File: | llvm/lib/Analysis/CGSCCPassManager.cpp |
Warning: | line 241, column 11 Forming reference to null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | ||||
9 | #include "llvm/Analysis/CGSCCPassManager.h" | |||
10 | #include "llvm/ADT/ArrayRef.h" | |||
11 | #include "llvm/ADT/Optional.h" | |||
12 | #include "llvm/ADT/STLExtras.h" | |||
13 | #include "llvm/ADT/SetVector.h" | |||
14 | #include "llvm/ADT/SmallPtrSet.h" | |||
15 | #include "llvm/ADT/SmallVector.h" | |||
16 | #include "llvm/ADT/iterator_range.h" | |||
17 | #include "llvm/Analysis/LazyCallGraph.h" | |||
18 | #include "llvm/IR/Constant.h" | |||
19 | #include "llvm/IR/InstIterator.h" | |||
20 | #include "llvm/IR/Instruction.h" | |||
21 | #include "llvm/IR/PassManager.h" | |||
22 | #include "llvm/IR/PassManagerImpl.h" | |||
23 | #include "llvm/IR/ValueHandle.h" | |||
24 | #include "llvm/Support/Casting.h" | |||
25 | #include "llvm/Support/CommandLine.h" | |||
26 | #include "llvm/Support/Debug.h" | |||
27 | #include "llvm/Support/ErrorHandling.h" | |||
28 | #include "llvm/Support/TimeProfiler.h" | |||
29 | #include "llvm/Support/raw_ostream.h" | |||
30 | #include <algorithm> | |||
31 | #include <cassert> | |||
32 | #include <iterator> | |||
33 | ||||
34 | #define DEBUG_TYPE"cgscc" "cgscc" | |||
35 | ||||
36 | using namespace llvm; | |||
37 | ||||
38 | // Explicit template instantiations and specialization definitions for core | |||
39 | // template typedefs. | |||
40 | namespace llvm { | |||
41 | ||||
42 | static cl::opt<bool> AbortOnMaxDevirtIterationsReached( | |||
43 | "abort-on-max-devirt-iterations-reached", | |||
44 | cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " | |||
45 | "pass is reached")); | |||
46 | ||||
47 | // Explicit instantiations for the core proxy templates. | |||
48 | template class AllAnalysesOn<LazyCallGraph::SCC>; | |||
49 | template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; | |||
50 | template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, | |||
51 | LazyCallGraph &, CGSCCUpdateResult &>; | |||
52 | template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; | |||
53 | template class OuterAnalysisManagerProxy<ModuleAnalysisManager, | |||
54 | LazyCallGraph::SCC, LazyCallGraph &>; | |||
55 | template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; | |||
56 | ||||
57 | /// Explicitly specialize the pass manager run method to handle call graph | |||
58 | /// updates. | |||
59 | template <> | |||
60 | PreservedAnalyses | |||
61 | PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, | |||
62 | CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, | |||
63 | CGSCCAnalysisManager &AM, | |||
64 | LazyCallGraph &G, CGSCCUpdateResult &UR) { | |||
65 | // Request PassInstrumentation from analysis manager, will use it to run | |||
66 | // instrumenting callbacks for the passes later. | |||
67 | PassInstrumentation PI = | |||
68 | AM.getResult<PassInstrumentationAnalysis>(InitialC, G); | |||
69 | ||||
70 | PreservedAnalyses PA = PreservedAnalyses::all(); | |||
71 | ||||
72 | if (DebugLogging) | |||
73 | dbgs() << "Starting CGSCC pass manager run.\n"; | |||
74 | ||||
75 | // The SCC may be refined while we are running passes over it, so set up | |||
76 | // a pointer that we can update. | |||
77 | LazyCallGraph::SCC *C = &InitialC; | |||
78 | ||||
79 | // Get Function analysis manager from its proxy. | |||
80 | FunctionAnalysisManager &FAM = | |||
81 | AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); | |||
82 | ||||
83 | for (auto &Pass : Passes) { | |||
84 | // Check the PassInstrumentation's BeforePass callbacks before running the | |||
85 | // pass, skip its execution completely if asked to (callback returns false). | |||
86 | if (!PI.runBeforePass(*Pass, *C)) | |||
87 | continue; | |||
88 | ||||
89 | PreservedAnalyses PassPA; | |||
90 | { | |||
91 | TimeTraceScope TimeScope(Pass->name()); | |||
92 | PassPA = Pass->run(*C, AM, G, UR); | |||
93 | } | |||
94 | ||||
95 | if (UR.InvalidatedSCCs.count(C)) | |||
96 | PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); | |||
97 | else | |||
98 | PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); | |||
99 | ||||
100 | // Update the SCC if necessary. | |||
101 | C = UR.UpdatedC ? UR.UpdatedC : C; | |||
102 | if (UR.UpdatedC) { | |||
103 | // If C is updated, also create a proxy and update FAM inside the result. | |||
104 | auto *ResultFAMCP = | |||
105 | &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); | |||
106 | ResultFAMCP->updateFAM(FAM); | |||
107 | } | |||
108 | ||||
109 | // If the CGSCC pass wasn't able to provide a valid updated SCC, the | |||
110 | // current SCC may simply need to be skipped if invalid. | |||
111 | if (UR.InvalidatedSCCs.count(C)) { | |||
112 | LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping invalidated root or island SCC!\n" ; } } while (false); | |||
113 | break; | |||
114 | } | |||
115 | // Check that we didn't miss any update scenario. | |||
116 | assert(C->begin() != C->end() && "Cannot have an empty SCC!")((C->begin() != C->end() && "Cannot have an empty SCC!" ) ? static_cast<void> (0) : __assert_fail ("C->begin() != C->end() && \"Cannot have an empty SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 116, __PRETTY_FUNCTION__)); | |||
117 | ||||
118 | // Update the analysis manager as each pass runs and potentially | |||
119 | // invalidates analyses. | |||
120 | AM.invalidate(*C, PassPA); | |||
121 | ||||
122 | // Finally, we intersect the final preserved analyses to compute the | |||
123 | // aggregate preserved set for this pass manager. | |||
124 | PA.intersect(std::move(PassPA)); | |||
125 | ||||
126 | // FIXME: Historically, the pass managers all called the LLVM context's | |||
127 | // yield function here. We don't have a generic way to acquire the | |||
128 | // context and it isn't yet clear what the right pattern is for yielding | |||
129 | // in the new pass manager so it is currently omitted. | |||
130 | // ...getContext().yield(); | |||
131 | } | |||
132 | ||||
133 | // Before we mark all of *this* SCC's analyses as preserved below, intersect | |||
134 | // this with the cross-SCC preserved analysis set. This is used to allow | |||
135 | // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation | |||
136 | // for them. | |||
137 | UR.CrossSCCPA.intersect(PA); | |||
138 | ||||
139 | // Invalidation was handled after each pass in the above loop for the current | |||
140 | // SCC. Therefore, the remaining analysis results in the AnalysisManager are | |||
141 | // preserved. We mark this with a set so that we don't need to inspect each | |||
142 | // one individually. | |||
143 | PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); | |||
144 | ||||
145 | if (DebugLogging) | |||
146 | dbgs() << "Finished CGSCC pass manager run.\n"; | |||
147 | ||||
148 | return PA; | |||
149 | } | |||
150 | ||||
151 | PreservedAnalyses | |||
152 | ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { | |||
153 | // Setup the CGSCC analysis manager from its proxy. | |||
154 | CGSCCAnalysisManager &CGAM = | |||
155 | AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); | |||
156 | ||||
157 | // Get the call graph for this module. | |||
158 | LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); | |||
159 | ||||
160 | // Get Function analysis manager from its proxy. | |||
161 | FunctionAnalysisManager &FAM = | |||
162 | AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); | |||
163 | ||||
164 | // We keep worklists to allow us to push more work onto the pass manager as | |||
165 | // the passes are run. | |||
166 | SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; | |||
167 | SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; | |||
168 | ||||
169 | // Keep sets for invalidated SCCs and RefSCCs that should be skipped when | |||
170 | // iterating off the worklists. | |||
171 | SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; | |||
172 | SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; | |||
173 | ||||
174 | SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> | |||
175 | InlinedInternalEdges; | |||
176 | ||||
177 | CGSCCUpdateResult UR = { | |||
178 | RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, | |||
179 | nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, | |||
180 | {}}; | |||
181 | ||||
182 | // Request PassInstrumentation from analysis manager, will use it to run | |||
183 | // instrumenting callbacks for the passes later. | |||
184 | PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); | |||
185 | ||||
186 | PreservedAnalyses PA = PreservedAnalyses::all(); | |||
187 | CG.buildRefSCCs(); | |||
188 | for (auto RCI = CG.postorder_ref_scc_begin(), | |||
| ||||
189 | RCE = CG.postorder_ref_scc_end(); | |||
190 | RCI != RCE;) { | |||
191 | assert(RCWorklist.empty() &&((RCWorklist.empty() && "Should always start with an empty RefSCC worklist" ) ? static_cast<void> (0) : __assert_fail ("RCWorklist.empty() && \"Should always start with an empty RefSCC worklist\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 192, __PRETTY_FUNCTION__)) | |||
192 | "Should always start with an empty RefSCC worklist")((RCWorklist.empty() && "Should always start with an empty RefSCC worklist" ) ? static_cast<void> (0) : __assert_fail ("RCWorklist.empty() && \"Should always start with an empty RefSCC worklist\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 192, __PRETTY_FUNCTION__)); | |||
193 | // The postorder_ref_sccs range we are walking is lazily constructed, so | |||
194 | // we only push the first one onto the worklist. The worklist allows us | |||
195 | // to capture *new* RefSCCs created during transformations. | |||
196 | // | |||
197 | // We really want to form RefSCCs lazily because that makes them cheaper | |||
198 | // to update as the program is simplified and allows us to have greater | |||
199 | // cache locality as forming a RefSCC touches all the parts of all the | |||
200 | // functions within that RefSCC. | |||
201 | // | |||
202 | // We also eagerly increment the iterator to the next position because | |||
203 | // the CGSCC passes below may delete the current RefSCC. | |||
204 | RCWorklist.insert(&*RCI++); | |||
205 | ||||
206 | do { | |||
207 | LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); | |||
208 | if (InvalidRefSCCSet.count(RC)) { | |||
209 | LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping an invalid RefSCC...\n" ; } } while (false); | |||
210 | continue; | |||
211 | } | |||
212 | ||||
213 | assert(CWorklist.empty() &&((CWorklist.empty() && "Should always start with an empty SCC worklist" ) ? static_cast<void> (0) : __assert_fail ("CWorklist.empty() && \"Should always start with an empty SCC worklist\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 214, __PRETTY_FUNCTION__)) | |||
214 | "Should always start with an empty SCC worklist")((CWorklist.empty() && "Should always start with an empty SCC worklist" ) ? static_cast<void> (0) : __assert_fail ("CWorklist.empty() && \"Should always start with an empty SCC worklist\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 214, __PRETTY_FUNCTION__)); | |||
