Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
Warning:line 1490, column 17
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CStringChecker.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/StaticAnalyzer/Checkers -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/StaticAnalyzer/Checkers -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp

1//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This defines CStringChecker, which is an assortment of checks on calls
10// to functions in <string.h>.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InterCheckerAPI.h"
15#include "clang/Basic/CharInfo.h"
16#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
17#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18#include "clang/StaticAnalyzer/Core/Checker.h"
19#include "clang/StaticAnalyzer/Core/CheckerManager.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
23#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
24#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace clang;
31using namespace ento;
32
33namespace {
34struct AnyArgExpr {
35 // FIXME: Remove constructor in C++17 to turn it into an aggregate.
36 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex)
37 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {}
38 const Expr *Expression;
39 unsigned ArgumentIndex;
40};
41
42struct SourceArgExpr : AnyArgExpr {
43 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17.
44};
45
46struct DestinationArgExpr : AnyArgExpr {
47 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
48};
49
50struct SizeArgExpr : AnyArgExpr {
51 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
52};
53
54using ErrorMessage = SmallString<128>;
55enum class AccessKind { write, read };
56
57static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
58 AccessKind Access) {
59 ErrorMessage Message;
60 llvm::raw_svector_ostream Os(Message);
61
62 // Function classification like: Memory copy function
63 Os << toUppercase(FunctionDescription.front())
64 << &FunctionDescription.data()[1];
65
66 if (Access == AccessKind::write) {
67 Os << " overflows the destination buffer";
68 } else { // read access
69 Os << " accesses out-of-bound array element";
70 }
71
72 return Message;
73}
74
75enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
76class CStringChecker : public Checker< eval::Call,
77 check::PreStmt<DeclStmt>,
78 check::LiveSymbols,
79 check::DeadSymbols,
80 check::RegionChanges
81 > {
82 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
83 BT_NotCString, BT_AdditionOverflow, BT_UninitRead;
84
85 mutable const char *CurrentFunctionDescription;
86
87public:
88 /// The filter is used to filter out the diagnostics which are not enabled by
89 /// the user.
90 struct CStringChecksFilter {
91 DefaultBool CheckCStringNullArg;
92 DefaultBool CheckCStringOutOfBounds;
93 DefaultBool CheckCStringBufferOverlap;
94 DefaultBool CheckCStringNotNullTerm;
95 DefaultBool CheckCStringUninitializedRead;
96
97 CheckerNameRef CheckNameCStringNullArg;
98 CheckerNameRef CheckNameCStringOutOfBounds;
99 CheckerNameRef CheckNameCStringBufferOverlap;
100 CheckerNameRef CheckNameCStringNotNullTerm;
101 CheckerNameRef CheckNameCStringUninitializedRead;
102 };
103
104 CStringChecksFilter Filter;
105
106 static void *getTag() { static int tag; return &tag; }
107
108 bool evalCall(const CallEvent &Call, CheckerContext &C) const;
109 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
110 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
111 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
112
113 ProgramStateRef
114 checkRegionChanges(ProgramStateRef state,
115 const InvalidatedSymbols *,
116 ArrayRef<const MemRegion *> ExplicitRegions,
117 ArrayRef<const MemRegion *> Regions,
118 const LocationContext *LCtx,
119 const CallEvent *Call) const;
120
121 typedef void (CStringChecker::*FnCheck)(CheckerContext &,
122 const CallExpr *) const;
123 CallDescriptionMap<FnCheck> Callbacks = {
124 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy},
125 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
126 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
127 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
128 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
129 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
130 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
131 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
132 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
133 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
134 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
135 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
136 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
137 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
138 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
139 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
140 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
141 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
142 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
143 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
144 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
145 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
146 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
147 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
148 };
149
150 // These require a bit of special handling.
151 CallDescription StdCopy{{"std", "copy"}, 3},
152 StdCopyBackward{{"std", "copy_backward"}, 3};
153
154 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
155 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
156 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
157 void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
158 void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
159 void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
160 ProgramStateRef state, SizeArgExpr Size,
161 DestinationArgExpr Dest, SourceArgExpr Source,
162 bool Restricted, bool IsMempcpy) const;
163
164 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
165
166 void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
167 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
168 void evalstrLengthCommon(CheckerContext &C,
169 const CallExpr *CE,
170 bool IsStrnlen = false) const;
171
172 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
173 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
174 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
175 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
176 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
177 bool IsBounded, ConcatFnKind appendK,
178 bool returnPtr = true) const;
179
180 void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
181 void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
182 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
183
184 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
185 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
186 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
187 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
188 void evalStrcmpCommon(CheckerContext &C,
189 const CallExpr *CE,
190 bool IsBounded = false,
191 bool IgnoreCase = false) const;
192
193 void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
194
195 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
196 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
197 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
198 void evalMemset(CheckerContext &C, const CallExpr *CE) const;
199 void evalBzero(CheckerContext &C, const CallExpr *CE) const;
200
201 // Utility methods
202 std::pair<ProgramStateRef , ProgramStateRef >
203 static assumeZero(CheckerContext &C,
204 ProgramStateRef state, SVal V, QualType Ty);
205
206 static ProgramStateRef setCStringLength(ProgramStateRef state,
207 const MemRegion *MR,
208 SVal strLength);
209 static SVal getCStringLengthForRegion(CheckerContext &C,
210 ProgramStateRef &state,
211 const Expr *Ex,
212 const MemRegion *MR,
213 bool hypothetical);
214 SVal getCStringLength(CheckerContext &C,
215 ProgramStateRef &state,
216 const Expr *Ex,
217 SVal Buf,
218 bool hypothetical = false) const;
219
220 const StringLiteral *getCStringLiteral(CheckerContext &C,
221 ProgramStateRef &state,
222 const Expr *expr,
223 SVal val) const;
224
225 static ProgramStateRef InvalidateBuffer(CheckerContext &C,
226 ProgramStateRef state,
227 const Expr *Ex, SVal V,
228 bool IsSourceBuffer,
229 const Expr *Size);
230
231 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
232 const MemRegion *MR);
233
234 static bool memsetAux(const Expr *DstBuffer, SVal CharE,
235 const Expr *Size, CheckerContext &C,
236 ProgramStateRef &State);
237
238 // Re-usable checks
239 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
240 AnyArgExpr Arg, SVal l) const;
241 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
242 AnyArgExpr Buffer, SVal Element,
243 AccessKind Access) const;
244 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
245 AnyArgExpr Buffer, SizeArgExpr Size,
246 AccessKind Access) const;
247 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
248 SizeArgExpr Size, AnyArgExpr First,
249 AnyArgExpr Second) const;
250 void emitOverlapBug(CheckerContext &C,
251 ProgramStateRef state,
252 const Stmt *First,
253 const Stmt *Second) const;
254
255 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
256 StringRef WarningMsg) const;
257 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
258 const Stmt *S, StringRef WarningMsg) const;
259 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
260 const Stmt *S, StringRef WarningMsg) const;
261 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
262 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State,
263 const Expr *E) const;
264 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
265 ProgramStateRef state,
266 NonLoc left,
267 NonLoc right) const;
268
269 // Return true if the destination buffer of the copy function may be in bound.
270 // Expects SVal of Size to be positive and unsigned.
271 // Expects SVal of FirstBuf to be a FieldRegion.
272 static bool IsFirstBufInBound(CheckerContext &C,
273 ProgramStateRef state,
274 const Expr *FirstBuf,
275 const Expr *Size);
276};
277
278} //end anonymous namespace
279
280REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)namespace { class CStringLength {}; using CStringLengthTy = llvm
::ImmutableMap<const MemRegion *, SVal>; } namespace clang
{ namespace ento { template <> struct ProgramStateTrait
<CStringLength> : public ProgramStatePartialTrait<CStringLengthTy
> { static void *GDMIndex() { static int Index; return &
Index; } }; } }
281
282//===----------------------------------------------------------------------===//
283// Individual checks and utility methods.
284//===----------------------------------------------------------------------===//
285
286std::pair<ProgramStateRef , ProgramStateRef >
287CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
288 QualType Ty) {
289 Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
290 if (!val)
291 return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
292
293 SValBuilder &svalBuilder = C.getSValBuilder();
294 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
295 return state->assume(svalBuilder.evalEQ(state, *val, zero));
296}
297
298ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
299 ProgramStateRef State,
300 AnyArgExpr Arg, SVal l) const {
301 // If a previous check has failed, propagate the failure.
302 if (!State)
303 return nullptr;
304
305 ProgramStateRef stateNull, stateNonNull;
306 std::tie(stateNull, stateNonNull) =
307 assumeZero(C, State, l, Arg.Expression->getType());
308
309 if (stateNull && !stateNonNull) {
310 if (Filter.CheckCStringNullArg) {
311 SmallString<80> buf;
312 llvm::raw_svector_ostream OS(buf);
313 assert(CurrentFunctionDescription)(static_cast <bool> (CurrentFunctionDescription) ? void
(0) : __assert_fail ("CurrentFunctionDescription", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 313, __extension__ __PRETTY_FUNCTION__))
;
314 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
315 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
316 << CurrentFunctionDescription;
317
318 emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
319 }
320 return nullptr;
321 }
322
323 // From here on, assume that the value is non-null.
324 assert(stateNonNull)(static_cast <bool> (stateNonNull) ? void (0) : __assert_fail
("stateNonNull", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 324, __extension__ __PRETTY_FUNCTION__))
;
325 return stateNonNull;
326}
327
328// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
329ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
330 ProgramStateRef state,
331 AnyArgExpr Buffer, SVal Element,
332 AccessKind Access) const {
333
334 // If a previous check has failed, propagate the failure.
335 if (!state)
336 return nullptr;
337
338 // Check for out of bound array element access.
339 const MemRegion *R = Element.getAsRegion();
340 if (!R)
341 return state;
342
343 const auto *ER = dyn_cast<ElementRegion>(R);
344 if (!ER)
345 return state;
346
347 if (ER->getValueType() != C.getASTContext().CharTy)
348 return state;
349
350 // Get the size of the array.
351 const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
352 DefinedOrUnknownSVal Size =
353 getDynamicExtent(state, superReg, C.getSValBuilder());
354
355 // Get the index of the accessed element.
356 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
357
358 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
359 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
360 if (StOutBound && !StInBound) {
361 // These checks are either enabled by the CString out-of-bounds checker
362 // explicitly or implicitly by the Malloc checker.
363 // In the latter case we only do modeling but do not emit warning.
364 if (!Filter.CheckCStringOutOfBounds)
365 return nullptr;
366
367 // Emit a bug report.
368 ErrorMessage Message =
369 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
370 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
371 return nullptr;
372 }
373
374 // Ensure that we wouldn't read uninitialized value.
375 if (Access == AccessKind::read) {
376 if (Filter.CheckCStringUninitializedRead &&
377 StInBound->getSVal(ER).isUndef()) {
378 emitUninitializedReadBug(C, StInBound, Buffer.Expression);
379 return nullptr;
380 }
381 }
382
383 // Array bound check succeeded. From this point forward the array bound
384 // should always succeed.
385 return StInBound;
386}
387
388ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
389 ProgramStateRef State,
390 AnyArgExpr Buffer,
391 SizeArgExpr Size,
392 AccessKind Access) const {
393 // If a previous check has failed, propagate the failure.
394 if (!State)
395 return nullptr;
396
397 SValBuilder &svalBuilder = C.getSValBuilder();
398 ASTContext &Ctx = svalBuilder.getContext();
399
400 QualType SizeTy = Size.Expression->getType();
401 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
402
403 // Check that the first buffer is non-null.
