Bug Summary

File:clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
Warning:line 1453, column 17
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CStringChecker.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/StaticAnalyzer/Checkers -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/StaticAnalyzer/Checkers -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/StaticAnalyzer/Checkers -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/tools/clang/lib/StaticAnalyzer/Checkers -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp

1//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This defines CStringChecker, which is an assortment of checks on calls
10// to functions in <string.h>.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InterCheckerAPI.h"
15#include "clang/Basic/CharInfo.h"
16#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
17#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18#include "clang/StaticAnalyzer/Core/Checker.h"
19#include "clang/StaticAnalyzer/Core/CheckerManager.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30using namespace ento;
31
32namespace {
33struct AnyArgExpr {
34 // FIXME: Remove constructor in C++17 to turn it into an aggregate.
35 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex)
36 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {}
37 const Expr *Expression;
38 unsigned ArgumentIndex;
39};
40
41struct SourceArgExpr : AnyArgExpr {
42 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17.
43};
44
45struct DestinationArgExpr : AnyArgExpr {
46 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
47};
48
49struct SizeArgExpr : AnyArgExpr {
50 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
51};
52
53using ErrorMessage = SmallString<128>;
54enum class AccessKind { write, read };
55
56static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
57 AccessKind Access) {
58 ErrorMessage Message;
59 llvm::raw_svector_ostream Os(Message);
60
61 // Function classification like: Memory copy function
62 Os << toUppercase(FunctionDescription.front())
63 << &FunctionDescription.data()[1];
64
65 if (Access == AccessKind::write) {
66 Os << " overflows the destination buffer";
67 } else { // read access
68 Os << " accesses out-of-bound array element";
69 }
70
71 return Message;
72}
73
74enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
75class CStringChecker : public Checker< eval::Call,
76 check::PreStmt<DeclStmt>,
77 check::LiveSymbols,
78 check::DeadSymbols,
79 check::RegionChanges
80 > {
81 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
82 BT_NotCString, BT_AdditionOverflow;
83
84 mutable const char *CurrentFunctionDescription;
85
86public:
87 /// The filter is used to filter out the diagnostics which are not enabled by
88 /// the user.
89 struct CStringChecksFilter {
90 DefaultBool CheckCStringNullArg;
91 DefaultBool CheckCStringOutOfBounds;
92 DefaultBool CheckCStringBufferOverlap;
93 DefaultBool CheckCStringNotNullTerm;
94
95 CheckerNameRef CheckNameCStringNullArg;
96 CheckerNameRef CheckNameCStringOutOfBounds;
97 CheckerNameRef CheckNameCStringBufferOverlap;
98 CheckerNameRef CheckNameCStringNotNullTerm;
99 };
100
101 CStringChecksFilter Filter;
102
103 static void *getTag() { static int tag; return &tag; }
104
105 bool evalCall(const CallEvent &Call, CheckerContext &C) const;
106 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
107 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
108 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
109
110 ProgramStateRef
111 checkRegionChanges(ProgramStateRef state,
112 const InvalidatedSymbols *,
113 ArrayRef<const MemRegion *> ExplicitRegions,
114 ArrayRef<const MemRegion *> Regions,
115 const LocationContext *LCtx,
116 const CallEvent *Call) const;
117
118 typedef void (CStringChecker::*FnCheck)(CheckerContext &,
119 const CallExpr *) const;
120 CallDescriptionMap<FnCheck> Callbacks = {
121 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy},
122 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
123 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
124 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
125 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
126 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
127 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
128 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
129 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
130 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
131 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
132 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
133 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
134 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
135 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
136 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
137 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
138 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
139 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
140 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
141 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
142 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
143 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
144 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
145 };
146
147 // These require a bit of special handling.
148 CallDescription StdCopy{{"std", "copy"}, 3},
149 StdCopyBackward{{"std", "copy_backward"}, 3};
150
151 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
152 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
153 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
154 void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
155 void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
156 void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
157 ProgramStateRef state, SizeArgExpr Size,
158 DestinationArgExpr Dest, SourceArgExpr Source,
159 bool Restricted, bool IsMempcpy) const;
160
161 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
162
163 void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
164 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
165 void evalstrLengthCommon(CheckerContext &C,
166 const CallExpr *CE,
167 bool IsStrnlen = false) const;
168
169 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
170 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
171 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
172 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
173 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
174 bool IsBounded, ConcatFnKind appendK,
175 bool returnPtr = true) const;
176
177 void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
178 void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
179 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
180
181 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
182 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
183 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
184 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
185 void evalStrcmpCommon(CheckerContext &C,
186 const CallExpr *CE,
187 bool IsBounded = false,
188 bool IgnoreCase = false) const;
189
190 void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
191
192 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
193 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
194 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
195 void evalMemset(CheckerContext &C, const CallExpr *CE) const;
196 void evalBzero(CheckerContext &C, const CallExpr *CE) const;
197
198 // Utility methods
199 std::pair<ProgramStateRef , ProgramStateRef >
200 static assumeZero(CheckerContext &C,
201 ProgramStateRef state, SVal V, QualType Ty);
202
203 static ProgramStateRef setCStringLength(ProgramStateRef state,
204 const MemRegion *MR,
205 SVal strLength);
206 static SVal getCStringLengthForRegion(CheckerContext &C,
207 ProgramStateRef &state,
208 const Expr *Ex,
209 const MemRegion *MR,
210 bool hypothetical);
211 SVal getCStringLength(CheckerContext &C,
212 ProgramStateRef &state,
213 const Expr *Ex,
214 SVal Buf,
215 bool hypothetical = false) const;
216
217 const StringLiteral *getCStringLiteral(CheckerContext &C,
218 ProgramStateRef &state,
219 const Expr *expr,
220 SVal val) const;
221
222 static ProgramStateRef InvalidateBuffer(CheckerContext &C,
223 ProgramStateRef state,
224 const Expr *Ex, SVal V,
225 bool IsSourceBuffer,
226 const Expr *Size);
227
228 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
229 const MemRegion *MR);
230
231 static bool memsetAux(const Expr *DstBuffer, SVal CharE,
232 const Expr *Size, CheckerContext &C,
233 ProgramStateRef &State);
234
235 // Re-usable checks
236 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
237 AnyArgExpr Arg, SVal l) const;
238 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
239 AnyArgExpr Buffer, SVal Element,
240 AccessKind Access) const;
241 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
242 AnyArgExpr Buffer, SizeArgExpr Size,
243 AccessKind Access) const;
244 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
245 SizeArgExpr Size, AnyArgExpr First,
246 AnyArgExpr Second) const;
247 void emitOverlapBug(CheckerContext &C,
248 ProgramStateRef state,
249 const Stmt *First,
250 const Stmt *Second) const;
251
252 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
253 StringRef WarningMsg) const;
254 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
255 const Stmt *S, StringRef WarningMsg) const;
256 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
257 const Stmt *S, StringRef WarningMsg) const;
258 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
259
260 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
261 ProgramStateRef state,
262 NonLoc left,
263 NonLoc right) const;
264
265 // Return true if the destination buffer of the copy function may be in bound.
266 // Expects SVal of Size to be positive and unsigned.
267 // Expects SVal of FirstBuf to be a FieldRegion.
268 static bool IsFirstBufInBound(CheckerContext &C,
269 ProgramStateRef state,
270 const Expr *FirstBuf,
271 const Expr *Size);
272};
273
274} //end anonymous namespace
275
276REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)namespace { class CStringLength {}; using CStringLengthTy = llvm
::ImmutableMap<const MemRegion *, SVal>; } namespace clang
{ namespace ento { template <> struct ProgramStateTrait
<CStringLength> : public ProgramStatePartialTrait<CStringLengthTy
> { static void *GDMIndex() { static int Index; return &
Index; } }; } }
277
278//===----------------------------------------------------------------------===//
279// Individual checks and utility methods.
280//===----------------------------------------------------------------------===//
281
282std::pair<ProgramStateRef , ProgramStateRef >
283CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
284 QualType Ty) {
285 Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
286 if (!val)
287 return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
288
289 SValBuilder &svalBuilder = C.getSValBuilder();
290 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
291 return state->assume(svalBuilder.evalEQ(state, *val, zero));
292}
293
294ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
295 ProgramStateRef State,
296 AnyArgExpr Arg, SVal l) const {
297 // If a previous check has failed, propagate the failure.
298 if (!State)
16
Taking false branch
299 return nullptr;
300
301 ProgramStateRef stateNull, stateNonNull;
302 std::tie(stateNull, stateNonNull) =
17
Calling 'tie<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>>'
26
Returning from 'tie<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>>'
303 assumeZero(C, State, l, Arg.Expression->getType());
304
305 if (stateNull && !stateNonNull) {
27
Taking false branch
306 if (Filter.CheckCStringNullArg) {
307 SmallString<80> buf;
308 llvm::raw_svector_ostream OS(buf);
309 assert(CurrentFunctionDescription)(static_cast<void> (0));
310 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
311 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
312 << CurrentFunctionDescription;
313
314 emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
315 }
316 return nullptr;
317 }
318
319 // From here on, assume that the value is non-null.
320 assert(stateNonNull)(static_cast<void> (0));
321 return stateNonNull;
322}
323
324// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
325ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
326 ProgramStateRef state,
327 AnyArgExpr Buffer, SVal Element,
328 AccessKind Access) const {
329
330 // If a previous check has failed, propagate the failure.
331 if (!state)
332 return nullptr;
333
334 // Check for out of bound array element access.
335 const MemRegion *R = Element.getAsRegion();
336 if (!R)
337 return state;
338
339 const auto *ER = dyn_cast<ElementRegion>(R);
340 if (!ER)
341 return state;
342
343 if (ER->getValueType() != C.getASTContext().CharTy)
344 return state;
345
346 // Get the size of the array.
347 const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
348 DefinedOrUnknownSVal Size =
349 getDynamicExtent(state, superReg, C.getSValBuilder());
350
351 // Get the index of the accessed element.
352 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
353
354 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
355 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
356 if (StOutBound && !StInBound) {
357 // These checks are either enabled by the CString out-of-bounds checker
358 // explicitly or implicitly by the Malloc checker.
359 // In the latter case we only do modeling but do not emit warning.
360 if (!Filter.CheckCStringOutOfBounds)
361 return nullptr;
362
363 // Emit a bug report.
364 ErrorMessage Message =
365 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
366 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
367 return nullptr;
368 }
369
370 // Array bound check succeeded. From this point forward the array bound
371 // should always succeed.
372 return StInBound;
373}
374
375ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
376 ProgramStateRef State,
377 AnyArgExpr Buffer,
378 SizeArgExpr Size,
379 AccessKind Access) const {
380 // If a previous check has failed, propagate the failure.
381 if (!State)
382 return nullptr;
383
384 SValBuilder &svalBuilder = C.getSValBuilder();
385 ASTContext &Ctx = svalBuilder.getContext();
386
387 QualType SizeTy = Size.Expression->getType();
388 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
389
390 // Check that the first buffer is non-null.
391 SVal BufVal = C.getSVal(Buffer.Expression);
392 State = checkNonNull(C, State, Buffer, BufVal);
393 if (!State)
394 return nullptr;
395
396 // If out-of-bounds checking is turned off, skip the rest.
397 if (!Filter.CheckCStringOutOfBounds)
398 return State;
399
400 // Get the access length and make sure it is known.
401 // FIXME: This assumes the caller has already checked that the access length
402 // is positive. And that it's unsigned.
403 SVal LengthVal = C.getSVal(Size.Expression);
404 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
405 if (!Length)
406 return State;
407
408 // Compute the offset of the last element to be accessed: size-1.
409 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
410 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
411 if (Offset.isUnknown())
412 return nullptr;
413 NonLoc LastOffset = Offset.castAs<NonLoc>();
414
415 // Check that the first buffer is sufficiently long.
416 SVal BufStart =
417 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
418 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
419
420 SVal BufEnd =
421 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
422
423 State = CheckLocation(C, State, Buffer, BufEnd, Access);
424
425 // If the buffer isn't large enough, abort.
426 if (!State)
427 return nullptr;
428 }
429
430 // Large enough or not, return this state!
431 return State;
432}
433
434ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
435 ProgramStateRef state,
436 SizeArgExpr Size, AnyArgExpr First,
437 AnyArgExpr Second) const {
438 if (!Filter.CheckCStringBufferOverlap)
439 return state;
440
441 // Do a simple check for overlap: if the two arguments are from the same
442 // buffer, see if the end of the first is greater than the start of the second
443 // or vice versa.
444
445 // If a previous check has failed, propagate the failure.
446 if (!state)
447 return nullptr;
448
449 ProgramStateRef stateTrue, stateFalse;
450
451 // Get the buffer values and make sure they're known locations.
452 const LocationContext *LCtx = C.getLocationContext();
453 SVal firstVal = state->getSVal(First.Expression, LCtx);
454 SVal secondVal = state->getSVal(Second.Expression, LCtx);
455
456 Optional<Loc> firstLoc = firstVal.getAs<Loc>();
457 if (!firstLoc)
458 return state;
459
460 Optional<Loc> secondLoc = secondVal.getAs<Loc>();
461 if (!secondLoc)
462 return state;
463
464 // Are the two values the same?
465 SValBuilder &svalBuilder = C.getSValBuilder();
466 std::tie(stateTrue, stateFalse) =
467 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
468
469 if (stateTrue && !stateFalse) {
470 // If the values are known to be equal, that's automatically an overlap.
471 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
472 return nullptr;
473 }
474
475 // assume the two expressions are not equal.
476 assert(stateFalse)(static_cast<void> (0));
477 state = stateFalse;
478
479 // Which value comes first?
480 QualType cmpTy = svalBuilder.getConditionType();
481 SVal reverse =
482 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
483 Optional<DefinedOrUnknownSVal> reverseTest =
484 reverse.getAs<DefinedOrUnknownSVal>();
485 if (!reverseTest)
486 return state;
487
488 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
489 if (stateTrue) {
490 if (stateFalse) {
491 // If we don't know which one comes first, we can't perform this test.
492 return state;
493 } else {
494 // Switch the values so that firstVal is before secondVal.
495 std::swap(firstLoc, secondLoc);
496
497 // Switch the Exprs as well, so that they still correspond.
498 std::swap(First, Second);
499 }
500 }
501
502 // Get the length, and make sure it too is known.
503 SVal LengthVal = state->getSVal(Size.Expression, LCtx);
504 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
505 if (!Length)
506 return state;
507
508 // Convert the first buffer's start address to char*.
509 // Bail out if the cast fails.
510 ASTContext &Ctx = svalBuilder.getContext();
511 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
512 SVal FirstStart =
513 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
514 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
515 if (!FirstStartLoc)
516 return state;
517
518 // Compute the end of the first buffer. Bail out if THAT fails.
519 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
520 *Length, CharPtrTy);
521 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
522 if (!FirstEndLoc)
523 return state;
524
525 // Is the end of the first buffer past the start of the second buffer?
526 SVal Overlap =
527 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
528 Optional<DefinedOrUnknownSVal> OverlapTest =
529 Overlap.getAs<DefinedOrUnknownSVal>();
530 if (!OverlapTest)
531 return state;
532
533 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
534
535 if (stateTrue && !stateFalse) {
536 // Overlap!
537 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
538 return nullptr;
539 }
540
541 // assume the two expressions don't overlap.
542 assert(stateFalse)(static_cast<void> (0));
543 return stateFalse;
544}
545
546void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
547 const Stmt *First, const Stmt *Second) const {
548 ExplodedNode *N = C.generateErrorNode(state);
549 if (!N)
550 return;
551
552 if (!BT_Overlap)
553 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
554 categories::UnixAPI, "Improper arguments"));
555
556 // Generate a report for this bug.
557 auto report = std::make_unique<PathSensitiveBugReport>(
558 *BT_Overlap, "Arguments must not be overlapping buffers", N);
559 report->addRange(First->getSourceRange());
560 report->addRange(Second->getSourceRange());
561
562 C.emitReport(std::move(report));
563}
564
565void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
566 const Stmt *S, StringRef WarningMsg) const {
567 if (ExplodedNode *N = C.generateErrorNode(State)) {
568 if (!BT_Null)
569 BT_Null.reset(new BuiltinBug(
570 Filter.CheckNameCStringNullArg, categories::UnixAPI,
571 "Null pointer argument in call to byte string function"));
572
573 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
574 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
575 Report->addRange(S->getSourceRange());
576 if (const auto *Ex = dyn_cast<Expr>(S))
577 bugreporter::trackExpressionValue(N, Ex, *Report);
578 C.emitReport(std::move(Report));
579 }
580}
581
582void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
583 ProgramStateRef State, const Stmt *S,
584 StringRef WarningMsg) const {
585 if (ExplodedNode *N = C.generateErrorNode(State)) {
586 if (!BT_Bounds)
587 BT_Bounds.reset(new BuiltinBug(
588 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
589 : Filter.CheckNameCStringNullArg,
590 "Out-of-bound array access",
591 "Byte string function accesses out-of-bound array element"));
592
593 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
594
595 // FIXME: It would be nice to eventually make this diagnostic more clear,
596 // e.g., by referencing the original declaration or by saying *why* this
597 // reference is outside the range.
598 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
599 Report->addRange(S->getSourceRange());
600 C.emitReport(std::move(Report));
601 }
602}
603
604void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
605 const Stmt *S,
606 StringRef WarningMsg) const {
607 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
608 if (!BT_NotCString)
609 BT_NotCString.reset(new BuiltinBug(
610 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
611 "Argument is not a null-terminated string."));
612
613 auto Report =
614 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
615
616 Report->addRange(S->getSourceRange());
617 C.emitReport(std::move(Report));
618 }
619}
620
621void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
622 ProgramStateRef State) const {
623 if (ExplodedNode *N = C.generateErrorNode(State)) {
624 if (!BT_NotCString)
625 BT_NotCString.reset(
626 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
627 "Sum of expressions causes overflow."));
628
629 // This isn't a great error message, but this should never occur in real
630 // code anyway -- you'd have to create a buffer longer than a size_t can
631 // represent, which is sort of a contradiction.
632 const char *WarningMsg =
633 "This expression will create a string whose length is too big to "
634 "be represented as a size_t";
635
636 auto Report =
637 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
638 C.emitReport(std::move(Report));
639 }
640}
641
642ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
643 ProgramStateRef state,
644 NonLoc left,
645 NonLoc right) const {
646 // If out-of-bounds checking is turned off, skip the rest.
647 if (!Filter.CheckCStringOutOfBounds)
648 return state;
649
650 // If a previous check has failed, propagate the failure.
651 if (!state)
652 return nullptr;
653
654 SValBuilder &svalBuilder = C.getSValBuilder();
655 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
656
657 QualType sizeTy = svalBuilder.getContext().getSizeType();
658 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
659 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
660
661 SVal maxMinusRight;
662 if (right.getAs<nonloc::ConcreteInt>()) {
663 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
664 sizeTy);
665 } else {
666 // Try switching the operands. (The order of these two assignments is
667 // important!)
668 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
669 sizeTy);
670 left = right;
671 }
672
673 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
674 QualType cmpTy = svalBuilder.getConditionType();
675 // If left > max - right, we have an overflow.
676 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
677 *maxMinusRightNL, cmpTy);
678
679 ProgramStateRef stateOverflow, stateOkay;
680 std::tie(stateOverflow, stateOkay) =
681 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
682
683 if (stateOverflow && !stateOkay) {
684 // We have an overflow. Emit a bug report.
685 emitAdditionOverflowBug(C, stateOverflow);
686 return nullptr;
687 }
688
689 // From now on, assume an overflow didn't occur.
690 assert(stateOkay)(static_cast<void> (0));
691 state = stateOkay;
692 }
693
694 return state;
695}
696
697ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
698 const MemRegion *MR,
699 SVal strLength) {
700 assert(!strLength.isUndef() && "Attempt to set an undefined string length")(static_cast<void> (0));
701
702 MR = MR->StripCasts();
703
704 switch (MR->getKind()) {
705 case MemRegion::StringRegionKind:
706 // FIXME: This can happen if we strcpy() into a string region. This is
707 // undefined [C99 6.4.5p6], but we should still warn about it.
708 return state;
709
710 case MemRegion::SymbolicRegionKind:
711 case MemRegion::AllocaRegionKind:
712 case MemRegion::NonParamVarRegionKind:
713 case MemRegion::ParamVarRegionKind:
714 case MemRegion::FieldRegionKind:
715 case MemRegion::ObjCIvarRegionKind:
716 // These are the types we can currently track string lengths for.
717 break;
718
719 case MemRegion::ElementRegionKind:
720 // FIXME: Handle element regions by upper-bounding the parent region's
721 // string length.
722 return state;
723
724 default:
725 // Other regions (mostly non-data) can't have a reliable C string length.
726 // For now, just ignore the change.
727 // FIXME: These are rare but not impossible. We should output some kind of
728 // warning for things like strcpy((char[]){'a', 0}, "b");
729 return state;
730 }
731
732 if (strLength.isUnknown())
733 return state->remove<CStringLength>(MR);
734
735 return state->set<CStringLength>(MR, strLength);
736}
737
738SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
739 ProgramStateRef &state,
740 const Expr *Ex,
741 const MemRegion *MR,
742 bool hypothetical) {
743 if (!hypothetical) {
744 // If there's a recorded length, go ahead and return it.
745 const SVal *Recorded = state->get<CStringLength>(MR);
746 if (Recorded)
747 return *Recorded;
748 }
749
750 // Otherwise, get a new symbol and update the state.
751 SValBuilder &svalBuilder = C.getSValBuilder();
752 QualType sizeTy = svalBuilder.getContext().getSizeType();
753 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
754 MR, Ex, sizeTy,
755 C.getLocationContext(),
756 C.blockCount());
757
758 if (!hypothetical) {
759 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
760 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
761 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
762 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
763 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
764 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
765 fourInt);
766 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
767 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
768 maxLength, sizeTy);
769 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
770 }
771 state = state->set<CStringLength>(MR, strLength);
772 }
773
774 return strLength;
775}
776
777SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
778 const Expr *Ex, SVal Buf,
779 bool hypothetical) const {
780 const MemRegion *MR = Buf.getAsRegion();
781 if (!MR) {
782 // If we can't get a region, see if it's something we /know/ isn't a
783 // C string. In the context of locations, the only time we can issue such
784 // a warning is for labels.
785 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
786 if (Filter.CheckCStringNotNullTerm) {
787 SmallString<120> buf;
788 llvm::raw_svector_ostream os(buf);
789 assert(CurrentFunctionDescription)(static_cast<void> (0));
790 os << "Argument to " << CurrentFunctionDescription
791 << " is the address of the label '" << Label->getLabel()->getName()
792 << "', which is not a null-terminated string";
793
794 emitNotCStringBug(C, state, Ex, os.str());
795 }
796 return UndefinedVal();
797 }
798
799 // If it's not a region and not a label, give up.
800 return UnknownVal();
801 }
802
803 // If we have a region, strip casts from it and see if we can figure out
804 // its length. For anything we can't figure out, just return UnknownVal.
805 MR = MR->StripCasts();
806
807 switch (MR->getKind()) {
808 case MemRegion::StringRegionKind: {
809 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
810 // so we can assume that the byte length is the correct C string length.
811 SValBuilder &svalBuilder = C.getSValBuilder();
812 QualType sizeTy = svalBuilder.getContext().getSizeType();
813 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
814 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
815 }
816 case MemRegion::SymbolicRegionKind:
817 case MemRegion::AllocaRegionKind:
818 case MemRegion::NonParamVarRegionKind:
819 case MemRegion::ParamVarRegionKind:
820 case MemRegion::FieldRegionKind:
821 case MemRegion::ObjCIvarRegionKind:
822 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
823 case MemRegion::CompoundLiteralRegionKind:
824 // FIXME: Can we track this? Is it necessary?
825 return UnknownVal();
826 case MemRegion::ElementRegionKind:
827 // FIXME: How can we handle this? It's not good enough to subtract the
828 // offset from the base string length; consider "123\x00567" and &a[5].
829 return UnknownVal();
830 default:
831 // Other regions (mostly non-data) can't have a reliable C string length.
832 // In this case, an error is emitted and UndefinedVal is returned.
833 // The caller should always be prepared to handle this case.
834 if (Filter.CheckCStringNotNullTerm) {
835 SmallString<120> buf;
836 llvm::raw_svector_ostream os(buf);
837
838 assert(CurrentFunctionDescription)(static_cast<void> (0));
839 os << "Argument to " << CurrentFunctionDescription << " is ";
840
841 if (SummarizeRegion(os, C.getASTContext(), MR))
842 os << ", which is not a null-terminated string";
843 else
844 os << "not a null-terminated string";
845
846 emitNotCStringBug(C, state, Ex, os.str());
847 }
848 return UndefinedVal();
849 }
850}
851
852const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
853 ProgramStateRef &state, const Expr *expr, SVal val) const {
854
855 // Get the memory region pointed to by the val.