215 | ||||
216 | LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RCdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Running an SCC pass across the RefSCC: " << *RC << "\n"; } } while (false) | |||
217 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Running an SCC pass across the RefSCC: " << *RC << "\n"; } } while (false); | |||
218 | ||||
219 | // The top of the worklist may *also* be the same SCC we just ran over | |||
220 | // (and invalidated for). Keep track of that last SCC we processed due | |||
221 | // to SCC update to avoid redundant processing when an SCC is both just | |||
222 | // updated itself and at the top of the worklist. | |||
223 | LazyCallGraph::SCC *LastUpdatedC = nullptr; | |||
224 | ||||
225 | // Push the initial SCCs in reverse post-order as we'll pop off the | |||
226 | // back and so see this in post-order. | |||
227 | for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) | |||
228 | CWorklist.insert(&C); | |||
229 | ||||
230 | do { | |||
231 | LazyCallGraph::SCC *C = CWorklist.pop_back_val(); | |||
232 | // Due to call graph mutations, we may have invalid SCCs or SCCs from | |||
233 | // other RefSCCs in the worklist. The invalid ones are dead and the | |||
234 | // other RefSCCs should be queued above, so we just need to skip both | |||
235 | // scenarios here. | |||
236 | if (InvalidSCCSet.count(C)) { | |||
237 | LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping an invalid SCC...\n"; } } while (false); | |||
238 | continue; | |||
239 | } | |||
240 | if (LastUpdatedC == C) { | |||
241 | LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping redundant run on SCC: " << *C << "\n"; } } while (false); | |||
| ||||
242 | continue; | |||
243 | } | |||
244 | if (&C->getOuterRefSCC() != RC) { | |||
245 | LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping an SCC that is now part of some other " "RefSCC...\n"; } } while (false) | |||
246 | "RefSCC...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping an SCC that is now part of some other " "RefSCC...\n"; } } while (false); | |||
247 | continue; | |||
248 | } | |||
249 | ||||
250 | // Ensure we can proxy analysis updates from the CGSCC analysis manager | |||
251 | // into the the Function analysis manager by getting a proxy here. | |||
252 | // This also needs to update the FunctionAnalysisManager, as this may be | |||
253 | // the first time we see this SCC. | |||
254 | CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( | |||
255 | FAM); | |||
256 | ||||
257 | // Each time we visit a new SCC pulled off the worklist, | |||
258 | // a transformation of a child SCC may have also modified this parent | |||
259 | // and invalidated analyses. So we invalidate using the update record's | |||
260 | // cross-SCC preserved set. This preserved set is intersected by any | |||
261 | // CGSCC pass that handles invalidation (primarily pass managers) prior | |||
262 | // to marking its SCC as preserved. That lets us track everything that | |||
263 | // might need invalidation across SCCs without excessive invalidations | |||
264 | // on a single SCC. | |||
265 | // | |||
266 | // This essentially allows SCC passes to freely invalidate analyses | |||
267 | // of any ancestor SCC. If this becomes detrimental to successfully | |||
268 | // caching analyses, we could force each SCC pass to manually | |||
269 | // invalidate the analyses for any SCCs other than themselves which | |||
270 | // are mutated. However, that seems to lose the robustness of the | |||
271 | // pass-manager driven invalidation scheme. | |||
272 | CGAM.invalidate(*C, UR.CrossSCCPA); | |||
273 | ||||
274 | do { | |||
275 | // Check that we didn't miss any update scenario. | |||
276 | assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!")((!InvalidSCCSet.count(C) && "Processing an invalid SCC!" ) ? static_cast<void> (0) : __assert_fail ("!InvalidSCCSet.count(C) && \"Processing an invalid SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 276, __PRETTY_FUNCTION__)); | |||
277 | assert(C->begin() != C->end() && "Cannot have an empty SCC!")((C->begin() != C->end() && "Cannot have an empty SCC!" ) ? static_cast<void> (0) : __assert_fail ("C->begin() != C->end() && \"Cannot have an empty SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 277, __PRETTY_FUNCTION__)); | |||
278 | assert(&C->getOuterRefSCC() == RC &&((&C->getOuterRefSCC() == RC && "Processing an SCC in a different RefSCC!" ) ? static_cast<void> (0) : __assert_fail ("&C->getOuterRefSCC() == RC && \"Processing an SCC in a different RefSCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 279, __PRETTY_FUNCTION__)) | |||
279 | "Processing an SCC in a different RefSCC!")((&C->getOuterRefSCC() == RC && "Processing an SCC in a different RefSCC!" ) ? static_cast<void> (0) : __assert_fail ("&C->getOuterRefSCC() == RC && \"Processing an SCC in a different RefSCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 279, __PRETTY_FUNCTION__)); | |||
280 | ||||
281 | LastUpdatedC = UR.UpdatedC; | |||
282 | UR.UpdatedRC = nullptr; | |||
283 | UR.UpdatedC = nullptr; | |||
284 | ||||
285 | // Check the PassInstrumentation's BeforePass callbacks before | |||
286 | // running the pass, skip its execution completely if asked to | |||
287 | // (callback returns false). | |||
288 | if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) | |||
289 | continue; | |||
290 | ||||
291 | PreservedAnalyses PassPA; | |||
292 | { | |||
293 | TimeTraceScope TimeScope(Pass->name()); | |||
294 | PassPA = Pass->run(*C, CGAM, CG, UR); | |||
295 | } | |||
296 | ||||
297 | if (UR.InvalidatedSCCs.count(C)) | |||
298 | PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); | |||
299 | else | |||
300 | PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); | |||
301 | ||||
302 | // Update the SCC and RefSCC if necessary. | |||
303 | C = UR.UpdatedC ? UR.UpdatedC : C; | |||
304 | RC = UR.UpdatedRC ? UR.UpdatedRC : RC; | |||
305 | ||||
306 | if (UR.UpdatedC) { | |||
307 | // If we're updating the SCC, also update the FAM inside the proxy's | |||
308 | // result. | |||
309 | CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( | |||
310 | FAM); | |||
311 | } | |||
312 | ||||
313 | // If the CGSCC pass wasn't able to provide a valid updated SCC, | |||
314 | // the current SCC may simply need to be skipped if invalid. | |||
315 | if (UR.InvalidatedSCCs.count(C)) { | |||
316 | LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Skipping invalidated root or island SCC!\n" ; } } while (false); | |||
317 | break; | |||
318 | } | |||
319 | // Check that we didn't miss any update scenario. | |||
320 | assert(C->begin() != C->end() && "Cannot have an empty SCC!")((C->begin() != C->end() && "Cannot have an empty SCC!" ) ? static_cast<void> (0) : __assert_fail ("C->begin() != C->end() && \"Cannot have an empty SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 320, __PRETTY_FUNCTION__)); | |||
321 | ||||
322 | // We handle invalidating the CGSCC analysis manager's information | |||
323 | // for the (potentially updated) SCC here. Note that any other SCCs | |||
324 | // whose structure has changed should have been invalidated by | |||
325 | // whatever was updating the call graph. This SCC gets invalidated | |||
326 | // late as it contains the nodes that were actively being | |||
327 | // processed. | |||
328 | CGAM.invalidate(*C, PassPA); | |||
329 | ||||
330 | // Then intersect the preserved set so that invalidation of module | |||
331 | // analyses will eventually occur when the module pass completes. | |||
332 | // Also intersect with the cross-SCC preserved set to capture any | |||
333 | // cross-SCC invalidation. | |||
334 | UR.CrossSCCPA.intersect(PassPA); | |||
335 | PA.intersect(std::move(PassPA)); | |||
336 | ||||
337 | // The pass may have restructured the call graph and refined the | |||
338 | // current SCC and/or RefSCC. We need to update our current SCC and | |||
339 | // RefSCC pointers to follow these. Also, when the current SCC is | |||
340 | // refined, re-run the SCC pass over the newly refined SCC in order | |||
341 | // to observe the most precise SCC model available. This inherently | |||
342 | // cannot cycle excessively as it only happens when we split SCCs | |||
343 | // apart, at most converging on a DAG of single nodes. | |||
344 | // FIXME: If we ever start having RefSCC passes, we'll want to | |||
345 | // iterate there too. | |||
346 | if (UR.UpdatedC) | |||
347 | LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Re-running SCC passes after a refinement of the " "current SCC: " << *UR.UpdatedC << "\n"; } } while (false) | |||
348 | << "Re-running SCC passes after a refinement of the "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Re-running SCC passes after a refinement of the " "current SCC: " << *UR.UpdatedC << "\n"; } } while (false) | |||
349 | "current SCC: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Re-running SCC passes after a refinement of the " "current SCC: " << *UR.UpdatedC << "\n"; } } while (false) | |||
350 | << *UR.UpdatedC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Re-running SCC passes after a refinement of the " "current SCC: " << *UR.UpdatedC << "\n"; } } while (false); | |||
351 | ||||
352 | // Note that both `C` and `RC` may at this point refer to deleted, | |||
353 | // invalid SCC and RefSCCs respectively. But we will short circuit | |||
354 | // the processing when we check them in the loop above. | |||
355 | } while (UR.UpdatedC); | |||
356 | } while (!CWorklist.empty()); | |||
357 | ||||
358 | // We only need to keep internal inlined edge information within | |||
359 | // a RefSCC, clear it to save on space and let the next time we visit | |||
360 | // any of these functions have a fresh start. | |||
361 | InlinedInternalEdges.clear(); | |||
362 | } while (!RCWorklist.empty()); | |||
363 | } | |||
364 | ||||
365 | // By definition we preserve the call garph, all SCC analyses, and the | |||
366 | // analysis proxies by handling them above and in any nested pass managers. | |||
367 | PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); | |||
368 | PA.preserve<LazyCallGraphAnalysis>(); | |||
369 | PA.preserve<CGSCCAnalysisManagerModuleProxy>(); | |||
370 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); | |||
371 | return PA; | |||
372 | } | |||
373 | ||||
374 | PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, | |||
375 | CGSCCAnalysisManager &AM, | |||
376 | LazyCallGraph &CG, | |||
377 | CGSCCUpdateResult &UR) { | |||
378 | PreservedAnalyses PA = PreservedAnalyses::all(); | |||
379 | PassInstrumentation PI = | |||
380 | AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); | |||
381 | ||||
382 | // The SCC may be refined while we are running passes over it, so set up | |||
383 | // a pointer that we can update. | |||
384 | LazyCallGraph::SCC *C = &InitialC; | |||
385 | ||||
386 | // Struct to track the counts of direct and indirect calls in each function | |||
387 | // of the SCC. | |||