404 SVal BufVal = C.getSVal(Buffer.Expression);
405 State = checkNonNull(C, State, Buffer, BufVal);
406 if (!State)
407 return nullptr;
408
409 // If out-of-bounds checking is turned off, skip the rest.
410 if (!Filter.CheckCStringOutOfBounds)
411 return State;
412
413 // Get the access length and make sure it is known.
414 // FIXME: This assumes the caller has already checked that the access length
415 // is positive. And that it's unsigned.
416 SVal LengthVal = C.getSVal(Size.Expression);
417 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
418 if (!Length)
419 return State;
420
421 // Compute the offset of the last element to be accessed: size-1.
422 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
423 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
424 if (Offset.isUnknown())
425 return nullptr;
426 NonLoc LastOffset = Offset.castAs<NonLoc>();
427
428 // Check that the first buffer is sufficiently long.
429 SVal BufStart =
430 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
431 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
432
433 SVal BufEnd =
434 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
435 State = CheckLocation(C, State, Buffer, BufEnd, Access);
436
437 // If the buffer isn't large enough, abort.
438 if (!State)
439 return nullptr;
440 }
441
442 // Large enough or not, return this state!
443 return State;
444}
445
446ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
447 ProgramStateRef state,
448 SizeArgExpr Size, AnyArgExpr First,
449 AnyArgExpr Second) const {
450 if (!Filter.CheckCStringBufferOverlap)
451 return state;
452
453 // Do a simple check for overlap: if the two arguments are from the same
454 // buffer, see if the end of the first is greater than the start of the second
455 // or vice versa.
456
457 // If a previous check has failed, propagate the failure.
458 if (!state)
459 return nullptr;
460
461 ProgramStateRef stateTrue, stateFalse;
462
463 // Assume different address spaces cannot overlap.
464 if (First.Expression->getType()->getPointeeType().getAddressSpace() !=
465 Second.Expression->getType()->getPointeeType().getAddressSpace())
466 return state;
467
468 // Get the buffer values and make sure they're known locations.
469 const LocationContext *LCtx = C.getLocationContext();
470 SVal firstVal = state->getSVal(First.Expression, LCtx);
471 SVal secondVal = state->getSVal(Second.Expression, LCtx);
472
473 Optional<Loc> firstLoc = firstVal.getAs<Loc>();
474 if (!firstLoc)
475 return state;
476
477 Optional<Loc> secondLoc = secondVal.getAs<Loc>();
478 if (!secondLoc)
479 return state;
480
481 // Are the two values the same?
482 SValBuilder &svalBuilder = C.getSValBuilder();
483 std::tie(stateTrue, stateFalse) =
484 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
485
486 if (stateTrue && !stateFalse) {
487 // If the values are known to be equal, that's automatically an overlap.
488 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
489 return nullptr;
490 }
491
492 // assume the two expressions are not equal.
493 assert(stateFalse)(static_cast <bool> (stateFalse) ? void (0) : __assert_fail
("stateFalse", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 493, __extension__ __PRETTY_FUNCTION__))
;
494 state = stateFalse;
495
496 // Which value comes first?
497 QualType cmpTy = svalBuilder.getConditionType();
498 SVal reverse =
499 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
500 Optional<DefinedOrUnknownSVal> reverseTest =
501 reverse.getAs<DefinedOrUnknownSVal>();
502 if (!reverseTest)
503 return state;
504
505 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
506 if (stateTrue) {
507 if (stateFalse) {
508 // If we don't know which one comes first, we can't perform this test.
509 return state;
510 } else {
511 // Switch the values so that firstVal is before secondVal.
512 std::swap(firstLoc, secondLoc);
513
514 // Switch the Exprs as well, so that they still correspond.
515 std::swap(First, Second);
516 }
517 }
518
519 // Get the length, and make sure it too is known.
520 SVal LengthVal = state->getSVal(Size.Expression, LCtx);
521 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
522 if (!Length)
523 return state;
524
525 // Convert the first buffer's start address to char*.
526 // Bail out if the cast fails.
527 ASTContext &Ctx = svalBuilder.getContext();
528 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
529 SVal FirstStart =
530 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
531 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
532 if (!FirstStartLoc)
533 return state;
534
535 // Compute the end of the first buffer. Bail out if THAT fails.
536 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
537 *Length, CharPtrTy);
538 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
539 if (!FirstEndLoc)
540 return state;
541
542 // Is the end of the first buffer past the start of the second buffer?
543 SVal Overlap =
544 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
545 Optional<DefinedOrUnknownSVal> OverlapTest =
546 Overlap.getAs<DefinedOrUnknownSVal>();
547 if (!OverlapTest)
548 return state;
549
550 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
551
552 if (stateTrue && !stateFalse) {
553 // Overlap!
554 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
555 return nullptr;
556 }
557
558 // assume the two expressions don't overlap.
559 assert(stateFalse)(static_cast <bool> (stateFalse) ? void (0) : __assert_fail
("stateFalse", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 559, __extension__ __PRETTY_FUNCTION__))
;
560 return stateFalse;
561}
562
563void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
564 const Stmt *First, const Stmt *Second) const {
565 ExplodedNode *N = C.generateErrorNode(state);
566 if (!N)
567 return;
568
569 if (!BT_Overlap)
570 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
571 categories::UnixAPI, "Improper arguments"));
572
573 // Generate a report for this bug.
574 auto report = std::make_unique<PathSensitiveBugReport>(
575 *BT_Overlap, "Arguments must not be overlapping buffers", N);
576 report->addRange(First->getSourceRange());
577 report->addRange(Second->getSourceRange());
578
579 C.emitReport(std::move(report));
580}
581
582void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
583 const Stmt *S, StringRef WarningMsg) const {
584 if (ExplodedNode *N = C.generateErrorNode(State)) {
585 if (!BT_Null)
586 BT_Null.reset(new BuiltinBug(
587 Filter.CheckNameCStringNullArg, categories::UnixAPI,
588 "Null pointer argument in call to byte string function"));
589
590 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
591 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
592 Report->addRange(S->getSourceRange());
593 if (const auto *Ex = dyn_cast<Expr>(S))
594 bugreporter::trackExpressionValue(N, Ex, *Report);
595 C.emitReport(std::move(Report));
596 }
597}
598
599void CStringChecker::emitUninitializedReadBug(CheckerContext &C,
600 ProgramStateRef State,
601 const Expr *E) const {
602 if (ExplodedNode *N = C.generateErrorNode(State)) {
603 const char *Msg =
604 "Bytes string function accesses uninitialized/garbage values";
605 if (!BT_UninitRead)
606 BT_UninitRead.reset(
607 new BuiltinBug(Filter.CheckNameCStringUninitializedRead,
608 "Accessing unitialized/garbage values", Msg));
609
610 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get());
611
612 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
613 Report->addRange(E->getSourceRange());
614 bugreporter::trackExpressionValue(N, E, *Report);
615 C.emitReport(std::move(Report));
616 }
617}
618
619void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
620 ProgramStateRef State, const Stmt *S,
621 StringRef WarningMsg) const {
622 if (ExplodedNode *N = C.generateErrorNode(State)) {
623 if (!BT_Bounds)
624 BT_Bounds.reset(new BuiltinBug(
625 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
626 : Filter.CheckNameCStringNullArg,
627 "Out-of-bound array access",
628 "Byte string function accesses out-of-bound array element"));
629
630 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
631
632 // FIXME: It would be nice to eventually make this diagnostic more clear,
633 // e.g., by referencing the original declaration or by saying *why* this
634 // reference is outside the range.
635 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
636 Report->addRange(S->getSourceRange());
637 C.emitReport(std::move(Report));
638 }
639}
640
641void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
642 const Stmt *S,
643 StringRef WarningMsg) const {
644 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
645 if (!BT_NotCString)
646 BT_NotCString.reset(new BuiltinBug(
647 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
648 "Argument is not a null-terminated string."));
649
650 auto Report =
651 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
652
653 Report->addRange(S->getSourceRange());
654 C.emitReport(std::move(Report));
655 }
656}
657
658void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
659 ProgramStateRef State) const {
660 if (ExplodedNode *N = C.generateErrorNode(State)) {
661 if (!BT_AdditionOverflow)
662 BT_AdditionOverflow.reset(
663 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
664 "Sum of expressions causes overflow."));
665
666 // This isn't a great error message, but this should never occur in real
667 // code anyway -- you'd have to create a buffer longer than a size_t can
668 // represent, which is sort of a contradiction.
669 const char *WarningMsg =
670 "This expression will create a string whose length is too big to "
671 "be represented as a size_t";
672
673 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow,
674 WarningMsg, N);
675 C.emitReport(std::move(Report));
676 }
677}
678
679ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
680 ProgramStateRef state,
681 NonLoc left,
682 NonLoc right) const {
683 // If out-of-bounds checking is turned off, skip the rest.
684 if (!Filter.CheckCStringOutOfBounds)
685 return state;
686
687 // If a previous check has failed, propagate the failure.
688 if (!state)
689 return nullptr;
690
691 SValBuilder &svalBuilder = C.getSValBuilder();
692 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
693
694 QualType sizeTy = svalBuilder.getContext().getSizeType();
695 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
696 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
697
698 SVal maxMinusRight;
699 if (right.getAs<nonloc::ConcreteInt>()) {
700 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
701 sizeTy);
702 } else {
703 // Try switching the operands. (The order of these two assignments is
704 // important!)
705 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
706 sizeTy);
707 left = right;
708 }
709
710 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
711 QualType cmpTy = svalBuilder.getConditionType();
712 // If left > max - right, we have an overflow.
713 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
714 *maxMinusRightNL, cmpTy);
715
716 ProgramStateRef stateOverflow, stateOkay;
717 std::tie(stateOverflow, stateOkay) =
718 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
719
720 if (stateOverflow && !stateOkay) {
721 // We have an overflow. Emit a bug report.
722 emitAdditionOverflowBug(C, stateOverflow);
723 return nullptr;
724 }
725
726 // From now on, assume an overflow didn't occur.
727 assert(stateOkay)(static_cast <bool> (stateOkay) ? void (0) : __assert_fail
("stateOkay", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 727, __extension__ __PRETTY_FUNCTION__))
;
728 state = stateOkay;
729 }
730
731 return state;
732}
733
734ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
735 const MemRegion *MR,
736 SVal strLength) {
737 assert(!strLength.isUndef() && "Attempt to set an undefined string length")(static_cast <bool> (!strLength.isUndef() && "Attempt to set an undefined string length"
) ? void (0) : __assert_fail ("!strLength.isUndef() && \"Attempt to set an undefined string length\""
, "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp", 737
, __extension__ __PRETTY_FUNCTION__))
;
738
739 MR = MR->StripCasts();
740
741 switch (MR->getKind()) {
742 case MemRegion::StringRegionKind:
743 // FIXME: This can happen if we strcpy() into a string region. This is
744 // undefined [C99 6.4.5p6], but we should still warn about it.
745 return state;
746
747 case MemRegion::SymbolicRegionKind:
748 case MemRegion::AllocaRegionKind:
749 case MemRegion::NonParamVarRegionKind:
750 case MemRegion::ParamVarRegionKind:
751 case MemRegion::FieldRegionKind:
752 case MemRegion::ObjCIvarRegionKind:
753 // These are the types we can currently track string lengths for.
754 break;
755
756 case MemRegion::ElementRegionKind:
757 // FIXME: Handle element regions by upper-bounding the parent region's
758 // string length.
759 return state;
760
761 default:
762 // Other regions (mostly non-data) can't have a reliable C string length.
