VD->getCanonicalDecl();
3733 auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3734 if (I == FunctionGlobalizedDecls.end())
3735 return Address::invalid();
3736 auto VDI = I->getSecond().LocalVarData.find(VD);
3737 if (VDI != I->getSecond().LocalVarData.end())
3738 return VDI->second.PrivateAddr;
3739 if (VD->hasAttrs()) {
3740 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3741 E(VD->attr_end());
3742 IT != E; ++IT) {
3743 auto VDI = I->getSecond().LocalVarData.find(
3744 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3745 ->getCanonicalDecl());
3746 if (VDI != I->getSecond().LocalVarData.end())
3747 return VDI->second.PrivateAddr;
3748 }
3749 }
3750
3751 return Address::invalid();
3752}
3753
3754void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3755 FunctionGlobalizedDecls.erase(CGF.CurFn);
3756 CGOpenMPRuntime::functionFinished(CGF);
3757}
3758
3759void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3760 CodeGenFunction &CGF, const OMPLoopDirective &S,
3761 OpenMPDistScheduleClauseKind &ScheduleKind,
3762 llvm::Value *&Chunk) const {
3763 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3764 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3765 ScheduleKind = OMPC_DIST_SCHEDULE_static;
3766 Chunk = CGF.EmitScalarConversion(
3767 RT.getGPUNumThreads(CGF),
3768 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3769 S.getIterationVariable()->getType(), S.getBeginLoc());
3770 return;
3771 }
3772 CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3773 CGF, S, ScheduleKind, Chunk);
3774}
3775
3776void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3777 CodeGenFunction &CGF, const OMPLoopDirective &S,
3778 OpenMPScheduleClauseKind &ScheduleKind,
3779 const Expr *&ChunkExpr) const {
3780 ScheduleKind = OMPC_SCHEDULE_static;
3781 // Chunk size is 1 in this case.
3782 llvm::APInt ChunkSize(32, 1);
3783 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3784 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3785 SourceLocation());
3786}
3787
3788void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3789 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3790 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&(static_cast <bool> (isOpenMPTargetExecutionDirective(D
.getDirectiveKind()) && " Expected target-based directive."
) ? void (0) : __assert_fail ("isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && \" Expected target-based directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3791, __extension__
__PRETTY_FUNCTION__))
3791 " Expected target-based directive.")(static_cast <bool> (isOpenMPTargetExecutionDirective(D
.getDirectiveKind()) && " Expected target-based directive."
) ? void (0) : __assert_fail ("isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && \" Expected target-based directive.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3791, __extension__
__PRETTY_FUNCTION__))
;
3792 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3793 for (const CapturedStmt::Capture &C : CS->captures()) {
3794 // Capture variables captured by reference in lambdas for target-based
3795 // directives.
3796 if (!C.capturesVariable())
3797 continue;
3798 const VarDecl *VD = C.getCapturedVar();
3799 const auto *RD = VD->getType()
3800 .getCanonicalType()
3801 .getNonReferenceType()
3802 ->getAsCXXRecordDecl();
3803 if (!RD || !RD->isLambda())
3804 continue;
3805 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3806 LValue VDLVal;
3807 if (VD->getType().getCanonicalType()->isReferenceType())
3808 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3809 else
3810 VDLVal = CGF.MakeAddrLValue(
3811 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3812 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3813 FieldDecl *ThisCapture = nullptr;
3814 RD->getCaptureFields(Captures, ThisCapture);
3815 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3816 LValue ThisLVal =
3817 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3818 llvm::Value *CXXThis = CGF.LoadCXXThis();
3819 CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3820 }
3821 for (const LambdaCapture &LC : RD->captures()) {
3822 if (LC.getCaptureKind() != LCK_ByRef)
3823 continue;
3824 const VarDecl *VD = LC.getCapturedVar();
3825 if (!CS->capturesVariable(VD))
3826 continue;
3827 auto It = Captures.find(VD);
3828 assert(It != Captures.end() && "Found lambda capture without field.")(static_cast <bool> (It != Captures.end() && "Found lambda capture without field."
) ? void (0) : __assert_fail ("It != Captures.end() && \"Found lambda capture without field.\""
, "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp", 3828, __extension__
__PRETTY_FUNCTION__))
;
3829 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3830 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3831 if (VD->getType().getCanonicalType()->isReferenceType())
3832 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3833 VD->getType().getCanonicalType())
3834 .getAddress(CGF);
3835 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3836 }
3837 }
3838}
3839
3840bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3841 LangAS &AS) {
3842 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3843 return false;
3844 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3845 switch(A->getAllocatorType()) {
3846 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3847 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3848 // Not supported, fallback to the default mem space.
3849 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3850 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3851 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3852 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3853 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3854 AS = LangAS::Default;
3855 return true;
3856 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3857 AS = LangAS::cuda_constant;
3858 return true;
3859 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3860 AS = LangAS::cuda_shared;
3861 return true;
3862 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3863 llvm_unreachable("Expected predefined allocator for the variables with the "::llvm::llvm_unreachable_internal("Expected predefined allocator for the variables with the "
"static storage.", "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp"
, 3864)
3864 "static storage.")::llvm::llvm_unreachable_internal("Expected predefined allocator for the variables with the "
"static storage.", "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp"
, 3864)
;
3865 }
3866 return false;
3867}
3868
3869// Get current CudaArch and ignore any unknown values
3870static CudaArch getCudaArch(CodeGenModule &CGM) {
3871 if (!CGM.getTarget().hasFeature("ptx"))
3872 return CudaArch::UNKNOWN;
3873 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3874 if (Feature.getValue()) {
3875 CudaArch Arch = StringToCudaArch(Feature.getKey());
3876 if (Arch != CudaArch::UNKNOWN)
3877 return Arch;
3878 }
3879 }
3880 return CudaArch::UNKNOWN;
3881}
3882
3883/// Check to see if target architecture supports unified addressing which is
3884/// a restriction for OpenMP requires clause "unified_shared_memory".