856 const MemRegion *bufRegion = val.getAsRegion();
857 if (!bufRegion)
858 return nullptr;
859
860 // Strip casts off the memory region.
861 bufRegion = bufRegion->StripCasts();
862
863 // Cast the memory region to a string region.
864 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
865 if (!strRegion)
866 return nullptr;
867
868 // Return the actual string in the string region.
869 return strRegion->getStringLiteral();
870}
871
872bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
873 ProgramStateRef state,
874 const Expr *FirstBuf,
875 const Expr *Size) {
876 // If we do not know that the buffer is long enough we return 'true'.
877 // Otherwise the parent region of this field region would also get
878 // invalidated, which would lead to warnings based on an unknown state.
879
880 // Originally copied from CheckBufferAccess and CheckLocation.
881 SValBuilder &svalBuilder = C.getSValBuilder();
882 ASTContext &Ctx = svalBuilder.getContext();
883 const LocationContext *LCtx = C.getLocationContext();
884
885 QualType sizeTy = Size->getType();
886 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
887 SVal BufVal = state->getSVal(FirstBuf, LCtx);
888
889 SVal LengthVal = state->getSVal(Size, LCtx);
890 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
891 if (!Length)
892 return true; // cf top comment.
893
894 // Compute the offset of the last element to be accessed: size-1.
895 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
896 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
897 if (Offset.isUnknown())
898 return true; // cf top comment
899 NonLoc LastOffset = Offset.castAs<NonLoc>();
900
901 // Check that the first buffer is sufficiently long.
902 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
903 Optional<Loc> BufLoc = BufStart.getAs<Loc>();
904 if (!BufLoc)
905 return true; // cf top comment.
906
907 SVal BufEnd =
908 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
909
910 // Check for out of bound array element access.
911 const MemRegion *R = BufEnd.getAsRegion();
912 if (!R)
913 return true; // cf top comment.
914
915 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
916 if (!ER)
917 return true; // cf top comment.
918
919 // FIXME: Does this crash when a non-standard definition
920 // of a library function is encountered?
921 assert(ER->getValueType() == C.getASTContext().CharTy &&(static_cast<void> (0))
922 "IsFirstBufInBound should only be called with char* ElementRegions")(static_cast<void> (0));
923
924 // Get the size of the array.
925 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
926 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder);
927
928 // Get the index of the accessed element.
929 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
930
931 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
932
933 return static_cast<bool>(StInBound);
934}
935
936ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
937 ProgramStateRef state,
938 const Expr *E, SVal V,
939 bool IsSourceBuffer,
940 const Expr *Size) {
941 Optional<Loc> L = V.getAs<Loc>();
942 if (!L)
943 return state;
944
945 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
946 // some assumptions about the value that CFRefCount can't. Even so, it should
947 // probably be refactored.
948 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
949 const MemRegion *R = MR->getRegion()->StripCasts();
950
951 // Are we dealing with an ElementRegion? If so, we should be invalidating
952 // the super-region.
953 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
954 R = ER->getSuperRegion();
955 // FIXME: What about layers of ElementRegions?
956 }
957
958 // Invalidate this region.
959 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
960
961 bool CausesPointerEscape = false;
962 RegionAndSymbolInvalidationTraits ITraits;
963 // Invalidate and escape only indirect regions accessible through the source
964 // buffer.
965 if (IsSourceBuffer) {
966 ITraits.setTrait(R->getBaseRegion(),
967 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
968 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
969 CausesPointerEscape = true;
970 } else {
971 const MemRegion::Kind& K = R->getKind();
972 if (K == MemRegion::FieldRegionKind)
973 if (Size && IsFirstBufInBound(C, state, E, Size)) {
974 // If destination buffer is a field region and access is in bound,
975 // do not invalidate its super region.
976 ITraits.setTrait(
977 R,
978 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
979 }
980 }
981
982 return state->invalidateRegions(R, E, C.blockCount(), LCtx,
983 CausesPointerEscape, nullptr, nullptr,
984 &ITraits);
985 }
986
987 // If we have a non-region value by chance, just remove the binding.
988 // FIXME: is this necessary or correct? This handles the non-Region
989 // cases. Is it ever valid to store to these?
990 return state->killBinding(*L);
991}
992
993bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
994 const MemRegion *MR) {
995 switch (MR->getKind()) {
996 case MemRegion::FunctionCodeRegionKind: {
997 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
998 os << "the address of the function '" << *FD << '\'';
999 else
1000 os << "the address of a function";
1001 return true;
1002 }
1003 case MemRegion::BlockCodeRegionKind:
1004 os << "block text";
1005 return true;
1006 case MemRegion::BlockDataRegionKind:
1007 os << "a block";
1008 return true;
1009 case MemRegion::CXXThisRegionKind:
1010 case MemRegion::CXXTempObjectRegionKind:
1011 os << "a C++ temp object of type "
1012 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1013 return true;
1014 case MemRegion::NonParamVarRegionKind:
1015 os << "a variable of type"
1016 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1017 return true;
1018 case MemRegion::ParamVarRegionKind:
1019 os << "a parameter of type"
1020 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1021 return true;
1022 case MemRegion::FieldRegionKind:
1023 os << "a field of type "
1024 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1025 return true;
1026 case MemRegion::ObjCIvarRegionKind:
1027 os << "an instance variable of type "
1028 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1029 return true;
1030 default:
1031 return false;
1032 }
1033}
1034
1035bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1036 const Expr *Size, CheckerContext &C,
1037 ProgramStateRef &State) {
1038 SVal MemVal = C.getSVal(DstBuffer);
1039 SVal SizeVal = C.getSVal(Size);
1040 const MemRegion *MR = MemVal.getAsRegion();
1041 if (!MR)
1042 return false;
1043
1044 // We're about to model memset by producing a "default binding" in the Store.
1045 // Our current implementation - RegionStore - doesn't support default bindings
1046 // that don't cover the whole base region. So we should first get the offset
1047 // and the base region to figure out whether the offset of buffer is 0.
1048 RegionOffset Offset = MR->getAsOffset();
1049 const MemRegion *BR = Offset.getRegion();
1050
1051 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1052 if (!SizeNL)
1053 return false;
1054
1055 SValBuilder &svalBuilder = C.getSValBuilder();
1056 ASTContext &Ctx = C.getASTContext();
1057
1058 // void *memset(void *dest, int ch, size_t count);
1059 // For now we can only handle the case of offset is 0 and concrete char value.
1060 if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1061 Offset.getOffset() == 0) {
1062 // Get the base region's size.
1063 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1064
1065 ProgramStateRef StateWholeReg, StateNotWholeReg;
1066 std::tie(StateWholeReg, StateNotWholeReg) =
1067 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1068
1069 // With the semantic of 'memset()', we should convert the CharVal to
1070 // unsigned char.
1071 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1072
1073 ProgramStateRef StateNullChar, StateNonNullChar;
1074 std::tie(StateNullChar, StateNonNullChar) =
1075 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1076
1077 if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1078 !StateNonNullChar) {
1079 // If the 'memset()' acts on the whole region of destination buffer and
1080 // the value of the second argument of 'memset()' is zero, bind the second
1081 // argument's value to the destination buffer with 'default binding'.
1082 // FIXME: Since there is no perfect way to bind the non-zero character, we
1083 // can only deal with zero value here. In the future, we need to deal with
1084 // the binding of non-zero value in the case of whole region.
1085 State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1086 C.getLocationContext());
1087 } else {
1088 // If the destination buffer's extent is not equal to the value of
1089 // third argument, just invalidate buffer.
1090 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1091 /*IsSourceBuffer*/ false, Size);
1092 }
1093
1094 if (StateNullChar && !StateNonNullChar) {
1095 // If the value of the second argument of 'memset()' is zero, set the
1096 // string length of destination buffer to 0 directly.
1097 State = setCStringLength(State, MR,
1098 svalBuilder.makeZeroVal(Ctx.getSizeType()));
1099 } else if (!StateNullChar && StateNonNullChar) {
1100 SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1101 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1102 C.getLocationContext(), C.blockCount());
1103
1104 // If the value of second argument is not zero, then the string length
1105 // is at least the size argument.
1106 SVal NewStrLenGESize = svalBuilder.evalBinOp(
1107 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1108
1109 State = setCStringLength(
1110 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1111 MR, NewStrLen);
1112 }
1113 } else {
1114 // If the offset is not zero and char value is not concrete, we can do
1115 // nothing but invalidate the buffer.
1116 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1117 /*IsSourceBuffer*/ false, Size);
1118 }
1119 return true;
1120}
1121
1122//===----------------------------------------------------------------------===//
1123// evaluation of individual function calls.
1124//===----------------------------------------------------------------------===//
1125
1126void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE,
1127 ProgramStateRef state, SizeArgExpr Size,
1128 DestinationArgExpr Dest,
1129 SourceArgExpr Source, bool Restricted,
1130 bool IsMempcpy) const {
1131 CurrentFunctionDescription = "memory copy function";
1132
1133 // See if the size argument is zero.
1134 const LocationContext *LCtx = C.getLocationContext();
1135 SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1136 QualType sizeTy = Size.Expression->getType();
1137
1138 ProgramStateRef stateZeroSize, stateNonZeroSize;
1139 std::tie(stateZeroSize, stateNonZeroSize) =
1140 assumeZero(C, state, sizeVal, sizeTy);
1141
1142 // Get the value of the Dest.
1143 SVal destVal = state->getSVal(Dest.Expression, LCtx);
1144
1145 // If the size is zero, there won't be any actual memory access, so
1146 // just bind the return value to the destination buffer and return.
1147 if (stateZeroSize && !stateNonZeroSize) {
1148 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1149 C.addTransition(stateZeroSize);
1150 return;
1151 }
1152
1153 // If the size can be nonzero, we have to check the other arguments.
1154 if (stateNonZeroSize) {
1155 state = stateNonZeroSize;
1156
1157 // Ensure the destination is not null. If it is NULL there will be a
1158 // NULL pointer dereference.
1159 state = checkNonNull(C, state, Dest, destVal);
1160 if (!state)
1161 return;
1162
1163 // Get the value of the Src.
1164 SVal srcVal = state->getSVal(Source.Expression, LCtx);
1165
1166 // Ensure the source is not null. If it is NULL there will be a
1167 // NULL pointer dereference.
1168 state = checkNonNull(C, state, Source, srcVal);
1169 if (!state)
1170 return;
1171
1172 // Ensure the accesses are valid and that the buffers do not overlap.
1173 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write);
1174 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read);
1175
1176 if (Restricted)
1177 state = CheckOverlap(C, state, Size, Dest, Source);
1178
1179 if (!state)
1180 return;
1181
1182 // If this is mempcpy, get the byte after the last byte copied and
1183 // bind the expr.
1184 if (IsMempcpy) {
1185 // Get the byte after the last byte copied.
1186 SValBuilder &SvalBuilder = C.getSValBuilder();
1187 ASTContext &Ctx = SvalBuilder.getContext();
1188 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1189 SVal DestRegCharVal =
1190 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1191 SVal lastElement = C.getSValBuilder().evalBinOp(
1192 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1193 // If we don't know how much we copied, we can at least
1194 // conjure a return value for later.
1195 if (lastElement.isUnknown())
1196 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1197 C.blockCount());
1198
1199 // The byte after the last byte copied is the return value.
1200 state = state->BindExpr(CE, LCtx, lastElement);
1201 } else {
1202 // All other copies return the destination buffer.
1203 // (Well, bcopy() has a void return type, but this won't hurt.)
1204 state = state->BindExpr(CE, LCtx, destVal);
1205 }
1206
1207 // Invalidate the destination (regular invalidation without pointer-escaping
1208 // the address of the top-level region).
1209 // FIXME: Even if we can't perfectly model the copy, we should see if we
1210 // can use LazyCompoundVals to copy the source values into the destination.
1211 // This would probably remove any existing bindings past the end of the
1212 // copied region, but that's still an improvement over blank invalidation.
1213 state =
1214 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression),
1215 /*IsSourceBuffer*/ false, Size.Expression);
1216
1217 // Invalidate the source (const-invalidation without const-pointer-escaping
1218 // the address of the top-level region).
1219 state = InvalidateBuffer(C, state, Source.Expression,
1220 C.getSVal(Source.Expression),
1221 /*IsSourceBuffer*/ true, nullptr);
1222
1223 C.addTransition(state);
1224 }
1225}
1226
1227void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1228 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1229 // The return value is the address of the destination buffer.
1230 DestinationArgExpr Dest = {CE->getArg(0), 0};
1231 SourceArgExpr Src = {CE->getArg(1), 1};
1232 SizeArgExpr Size = {CE->getArg(2), 2};
1233
1234 ProgramStateRef State = C.getState();
1235
1236 constexpr bool IsRestricted = true;
1237 constexpr bool IsMempcpy = false;
1238 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy);
1239}
1240
1241void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1242 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1243 // The return value is a pointer to the byte following the last written byte.
1244 DestinationArgExpr Dest = {CE->getArg(0), 0};
1245 SourceArgExpr Src = {CE->getArg(1), 1};
1246 SizeArgExpr Size = {CE->getArg(2), 2};
1247
1248 constexpr bool IsRestricted = true;
1249 constexpr bool IsMempcpy = true;
1250 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1251}
1252
1253void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1254 // void *memmove(void *dst, const void *src, size_t n);
1255 // The return value is the address of the destination buffer.
1256 DestinationArgExpr Dest = {CE->getArg(0), 0};
1257 SourceArgExpr Src = {CE->getArg(1), 1};
1258 SizeArgExpr Size = {CE->getArg(2), 2};
1259
1260 constexpr bool IsRestricted = false;
1261 constexpr bool IsMempcpy = false;
1262 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1263}
1264
1265void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1266 // void bcopy(const void *src, void *dst, size_t n);
1267 SourceArgExpr Src(CE->getArg(0), 0);
1268 DestinationArgExpr Dest = {CE->getArg(1), 1};
1269 SizeArgExpr Size = {CE->getArg(2), 2};
1270
1271 constexpr bool IsRestricted = false;
1272 constexpr bool IsMempcpy = false;
1273 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1274}
1275
1276void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1277 // int memcmp(const void *s1, const void *s2, size_t n);
1278 CurrentFunctionDescription = "memory comparison function";
1279
1280 AnyArgExpr Left = {CE->getArg(0), 0};
1281 AnyArgExpr Right = {CE->getArg(1), 1};
1282 SizeArgExpr Size = {CE->getArg(2), 2};
1283
1284 ProgramStateRef State = C.getState();
1285 SValBuilder &Builder = C.getSValBuilder();
1286 const LocationContext *LCtx = C.getLocationContext();
1287
1288 // See if the size argument is zero.
1289 SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1290 QualType sizeTy = Size.Expression->getType();
1291
1292 ProgramStateRef stateZeroSize, stateNonZeroSize;
1293 std::tie(stateZeroSize, stateNonZeroSize) =
1294 assumeZero(C, State, sizeVal, sizeTy);
1295
1296 // If the size can be zero, the result will be 0 in that case, and we don't
1297 // have to check either of the buffers.
1298 if (stateZeroSize) {
1299 State = stateZeroSize;
1300 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1301 C.addTransition(State);
1302 }
1303
1304 // If the size can be nonzero, we have to check the other arguments.
1305 if (stateNonZeroSize) {
1306 State = stateNonZeroSize;
1307 // If we know the two buffers are the same, we know the result is 0.
1308 // First, get the two buffers' addresses. Another checker will have already
1309 // made sure they're not undefined.
1310 DefinedOrUnknownSVal LV =
1311 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1312 DefinedOrUnknownSVal RV =
1313 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1314
1315 // See if they are the same.
1316 ProgramStateRef SameBuffer, NotSameBuffer;
1317 std::tie(SameBuffer, NotSameBuffer) =
1318 State->assume(Builder.evalEQ(State, LV, RV));
1319
1320 // If the two arguments are the same buffer, we know the result is 0,
1321 // and we only need to check one size.
1322 if (SameBuffer && !NotSameBuffer) {
1323 State = SameBuffer;
1324 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1325 if (State) {
1326 State =
1327 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1328 C.addTransition(State);
1329 }
1330 return;
1331 }
1332
1333 // If the two arguments might be different buffers, we have to check
1334 // the size of both of them.
1335 assert(NotSameBuffer)(static_cast<void> (0));
1336 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read);
1337 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1338 if (State) {
1339 // The return value is the comparison result, which we don't know.
1340 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1341 State = State->BindExpr(CE, LCtx, CmpV);
1342 C.addTransition(State);
1343 }
1344 }
1345}
1346
1347void CStringChecker::evalstrLength(CheckerContext &C,
1348 const CallExpr *CE) const {
1349 // size_t strlen(const char *s);
1350 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1351}
1352
1353void CStringChecker::evalstrnLength(CheckerContext &C,
1354 const CallExpr *CE) const {
1355 // size_t strnlen(const char *s, size_t maxlen);
1356 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1
Calling 'CStringChecker::evalstrLengthCommon'
1357}
1358
1359void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1360 bool IsStrnlen) const {
1361 CurrentFunctionDescription = "string length function";
1362 ProgramStateRef state = C.getState();
1363 const LocationContext *LCtx = C.getLocationContext();
1364
1365 if (IsStrnlen
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
) {
2
Taking true branch
1366 const Expr *maxlenExpr = CE->getArg(1);
1367 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1368
1369 ProgramStateRef stateZeroSize, stateNonZeroSize;
1370 std::tie(stateZeroSize, stateNonZeroSize) =
3
Calling 'tie<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>>'
12
Returning from 'tie<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState>>'
1371 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1372
1373 // If the size can be zero, the result will be 0 in that case, and we don't
1374 // have to check the string itself.
1375 if (stateZeroSize) {
13
Taking true branch
1376 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1377 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1378 C.addTransition(stateZeroSize);
1379 }
1380
1381 // If the size is GUARANTEED to be zero, we're done!
1382 if (!stateNonZeroSize)
14
Taking false branch
1383 return;
1384
1385 // Otherwise, record the assumption that the size is nonzero.
1386 state = stateNonZeroSize;
1387 }
1388
1389 // Check that the string argument is non-null.
1390 AnyArgExpr Arg = {CE->getArg(0), 0};
1391 SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1392 state = checkNonNull(C, state, Arg, ArgVal);
15
Calling 'CStringChecker::checkNonNull'
28
Returning from 'CStringChecker::checkNonNull'
1393
1394 if (!state)
29
Taking false branch
1395 return;
1396
1397 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1398
1399 // If the argument isn't a valid C string, there's no valid state to
1400 // transition to.
1401 if (strLength.isUndef())
30
Calling 'SVal::isUndef'
33
Returning from 'SVal::isUndef'
34
Taking false branch
1402 return;
1403
1404 DefinedOrUnknownSVal result = UnknownVal();
1405
1406 // If the check is for strnlen() then bind the return value to no more than
1407 // the maxlen value.
1408 if (IsStrnlen
34.1
'IsStrnlen' is true
34.1
'IsStrnlen' is true
34.1
'IsStrnlen' is true
34.1
'IsStrnlen' is true
34.1
'IsStrnlen' is true
34.1
'IsStrnlen' is true
) {
35
Taking true branch
1409 QualType cmpTy = C.getSValBuilder().getConditionType();
1410
1411 // It's a little unfortunate to be getting this again,
1412 // but it's not that expensive...
1413 const Expr *maxlenExpr = CE->getArg(1);
1414 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1415
1416 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1417 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1418
1419 if (strLengthNL && maxlenValNL) {
36
Assuming the condition is true
37
Assuming the condition is true
38
Taking true branch
1420 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1421
1422 // Check if the strLength is greater than the maxlen.
1423 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1424 C.getSValBuilder()
1425 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1426 .castAs<DefinedOrUnknownSVal>());
1427
1428 if (stateStringTooLong && !stateStringNotTooLong) {
1429 // If the string is longer than maxlen, return maxlen.
1430 result = *maxlenValNL;
1431 } else if (stateStringNotTooLong && !stateStringTooLong) {
39
Taking false branch
1432 // If the string is shorter than maxlen, return its length.
1433 result = *strLengthNL;
1434 }
1435 }
1436
1437 if (result.isUnknown()) {
40
Calling 'SVal::isUnknown'
42
Returning from 'SVal::isUnknown'
43
Taking true branch
1438 // If we don't have enough information for a comparison, there's
1439 // no guarantee the full string length will actually be returned.
1440 // All we know is the return value is the min of the string length
1441 // and the limit. This is better than nothing.
1442 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1443 C.blockCount());
1444 NonLoc resultNL = result.castAs<NonLoc>();
1445
1446 if (strLengthNL) {
44
Taking true branch
1447 state = state->assume(C.getSValBuilder().evalBinOpNN(
45
Calling 'ProgramState::assume'
48
Returning from 'ProgramState::assume'
49
Calling copy assignment operator for 'IntrusiveRefCntPtr<const clang::ento::ProgramState>'
54
Returning from copy assignment operator for 'IntrusiveRefCntPtr<const clang::ento::ProgramState>'
1448 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1449 .castAs<DefinedOrUnknownSVal>(), true);
1450 }
1451
1452 if (maxlenValNL) {
55
Calling 'Optional::operator bool'
63
Returning from 'Optional::operator bool'
64
Taking true branch
1453 state = state->assume(C.getSValBuilder().evalBinOpNN(
65
Called C++ object pointer is null
1454 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1455 .castAs<DefinedOrUnknownSVal>(), true);
1456 }
1457 }
1458
1459 } else {
1460 // This is a plain strlen(), not strnlen().
1461 result = strLength.castAs<DefinedOrUnknownSVal>();
1462
1463 // If we don't know the length of the string, conjure a return
1464 // value, so it can be used in constraints, at least.
1465 if (result.isUnknown()) {
1466 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1467 C.blockCount());
1468 }
1469 }
1470
1471 // Bind the return value.
1472 assert(!result.isUnknown() && "Should have conjured a value by now")(static_cast<void> (0));
1473 state = state->BindExpr(CE, LCtx, result);
1474 C.addTransition(state);
1475}
1476
1477void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1478 // char *strcpy(char *restrict dst, const char *restrict src);
1479 evalStrcpyCommon(C, CE,
1480 /* ReturnEnd = */ false,
1481 /* IsBounded = */ false,
1482 /* appendK = */ ConcatFnKind::none);
1483}
1484
1485void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1486 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1487 evalStrcpyCommon(C, CE,
1488 /* ReturnEnd = */ false,
1489 /* IsBounded = */ true,
1490 /* appendK = */ ConcatFnKind::none);
1491}
1492
1493void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1494 // char *stpcpy(char *restrict dst, const char *restrict src);
1495 evalStrcpyCommon(C, CE,
1496 /* ReturnEnd = */ true,
1497 /* IsBounded = */ false,
1498 /* appendK = */ ConcatFnKind::none);
1499}
1500
1501void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1502 // size_t strlcpy(char *dest, const char *src, size_t size);
1503 evalStrcpyCommon(C, CE,
1504 /* ReturnEnd = */ true,
1505 /* IsBounded = */ true,
1506 /* appendK = */ ConcatFnKind::none,
1507 /* returnPtr = */ false);
1508}
1509
1510void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1511 // char *strcat(char *restrict s1, const char *restrict s2);
1512 evalStrcpyCommon(C, CE,
1513 /* ReturnEnd = */ false,
1514 /* IsBounded = */ false,
1515 /* appendK = */ ConcatFnKind::strcat);
1516}
1517
1518void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1519 //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1520 evalStrcpyCommon(C, CE,
1521 /* ReturnEnd = */ false,
1522 /* IsBounded = */ true,
1523 /* appendK = */ ConcatFnKind::strcat);
1524}
1525
1526void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1527 // size_t strlcat(char *dst, const char *src, size_t size);
1528 // It will append at most size - strlen(dst) - 1 bytes,
1529 // NULL-terminating the result.
1530 evalStrcpyCommon(C, CE,
1531 /* ReturnEnd = */ false,
1532 /* IsBounded = */ true,
1533 /* appendK = */ ConcatFnKind::strlcat,
1534 /* returnPtr = */ false);
1535}
1536
1537void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1538 bool ReturnEnd, bool IsBounded,
1539 ConcatFnKind appendK,
1540 bool returnPtr) const {
1541 if (appendK == ConcatFnKind::none)
1542 CurrentFunctionDescription = "string copy function";
1543 else
1544 CurrentFunctionDescription = "string concatenation function";
1545
1546 ProgramStateRef state = C.getState();
1547 const LocationContext *LCtx = C.getLocationContext();
1548
1549 // Check that the destination is non-null.