763 // For now, just ignore the change.
764 // FIXME: These are rare but not impossible. We should output some kind of
765 // warning for things like strcpy((char[]){'a', 0}, "b");
766 return state;
767 }
768
769 if (strLength.isUnknown())
770 return state->remove<CStringLength>(MR);
771
772 return state->set<CStringLength>(MR, strLength);
773}
774
775SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
776 ProgramStateRef &state,
777 const Expr *Ex,
778 const MemRegion *MR,
779 bool hypothetical) {
780 if (!hypothetical) {
781 // If there's a recorded length, go ahead and return it.
782 const SVal *Recorded = state->get<CStringLength>(MR);
783 if (Recorded)
784 return *Recorded;
785 }
786
787 // Otherwise, get a new symbol and update the state.
788 SValBuilder &svalBuilder = C.getSValBuilder();
789 QualType sizeTy = svalBuilder.getContext().getSizeType();
790 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
791 MR, Ex, sizeTy,
792 C.getLocationContext(),
793 C.blockCount());
794
795 if (!hypothetical) {
796 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
797 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
798 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
799 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
800 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
801 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
802 fourInt);
803 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
804 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
805 maxLength, sizeTy);
806 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
807 }
808 state = state->set<CStringLength>(MR, strLength);
809 }
810
811 return strLength;
812}
813
814SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
815 const Expr *Ex, SVal Buf,
816 bool hypothetical) const {
817 const MemRegion *MR = Buf.getAsRegion();
818 if (!MR) {
819 // If we can't get a region, see if it's something we /know/ isn't a
820 // C string. In the context of locations, the only time we can issue such
821 // a warning is for labels.
822 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
823 if (Filter.CheckCStringNotNullTerm) {
824 SmallString<120> buf;
825 llvm::raw_svector_ostream os(buf);
826 assert(CurrentFunctionDescription)(static_cast <bool> (CurrentFunctionDescription) ? void
(0) : __assert_fail ("CurrentFunctionDescription", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 826, __extension__ __PRETTY_FUNCTION__))
;
827 os << "Argument to " << CurrentFunctionDescription
828 << " is the address of the label '" << Label->getLabel()->getName()
829 << "', which is not a null-terminated string";
830
831 emitNotCStringBug(C, state, Ex, os.str());
832 }
833 return UndefinedVal();
834 }
835
836 // If it's not a region and not a label, give up.
837 return UnknownVal();
838 }
839
840 // If we have a region, strip casts from it and see if we can figure out
841 // its length. For anything we can't figure out, just return UnknownVal.
842 MR = MR->StripCasts();
843
844 switch (MR->getKind()) {
845 case MemRegion::StringRegionKind: {
846 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
847 // so we can assume that the byte length is the correct C string length.
848 SValBuilder &svalBuilder = C.getSValBuilder();
849 QualType sizeTy = svalBuilder.getContext().getSizeType();
850 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
851 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
852 }
853 case MemRegion::SymbolicRegionKind:
854 case MemRegion::AllocaRegionKind:
855 case MemRegion::NonParamVarRegionKind:
856 case MemRegion::ParamVarRegionKind:
857 case MemRegion::FieldRegionKind:
858 case MemRegion::ObjCIvarRegionKind:
859 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
860 case MemRegion::CompoundLiteralRegionKind:
861 // FIXME: Can we track this? Is it necessary?
862 return UnknownVal();
863 case MemRegion::ElementRegionKind:
864 // FIXME: How can we handle this? It's not good enough to subtract the
865 // offset from the base string length; consider "123\x00567" and &a[5].
866 return UnknownVal();
867 default:
868 // Other regions (mostly non-data) can't have a reliable C string length.
869 // In this case, an error is emitted and UndefinedVal is returned.
870 // The caller should always be prepared to handle this case.
871 if (Filter.CheckCStringNotNullTerm) {
872 SmallString<120> buf;
873 llvm::raw_svector_ostream os(buf);
874
875 assert(CurrentFunctionDescription)(static_cast <bool> (CurrentFunctionDescription) ? void
(0) : __assert_fail ("CurrentFunctionDescription", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 875, __extension__ __PRETTY_FUNCTION__))
;
876 os << "Argument to " << CurrentFunctionDescription << " is ";
877
878 if (SummarizeRegion(os, C.getASTContext(), MR))
879 os << ", which is not a null-terminated string";
880 else
881 os << "not a null-terminated string";
882
883 emitNotCStringBug(C, state, Ex, os.str());
884 }
885 return UndefinedVal();
886 }
887}
888
889const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
890 ProgramStateRef &state, const Expr *expr, SVal val) const {
891
892 // Get the memory region pointed to by the val.
893 const MemRegion *bufRegion = val.getAsRegion();
894 if (!bufRegion)
895 return nullptr;
896
897 // Strip casts off the memory region.
898 bufRegion = bufRegion->StripCasts();
899
900 // Cast the memory region to a string region.
901 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
902 if (!strRegion)
903 return nullptr;
904
905 // Return the actual string in the string region.
906 return strRegion->getStringLiteral();
907}
908
909bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
910 ProgramStateRef state,
911 const Expr *FirstBuf,
912 const Expr *Size) {
913 // If we do not know that the buffer is long enough we return 'true'.
914 // Otherwise the parent region of this field region would also get
915 // invalidated, which would lead to warnings based on an unknown state.
916
917 // Originally copied from CheckBufferAccess and CheckLocation.
918 SValBuilder &svalBuilder = C.getSValBuilder();
919 ASTContext &Ctx = svalBuilder.getContext();
920 const LocationContext *LCtx = C.getLocationContext();
921
922 QualType sizeTy = Size->getType();
923 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
924 SVal BufVal = state->getSVal(FirstBuf, LCtx);
925
926 SVal LengthVal = state->getSVal(Size, LCtx);
927 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
928 if (!Length)
929 return true; // cf top comment.
930
931 // Compute the offset of the last element to be accessed: size-1.
932 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
933 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
934 if (Offset.isUnknown())
935 return true; // cf top comment
936 NonLoc LastOffset = Offset.castAs<NonLoc>();
937
938 // Check that the first buffer is sufficiently long.
939 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
940 Optional<Loc> BufLoc = BufStart.getAs<Loc>();
941 if (!BufLoc)
942 return true; // cf top comment.
943
944 SVal BufEnd =
945 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
946
947 // Check for out of bound array element access.
948 const MemRegion *R = BufEnd.getAsRegion();
949 if (!R)
950 return true; // cf top comment.
951
952 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
953 if (!ER)
954 return true; // cf top comment.
955
956 // FIXME: Does this crash when a non-standard definition
957 // of a library function is encountered?
958 assert(ER->getValueType() == C.getASTContext().CharTy &&(static_cast <bool> (ER->getValueType() == C.getASTContext
().CharTy && "IsFirstBufInBound should only be called with char* ElementRegions"
) ? void (0) : __assert_fail ("ER->getValueType() == C.getASTContext().CharTy && \"IsFirstBufInBound should only be called with char* ElementRegions\""
, "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp", 959
, __extension__ __PRETTY_FUNCTION__))
959 "IsFirstBufInBound should only be called with char* ElementRegions")(static_cast <bool> (ER->getValueType() == C.getASTContext
().CharTy && "IsFirstBufInBound should only be called with char* ElementRegions"
) ? void (0) : __assert_fail ("ER->getValueType() == C.getASTContext().CharTy && \"IsFirstBufInBound should only be called with char* ElementRegions\""
, "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp", 959
, __extension__ __PRETTY_FUNCTION__))
;
960
961 // Get the size of the array.
962 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
963 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder);
964
965 // Get the index of the accessed element.
966 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
967
968 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
969
970 return static_cast<bool>(StInBound);
971}
972
973ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
974 ProgramStateRef state,
975 const Expr *E, SVal V,
976 bool IsSourceBuffer,
977 const Expr *Size) {
978 Optional<Loc> L = V.getAs<Loc>();
979 if (!L)
980 return state;
981
982 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
983 // some assumptions about the value that CFRefCount can't. Even so, it should
984 // probably be refactored.
985 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
986 const MemRegion *R = MR->getRegion()->StripCasts();
987
988 // Are we dealing with an ElementRegion? If so, we should be invalidating
989 // the super-region.
990 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
991 R = ER->getSuperRegion();
992 // FIXME: What about layers of ElementRegions?
993 }
994
995 // Invalidate this region.
996 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
997
998 bool CausesPointerEscape = false;
999 RegionAndSymbolInvalidationTraits ITraits;
1000 // Invalidate and escape only indirect regions accessible through the source
1001 // buffer.
1002 if (IsSourceBuffer) {
1003 ITraits.setTrait(R->getBaseRegion(),
1004 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1005 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1006 CausesPointerEscape = true;
1007 } else {
1008 const MemRegion::Kind& K = R->getKind();
1009 if (K == MemRegion::FieldRegionKind)
1010 if (Size && IsFirstBufInBound(C, state, E, Size)) {
1011 // If destination buffer is a field region and access is in bound,
1012 // do not invalidate its super region.
1013 ITraits.setTrait(
1014 R,
1015 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1016 }
1017 }
1018
1019 return state->invalidateRegions(R, E, C.blockCount(), LCtx,
1020 CausesPointerEscape, nullptr, nullptr,
1021 &ITraits);
1022 }
1023
1024 // If we have a non-region value by chance, just remove the binding.
1025 // FIXME: is this necessary or correct? This handles the non-Region
1026 // cases. Is it ever valid to store to these?
1027 return state->killBinding(*L);
1028}
1029
1030bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1031 const MemRegion *MR) {
1032 switch (MR->getKind()) {
1033 case MemRegion::FunctionCodeRegionKind: {
1034 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1035 os << "the address of the function '" << *FD << '\'';
1036 else
1037 os << "the address of a function";
1038 return true;
1039 }
1040 case MemRegion::BlockCodeRegionKind:
1041 os << "block text";
1042 return true;
1043 case MemRegion::BlockDataRegionKind:
1044 os << "a block";
1045 return true;
1046 case MemRegion::CXXThisRegionKind:
1047 case MemRegion::CXXTempObjectRegionKind:
1048 os << "a C++ temp object of type "
1049 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1050 return true;
1051 case MemRegion::NonParamVarRegionKind:
1052 os << "a variable of type"
1053 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1054 return true;
1055 case MemRegion::ParamVarRegionKind:
1056 os << "a parameter of type"
1057 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1058 return true;
1059 case MemRegion::FieldRegionKind:
1060 os << "a field of type "
1061 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1062 return true;
1063 case MemRegion::ObjCIvarRegionKind:
1064 os << "an instance variable of type "
1065 << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1066 return true;
1067 default:
1068 return false;
1069 }
1070}
1071
1072bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1073 const Expr *Size, CheckerContext &C,
1074 ProgramStateRef &State) {
1075 SVal MemVal = C.getSVal(DstBuffer);
1076 SVal SizeVal = C.getSVal(Size);
1077 const MemRegion *MR = MemVal.getAsRegion();
1078 if (!MR)
1079 return false;
1080
1081 // We're about to model memset by producing a "default binding" in the Store.
1082 // Our current implementation - RegionStore - doesn't support default bindings
1083 // that don't cover the whole base region. So we should first get the offset
1084 // and the base region to figure out whether the offset of buffer is 0.
1085 RegionOffset Offset = MR->getAsOffset();
1086 const MemRegion *BR = Offset.getRegion();
1087
1088 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1089 if (!SizeNL)
1090 return false;
1091
1092 SValBuilder &svalBuilder = C.getSValBuilder();
1093 ASTContext &Ctx = C.getASTContext();
1094
1095 // void *memset(void *dest, int ch, size_t count);
1096 // For now we can only handle the case of offset is 0 and concrete char value.