388 | struct CallCount { | |||
389 | int Direct; | |||
390 | int Indirect; | |||
391 | }; | |||
392 | ||||
393 | // Put value handles on all of the indirect calls and return the number of | |||
394 | // direct calls for each function in the SCC. | |||
395 | auto ScanSCC = [](LazyCallGraph::SCC &C, | |||
396 | SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { | |||
397 | assert(CallHandles.empty() && "Must start with a clear set of handles.")((CallHandles.empty() && "Must start with a clear set of handles." ) ? static_cast<void> (0) : __assert_fail ("CallHandles.empty() && \"Must start with a clear set of handles.\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 397, __PRETTY_FUNCTION__)); | |||
398 | ||||
399 | SmallDenseMap<Function *, CallCount> CallCounts; | |||
400 | CallCount CountLocal = {0, 0}; | |||
401 | for (LazyCallGraph::Node &N : C) { | |||
402 | CallCount &Count = | |||
403 | CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) | |||
404 | .first->second; | |||
405 | for (Instruction &I : instructions(N.getFunction())) | |||
406 | if (auto *CB = dyn_cast<CallBase>(&I)) { | |||
407 | if (CB->getCalledFunction()) { | |||
408 | ++Count.Direct; | |||
409 | } else { | |||
410 | ++Count.Indirect; | |||
411 | CallHandles.insert({CB, WeakTrackingVH(CB)}); | |||
412 | } | |||
413 | } | |||
414 | } | |||
415 | ||||
416 | return CallCounts; | |||
417 | }; | |||
418 | ||||
419 | UR.IndirectVHs.clear(); | |||
420 | // Populate the initial call handles and get the initial call counts. | |||
421 | auto CallCounts = ScanSCC(*C, UR.IndirectVHs); | |||
422 | ||||
423 | for (int Iteration = 0;; ++Iteration) { | |||
424 | if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) | |||
425 | continue; | |||
426 | ||||
427 | PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); | |||
428 | ||||
429 | if (UR.InvalidatedSCCs.count(C)) | |||
430 | PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); | |||
431 | else | |||
432 | PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); | |||
433 | ||||
434 | // If the SCC structure has changed, bail immediately and let the outer | |||
435 | // CGSCC layer handle any iteration to reflect the refined structure. | |||
436 | if (UR.UpdatedC && UR.UpdatedC != C) { | |||
437 | PA.intersect(std::move(PassPA)); | |||
438 | break; | |||
439 | } | |||
440 | ||||
441 | // Check that we didn't miss any update scenario. | |||
442 | assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!")((!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!" ) ? static_cast<void> (0) : __assert_fail ("!UR.InvalidatedSCCs.count(C) && \"Processing an invalid SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 442, __PRETTY_FUNCTION__)); | |||
443 | assert(C->begin() != C->end() && "Cannot have an empty SCC!")((C->begin() != C->end() && "Cannot have an empty SCC!" ) ? static_cast<void> (0) : __assert_fail ("C->begin() != C->end() && \"Cannot have an empty SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 443, __PRETTY_FUNCTION__)); | |||
444 | ||||
445 | // Check whether any of the handles were devirtualized. | |||
446 | bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { | |||
447 | if (P.second) { | |||
448 | if (CallBase *CB = dyn_cast<CallBase>(P.second)) { | |||
449 | if (CB->getCalledFunction()) { | |||
450 | LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Found devirtualized call: " << *CB << "\n"; } } while (false); | |||
451 | return true; | |||
452 | } | |||
453 | } | |||
454 | } | |||
455 | return false; | |||
456 | }); | |||
457 | ||||
458 | // Rescan to build up a new set of handles and count how many direct | |||
459 | // calls remain. If we decide to iterate, this also sets up the input to | |||
460 | // the next iteration. | |||
461 | UR.IndirectVHs.clear(); | |||
462 | auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); | |||
463 | ||||
464 | // If we haven't found an explicit devirtualization already see if we | |||
465 | // have decreased the number of indirect calls and increased the number | |||
466 | // of direct calls for any function in the SCC. This can be fooled by all | |||
467 | // manner of transformations such as DCE and other things, but seems to | |||
468 | // work well in practice. | |||
469 | if (!Devirt) | |||
470 | // Iterate over the keys in NewCallCounts, if Function also exists in | |||
471 | // CallCounts, make the check below. | |||
472 | for (auto &Pair : NewCallCounts) { | |||
473 | auto &CallCountNew = Pair.second; | |||
474 | auto CountIt = CallCounts.find(Pair.first); | |||
475 | if (CountIt != CallCounts.end()) { | |||
476 | const auto &CallCountOld = CountIt->second; | |||
477 | if (CallCountOld.Indirect > CallCountNew.Indirect && | |||
478 | CallCountOld.Direct < CallCountNew.Direct) { | |||
479 | Devirt = true; | |||
480 | break; | |||
481 | } | |||
482 | } | |||
483 | } | |||
484 | ||||
485 | if (!Devirt) { | |||
486 | PA.intersect(std::move(PassPA)); | |||
487 | break; | |||
488 | } | |||
489 | ||||
490 | // Otherwise, if we've already hit our max, we're done. | |||
491 | if (Iteration >= MaxIterations) { | |||
492 | if (AbortOnMaxDevirtIterationsReached) | |||
493 | report_fatal_error("Max devirtualization iterations reached"); | |||
494 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Found another devirtualization after hitting the max " "number of repetitions (" << MaxIterations << ") on SCC: " << *C << "\n"; } } while (false) | |||
495 | dbgs() << "Found another devirtualization after hitting the max "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Found another devirtualization after hitting the max " "number of repetitions (" << MaxIterations << ") on SCC: " << *C << "\n"; } } while (false) | |||
496 | "number of repetitions ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Found another devirtualization after hitting the max " "number of repetitions (" << MaxIterations << ") on SCC: " << *C << "\n"; } } while (false) | |||
497 | << MaxIterations << ") on SCC: " << *C << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Found another devirtualization after hitting the max " "number of repetitions (" << MaxIterations << ") on SCC: " << *C << "\n"; } } while (false); | |||
498 | PA.intersect(std::move(PassPA)); | |||
499 | break; | |||
500 | } | |||
501 | ||||
502 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Repeating an SCC pass after finding a devirtualization in: " << *C << "\n"; } } while (false) | |||
503 | dbgs() << "Repeating an SCC pass after finding a devirtualization in: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Repeating an SCC pass after finding a devirtualization in: " << *C << "\n"; } } while (false) | |||
504 | << *C << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Repeating an SCC pass after finding a devirtualization in: " << *C << "\n"; } } while (false); | |||
505 | ||||
506 | // Move over the new call counts in preparation for iterating. | |||
507 | CallCounts = std::move(NewCallCounts); | |||
508 | ||||
509 | // Update the analysis manager with each run and intersect the total set | |||
510 | // of preserved analyses so we're ready to iterate. | |||
511 | AM.invalidate(*C, PassPA); | |||
512 | ||||
513 | PA.intersect(std::move(PassPA)); | |||
514 | } | |||
515 | ||||
516 | // Note that we don't add any preserved entries here unlike a more normal | |||
517 | // "pass manager" because we only handle invalidation *between* iterations, | |||
518 | // not after the last iteration. | |||
519 | return PA; | |||
520 | } | |||
521 | ||||
522 | PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, | |||
523 | CGSCCAnalysisManager &AM, | |||
524 | LazyCallGraph &CG, | |||
525 | CGSCCUpdateResult &UR) { | |||
526 | // Setup the function analysis manager from its proxy. | |||
527 | FunctionAnalysisManager &FAM = | |||
528 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); | |||
529 | ||||
530 | SmallVector<LazyCallGraph::Node *, 4> Nodes; | |||
531 | for (LazyCallGraph::Node &N : C) | |||
532 | Nodes.push_back(&N); | |||
533 | ||||
534 | // The SCC may get split while we are optimizing functions due to deleting | |||
535 | // edges. If this happens, the current SCC can shift, so keep track of | |||
536 | // a pointer we can overwrite. | |||
537 | LazyCallGraph::SCC *CurrentC = &C; | |||
538 | ||||
539 | LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Running function passes across an SCC: " << C << "\n"; } } while (false); | |||
540 | ||||
541 | PreservedAnalyses PA = PreservedAnalyses::all(); | |||
542 | for (LazyCallGraph::Node *N : Nodes) { | |||
543 | // Skip nodes from other SCCs. These may have been split out during | |||
544 | // processing. We'll eventually visit those SCCs and pick up the nodes | |||
545 | // there. | |||
546 | if (CG.lookupSCC(*N) != CurrentC) | |||
547 | continue; | |||
548 | ||||
549 | Function &F = N->getFunction(); | |||
550 | ||||
551 | PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); | |||
552 | if (!PI.runBeforePass<Function>(*Pass, F)) | |||
553 | continue; | |||
554 | ||||
555 | PreservedAnalyses PassPA; | |||
556 | { | |||
557 | TimeTraceScope TimeScope(Pass->name()); | |||
558 | PassPA = Pass->run(F, FAM); | |||
559 | } | |||
560 | ||||
561 | PI.runAfterPass<Function>(*Pass, F, PassPA); | |||
562 | ||||
563 | // We know that the function pass couldn't have invalidated any other | |||
564 | // function's analyses (that's the contract of a function pass), so | |||
565 | // directly handle the function analysis manager's invalidation here. | |||
566 | FAM.invalidate(F, PassPA); | |||
567 | ||||
568 | // Then intersect the preserved set so that invalidation of module | |||
569 | // analyses will eventually occur when the module pass completes. | |||
570 | PA.intersect(std::move(PassPA)); | |||
571 | ||||
572 | // If the call graph hasn't been preserved, update it based on this | |||
573 | // function pass. This may also update the current SCC to point to | |||
574 | // a smaller, more refined SCC. | |||
575 | auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); | |||
576 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { | |||
577 | CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, | |||
578 | AM, UR, FAM); | |||
579 | assert(CG.lookupSCC(*N) == CurrentC &&((CG.lookupSCC(*N) == CurrentC && "Current SCC not updated to the SCC containing the current node!" ) ? static_cast<void> (0) : __assert_fail ("CG.lookupSCC(*N) == CurrentC && \"Current SCC not updated to the SCC containing the current node!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 580, __PRETTY_FUNCTION__)) | |||
580 | "Current SCC not updated to the SCC containing the current node!")((CG.lookupSCC(*N) == CurrentC && "Current SCC not updated to the SCC containing the current node!" ) ? static_cast<void> (0) : __assert_fail ("CG.lookupSCC(*N) == CurrentC && \"Current SCC not updated to the SCC containing the current node!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 580, __PRETTY_FUNCTION__)); | |||
581 | } | |||
582 | } | |||
583 | ||||