1550 DestinationArgExpr Dst = {CE->getArg(0), 0};
1551 SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1552 state = checkNonNull(C, state, Dst, DstVal);
1553 if (!state)
1554 return;
1555
1556 // Check that the source is non-null.
1557 SourceArgExpr srcExpr = {CE->getArg(1), 1};
1558 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1559 state = checkNonNull(C, state, srcExpr, srcVal);
1560 if (!state)
1561 return;
1562
1563 // Get the string length of the source.
1564 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1565 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1566
1567 // Get the string length of the destination buffer.
1568 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1569 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1570
1571 // If the source isn't a valid C string, give up.
1572 if (strLength.isUndef())
1573 return;
1574
1575 SValBuilder &svalBuilder = C.getSValBuilder();
1576 QualType cmpTy = svalBuilder.getConditionType();
1577 QualType sizeTy = svalBuilder.getContext().getSizeType();
1578
1579 // These two values allow checking two kinds of errors:
1580 // - actual overflows caused by a source that doesn't fit in the destination
1581 // - potential overflows caused by a bound that could exceed the destination
1582 SVal amountCopied = UnknownVal();
1583 SVal maxLastElementIndex = UnknownVal();
1584 const char *boundWarning = nullptr;
1585
1586 // FIXME: Why do we choose the srcExpr if the access has no size?
1587 // Note that the 3rd argument of the call would be the size parameter.
1588 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex};
1589 state = CheckOverlap(
1590 C, state,
1591 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst,
1592 srcExpr);
1593
1594 if (!state)
1595 return;
1596
1597 // If the function is strncpy, strncat, etc... it is bounded.
1598 if (IsBounded) {
1599 // Get the max number of characters to copy.
1600 SizeArgExpr lenExpr = {CE->getArg(2), 2};
1601 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1602
1603 // Protect against misdeclared strncpy().
1604 lenVal =
1605 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1606
1607 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1608
1609 // If we know both values, we might be able to figure out how much
1610 // we're copying.
1611 if (strLengthNL && lenValNL) {
1612 switch (appendK) {
1613 case ConcatFnKind::none:
1614 case ConcatFnKind::strcat: {
1615 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1616 // Check if the max number to copy is less than the length of the src.
1617 // If the bound is equal to the source length, strncpy won't null-
1618 // terminate the result!
1619 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1620 svalBuilder
1621 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1622 .castAs<DefinedOrUnknownSVal>());
1623
1624 if (stateSourceTooLong && !stateSourceNotTooLong) {
1625 // Max number to copy is less than the length of the src, so the
1626 // actual strLength copied is the max number arg.
1627 state = stateSourceTooLong;
1628 amountCopied = lenVal;
1629
1630 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1631 // The source buffer entirely fits in the bound.
1632 state = stateSourceNotTooLong;
1633 amountCopied = strLength;
1634 }
1635 break;
1636 }
1637 case ConcatFnKind::strlcat:
1638 if (!dstStrLengthNL)
1639 return;
1640
1641 // amountCopied = min (size - dstLen - 1 , srcLen)
1642 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1643 *dstStrLengthNL, sizeTy);
1644 if (!freeSpace.getAs<NonLoc>())
1645 return;
1646 freeSpace =
1647 svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1648 svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1649 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1650
1651 // While unlikely, it is possible that the subtraction is
1652 // too complex to compute, let's check whether it succeeded.
1653 if (!freeSpaceNL)
1654 return;
1655 SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1656 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1657
1658 ProgramStateRef TrueState, FalseState;
1659 std::tie(TrueState, FalseState) =
1660 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1661
1662 // srcStrLength <= size - dstStrLength -1
1663 if (TrueState && !FalseState) {
1664 amountCopied = strLength;
1665 }
1666
1667 // srcStrLength > size - dstStrLength -1
1668 if (!TrueState && FalseState) {
1669 amountCopied = freeSpace;
1670 }
1671
1672 if (TrueState && FalseState)
1673 amountCopied = UnknownVal();
1674 break;
1675 }
1676 }
1677 // We still want to know if the bound is known to be too large.
1678 if (lenValNL) {
1679 switch (appendK) {
1680 case ConcatFnKind::strcat:
1681 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1682
1683 // Get the string length of the destination. If the destination is
1684 // memory that can't have a string length, we shouldn't be copying
1685 // into it anyway.
1686 if (dstStrLength.isUndef())
1687 return;
1688
1689 if (dstStrLengthNL) {
1690 maxLastElementIndex = svalBuilder.evalBinOpNN(
1691 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1692
1693 boundWarning = "Size argument is greater than the free space in the "
1694 "destination buffer";
1695 }
1696 break;
1697 case ConcatFnKind::none:
1698 case ConcatFnKind::strlcat:
1699 // For strncpy and strlcat, this is just checking
1700 // that lenVal <= sizeof(dst).
1701 // (Yes, strncpy and strncat differ in how they treat termination.
1702 // strncat ALWAYS terminates, but strncpy doesn't.)
1703
1704 // We need a special case for when the copy size is zero, in which
1705 // case strncpy will do no work at all. Our bounds check uses n-1
1706 // as the last element accessed, so n == 0 is problematic.
1707 ProgramStateRef StateZeroSize, StateNonZeroSize;
1708 std::tie(StateZeroSize, StateNonZeroSize) =
1709 assumeZero(C, state, *lenValNL, sizeTy);
1710
1711 // If the size is known to be zero, we're done.
1712 if (StateZeroSize && !StateNonZeroSize) {
1713 if (returnPtr) {
1714 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1715 } else {
1716 if (appendK == ConcatFnKind::none) {
1717 // strlcpy returns strlen(src)
1718 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1719 } else {
1720 // strlcat returns strlen(src) + strlen(dst)
1721 SVal retSize = svalBuilder.evalBinOp(
1722 state, BO_Add, strLength, dstStrLength, sizeTy);
1723 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1724 }
1725 }
1726 C.addTransition(StateZeroSize);
1727 return;
1728 }
1729
1730 // Otherwise, go ahead and figure out the last element we'll touch.
1731 // We don't record the non-zero assumption here because we can't
1732 // be sure. We won't warn on a possible zero.
1733 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1734 maxLastElementIndex =
1735 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1736 boundWarning = "Size argument is greater than the length of the "
1737 "destination buffer";
1738 break;
1739 }
1740 }
1741 } else {
1742 // The function isn't bounded. The amount copied should match the length
1743 // of the source buffer.
1744 amountCopied = strLength;
1745 }
1746
1747 assert(state)(static_cast<void> (0));
1748
1749 // This represents the number of characters copied into the destination
1750 // buffer. (It may not actually be the strlen if the destination buffer
1751 // is not terminated.)
1752 SVal finalStrLength = UnknownVal();
1753 SVal strlRetVal = UnknownVal();
1754
1755 if (appendK == ConcatFnKind::none && !returnPtr) {
1756 // strlcpy returns the sizeof(src)
1757 strlRetVal = strLength;
1758 }
1759
1760 // If this is an appending function (strcat, strncat...) then set the
1761 // string length to strlen(src) + strlen(dst) since the buffer will
1762 // ultimately contain both.
1763 if (appendK != ConcatFnKind::none) {
1764 // Get the string length of the destination. If the destination is memory
1765 // that can't have a string length, we shouldn't be copying into it anyway.
1766 if (dstStrLength.isUndef())
1767 return;
1768
1769 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1770 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1771 *dstStrLengthNL, sizeTy);
1772 }
1773
1774 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1775
1776 // If we know both string lengths, we might know the final string length.
1777 if (amountCopiedNL && dstStrLengthNL) {
1778 // Make sure the two lengths together don't overflow a size_t.
1779 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1780 if (!state)
1781 return;
1782
1783 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1784 *dstStrLengthNL, sizeTy);
1785 }
1786
1787 // If we couldn't get a single value for the final string length,
1788 // we can at least bound it by the individual lengths.
1789 if (finalStrLength.isUnknown()) {
1790 // Try to get a "hypothetical" string length symbol, which we can later
1791 // set as a real value if that turns out to be the case.
1792 finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1793 assert(!finalStrLength.isUndef())(static_cast<void> (0));
1794
1795 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1796 if (amountCopiedNL && appendK == ConcatFnKind::none) {
1797 // we overwrite dst string with the src
1798 // finalStrLength >= srcStrLength
1799 SVal sourceInResult = svalBuilder.evalBinOpNN(
1800 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1801 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1802 true);
1803 if (!state)
1804 return;
1805 }
1806
1807 if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1808 // we extend the dst string with the src
1809 // finalStrLength >= dstStrLength
1810 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1811 *finalStrLengthNL,
1812 *dstStrLengthNL,
1813 cmpTy);
1814 state =
1815 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1816 if (!state)
1817 return;
1818 }
1819 }
1820 }
1821
1822 } else {
1823 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1824 // the final string length will match the input string length.
1825 finalStrLength = amountCopied;
1826 }
1827
1828 SVal Result;
1829
1830 if (returnPtr) {
1831 // The final result of the function will either be a pointer past the last
1832 // copied element, or a pointer to the start of the destination buffer.
1833 Result = (ReturnEnd ? UnknownVal() : DstVal);
1834 } else {
1835 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1836 //strlcpy, strlcat
1837 Result = strlRetVal;
1838 else
1839 Result = finalStrLength;
1840 }
1841
1842 assert(state)(static_cast<void> (0));
1843
1844 // If the destination is a MemRegion, try to check for a buffer overflow and
1845 // record the new string length.
1846 if (Optional<loc::MemRegionVal> dstRegVal =
1847 DstVal.getAs<loc::MemRegionVal>()) {
1848 QualType ptrTy = Dst.Expression->getType();
1849
1850 // If we have an exact value on a bounded copy, use that to check for
1851 // overflows, rather than our estimate about how much is actually copied.
1852 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1853 SVal maxLastElement =
1854 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
1855
1856 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
1857 if (!state)
1858 return;
1859 }
1860
1861 // Then, if the final length is known...
1862 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1863 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1864 *knownStrLength, ptrTy);
1865
1866 // ...and we haven't checked the bound, we'll check the actual copy.
1867 if (!boundWarning) {
1868 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
1869 if (!state)
1870 return;
1871 }
1872
1873 // If this is a stpcpy-style copy, the last element is the return value.
1874 if (returnPtr && ReturnEnd)
1875 Result = lastElement;
1876 }
1877
1878 // Invalidate the destination (regular invalidation without pointer-escaping
1879 // the address of the top-level region). This must happen before we set the
1880 // C string length because invalidation will clear the length.
1881 // FIXME: Even if we can't perfectly model the copy, we should see if we
1882 // can use LazyCompoundVals to copy the source values into the destination.
1883 // This would probably remove any existing bindings past the end of the
1884 // string, but that's still an improvement over blank invalidation.
1885 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal,
1886 /*IsSourceBuffer*/ false, nullptr);
1887
1888 // Invalidate the source (const-invalidation without const-pointer-escaping
1889 // the address of the top-level region).
1890 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal,
1891 /*IsSourceBuffer*/ true, nullptr);
1892
1893 // Set the C string length of the destination, if we know it.
1894 if (IsBounded && (appendK == ConcatFnKind::none)) {
1895 // strncpy is annoying in that it doesn't guarantee to null-terminate
1896 // the result string. If the original string didn't fit entirely inside
1897 // the bound (including the null-terminator), we don't know how long the
1898 // result is.
1899 if (amountCopied != strLength)
1900 finalStrLength = UnknownVal();
1901 }
1902 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1903 }
1904
1905 assert(state)(static_cast<void> (0));
1906
1907 if (returnPtr) {
1908 // If this is a stpcpy-style copy, but we were unable to check for a buffer
1909 // overflow, we still need a result. Conjure a return value.
1910 if (ReturnEnd && Result.isUnknown()) {
1911 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1912 }
1913 }
1914 // Set the return value.
1915 state = state->BindExpr(CE, LCtx, Result);
1916 C.addTransition(state);
1917}
1918
1919void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1920 //int strcmp(const char *s1, const char *s2);
1921 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
1922}
1923
1924void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1925 //int strncmp(const char *s1, const char *s2, size_t n);
1926 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
1927}
1928
1929void CStringChecker::evalStrcasecmp(CheckerContext &C,
1930 const CallExpr *CE) const {
1931 //int strcasecmp(const char *s1, const char *s2);
1932 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
1933}
1934
1935void CStringChecker::evalStrncasecmp(CheckerContext &C,
1936 const CallExpr *CE) const {
1937 //int strncasecmp(const char *s1, const char *s2, size_t n);
1938 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
1939}
1940
1941void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1942 bool IsBounded, bool IgnoreCase) const {
1943 CurrentFunctionDescription = "string comparison function";
1944 ProgramStateRef state = C.getState();
1945 const LocationContext *LCtx = C.getLocationContext();
1946
1947 // Check that the first string is non-null
1948 AnyArgExpr Left = {CE->getArg(0), 0};
1949 SVal LeftVal = state->getSVal(Left.Expression, LCtx);
1950 state = checkNonNull(C, state, Left, LeftVal);
1951 if (!state)
1952 return;
1953
1954 // Check that the second string is non-null.
1955 AnyArgExpr Right = {CE->getArg(1), 1};
1956 SVal RightVal = state->getSVal(Right.Expression, LCtx);
1957 state = checkNonNull(C, state, Right, RightVal);
1958 if (!state)
1959 return;
1960
1961 // Get the string length of the first string or give up.
1962 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
1963 if (LeftLength.isUndef())
1964 return;
1965
1966 // Get the string length of the second string or give up.
1967 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
1968 if (RightLength.isUndef())
1969 return;
1970
1971 // If we know the two buffers are the same, we know the result is 0.
1972 // First, get the two buffers' addresses. Another checker will have already
1973 // made sure they're not undefined.
1974 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
1975 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
1976
1977 // See if they are the same.
1978 SValBuilder &svalBuilder = C.getSValBuilder();
1979 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1980 ProgramStateRef StSameBuf, StNotSameBuf;
1981 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1982
1983 // If the two arguments might be the same buffer, we know the result is 0,
1984 // and we only need to check one size.
1985 if (StSameBuf) {
1986 StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1987 svalBuilder.makeZeroVal(CE->getType()));
1988 C.addTransition(StSameBuf);
1989
1990 // If the two arguments are GUARANTEED to be the same, we're done!
1991 if (!StNotSameBuf)
1992 return;
1993 }
1994
1995 assert(StNotSameBuf)(static_cast<void> (0));
1996 state = StNotSameBuf;
1997
1998 // At this point we can go about comparing the two buffers.
1999 // For now, we only do this if they're both known string literals.
2000
2001 // Attempt to extract string literals from both expressions.
2002 const StringLiteral *LeftStrLiteral =
2003 getCStringLiteral(C, state, Left.Expression, LeftVal);
2004 const StringLiteral *RightStrLiteral =
2005 getCStringLiteral(C, state, Right.Expression, RightVal);
2006 bool canComputeResult = false;
2007 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
2008 C.blockCount());
2009
2010 if (LeftStrLiteral && RightStrLiteral) {
2011 StringRef LeftStrRef = LeftStrLiteral->getString();
2012 StringRef RightStrRef = RightStrLiteral->getString();
2013
2014 if (IsBounded) {
2015 // Get the max number of characters to compare.
2016 const Expr *lenExpr = CE->getArg(2);
2017 SVal lenVal = state->getSVal(lenExpr, LCtx);
2018
2019 // If the length is known, we can get the right substrings.
2020 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2021 // Create substrings of each to compare the prefix.
2022 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2023 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2024 canComputeResult = true;
2025 }
2026 } else {
2027 // This is a normal, unbounded strcmp.
2028 canComputeResult = true;
2029 }
2030
2031 if (canComputeResult) {
2032 // Real strcmp stops at null characters.
2033 size_t s1Term = LeftStrRef.find('\0');
2034 if (s1Term != StringRef::npos)
2035 LeftStrRef = LeftStrRef.substr(0, s1Term);
2036
2037 size_t s2Term = RightStrRef.find('\0');
2038 if (s2Term != StringRef::npos)
2039 RightStrRef = RightStrRef.substr(0, s2Term);
2040
2041 // Use StringRef's comparison methods to compute the actual result.
2042 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2043 : LeftStrRef.compare(RightStrRef);
2044
2045 // The strcmp function returns an integer greater than, equal to, or less
2046 // than zero, [c11, p7.24.4.2].
2047 if (compareRes == 0) {
2048 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2049 }
2050 else {
2051 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2052 // Constrain strcmp's result range based on the result of StringRef's
2053 // comparison methods.
2054 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2055 SVal compareWithZero =
2056 svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2057 svalBuilder.getConditionType());
2058 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2059 state = state->assume(compareWithZeroVal, true);
2060 }
2061 }
2062 }
2063
2064 state = state->BindExpr(CE, LCtx, resultVal);
2065
2066 // Record this as a possible path.
2067 C.addTransition(state);
2068}
2069
2070void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2071 //char *strsep(char **stringp, const char *delim);
2072 // Sanity: does the search string parameter match the return type?
2073 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0};
2074
2075 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2076 if (CharPtrTy.isNull() ||
2077 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2078 return;
2079
2080 CurrentFunctionDescription = "strsep()";
2081 ProgramStateRef State = C.getState();
2082 const LocationContext *LCtx = C.getLocationContext();
2083
2084 // Check that the search string pointer is non-null (though it may point to
2085 // a null string).
2086 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2087 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2088 if (!State)
2089 return;
2090
2091 // Check that the delimiter string is non-null.
2092 AnyArgExpr DelimStr = {CE->getArg(1), 1};
2093 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2094 State = checkNonNull(C, State, DelimStr, DelimStrVal);
2095 if (!State)
2096 return;
2097
2098 SValBuilder &SVB = C.getSValBuilder();
2099 SVal Result;
2100 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2101 // Get the current value of the search string pointer, as a char*.
2102 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2103
2104 // Invalidate the search string, representing the change of one delimiter
2105 // character to NUL.
2106 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result,
2107 /*IsSourceBuffer*/ false, nullptr);
2108
2109 // Overwrite the search string pointer. The new value is either an address
2110 // further along in the same string, or NULL if there are no more tokens.
2111 State = State->bindLoc(*SearchStrLoc,
2112 SVB.conjureSymbolVal(getTag(),
2113 CE,
2114 LCtx,
2115 CharPtrTy,
2116 C.blockCount()),
2117 LCtx);
2118 } else {
2119 assert(SearchStrVal.isUnknown())(static_cast<void> (0));
2120 // Conjure a symbolic value. It's the best we can do.
2121 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2122 }
2123
2124 // Set the return value, and finish.
2125 State = State->BindExpr(CE, LCtx, Result);
2126 C.addTransition(State);
2127}
2128
2129// These should probably be moved into a C++ standard library checker.
2130void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2131 evalStdCopyCommon(C, CE);
2132}
2133
2134void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2135 const CallExpr *CE) const {
2136 evalStdCopyCommon(C, CE);
2137}
2138
2139void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2140 const CallExpr *CE) const {
2141 if (!CE->getArg(2)->getType()->isPointerType())
2142 return;
2143
2144 ProgramStateRef State = C.getState();
2145
2146 const LocationContext *LCtx = C.getLocationContext();
2147
2148 // template <class _InputIterator, class _OutputIterator>
2149 // _OutputIterator
2150 // copy(_InputIterator __first, _InputIterator __last,
2151 // _OutputIterator __result)
2152
2153 // Invalidate the destination buffer
2154 const Expr *Dst = CE->getArg(2);
2155 SVal DstVal = State->getSVal(Dst, LCtx);
2156 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2157 /*Size=*/nullptr);
2158
2159 SValBuilder &SVB = C.getSValBuilder();
2160
2161 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2162 State = State->BindExpr(CE, LCtx, ResultVal);
2163
2164 C.addTransition(State);
2165}
2166
2167void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2168 // void *memset(void *s, int c, size_t n);
2169 CurrentFunctionDescription = "memory set function";
2170
2171 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2172 AnyArgExpr CharE = {CE->getArg(1), 1};
2173 SizeArgExpr Size = {CE->getArg(2), 2};
2174
2175 ProgramStateRef State = C.getState();
2176
2177 // See if the size argument is zero.
2178 const LocationContext *LCtx = C.getLocationContext();
2179 SVal SizeVal = C.getSVal(Size.Expression);
2180 QualType SizeTy = Size.Expression->getType();
2181
2182 ProgramStateRef ZeroSize, NonZeroSize;
2183 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2184
2185 // Get the value of the memory area.
2186 SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2187
2188 // If the size is zero, there won't be any actual memory access, so
2189 // just bind the return value to the buffer and return.
2190 if (ZeroSize && !NonZeroSize) {
2191 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal);
2192 C.addTransition(ZeroSize);
2193 return;
2194 }
2195
2196 // Ensure the memory area is not null.
2197 // If it is NULL there will be a NULL pointer dereference.
2198 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2199 if (!State)
2200 return;
2201
2202 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2203 if (!State)
2204 return;
2205
2206 // According to the values of the arguments, bind the value of the second
2207 // argument to the destination buffer and set string length, or just
2208 // invalidate the destination buffer.
2209 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2210 Size.Expression, C, State))
2211 return;
2212
2213 State = State->BindExpr(CE, LCtx, BufferPtrVal);
2214 C.addTransition(State);
2215}
2216
2217void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2218 CurrentFunctionDescription = "memory clearance function";
2219
2220 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2221 SizeArgExpr Size = {CE->getArg(1), 1};
2222 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2223
2224 ProgramStateRef State = C.getState();
2225
2226 // See if the size argument is zero.
2227 SVal SizeVal = C.getSVal(Size.Expression);
2228 QualType SizeTy = Size.Expression->getType();
2229
2230 ProgramStateRef StateZeroSize, StateNonZeroSize;
2231 std::tie(StateZeroSize, StateNonZeroSize) =
2232 assumeZero(C, State, SizeVal, SizeTy);
2233
2234 // If the size is zero, there won't be any actual memory access,
2235 // In this case we just return.
2236 if (StateZeroSize && !StateNonZeroSize) {
2237 C.addTransition(StateZeroSize);
2238 return;
2239 }
2240
2241 // Get the value of the memory area.
2242 SVal MemVal = C.getSVal(Buffer.Expression);
2243
2244 // Ensure the memory area is not null.
2245 // If it is NULL there will be a NULL pointer dereference.
2246 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2247 if (!State)
2248 return;
2249
2250 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2251 if (!State)
2252 return;
2253
2254 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2255 return;
2256
2257 C.addTransition(State);
2258}
2259
2260//===----------------------------------------------------------------------===//
2261// The driver method, and other Checker callbacks.
2262//===----------------------------------------------------------------------===//
2263
2264CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2265 CheckerContext &C) const {
2266 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2267 if (!CE)
2268 return nullptr;
2269
2270 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2271 if (!FD)
2272 return nullptr;
2273
2274 if (Call.isCalled(StdCopy)) {
2275 return &CStringChecker::evalStdCopy;
2276 } else if (Call.isCalled(StdCopyBackward)) {
2277 return &CStringChecker::evalStdCopyBackward;
2278 }
2279
2280 // Pro-actively check that argument types are safe to do arithmetic upon.
2281 // We do not want to crash if someone accidentally passes a structure
2282 // into, say, a C++ overload of any of these functions. We could not check
2283 // that for std::copy because they may have arguments of other types.
2284 for (auto I : CE->arguments()) {
2285 QualType T = I->getType();
2286 if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2287 return nullptr;
2288 }
2289
2290 const FnCheck *Callback = Callbacks.lookup(Call);
2291 if (Callback)
2292 return *Callback;
2293
2294 return nullptr;
2295}
2296
2297bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2298 FnCheck Callback = identifyCall(Call, C);
2299
2300 // If the callee isn't a string function, let another checker handle it.
2301 if (!Callback)
2302 return false;
2303
2304 // Check and evaluate the call.
2305 const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2306 (this->*Callback)(C, CE);
2307
2308 // If the evaluate call resulted in no change, chain to the next eval call
2309 // handler.
2310 // Note, the custom CString evaluation calls assume that basic safety
2311 // properties are held. However, if the user chooses to turn off some of these
2312 // checks, we ignore the issues and leave the call evaluation to a generic
2313 // handler.
2314 return C.isDifferent();
2315}
2316
2317void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2318 // Record string length for char a[] = "abc";
2319 ProgramStateRef state = C.getState();
2320
2321 for (const auto *I : DS->decls()) {
2322 const VarDecl *D = dyn_cast<VarDecl>(I);
2323 if (!D)
2324 continue;
2325
2326 // FIXME: Handle array fields of structs.