1097 if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1098 Offset.getOffset() == 0) {
1099 // Get the base region's size.
1100 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1101
1102 ProgramStateRef StateWholeReg, StateNotWholeReg;
1103 std::tie(StateWholeReg, StateNotWholeReg) =
1104 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1105
1106 // With the semantic of 'memset()', we should convert the CharVal to
1107 // unsigned char.
1108 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1109
1110 ProgramStateRef StateNullChar, StateNonNullChar;
1111 std::tie(StateNullChar, StateNonNullChar) =
1112 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1113
1114 if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1115 !StateNonNullChar) {
1116 // If the 'memset()' acts on the whole region of destination buffer and
1117 // the value of the second argument of 'memset()' is zero, bind the second
1118 // argument's value to the destination buffer with 'default binding'.
1119 // FIXME: Since there is no perfect way to bind the non-zero character, we
1120 // can only deal with zero value here. In the future, we need to deal with
1121 // the binding of non-zero value in the case of whole region.
1122 State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1123 C.getLocationContext());
1124 } else {
1125 // If the destination buffer's extent is not equal to the value of
1126 // third argument, just invalidate buffer.
1127 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1128 /*IsSourceBuffer*/ false, Size);
1129 }
1130
1131 if (StateNullChar && !StateNonNullChar) {
1132 // If the value of the second argument of 'memset()' is zero, set the
1133 // string length of destination buffer to 0 directly.
1134 State = setCStringLength(State, MR,
1135 svalBuilder.makeZeroVal(Ctx.getSizeType()));
1136 } else if (!StateNullChar && StateNonNullChar) {
1137 SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1138 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1139 C.getLocationContext(), C.blockCount());
1140
1141 // If the value of second argument is not zero, then the string length
1142 // is at least the size argument.
1143 SVal NewStrLenGESize = svalBuilder.evalBinOp(
1144 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1145
1146 State = setCStringLength(
1147 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1148 MR, NewStrLen);
1149 }
1150 } else {
1151 // If the offset is not zero and char value is not concrete, we can do
1152 // nothing but invalidate the buffer.
1153 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1154 /*IsSourceBuffer*/ false, Size);
1155 }
1156 return true;
1157}
1158
1159//===----------------------------------------------------------------------===//
1160// evaluation of individual function calls.
1161//===----------------------------------------------------------------------===//
1162
1163void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE,
1164 ProgramStateRef state, SizeArgExpr Size,
1165 DestinationArgExpr Dest,
1166 SourceArgExpr Source, bool Restricted,
1167 bool IsMempcpy) const {
1168 CurrentFunctionDescription = "memory copy function";
1169
1170 // See if the size argument is zero.
1171 const LocationContext *LCtx = C.getLocationContext();
1172 SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1173 QualType sizeTy = Size.Expression->getType();
1174
1175 ProgramStateRef stateZeroSize, stateNonZeroSize;
1176 std::tie(stateZeroSize, stateNonZeroSize) =
1177 assumeZero(C, state, sizeVal, sizeTy);
1178
1179 // Get the value of the Dest.
1180 SVal destVal = state->getSVal(Dest.Expression, LCtx);
1181
1182 // If the size is zero, there won't be any actual memory access, so
1183 // just bind the return value to the destination buffer and return.
1184 if (stateZeroSize && !stateNonZeroSize) {
1185 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1186 C.addTransition(stateZeroSize);
1187 return;
1188 }
1189
1190 // If the size can be nonzero, we have to check the other arguments.
1191 if (stateNonZeroSize) {
1192 state = stateNonZeroSize;
1193
1194 // Ensure the destination is not null. If it is NULL there will be a
1195 // NULL pointer dereference.
1196 state = checkNonNull(C, state, Dest, destVal);
1197 if (!state)
1198 return;
1199
1200 // Get the value of the Src.
1201 SVal srcVal = state->getSVal(Source.Expression, LCtx);
1202
1203 // Ensure the source is not null. If it is NULL there will be a
1204 // NULL pointer dereference.
1205 state = checkNonNull(C, state, Source, srcVal);
1206 if (!state)
1207 return;
1208
1209 // Ensure the accesses are valid and that the buffers do not overlap.
1210 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write);
1211 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read);
1212
1213 if (Restricted)
1214 state = CheckOverlap(C, state, Size, Dest, Source);
1215
1216 if (!state)
1217 return;
1218
1219 // If this is mempcpy, get the byte after the last byte copied and
1220 // bind the expr.
1221 if (IsMempcpy) {
1222 // Get the byte after the last byte copied.
1223 SValBuilder &SvalBuilder = C.getSValBuilder();
1224 ASTContext &Ctx = SvalBuilder.getContext();
1225 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1226 SVal DestRegCharVal =
1227 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1228 SVal lastElement = C.getSValBuilder().evalBinOp(
1229 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1230 // If we don't know how much we copied, we can at least
1231 // conjure a return value for later.
1232 if (lastElement.isUnknown())
1233 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1234 C.blockCount());
1235
1236 // The byte after the last byte copied is the return value.
1237 state = state->BindExpr(CE, LCtx, lastElement);
1238 } else {
1239 // All other copies return the destination buffer.
1240 // (Well, bcopy() has a void return type, but this won't hurt.)
1241 state = state->BindExpr(CE, LCtx, destVal);
1242 }
1243
1244 // Invalidate the destination (regular invalidation without pointer-escaping
1245 // the address of the top-level region).
1246 // FIXME: Even if we can't perfectly model the copy, we should see if we
1247 // can use LazyCompoundVals to copy the source values into the destination.
1248 // This would probably remove any existing bindings past the end of the
1249 // copied region, but that's still an improvement over blank invalidation.
1250 state =
1251 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression),
1252 /*IsSourceBuffer*/ false, Size.Expression);
1253
1254 // Invalidate the source (const-invalidation without const-pointer-escaping
1255 // the address of the top-level region).
1256 state = InvalidateBuffer(C, state, Source.Expression,
1257 C.getSVal(Source.Expression),
1258 /*IsSourceBuffer*/ true, nullptr);
1259
1260 C.addTransition(state);
1261 }
1262}
1263
1264void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1265 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1266 // The return value is the address of the destination buffer.
1267 DestinationArgExpr Dest = {CE->getArg(0), 0};
1268 SourceArgExpr Src = {CE->getArg(1), 1};
1269 SizeArgExpr Size = {CE->getArg(2), 2};
1270
1271 ProgramStateRef State = C.getState();
1272
1273 constexpr bool IsRestricted = true;
1274 constexpr bool IsMempcpy = false;
1275 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy);
1276}
1277
1278void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1279 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1280 // The return value is a pointer to the byte following the last written byte.
1281 DestinationArgExpr Dest = {CE->getArg(0), 0};
1282 SourceArgExpr Src = {CE->getArg(1), 1};
1283 SizeArgExpr Size = {CE->getArg(2), 2};
1284
1285 constexpr bool IsRestricted = true;
1286 constexpr bool IsMempcpy = true;
1287 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1288}
1289
1290void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1291 // void *memmove(void *dst, const void *src, size_t n);
1292 // The return value is the address of the destination buffer.
1293 DestinationArgExpr Dest = {CE->getArg(0), 0};
1294 SourceArgExpr Src = {CE->getArg(1), 1};
1295 SizeArgExpr Size = {CE->getArg(2), 2};
1296
1297 constexpr bool IsRestricted = false;
1298 constexpr bool IsMempcpy = false;
1299 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1300}
1301
1302void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1303 // void bcopy(const void *src, void *dst, size_t n);
1304 SourceArgExpr Src(CE->getArg(0), 0);
1305 DestinationArgExpr Dest = {CE->getArg(1), 1};
1306 SizeArgExpr Size = {CE->getArg(2), 2};
1307
1308 constexpr bool IsRestricted = false;
1309 constexpr bool IsMempcpy = false;
1310 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1311}
1312
1313void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1314 // int memcmp(const void *s1, const void *s2, size_t n);
1315 CurrentFunctionDescription = "memory comparison function";
1316
1317 AnyArgExpr Left = {CE->getArg(0), 0};
1318 AnyArgExpr Right = {CE->getArg(1), 1};
1319 SizeArgExpr Size = {CE->getArg(2), 2};
1320
1321 ProgramStateRef State = C.getState();
1322 SValBuilder &Builder = C.getSValBuilder();
1323 const LocationContext *LCtx = C.getLocationContext();
1324
1325 // See if the size argument is zero.
1326 SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1327 QualType sizeTy = Size.Expression->getType();
1328
1329 ProgramStateRef stateZeroSize, stateNonZeroSize;
1330 std::tie(stateZeroSize, stateNonZeroSize) =
1331 assumeZero(C, State, sizeVal, sizeTy);
1332
1333 // If the size can be zero, the result will be 0 in that case, and we don't
1334 // have to check either of the buffers.
1335 if (stateZeroSize) {
1336 State = stateZeroSize;
1337 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1338 C.addTransition(State);
1339 }
1340
1341 // If the size can be nonzero, we have to check the other arguments.
1342 if (stateNonZeroSize) {
1343 State = stateNonZeroSize;
1344 // If we know the two buffers are the same, we know the result is 0.
1345 // First, get the two buffers' addresses. Another checker will have already
1346 // made sure they're not undefined.
1347 DefinedOrUnknownSVal LV =
1348 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1349 DefinedOrUnknownSVal RV =
1350 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1351
1352 // See if they are the same.
1353 ProgramStateRef SameBuffer, NotSameBuffer;
1354 std::tie(SameBuffer, NotSameBuffer) =
1355 State->assume(Builder.evalEQ(State, LV, RV));
1356
1357 // If the two arguments are the same buffer, we know the result is 0,
1358 // and we only need to check one size.
1359 if (SameBuffer && !NotSameBuffer) {
1360 State = SameBuffer;
1361 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1362 if (State) {
1363 State =
1364 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1365 C.addTransition(State);
1366 }
1367 return;
1368 }
1369
1370 // If the two arguments might be different buffers, we have to check
1371 // the size of both of them.
1372 assert(NotSameBuffer)(static_cast <bool> (NotSameBuffer) ? void (0) : __assert_fail
("NotSameBuffer", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 1372, __extension__ __PRETTY_FUNCTION__))
;
1373 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read);
1374 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1375 if (State) {
1376 // The return value is the comparison result, which we don't know.
1377 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1378 State = State->BindExpr(CE, LCtx, CmpV);
1379 C.addTransition(State);
1380 }
1381 }
1382}
1383
1384void CStringChecker::evalstrLength(CheckerContext &C,
1385 const CallExpr *CE) const {
1386 // size_t strlen(const char *s);
1387 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1388}
1389
1390void CStringChecker::evalstrnLength(CheckerContext &C,
1391 const CallExpr *CE) const {
1392 // size_t strnlen(const char *s, size_t maxlen);
1393 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1
Calling 'CStringChecker::evalstrLengthCommon'
1394}
1395
1396void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1397 bool IsStrnlen) const {
1398 CurrentFunctionDescription = "string length function";
1399 ProgramStateRef state = C.getState();
1400 const LocationContext *LCtx = C.getLocationContext();
1401
1402 if (IsStrnlen
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
1.1
'IsStrnlen' is true
) {
2
Taking true branch
1403 const Expr *maxlenExpr = CE->getArg(1);
1404 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1405
1406 ProgramStateRef stateZeroSize, stateNonZeroSize;
1407 std::tie(stateZeroSize, stateNonZeroSize) =
1408 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1409
1410 // If the size can be zero, the result will be 0 in that case, and we don't
1411 // have to check the string itself.