584 | // By definition we preserve the proxy. And we preserve all analyses on | |||
585 | // Functions. This precludes *any* invalidation of function analyses by the | |||
586 | // proxy, but that's OK because we've taken care to invalidate analyses in | |||
587 | // the function analysis manager incrementally above. | |||
588 | PA.preserveSet<AllAnalysesOn<Function>>(); | |||
589 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | |||
590 | ||||
591 | // We've also ensured that we updated the call graph along the way. | |||
592 | PA.preserve<LazyCallGraphAnalysis>(); | |||
593 | ||||
594 | return PA; | |||
595 | } | |||
596 | ||||
597 | bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( | |||
598 | Module &M, const PreservedAnalyses &PA, | |||
599 | ModuleAnalysisManager::Invalidator &Inv) { | |||
600 | // If literally everything is preserved, we're done. | |||
601 | if (PA.areAllPreserved()) | |||
602 | return false; // This is still a valid proxy. | |||
603 | ||||
604 | // If this proxy or the call graph is going to be invalidated, we also need | |||
605 | // to clear all the keys coming from that analysis. | |||
606 | // | |||
607 | // We also directly invalidate the FAM's module proxy if necessary, and if | |||
608 | // that proxy isn't preserved we can't preserve this proxy either. We rely on | |||
609 | // it to handle module -> function analysis invalidation in the face of | |||
610 | // structural changes and so if it's unavailable we conservatively clear the | |||
611 | // entire SCC layer as well rather than trying to do invalidation ourselves. | |||
612 | auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); | |||
613 | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || | |||
614 | Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || | |||
615 | Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { | |||
616 | InnerAM->clear(); | |||
617 | ||||
618 | // And the proxy itself should be marked as invalid so that we can observe | |||
619 | // the new call graph. This isn't strictly necessary because we cheat | |||
620 | // above, but is still useful. | |||
621 | return true; | |||
622 | } | |||
623 | ||||
624 | // Directly check if the relevant set is preserved so we can short circuit | |||
625 | // invalidating SCCs below. | |||
626 | bool AreSCCAnalysesPreserved = | |||
627 | PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); | |||
628 | ||||
629 | // Ok, we have a graph, so we can propagate the invalidation down into it. | |||
630 | G->buildRefSCCs(); | |||
631 | for (auto &RC : G->postorder_ref_sccs()) | |||
632 | for (auto &C : RC) { | |||
633 | Optional<PreservedAnalyses> InnerPA; | |||
634 | ||||
635 | // Check to see whether the preserved set needs to be adjusted based on | |||
636 | // module-level analysis invalidation triggering deferred invalidation | |||
637 | // for this SCC. | |||
638 | if (auto *OuterProxy = | |||
639 | InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) | |||
640 | for (const auto &OuterInvalidationPair : | |||
641 | OuterProxy->getOuterInvalidations()) { | |||
642 | AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; | |||
643 | const auto &InnerAnalysisIDs = OuterInvalidationPair.second; | |||
644 | if (Inv.invalidate(OuterAnalysisID, M, PA)) { | |||
645 | if (!InnerPA) | |||
646 | InnerPA = PA; | |||
647 | for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) | |||
648 | InnerPA->abandon(InnerAnalysisID); | |||
649 | } | |||
650 | } | |||
651 | ||||
652 | // Check if we needed a custom PA set. If so we'll need to run the inner | |||
653 | // invalidation. | |||
654 | if (InnerPA) { | |||
655 | InnerAM->invalidate(C, *InnerPA); | |||
656 | continue; | |||
657 | } | |||
658 | ||||
659 | // Otherwise we only need to do invalidation if the original PA set didn't | |||
660 | // preserve all SCC analyses. | |||
661 | if (!AreSCCAnalysesPreserved) | |||
662 | InnerAM->invalidate(C, PA); | |||
663 | } | |||
664 | ||||
665 | // Return false to indicate that this result is still a valid proxy. | |||
666 | return false; | |||
667 | } | |||
668 | ||||
669 | template <> | |||
670 | CGSCCAnalysisManagerModuleProxy::Result | |||
671 | CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { | |||
672 | // Force the Function analysis manager to also be available so that it can | |||
673 | // be accessed in an SCC analysis and proxied onward to function passes. | |||
674 | // FIXME: It is pretty awkward to just drop the result here and assert that | |||
675 | // we can find it again later. | |||
676 | (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); | |||
677 | ||||
678 | return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); | |||
679 | } | |||
680 | ||||
681 | AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; | |||
682 | ||||
683 | FunctionAnalysisManagerCGSCCProxy::Result | |||
684 | FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, | |||
685 | CGSCCAnalysisManager &AM, | |||
686 | LazyCallGraph &CG) { | |||
687 | // Note: unconditionally getting checking that the proxy exists may get it at | |||
688 | // this point. There are cases when this is being run unnecessarily, but | |||
689 | // it is cheap and having the assertion in place is more valuable. | |||
690 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); | |||
691 | Module &M = *C.begin()->getFunction().getParent(); | |||
692 | bool ProxyExists = | |||
693 | MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); | |||
694 | assert(ProxyExists &&((ProxyExists && "The CGSCC pass manager requires that the FAM module proxy is run " "on the module prior to entering the CGSCC walk") ? static_cast <void> (0) : __assert_fail ("ProxyExists && \"The CGSCC pass manager requires that the FAM module proxy is run \" \"on the module prior to entering the CGSCC walk\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 696, __PRETTY_FUNCTION__)) | |||
695 | "The CGSCC pass manager requires that the FAM module proxy is run "((ProxyExists && "The CGSCC pass manager requires that the FAM module proxy is run " "on the module prior to entering the CGSCC walk") ? static_cast <void> (0) : __assert_fail ("ProxyExists && \"The CGSCC pass manager requires that the FAM module proxy is run \" \"on the module prior to entering the CGSCC walk\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 696, __PRETTY_FUNCTION__)) | |||
696 | "on the module prior to entering the CGSCC walk")((ProxyExists && "The CGSCC pass manager requires that the FAM module proxy is run " "on the module prior to entering the CGSCC walk") ? static_cast <void> (0) : __assert_fail ("ProxyExists && \"The CGSCC pass manager requires that the FAM module proxy is run \" \"on the module prior to entering the CGSCC walk\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 696, __PRETTY_FUNCTION__)); | |||
697 | (void)ProxyExists; | |||
698 | ||||
699 | // We just return an empty result. The caller will use the updateFAM interface | |||
700 | // to correctly register the relevant FunctionAnalysisManager based on the | |||
701 | // context in which this proxy is run. | |||
702 | return Result(); | |||
703 | } | |||
704 | ||||
705 | bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( | |||
706 | LazyCallGraph::SCC &C, const PreservedAnalyses &PA, | |||
707 | CGSCCAnalysisManager::Invalidator &Inv) { | |||
708 | // If literally everything is preserved, we're done. | |||
709 | if (PA.areAllPreserved()) | |||
710 | return false; // This is still a valid proxy. | |||
711 | ||||
712 | // All updates to preserve valid results are done below, so we don't need to | |||
713 | // invalidate this proxy. | |||
714 | // | |||
715 | // Note that in order to preserve this proxy, a module pass must ensure that | |||
716 | // the FAM has been completely updated to handle the deletion of functions. | |||
717 | // Specifically, any FAM-cached results for those functions need to have been | |||
718 | // forcibly cleared. When preserved, this proxy will only invalidate results | |||
719 | // cached on functions *still in the module* at the end of the module pass. | |||
720 | auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); | |||
721 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { | |||
722 | for (LazyCallGraph::Node &N : C) | |||
723 | FAM->invalidate(N.getFunction(), PA); | |||
724 | ||||
725 | return false; | |||
726 | } | |||
727 | ||||
728 | // Directly check if the relevant set is preserved. | |||
729 | bool AreFunctionAnalysesPreserved = | |||
730 | PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); | |||
731 | ||||
732 | // Now walk all the functions to see if any inner analysis invalidation is | |||
733 | // necessary. | |||
734 | for (LazyCallGraph::Node &N : C) { | |||
735 | Function &F = N.getFunction(); | |||
736 | Optional<PreservedAnalyses> FunctionPA; | |||
737 | ||||
738 | // Check to see whether the preserved set needs to be pruned based on | |||
739 | // SCC-level analysis invalidation that triggers deferred invalidation | |||
740 | // registered with the outer analysis manager proxy for this function. | |||
741 | if (auto *OuterProxy = | |||
742 | FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) | |||
743 | for (const auto &OuterInvalidationPair : | |||
744 | OuterProxy->getOuterInvalidations()) { | |||
745 | AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; | |||
746 | const auto &InnerAnalysisIDs = OuterInvalidationPair.second; | |||
747 | if (Inv.invalidate(OuterAnalysisID, C, PA)) { | |||
748 | if (!FunctionPA) | |||
749 | FunctionPA = PA; | |||
750 | for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) | |||
751 | FunctionPA->abandon(InnerAnalysisID); | |||
752 | } | |||
753 | } | |||
754 | ||||
755 | // Check if we needed a custom PA set, and if so we'll need to run the | |||
756 | // inner invalidation. | |||
757 | if (FunctionPA) { | |||
758 | FAM->invalidate(F, *FunctionPA); | |||
759 | continue; | |||
760 | } | |||
761 | ||||
762 | // Otherwise we only need to do invalidation if the original PA set didn't | |||
763 | // preserve all function analyses. | |||
764 | if (!AreFunctionAnalysesPreserved) | |||
765 | FAM->invalidate(F, PA); | |||
766 | } | |||
767 | ||||
768 | // Return false to indicate that this result is still a valid proxy. | |||
769 | return false; | |||
770 | } | |||
771 | ||||
772 | } // end namespace llvm | |||
773 | ||||
774 | /// When a new SCC is created for the graph we first update the | |||
775 | /// FunctionAnalysisManager in the Proxy's result. | |||
776 | /// As there might be function analysis results cached for the functions now in | |||
777 | /// that SCC, two forms of updates are required. | |||
778 | /// | |||
779 | /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be | |||
780 | /// created so that any subsequent invalidation events to the SCC are | |||
781 | /// propagated to the function analysis results cached for functions within it. | |||
782 | /// | |||
783 | /// Second, if any of the functions within the SCC have analysis results with | |||
784 | /// outer analysis dependencies, then those dependencies would point to the | |||