2327 if (!D->getType()->isArrayType())
2328 continue;
2329
2330 const Expr *Init = D->getInit();
2331 if (!Init)
2332 continue;
2333 if (!isa<StringLiteral>(Init))
2334 continue;
2335
2336 Loc VarLoc = state->getLValue(D, C.getLocationContext());
2337 const MemRegion *MR = VarLoc.getAsRegion();
2338 if (!MR)
2339 continue;
2340
2341 SVal StrVal = C.getSVal(Init);
2342 assert(StrVal.isValid() && "Initializer string is unknown or undefined")(static_cast<void> (0));
2343 DefinedOrUnknownSVal strLength =
2344 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2345
2346 state = state->set<CStringLength>(MR, strLength);
2347 }
2348
2349 C.addTransition(state);
2350}
2351
2352ProgramStateRef
2353CStringChecker::checkRegionChanges(ProgramStateRef state,
2354 const InvalidatedSymbols *,
2355 ArrayRef<const MemRegion *> ExplicitRegions,
2356 ArrayRef<const MemRegion *> Regions,
2357 const LocationContext *LCtx,
2358 const CallEvent *Call) const {
2359 CStringLengthTy Entries = state->get<CStringLength>();
2360 if (Entries.isEmpty())
2361 return state;
2362
2363 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2364 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2365
2366 // First build sets for the changed regions and their super-regions.
2367 for (ArrayRef<const MemRegion *>::iterator
2368 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2369 const MemRegion *MR = *I;
2370 Invalidated.insert(MR);
2371
2372 SuperRegions.insert(MR);
2373 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2374 MR = SR->getSuperRegion();
2375 SuperRegions.insert(MR);
2376 }
2377 }
2378
2379 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2380
2381 // Then loop over the entries in the current state.
2382 for (CStringLengthTy::iterator I = Entries.begin(),
2383 E = Entries.end(); I != E; ++I) {
2384 const MemRegion *MR = I.getKey();
2385
2386 // Is this entry for a super-region of a changed region?
2387 if (SuperRegions.count(MR)) {
2388 Entries = F.remove(Entries, MR);
2389 continue;
2390 }
2391
2392 // Is this entry for a sub-region of a changed region?
2393 const MemRegion *Super = MR;
2394 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2395 Super = SR->getSuperRegion();
2396 if (Invalidated.count(Super)) {
2397 Entries = F.remove(Entries, MR);
2398 break;
2399 }
2400 }
2401 }
2402
2403 return state->set<CStringLength>(Entries);
2404}
2405
2406void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2407 SymbolReaper &SR) const {
2408 // Mark all symbols in our string length map as valid.
2409 CStringLengthTy Entries = state->get<CStringLength>();
2410
2411 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2412 I != E; ++I) {
2413 SVal Len = I.getData();
2414
2415 for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2416 se = Len.symbol_end(); si != se; ++si)
2417 SR.markInUse(*si);
2418 }
2419}
2420
2421void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2422 CheckerContext &C) const {
2423 ProgramStateRef state = C.getState();
2424 CStringLengthTy Entries = state->get<CStringLength>();
2425 if (Entries.isEmpty())
2426 return;
2427
2428 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2429 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2430 I != E; ++I) {
2431 SVal Len = I.getData();
2432 if (SymbolRef Sym = Len.getAsSymbol()) {
2433 if (SR.isDead(Sym))
2434 Entries = F.remove(Entries, I.getKey());
2435 }
2436 }
2437
2438 state = state->set<CStringLength>(Entries);
2439 C.addTransition(state);
2440}
2441
2442void ento::registerCStringModeling(CheckerManager &Mgr) {
2443 Mgr.registerChecker<CStringChecker>();
2444}
2445
2446bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2447 return true;
2448}
2449
2450#define REGISTER_CHECKER(name)void ento::registername(CheckerManager &mgr) { CStringChecker
*checker = mgr.getChecker<CStringChecker>(); checker->
Filter.Checkname = true; checker->Filter.CheckNamename = mgr
.getCurrentCheckerName(); } bool ento::shouldRegistername(const
CheckerManager &mgr) { return true; }
\
2451 void ento::register##name(CheckerManager &mgr) { \
2452 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \
2453 checker->Filter.Check##name = true; \
2454 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
2455 } \
2456 \
2457 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2458
2459REGISTER_CHECKER(CStringNullArg)void ento::registerCStringNullArg(CheckerManager &mgr) { CStringChecker
*checker = mgr.getChecker<CStringChecker>(); checker->
Filter.CheckCStringNullArg = true; checker->Filter.CheckNameCStringNullArg
= mgr.getCurrentCheckerName(); } bool ento::shouldRegisterCStringNullArg
(const CheckerManager &mgr) { return true; }
2460REGISTER_CHECKER(CStringOutOfBounds)void ento::registerCStringOutOfBounds(CheckerManager &mgr
) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringOutOfBounds = true; checker
->Filter.CheckNameCStringOutOfBounds = mgr.getCurrentCheckerName
(); } bool ento::shouldRegisterCStringOutOfBounds(const CheckerManager
&mgr) { return true; }
2461REGISTER_CHECKER(CStringBufferOverlap)void ento::registerCStringBufferOverlap(CheckerManager &mgr
) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringBufferOverlap = true; checker
->Filter.CheckNameCStringBufferOverlap = mgr.getCurrentCheckerName
(); } bool ento::shouldRegisterCStringBufferOverlap(const CheckerManager
&mgr) { return true; }
2462REGISTER_CHECKER(CStringNotNullTerm)void ento::registerCStringNotNullTerm(CheckerManager &mgr
) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringNotNullTerm = true; checker
->Filter.CheckNameCStringNotNullTerm = mgr.getCurrentCheckerName
(); } bool ento::shouldRegisterCStringNotNullTerm(const CheckerManager
&mgr) { return true; }

/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/tuple

1// <tuple> -*- C++ -*-
2
3// Copyright (C) 2007-2020 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/tuple
26 * This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_TUPLE1
30#define _GLIBCXX_TUPLE1 1
31
32#pragma GCC system_header
33
34#if __cplusplus201402L < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <utility>
39#include <array>
40#include <bits/uses_allocator.h>
41#include <bits/invoke.h>
42#if __cplusplus201402L > 201703L
43# include <compare>
44# define __cpp_lib_constexpr_tuple 201811L
45#endif
46
47namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
48{
49_GLIBCXX_BEGIN_NAMESPACE_VERSION
50
51 /**
52 * @addtogroup utilities
53 * @{
54 */
55
56 template<typename... _Elements>
57 class tuple;
58
59 template<typename _Tp>
60 struct __is_empty_non_tuple : is_empty<_Tp> { };
61
62 // Using EBO for elements that are tuples causes ambiguous base errors.
63 template<typename _El0, typename... _El>
64 struct __is_empty_non_tuple<tuple<_El0, _El...>> : false_type { };
65
66 // Use the Empty Base-class Optimization for empty, non-final types.
67 template<typename _Tp>
68 using __empty_not_final
69 = typename conditional<__is_final(_Tp), false_type,
70 __is_empty_non_tuple<_Tp>>::type;
71
72 template<std::size_t _Idx, typename _Head,
73 bool = __empty_not_final<_Head>::value>
74 struct _Head_base;
75
76 template<std::size_t _Idx, typename _Head>
77 struct _Head_base<_Idx, _Head, true>
78 : public _Head
79 {
80 constexpr _Head_base()
81 : _Head() { }
82
83 constexpr _Head_base(const _Head& __h)
84 : _Head(__h) { }
85
86 constexpr _Head_base(const _Head_base&) = default;
87 constexpr _Head_base(_Head_base&&) = default;
88
89 template<typename _UHead>
90 constexpr _Head_base(_UHead&& __h)
91 : _Head(std::forward<_UHead>(__h)) { }
92
93 _Head_base(allocator_arg_t, __uses_alloc0)
94 : _Head() { }
95
96 template<typename _Alloc>
97 _Head_base(allocator_arg_t, __uses_alloc1<_Alloc> __a)
98 : _Head(allocator_arg, *__a._M_a) { }
99
100 template<typename _Alloc>
101 _Head_base(allocator_arg_t, __uses_alloc2<_Alloc> __a)
102 : _Head(*__a._M_a) { }
103
104 template<typename _UHead>
105 _Head_base(__uses_alloc0, _UHead&& __uhead)
106 : _Head(std::forward<_UHead>(__uhead)) { }
107
108 template<typename _Alloc, typename _UHead>
109 _Head_base(__uses_alloc1<_Alloc> __a, _UHead&& __uhead)
110 : _Head(allocator_arg, *__a._M_a, std::forward<_UHead>(__uhead)) { }
111
112 template<typename _Alloc, typename _UHead>
113 _Head_base(__uses_alloc2<_Alloc> __a, _UHead&& __uhead)
114 : _Head(std::forward<_UHead>(__uhead), *__a._M_a) { }
115
116 static constexpr _Head&
117 _M_head(_Head_base& __b) noexcept { return __b; }
118
119 static constexpr const _Head&
120 _M_head(const _Head_base& __b) noexcept { return __b; }
121 };
122
123 template<std::size_t _Idx, typename _Head>
124 struct _Head_base<_Idx, _Head, false>
125 {
126 constexpr _Head_base()
127 : _M_head_impl() { }
128
129 constexpr _Head_base(const _Head& __h)
130 : _M_head_impl(__h) { }
131
132 constexpr _Head_base(const _Head_base&) = default;
133 constexpr _Head_base(_Head_base&&) = default;
134
135 template<typename _UHead>
136 constexpr _Head_base(_UHead&& __h)
137 : _M_head_impl(std::forward<_UHead>(__h)) { }
138
139 _GLIBCXX20_CONSTEXPR
140 _Head_base(allocator_arg_t, __uses_alloc0)
141 : _M_head_impl() { }
142
143 template<typename _Alloc>
144 _Head_base(allocator_arg_t, __uses_alloc1<_Alloc> __a)
145 : _M_head_impl(allocator_arg, *__a._M_a) { }
146
147 template<typename _Alloc>
148 _Head_base(allocator_arg_t, __uses_alloc2<_Alloc> __a)
149 : _M_head_impl(*__a._M_a) { }
150
151 template<typename _UHead>
152 _GLIBCXX20_CONSTEXPR
153 _Head_base(__uses_alloc0, _UHead&& __uhead)
154 : _M_head_impl(std::forward<_UHead>(__uhead)) { }
155
156 template<typename _Alloc, typename _UHead>
157 _Head_base(__uses_alloc1<_Alloc> __a, _UHead&& __uhead)
158 : _M_head_impl(allocator_arg, *__a._M_a, std::forward<_UHead>(__uhead))
159 { }
160
161 template<typename _Alloc, typename _UHead>
162 _Head_base(__uses_alloc2<_Alloc> __a, _UHead&& __uhead)
163 : _M_head_impl(std::forward<_UHead>(__uhead), *__a._M_a) { }
164
165 static constexpr _Head&
166 _M_head(_Head_base& __b) noexcept { return __b._M_head_impl; }
167
168 static constexpr const _Head&
169 _M_head(const _Head_base& __b) noexcept { return __b._M_head_impl; }
170
171 _Head _M_head_impl;
172 };
173
174 /**
175 * Contains the actual implementation of the @c tuple template, stored
176 * as a recursive inheritance hierarchy from the first element (most
177 * derived class) to the last (least derived class). The @c Idx
178 * parameter gives the 0-based index of the element stored at this
179 * point in the hierarchy; we use it to implement a constant-time
180 * get() operation.
181 */
182 template<std::size_t _Idx, typename... _Elements>
183 struct _Tuple_impl;
184
185 /**
186 * Recursive tuple implementation. Here we store the @c Head element
187 * and derive from a @c Tuple_impl containing the remaining elements
188 * (which contains the @c Tail).
189 */
190 template<std::size_t _Idx, typename _Head, typename... _Tail>
191 struct _Tuple_impl<_Idx, _Head, _Tail...>
192 : public _Tuple_impl<_Idx + 1, _Tail...>,
193 private _Head_base<_Idx, _Head>
194 {
195 template<std::size_t, typename...> friend class _Tuple_impl;
196
197 typedef _Tuple_impl<_Idx + 1, _Tail...> _Inherited;
198 typedef _Head_base<_Idx, _Head> _Base;
199
200 static constexpr _Head&
201 _M_head(_Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
202
203 static constexpr const _Head&
204 _M_head(const _Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
205
206 static constexpr _Inherited&
207 _M_tail(_Tuple_impl& __t) noexcept { return __t; }
208
209 static constexpr const _Inherited&
210 _M_tail(const _Tuple_impl& __t) noexcept { return __t; }
211
212 constexpr _Tuple_impl()
213 : _Inherited(), _Base() { }
214
215 explicit
216 constexpr _Tuple_impl(const _Head& __head, const _Tail&... __tail)
217 : _Inherited(__tail...), _Base(__head) { }
6
Calling constructor for '_Tuple_impl<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
9
Returning from constructor for '_Tuple_impl<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
20
Calling constructor for '_Tuple_impl<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
23
Returning from constructor for '_Tuple_impl<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
218
219 template<typename _UHead, typename... _UTail, typename = typename
220 enable_if<sizeof...(_Tail) == sizeof...(_UTail)>::type>
221 explicit
222 constexpr _Tuple_impl(_UHead&& __head, _UTail&&... __tail)
223 : _Inherited(std::forward<_UTail>(__tail)...),
224 _Base(std::forward<_UHead>(__head)) { }
225
226 constexpr _Tuple_impl(const _Tuple_impl&) = default;
227
228 // _GLIBCXX_RESOLVE_LIB_DEFECTS
229 // 2729. Missing SFINAE on std::pair::operator=
230 _Tuple_impl& operator=(const _Tuple_impl&) = delete;
231
232 constexpr
233 _Tuple_impl(_Tuple_impl&& __in)
234 noexcept(__and_<is_nothrow_move_constructible<_Head>,
235 is_nothrow_move_constructible<_Inherited>>::value)
236 : _Inherited(std::move(_M_tail(__in))),
237 _Base(std::forward<_Head>(_M_head(__in))) { }
238
239 template<typename... _UElements>
240 constexpr _Tuple_impl(const _Tuple_impl<_Idx, _UElements...>& __in)
241 : _Inherited(_Tuple_impl<_Idx, _UElements...>::_M_tail(__in)),
242 _Base(_Tuple_impl<_Idx, _UElements...>::_M_head(__in)) { }
243
244 template<typename _UHead, typename... _UTails>
245 constexpr _Tuple_impl(_Tuple_impl<_Idx, _UHead, _UTails...>&& __in)
246 : _Inherited(std::move
247 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in))),
248 _Base(std::forward<_UHead>
249 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in))) { }
250
251 template<typename _Alloc>
252 _GLIBCXX20_CONSTEXPR
253 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a)
254 : _Inherited(__tag, __a),
255 _Base(__tag, __use_alloc<_Head>(__a)) { }
256
257 template<typename _Alloc>
258 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
259 const _Head& __head, const _Tail&... __tail)
260 : _Inherited(__tag, __a, __tail...),
261 _Base(__use_alloc<_Head, _Alloc, _Head>(__a), __head) { }
262
263 template<typename _Alloc, typename _UHead, typename... _UTail,
264 typename = typename enable_if<sizeof...(_Tail)
265 == sizeof...(_UTail)>::type>
266 _GLIBCXX20_CONSTEXPR
267 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
268 _UHead&& __head, _UTail&&... __tail)
269 : _Inherited(__tag, __a, std::forward<_UTail>(__tail)...),
270 _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
271 std::forward<_UHead>(__head)) { }
272
273 template<typename _Alloc>
274 _GLIBCXX20_CONSTEXPR
275 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
276 const _Tuple_impl& __in)
277 : _Inherited(__tag, __a, _M_tail(__in)),
278 _Base(__use_alloc<_Head, _Alloc, _Head>(__a), _M_head(__in)) { }
279
280 template<typename _Alloc>
281 _GLIBCXX20_CONSTEXPR
282 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
283 _Tuple_impl&& __in)
284 : _Inherited(__tag, __a, std::move(_M_tail(__in))),
285 _Base(__use_alloc<_Head, _Alloc, _Head>(__a),
286 std::forward<_Head>(_M_head(__in))) { }
287
288 template<typename _Alloc, typename _UHead, typename... _UTails>
289 _GLIBCXX20_CONSTEXPR
290 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
291 const _Tuple_impl<_Idx, _UHead, _UTails...>& __in)
292 : _Inherited(__tag, __a,
293 _Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in)),
294 _Base(__use_alloc<_Head, _Alloc, const _UHead&>(__a),
295 _Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in)) { }
296
297 template<typename _Alloc, typename _UHead, typename... _UTails>
298 _GLIBCXX20_CONSTEXPR
299 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
300 _Tuple_impl<_Idx, _UHead, _UTails...>&& __in)
301 : _Inherited(__tag, __a, std::move
302 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in))),
303 _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
304 std::forward<_UHead>
305 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in))) { }
306
307 template<typename... _UElements>
308 _GLIBCXX20_CONSTEXPR
309 void
310 _M_assign(const _Tuple_impl<_Idx, _UElements...>& __in)
311 {
312 _M_head(*this) = _Tuple_impl<_Idx, _UElements...>::_M_head(__in);
313 _M_tail(*this)._M_assign(
314 _Tuple_impl<_Idx, _UElements...>::_M_tail(__in));
315 }
316
317 template<typename _UHead, typename... _UTails>
318 _GLIBCXX20_CONSTEXPR
319 void
320 _M_assign(_Tuple_impl<_Idx, _UHead, _UTails...>&& __in)
321 {
322 _M_head(*this) = std::forward<_UHead>
323 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in));
324 _M_tail(*this)._M_assign(
325 std::move(_Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in)));
326 }
327
328 protected:
329 _GLIBCXX20_CONSTEXPR
330 void
331 _M_swap(_Tuple_impl& __in)
332 {
333 using std::swap;
334 swap(_M_head(*this), _M_head(__in));
335 _Inherited::_M_swap(_M_tail(__in));
336 }
337 };
338
339 // Basis case of inheritance recursion.
340 template<std::size_t _Idx, typename _Head>
341 struct _Tuple_impl<_Idx, _Head>
342 : private _Head_base<_Idx, _Head>
343 {
344 template<std::size_t, typename...> friend class _Tuple_impl;
345
346 typedef _Head_base<_Idx, _Head> _Base;
347
348 static constexpr _Head&
349 _M_head(_Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
350
351 static constexpr const _Head&
352 _M_head(const _Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
353
354 constexpr _Tuple_impl()
355 : _Base() { }
356
357 explicit
358 constexpr _Tuple_impl(const _Head& __head)
359 : _Base(__head) { }
7
Calling constructor for '_Head_base<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, false>'
8
Returning from constructor for '_Head_base<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, false>'
21
Calling constructor for '_Head_base<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, false>'
22
Returning from constructor for '_Head_base<1UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, false>'
360
361 template<typename _UHead>
362 explicit
363 constexpr _Tuple_impl(_UHead&& __head)
364 : _Base(std::forward<_UHead>(__head)) { }
365
366 constexpr _Tuple_impl(const _Tuple_impl&) = default;
367
368 // _GLIBCXX_RESOLVE_LIB_DEFECTS
369 // 2729. Missing SFINAE on std::pair::operator=
370 _Tuple_impl& operator=(const _Tuple_impl&) = delete;
371
372 constexpr
373 _Tuple_impl(_Tuple_impl&& __in)
374 noexcept(is_nothrow_move_constructible<_Head>::value)
375 : _Base(std::forward<_Head>(_M_head(__in))) { }
376
377 template<typename _UHead>
378 constexpr _Tuple_impl(const _Tuple_impl<_Idx, _UHead>& __in)
379 : _Base(_Tuple_impl<_Idx, _UHead>::_M_head(__in)) { }
380
381 template<typename _UHead>
382 constexpr _Tuple_impl(_Tuple_impl<_Idx, _UHead>&& __in)
383 : _Base(std::forward<_UHead>(_Tuple_impl<_Idx, _UHead>::_M_head(__in)))
384 { }
385
386 template<typename _Alloc>
387 _GLIBCXX20_CONSTEXPR
388 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a)
389 : _Base(__tag, __use_alloc<_Head>(__a)) { }
390
391 template<typename _Alloc>
392 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
393 const _Head& __head)
394 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a), __head) { }
395
396 template<typename _Alloc, typename _UHead>
397 _GLIBCXX20_CONSTEXPR
398 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
399 _UHead&& __head)
400 : _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
401 std::forward<_UHead>(__head)) { }
402
403 template<typename _Alloc>
404 _GLIBCXX20_CONSTEXPR
405 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
406 const _Tuple_impl& __in)
407 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a), _M_head(__in)) { }
408
409 template<typename _Alloc>
410 _GLIBCXX20_CONSTEXPR
411 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
412 _Tuple_impl&& __in)
413 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a),
414 std::forward<_Head>(_M_head(__in))) { }
415
416 template<typename _Alloc, typename _UHead>
417 _GLIBCXX20_CONSTEXPR
418 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
419 const _Tuple_impl<_Idx, _UHead>& __in)
420 : _Base(__use_alloc<_Head, _Alloc, const _UHead&>(__a),
421 _Tuple_impl<_Idx, _UHead>::_M_head(__in)) { }
422
423 template<typename _Alloc, typename _UHead>
424 _GLIBCXX20_CONSTEXPR
425 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
426 _Tuple_impl<_Idx, _UHead>&& __in)
427 : _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
428 std::forward<_UHead>(_Tuple_impl<_Idx, _UHead>::_M_head(__in)))
429 { }
430
431 template<typename _UHead>
432 _GLIBCXX20_CONSTEXPR
433 void
434 _M_assign(const _Tuple_impl<_Idx, _UHead>& __in)
435 {
436 _M_head(*this) = _Tuple_impl<_Idx, _UHead>::_M_head(__in);
437 }
438
439 template<typename _UHead>
440 _GLIBCXX20_CONSTEXPR
441 void
442 _M_assign(_Tuple_impl<_Idx, _UHead>&& __in)
443 {
444 _M_head(*this)
445 = std::forward<_UHead>(_Tuple_impl<_Idx, _UHead>::_M_head(__in));
446 }
447
448 protected:
449 _GLIBCXX20_CONSTEXPR
450 void
451 _M_swap(_Tuple_impl& __in)
452 {
453 using std::swap;
454 swap(_M_head(*this), _M_head(__in));
455 }
456 };
457
458 // Concept utility functions, reused in conditionally-explicit
459 // constructors.
460 template<bool, typename... _Types>
461 struct _TupleConstraints
462 {
463 // Constraint for a non-explicit constructor.
464 // True iff each Ti in _Types... can be constructed from Ui in _UTypes...
465 // and every Ui is implicitly convertible to Ti.
466 template<typename... _UTypes>
467 static constexpr bool __is_implicitly_constructible()
468 {
469 return __and_<is_constructible<_Types, _UTypes>...,
470 is_convertible<_UTypes, _Types>...
471 >::value;
472 }
473
474 // Constraint for a non-explicit constructor.
475 // True iff each Ti in _Types... can be constructed from Ui in _UTypes...
476 // but not every Ui is implicitly convertible to Ti.
477 template<typename... _UTypes>
478 static constexpr bool __is_explicitly_constructible()
479 {
480 return __and_<is_constructible<_Types, _UTypes>...,
481 __not_<__and_<is_convertible<_UTypes, _Types>...>>
482 >::value;
483 }
484
485 static constexpr bool __is_implicitly_default_constructible()
486 {
487 return __and_<std::__is_implicitly_default_constructible<_Types>...
488 >::value;
489 }
490
491 static constexpr bool __is_explicitly_default_constructible()
492 {
493 return __and_<is_default_constructible<_Types>...,
494 __not_<__and_<
495 std::__is_implicitly_default_constructible<_Types>...>
496 >>::value;
497 }
498 };
499
500 // Partial specialization used when a required precondition isn't met,
501 // e.g. when sizeof...(_Types) != sizeof...(_UTypes).
502 template<typename... _Types>
503 struct _TupleConstraints<false, _Types...>
504 {
505 template<typename... _UTypes>
506 static constexpr bool __is_implicitly_constructible()
507 { return false; }
508
509 template<typename... _UTypes>
510 static constexpr bool __is_explicitly_constructible()
511 { return false; }
512 };
513
514 /// Primary class template, tuple
515 template<typename... _Elements>
516 class tuple : public _Tuple_impl<0, _Elements...>
517 {
518 typedef _Tuple_impl<0, _Elements...> _Inherited;
519
520 template<bool _Cond>
521 using _TCC = _TupleConstraints<_Cond, _Elements...>;
522
523 // Constraint for non-explicit default constructor
524 template<bool _Dummy>
525 using _ImplicitDefaultCtor = __enable_if_t<
526 _TCC<_Dummy>::__is_implicitly_default_constructible(),
527 bool>;
528
529 // Constraint for explicit default constructor
530 template<bool _Dummy>
531 using _ExplicitDefaultCtor = __enable_if_t<
532 _TCC<_Dummy>::__is_explicitly_default_constructible(),
533 bool>;
534
535 // Constraint for non-explicit constructors
536 template<bool _Cond, typename... _Args>
537 using _ImplicitCtor = __enable_if_t<
538 _TCC<_Cond>::template __is_implicitly_constructible<_Args...>(),
539 bool>;
540
541 // Constraint for non-explicit constructors
542 template<bool _Cond, typename... _Args>
543 using _ExplicitCtor = __enable_if_t<
544 _TCC<_Cond>::template __is_explicitly_constructible<_Args...>(),
545 bool>;
546
547 template<typename... _UElements>
548 static constexpr
549 __enable_if_t<sizeof...(_UElements) == sizeof...(_Elements), bool>
550 __assignable()
551 { return __and_<is_assignable<_Elements&, _UElements>...>::value; }
552
553 // Condition for noexcept-specifier of an assignment operator.