1412 if (stateZeroSize) {
3
Taking true branch
1413 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1414 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1415 C.addTransition(stateZeroSize);
1416 }
1417
1418 // If the size is GUARANTEED to be zero, we're done!
1419 if (!stateNonZeroSize)
4
Taking false branch
1420 return;
1421
1422 // Otherwise, record the assumption that the size is nonzero.
1423 state = stateNonZeroSize;
1424 }
1425
1426 // Check that the string argument is non-null.
1427 AnyArgExpr Arg = {CE->getArg(0), 0};
1428 SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1429 state = checkNonNull(C, state, Arg, ArgVal);
1430
1431 if (!state)
5
Assuming the condition is false
6
Taking false branch
1432 return;
1433
1434 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1435
1436 // If the argument isn't a valid C string, there's no valid state to
1437 // transition to.
1438 if (strLength.isUndef())
7
Taking false branch
1439 return;
1440
1441 DefinedOrUnknownSVal result = UnknownVal();
1442
1443 // If the check is for strnlen() then bind the return value to no more than
1444 // the maxlen value.
1445 if (IsStrnlen
7.1
'IsStrnlen' is true
7.1
'IsStrnlen' is true
7.1
'IsStrnlen' is true
) {
8
Taking true branch
1446 QualType cmpTy = C.getSValBuilder().getConditionType();
1447
1448 // It's a little unfortunate to be getting this again,
1449 // but it's not that expensive...
1450 const Expr *maxlenExpr = CE->getArg(1);
1451 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1452
1453 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1454 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1455
1456 if (strLengthNL && maxlenValNL) {
9
Assuming the condition is true
10
Assuming the condition is true
11
Taking true branch
1457 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1458
1459 // Check if the strLength is greater than the maxlen.
1460 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1461 C.getSValBuilder()
1462 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1463 .castAs<DefinedOrUnknownSVal>());
1464
1465 if (stateStringTooLong && !stateStringNotTooLong) {
1466 // If the string is longer than maxlen, return maxlen.
1467 result = *maxlenValNL;
1468 } else if (stateStringNotTooLong && !stateStringTooLong) {
12
Taking false branch
1469 // If the string is shorter than maxlen, return its length.
1470 result = *strLengthNL;
1471 }
1472 }
1473
1474 if (result.isUnknown()) {
13
Taking true branch
1475 // If we don't have enough information for a comparison, there's
1476 // no guarantee the full string length will actually be returned.
1477 // All we know is the return value is the min of the string length
1478 // and the limit. This is better than nothing.
1479 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1480 C.blockCount());
1481 NonLoc resultNL = result.castAs<NonLoc>();
1482
1483 if (strLengthNL) {
14
Taking true branch
1484 state = state->assume(C.getSValBuilder().evalBinOpNN(
15
Calling 'ProgramState::assume'
18
Returning from 'ProgramState::assume'
19
Calling copy assignment operator for 'IntrusiveRefCntPtr<const clang::ento::ProgramState>'
24
Returning from copy assignment operator for 'IntrusiveRefCntPtr<const clang::ento::ProgramState>'
1485 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1486 .castAs<DefinedOrUnknownSVal>(), true);
1487 }
1488
1489 if (maxlenValNL) {
25
Taking true branch
1490 state = state->assume(C.getSValBuilder().evalBinOpNN(
26
Called C++ object pointer is null
1491 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1492 .castAs<DefinedOrUnknownSVal>(), true);
1493 }
1494 }
1495
1496 } else {
1497 // This is a plain strlen(), not strnlen().
1498 result = strLength.castAs<DefinedOrUnknownSVal>();
1499
1500 // If we don't know the length of the string, conjure a return
1501 // value, so it can be used in constraints, at least.
1502 if (result.isUnknown()) {
1503 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1504 C.blockCount());
1505 }
1506 }
1507
1508 // Bind the return value.
1509 assert(!result.isUnknown() && "Should have conjured a value by now")(static_cast <bool> (!result.isUnknown() && "Should have conjured a value by now"
) ? void (0) : __assert_fail ("!result.isUnknown() && \"Should have conjured a value by now\""
, "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp", 1509
, __extension__ __PRETTY_FUNCTION__))
;
1510 state = state->BindExpr(CE, LCtx, result);
1511 C.addTransition(state);
1512}
1513
1514void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1515 // char *strcpy(char *restrict dst, const char *restrict src);
1516 evalStrcpyCommon(C, CE,
1517 /* ReturnEnd = */ false,
1518 /* IsBounded = */ false,
1519 /* appendK = */ ConcatFnKind::none);
1520}
1521
1522void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1523 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1524 evalStrcpyCommon(C, CE,
1525 /* ReturnEnd = */ false,
1526 /* IsBounded = */ true,
1527 /* appendK = */ ConcatFnKind::none);
1528}
1529
1530void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1531 // char *stpcpy(char *restrict dst, const char *restrict src);
1532 evalStrcpyCommon(C, CE,
1533 /* ReturnEnd = */ true,
1534 /* IsBounded = */ false,
1535 /* appendK = */ ConcatFnKind::none);
1536}
1537
1538void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1539 // size_t strlcpy(char *dest, const char *src, size_t size);
1540 evalStrcpyCommon(C, CE,
1541 /* ReturnEnd = */ true,
1542 /* IsBounded = */ true,
1543 /* appendK = */ ConcatFnKind::none,
1544 /* returnPtr = */ false);
1545}
1546
1547void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1548 // char *strcat(char *restrict s1, const char *restrict s2);
1549 evalStrcpyCommon(C, CE,
1550 /* ReturnEnd = */ false,
1551 /* IsBounded = */ false,
1552 /* appendK = */ ConcatFnKind::strcat);
1553}
1554
1555void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1556 // char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1557 evalStrcpyCommon(C, CE,
1558 /* ReturnEnd = */ false,
1559 /* IsBounded = */ true,
1560 /* appendK = */ ConcatFnKind::strcat);
1561}
1562
1563void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1564 // size_t strlcat(char *dst, const char *src, size_t size);
1565 // It will append at most size - strlen(dst) - 1 bytes,
1566 // NULL-terminating the result.
1567 evalStrcpyCommon(C, CE,
1568 /* ReturnEnd = */ false,
1569 /* IsBounded = */ true,
1570 /* appendK = */ ConcatFnKind::strlcat,
1571 /* returnPtr = */ false);
1572}
1573
1574void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1575 bool ReturnEnd, bool IsBounded,
1576 ConcatFnKind appendK,
1577 bool returnPtr) const {
1578 if (appendK == ConcatFnKind::none)
1579 CurrentFunctionDescription = "string copy function";
1580 else
1581 CurrentFunctionDescription = "string concatenation function";
1582
1583 ProgramStateRef state = C.getState();
1584 const LocationContext *LCtx = C.getLocationContext();
1585
1586 // Check that the destination is non-null.
1587 DestinationArgExpr Dst = {CE->getArg(0), 0};
1588 SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1589 state = checkNonNull(C, state, Dst, DstVal);
1590 if (!state)
1591 return;
1592
1593 // Check that the source is non-null.
1594 SourceArgExpr srcExpr = {CE->getArg(1), 1};
1595 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1596 state = checkNonNull(C, state, srcExpr, srcVal);
1597 if (!state)
1598 return;
1599
1600 // Get the string length of the source.
1601 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1602 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1603
1604 // Get the string length of the destination buffer.
1605 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1606 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1607
1608 // If the source isn't a valid C string, give up.
1609 if (strLength.isUndef())
1610 return;
1611
1612 SValBuilder &svalBuilder = C.getSValBuilder();
1613 QualType cmpTy = svalBuilder.getConditionType();
1614 QualType sizeTy = svalBuilder.getContext().getSizeType();
1615
1616 // These two values allow checking two kinds of errors:
1617 // - actual overflows caused by a source that doesn't fit in the destination
1618 // - potential overflows caused by a bound that could exceed the destination
1619 SVal amountCopied = UnknownVal();
1620 SVal maxLastElementIndex = UnknownVal();
1621 const char *boundWarning = nullptr;
1622
1623 // FIXME: Why do we choose the srcExpr if the access has no size?
1624 // Note that the 3rd argument of the call would be the size parameter.
1625 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex};
1626 state = CheckOverlap(
1627 C, state,
1628 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst,
1629 srcExpr);
1630
1631 if (!state)
1632 return;
1633
1634 // If the function is strncpy, strncat, etc... it is bounded.
1635 if (IsBounded) {
1636 // Get the max number of characters to copy.
1637 SizeArgExpr lenExpr = {CE->getArg(2), 2};
1638 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1639
1640 // Protect against misdeclared strncpy().
1641 lenVal =
1642 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1643
1644 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1645
1646 // If we know both values, we might be able to figure out how much
1647 // we're copying.
1648 if (strLengthNL && lenValNL) {
1649 switch (appendK) {
1650 case ConcatFnKind::none:
1651 case ConcatFnKind::strcat: {
1652 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1653 // Check if the max number to copy is less than the length of the src.
1654 // If the bound is equal to the source length, strncpy won't null-
1655 // terminate the result!
1656 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1657 svalBuilder
1658 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1659 .castAs<DefinedOrUnknownSVal>());
1660
1661 if (stateSourceTooLong && !stateSourceNotTooLong) {
1662 // Max number to copy is less than the length of the src, so the
1663 // actual strLength copied is the max number arg.
1664 state = stateSourceTooLong;
1665 amountCopied = lenVal;
1666
1667 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1668 // The source buffer entirely fits in the bound.
1669 state = stateSourceNotTooLong;
1670 amountCopied = strLength;
1671 }
1672 break;
1673 }
1674 case ConcatFnKind::strlcat:
1675 if (!dstStrLengthNL)
1676 return;
1677
1678 // amountCopied = min (size - dstLen - 1 , srcLen)
1679 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1680 *dstStrLengthNL, sizeTy);
1681 if (!freeSpace.getAs<NonLoc>())
1682 return;
1683 freeSpace =
1684 svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1685 svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1686 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1687
1688 // While unlikely, it is possible that the subtraction is
1689 // too complex to compute, let's check whether it succeeded.
1690 if (!freeSpaceNL)
1691 return;
1692 SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1693 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1694
1695 ProgramStateRef TrueState, FalseState;
1696 std::tie(TrueState, FalseState) =
1697 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1698
1699 // srcStrLength <= size - dstStrLength -1
1700 if (TrueState && !FalseState) {
1701 amountCopied = strLength;
1702 }
1703
1704 // srcStrLength > size - dstStrLength -1
1705 if (!TrueState && FalseState) {
1706 amountCopied = freeSpace;
1707 }
1708
1709 if (TrueState && FalseState)
1710 amountCopied = UnknownVal();
1711 break;
1712 }
1713 }
1714 // We still want to know if the bound is known to be too large.
1715 if (lenValNL) {
1716 switch (appendK) {
1717 case ConcatFnKind::strcat:
1718 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1719
1720 // Get the string length of the destination. If the destination is
1721 // memory that can't have a string length, we shouldn't be copying
1722 // into it anyway.
1723 if (dstStrLength.isUndef())
1724 return;
1725
1726 if (dstStrLengthNL) {
1727 maxLastElementIndex = svalBuilder.evalBinOpNN(
1728 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1729
1730 boundWarning = "Size argument is greater than the free space in the "
1731 "destination buffer";
1732 }
1733 break;
1734 case ConcatFnKind::none:
1735 case ConcatFnKind::strlcat:
1736 // For strncpy and strlcat, this is just checking
1737 // that lenVal <= sizeof(dst).