785 | /// *wrong* SCC's analysis result. We forcibly invalidate the necessary | |||
786 | /// function analyses so that they don't retain stale handles. | |||
787 | static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, | |||
788 | LazyCallGraph &G, | |||
789 | CGSCCAnalysisManager &AM, | |||
790 | FunctionAnalysisManager &FAM) { | |||
791 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); | |||
792 | ||||
793 | // Now walk the functions in this SCC and invalidate any function analysis | |||
794 | // results that might have outer dependencies on an SCC analysis. | |||
795 | for (LazyCallGraph::Node &N : C) { | |||
796 | Function &F = N.getFunction(); | |||
797 | ||||
798 | auto *OuterProxy = | |||
799 | FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); | |||
800 | if (!OuterProxy) | |||
801 | // No outer analyses were queried, nothing to do. | |||
802 | continue; | |||
803 | ||||
804 | // Forcibly abandon all the inner analyses with dependencies, but | |||
805 | // invalidate nothing else. | |||
806 | auto PA = PreservedAnalyses::all(); | |||
807 | for (const auto &OuterInvalidationPair : | |||
808 | OuterProxy->getOuterInvalidations()) { | |||
809 | const auto &InnerAnalysisIDs = OuterInvalidationPair.second; | |||
810 | for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) | |||
811 | PA.abandon(InnerAnalysisID); | |||
812 | } | |||
813 | ||||
814 | // Now invalidate anything we found. | |||
815 | FAM.invalidate(F, PA); | |||
816 | } | |||
817 | } | |||
818 | ||||
819 | /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c | |||
820 | /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly | |||
821 | /// added SCCs. | |||
822 | /// | |||
823 | /// The range of new SCCs must be in postorder already. The SCC they were split | |||
824 | /// out of must be provided as \p C. The current node being mutated and | |||
825 | /// triggering updates must be passed as \p N. | |||
826 | /// | |||
827 | /// This function returns the SCC containing \p N. This will be either \p C if | |||
828 | /// no new SCCs have been split out, or it will be the new SCC containing \p N. | |||
829 | template <typename SCCRangeT> | |||
830 | static LazyCallGraph::SCC * | |||
831 | incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, | |||
832 | LazyCallGraph::Node &N, LazyCallGraph::SCC *C, | |||
833 | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { | |||
834 | using SCC = LazyCallGraph::SCC; | |||
835 | ||||
836 | if (NewSCCRange.empty()) | |||
837 | return C; | |||
838 | ||||
839 | // Add the current SCC to the worklist as its shape has changed. | |||
840 | UR.CWorklist.insert(C); | |||
841 | LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; } } while (false) | |||
842 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; } } while (false); | |||
843 | ||||
844 | SCC *OldC = C; | |||
845 | ||||
846 | // Update the current SCC. Note that if we have new SCCs, this must actually | |||
847 | // change the SCC. | |||
848 | assert(C != &*NewSCCRange.begin() &&((C != &*NewSCCRange.begin() && "Cannot insert new SCCs without changing current SCC!" ) ? static_cast<void> (0) : __assert_fail ("C != &*NewSCCRange.begin() && \"Cannot insert new SCCs without changing current SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 849, __PRETTY_FUNCTION__)) | |||
849 | "Cannot insert new SCCs without changing current SCC!")((C != &*NewSCCRange.begin() && "Cannot insert new SCCs without changing current SCC!" ) ? static_cast<void> (0) : __assert_fail ("C != &*NewSCCRange.begin() && \"Cannot insert new SCCs without changing current SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 849, __PRETTY_FUNCTION__)); | |||
850 | C = &*NewSCCRange.begin(); | |||
851 | assert(G.lookupSCC(N) == C && "Failed to update current SCC!")((G.lookupSCC(N) == C && "Failed to update current SCC!" ) ? static_cast<void> (0) : __assert_fail ("G.lookupSCC(N) == C && \"Failed to update current SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 851, __PRETTY_FUNCTION__)); | |||
852 | ||||
853 | // If we had a cached FAM proxy originally, we will want to create more of | |||
854 | // them for each SCC that was split off. | |||
855 | FunctionAnalysisManager *FAM = nullptr; | |||
856 | if (auto *FAMProxy = | |||
857 | AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) | |||
858 | FAM = &FAMProxy->getManager(); | |||
859 | ||||
860 | // We need to propagate an invalidation call to all but the newly current SCC | |||
861 | // because the outer pass manager won't do that for us after splitting them. | |||
862 | // FIXME: We should accept a PreservedAnalysis from the CG updater so that if | |||
863 | // there are preserved analysis we can avoid invalidating them here for | |||
864 | // split-off SCCs. | |||
865 | // We know however that this will preserve any FAM proxy so go ahead and mark | |||
866 | // that. | |||
867 | PreservedAnalyses PA; | |||
868 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | |||
869 | AM.invalidate(*OldC, PA); | |||
870 | ||||
871 | // Ensure the now-current SCC's function analyses are updated. | |||
872 | if (FAM) | |||
873 | updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); | |||
874 | ||||
875 | for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { | |||
876 | assert(C != &NewC && "No need to re-visit the current SCC!")((C != &NewC && "No need to re-visit the current SCC!" ) ? static_cast<void> (0) : __assert_fail ("C != &NewC && \"No need to re-visit the current SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 876, __PRETTY_FUNCTION__)); | |||
877 | assert(OldC != &NewC && "Already handled the original SCC!")((OldC != &NewC && "Already handled the original SCC!" ) ? static_cast<void> (0) : __assert_fail ("OldC != &NewC && \"Already handled the original SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 877, __PRETTY_FUNCTION__)); | |||
878 | UR.CWorklist.insert(&NewC); | |||
879 | LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; } } while (false); | |||
880 | ||||
881 | // Ensure new SCCs' function analyses are updated. | |||
882 | if (FAM) | |||
883 | updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); | |||
884 | ||||
885 | // Also propagate a normal invalidation to the new SCC as only the current | |||
886 | // will get one from the pass manager infrastructure. | |||
887 | AM.invalidate(NewC, PA); | |||
888 | } | |||
889 | return C; | |||
890 | } | |||
891 | ||||
892 | static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( | |||
893 | LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, | |||
894 | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, | |||
895 | FunctionAnalysisManager &FAM, bool FunctionPass) { | |||
896 | using Node = LazyCallGraph::Node; | |||
897 | using Edge = LazyCallGraph::Edge; | |||
898 | using SCC = LazyCallGraph::SCC; | |||
899 | using RefSCC = LazyCallGraph::RefSCC; | |||
900 | ||||
901 | RefSCC &InitialRC = InitialC.getOuterRefSCC(); | |||
902 | SCC *C = &InitialC; | |||
903 | RefSCC *RC = &InitialRC; | |||
904 | Function &F = N.getFunction(); | |||
905 | ||||
906 | // Walk the function body and build up the set of retained, promoted, and | |||
907 | // demoted edges. | |||
908 | SmallVector<Constant *, 16> Worklist; | |||
909 | SmallPtrSet<Constant *, 16> Visited; | |||
910 | SmallPtrSet<Node *, 16> RetainedEdges; | |||
911 | SmallSetVector<Node *, 4> PromotedRefTargets; | |||
912 | SmallSetVector<Node *, 4> DemotedCallTargets; | |||
913 | SmallSetVector<Node *, 4> NewCallEdges; | |||
914 | SmallSetVector<Node *, 4> NewRefEdges; | |||
915 | ||||
916 | // First walk the function and handle all called functions. We do this first | |||
917 | // because if there is a single call edge, whether there are ref edges is | |||
918 | // irrelevant. | |||
919 | for (Instruction &I : instructions(F)) { | |||
920 | if (auto *CB = dyn_cast<CallBase>(&I)) { | |||
921 | if (Function *Callee = CB->getCalledFunction()) { | |||
922 | if (Visited.insert(Callee).second && !Callee->isDeclaration()) { | |||
923 | Node *CalleeN = G.lookup(*Callee); | |||
924 | assert(CalleeN &&((CalleeN && "Visited function should already have an associated node" ) ? static_cast<void> (0) : __assert_fail ("CalleeN && \"Visited function should already have an associated node\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 925, __PRETTY_FUNCTION__)) | |||
925 | "Visited function should already have an associated node")((CalleeN && "Visited function should already have an associated node" ) ? static_cast<void> (0) : __assert_fail ("CalleeN && \"Visited function should already have an associated node\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 925, __PRETTY_FUNCTION__)); | |||
926 | Edge *E = N->lookup(*CalleeN); | |||
927 | assert((E || !FunctionPass) &&(((E || !FunctionPass) && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* \" \"call edges! Any new calls should be modeled as \" \"promoted existing ref edges!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 930, __PRETTY_FUNCTION__)) | |||
928 | "No function transformations should introduce *new* "(((E || !FunctionPass) && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* \" \"call edges! Any new calls should be modeled as \" \"promoted existing ref edges!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 930, __PRETTY_FUNCTION__)) | |||
929 | "call edges! Any new calls should be modeled as "(((E || !FunctionPass) && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* \" \"call edges! Any new calls should be modeled as \" \"promoted existing ref edges!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 930, __PRETTY_FUNCTION__)) | |||
930 | "promoted existing ref edges!")(((E || !FunctionPass) && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* \" \"call edges! Any new calls should be modeled as \" \"promoted existing ref edges!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 930, __PRETTY_FUNCTION__)); | |||
931 | bool Inserted = RetainedEdges.insert(CalleeN).second; | |||
932 | (void)Inserted; | |||
933 | assert(Inserted && "We should never visit a function twice.")((Inserted && "We should never visit a function twice." ) ? static_cast<void> (0) : __assert_fail ("Inserted && \"We should never visit a function twice.\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 933, __PRETTY_FUNCTION__)); | |||
934 | if (!E) | |||
935 | NewCallEdges.insert(CalleeN); | |||
936 | else if (!E->isCall()) | |||
937 | PromotedRefTargets.insert(CalleeN); | |||
938 | } | |||
939 | } else { | |||
940 | // We can miss devirtualization if an indirect call is created then | |||
941 | // promoted before updateCGAndAnalysisManagerForPass runs. | |||
942 | auto *Entry = UR.IndirectVHs.find(CB); | |||
943 | if (Entry == UR.IndirectVHs.end()) | |||
944 | UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); | |||
945 | else if (!Entry->second) | |||
946 | Entry->second = WeakTrackingVH(CB); | |||
947 | } | |||
948 | } | |||
949 | } | |||
950 | ||||
951 | // Now walk all references. | |||
952 | for (Instruction &I : instructions(F)) | |||