554 template<typename... _UElements>
555 static constexpr bool __nothrow_assignable()
556 {
557 return
558 __and_<is_nothrow_assignable<_Elements&, _UElements>...>::value;
559 }
560
561 // Condition for noexcept-specifier of a constructor.
562 template<typename... _UElements>
563 static constexpr bool __nothrow_constructible()
564 {
565 return
566 __and_<is_nothrow_constructible<_Elements, _UElements>...>::value;
567 }
568
569 // Constraint for tuple(_UTypes&&...) where sizeof...(_UTypes) == 1.
570 template<typename _Up>
571 static constexpr bool __valid_args()
572 {
573 return sizeof...(_Elements) == 1
574 && !is_same<tuple, __remove_cvref_t<_Up>>::value;
575 }
576
577 // Constraint for tuple(_UTypes&&...) where sizeof...(_UTypes) > 1.
578 template<typename, typename, typename... _Tail>
579 static constexpr bool __valid_args()
580 { return (sizeof...(_Tail) + 2) == sizeof...(_Elements); }
581
582 /* Constraint for constructors with a tuple<UTypes...> parameter ensures
583 * that the constructor is only viable when it would not interfere with
584 * tuple(UTypes&&...) or tuple(const tuple&) or tuple(tuple&&).
585 * Such constructors are only viable if:
586 * either sizeof...(Types) != 1,
587 * or (when Types... expands to T and UTypes... expands to U)
588 * is_convertible_v<TUPLE, T>, is_constructible_v<T, TUPLE>,
589 * and is_same_v<T, U> are all false.
590 */
591 template<typename _Tuple, typename = tuple,
592 typename = __remove_cvref_t<_Tuple>>
593 struct _UseOtherCtor
594 : false_type
595 { };
596 // If TUPLE is convertible to the single element in *this,
597 // then TUPLE should match tuple(UTypes&&...) instead.
598 template<typename _Tuple, typename _Tp, typename _Up>
599 struct _UseOtherCtor<_Tuple, tuple<_Tp>, tuple<_Up>>
600 : __or_<is_convertible<_Tuple, _Tp>, is_constructible<_Tp, _Tuple>>
601 { };
602 // If TUPLE and *this each have a single element of the same type,
603 // then TUPLE should match a copy/move constructor instead.
604 template<typename _Tuple, typename _Tp>
605 struct _UseOtherCtor<_Tuple, tuple<_Tp>, tuple<_Tp>>
606 : true_type
607 { };
608
609 // Return true iff sizeof...(Types) == 1 && tuple_size_v<TUPLE> == 1
610 // and the single element in Types can be initialized from TUPLE,
611 // or is the same type as tuple_element_t<0, TUPLE>.
612 template<typename _Tuple>
613 static constexpr bool __use_other_ctor()
614 { return _UseOtherCtor<_Tuple>::value; }
615
616 public:
617 template<typename _Dummy = void,
618 _ImplicitDefaultCtor<is_void<_Dummy>::value> = true>
619 constexpr
620 tuple()
621 noexcept(__and_<is_nothrow_default_constructible<_Elements>...>::value)
622 : _Inherited() { }
623
624 template<typename _Dummy = void,
625 _ExplicitDefaultCtor<is_void<_Dummy>::value> = false>
626 explicit constexpr
627 tuple()
628 noexcept(__and_<is_nothrow_default_constructible<_Elements>...>::value)
629 : _Inherited() { }
630
631 template<bool _NotEmpty = (sizeof...(_Elements) >= 1),
632 _ImplicitCtor<_NotEmpty, const _Elements&...> = true>
633 constexpr
634 tuple(const _Elements&... __elements)
635 noexcept(__nothrow_constructible<const _Elements&...>())
636 : _Inherited(__elements...) { }
637
638 template<bool _NotEmpty = (sizeof...(_Elements) >= 1),
639 _ExplicitCtor<_NotEmpty, const _Elements&...> = false>
640 explicit constexpr
641 tuple(const _Elements&... __elements)
642 noexcept(__nothrow_constructible<const _Elements&...>())
643 : _Inherited(__elements...) { }
644
645 template<typename... _UElements,
646 bool _Valid = __valid_args<_UElements...>(),
647 _ImplicitCtor<_Valid, _UElements...> = true>
648 constexpr
649 tuple(_UElements&&... __elements)
650 noexcept(__nothrow_constructible<_UElements...>())
651 : _Inherited(std::forward<_UElements>(__elements)...) { }
652
653 template<typename... _UElements,
654 bool _Valid = __valid_args<_UElements...>(),
655 _ExplicitCtor<_Valid, _UElements...> = false>
656 explicit constexpr
657 tuple(_UElements&&... __elements)
658 noexcept(__nothrow_constructible<_UElements...>())
659 : _Inherited(std::forward<_UElements>(__elements)...) { }
660
661 constexpr tuple(const tuple&) = default;
662
663 constexpr tuple(tuple&&) = default;
664
665 template<typename... _UElements,
666 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
667 && !__use_other_ctor<const tuple<_UElements...>&>(),
668 _ImplicitCtor<_Valid, const _UElements&...> = true>
669 constexpr
670 tuple(const tuple<_UElements...>& __in)
671 noexcept(__nothrow_constructible<const _UElements&...>())
672 : _Inherited(static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
673 { }
674
675 template<typename... _UElements,
676 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
677 && !__use_other_ctor<const tuple<_UElements...>&>(),
678 _ExplicitCtor<_Valid, const _UElements&...> = false>
679 explicit constexpr
680 tuple(const tuple<_UElements...>& __in)
681 noexcept(__nothrow_constructible<const _UElements&...>())
682 : _Inherited(static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
683 { }
684
685 template<typename... _UElements,
686 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
687 && !__use_other_ctor<tuple<_UElements...>&&>(),
688 _ImplicitCtor<_Valid, _UElements...> = true>
689 constexpr
690 tuple(tuple<_UElements...>&& __in)
691 noexcept(__nothrow_constructible<_UElements...>())
692 : _Inherited(static_cast<_Tuple_impl<0, _UElements...>&&>(__in)) { }
693
694 template<typename... _UElements,
695 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
696 && !__use_other_ctor<tuple<_UElements...>&&>(),
697 _ExplicitCtor<_Valid, _UElements...> = false>
698 explicit constexpr
699 tuple(tuple<_UElements...>&& __in)
700 noexcept(__nothrow_constructible<_UElements...>())
701 : _Inherited(static_cast<_Tuple_impl<0, _UElements...>&&>(__in)) { }
702
703 // Allocator-extended constructors.
704
705 template<typename _Alloc,
706 _ImplicitDefaultCtor<is_object<_Alloc>::value> = true>
707 _GLIBCXX20_CONSTEXPR
708 tuple(allocator_arg_t __tag, const _Alloc& __a)
709 : _Inherited(__tag, __a) { }
710
711 template<typename _Alloc, bool _NotEmpty = (sizeof...(_Elements) >= 1),
712 _ImplicitCtor<_NotEmpty, const _Elements&...> = true>
713 _GLIBCXX20_CONSTEXPR
714 tuple(allocator_arg_t __tag, const _Alloc& __a,
715 const _Elements&... __elements)
716 : _Inherited(__tag, __a, __elements...) { }
717
718 template<typename _Alloc, bool _NotEmpty = (sizeof...(_Elements) >= 1),
719 _ExplicitCtor<_NotEmpty, const _Elements&...> = false>
720 _GLIBCXX20_CONSTEXPR
721 explicit
722 tuple(allocator_arg_t __tag, const _Alloc& __a,
723 const _Elements&... __elements)
724 : _Inherited(__tag, __a, __elements...) { }
725
726 template<typename _Alloc, typename... _UElements,
727 bool _Valid = __valid_args<_UElements...>(),
728 _ImplicitCtor<_Valid, _UElements...> = true>
729 _GLIBCXX20_CONSTEXPR
730 tuple(allocator_arg_t __tag, const _Alloc& __a,
731 _UElements&&... __elements)
732 : _Inherited(__tag, __a, std::forward<_UElements>(__elements)...)
733 { }
734
735 template<typename _Alloc, typename... _UElements,
736 bool _Valid = __valid_args<_UElements...>(),
737 _ExplicitCtor<_Valid, _UElements...> = false>
738 _GLIBCXX20_CONSTEXPR
739 explicit
740 tuple(allocator_arg_t __tag, const _Alloc& __a,
741 _UElements&&... __elements)
742 : _Inherited(__tag, __a, std::forward<_UElements>(__elements)...)
743 { }
744
745 template<typename _Alloc>
746 _GLIBCXX20_CONSTEXPR
747 tuple(allocator_arg_t __tag, const _Alloc& __a, const tuple& __in)
748 : _Inherited(__tag, __a, static_cast<const _Inherited&>(__in)) { }
749
750 template<typename _Alloc>
751 _GLIBCXX20_CONSTEXPR
752 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple&& __in)
753 : _Inherited(__tag, __a, static_cast<_Inherited&&>(__in)) { }
754
755 template<typename _Alloc, typename... _UElements,
756 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
757 && !__use_other_ctor<const tuple<_UElements...>&>(),
758 _ImplicitCtor<_Valid, const _UElements&...> = true>
759 _GLIBCXX20_CONSTEXPR
760 tuple(allocator_arg_t __tag, const _Alloc& __a,
761 const tuple<_UElements...>& __in)
762 : _Inherited(__tag, __a,
763 static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
764 { }
765
766 template<typename _Alloc, typename... _UElements,
767 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
768 && !__use_other_ctor<const tuple<_UElements...>&>(),
769 _ExplicitCtor<_Valid, const _UElements&...> = false>
770 _GLIBCXX20_CONSTEXPR
771 explicit
772 tuple(allocator_arg_t __tag, const _Alloc& __a,
773 const tuple<_UElements...>& __in)
774 : _Inherited(__tag, __a,
775 static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
776 { }
777
778 template<typename _Alloc, typename... _UElements,
779 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
780 && !__use_other_ctor<tuple<_UElements...>&&>(),
781 _ImplicitCtor<_Valid, _UElements...> = true>
782 _GLIBCXX20_CONSTEXPR
783 tuple(allocator_arg_t __tag, const _Alloc& __a,
784 tuple<_UElements...>&& __in)
785 : _Inherited(__tag, __a,
786 static_cast<_Tuple_impl<0, _UElements...>&&>(__in))
787 { }
788
789 template<typename _Alloc, typename... _UElements,
790 bool _Valid = (sizeof...(_Elements) == sizeof...(_UElements))
791 && !__use_other_ctor<tuple<_UElements...>&&>(),
792 _ExplicitCtor<_Valid, _UElements...> = false>
793 _GLIBCXX20_CONSTEXPR
794 explicit
795 tuple(allocator_arg_t __tag, const _Alloc& __a,
796 tuple<_UElements...>&& __in)
797 : _Inherited(__tag, __a,
798 static_cast<_Tuple_impl<0, _UElements...>&&>(__in))
799 { }
800
801 // tuple assignment
802
803 _GLIBCXX20_CONSTEXPR
804 tuple&
805 operator=(typename conditional<__assignable<const _Elements&...>(),
806 const tuple&,
807 const __nonesuch&>::type __in)
808 noexcept(__nothrow_assignable<const _Elements&...>())
809 {
810 this->_M_assign(__in);
811 return *this;
812 }
813
814 _GLIBCXX20_CONSTEXPR
815 tuple&
816 operator=(typename conditional<__assignable<_Elements...>(),
817 tuple&&,
818 __nonesuch&&>::type __in)
819 noexcept(__nothrow_assignable<_Elements...>())
820 {
821 this->_M_assign(std::move(__in));
822 return *this;
823 }
824
825 template<typename... _UElements>
826 _GLIBCXX20_CONSTEXPR
827 __enable_if_t<__assignable<const _UElements&...>(), tuple&>
828 operator=(const tuple<_UElements...>& __in)
829 noexcept(__nothrow_assignable<const _UElements&...>())
830 {
831 this->_M_assign(__in);
832 return *this;
833 }
834
835 template<typename... _UElements>
836 _GLIBCXX20_CONSTEXPR
837 __enable_if_t<__assignable<_UElements...>(), tuple&>
838 operator=(tuple<_UElements...>&& __in)
839 noexcept(__nothrow_assignable<_UElements...>())
840 {
841 this->_M_assign(std::move(__in));
842 return *this;
843 }
844
845 // tuple swap
846 _GLIBCXX20_CONSTEXPR
847 void
848 swap(tuple& __in)
849 noexcept(__and_<__is_nothrow_swappable<_Elements>...>::value)
850 { _Inherited::_M_swap(__in); }
851 };
852
853#if __cpp_deduction_guides >= 201606
854 template<typename... _UTypes>
855 tuple(_UTypes...) -> tuple<_UTypes...>;
856 template<typename _T1, typename _T2>
857 tuple(pair<_T1, _T2>) -> tuple<_T1, _T2>;
858 template<typename _Alloc, typename... _UTypes>
859 tuple(allocator_arg_t, _Alloc, _UTypes...) -> tuple<_UTypes...>;
860 template<typename _Alloc, typename _T1, typename _T2>
861 tuple(allocator_arg_t, _Alloc, pair<_T1, _T2>) -> tuple<_T1, _T2>;
862 template<typename _Alloc, typename... _UTypes>
863 tuple(allocator_arg_t, _Alloc, tuple<_UTypes...>) -> tuple<_UTypes...>;
864#endif
865
866 // Explicit specialization, zero-element tuple.
867 template<>
868 class tuple<>
869 {
870 public:
871 void swap(tuple&) noexcept { /* no-op */ }
872 // We need the default since we're going to define no-op
873 // allocator constructors.
874 tuple() = default;
875 // No-op allocator constructors.
876 template<typename _Alloc>
877 _GLIBCXX20_CONSTEXPR
878 tuple(allocator_arg_t, const _Alloc&) noexcept { }
879 template<typename _Alloc>
880 _GLIBCXX20_CONSTEXPR
881 tuple(allocator_arg_t, const _Alloc&, const tuple&) noexcept { }
882 };
883
884 /// Partial specialization, 2-element tuple.
885 /// Includes construction and assignment from a pair.
886 template<typename _T1, typename _T2>
887 class tuple<_T1, _T2> : public _Tuple_impl<0, _T1, _T2>
888 {
889 typedef _Tuple_impl<0, _T1, _T2> _Inherited;
890
891 // Constraint for non-explicit default constructor
892 template<bool _Dummy, typename _U1, typename _U2>
893 using _ImplicitDefaultCtor = __enable_if_t<
894 _TupleConstraints<_Dummy, _U1, _U2>::
895 __is_implicitly_default_constructible(),
896 bool>;
897
898 // Constraint for explicit default constructor
899 template<bool _Dummy, typename _U1, typename _U2>
900 using _ExplicitDefaultCtor = __enable_if_t<
901 _TupleConstraints<_Dummy, _U1, _U2>::
902 __is_explicitly_default_constructible(),
903 bool>;
904
905 template<bool _Dummy>
906 using _TCC = _TupleConstraints<_Dummy, _T1, _T2>;
907
908 // Constraint for non-explicit constructors
909 template<bool _Cond, typename _U1, typename _U2>
910 using _ImplicitCtor = __enable_if_t<
911 _TCC<_Cond>::template __is_implicitly_constructible<_U1, _U2>(),
912 bool>;
913
914 // Constraint for non-explicit constructors
915 template<bool _Cond, typename _U1, typename _U2>
916 using _ExplicitCtor = __enable_if_t<
917 _TCC<_Cond>::template __is_explicitly_constructible<_U1, _U2>(),
918 bool>;
919
920 template<typename _U1, typename _U2>
921 static constexpr bool __assignable()
922 {
923 return __and_<is_assignable<_T1&, _U1>,
924 is_assignable<_T2&, _U2>>::value;
925 }
926
927 template<typename _U1, typename _U2>
928 static constexpr bool __nothrow_assignable()
929 {
930 return __and_<is_nothrow_assignable<_T1&, _U1>,
931 is_nothrow_assignable<_T2&, _U2>>::value;
932 }
933
934 template<typename _U1, typename _U2>
935 static constexpr bool __nothrow_constructible()
936 {
937 return __and_<is_nothrow_constructible<_T1, _U1>,
938 is_nothrow_constructible<_T2, _U2>>::value;
939 }
940
941 static constexpr bool __nothrow_default_constructible()
942 {
943 return __and_<is_nothrow_default_constructible<_T1>,
944 is_nothrow_default_constructible<_T2>>::value;
945 }
946
947 template<typename _U1>
948 static constexpr bool __is_alloc_arg()
949 { return is_same<__remove_cvref_t<_U1>, allocator_arg_t>::value; }
950
951 public:
952 template<bool _Dummy = true,
953 _ImplicitDefaultCtor<_Dummy, _T1, _T2> = true>
954 constexpr
955 tuple()
956 noexcept(__nothrow_default_constructible())
957 : _Inherited() { }
958
959 template<bool _Dummy = true,
960 _ExplicitDefaultCtor<_Dummy, _T1, _T2> = false>
961 explicit constexpr
962 tuple()
963 noexcept(__nothrow_default_constructible())
964 : _Inherited() { }
965
966 template<bool _Dummy = true,
967 _ImplicitCtor<_Dummy, const _T1&, const _T2&> = true>
968 constexpr
969 tuple(const _T1& __a1, const _T2& __a2)
970 noexcept(__nothrow_constructible<const _T1&, const _T2&>())
971 : _Inherited(__a1, __a2) { }
5
Calling constructor for '_Tuple_impl<0UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
10
Returning from constructor for '_Tuple_impl<0UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
19
Calling constructor for '_Tuple_impl<0UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
24
Returning from constructor for '_Tuple_impl<0UL, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
972
973 template<bool _Dummy = true,
974 _ExplicitCtor<_Dummy, const _T1&, const _T2&> = false>
975 explicit constexpr
976 tuple(const _T1& __a1, const _T2& __a2)
977 noexcept(__nothrow_constructible<const _T1&, const _T2&>())
978 : _Inherited(__a1, __a2) { }
979
980 template<typename _U1, typename _U2,
981 _ImplicitCtor<!__is_alloc_arg<_U1>(), _U1, _U2> = true>
982 constexpr
983 tuple(_U1&& __a1, _U2&& __a2)
984 noexcept(__nothrow_constructible<_U1, _U2>())
985 : _Inherited(std::forward<_U1>(__a1), std::forward<_U2>(__a2)) { }
986
987 template<typename _U1, typename _U2,
988 _ExplicitCtor<!__is_alloc_arg<_U1>(), _U1, _U2> = false>
989 explicit constexpr
990 tuple(_U1&& __a1, _U2&& __a2)
991 noexcept(__nothrow_constructible<_U1, _U2>())
992 : _Inherited(std::forward<_U1>(__a1), std::forward<_U2>(__a2)) { }
993
994 constexpr tuple(const tuple&) = default;
995
996 constexpr tuple(tuple&&) = default;
997
998 template<typename _U1, typename _U2,
999 _ImplicitCtor<true, const _U1&, const _U2&> = true>
1000 constexpr
1001 tuple(const tuple<_U1, _U2>& __in)
1002 noexcept(__nothrow_constructible<const _U1&, const _U2&>())
1003 : _Inherited(static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in)) { }
1004
1005 template<typename _U1, typename _U2,
1006 _ExplicitCtor<true, const _U1&, const _U2&> = false>
1007 explicit constexpr
1008 tuple(const tuple<_U1, _U2>& __in)
1009 noexcept(__nothrow_constructible<const _U1&, const _U2&>())
1010 : _Inherited(static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in)) { }
1011
1012 template<typename _U1, typename _U2,
1013 _ImplicitCtor<true, _U1, _U2> = true>
1014 constexpr
1015 tuple(tuple<_U1, _U2>&& __in)
1016 noexcept(__nothrow_constructible<_U1, _U2>())
1017 : _Inherited(static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in)) { }
1018
1019 template<typename _U1, typename _U2,
1020 _ExplicitCtor<true, _U1, _U2> = false>
1021 explicit constexpr
1022 tuple(tuple<_U1, _U2>&& __in)
1023 noexcept(__nothrow_constructible<_U1, _U2>())
1024 : _Inherited(static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in)) { }
1025
1026 template<typename _U1, typename _U2,
1027 _ImplicitCtor<true, const _U1&, const _U2&> = true>
1028 constexpr
1029 tuple(const pair<_U1, _U2>& __in)
1030 noexcept(__nothrow_constructible<const _U1&, const _U2&>())
1031 : _Inherited(__in.first, __in.second) { }
1032
1033 template<typename _U1, typename _U2,
1034 _ExplicitCtor<true, const _U1&, const _U2&> = false>
1035 explicit constexpr
1036 tuple(const pair<_U1, _U2>& __in)
1037 noexcept(__nothrow_constructible<const _U1&, const _U2&>())
1038 : _Inherited(__in.first, __in.second) { }
1039
1040 template<typename _U1, typename _U2,
1041 _ImplicitCtor<true, _U1, _U2> = true>
1042 constexpr
1043 tuple(pair<_U1, _U2>&& __in)
1044 noexcept(__nothrow_constructible<_U1, _U2>())
1045 : _Inherited(std::forward<_U1>(__in.first),
1046 std::forward<_U2>(__in.second)) { }
1047
1048 template<typename _U1, typename _U2,
1049 _ExplicitCtor<true, _U1, _U2> = false>
1050 explicit constexpr
1051 tuple(pair<_U1, _U2>&& __in)
1052 noexcept(__nothrow_constructible<_U1, _U2>())
1053 : _Inherited(std::forward<_U1>(__in.first),
1054 std::forward<_U2>(__in.second)) { }
1055
1056 // Allocator-extended constructors.