1738 // (Yes, strncpy and strncat differ in how they treat termination.
1739 // strncat ALWAYS terminates, but strncpy doesn't.)
1740
1741 // We need a special case for when the copy size is zero, in which
1742 // case strncpy will do no work at all. Our bounds check uses n-1
1743 // as the last element accessed, so n == 0 is problematic.
1744 ProgramStateRef StateZeroSize, StateNonZeroSize;
1745 std::tie(StateZeroSize, StateNonZeroSize) =
1746 assumeZero(C, state, *lenValNL, sizeTy);
1747
1748 // If the size is known to be zero, we're done.
1749 if (StateZeroSize && !StateNonZeroSize) {
1750 if (returnPtr) {
1751 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1752 } else {
1753 if (appendK == ConcatFnKind::none) {
1754 // strlcpy returns strlen(src)
1755 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1756 } else {
1757 // strlcat returns strlen(src) + strlen(dst)
1758 SVal retSize = svalBuilder.evalBinOp(
1759 state, BO_Add, strLength, dstStrLength, sizeTy);
1760 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1761 }
1762 }
1763 C.addTransition(StateZeroSize);
1764 return;
1765 }
1766
1767 // Otherwise, go ahead and figure out the last element we'll touch.
1768 // We don't record the non-zero assumption here because we can't
1769 // be sure. We won't warn on a possible zero.
1770 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1771 maxLastElementIndex =
1772 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1773 boundWarning = "Size argument is greater than the length of the "
1774 "destination buffer";
1775 break;
1776 }
1777 }
1778 } else {
1779 // The function isn't bounded. The amount copied should match the length
1780 // of the source buffer.
1781 amountCopied = strLength;
1782 }
1783
1784 assert(state)(static_cast <bool> (state) ? void (0) : __assert_fail (
"state", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 1784, __extension__ __PRETTY_FUNCTION__))
;
1785
1786 // This represents the number of characters copied into the destination
1787 // buffer. (It may not actually be the strlen if the destination buffer
1788 // is not terminated.)
1789 SVal finalStrLength = UnknownVal();
1790 SVal strlRetVal = UnknownVal();
1791
1792 if (appendK == ConcatFnKind::none && !returnPtr) {
1793 // strlcpy returns the sizeof(src)
1794 strlRetVal = strLength;
1795 }
1796
1797 // If this is an appending function (strcat, strncat...) then set the
1798 // string length to strlen(src) + strlen(dst) since the buffer will
1799 // ultimately contain both.
1800 if (appendK != ConcatFnKind::none) {
1801 // Get the string length of the destination. If the destination is memory
1802 // that can't have a string length, we shouldn't be copying into it anyway.
1803 if (dstStrLength.isUndef())
1804 return;
1805
1806 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1807 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1808 *dstStrLengthNL, sizeTy);
1809 }
1810
1811 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1812
1813 // If we know both string lengths, we might know the final string length.
1814 if (amountCopiedNL && dstStrLengthNL) {
1815 // Make sure the two lengths together don't overflow a size_t.
1816 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1817 if (!state)
1818 return;
1819
1820 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1821 *dstStrLengthNL, sizeTy);
1822 }
1823
1824 // If we couldn't get a single value for the final string length,
1825 // we can at least bound it by the individual lengths.
1826 if (finalStrLength.isUnknown()) {
1827 // Try to get a "hypothetical" string length symbol, which we can later
1828 // set as a real value if that turns out to be the case.
1829 finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1830 assert(!finalStrLength.isUndef())(static_cast <bool> (!finalStrLength.isUndef()) ? void (
0) : __assert_fail ("!finalStrLength.isUndef()", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 1830, __extension__ __PRETTY_FUNCTION__))
;
1831
1832 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1833 if (amountCopiedNL && appendK == ConcatFnKind::none) {
1834 // we overwrite dst string with the src
1835 // finalStrLength >= srcStrLength
1836 SVal sourceInResult = svalBuilder.evalBinOpNN(
1837 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1838 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1839 true);
1840 if (!state)
1841 return;
1842 }
1843
1844 if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1845 // we extend the dst string with the src
1846 // finalStrLength >= dstStrLength
1847 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1848 *finalStrLengthNL,
1849 *dstStrLengthNL,
1850 cmpTy);
1851 state =
1852 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1853 if (!state)
1854 return;
1855 }
1856 }
1857 }
1858
1859 } else {
1860 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1861 // the final string length will match the input string length.
1862 finalStrLength = amountCopied;
1863 }
1864
1865 SVal Result;
1866
1867 if (returnPtr) {
1868 // The final result of the function will either be a pointer past the last
1869 // copied element, or a pointer to the start of the destination buffer.
1870 Result = (ReturnEnd ? UnknownVal() : DstVal);
1871 } else {
1872 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1873 //strlcpy, strlcat
1874 Result = strlRetVal;
1875 else
1876 Result = finalStrLength;
1877 }
1878
1879 assert(state)(static_cast <bool> (state) ? void (0) : __assert_fail (
"state", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 1879, __extension__ __PRETTY_FUNCTION__))
;
1880
1881 // If the destination is a MemRegion, try to check for a buffer overflow and
1882 // record the new string length.
1883 if (Optional<loc::MemRegionVal> dstRegVal =
1884 DstVal.getAs<loc::MemRegionVal>()) {
1885 QualType ptrTy = Dst.Expression->getType();
1886
1887 // If we have an exact value on a bounded copy, use that to check for
1888 // overflows, rather than our estimate about how much is actually copied.
1889 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1890 SVal maxLastElement =
1891 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
1892
1893 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
1894 if (!state)
1895 return;
1896 }
1897
1898 // Then, if the final length is known...
1899 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1900 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1901 *knownStrLength, ptrTy);
1902
1903 // ...and we haven't checked the bound, we'll check the actual copy.
1904 if (!boundWarning) {
1905 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
1906 if (!state)
1907 return;
1908 }
1909
1910 // If this is a stpcpy-style copy, the last element is the return value.
1911 if (returnPtr && ReturnEnd)
1912 Result = lastElement;
1913 }
1914
1915 // Invalidate the destination (regular invalidation without pointer-escaping
1916 // the address of the top-level region). This must happen before we set the
1917 // C string length because invalidation will clear the length.
1918 // FIXME: Even if we can't perfectly model the copy, we should see if we
1919 // can use LazyCompoundVals to copy the source values into the destination.
1920 // This would probably remove any existing bindings past the end of the
1921 // string, but that's still an improvement over blank invalidation.
1922 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal,
1923 /*IsSourceBuffer*/ false, nullptr);
1924
1925 // Invalidate the source (const-invalidation without const-pointer-escaping
1926 // the address of the top-level region).
1927 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal,
1928 /*IsSourceBuffer*/ true, nullptr);
1929
1930 // Set the C string length of the destination, if we know it.
1931 if (IsBounded && (appendK == ConcatFnKind::none)) {
1932 // strncpy is annoying in that it doesn't guarantee to null-terminate
1933 // the result string. If the original string didn't fit entirely inside
1934 // the bound (including the null-terminator), we don't know how long the
1935 // result is.
1936 if (amountCopied != strLength)
1937 finalStrLength = UnknownVal();
1938 }
1939 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1940 }
1941
1942 assert(state)(static_cast <bool> (state) ? void (0) : __assert_fail (
"state", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 1942, __extension__ __PRETTY_FUNCTION__))
;
1943
1944 if (returnPtr) {
1945 // If this is a stpcpy-style copy, but we were unable to check for a buffer
1946 // overflow, we still need a result. Conjure a return value.
1947 if (ReturnEnd && Result.isUnknown()) {
1948 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1949 }
1950 }
1951 // Set the return value.
1952 state = state->BindExpr(CE, LCtx, Result);
1953 C.addTransition(state);
1954}
1955
1956void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1957 //int strcmp(const char *s1, const char *s2);
1958 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
1959}
1960
1961void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1962 //int strncmp(const char *s1, const char *s2, size_t n);
1963 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
1964}
1965
1966void CStringChecker::evalStrcasecmp(CheckerContext &C,
1967 const CallExpr *CE) const {
1968 //int strcasecmp(const char *s1, const char *s2);
1969 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
1970}
1971
1972void CStringChecker::evalStrncasecmp(CheckerContext &C,
1973 const CallExpr *CE) const {
1974 //int strncasecmp(const char *s1, const char *s2, size_t n);
1975 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
1976}
1977
1978void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1979 bool IsBounded, bool IgnoreCase) const {
1980 CurrentFunctionDescription = "string comparison function";
1981 ProgramStateRef state = C.getState();
1982 const LocationContext *LCtx = C.getLocationContext();
1983
1984 // Check that the first string is non-null
1985 AnyArgExpr Left = {CE->getArg(0), 0};
1986 SVal LeftVal = state->getSVal(Left.Expression, LCtx);
1987 state = checkNonNull(C, state, Left, LeftVal);
1988 if (!state)
1989 return;
1990
1991 // Check that the second string is non-null.
1992 AnyArgExpr Right = {CE->getArg(1), 1};
1993 SVal RightVal = state->getSVal(Right.Expression, LCtx);
1994 state = checkNonNull(C, state, Right, RightVal);
1995 if (!state)
1996 return;
1997
1998 // Get the string length of the first string or give up.
1999 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
2000 if (LeftLength.isUndef())
2001 return;
2002
2003 // Get the string length of the second string or give up.
2004 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
2005 if (RightLength.isUndef())
2006 return;
2007
2008 // If we know the two buffers are the same, we know the result is 0.
2009 // First, get the two buffers' addresses. Another checker will have already
2010 // made sure they're not undefined.
2011 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
2012 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
2013
2014 // See if they are the same.
2015 SValBuilder &svalBuilder = C.getSValBuilder();
2016 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
2017 ProgramStateRef StSameBuf, StNotSameBuf;
2018 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
2019
2020 // If the two arguments might be the same buffer, we know the result is 0,
2021 // and we only need to check one size.
2022 if (StSameBuf) {
2023 StSameBuf = StSameBuf->BindExpr(CE, LCtx,
2024 svalBuilder.makeZeroVal(CE->getType()));
2025 C.addTransition(StSameBuf);
2026
2027 // If the two arguments are GUARANTEED to be the same, we're done!
2028 if (!StNotSameBuf)
2029 return;
2030 }
2031
2032 assert(StNotSameBuf)(static_cast <bool> (StNotSameBuf) ? void (0) : __assert_fail
("StNotSameBuf", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 2032, __extension__ __PRETTY_FUNCTION__))
;
2033 state = StNotSameBuf;
2034
2035 // At this point we can go about comparing the two buffers.
2036 // For now, we only do this if they're both known string literals.
2037
2038 // Attempt to extract string literals from both expressions.
2039 const StringLiteral *LeftStrLiteral =
2040 getCStringLiteral(C, state, Left.Expression, LeftVal);
2041 const StringLiteral *RightStrLiteral =
2042 getCStringLiteral(C, state, Right.Expression, RightVal);
2043 bool canComputeResult = false;
2044 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
2045 C.blockCount());
2046
2047 if (LeftStrLiteral && RightStrLiteral) {
2048 StringRef LeftStrRef = LeftStrLiteral->getString();
2049 StringRef RightStrRef = RightStrLiteral->getString();
2050
2051 if (IsBounded) {
2052 // Get the max number of characters to compare.