953 | for (Value *Op : I.operand_values()) | |||
954 | if (auto *OpC = dyn_cast<Constant>(Op)) | |||
955 | if (Visited.insert(OpC).second) | |||
956 | Worklist.push_back(OpC); | |||
957 | ||||
958 | auto VisitRef = [&](Function &Referee) { | |||
959 | Node *RefereeN = G.lookup(Referee); | |||
960 | assert(RefereeN &&((RefereeN && "Visited function should already have an associated node" ) ? static_cast<void> (0) : __assert_fail ("RefereeN && \"Visited function should already have an associated node\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 961, __PRETTY_FUNCTION__)) | |||
961 | "Visited function should already have an associated node")((RefereeN && "Visited function should already have an associated node" ) ? static_cast<void> (0) : __assert_fail ("RefereeN && \"Visited function should already have an associated node\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 961, __PRETTY_FUNCTION__)); | |||
962 | Edge *E = N->lookup(*RefereeN); | |||
963 | assert((E || !FunctionPass) &&(((E || !FunctionPass) && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* ref \" \"edges! Any new ref edges would require IPO which \" \"function passes aren't allowed to do!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 966, __PRETTY_FUNCTION__)) | |||
964 | "No function transformations should introduce *new* ref "(((E || !FunctionPass) && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* ref \" \"edges! Any new ref edges would require IPO which \" \"function passes aren't allowed to do!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 966, __PRETTY_FUNCTION__)) | |||
965 | "edges! Any new ref edges would require IPO which "(((E || !FunctionPass) && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* ref \" \"edges! Any new ref edges would require IPO which \" \"function passes aren't allowed to do!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 966, __PRETTY_FUNCTION__)) | |||
966 | "function passes aren't allowed to do!")(((E || !FunctionPass) && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!" ) ? static_cast<void> (0) : __assert_fail ("(E || !FunctionPass) && \"No function transformations should introduce *new* ref \" \"edges! Any new ref edges would require IPO which \" \"function passes aren't allowed to do!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 966, __PRETTY_FUNCTION__)); | |||
967 | bool Inserted = RetainedEdges.insert(RefereeN).second; | |||
968 | (void)Inserted; | |||
969 | assert(Inserted && "We should never visit a function twice.")((Inserted && "We should never visit a function twice." ) ? static_cast<void> (0) : __assert_fail ("Inserted && \"We should never visit a function twice.\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 969, __PRETTY_FUNCTION__)); | |||
970 | if (!E) | |||
971 | NewRefEdges.insert(RefereeN); | |||
972 | else if (E->isCall()) | |||
973 | DemotedCallTargets.insert(RefereeN); | |||
974 | }; | |||
975 | LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); | |||
976 | ||||
977 | // Handle new ref edges. | |||
978 | for (Node *RefTarget : NewRefEdges) { | |||
979 | SCC &TargetC = *G.lookupSCC(*RefTarget); | |||
980 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | |||
981 | (void)TargetRC; | |||
982 | // TODO: This only allows trivial edges to be added for now. | |||
983 | #ifdef EXPENSIVE_CHECKS | |||
984 | assert((RC == &TargetRC ||(((RC == &TargetRC || RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!") ? static_cast<void> (0 ) : __assert_fail ("(RC == &TargetRC || RC->isAncestorOf(TargetRC)) && \"New ref edge is not trivial!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 985, __PRETTY_FUNCTION__)) | |||
985 | RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!")(((RC == &TargetRC || RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!") ? static_cast<void> (0 ) : __assert_fail ("(RC == &TargetRC || RC->isAncestorOf(TargetRC)) && \"New ref edge is not trivial!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 985, __PRETTY_FUNCTION__)); | |||
986 | #endif | |||
987 | RC->insertTrivialRefEdge(N, *RefTarget); | |||
988 | } | |||
989 | ||||
990 | // Handle new call edges. | |||
991 | for (Node *CallTarget : NewCallEdges) { | |||
992 | SCC &TargetC = *G.lookupSCC(*CallTarget); | |||
993 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | |||
994 | (void)TargetRC; | |||
995 | // TODO: This only allows trivial edges to be added for now. | |||
996 | #ifdef EXPENSIVE_CHECKS | |||
997 | assert((RC == &TargetRC ||(((RC == &TargetRC || RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!") ? static_cast<void> ( 0) : __assert_fail ("(RC == &TargetRC || RC->isAncestorOf(TargetRC)) && \"New call edge is not trivial!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 998, __PRETTY_FUNCTION__)) | |||
998 | RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!")(((RC == &TargetRC || RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!") ? static_cast<void> ( 0) : __assert_fail ("(RC == &TargetRC || RC->isAncestorOf(TargetRC)) && \"New call edge is not trivial!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 998, __PRETTY_FUNCTION__)); | |||
999 | #endif | |||
1000 | // Add a trivial ref edge to be promoted later on alongside | |||
1001 | // PromotedRefTargets. | |||
1002 | RC->insertTrivialRefEdge(N, *CallTarget); | |||
1003 | } | |||
1004 | ||||
1005 | // Include synthetic reference edges to known, defined lib functions. | |||
1006 | for (auto *LibFn : G.getLibFunctions()) | |||
1007 | // While the list of lib functions doesn't have repeats, don't re-visit | |||
1008 | // anything handled above. | |||
1009 | if (!Visited.count(LibFn)) | |||
1010 | VisitRef(*LibFn); | |||
1011 | ||||
1012 | // First remove all of the edges that are no longer present in this function. | |||
1013 | // The first step makes these edges uniformly ref edges and accumulates them | |||
1014 | // into a separate data structure so removal doesn't invalidate anything. | |||
1015 | SmallVector<Node *, 4> DeadTargets; | |||
1016 | for (Edge &E : *N) { | |||
1017 | if (RetainedEdges.count(&E.getNode())) | |||
1018 | continue; | |||
1019 | ||||
1020 | SCC &TargetC = *G.lookupSCC(E.getNode()); | |||
1021 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | |||
1022 | if (&TargetRC == RC && E.isCall()) { | |||
1023 | if (C != &TargetC) { | |||
1024 | // For separate SCCs this is trivial. | |||
1025 | RC->switchTrivialInternalEdgeToRef(N, E.getNode()); | |||
1026 | } else { | |||
1027 | // Now update the call graph. | |||
1028 | C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), | |||
1029 | G, N, C, AM, UR); | |||
1030 | } | |||
1031 | } | |||
1032 | ||||
1033 | // Now that this is ready for actual removal, put it into our list. | |||
1034 | DeadTargets.push_back(&E.getNode()); | |||
1035 | } | |||
1036 | // Remove the easy cases quickly and actually pull them out of our list. | |||
1037 | llvm::erase_if(DeadTargets, [&](Node *TargetN) { | |||
1038 | SCC &TargetC = *G.lookupSCC(*TargetN); | |||
1039 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | |||
1040 | ||||
1041 | // We can't trivially remove internal targets, so skip | |||
1042 | // those. | |||
1043 | if (&TargetRC == RC) | |||
1044 | return false; | |||
1045 | ||||
1046 | LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Deleting outgoing edge from '" << N << "' to '" << *TargetN << "'\n"; } } while (false) | |||
1047 | << *TargetN << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Deleting outgoing edge from '" << N << "' to '" << *TargetN << "'\n"; } } while (false); | |||
1048 | RC->removeOutgoingEdge(N, *TargetN); | |||
1049 | return true; | |||
1050 | }); | |||
1051 | ||||
1052 | // Now do a batch removal of the internal ref edges left. | |||
1053 | auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); | |||
1054 | if (!NewRefSCCs.empty()) { | |||
1055 | // The old RefSCC is dead, mark it as such. | |||
1056 | UR.InvalidatedRefSCCs.insert(RC); | |||
1057 | ||||
1058 | // Note that we don't bother to invalidate analyses as ref-edge | |||
1059 | // connectivity is not really observable in any way and is intended | |||
1060 | // exclusively to be used for ordering of transforms rather than for | |||
1061 | // analysis conclusions. | |||
1062 | ||||
1063 | // Update RC to the "bottom". | |||
1064 | assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!")((G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!" ) ? static_cast<void> (0) : __assert_fail ("G.lookupSCC(N) == C && \"Changed the SCC when splitting RefSCCs!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1064, __PRETTY_FUNCTION__)); | |||
1065 | RC = &C->getOuterRefSCC(); | |||
1066 | assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!")((G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!" ) ? static_cast<void> (0) : __assert_fail ("G.lookupRefSCC(N) == RC && \"Failed to update current RefSCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1066, __PRETTY_FUNCTION__)); | |||
1067 | ||||
1068 | // The RC worklist is in reverse postorder, so we enqueue the new ones in | |||
1069 | // RPO except for the one which contains the source node as that is the | |||
1070 | // "bottom" we will continue processing in the bottom-up walk. | |||
1071 | assert(NewRefSCCs.front() == RC &&((NewRefSCCs.front() == RC && "New current RefSCC not first in the returned list!" ) ? static_cast<void> (0) : __assert_fail ("NewRefSCCs.front() == RC && \"New current RefSCC not first in the returned list!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1072, __PRETTY_FUNCTION__)) | |||
1072 | "New current RefSCC not first in the returned list!")((NewRefSCCs.front() == RC && "New current RefSCC not first in the returned list!" ) ? static_cast<void> (0) : __assert_fail ("NewRefSCCs.front() == RC && \"New current RefSCC not first in the returned list!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1072, __PRETTY_FUNCTION__)); | |||
1073 | for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { | |||
1074 | assert(NewRC != RC && "Should not encounter the current RefSCC further "((NewRC != RC && "Should not encounter the current RefSCC further " "in the postorder list of new RefSCCs.") ? static_cast<void > (0) : __assert_fail ("NewRC != RC && \"Should not encounter the current RefSCC further \" \"in the postorder list of new RefSCCs.\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1075, __PRETTY_FUNCTION__)) | |||
1075 | "in the postorder list of new RefSCCs.")((NewRC != RC && "Should not encounter the current RefSCC further " "in the postorder list of new RefSCCs.") ? static_cast<void > (0) : __assert_fail ("NewRC != RC && \"Should not encounter the current RefSCC further \" \"in the postorder list of new RefSCCs.\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1075, __PRETTY_FUNCTION__)); | |||
1076 | UR.RCWorklist.insert(NewRC); | |||
1077 | LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC << "\n"; } } while (false) | |||
1078 | << *NewRC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC << "\n"; } } while (false); | |||