1057
1058 template<typename _Alloc,
1059 _ImplicitDefaultCtor<is_object<_Alloc>::value, _T1, _T2> = true>
1060 _GLIBCXX20_CONSTEXPR
1061 tuple(allocator_arg_t __tag, const _Alloc& __a)
1062 : _Inherited(__tag, __a) { }
1063
1064 template<typename _Alloc, bool _Dummy = true,
1065 _ImplicitCtor<_Dummy, const _T1&, const _T2&> = true>
1066 _GLIBCXX20_CONSTEXPR
1067 tuple(allocator_arg_t __tag, const _Alloc& __a,
1068 const _T1& __a1, const _T2& __a2)
1069 : _Inherited(__tag, __a, __a1, __a2) { }
1070
1071 template<typename _Alloc, bool _Dummy = true,
1072 _ExplicitCtor<_Dummy, const _T1&, const _T2&> = false>
1073 explicit
1074 _GLIBCXX20_CONSTEXPR
1075 tuple(allocator_arg_t __tag, const _Alloc& __a,
1076 const _T1& __a1, const _T2& __a2)
1077 : _Inherited(__tag, __a, __a1, __a2) { }
1078
1079 template<typename _Alloc, typename _U1, typename _U2,
1080 _ImplicitCtor<true, _U1, _U2> = true>
1081 _GLIBCXX20_CONSTEXPR
1082 tuple(allocator_arg_t __tag, const _Alloc& __a, _U1&& __a1, _U2&& __a2)
1083 : _Inherited(__tag, __a, std::forward<_U1>(__a1),
1084 std::forward<_U2>(__a2)) { }
1085
1086 template<typename _Alloc, typename _U1, typename _U2,
1087 _ExplicitCtor<true, _U1, _U2> = false>
1088 explicit
1089 _GLIBCXX20_CONSTEXPR
1090 tuple(allocator_arg_t __tag, const _Alloc& __a,
1091 _U1&& __a1, _U2&& __a2)
1092 : _Inherited(__tag, __a, std::forward<_U1>(__a1),
1093 std::forward<_U2>(__a2)) { }
1094
1095 template<typename _Alloc>
1096 _GLIBCXX20_CONSTEXPR
1097 tuple(allocator_arg_t __tag, const _Alloc& __a, const tuple& __in)
1098 : _Inherited(__tag, __a, static_cast<const _Inherited&>(__in)) { }
1099
1100 template<typename _Alloc>
1101 _GLIBCXX20_CONSTEXPR
1102 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple&& __in)
1103 : _Inherited(__tag, __a, static_cast<_Inherited&&>(__in)) { }
1104
1105 template<typename _Alloc, typename _U1, typename _U2,
1106 _ImplicitCtor<true, const _U1&, const _U2&> = true>
1107 _GLIBCXX20_CONSTEXPR
1108 tuple(allocator_arg_t __tag, const _Alloc& __a,
1109 const tuple<_U1, _U2>& __in)
1110 : _Inherited(__tag, __a,
1111 static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in))
1112 { }
1113
1114 template<typename _Alloc, typename _U1, typename _U2,
1115 _ExplicitCtor<true, const _U1&, const _U2&> = false>
1116 explicit
1117 _GLIBCXX20_CONSTEXPR
1118 tuple(allocator_arg_t __tag, const _Alloc& __a,
1119 const tuple<_U1, _U2>& __in)
1120 : _Inherited(__tag, __a,
1121 static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in))
1122 { }
1123
1124 template<typename _Alloc, typename _U1, typename _U2,
1125 _ImplicitCtor<true, _U1, _U2> = true>
1126 _GLIBCXX20_CONSTEXPR
1127 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple<_U1, _U2>&& __in)
1128 : _Inherited(__tag, __a, static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in))
1129 { }
1130
1131 template<typename _Alloc, typename _U1, typename _U2,
1132 _ExplicitCtor<true, _U1, _U2> = false>
1133 explicit
1134 _GLIBCXX20_CONSTEXPR
1135 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple<_U1, _U2>&& __in)
1136 : _Inherited(__tag, __a, static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in))
1137 { }
1138
1139 template<typename _Alloc, typename _U1, typename _U2,
1140 _ImplicitCtor<true, const _U1&, const _U2&> = true>
1141 _GLIBCXX20_CONSTEXPR
1142 tuple(allocator_arg_t __tag, const _Alloc& __a,
1143 const pair<_U1, _U2>& __in)
1144 : _Inherited(__tag, __a, __in.first, __in.second) { }
1145
1146 template<typename _Alloc, typename _U1, typename _U2,
1147 _ExplicitCtor<true, const _U1&, const _U2&> = false>
1148 explicit
1149 _GLIBCXX20_CONSTEXPR
1150 tuple(allocator_arg_t __tag, const _Alloc& __a,
1151 const pair<_U1, _U2>& __in)
1152 : _Inherited(__tag, __a, __in.first, __in.second) { }
1153
1154 template<typename _Alloc, typename _U1, typename _U2,
1155 _ImplicitCtor<true, _U1, _U2> = true>
1156 _GLIBCXX20_CONSTEXPR
1157 tuple(allocator_arg_t __tag, const _Alloc& __a, pair<_U1, _U2>&& __in)
1158 : _Inherited(__tag, __a, std::forward<_U1>(__in.first),
1159 std::forward<_U2>(__in.second)) { }
1160
1161 template<typename _Alloc, typename _U1, typename _U2,
1162 _ExplicitCtor<true, _U1, _U2> = false>
1163 explicit
1164 _GLIBCXX20_CONSTEXPR
1165 tuple(allocator_arg_t __tag, const _Alloc& __a, pair<_U1, _U2>&& __in)
1166 : _Inherited(__tag, __a, std::forward<_U1>(__in.first),
1167 std::forward<_U2>(__in.second)) { }
1168
1169 // Tuple assignment.
1170
1171 _GLIBCXX20_CONSTEXPR
1172 tuple&
1173 operator=(typename conditional<__assignable<const _T1&, const _T2&>(),
1174 const tuple&,
1175 const __nonesuch&>::type __in)
1176 noexcept(__nothrow_assignable<const _T1&, const _T2&>())
1177 {
1178 this->_M_assign(__in);
1179 return *this;
1180 }
1181
1182 _GLIBCXX20_CONSTEXPR
1183 tuple&
1184 operator=(typename conditional<__assignable<_T1, _T2>(),
1185 tuple&&,
1186 __nonesuch&&>::type __in)
1187 noexcept(__nothrow_assignable<_T1, _T2>())
1188 {
1189 this->_M_assign(std::move(__in));
1190 return *this;
1191 }
1192
1193 template<typename _U1, typename _U2>
1194 _GLIBCXX20_CONSTEXPR
1195 __enable_if_t<__assignable<const _U1&, const _U2&>(), tuple&>
1196 operator=(const tuple<_U1, _U2>& __in)
1197 noexcept(__nothrow_assignable<const _U1&, const _U2&>())
1198 {
1199 this->_M_assign(__in);
1200 return *this;
1201 }
1202
1203 template<typename _U1, typename _U2>
1204 _GLIBCXX20_CONSTEXPR
1205 __enable_if_t<__assignable<_U1, _U2>(), tuple&>
1206 operator=(tuple<_U1, _U2>&& __in)
1207 noexcept(__nothrow_assignable<_U1, _U2>())
1208 {
1209 this->_M_assign(std::move(__in));
1210 return *this;
1211 }
1212
1213 template<typename _U1, typename _U2>
1214 _GLIBCXX20_CONSTEXPR
1215 __enable_if_t<__assignable<const _U1&, const _U2&>(), tuple&>
1216 operator=(const pair<_U1, _U2>& __in)
1217 noexcept(__nothrow_assignable<const _U1&, const _U2&>())
1218 {
1219 this->_M_head(*this) = __in.first;
1220 this->_M_tail(*this)._M_head(*this) = __in.second;
1221 return *this;
1222 }
1223
1224 template<typename _U1, typename _U2>
1225 _GLIBCXX20_CONSTEXPR
1226 __enable_if_t<__assignable<_U1, _U2>(), tuple&>
1227 operator=(pair<_U1, _U2>&& __in)
1228 noexcept(__nothrow_assignable<_U1, _U2>())
1229 {
1230 this->_M_head(*this) = std::forward<_U1>(__in.first);
1231 this->_M_tail(*this)._M_head(*this) = std::forward<_U2>(__in.second);
1232 return *this;
1233 }
1234
1235 _GLIBCXX20_CONSTEXPR
1236 void
1237 swap(tuple& __in)
1238 noexcept(__and_<__is_nothrow_swappable<_T1>,
1239 __is_nothrow_swappable<_T2>>::value)
1240 { _Inherited::_M_swap(__in); }
1241 };
1242
1243
1244 /// class tuple_size
1245 template<typename... _Elements>
1246 struct tuple_size<tuple<_Elements...>>
1247 : public integral_constant<std::size_t, sizeof...(_Elements)> { };
1248
1249#if __cplusplus201402L > 201402L
1250 template <typename _Tp>
1251 inline constexpr size_t tuple_size_v = tuple_size<_Tp>::value;
1252#endif
1253
1254 /**
1255 * Recursive case for tuple_element: strip off the first element in
1256 * the tuple and retrieve the (i-1)th element of the remaining tuple.
1257 */
1258 template<std::size_t __i, typename _Head, typename... _Tail>
1259 struct tuple_element<__i, tuple<_Head, _Tail...> >
1260 : tuple_element<__i - 1, tuple<_Tail...> > { };
1261
1262 /**
1263 * Basis case for tuple_element: The first element is the one we're seeking.
1264 */
1265 template<typename _Head, typename... _Tail>
1266 struct tuple_element<0, tuple<_Head, _Tail...> >
1267 {
1268 typedef _Head type;
1269 };
1270
1271 /**
1272 * Error case for tuple_element: invalid index.
1273 */
1274 template<size_t __i>
1275 struct tuple_element<__i, tuple<>>
1276 {
1277 static_assert(__i < tuple_size<tuple<>>::value,
1278 "tuple index is in range");
1279 };
1280
1281 template<std::size_t __i, typename _Head, typename... _Tail>
1282 constexpr _Head&
1283 __get_helper(_Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1284 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1285
1286 template<std::size_t __i, typename _Head, typename... _Tail>
1287 constexpr const _Head&
1288 __get_helper(const _Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1289 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1290
1291 /// Return a reference to the ith element of a tuple.
1292 template<std::size_t __i, typename... _Elements>
1293 constexpr __tuple_element_t<__i, tuple<_Elements...>>&
1294 get(tuple<_Elements...>& __t) noexcept
1295 { return std::__get_helper<__i>(__t); }
1296
1297 /// Return a const reference to the ith element of a const tuple.
1298 template<std::size_t __i, typename... _Elements>
1299 constexpr const __tuple_element_t<__i, tuple<_Elements...>>&
1300 get(const tuple<_Elements...>& __t) noexcept
1301 { return std::__get_helper<__i>(__t); }
1302
1303 /// Return an rvalue reference to the ith element of a tuple rvalue.
1304 template<std::size_t __i, typename... _Elements>
1305 constexpr __tuple_element_t<__i, tuple<_Elements...>>&&
1306 get(tuple<_Elements...>&& __t) noexcept
1307 {
1308 typedef __tuple_element_t<__i, tuple<_Elements...>> __element_type;
1309 return std::forward<__element_type&&>(std::get<__i>(__t));
1310 }
1311
1312 /// Return a const rvalue reference to the ith element of a const tuple rvalue.
1313 template<std::size_t __i, typename... _Elements>
1314 constexpr const __tuple_element_t<__i, tuple<_Elements...>>&&
1315 get(const tuple<_Elements...>&& __t) noexcept
1316 {
1317 typedef __tuple_element_t<__i, tuple<_Elements...>> __element_type;
1318 return std::forward<const __element_type&&>(std::get<__i>(__t));
1319 }
1320
1321#if __cplusplus201402L >= 201402L
1322
1323#define __cpp_lib_tuples_by_type201304 201304
1324
1325 template<typename _Head, size_t __i, typename... _Tail>
1326 constexpr _Head&
1327 __get_helper2(_Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1328 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1329
1330 template<typename _Head, size_t __i, typename... _Tail>
1331 constexpr const _Head&
1332 __get_helper2(const _Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1333 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1334
1335 /// Return a reference to the unique element of type _Tp of a tuple.
1336 template <typename _Tp, typename... _Types>
1337 constexpr _Tp&
1338 get(tuple<_Types...>& __t) noexcept
1339 { return std::__get_helper2<_Tp>(__t); }
1340
1341 /// Return a reference to the unique element of type _Tp of a tuple rvalue.
1342 template <typename _Tp, typename... _Types>
1343 constexpr _Tp&&
1344 get(tuple<_Types...>&& __t) noexcept
1345 { return std::forward<_Tp&&>(std::__get_helper2<_Tp>(__t)); }
1346
1347 /// Return a const reference to the unique element of type _Tp of a tuple.
1348 template <typename _Tp, typename... _Types>
1349 constexpr const _Tp&
1350 get(const tuple<_Types...>& __t) noexcept
1351 { return std::__get_helper2<_Tp>(__t); }
1352
1353 /// Return a const reference to the unique element of type _Tp of
1354 /// a const tuple rvalue.
1355 template <typename _Tp, typename... _Types>
1356 constexpr const _Tp&&
1357 get(const tuple<_Types...>&& __t) noexcept
1358 { return std::forward<const _Tp&&>(std::__get_helper2<_Tp>(__t)); }
1359#endif
1360
1361 // This class performs the comparison operations on tuples
1362 template<typename _Tp, typename _Up, size_t __i, size_t __size>
1363 struct __tuple_compare
1364 {
1365 static constexpr bool
1366 __eq(const _Tp& __t, const _Up& __u)
1367 {
1368 return bool(std::get<__i>(__t) == std::get<__i>(__u))
1369 && __tuple_compare<_Tp, _Up, __i + 1, __size>::__eq(__t, __u);
1370 }
1371
1372 static constexpr bool
1373 __less(const _Tp& __t, const _Up& __u)
1374 {
1375 return bool(std::get<__i>(__t) < std::get<__i>(__u))
1376 || (!bool(std::get<__i>(__u) < std::get<__i>(__t))
1377 && __tuple_compare<_Tp, _Up, __i + 1, __size>::__less(__t, __u));
1378 }
1379 };
1380
1381 template<typename _Tp, typename _Up, size_t __size>
1382 struct __tuple_compare<_Tp, _Up, __size, __size>
1383 {
1384 static constexpr bool
1385 __eq(const _Tp&, const _Up&) { return true; }
1386
1387 static constexpr bool
1388 __less(const _Tp&, const _Up&) { return false; }
1389 };
1390
1391 template<typename... _TElements, typename... _UElements>
1392 constexpr bool
1393 operator==(const tuple<_TElements...>& __t,
1394 const tuple<_UElements...>& __u)
1395 {
1396 static_assert(sizeof...(_TElements) == sizeof...(_UElements),
1397 "tuple objects can only be compared if they have equal sizes.");
1398 using __compare = __tuple_compare<tuple<_TElements...>,
1399 tuple<_UElements...>,
1400 0, sizeof...(_TElements)>;
1401 return __compare::__eq(__t, __u);
1402 }
1403
1404#if __cpp_lib_three_way_comparison
1405 template<typename _Cat, typename _Tp, typename _Up>
1406 constexpr _Cat
1407 __tuple_cmp(const _Tp&, const _Up&, index_sequence<>)
1408 { return _Cat::equivalent; }
1409
1410 template<typename _Cat, typename _Tp, typename _Up,
1411 size_t _Idx0, size_t... _Idxs>
1412 constexpr _Cat
1413 __tuple_cmp(const _Tp& __t, const _Up& __u,
1414 index_sequence<_Idx0, _Idxs...>)
1415 {
1416 auto __c
1417 = __detail::__synth3way(std::get<_Idx0>(__t), std::get<_Idx0>(__u));
1418 if (__c != 0)
1419 return __c;
1420 return std::__tuple_cmp<_Cat>(__t, __u, index_sequence<_Idxs...>());
1421 }
1422
1423 template<typename... _Tps, typename... _Ups>
1424 constexpr
1425 common_comparison_category_t<__detail::__synth3way_t<_Tps, _Ups>...>
1426 operator<=>(const tuple<_Tps...>& __t, const tuple<_Ups...>& __u)
1427 {
1428 using _Cat
1429 = common_comparison_category_t<__detail::__synth3way_t<_Tps, _Ups>...>;
1430 return std::__tuple_cmp<_Cat>(__t, __u, index_sequence_for<_Tps...>());
1431 }
1432#else
1433 template<typename... _TElements, typename... _UElements>
1434 constexpr bool
1435 operator<(const tuple<_TElements...>& __t,
1436 const tuple<_UElements...>& __u)
1437 {
1438 static_assert(sizeof...(_TElements) == sizeof...(_UElements),
1439 "tuple objects can only be compared if they have equal sizes.");
1440 using __compare = __tuple_compare<tuple<_TElements...>,
1441 tuple<_UElements...>,
1442 0, sizeof...(_TElements)>;
1443 return __compare::__less(__t, __u);
1444 }
1445
1446 template<typename... _TElements, typename... _UElements>
1447 constexpr bool
1448 operator!=(const tuple<_TElements...>& __t,
1449 const tuple<_UElements...>& __u)
1450 { return !(__t == __u); }
1451
1452 template<typename... _TElements, typename... _UElements>
1453 constexpr bool
1454 operator>(const tuple<_TElements...>& __t,
1455 const tuple<_UElements...>& __u)
1456 { return __u < __t; }
1457
1458 template<typename... _TElements, typename... _UElements>
1459 constexpr bool
1460 operator<=(const tuple<_TElements...>& __t,
1461 const tuple<_UElements...>& __u)
1462 { return !(__u < __t); }
1463
1464 template<typename... _TElements, typename... _UElements>
1465 constexpr bool
1466 operator>=(const tuple<_TElements...>& __t,
1467 const tuple<_UElements...>& __u)
1468 { return !(__t < __u); }
1469#endif // three_way_comparison
1470
1471 // NB: DR 705.
1472 template<typename... _Elements>
1473 constexpr tuple<typename __decay_and_strip<_Elements>::__type...>
1474 make_tuple(_Elements&&... __args)
1475 {
1476 typedef tuple<typename __decay_and_strip<_Elements>::__type...>
1477 __result_type;
1478 return __result_type(std::forward<_Elements>(__args)...);
1479 }
1480
1481 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1482 // 2275. Why is forward_as_tuple not constexpr?
1483 /// std::forward_as_tuple
1484 template<typename... _Elements>
1485 constexpr tuple<_Elements&&...>
1486 forward_as_tuple(_Elements&&... __args) noexcept
1487 { return tuple<_Elements&&...>(std::forward<_Elements>(__args)...); }
1488
1489 template<size_t, typename, typename, size_t>
1490 struct __make_tuple_impl;
1491
1492 template<size_t _Idx, typename _Tuple, typename... _Tp, size_t _Nm>
1493 struct __make_tuple_impl<_Idx, tuple<_Tp...>, _Tuple, _Nm>
1494 : __make_tuple_impl<_Idx + 1,
1495 tuple<_Tp..., __tuple_element_t<_Idx, _Tuple>>,
1496 _Tuple, _Nm>
1497 { };
1498
1499 template<std::size_t _Nm, typename _Tuple, typename... _Tp>
1500 struct __make_tuple_impl<_Nm, tuple<_Tp...>, _Tuple, _Nm>
1501 {
1502 typedef tuple<_Tp...> __type;
1503 };
1504
1505 template<typename _Tuple>
1506 struct __do_make_tuple
1507 : __make_tuple_impl<0, tuple<>, _Tuple, std::tuple_size<_Tuple>::value>
1508 { };
1509
1510 // Returns the std::tuple equivalent of a tuple-like type.
1511 template<typename _Tuple>
1512 struct __make_tuple
1513 : public __do_make_tuple<__remove_cvref_t<_Tuple>>
1514 { };
1515
1516 // Combines several std::tuple's into a single one.
1517 template<typename...>
1518 struct __combine_tuples;
1519
1520 template<>
1521 struct __combine_tuples<>
1522 {
1523 typedef tuple<> __type;
1524 };
1525
1526 template<typename... _Ts>
1527 struct __combine_tuples<tuple<_Ts...>>
1528 {
1529 typedef tuple<_Ts...> __type;
1530 };
1531
1532 template<typename... _T1s, typename... _T2s, typename... _Rem>
1533 struct __combine_tuples<tuple<_T1s...>, tuple<_T2s...>, _Rem...>
1534 {
1535 typedef typename __combine_tuples<tuple<_T1s..., _T2s...>,
1536 _Rem...>::__type __type;
1537 };
1538
1539 // Computes the result type of tuple_cat given a set of tuple-like types.
1540 template<typename... _Tpls>
1541 struct __tuple_cat_result
1542 {
1543 typedef typename __combine_tuples
1544 <typename __make_tuple<_Tpls>::__type...>::__type __type;
1545 };
1546
1547 // Helper to determine the index set for the first tuple-like
1548 // type of a given set.
1549 template<typename...>
1550 struct __make_1st_indices;
1551
1552 template<>
1553 struct __make_1st_indices<>
1554 {
1555 typedef std::_Index_tuple<> __type;
1556 };
1557
1558 template<typename _Tp, typename... _Tpls>
1559 struct __make_1st_indices<_Tp, _Tpls...>
1560 {
1561 typedef typename std::_Build_index_tuple<std::tuple_size<
1562 typename std::remove_reference<_Tp>::type>::value>::__type __type;
1563 };
1564
1565 // Performs the actual concatenation by step-wise expanding tuple-like
1566 // objects into the elements, which are finally forwarded into the
1567 // result tuple.
1568 template<typename _Ret, typename _Indices, typename... _Tpls>
1569 struct __tuple_concater;
1570
1571 template<typename _Ret, std::size_t... _Is, typename _Tp, typename... _Tpls>
1572 struct __tuple_concater<_Ret, std::_Index_tuple<_Is...>, _Tp, _Tpls...>
1573 {
1574 template<typename... _Us>
1575 static constexpr _Ret
1576 _S_do(_Tp&& __tp, _Tpls&&... __tps, _Us&&... __us)
1577 {
1578 typedef typename __make_1st_indices<_Tpls...>::__type __idx;
1579 typedef __tuple_concater<_Ret, __idx, _Tpls...> __next;
1580 return __next::_S_do(std::forward<_Tpls>(__tps)...,
1581 std::forward<_Us>(__us)...,
1582 std::get<_Is>(std::forward<_Tp>(__tp))...);
1583 }
1584 };
1585
1586 template<typename _Ret>
1587 struct __tuple_concater<_Ret, std::_Index_tuple<>>
1588 {
1589 template<typename... _Us>
1590 static constexpr _Ret
1591 _S_do(_Us&&... __us)
1592 {
1593 return _Ret(std::forward<_Us>(__us)...);
1594 }
1595 };
1596
1597 /// tuple_cat
1598 template<typename... _Tpls, typename = typename
1599 enable_if<__and_<__is_tuple_like<_Tpls>...>::value>::type>
1600 constexpr auto
1601 tuple_cat(_Tpls&&... __tpls)
1602 -> typename __tuple_cat_result<_Tpls...>::__type
1603 {
1604 typedef typename __tuple_cat_result<_Tpls...>::__type __ret;
1605 typedef typename __make_1st_indices<_Tpls...>::__type __idx;
1606 typedef __tuple_concater<__ret, __idx, _Tpls...> __concater;
1607 return __concater::_S_do(std::forward<_Tpls>(__tpls)...);
1608 }
1609
1610 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1611 // 2301. Why is tie not constexpr?
1612 /// tie
1613 template<typename... _Elements>
1614 constexpr tuple<_Elements&...>
1615 tie(_Elements&... __args) noexcept
1616 { return tuple<_Elements&...>(__args...); }
4
Calling constructor for 'tuple<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
11
Returning from constructor for 'tuple<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
18
Calling constructor for 'tuple<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
25
Returning from constructor for 'tuple<llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &, llvm::IntrusiveRefCntPtr<const clang::ento::ProgramState> &>'
1617
1618 /// swap
1619 template<typename... _Elements>
1620 _GLIBCXX20_CONSTEXPR
1621 inline
1622#if __cplusplus201402L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11
1623 // Constrained free swap overload, see p0185r1
1624 typename enable_if<__and_<__is_swappable<_Elements>...>::value
1625 >::type
1626#else
1627 void
1628#endif
1629 swap(tuple<_Elements...>& __x, tuple<_Elements...>& __y)
1630 noexcept(noexcept(__x.swap(__y)))
1631 { __x.swap(__y); }
1632
1633#if __cplusplus201402L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11
1634 template<typename... _Elements>
1635 _GLIBCXX20_CONSTEXPR
1636 typename enable_if<!__and_<__is_swappable<_Elements>...>::value>::type
1637 swap(tuple<_Elements...>&, tuple<_Elements...>&) = delete;
1638#endif
1639
1640 // A class (and instance) which can be used in 'tie' when an element
1641 // of a tuple is not required.
1642 // _GLIBCXX14_CONSTEXPR
1643 // 2933. PR for LWG 2773 could be clearer
1644 struct _Swallow_assign
1645 {
1646 template<class _Tp>
1647 _GLIBCXX14_CONSTEXPRconstexpr const _Swallow_assign&
1648 operator=(const _Tp&) const
1649 { return *this; }
1650 };
1651
1652 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1653 // 2773. Making std::ignore constexpr
1654 _GLIBCXX17_INLINE constexpr _Swallow_assign ignore{};
1655
1656 /// Partial specialization for tuples
1657 template<typename... _Types, typename _Alloc>
1658 struct uses_allocator<tuple<_Types...>, _Alloc> : true_type { };
1659
1660 // See stl_pair.h...
1661 /** "piecewise construction" using a tuple of arguments for each member.
1662 *
1663 * @param __first Arguments for the first member of the pair.
1664 * @param __second Arguments for the second member of the pair.
1665 *
1666 * The elements of each tuple will be used as the constructor arguments
1667 * for the data members of the pair.
1668 */
1669 template<class _T1, class _T2>
1670 template<typename... _Args1, typename... _Args2>
1671 _GLIBCXX20_CONSTEXPR
1672 inline
1673 pair<_T1, _T2>::
1674 pair(piecewise_construct_t,
1675 tuple<_Args1...> __first, tuple<_Args2...> __second)
1676 : pair(__first, __second,
1677 typename _Build_index_tuple<sizeof...(_Args1)>::__type(),
1678 typename _Build_index_tuple<sizeof...(_Args2)>::__type())
1679 { }
1680
1681 template<class _T1, class _T2>
1682 template<typename... _Args1, std::size_t... _Indexes1,
1683 typename... _Args2, std::size_t... _Indexes2>
1684 _GLIBCXX20_CONSTEXPR inline
1685 pair<_T1, _T2>::
1686 pair(tuple<_Args1...>& __tuple1, tuple<_Args2...>& __tuple2,
1687 _Index_tuple<_Indexes1...>, _Index_tuple<_Indexes2...>)
1688 : first(std::forward<_Args1>(std::get<_Indexes1>(__tuple1))...),
1689 second(std::forward<_Args2>(std::get<_Indexes2>(__tuple2))...)