2053 const Expr *lenExpr = CE->getArg(2);
2054 SVal lenVal = state->getSVal(lenExpr, LCtx);
2055
2056 // If the length is known, we can get the right substrings.
2057 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2058 // Create substrings of each to compare the prefix.
2059 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2060 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2061 canComputeResult = true;
2062 }
2063 } else {
2064 // This is a normal, unbounded strcmp.
2065 canComputeResult = true;
2066 }
2067
2068 if (canComputeResult) {
2069 // Real strcmp stops at null characters.
2070 size_t s1Term = LeftStrRef.find('\0');
2071 if (s1Term != StringRef::npos)
2072 LeftStrRef = LeftStrRef.substr(0, s1Term);
2073
2074 size_t s2Term = RightStrRef.find('\0');
2075 if (s2Term != StringRef::npos)
2076 RightStrRef = RightStrRef.substr(0, s2Term);
2077
2078 // Use StringRef's comparison methods to compute the actual result.
2079 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2080 : LeftStrRef.compare(RightStrRef);
2081
2082 // The strcmp function returns an integer greater than, equal to, or less
2083 // than zero, [c11, p7.24.4.2].
2084 if (compareRes == 0) {
2085 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2086 }
2087 else {
2088 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2089 // Constrain strcmp's result range based on the result of StringRef's
2090 // comparison methods.
2091 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2092 SVal compareWithZero =
2093 svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2094 svalBuilder.getConditionType());
2095 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2096 state = state->assume(compareWithZeroVal, true);
2097 }
2098 }
2099 }
2100
2101 state = state->BindExpr(CE, LCtx, resultVal);
2102
2103 // Record this as a possible path.
2104 C.addTransition(state);
2105}
2106
2107void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2108 // char *strsep(char **stringp, const char *delim);
2109 // Verify whether the search string parameter matches the return type.
2110 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0};
2111
2112 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2113 if (CharPtrTy.isNull() ||
2114 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2115 return;
2116
2117 CurrentFunctionDescription = "strsep()";
2118 ProgramStateRef State = C.getState();
2119 const LocationContext *LCtx = C.getLocationContext();
2120
2121 // Check that the search string pointer is non-null (though it may point to
2122 // a null string).
2123 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2124 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2125 if (!State)
2126 return;
2127
2128 // Check that the delimiter string is non-null.
2129 AnyArgExpr DelimStr = {CE->getArg(1), 1};
2130 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2131 State = checkNonNull(C, State, DelimStr, DelimStrVal);
2132 if (!State)
2133 return;
2134
2135 SValBuilder &SVB = C.getSValBuilder();
2136 SVal Result;
2137 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2138 // Get the current value of the search string pointer, as a char*.
2139 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2140
2141 // Invalidate the search string, representing the change of one delimiter
2142 // character to NUL.
2143 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result,
2144 /*IsSourceBuffer*/ false, nullptr);
2145
2146 // Overwrite the search string pointer. The new value is either an address
2147 // further along in the same string, or NULL if there are no more tokens.
2148 State = State->bindLoc(*SearchStrLoc,
2149 SVB.conjureSymbolVal(getTag(),
2150 CE,
2151 LCtx,
2152 CharPtrTy,
2153 C.blockCount()),
2154 LCtx);
2155 } else {
2156 assert(SearchStrVal.isUnknown())(static_cast <bool> (SearchStrVal.isUnknown()) ? void (
0) : __assert_fail ("SearchStrVal.isUnknown()", "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp"
, 2156, __extension__ __PRETTY_FUNCTION__))
;
2157 // Conjure a symbolic value. It's the best we can do.
2158 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2159 }
2160
2161 // Set the return value, and finish.
2162 State = State->BindExpr(CE, LCtx, Result);
2163 C.addTransition(State);
2164}
2165
2166// These should probably be moved into a C++ standard library checker.
2167void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2168 evalStdCopyCommon(C, CE);
2169}
2170
2171void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2172 const CallExpr *CE) const {
2173 evalStdCopyCommon(C, CE);
2174}
2175
2176void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2177 const CallExpr *CE) const {
2178 if (!CE->getArg(2)->getType()->isPointerType())
2179 return;
2180
2181 ProgramStateRef State = C.getState();
2182
2183 const LocationContext *LCtx = C.getLocationContext();
2184
2185 // template <class _InputIterator, class _OutputIterator>
2186 // _OutputIterator
2187 // copy(_InputIterator __first, _InputIterator __last,
2188 // _OutputIterator __result)
2189
2190 // Invalidate the destination buffer
2191 const Expr *Dst = CE->getArg(2);
2192 SVal DstVal = State->getSVal(Dst, LCtx);
2193 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2194 /*Size=*/nullptr);
2195
2196 SValBuilder &SVB = C.getSValBuilder();
2197
2198 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2199 State = State->BindExpr(CE, LCtx, ResultVal);
2200
2201 C.addTransition(State);
2202}
2203
2204void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2205 // void *memset(void *s, int c, size_t n);
2206 CurrentFunctionDescription = "memory set function";
2207
2208 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2209 AnyArgExpr CharE = {CE->getArg(1), 1};
2210 SizeArgExpr Size = {CE->getArg(2), 2};
2211
2212 ProgramStateRef State = C.getState();
2213
2214 // See if the size argument is zero.
2215 const LocationContext *LCtx = C.getLocationContext();
2216 SVal SizeVal = C.getSVal(Size.Expression);
2217 QualType SizeTy = Size.Expression->getType();
2218
2219 ProgramStateRef ZeroSize, NonZeroSize;
2220 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2221
2222 // Get the value of the memory area.
2223 SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2224
2225 // If the size is zero, there won't be any actual memory access, so
2226 // just bind the return value to the buffer and return.
2227 if (ZeroSize && !NonZeroSize) {
2228 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal);
2229 C.addTransition(ZeroSize);
2230 return;
2231 }
2232
2233 // Ensure the memory area is not null.
2234 // If it is NULL there will be a NULL pointer dereference.
2235 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2236 if (!State)
2237 return;
2238
2239 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2240 if (!State)
2241 return;
2242
2243 // According to the values of the arguments, bind the value of the second
2244 // argument to the destination buffer and set string length, or just
2245 // invalidate the destination buffer.
2246 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2247 Size.Expression, C, State))
2248 return;
2249
2250 State = State->BindExpr(CE, LCtx, BufferPtrVal);
2251 C.addTransition(State);
2252}
2253
2254void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2255 CurrentFunctionDescription = "memory clearance function";
2256
2257 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2258 SizeArgExpr Size = {CE->getArg(1), 1};
2259 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2260
2261 ProgramStateRef State = C.getState();
2262
2263 // See if the size argument is zero.
2264 SVal SizeVal = C.getSVal(Size.Expression);
2265 QualType SizeTy = Size.Expression->getType();
2266
2267 ProgramStateRef StateZeroSize, StateNonZeroSize;
2268 std::tie(StateZeroSize, StateNonZeroSize) =
2269 assumeZero(C, State, SizeVal, SizeTy);
2270
2271 // If the size is zero, there won't be any actual memory access,
2272 // In this case we just return.
2273 if (StateZeroSize && !StateNonZeroSize) {
2274 C.addTransition(StateZeroSize);
2275 return;
2276 }
2277
2278 // Get the value of the memory area.
2279 SVal MemVal = C.getSVal(Buffer.Expression);
2280
2281 // Ensure the memory area is not null.
2282 // If it is NULL there will be a NULL pointer dereference.
2283 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2284 if (!State)
2285 return;
2286
2287 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2288 if (!State)
2289 return;
2290
2291 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2292 return;
2293
2294 C.addTransition(State);
2295}
2296
2297//===----------------------------------------------------------------------===//
2298// The driver method, and other Checker callbacks.
2299//===----------------------------------------------------------------------===//
2300
2301CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2302 CheckerContext &C) const {
2303 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2304 if (!CE)
2305 return nullptr;
2306
2307 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2308 if (!FD)
2309 return nullptr;
2310
2311 if (StdCopy.matches(Call))
2312 return &CStringChecker::evalStdCopy;
2313 if (StdCopyBackward.matches(Call))
2314 return &CStringChecker::evalStdCopyBackward;
2315
2316 // Pro-actively check that argument types are safe to do arithmetic upon.
2317 // We do not want to crash if someone accidentally passes a structure
2318 // into, say, a C++ overload of any of these functions. We could not check
2319 // that for std::copy because they may have arguments of other types.
2320 for (auto I : CE->arguments()) {
2321 QualType T = I->getType();
2322 if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2323 return nullptr;
2324 }
2325
2326 const FnCheck *Callback = Callbacks.lookup(Call);
2327 if (Callback)
2328 return *Callback;
2329
2330 return nullptr;
2331}
2332
2333bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2334 FnCheck Callback = identifyCall(Call, C);
2335
2336 // If the callee isn't a string function, let another checker handle it.
2337 if (!Callback)
2338 return false;
2339
2340 // Check and evaluate the call.
2341 const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2342 (this->*Callback)(C, CE);
2343
2344 // If the evaluate call resulted in no change, chain to the next eval call
2345 // handler.
2346 // Note, the custom CString evaluation calls assume that basic safety
2347 // properties are held. However, if the user chooses to turn off some of these
2348 // checks, we ignore the issues and leave the call evaluation to a generic
2349 // handler.
2350 return C.isDifferent();
2351}
2352
2353void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2354 // Record string length for char a[] = "abc";
2355 ProgramStateRef state = C.getState();
2356
2357 for (const auto *I : DS->decls()) {
2358 const VarDecl *D = dyn_cast<VarDecl>(I);
2359 if (!D)
2360 continue;
2361
2362 // FIXME: Handle array fields of structs.
2363 if (!D->getType()->isArrayType())
2364 continue;
2365
2366 const Expr *Init = D->getInit();
2367 if (!Init)
2368 continue;
2369 if (!isa<StringLiteral>(Init))
2370 continue;
2371
2372 Loc VarLoc = state->getLValue(D, C.getLocationContext());
2373 const MemRegion *MR = VarLoc.getAsRegion();
2374 if (!MR)
2375 continue;
2376
2377 SVal StrVal = C.getSVal(Init);
2378 assert(StrVal.isValid() && "Initializer string is unknown or undefined")(static_cast <bool> (StrVal.isValid() && "Initializer string is unknown or undefined"
) ? void (0) : __assert_fail ("StrVal.isValid() && \"Initializer string is unknown or undefined\""
, "clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp", 2378
, __extension__ __PRETTY_FUNCTION__))
;
2379 DefinedOrUnknownSVal strLength =
2380 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2381
2382 state = state->set<CStringLength>(MR, strLength);
2383 }
2384
2385 C.addTransition(state);
2386}
2387
2388ProgramStateRef
2389CStringChecker::checkRegionChanges(ProgramStateRef state,
2390 const InvalidatedSymbols *,
2391 ArrayRef<const MemRegion *> ExplicitRegions,
2392 ArrayRef<const MemRegion *> Regions,
2393 const LocationContext *LCtx,
2394 const CallEvent *Call) const {
2395 CStringLengthTy Entries = state->get<CStringLength>();
2396 if (Entries.isEmpty())
2397 return state;
2398
2399 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2400 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2401
2402 // First build sets for the changed regions and their super-regions.
2403 for (ArrayRef<const MemRegion *>::iterator
2404 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2405 const MemRegion *MR = *I;
2406 Invalidated.insert(MR);
2407
2408 SuperRegions.insert(MR);
2409 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2410 MR = SR->getSuperRegion();
2411 SuperRegions.insert(MR);
2412 }
2413 }
2414
2415 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2416
2417 // Then loop over the entries in the current state.