1079 | } | |||
1080 | } | |||
1081 | ||||
1082 | // Next demote all the call edges that are now ref edges. This helps make | |||
1083 | // the SCCs small which should minimize the work below as we don't want to | |||
1084 | // form cycles that this would break. | |||
1085 | for (Node *RefTarget : DemotedCallTargets) { | |||
1086 | SCC &TargetC = *G.lookupSCC(*RefTarget); | |||
1087 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | |||
1088 | ||||
1089 | // The easy case is when the target RefSCC is not this RefSCC. This is | |||
1090 | // only supported when the target RefSCC is a child of this RefSCC. | |||
1091 | if (&TargetRC != RC) { | |||
1092 | #ifdef EXPENSIVE_CHECKS | |||
1093 | assert(RC->isAncestorOf(TargetRC) &&((RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!" ) ? static_cast<void> (0) : __assert_fail ("RC->isAncestorOf(TargetRC) && \"Cannot potentially form RefSCC cycles here!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1094, __PRETTY_FUNCTION__)) | |||
1094 | "Cannot potentially form RefSCC cycles here!")((RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!" ) ? static_cast<void> (0) : __assert_fail ("RC->isAncestorOf(TargetRC) && \"Cannot potentially form RefSCC cycles here!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1094, __PRETTY_FUNCTION__)); | |||
1095 | #endif | |||
1096 | RC->switchOutgoingEdgeToRef(N, *RefTarget); | |||
1097 | LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << Ndo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Switch outgoing call edge to a ref edge from '" << N << "' to '" << *RefTarget << "'\n" ; } } while (false) | |||
1098 | << "' to '" << *RefTarget << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Switch outgoing call edge to a ref edge from '" << N << "' to '" << *RefTarget << "'\n" ; } } while (false); | |||
1099 | continue; | |||
1100 | } | |||
1101 | ||||
1102 | // We are switching an internal call edge to a ref edge. This may split up | |||
1103 | // some SCCs. | |||
1104 | if (C != &TargetC) { | |||
1105 | // For separate SCCs this is trivial. | |||
1106 | RC->switchTrivialInternalEdgeToRef(N, *RefTarget); | |||
1107 | continue; | |||
1108 | } | |||
1109 | ||||
1110 | // Now update the call graph. | |||
1111 | C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, | |||
1112 | C, AM, UR); | |||
1113 | } | |||
1114 | ||||
1115 | // We added a ref edge earlier for new call edges, promote those to call edges | |||
1116 | // alongside PromotedRefTargets. | |||
1117 | for (Node *E : NewCallEdges) | |||
1118 | PromotedRefTargets.insert(E); | |||
1119 | ||||
1120 | // Now promote ref edges into call edges. | |||
1121 | for (Node *CallTarget : PromotedRefTargets) { | |||
1122 | SCC &TargetC = *G.lookupSCC(*CallTarget); | |||
1123 | RefSCC &TargetRC = TargetC.getOuterRefSCC(); | |||
1124 | ||||
1125 | // The easy case is when the target RefSCC is not this RefSCC. This is | |||
1126 | // only supported when the target RefSCC is a child of this RefSCC. | |||
1127 | if (&TargetRC != RC) { | |||
1128 | #ifdef EXPENSIVE_CHECKS | |||
1129 | assert(RC->isAncestorOf(TargetRC) &&((RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!" ) ? static_cast<void> (0) : __assert_fail ("RC->isAncestorOf(TargetRC) && \"Cannot potentially form RefSCC cycles here!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1130, __PRETTY_FUNCTION__)) | |||
1130 | "Cannot potentially form RefSCC cycles here!")((RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!" ) ? static_cast<void> (0) : __assert_fail ("RC->isAncestorOf(TargetRC) && \"Cannot potentially form RefSCC cycles here!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1130, __PRETTY_FUNCTION__)); | |||
1131 | #endif | |||
1132 | RC->switchOutgoingEdgeToCall(N, *CallTarget); | |||
1133 | LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << Ndo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Switch outgoing ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n" ; } } while (false) | |||
1134 | << "' to '" << *CallTarget << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Switch outgoing ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n" ; } } while (false); | |||
1135 | continue; | |||
1136 | } | |||
1137 | LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Switch an internal ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n" ; } } while (false) | |||
1138 | << N << "' to '" << *CallTarget << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Switch an internal ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n" ; } } while (false); | |||
1139 | ||||
1140 | // Otherwise we are switching an internal ref edge to a call edge. This | |||
1141 | // may merge away some SCCs, and we add those to the UpdateResult. We also | |||
1142 | // need to make sure to update the worklist in the event SCCs have moved | |||
1143 | // before the current one in the post-order sequence | |||
1144 | bool HasFunctionAnalysisProxy = false; | |||
1145 | auto InitialSCCIndex = RC->find(*C) - RC->begin(); | |||
1146 | bool FormedCycle = RC->switchInternalEdgeToCall( | |||
1147 | N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { | |||
1148 | for (SCC *MergedC : MergedSCCs) { | |||
1149 | assert(MergedC != &TargetC && "Cannot merge away the target SCC!")((MergedC != &TargetC && "Cannot merge away the target SCC!" ) ? static_cast<void> (0) : __assert_fail ("MergedC != &TargetC && \"Cannot merge away the target SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1149, __PRETTY_FUNCTION__)); | |||
1150 | ||||
1151 | HasFunctionAnalysisProxy |= | |||
1152 | AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( | |||
1153 | *MergedC) != nullptr; | |||
1154 | ||||
1155 | // Mark that this SCC will no longer be valid. | |||
1156 | UR.InvalidatedSCCs.insert(MergedC); | |||
1157 | ||||
1158 | // FIXME: We should really do a 'clear' here to forcibly release | |||
1159 | // memory, but we don't have a good way of doing that and | |||
1160 | // preserving the function analyses. | |||
1161 | auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); | |||
1162 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | |||
1163 | AM.invalidate(*MergedC, PA); | |||
1164 | } | |||
1165 | }); | |||
1166 | ||||
1167 | // If we formed a cycle by creating this call, we need to update more data | |||
1168 | // structures. | |||
1169 | if (FormedCycle) { | |||
1170 | C = &TargetC; | |||
1171 | assert(G.lookupSCC(N) == C && "Failed to update current SCC!")((G.lookupSCC(N) == C && "Failed to update current SCC!" ) ? static_cast<void> (0) : __assert_fail ("G.lookupSCC(N) == C && \"Failed to update current SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1171, __PRETTY_FUNCTION__)); | |||
1172 | ||||
1173 | // If one of the invalidated SCCs had a cached proxy to a function | |||
1174 | // analysis manager, we need to create a proxy in the new current SCC as | |||
1175 | // the invalidated SCCs had their functions moved. | |||
1176 | if (HasFunctionAnalysisProxy) | |||
1177 | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); | |||
1178 | ||||
1179 | // Any analyses cached for this SCC are no longer precise as the shape | |||
1180 | // has changed by introducing this cycle. However, we have taken care to | |||
1181 | // update the proxies so it remains valide. | |||
1182 | auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); | |||
1183 | PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); | |||
1184 | AM.invalidate(*C, PA); | |||
1185 | } | |||
1186 | auto NewSCCIndex = RC->find(*C) - RC->begin(); | |||
1187 | // If we have actually moved an SCC to be topologically "below" the current | |||
1188 | // one due to merging, we will need to revisit the current SCC after | |||
1189 | // visiting those moved SCCs. | |||
1190 | // | |||
1191 | // It is critical that we *do not* revisit the current SCC unless we | |||
1192 | // actually move SCCs in the process of merging because otherwise we may | |||
1193 | // form a cycle where an SCC is split apart, merged, split, merged and so | |||
1194 | // on infinitely. | |||
1195 | if (InitialSCCIndex < NewSCCIndex) { | |||
1196 | // Put our current SCC back onto the worklist as we'll visit other SCCs | |||
1197 | // that are now definitively ordered prior to the current one in the | |||
1198 | // post-order sequence, and may end up observing more precise context to | |||
1199 | // optimize the current SCC. | |||
1200 | UR.CWorklist.insert(C); | |||
1201 | LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; } } while (false) | |||
1202 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; } } while (false); | |||
1203 | // Enqueue in reverse order as we pop off the back of the worklist. | |||
1204 | for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, | |||
1205 | RC->begin() + NewSCCIndex))) { | |||
1206 | UR.CWorklist.insert(&MovedC); | |||
1207 | LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC << "\n"; } } while (false) | |||
1208 | << MovedC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("cgscc")) { dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC << "\n"; } } while (false); | |||
1209 | } | |||
1210 | } | |||
1211 | } | |||
1212 | ||||
1213 | assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!")((!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!" ) ? static_cast<void> (0) : __assert_fail ("!UR.InvalidatedSCCs.count(C) && \"Invalidated the current SCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1213, __PRETTY_FUNCTION__)); | |||
1214 | assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!")((!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!" ) ? static_cast<void> (0) : __assert_fail ("!UR.InvalidatedRefSCCs.count(RC) && \"Invalidated the current RefSCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1214, __PRETTY_FUNCTION__)); | |||
1215 | assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!")((&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!" ) ? static_cast<void> (0) : __assert_fail ("&C->getOuterRefSCC() == RC && \"Current SCC not in current RefSCC!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Analysis/CGSCCPassManager.cpp" , 1215, __PRETTY_FUNCTION__)); | |||
1216 | ||||
1217 | // Record the current RefSCC and SCC for higher layers of the CGSCC pass | |||
1218 | // manager now that all the updates have been applied. | |||
1219 | if (RC != &InitialRC) | |||
1220 | UR.UpdatedRC = RC; | |||
1221 | if (C != &InitialC) | |||
1222 | UR.UpdatedC = C; | |||
1223 | ||||
1224 | return *C; | |||
1225 | } | |||
1226 | ||||
1227 | LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( | |||
1228 | LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, | |||
1229 | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, | |||
1230 | FunctionAnalysisManager &FAM) { | |||
1231 | return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, | |||
1232 | /* FunctionPass */ true); | |||
1233 | } | |||
1234 | LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( | |||
1235 | LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, | |||