3885void CGOpenMPRuntimeGPU::processRequiresDirective(
3886 const OMPRequiresDecl *D) {
3887 for (const OMPClause *Clause : D->clauselists()) {
3888 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3889 CudaArch Arch = getCudaArch(CGM);
3890 switch (Arch) {
3891 case CudaArch::SM_20:
3892 case CudaArch::SM_21:
3893 case CudaArch::SM_30:
3894 case CudaArch::SM_32:
3895 case CudaArch::SM_35:
3896 case CudaArch::SM_37:
3897 case CudaArch::SM_50:
3898 case CudaArch::SM_52:
3899 case CudaArch::SM_53: {
3900 SmallString<256> Buffer;
3901 llvm::raw_svector_ostream Out(Buffer);
3902 Out << "Target architecture " << CudaArchToString(Arch)
3903 << " does not support unified addressing";
3904 CGM.Error(Clause->getBeginLoc(), Out.str());
3905 return;
3906 }
3907 case CudaArch::SM_60:
3908 case CudaArch::SM_61:
3909 case CudaArch::SM_62:
3910 case CudaArch::SM_70:
3911 case CudaArch::SM_72:
3912 case CudaArch::SM_75:
3913 case CudaArch::SM_80:
3914 case CudaArch::SM_86:
3915 case CudaArch::GFX600:
3916 case CudaArch::GFX601:
3917 case CudaArch::GFX602:
3918 case CudaArch::GFX700:
3919 case CudaArch::GFX701:
3920 case CudaArch::GFX702:
3921 case CudaArch::GFX703:
3922 case CudaArch::GFX704:
3923 case CudaArch::GFX705:
3924 case CudaArch::GFX801:
3925 case CudaArch::GFX802:
3926 case CudaArch::GFX803:
3927 case CudaArch::GFX805:
3928 case CudaArch::GFX810:
3929 case CudaArch::GFX900:
3930 case CudaArch::GFX902:
3931 case CudaArch::GFX904:
3932 case CudaArch::GFX906:
3933 case CudaArch::GFX908:
3934 case CudaArch::GFX909:
3935 case CudaArch::GFX90a:
3936 case CudaArch::GFX90c:
3937 case CudaArch::GFX940:
3938 case CudaArch::GFX1010:
3939 case CudaArch::GFX1011:
3940 case CudaArch::GFX1012:
3941 case CudaArch::GFX1013:
3942 case CudaArch::GFX1030:
3943 case CudaArch::GFX1031:
3944 case CudaArch::GFX1032:
3945 case CudaArch::GFX1033:
3946 case CudaArch::GFX1034:
3947 case CudaArch::GFX1035:
3948 case CudaArch::GFX1036:
3949 case CudaArch::Generic:
3950 case CudaArch::UNUSED:
3951 case CudaArch::UNKNOWN:
3952 break;
3953 case CudaArch::LAST:
3954 llvm_unreachable("Unexpected Cuda arch.")::llvm::llvm_unreachable_internal("Unexpected Cuda arch.", "clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp"
, 3954)
;
3955 }
3956 }
3957 }
3958 CGOpenMPRuntime::processRequiresDirective(D);
3959}
3960
3961void CGOpenMPRuntimeGPU::clear() {
3962
3963 if (!TeamsReductions.empty()) {
3964 ASTContext &C = CGM.getContext();
3965 RecordDecl *StaticRD = C.buildImplicitRecord(
3966 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3967 StaticRD->startDefinition();
3968 for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3969 QualType RecTy = C.getRecordType(TeamReductionRec);
3970 auto *Field = FieldDecl::Create(
3971 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3972 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3973 /*BW=*/nullptr, /*Mutable=*/false,
3974 /*InitStyle=*/ICIS_NoInit);
3975 Field->setAccess(AS_public);
3976 StaticRD->addDecl(Field);
3977 }
3978 StaticRD->completeDefinition();
3979 QualType StaticTy = C.getRecordType(StaticRD);
3980 llvm::Type *LLVMReductionsBufferTy =
3981 CGM.getTypes().ConvertTypeForMem(StaticTy);
3982 // FIXME: nvlink does not handle weak linkage correctly (object with the
3983 // different size are reported as erroneous).
3984 // Restore CommonLinkage as soon as nvlink is fixed.
3985 auto *GV = new llvm::GlobalVariable(
3986 CGM.getModule(), LLVMReductionsBufferTy,
3987 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3988 llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3989 "_openmp_teams_reductions_buffer_$_");
3990 KernelTeamsReductionPtr->setInitializer(
3991 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3992 CGM.VoidPtrTy));
3993 }
3994 CGOpenMPRuntime::clear();
3995}
3996
3997llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3998 CGBuilderTy &Bld = CGF.Builder;
3999 llvm::Module *M = &CGF.CGM.getModule();
4000 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
4001 llvm::Function *F = M->getFunction(LocSize);
4002 if (!F) {
4003 F = llvm::Function::Create(
4004 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
4005 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
4006 }
4007 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
4008}
4009
4010llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
4011 ArrayRef<llvm::Value *> Args{};
4012 return CGF.EmitRuntimeCall(
4013 OMPBuilder.getOrCreateRuntimeFunction(
4014 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
4015 Args);
4016}
4017
4018llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
4019 ArrayRef<llvm::Value *> Args{};
4020 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4021 CGM.getModule(), OMPRTL___kmpc_get_warp_size),
4022 Args);
4023}