1690 { }
1691
1692#if __cplusplus201402L >= 201703L
1693
1694 // Unpack a std::tuple into a type trait and use its value.
1695 // For cv std::tuple<_Up> the result is _Trait<_Tp, cv _Up...>::value.
1696 // For cv std::tuple<_Up>& the result is _Trait<_Tp, cv _Up&...>::value.
1697 // Otherwise the result is false (because we don't know if std::get throws).
1698 template<template<typename...> class _Trait, typename _Tp, typename _Tuple>
1699 inline constexpr bool __unpack_std_tuple = false;
1700
1701 template<template<typename...> class _Trait, typename _Tp, typename... _Up>
1702 inline constexpr bool __unpack_std_tuple<_Trait, _Tp, tuple<_Up...>>
1703 = _Trait<_Tp, _Up...>::value;
1704
1705 template<template<typename...> class _Trait, typename _Tp, typename... _Up>
1706 inline constexpr bool __unpack_std_tuple<_Trait, _Tp, tuple<_Up...>&>
1707 = _Trait<_Tp, _Up&...>::value;
1708
1709 template<template<typename...> class _Trait, typename _Tp, typename... _Up>
1710 inline constexpr bool __unpack_std_tuple<_Trait, _Tp, const tuple<_Up...>>
1711 = _Trait<_Tp, const _Up...>::value;
1712
1713 template<template<typename...> class _Trait, typename _Tp, typename... _Up>
1714 inline constexpr bool __unpack_std_tuple<_Trait, _Tp, const tuple<_Up...>&>
1715 = _Trait<_Tp, const _Up&...>::value;
1716
1717# define __cpp_lib_apply 201603
1718
1719 template <typename _Fn, typename _Tuple, size_t... _Idx>
1720 constexpr decltype(auto)
1721 __apply_impl(_Fn&& __f, _Tuple&& __t, index_sequence<_Idx...>)
1722 {
1723 return std::__invoke(std::forward<_Fn>(__f),
1724 std::get<_Idx>(std::forward<_Tuple>(__t))...);
1725 }
1726
1727 template <typename _Fn, typename _Tuple>
1728 constexpr decltype(auto)
1729 apply(_Fn&& __f, _Tuple&& __t)
1730 noexcept(__unpack_std_tuple<is_nothrow_invocable, _Fn, _Tuple>)
1731 {
1732 using _Indices
1733 = make_index_sequence<tuple_size_v<remove_reference_t<_Tuple>>>;
1734 return std::__apply_impl(std::forward<_Fn>(__f),
1735 std::forward<_Tuple>(__t),
1736 _Indices{});
1737 }
1738
1739#define __cpp_lib_make_from_tuple 201606
1740
1741 template <typename _Tp, typename _Tuple, size_t... _Idx>
1742 constexpr _Tp
1743 __make_from_tuple_impl(_Tuple&& __t, index_sequence<_Idx...>)
1744 { return _Tp(std::get<_Idx>(std::forward<_Tuple>(__t))...); }
1745
1746 template <typename _Tp, typename _Tuple>
1747 constexpr _Tp
1748 make_from_tuple(_Tuple&& __t)
1749 noexcept(__unpack_std_tuple<is_nothrow_constructible, _Tp, _Tuple>)
1750 {
1751 return __make_from_tuple_impl<_Tp>(
1752 std::forward<_Tuple>(__t),
1753 make_index_sequence<tuple_size_v<remove_reference_t<_Tuple>>>{});
1754 }
1755#endif // C++17
1756
1757 /// @}
1758
1759_GLIBCXX_END_NAMESPACE_VERSION
1760} // namespace std
1761
1762#endif // C++11
1763
1764#endif // _GLIBCXX_TUPLE

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/StaticAnalyzer/Core/PathSensitive/SVals.h

1//===- SVals.h - Abstract Values for Static Analysis ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines SVal, Loc, and NonLoc, classes that represent
10// abstract r-values for use with path-sensitive value tracking.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALS_H
15#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALS_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/Type.h"
19#include "clang/Basic/LLVM.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/ImmutableList.h"
23#include "llvm/ADT/None.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/ADT/PointerUnion.h"
26#include "llvm/Support/Casting.h"
27#include <cassert>
28#include <cstdint>
29#include <utility>
30
31//==------------------------------------------------------------------------==//
32// Base SVal types.
33//==------------------------------------------------------------------------==//
34
35namespace clang {
36
37class CXXBaseSpecifier;
38class DeclaratorDecl;
39class FunctionDecl;
40class LabelDecl;
41
42namespace ento {
43
44class BasicValueFactory;
45class CompoundValData;
46class LazyCompoundValData;
47class MemRegion;
48class PointerToMemberData;
49class SValBuilder;
50class TypedValueRegion;
51
52namespace nonloc {
53
54/// Sub-kinds for NonLoc values.
55enum Kind {
56#define NONLOC_SVAL(Id, Parent) Id ## Kind,
57#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.def"
58};
59
60} // namespace nonloc
61
62namespace loc {
63
64/// Sub-kinds for Loc values.
65enum Kind {
66#define LOC_SVAL(Id, Parent) Id ## Kind,
67#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.def"
68};
69
70} // namespace loc
71
72/// SVal - This represents a symbolic expression, which can be either
73/// an L-value or an R-value.
74///
75class SVal {
76public:
77 enum BaseKind {
78 // The enumerators must be representable using 2 bits.
79#define BASIC_SVAL(Id, Parent) Id ## Kind,
80#define ABSTRACT_SVAL_WITH_KIND(Id, Parent) Id ## Kind,
81#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.def"
82 };
83 enum { BaseBits = 2, BaseMask = 0b11 };
84
85protected:
86 const void *Data = nullptr;
87
88 /// The lowest 2 bits are a BaseKind (0 -- 3).
89 /// The higher bits are an unsigned "kind" value.
90 unsigned Kind = 0;
91
92 explicit SVal(const void *d, bool isLoc, unsigned ValKind)
93 : Data(d), Kind((isLoc ? LocKind : NonLocKind) | (ValKind << BaseBits)) {}
94
95 explicit SVal(BaseKind k, const void *D = nullptr) : Data(D), Kind(k) {}
96
97public:
98 explicit SVal() = default;
99
100 /// Convert to the specified SVal type, asserting that this SVal is of
101 /// the desired type.
102 template<typename T>
103 T castAs() const {
104 assert(T::isKind(*this))(static_cast<void> (0));
105 return *static_cast<const T *>(this);
106 }
107
108 /// Convert to the specified SVal type, returning None if this SVal is
109 /// not of the desired type.
110 template<typename T>
111 Optional<T> getAs() const {
112 if (!T::isKind(*this))
113 return None;
114 return *static_cast<const T *>(this);
115 }
116
117 unsigned getRawKind() const { return Kind; }
118 BaseKind getBaseKind() const { return (BaseKind) (Kind & BaseMask); }
119 unsigned getSubKind() const { return Kind >> BaseBits; }
120
121 // This method is required for using SVal in a FoldingSetNode. It
122 // extracts a unique signature for this SVal object.
123 void Profile(llvm::FoldingSetNodeID &ID) const {
124 ID.AddInteger((unsigned) getRawKind());
125 ID.AddPointer(Data);
126 }
127
128 bool operator==(const SVal &R) const {
129 return getRawKind() == R.getRawKind() && Data == R.Data;
130 }
131
132 bool operator!=(const SVal &R) const {
133 return !(*this == R);
134 }
135
136 bool isUnknown() const {
137 return getRawKind() == UnknownValKind;
41
Returning the value 1, which participates in a condition later
138 }
139
140 bool isUndef() const {
141 return getRawKind() == UndefinedValKind;
31
Assuming the condition is false
32
Returning zero, which participates in a condition later
142 }
143
144 bool isUnknownOrUndef() const {
145 return getRawKind() <= UnknownValKind;
146 }
147
148 bool isValid() const {
149 return getRawKind() > UnknownValKind;
150 }
151
152 bool isConstant() const;
153
154 bool isConstant(int I) const;
155
156 bool isZeroConstant() const;
157
158 /// hasConjuredSymbol - If this SVal wraps a conjured symbol, return true;
159 bool hasConjuredSymbol() const;
160
161 /// getAsFunctionDecl - If this SVal is a MemRegionVal and wraps a
162 /// CodeTextRegion wrapping a FunctionDecl, return that FunctionDecl.
163 /// Otherwise return 0.
164 const FunctionDecl *getAsFunctionDecl() const;
165
166 /// If this SVal is a location and wraps a symbol, return that
167 /// SymbolRef. Otherwise return 0.
168 ///
169 /// Casts are ignored during lookup.
170 /// \param IncludeBaseRegions The boolean that controls whether the search
171 /// should continue to the base regions if the region is not symbolic.
172 SymbolRef getAsLocSymbol(bool IncludeBaseRegions = false) const;
173
174 /// Get the symbol in the SVal or its base region.
175 SymbolRef getLocSymbolInBase() const;
176
177 /// If this SVal wraps a symbol return that SymbolRef.
178 /// Otherwise, return 0.
179 ///
180 /// Casts are ignored during lookup.
181 /// \param IncludeBaseRegions The boolean that controls whether the search
182 /// should continue to the base regions if the region is not symbolic.
183 SymbolRef getAsSymbol(bool IncludeBaseRegions = false) const;
184
185 const MemRegion *getAsRegion() const;
186
187 /// printJson - Pretty-prints in JSON format.
188 void printJson(raw_ostream &Out, bool AddQuotes) const;
189
190 void dumpToStream(raw_ostream &OS) const;
191 void dump() const;
192
193 SymExpr::symbol_iterator symbol_begin() const {
194 const SymExpr *SE = getAsSymbol(/*IncludeBaseRegions=*/true);
195 if (SE)
196 return SE->symbol_begin();
197 else
198 return SymExpr::symbol_iterator();
199 }
200
201 SymExpr::symbol_iterator symbol_end() const {
202 return SymExpr::symbol_end();
203 }
204
205 /// Try to get a reasonable type for the given value.
206 ///
207 /// \returns The best approximation of the value type or Null.
208 /// In theory, all symbolic values should be typed, but this function
209 /// is still a WIP and might have a few blind spots.
210 ///
211 /// \note This function should not be used when the user has access to the
212 /// bound expression AST node as well, since AST always has exact types.
213 ///
214 /// \note Loc values are interpreted as pointer rvalues for the purposes of
215 /// this method.
216 QualType getType(const ASTContext &) const;
217};
218
219inline raw_ostream &operator<<(raw_ostream &os, clang::ento::SVal V) {
220 V.dumpToStream(os);
221 return os;
222}
223
224class UndefinedVal : public SVal {
225public:
226 UndefinedVal() : SVal(UndefinedValKind) {}
227
228private:
229 friend class SVal;
230
231 static bool isKind(const SVal& V) {
232 return V.getBaseKind() == UndefinedValKind;
233 }
234};
235
236class DefinedOrUnknownSVal : public SVal {
237public:
238 // We want calling these methods to be a compiler error since they are
239 // tautologically false.
240 bool isUndef() const = delete;
241 bool isValid() const = delete;
242
243protected:
244 DefinedOrUnknownSVal() = default;
245 explicit DefinedOrUnknownSVal(const void *d, bool isLoc, unsigned ValKind)
246 : SVal(d, isLoc, ValKind) {}
247 explicit DefinedOrUnknownSVal(BaseKind k, void *D = nullptr) : SVal(k, D) {}
248
249private:
250 friend class SVal;
251
252 static bool isKind(const SVal& V) {
253 return !V.isUndef();
254 }
255};
256
257class UnknownVal : public DefinedOrUnknownSVal {
258public:
259 explicit UnknownVal() : DefinedOrUnknownSVal(UnknownValKind) {}
260
261private:
262 friend class SVal;
263
264 static bool isKind(const SVal &V) {
265 return V.getBaseKind() == UnknownValKind;
266 }
267};
268
269class DefinedSVal : public DefinedOrUnknownSVal {
270public:
271 // We want calling these methods to be a compiler error since they are
272 // tautologically true/false.
273 bool isUnknown() const = delete;
274 bool isUnknownOrUndef() const = delete;
275 bool isValid() const = delete;
276
277protected:
278 DefinedSVal() = default;
279 explicit DefinedSVal(const void *d, bool isLoc, unsigned ValKind)
280 : DefinedOrUnknownSVal(d, isLoc, ValKind) {}
281
282private:
283 friend class SVal;
284
285 static bool isKind(const SVal& V) {
286 return !V.isUnknownOrUndef();
287 }
288};
289
290/// Represents an SVal that is guaranteed to not be UnknownVal.
291class KnownSVal : public SVal {
292 friend class SVal;
293
294 KnownSVal() = default;
295
296 static bool isKind(const SVal &V) {
297 return !V.isUnknown();
298 }
299
300public:
301 KnownSVal(const DefinedSVal &V) : SVal(V) {}
302 KnownSVal(const UndefinedVal &V) : SVal(V) {}
303};
304
305class NonLoc : public DefinedSVal {
306protected:
307 NonLoc() = default;
308 explicit NonLoc(unsigned SubKind, const void *d)
309 : DefinedSVal(d, false, SubKind) {}
310
311public:
312 void dumpToStream(raw_ostream &Out) const;
313
314 static bool isCompoundType(QualType T) {
315 return T->isArrayType() || T->isRecordType() ||
316 T->isAnyComplexType() || T->isVectorType();
317 }
318
319private:
320 friend class SVal;
321
322 static bool isKind(const SVal& V) {
323 return V.getBaseKind() == NonLocKind;
324 }
325};
326
327class Loc : public DefinedSVal {
328protected:
329 Loc() = default;
330 explicit Loc(unsigned SubKind, const void *D)
331 : DefinedSVal(const_cast<void *>(D), true, SubKind) {}
332
333public:
334 void dumpToStream(raw_ostream &Out) const;
335
336 static bool isLocType(QualType T) {
337 return T->isAnyPointerType() || T->isBlockPointerType() ||
338 T->isReferenceType() || T->isNullPtrType();
339 }
340
341private:
342 friend class SVal;
343
344 static bool isKind(const SVal& V) {
345 return V.getBaseKind() == LocKind;
346 }
347};
348
349//==------------------------------------------------------------------------==//
350// Subclasses of NonLoc.
351//==------------------------------------------------------------------------==//
352
353namespace nonloc {
354
355/// Represents symbolic expression that isn't a location.
356class SymbolVal : public NonLoc {
357public:
358 SymbolVal() = delete;
359 SymbolVal(SymbolRef sym) : NonLoc(SymbolValKind, sym) {
360 assert(sym)(static_cast<void> (0));
361 assert(!Loc::isLocType(sym->getType()))(static_cast<void> (0));
362 }
363
364 SymbolRef getSymbol() const {
365 return (const SymExpr *) Data;
366 }
367
368 bool isExpression() const {
369 return !isa<SymbolData>(getSymbol());
370 }
371
372private:
373 friend class SVal;
374
375 static bool isKind(const SVal& V) {
376 return V.getBaseKind() == NonLocKind &&
377 V.getSubKind() == SymbolValKind;
378 }
379
380 static bool isKind(const NonLoc& V) {
381 return V.getSubKind() == SymbolValKind;
382 }
383};
384
385/// Value representing integer constant.
386class ConcreteInt : public NonLoc {
387public:
388 explicit ConcreteInt(const llvm::APSInt& V) : NonLoc(ConcreteIntKind, &V) {}
389
390 const llvm::APSInt& getValue() const {
391 return *static_cast<const llvm::APSInt *>(Data);
392 }
393
394 // Transfer functions for binary/unary operations on ConcreteInts.
395 SVal evalBinOp(SValBuilder &svalBuilder, BinaryOperator::Opcode Op,
396 const ConcreteInt& R) const;
397
398 ConcreteInt evalComplement(SValBuilder &svalBuilder) const;
399
400 ConcreteInt evalMinus(SValBuilder &svalBuilder) const;
401
402private:
403 friend class SVal;
404
405 ConcreteInt() = default;
406
407 static bool isKind(const SVal& V) {
408 return V.getBaseKind() == NonLocKind &&
409 V.getSubKind() == ConcreteIntKind;
410 }
411
412 static bool isKind(const NonLoc& V) {
413 return V.getSubKind() == ConcreteIntKind;
414 }
415};
416
417class LocAsInteger : public NonLoc {
418 friend class ento::SValBuilder;
419
420 explicit LocAsInteger(const std::pair<SVal, uintptr_t> &data)
421 : NonLoc(LocAsIntegerKind, &data) {
422 // We do not need to represent loc::ConcreteInt as LocAsInteger,
423 // as it'd collapse into a nonloc::ConcreteInt instead.
424 assert(data.first.getBaseKind() == LocKind &&(static_cast<void> (0))
425 (data.first.getSubKind() == loc::MemRegionValKind ||(static_cast<void> (0))
426 data.first.getSubKind() == loc::GotoLabelKind))(static_cast<void> (0));
427 }
428
429public:
430 Loc getLoc() const {
431 const std::pair<SVal, uintptr_t> *D =
432 static_cast<const std::pair<SVal, uintptr_t> *>(Data);
433 return D->first.castAs<Loc>();
434 }
435
436 Loc getPersistentLoc() const {
437 const std::pair<SVal, uintptr_t> *D =
438 static_cast<const std::pair<SVal, uintptr_t> *>(Data);
439 const SVal& V = D->first;
440 return V.castAs<Loc>();
441 }
442
443 unsigned getNumBits() const {
444 const std::pair<SVal, uintptr_t> *D =
445 static_cast<const std::pair<SVal, uintptr_t> *>(Data);
446 return D->second;
447 }
448
449private:
450 friend class SVal;
451
452 LocAsInteger() = default;
453
454 static bool isKind(const SVal& V) {
455 return V.getBaseKind() == NonLocKind &&
456 V.getSubKind() == LocAsIntegerKind;
457 }
458
459 static bool isKind(const NonLoc& V) {
460 return V.getSubKind() == LocAsIntegerKind;
461 }
462};
463
464class CompoundVal : public NonLoc {
465 friend class ento::SValBuilder;
466
467 explicit CompoundVal(const CompoundValData* D) : NonLoc(CompoundValKind, D) {}
468
469public:
470 const CompoundValData* getValue() const {
471 return static_cast<const CompoundValData *>(Data);
472 }
473
474 using iterator = llvm::ImmutableList<SVal>::iterator;
475
476 iterator begin() const;
477 iterator end() const;
478
479private:
480 friend class SVal;
481
482 CompoundVal() = default;
483
484 static bool isKind(const SVal& V) {
485 return V.getBaseKind() == NonLocKind && V.getSubKind() == CompoundValKind;
486 }
487
488 static bool isKind(const NonLoc& V) {
489 return V.getSubKind() == CompoundValKind;
490 }
491};
492
493class LazyCompoundVal : public NonLoc {
494 friend class ento::SValBuilder;
495
496 explicit LazyCompoundVal(const LazyCompoundValData *D)
497 : NonLoc(LazyCompoundValKind, D) {}
498
499public:
500 const LazyCompoundValData *getCVData() const {
501 return static_cast<const LazyCompoundValData *>(Data);
502 }
503
504 const void *getStore() const;
505 const TypedValueRegion *getRegion() const;
506
507private:
508 friend class SVal;
509
510 LazyCompoundVal() = default;
511
512 static bool isKind(const SVal& V) {
513 return V.getBaseKind() == NonLocKind &&
514 V.getSubKind() == LazyCompoundValKind;
515 }
516
517 static bool isKind(const NonLoc& V) {
518 return V.getSubKind() == LazyCompoundValKind;
519 }
520};
521
522/// Value representing pointer-to-member.
523///
524/// This value is qualified as NonLoc because neither loading nor storing
525/// operations are applied to it. Instead, the analyzer uses the L-value coming
526/// from pointer-to-member applied to an object.
527/// This SVal is represented by a NamedDecl which can be a member function
528/// pointer or a member data pointer and an optional list of CXXBaseSpecifiers.
529/// This list is required to accumulate the pointer-to-member cast history to
530/// figure out the correct subobject field. In particular, implicit casts grow
531/// this list and explicit casts like static_cast shrink this list.
532class PointerToMember : public NonLoc {
533 friend class ento::SValBuilder;
534
535public:
536 using PTMDataType =
537 llvm::PointerUnion<const NamedDecl *, const PointerToMemberData *>;
538
539 const PTMDataType getPTMData() const {
540 return PTMDataType::getFromOpaqueValue(const_cast<void *>(Data));
541 }
542
543 bool isNullMemberPointer() const;
544
545 const NamedDecl *getDecl() const;
546
547 template<typename AdjustedDecl>
548 const AdjustedDecl *getDeclAs() const {
549 return dyn_cast_or_null<AdjustedDecl>(getDecl());
550 }
551
552 using iterator = llvm::ImmutableList<const CXXBaseSpecifier *>::iterator;
553
554 iterator begin() const;
555 iterator end() const;
556
557private:
558 friend class SVal;
559
560 PointerToMember() = default;
561 explicit PointerToMember(const PTMDataType D)
562 : NonLoc(PointerToMemberKind, D.getOpaqueValue()) {}
563
564 static bool isKind(const SVal& V) {
565 return V.getBaseKind() == NonLocKind &&
566 V.getSubKind() == PointerToMemberKind;
567 }
568
569 static bool isKind(const NonLoc& V) {
570 return V.getSubKind() == PointerToMemberKind;
571 }
572};
573
574} // namespace nonloc
575
576//==------------------------------------------------------------------------==//
577// Subclasses of Loc.
578//==------------------------------------------------------------------------==//
579
580namespace loc {
581
582class GotoLabel : public Loc {
583public:
584 explicit GotoLabel(const LabelDecl *Label) : Loc(GotoLabelKind, Label) {
585 assert(Label)(static_cast<void> (0));
586 }
587
588 const LabelDecl *getLabel() const {
589 return static_cast<const LabelDecl *>(Data);
590 }
591
592private:
593 friend class SVal;
594
595 GotoLabel() = default;
596
597 static bool isKind(const SVal& V) {
598 return V.getBaseKind() == LocKind && V.getSubKind() == GotoLabelKind;
599 }
600
601 static bool isKind(const Loc& V) {
602 return V.getSubKind() == GotoLabelKind;
603 }
604};
605
606class MemRegionVal : public Loc {
607public:
608 explicit MemRegionVal(const MemRegion* r) : Loc(MemRegionValKind, r) {
609 assert(r)(static_cast<void> (0));
610 }
611
612 /// Get the underlining region.
613 const MemRegion *getRegion() const {
614 return static_cast<const MemRegion *>(Data);
615 }
616
617 /// Get the underlining region and strip casts.
618 const MemRegion* stripCasts(bool StripBaseCasts = true) const;
619
620 template <typename REGION>
621 const REGION* getRegionAs() const {
622 return dyn_cast<REGION>(getRegion());
623 }
624
625 bool operator==(const MemRegionVal &R) const {
626 return getRegion() == R.getRegion();
627 }
628
629 bool operator!=(const MemRegionVal &R) const {
630 return getRegion() != R.getRegion();
631 }
632
633private:
634 friend class SVal;
635
636 MemRegionVal() = default;
637
638 static bool isKind(const SVal& V) {
639 return V.getBaseKind() == LocKind &&
640 V.getSubKind() == MemRegionValKind;
641 }
642
643 static bool isKind(const Loc& V) {
644 return V.getSubKind() == MemRegionValKind;
645 }
646};
647
648class ConcreteInt : public Loc {
649public:
650 explicit ConcreteInt(const llvm::APSInt& V) : Loc(ConcreteIntKind, &V) {}
651
652 const llvm::APSInt &getValue() const {
653 return *static_cast<const llvm::APSInt *>(Data);
654 }
655
656 // Transfer functions for binary/unary operations on ConcreteInts.