1236 | CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, | |||
1237 | FunctionAnalysisManager &FAM) { | |||
1238 | return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, | |||
1239 | /* FunctionPass */ false); | |||
1240 | } |
1 | //===- PriorityWorklist.h - Worklist with insertion priority ----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// |
11 | /// This file provides a priority worklist. See the class comments for details. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_PRIORITYWORKLIST_H |
16 | #define LLVM_ADT_PRIORITYWORKLIST_H |
17 | |
18 | #include "llvm/ADT/DenseMap.h" |
19 | #include "llvm/ADT/STLExtras.h" |
20 | #include "llvm/ADT/SmallVector.h" |
21 | #include "llvm/Support/Compiler.h" |
22 | #include <algorithm> |
23 | #include <cassert> |
24 | #include <cstddef> |
25 | #include <iterator> |
26 | #include <type_traits> |
27 | #include <vector> |
28 | |
29 | namespace llvm { |
30 | |
31 | /// A FILO worklist that prioritizes on re-insertion without duplication. |
32 | /// |
33 | /// This is very similar to a \c SetVector with the primary difference that |
34 | /// while re-insertion does not create a duplicate, it does adjust the |
35 | /// visitation order to respect the last insertion point. This can be useful |
36 | /// when the visit order needs to be prioritized based on insertion point |
37 | /// without actually having duplicate visits. |
38 | /// |
39 | /// Note that this doesn't prevent re-insertion of elements which have been |
40 | /// visited -- if you need to break cycles, a set will still be necessary. |
41 | /// |
42 | /// The type \c T must be default constructable to a null value that will be |
43 | /// ignored. It is an error to insert such a value, and popping elements will |
44 | /// never produce such a value. It is expected to be used with common nullable |
45 | /// types like pointers or optionals. |
46 | /// |
47 | /// Internally this uses a vector to store the worklist and a map to identify |
48 | /// existing elements in the worklist. Both of these may be customized, but the |
49 | /// map must support the basic DenseMap API for mapping from a T to an integer |
50 | /// index into the vector. |
51 | /// |
52 | /// A partial specialization is provided to automatically select a SmallVector |
53 | /// and a SmallDenseMap if custom data structures are not provided. |
54 | template <typename T, typename VectorT = std::vector<T>, |
55 | typename MapT = DenseMap<T, ptrdiff_t>> |
56 | class PriorityWorklist { |
57 | public: |
58 | using value_type = T; |
59 | using key_type = T; |
60 | using reference = T&; |
61 | using const_reference = const T&; |
62 | using size_type = typename MapT::size_type; |
63 | |
64 | /// Construct an empty PriorityWorklist |
65 | PriorityWorklist() = default; |
66 | |
67 | /// Determine if the PriorityWorklist is empty or not. |
68 | bool empty() const { |
69 | return V.empty(); |
70 | } |
71 | |
72 | /// Returns the number of elements in the worklist. |
73 | size_type size() const { |
74 | return M.size(); |
75 | } |
76 | |
77 | /// Count the number of elements of a given key in the PriorityWorklist. |
78 | /// \returns 0 if the element is not in the PriorityWorklist, 1 if it is. |
79 | size_type count(const key_type &key) const { |
80 | return M.count(key); |
81 | } |
82 | |
83 | /// Return the last element of the PriorityWorklist. |
84 | const T &back() const { |
85 | assert(!empty() && "Cannot call back() on empty PriorityWorklist!")((!empty() && "Cannot call back() on empty PriorityWorklist!" ) ? static_cast<void> (0) : __assert_fail ("!empty() && \"Cannot call back() on empty PriorityWorklist!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PriorityWorklist.h" , 85, __PRETTY_FUNCTION__)); |
86 | return V.back(); |
87 | } |
88 | |
89 | /// Insert a new element into the PriorityWorklist. |
90 | /// \returns true if the element was inserted into the PriorityWorklist. |
91 | bool insert(const T &X) { |
92 | assert(X != T() && "Cannot insert a null (default constructed) value!")((X != T() && "Cannot insert a null (default constructed) value!" ) ? static_cast<void> (0) : __assert_fail ("X != T() && \"Cannot insert a null (default constructed) value!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PriorityWorklist.h" , 92, __PRETTY_FUNCTION__)); |
93 | auto InsertResult = M.insert({X, V.size()}); |
94 | if (InsertResult.second) { |
95 | // Fresh value, just append it to the vector. |
96 | V.push_back(X); |
97 | return true; |
98 | } |
99 | |
100 | auto &Index = InsertResult.first->second; |
101 | assert(V[Index] == X && "Value not actually at index in map!")((V[Index] == X && "Value not actually at index in map!" ) ? static_cast<void> (0) : __assert_fail ("V[Index] == X && \"Value not actually at index in map!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PriorityWorklist.h" , 101, __PRETTY_FUNCTION__)); |
102 | if (Index != (ptrdiff_t)(V.size() - 1)) { |
103 | // If the element isn't at the back, null it out and append a fresh one. |
104 | V[Index] = T(); |
105 | Index = (ptrdiff_t)V.size(); |
106 | V.push_back(X); |
107 | } |
108 | return false; |
109 | } |
110 | |
111 | /// Insert a sequence of new elements into the PriorityWorklist. |
112 | template <typename SequenceT> |
113 | std::enable_if_t<!std::is_convertible<SequenceT, T>::value> |
114 | insert(SequenceT &&Input) { |
115 | if (std::begin(Input) == std::end(Input)) |
116 | // Nothing to do for an empty input sequence. |
117 | return; |
118 | |
119 | // First pull the input sequence into the vector as a bulk append |
120 | // operation. |
121 | ptrdiff_t StartIndex = V.size(); |
122 | V.insert(V.end(), std::begin(Input), std::end(Input)); |
123 | // Now walk backwards fixing up the index map and deleting any duplicates. |
124 | for (ptrdiff_t i = V.size() - 1; i >= StartIndex; --i) { |
125 | auto InsertResult = M.insert({V[i], i}); |
126 | if (InsertResult.second) |
127 | continue; |
128 | |
129 | // If the existing index is before this insert's start, nuke that one and |
130 | // move it up. |
131 | ptrdiff_t &Index = InsertResult.first->second; |
132 | if (Index < StartIndex) { |
133 | V[Index] = T(); |
134 | Index = i; |
135 | continue; |
136 | } |
137 | |
138 | // Otherwise the existing one comes first so just clear out the value in |
139 | // this slot. |
140 | V[i] = T(); |
141 | } |
142 | } |
143 | |
144 | /// Remove the last element of the PriorityWorklist. |
145 | void pop_back() { |
146 | assert(!empty() && "Cannot remove an element when empty!")((!empty() && "Cannot remove an element when empty!") ? static_cast<void> (0) : __assert_fail ("!empty() && \"Cannot remove an element when empty!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PriorityWorklist.h" , 146, __PRETTY_FUNCTION__)); |
147 | assert(back() != T() && "Cannot have a null element at the back!")((back() != T() && "Cannot have a null element at the back!" ) ? static_cast<void> (0) : __assert_fail ("back() != T() && \"Cannot have a null element at the back!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PriorityWorklist.h" , 147, __PRETTY_FUNCTION__)); |
148 | M.erase(back()); |
149 | do { |
150 | V.pop_back(); |
151 | } while (!V.empty() && V.back() == T()); |
152 | } |
153 | |
154 | LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() { |
155 | T Ret = back(); |
156 | pop_back(); |
157 | return Ret; |
158 | } |
159 | |
160 | /// Erase an item from the worklist. |
161 | /// |
162 | /// Note that this is constant time due to the nature of the worklist implementation. |
163 | bool erase(const T& X) { |
164 | auto I = M.find(X); |
165 | if (I == M.end()) |
166 | return false; |
167 | |
168 | assert(V[I->second] == X && "Value not actually at index in map!")((V[I->second] == X && "Value not actually at index in map!" ) ? static_cast<void> (0) : __assert_fail ("V[I->second] == X && \"Value not actually at index in map!\"" , "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/ADT/PriorityWorklist.h" , 168, __PRETTY_FUNCTION__)); |
169 | if (I->second == (ptrdiff_t)(V.size() - 1)) { |
170 | do { |
171 | V.pop_back(); |
172 | } while (!V.empty() && V.back() == T()); |
173 | } else { |
174 | V[I->second] = T(); |
175 | } |
176 | M.erase(I); |
177 | return true; |
178 | } |
179 | |
180 | /// Erase items from the set vector based on a predicate function. |
181 | /// |
182 | /// This is intended to be equivalent to the following code, if we could |
183 | /// write it: |
184 | /// |
185 | /// \code |
186 | /// V.erase(remove_if(V, P), V.end()); |
187 | /// \endcode |
188 | /// |
189 | /// However, PriorityWorklist doesn't expose non-const iterators, making any |
190 | /// algorithm like remove_if impossible to use. |
191 | /// |
192 | /// \returns true if any element is removed. |
193 | template <typename UnaryPredicate> |
194 | bool erase_if(UnaryPredicate P) { |
195 | typename VectorT::iterator E = |
196 | remove_if(V, TestAndEraseFromMap<UnaryPredicate>(P, M)); |
197 | if (E == V.end()) |
198 | return false; |
199 | for (auto I = V.begin(); I != E; ++I) |
200 | if (*I != T()) |
201 | M[*I] = I - V.begin(); |
202 | V.erase(E, V.end()); |
203 | return true; |
204 | } |
205 | |
206 | /// Reverse the items in the PriorityWorklist. |
207 | /// |
208 | /// This does an in-place reversal. Other kinds of reverse aren't easy to |
209 | /// support in the face of the worklist semantics. |
210 | |
211 | /// Completely clear the PriorityWorklist |
212 | void clear() { |
213 | M.clear(); |
214 | V.clear(); |
215 | } |
216 | |
217 | private: |
218 | /// A wrapper predicate designed for use with std::remove_if. |
219 | /// |
220 | /// This predicate wraps a predicate suitable for use with std::remove_if to |
221 | /// call M.erase(x) on each element which is slated for removal. This just |
222 | /// allows the predicate to be move only which we can't do with lambdas |
223 | /// today. |
224 | template <typename UnaryPredicateT> |
225 | class TestAndEraseFromMap { |
226 | UnaryPredicateT P; |
227 | MapT &M; |
228 | |
229 | public: |
230 | TestAndEraseFromMap(UnaryPredicateT P, MapT &M) |
231 | : P(std::move(P)), M(M) {} |
232 | |
233 | bool operator()(const T &Arg) { |
234 | if (Arg == T()) |
235 | // Skip null values in the PriorityWorklist. |
236 | return false; |
237 | |
238 | if (P(Arg)) { |
239 | M.erase(Arg); |
240 | return true; |
241 | } |
242 | return false; |
243 | } |
244 | }; |
245 | |
246 | /// The map from value to index in the vector. |
247 | MapT M; |
248 | |
249 | /// The vector of elements in insertion order. |
250 | VectorT V; |
251 | }; |
252 | |
253 | /// A version of \c PriorityWorklist that selects small size optimized data |
254 | /// structures for the vector and map. |
255 | template <typename T, unsigned N> |
256 | class SmallPriorityWorklist |
257 | : public PriorityWorklist<T, SmallVector<T, N>, |
258 | SmallDenseMap<T, ptrdiff_t>> { |
259 | public: |
260 | SmallPriorityWorklist() = default; |
261 | }; |
262 | |
263 | } // end namespace llvm |
264 | |
265 | #endif // LLVM_ADT_PRIORITYWORKLIST_H |