657 SVal evalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op,
658 const ConcreteInt& R) const;
659
660private:
661 friend class SVal;
662
663 ConcreteInt() = default;
664
665 static bool isKind(const SVal& V) {
666 return V.getBaseKind() == LocKind &&
667 V.getSubKind() == ConcreteIntKind;
668 }
669
670 static bool isKind(const Loc& V) {
671 return V.getSubKind() == ConcreteIntKind;
672 }
673};
674
675} // namespace loc
676
677} // namespace ento
678
679} // namespace clang
680
681#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALS_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/clang/include/clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h

1//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the state of the program along the analysisa path.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
14#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
15
16#include "clang/Basic/LLVM.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/ImmutableMap.h"
25#include "llvm/Support/Allocator.h"
26#include <utility>
27
28namespace llvm {
29class APSInt;
30}
31
32namespace clang {
33class ASTContext;
34
35namespace ento {
36
37class AnalysisManager;
38class CallEvent;
39class CallEventManager;
40
41typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
42 ProgramStateManager &, ExprEngine *);
43typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
44 ProgramStateManager &);
45
46//===----------------------------------------------------------------------===//
47// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
48//===----------------------------------------------------------------------===//
49
50template <typename T> struct ProgramStatePartialTrait;
51
52template <typename T> struct ProgramStateTrait {
53 typedef typename T::data_type data_type;
54 static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
55 static inline data_type MakeData(void *const* P) {
56 return P ? (data_type) *P : (data_type) 0;
57 }
58};
59
60/// \class ProgramState
61/// ProgramState - This class encapsulates:
62///
63/// 1. A mapping from expressions to values (Environment)
64/// 2. A mapping from locations to values (Store)
65/// 3. Constraints on symbolic values (GenericDataMap)
66///
67/// Together these represent the "abstract state" of a program.
68///
69/// ProgramState is intended to be used as a functional object; that is,
70/// once it is created and made "persistent" in a FoldingSet, its
71/// values will never change.
72class ProgramState : public llvm::FoldingSetNode {
73public:
74 typedef llvm::ImmutableSet<llvm::APSInt*> IntSetTy;
75 typedef llvm::ImmutableMap<void*, void*> GenericDataMap;
76
77private:
78 void operator=(const ProgramState& R) = delete;
79
80 friend class ProgramStateManager;
81 friend class ExplodedGraph;
82 friend class ExplodedNode;
83
84 ProgramStateManager *stateMgr;
85 Environment Env; // Maps a Stmt to its current SVal.
86 Store store; // Maps a location to its current value.
87 GenericDataMap GDM; // Custom data stored by a client of this class.
88 unsigned refCount;
89
90 /// makeWithStore - Return a ProgramState with the same values as the current
91 /// state with the exception of using the specified Store.
92 ProgramStateRef makeWithStore(const StoreRef &store) const;
93
94 void setStore(const StoreRef &storeRef);
95
96public:
97 /// This ctor is used when creating the first ProgramState object.
98 ProgramState(ProgramStateManager *mgr, const Environment& env,
99 StoreRef st, GenericDataMap gdm);
100
101 /// Copy ctor - We must explicitly define this or else the "Next" ptr
102 /// in FoldingSetNode will also get copied.
103 ProgramState(const ProgramState &RHS);
104
105 ~ProgramState();
106
107 int64_t getID() const;
108
109 /// Return the ProgramStateManager associated with this state.
110 ProgramStateManager &getStateManager() const {
111 return *stateMgr;
112 }
113
114 AnalysisManager &getAnalysisManager() const;
115
116 /// Return the ConstraintManager.
117 ConstraintManager &getConstraintManager() const;
118
119 /// getEnvironment - Return the environment associated with this state.
120 /// The environment is the mapping from expressions to values.
121 const Environment& getEnvironment() const { return Env; }
122
123 /// Return the store associated with this state. The store
124 /// is a mapping from locations to values.
125 Store getStore() const { return store; }
126
127
128 /// getGDM - Return the generic data map associated with this state.
129 GenericDataMap getGDM() const { return GDM; }
130
131 void setGDM(GenericDataMap gdm) { GDM = gdm; }
132
133 /// Profile - Profile the contents of a ProgramState object for use in a
134 /// FoldingSet. Two ProgramState objects are considered equal if they
135 /// have the same Environment, Store, and GenericDataMap.
136 static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
137 V->Env.Profile(ID);
138 ID.AddPointer(V->store);
139 V->GDM.Profile(ID);
140 }
141
142 /// Profile - Used to profile the contents of this object for inclusion
143 /// in a FoldingSet.
144 void Profile(llvm::FoldingSetNodeID& ID) const {
145 Profile(ID, this);
146 }
147
148 BasicValueFactory &getBasicVals() const;
149 SymbolManager &getSymbolManager() const;
150
151 //==---------------------------------------------------------------------==//
152 // Constraints on values.
153 //==---------------------------------------------------------------------==//
154 //
155 // Each ProgramState records constraints on symbolic values. These constraints
156 // are managed using the ConstraintManager associated with a ProgramStateManager.
157 // As constraints gradually accrue on symbolic values, added constraints
158 // may conflict and indicate that a state is infeasible (as no real values
159 // could satisfy all the constraints). This is the principal mechanism
160 // for modeling path-sensitivity in ExprEngine/ProgramState.
161 //
162 // Various "assume" methods form the interface for adding constraints to
163 // symbolic values. A call to 'assume' indicates an assumption being placed
164 // on one or symbolic values. 'assume' methods take the following inputs:
165 //
166 // (1) A ProgramState object representing the current state.
167 //
168 // (2) The assumed constraint (which is specific to a given "assume" method).
169 //
170 // (3) A binary value "Assumption" that indicates whether the constraint is
171 // assumed to be true or false.
172 //
173 // The output of "assume*" is a new ProgramState object with the added constraints.
174 // If no new state is feasible, NULL is returned.
175 //
176
177 /// Assumes that the value of \p cond is zero (if \p assumption is "false")
178 /// or non-zero (if \p assumption is "true").
179 ///
180 /// This returns a new state with the added constraint on \p cond.
181 /// If no new state is feasible, NULL is returned.
182 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef assume(DefinedOrUnknownSVal cond,
183 bool assumption) const;
184
185 /// Assumes both "true" and "false" for \p cond, and returns both
186 /// corresponding states (respectively).
187 ///
188 /// This is more efficient than calling assume() twice. Note that one (but not
189 /// both) of the returned states may be NULL.
190 LLVM_NODISCARD[[clang::warn_unused_result]] std::pair<ProgramStateRef, ProgramStateRef>
191 assume(DefinedOrUnknownSVal cond) const;
192
193 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
194 assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
195 bool assumption, QualType IndexType = QualType()) const;
196
197 /// Assumes that the value of \p Val is bounded with [\p From; \p To]
198 /// (if \p assumption is "true") or it is fully out of this range
199 /// (if \p assumption is "false").
200 ///
201 /// This returns a new state with the added constraint on \p cond.
202 /// If no new state is feasible, NULL is returned.
203 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
204 const llvm::APSInt &From,
205 const llvm::APSInt &To,
206 bool assumption) const;
207
208 /// Assumes given range both "true" and "false" for \p Val, and returns both
209 /// corresponding states (respectively).
210 ///
211 /// This is more efficient than calling assume() twice. Note that one (but not
212 /// both) of the returned states may be NULL.
213 LLVM_NODISCARD[[clang::warn_unused_result]] std::pair<ProgramStateRef, ProgramStateRef>
214 assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
215 const llvm::APSInt &To) const;
216
217 /// Check if the given SVal is not constrained to zero and is not
218 /// a zero constant.
219 ConditionTruthVal isNonNull(SVal V) const;
220
221 /// Check if the given SVal is constrained to zero or is a zero
222 /// constant.
223 ConditionTruthVal isNull(SVal V) const;
224
225 /// \return Whether values \p Lhs and \p Rhs are equal.
226 ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;
227
228 /// Utility method for getting regions.
229 const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
230
231 //==---------------------------------------------------------------------==//
232 // Binding and retrieving values to/from the environment and symbolic store.
233 //==---------------------------------------------------------------------==//
234
235 /// Create a new state by binding the value 'V' to the statement 'S' in the
236 /// state's environment.
237 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef BindExpr(const Stmt *S,
238 const LocationContext *LCtx, SVal V,
239 bool Invalidate = true) const;
240
241 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef bindLoc(Loc location, SVal V,
242 const LocationContext *LCtx,
243 bool notifyChanges = true) const;
244
245 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef bindLoc(SVal location, SVal V,
246 const LocationContext *LCtx) const;
247
248 /// Initializes the region of memory represented by \p loc with an initial
249 /// value. Once initialized, all values loaded from any sub-regions of that
250 /// region will be equal to \p V, unless overwritten later by the program.
251 /// This method should not be used on regions that are already initialized.
252 /// If you need to indicate that memory contents have suddenly become unknown
253 /// within a certain region of memory, consider invalidateRegions().
254 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
255 bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;
256
257 /// Performs C++ zero-initialization procedure on the region of memory
258 /// represented by \p loc.
259 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
260 bindDefaultZero(SVal loc, const LocationContext *LCtx) const;
261
262 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef killBinding(Loc LV) const;
263
264 /// Returns the state with bindings for the given regions
265 /// cleared from the store.
266 ///
267 /// Optionally invalidates global regions as well.
268 ///
269 /// \param Regions the set of regions to be invalidated.
270 /// \param E the expression that caused the invalidation.
271 /// \param BlockCount The number of times the current basic block has been
272 // visited.
273 /// \param CausesPointerEscape the flag is set to true when
274 /// the invalidation entails escape of a symbol (representing a
275 /// pointer). For example, due to it being passed as an argument in a
276 /// call.
277 /// \param IS the set of invalidated symbols.
278 /// \param Call if non-null, the invalidated regions represent parameters to
279 /// the call and should be considered directly invalidated.
280 /// \param ITraits information about special handling for a particular
281 /// region/symbol.
282 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
283 invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
284 unsigned BlockCount, const LocationContext *LCtx,
285 bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
286 const CallEvent *Call = nullptr,
287 RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
288
289 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
290 invalidateRegions(ArrayRef<SVal> Regions, const Expr *E,
291 unsigned BlockCount, const LocationContext *LCtx,
292 bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
293 const CallEvent *Call = nullptr,
294 RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
295
296 /// enterStackFrame - Returns the state for entry to the given stack frame,
297 /// preserving the current state.
298 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef enterStackFrame(
299 const CallEvent &Call, const StackFrameContext *CalleeCtx) const;
300
301 /// Return the value of 'self' if available in the given context.
302 SVal getSelfSVal(const LocationContext *LC) const;
303
304 /// Get the lvalue for a base class object reference.
305 Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;
306
307 /// Get the lvalue for a base class object reference.
308 Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
309 bool IsVirtual) const;
310
311 /// Get the lvalue for a parameter.
312 Loc getLValue(const Expr *Call, unsigned Index,
313 const LocationContext *LC) const;
314
315 /// Get the lvalue for a variable reference.
316 Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
317
318 Loc getLValue(const CompoundLiteralExpr *literal,
319 const LocationContext *LC) const;
320
321 /// Get the lvalue for an ivar reference.
322 SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
323
324 /// Get the lvalue for a field reference.
325 SVal getLValue(const FieldDecl *decl, SVal Base) const;
326
327 /// Get the lvalue for an indirect field reference.
328 SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;
329
330 /// Get the lvalue for an array index.
331 SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
332
333 /// Returns the SVal bound to the statement 'S' in the state's environment.
334 SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;
335
336 SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;
337
338 /// Return the value bound to the specified location.
339 /// Returns UnknownVal() if none found.
340 SVal getSVal(Loc LV, QualType T = QualType()) const;
341
342 /// Returns the "raw" SVal bound to LV before any value simplfication.
343 SVal getRawSVal(Loc LV, QualType T= QualType()) const;
344
345 /// Return the value bound to the specified location.
346 /// Returns UnknownVal() if none found.
347 SVal getSVal(const MemRegion* R, QualType T = QualType()) const;
348
349 /// Return the value bound to the specified location, assuming
350 /// that the value is a scalar integer or an enumeration or a pointer.
351 /// Returns UnknownVal() if none found or the region is not known to hold
352 /// a value of such type.
353 SVal getSValAsScalarOrLoc(const MemRegion *R) const;
354
355 using region_iterator = const MemRegion **;
356
357 /// Visits the symbols reachable from the given SVal using the provided
358 /// SymbolVisitor.
359 ///
360 /// This is a convenience API. Consider using ScanReachableSymbols class
361 /// directly when making multiple scans on the same state with the same
362 /// visitor to avoid repeated initialization cost.
363 /// \sa ScanReachableSymbols
364 bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
365
366 /// Visits the symbols reachable from the regions in the given
367 /// MemRegions range using the provided SymbolVisitor.
368 bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
369 SymbolVisitor &visitor) const;
370
371 template <typename CB> CB scanReachableSymbols(SVal val) const;
372 template <typename CB> CB
373 scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;
374
375 //==---------------------------------------------------------------------==//
376 // Accessing the Generic Data Map (GDM).
377 //==---------------------------------------------------------------------==//
378
379 void *const* FindGDM(void *K) const;
380
381 template <typename T>
382 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
383 add(typename ProgramStateTrait<T>::key_type K) const;
384
385 template <typename T>
386 typename ProgramStateTrait<T>::data_type
387 get() const {
388 return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
389 }
390
391 template<typename T>
392 typename ProgramStateTrait<T>::lookup_type
393 get(typename ProgramStateTrait<T>::key_type key) const {
394 void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
395 return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
396 }
397
398 template <typename T>
399 typename ProgramStateTrait<T>::context_type get_context() const;
400
401 template <typename T>
402 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
403 remove(typename ProgramStateTrait<T>::key_type K) const;
404
405 template <typename T>
406 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
407 remove(typename ProgramStateTrait<T>::key_type K,
408 typename ProgramStateTrait<T>::context_type C) const;
409
410 template <typename T> LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef remove() const;
411
412 template <typename T>
413 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
414 set(typename ProgramStateTrait<T>::data_type D) const;
415
416 template <typename T>
417 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
418 set(typename ProgramStateTrait<T>::key_type K,
419 typename ProgramStateTrait<T>::value_type E) const;
420
421 template <typename T>
422 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
423 set(typename ProgramStateTrait<T>::key_type K,
424 typename ProgramStateTrait<T>::value_type E,
425 typename ProgramStateTrait<T>::context_type C) const;
426
427 template<typename T>
428 bool contains(typename ProgramStateTrait<T>::key_type key) const {
429 void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
430 return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
431 }
432
433 // Pretty-printing.
434 void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
435 const char *NL = "\n", unsigned int Space = 0,
436 bool IsDot = false) const;
437
438 void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
439 unsigned int Space = 0) const;
440
441 void dump() const;
442
443private:
444 friend void ProgramStateRetain(const ProgramState *state);
445 friend void ProgramStateRelease(const ProgramState *state);
446
447 /// \sa invalidateValues()
448 /// \sa invalidateRegions()
449 ProgramStateRef
450 invalidateRegionsImpl(ArrayRef<SVal> Values,
451 const Expr *E, unsigned BlockCount,
452 const LocationContext *LCtx,
453 bool ResultsInSymbolEscape,
454 InvalidatedSymbols *IS,
455 RegionAndSymbolInvalidationTraits *HTraits,
456 const CallEvent *Call) const;
457};
458
459//===----------------------------------------------------------------------===//
460// ProgramStateManager - Factory object for ProgramStates.
461//===----------------------------------------------------------------------===//
462
463class ProgramStateManager {
464 friend class ProgramState;
465 friend void ProgramStateRelease(const ProgramState *state);
466private:
467 /// Eng - The ExprEngine that owns this state manager.
468 ExprEngine *Eng; /* Can be null. */
469
470 EnvironmentManager EnvMgr;
471 std::unique_ptr<StoreManager> StoreMgr;
472 std::unique_ptr<ConstraintManager> ConstraintMgr;
473
474 ProgramState::GenericDataMap::Factory GDMFactory;
475
476 typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
477 GDMContextsTy GDMContexts;
478
479 /// StateSet - FoldingSet containing all the states created for analyzing
480 /// a particular function. This is used to unique states.
481 llvm::FoldingSet<ProgramState> StateSet;
482
483 /// Object that manages the data for all created SVals.
484 std::unique_ptr<SValBuilder> svalBuilder;
485
486 /// Manages memory for created CallEvents.
487 std::unique_ptr<CallEventManager> CallEventMgr;
488
489 /// A BumpPtrAllocator to allocate states.
490 llvm::BumpPtrAllocator &Alloc;
491
492 /// A vector of ProgramStates that we can reuse.
493 std::vector<ProgramState *> freeStates;
494
495public:
496 ProgramStateManager(ASTContext &Ctx,
497 StoreManagerCreator CreateStoreManager,
498 ConstraintManagerCreator CreateConstraintManager,
499 llvm::BumpPtrAllocator& alloc,
500 ExprEngine *expreng);
501
502 ~ProgramStateManager();
503
504 ProgramStateRef getInitialState(const LocationContext *InitLoc);
505
506 ASTContext &getContext() { return svalBuilder->getContext(); }
507 const ASTContext &getContext() const { return svalBuilder->getContext(); }
508
509 BasicValueFactory &getBasicVals() {
510 return svalBuilder->getBasicValueFactory();
511 }
512
513 SValBuilder &getSValBuilder() {
514 return *svalBuilder;
515 }
516
517 const SValBuilder &getSValBuilder() const {
518 return *svalBuilder;
519 }
520
521 SymbolManager &getSymbolManager() {
522 return svalBuilder->getSymbolManager();
523 }
524 const SymbolManager &getSymbolManager() const {
525 return svalBuilder->getSymbolManager();
526 }
527
528 llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
529
530 MemRegionManager& getRegionManager() {
531 return svalBuilder->getRegionManager();
532 }
533 const MemRegionManager &getRegionManager() const {
534 return svalBuilder->getRegionManager();
535 }
536
537 CallEventManager &getCallEventManager() { return *CallEventMgr; }
538
539 StoreManager &getStoreManager() { return *StoreMgr; }
540 ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
541 ExprEngine &getOwningEngine() { return *Eng; }
542
543 ProgramStateRef
544 removeDeadBindingsFromEnvironmentAndStore(ProgramStateRef St,
545 const StackFrameContext *LCtx,
546 SymbolReaper &SymReaper);
547
548public:
549
550 SVal ArrayToPointer(Loc Array, QualType ElementTy) {
551 return StoreMgr->ArrayToPointer(Array, ElementTy);
552 }
553
554 // Methods that manipulate the GDM.
555 ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
556 ProgramStateRef removeGDM(ProgramStateRef state, void *Key);
557
558 // Methods that query & manipulate the Store.
559
560 void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
561 StoreMgr->iterBindings(state->getStore(), F);
562 }
563
564 ProgramStateRef getPersistentState(ProgramState &Impl);
565 ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
566 ProgramStateRef GDMState);
567
568 bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
569 return ConstraintMgr->haveEqualConstraints(S1, S2);
570 }
571
572 bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
573 return S1->Env == S2->Env;
574 }
575
576 bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
577 return S1->store == S2->store;
578 }
579
580 //==---------------------------------------------------------------------==//
581 // Generic Data Map methods.
582 //==---------------------------------------------------------------------==//
583 //
584 // ProgramStateManager and ProgramState support a "generic data map" that allows
585 // different clients of ProgramState objects to embed arbitrary data within a
586 // ProgramState object. The generic data map is essentially an immutable map
587 // from a "tag" (that acts as the "key" for a client) and opaque values.
588 // Tags/keys and values are simply void* values. The typical way that clients
589 // generate unique tags are by taking the address of a static variable.
590 // Clients are responsible for ensuring that data values referred to by a
591 // the data pointer are immutable (and thus are essentially purely functional
592 // data).
593 //
594 // The templated methods below use the ProgramStateTrait<T> class
595 // to resolve keys into the GDM and to return data values to clients.
596 //
597
598 // Trait based GDM dispatch.
599 template <typename T>
600 ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
601 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
602 ProgramStateTrait<T>::MakeVoidPtr(D));
603 }
604
605 template<typename T>
606 ProgramStateRef set(ProgramStateRef st,
607 typename ProgramStateTrait<T>::key_type K,
608 typename ProgramStateTrait<T>::value_type V,
609 typename ProgramStateTrait<T>::context_type C) {
610
611 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
612 ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
613 }
614
615 template <typename T>
616 ProgramStateRef add(ProgramStateRef st,
617 typename ProgramStateTrait<T>::key_type K,
618 typename ProgramStateTrait<T>::context_type C) {
619 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
620 ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
621 }
622
623 template <typename T>
624 ProgramStateRef remove(ProgramStateRef st,
625 typename ProgramStateTrait<T>::key_type K,
626 typename ProgramStateTrait<T>::context_type C) {
627
628 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
629 ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
630 }
631
632 template <typename T>
633 ProgramStateRef remove(ProgramStateRef st) {
634 return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
635 }
636
637 void *FindGDMContext(void *index,
638 void *(*CreateContext)(llvm::BumpPtrAllocator&),
639 void (*DeleteContext)(void*));
640
641 template <typename T>
642 typename ProgramStateTrait<T>::context_type get_context() {
643 void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
644 ProgramStateTrait<T>::CreateContext,
645 ProgramStateTrait<T>::DeleteContext);
646
647 return ProgramStateTrait<T>::MakeContext(p);
648 }
649};
650
651
652//===----------------------------------------------------------------------===//
653// Out-of-line method definitions for ProgramState.
654//===----------------------------------------------------------------------===//
655
656inline ConstraintManager &ProgramState::getConstraintManager() const {
657 return stateMgr->getConstraintManager();
658}
659
660inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
661 const LocationContext *LC) const
662{
663 return getStateManager().getRegionManager().getVarRegion(D, LC);
664}
665
666inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
667 bool Assumption) const {
668 if (Cond.isUnknown())
46
Taking false branch
669 return this;
670
671 return getStateManager().ConstraintMgr
47
Value assigned to 'S.Obj'
672 ->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
673}
674
675inline std::pair<ProgramStateRef , ProgramStateRef >
676ProgramState::assume(DefinedOrUnknownSVal Cond) const {
677 if (Cond.isUnknown())
678 return std::make_pair(this, this);
679
680 return getStateManager().ConstraintMgr
681 ->assumeDual(this, Cond.castAs<DefinedSVal>());
682}
683
684inline ProgramStateRef ProgramState::assumeInclusiveRange(
685 DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
686 bool Assumption) const {
687 if (Val.isUnknown())
688 return this;
689
690 assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!")(static_cast<void> (0));
691
692 return getStateManager().ConstraintMgr->assumeInclusiveRange(
693 this, Val.castAs<NonLoc>(), From, To, Assumption);
694}
695
696inline std::pair<ProgramStateRef, ProgramStateRef>
697ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
698 const llvm::APSInt &From,
699 const llvm::APSInt &To) const {
700 if (Val.isUnknown())
701 return std::make_pair(this, this);
702
703 assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!")(static_cast<void> (0));
704
705 return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
706 this, Val.castAs<NonLoc>(), From, To);
707}
708
709inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
710 if (Optional<Loc> L = LV.getAs<Loc>())
711 return bindLoc(*L, V, LCtx);
712 return this;
713}
714
715inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
716 const SubRegion *Super) const {
717 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
718 return loc::MemRegionVal(
719 getStateManager().getRegionManager().getCXXBaseObjectRegion(
720 Base, Super, BaseSpec.isVirtual()));
721}
722
723inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
724 const SubRegion *Super,
725 bool IsVirtual) const {
726 return loc::MemRegionVal(
727 getStateManager().getRegionManager().getCXXBaseObjectRegion(
728 BaseClass, Super, IsVirtual));
729}
730
731inline Loc ProgramState::getLValue(const VarDecl *VD,
732 const LocationContext *LC) const {
733 return getStateManager().StoreMgr->getLValueVar(VD, LC);
734}
735
736inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
737 const LocationContext *LC) const {
738 return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
739}
740
741inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
742 return getStateManager().StoreMgr->getLValueIvar(D, Base);
743}
744
745inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
746 return getStateManager().StoreMgr->getLValueField(D, Base);
747}
748
749inline SVal ProgramState::getLValue(const IndirectFieldDecl *D,
750 SVal Base) const {
751 StoreManager &SM = *getStateManager().StoreMgr;
752 for (const auto *I : D->chain()) {
753 Base = SM.getLValueField(cast<FieldDecl>(I), Base);
754 }
755
756 return Base;
757}
758
759inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
760 if (Optional<NonLoc> N = Idx.getAs<NonLoc>())
761 return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
762 return UnknownVal();
763}
764
765inline SVal ProgramState::getSVal(const Stmt *Ex,
766 const LocationContext *LCtx) const{
767 return Env.getSVal(EnvironmentEntry(Ex, LCtx),
768 *getStateManager().svalBuilder);
769}
770
771inline SVal
772ProgramState::getSValAsScalarOrLoc(const Stmt *S,
773 const LocationContext *LCtx) const {
774 if (const Expr *Ex = dyn_cast<Expr>(S)) {
775 QualType T = Ex->getType();
776 if (Ex->isGLValue() || Loc::isLocType(T) ||
777 T->isIntegralOrEnumerationType())
778 return getSVal(S, LCtx);
779 }
780
781 return UnknownVal();