2418 for (CStringLengthTy::iterator I = Entries.begin(),
2419 E = Entries.end(); I != E; ++I) {
2420 const MemRegion *MR = I.getKey();
2421
2422 // Is this entry for a super-region of a changed region?
2423 if (SuperRegions.count(MR)) {
2424 Entries = F.remove(Entries, MR);
2425 continue;
2426 }
2427
2428 // Is this entry for a sub-region of a changed region?
2429 const MemRegion *Super = MR;
2430 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2431 Super = SR->getSuperRegion();
2432 if (Invalidated.count(Super)) {
2433 Entries = F.remove(Entries, MR);
2434 break;
2435 }
2436 }
2437 }
2438
2439 return state->set<CStringLength>(Entries);
2440}
2441
2442void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2443 SymbolReaper &SR) const {
2444 // Mark all symbols in our string length map as valid.
2445 CStringLengthTy Entries = state->get<CStringLength>();
2446
2447 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2448 I != E; ++I) {
2449 SVal Len = I.getData();
2450
2451 for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2452 se = Len.symbol_end(); si != se; ++si)
2453 SR.markInUse(*si);
2454 }
2455}
2456
2457void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2458 CheckerContext &C) const {
2459 ProgramStateRef state = C.getState();
2460 CStringLengthTy Entries = state->get<CStringLength>();
2461 if (Entries.isEmpty())
2462 return;
2463
2464 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2465 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2466 I != E; ++I) {
2467 SVal Len = I.getData();
2468 if (SymbolRef Sym = Len.getAsSymbol()) {
2469 if (SR.isDead(Sym))
2470 Entries = F.remove(Entries, I.getKey());
2471 }
2472 }
2473
2474 state = state->set<CStringLength>(Entries);
2475 C.addTransition(state);
2476}
2477
2478void ento::registerCStringModeling(CheckerManager &Mgr) {
2479 Mgr.registerChecker<CStringChecker>();
2480}
2481
2482bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2483 return true;
2484}
2485
2486#define REGISTER_CHECKER(name)void ento::registername(CheckerManager &mgr) { CStringChecker
*checker = mgr.getChecker<CStringChecker>(); checker->
Filter.Checkname = true; checker->Filter.CheckNamename = mgr
.getCurrentCheckerName(); } bool ento::shouldRegistername(const
CheckerManager &mgr) { return true; }
\
2487 void ento::register##name(CheckerManager &mgr) { \
2488 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \
2489 checker->Filter.Check##name = true; \
2490 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
2491 } \
2492 \
2493 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2494
2495REGISTER_CHECKER(CStringNullArg)void ento::registerCStringNullArg(CheckerManager &mgr) { CStringChecker
*checker = mgr.getChecker<CStringChecker>(); checker->
Filter.CheckCStringNullArg = true; checker->Filter.CheckNameCStringNullArg
= mgr.getCurrentCheckerName(); } bool ento::shouldRegisterCStringNullArg
(const CheckerManager &mgr) { return true; }
2496REGISTER_CHECKER(CStringOutOfBounds)void ento::registerCStringOutOfBounds(CheckerManager &mgr
) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringOutOfBounds = true; checker
->Filter.CheckNameCStringOutOfBounds = mgr.getCurrentCheckerName
(); } bool ento::shouldRegisterCStringOutOfBounds(const CheckerManager
&mgr) { return true; }
2497REGISTER_CHECKER(CStringBufferOverlap)void ento::registerCStringBufferOverlap(CheckerManager &mgr
) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringBufferOverlap = true; checker
->Filter.CheckNameCStringBufferOverlap = mgr.getCurrentCheckerName
(); } bool ento::shouldRegisterCStringBufferOverlap(const CheckerManager
&mgr) { return true; }
2498REGISTER_CHECKER(CStringNotNullTerm)void ento::registerCStringNotNullTerm(CheckerManager &mgr
) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringNotNullTerm = true; checker
->Filter.CheckNameCStringNotNullTerm = mgr.getCurrentCheckerName
(); } bool ento::shouldRegisterCStringNotNullTerm(const CheckerManager
&mgr) { return true; }
2499REGISTER_CHECKER(CStringUninitializedRead)void ento::registerCStringUninitializedRead(CheckerManager &
mgr) { CStringChecker *checker = mgr.getChecker<CStringChecker
>(); checker->Filter.CheckCStringUninitializedRead = true
; checker->Filter.CheckNameCStringUninitializedRead = mgr.
getCurrentCheckerName(); } bool ento::shouldRegisterCStringUninitializedRead
(const CheckerManager &mgr) { return true; }

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/clang/include/clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h

1//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the state of the program along the analysisa path.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
14#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
15
16#include "clang/Basic/LLVM.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
21#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
22#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/ImmutableMap.h"
25#include "llvm/Support/Allocator.h"
26#include <utility>
27
28namespace llvm {
29class APSInt;
30}
31
32namespace clang {
33class ASTContext;
34
35namespace ento {
36
37class AnalysisManager;
38class CallEvent;
39class CallEventManager;
40
41typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
42 ProgramStateManager &, ExprEngine *);
43typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
44 ProgramStateManager &);
45
46//===----------------------------------------------------------------------===//
47// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
48//===----------------------------------------------------------------------===//
49
50template <typename T> struct ProgramStateTrait {
51 typedef typename T::data_type data_type;
52 static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
53 static inline data_type MakeData(void *const* P) {
54 return P ? (data_type) *P : (data_type) 0;
55 }
56};
57
58/// \class ProgramState
59/// ProgramState - This class encapsulates:
60///
61/// 1. A mapping from expressions to values (Environment)
62/// 2. A mapping from locations to values (Store)
63/// 3. Constraints on symbolic values (GenericDataMap)
64///
65/// Together these represent the "abstract state" of a program.
66///
67/// ProgramState is intended to be used as a functional object; that is,
68/// once it is created and made "persistent" in a FoldingSet, its
69/// values will never change.
70class ProgramState : public llvm::FoldingSetNode {
71public:
72 typedef llvm::ImmutableSet<llvm::APSInt*> IntSetTy;
73 typedef llvm::ImmutableMap<void*, void*> GenericDataMap;
74
75private:
76 void operator=(const ProgramState& R) = delete;
77
78 friend class ProgramStateManager;
79 friend class ExplodedGraph;
80 friend class ExplodedNode;
81
82 ProgramStateManager *stateMgr;
83 Environment Env; // Maps a Stmt to its current SVal.
84 Store store; // Maps a location to its current value.
85 GenericDataMap GDM; // Custom data stored by a client of this class.
86 unsigned refCount;
87
88 /// makeWithStore - Return a ProgramState with the same values as the current
89 /// state with the exception of using the specified Store.
90 ProgramStateRef makeWithStore(const StoreRef &store) const;
91
92 void setStore(const StoreRef &storeRef);
93
94public:
95 /// This ctor is used when creating the first ProgramState object.
96 ProgramState(ProgramStateManager *mgr, const Environment& env,
97 StoreRef st, GenericDataMap gdm);
98
99 /// Copy ctor - We must explicitly define this or else the "Next" ptr
100 /// in FoldingSetNode will also get copied.
101 ProgramState(const ProgramState &RHS);
102
103 ~ProgramState();
104
105 int64_t getID() const;
106
107 /// Return the ProgramStateManager associated with this state.
108 ProgramStateManager &getStateManager() const {
109 return *stateMgr;
110 }
111
112 AnalysisManager &getAnalysisManager() const;
113
114 /// Return the ConstraintManager.
115 ConstraintManager &getConstraintManager() const;
116
117 /// getEnvironment - Return the environment associated with this state.
118 /// The environment is the mapping from expressions to values.
119 const Environment& getEnvironment() const { return Env; }
120
121 /// Return the store associated with this state. The store
122 /// is a mapping from locations to values.
123 Store getStore() const { return store; }
124
125
126 /// getGDM - Return the generic data map associated with this state.
127 GenericDataMap getGDM() const { return GDM; }
128
129 void setGDM(GenericDataMap gdm) { GDM = gdm; }
130
131 /// Profile - Profile the contents of a ProgramState object for use in a
132 /// FoldingSet. Two ProgramState objects are considered equal if they
133 /// have the same Environment, Store, and GenericDataMap.
134 static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
135 V->Env.Profile(ID);
136 ID.AddPointer(V->store);
137 V->GDM.Profile(ID);
138 }
139
140 /// Profile - Used to profile the contents of this object for inclusion
141 /// in a FoldingSet.
142 void Profile(llvm::FoldingSetNodeID& ID) const {
143 Profile(ID, this);
144 }
145
146 BasicValueFactory &getBasicVals() const;
147 SymbolManager &getSymbolManager() const;
148
149 //==---------------------------------------------------------------------==//
150 // Constraints on values.
151 //==---------------------------------------------------------------------==//
152 //
153 // Each ProgramState records constraints on symbolic values. These constraints
154 // are managed using the ConstraintManager associated with a ProgramStateManager.
155 // As constraints gradually accrue on symbolic values, added constraints
156 // may conflict and indicate that a state is infeasible (as no real values
157 // could satisfy all the constraints). This is the principal mechanism
158 // for modeling path-sensitivity in ExprEngine/ProgramState.
159 //
160 // Various "assume" methods form the interface for adding constraints to
161 // symbolic values. A call to 'assume' indicates an assumption being placed
162 // on one or symbolic values. 'assume' methods take the following inputs:
163 //
164 // (1) A ProgramState object representing the current state.
165 //
166 // (2) The assumed constraint (which is specific to a given "assume" method).
167 //
168 // (3) A binary value "Assumption" that indicates whether the constraint is
169 // assumed to be true or false.
170 //
171 // The output of "assume*" is a new ProgramState object with the added constraints.
172 // If no new state is feasible, NULL is returned.
173 //
174
175 /// Assumes that the value of \p cond is zero (if \p assumption is "false")
176 /// or non-zero (if \p assumption is "true").
177 ///
178 /// This returns a new state with the added constraint on \p cond.
179 /// If no new state is feasible, NULL is returned.
180 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef assume(DefinedOrUnknownSVal cond,
181 bool assumption) const;
182
183 /// Assumes both "true" and "false" for \p cond, and returns both
184 /// corresponding states (respectively).
185 ///
186 /// This is more efficient than calling assume() twice. Note that one (but not
187 /// both) of the returned states may be NULL.
188 LLVM_NODISCARD[[clang::warn_unused_result]] std::pair<ProgramStateRef, ProgramStateRef>
189 assume(DefinedOrUnknownSVal cond) const;
190
191 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
192 assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
193 bool assumption, QualType IndexType = QualType()) const;
194
195 /// Assumes that the value of \p Val is bounded with [\p From; \p To]
196 /// (if \p assumption is "true") or it is fully out of this range
197 /// (if \p assumption is "false").
198 ///
199 /// This returns a new state with the added constraint on \p cond.
200 /// If no new state is feasible, NULL is returned.
201 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
202 const llvm::APSInt &From,
203 const llvm::APSInt &To,
204 bool assumption) const;
205
206 /// Assumes given range both "true" and "false" for \p Val, and returns both
207 /// corresponding states (respectively).
208 ///
209 /// This is more efficient than calling assume() twice. Note that one (but not
210 /// both) of the returned states may be NULL.
211 LLVM_NODISCARD[[clang::warn_unused_result]] std::pair<ProgramStateRef, ProgramStateRef>
212 assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
213 const llvm::APSInt &To) const;
214
215 /// Check if the given SVal is not constrained to zero and is not
216 /// a zero constant.
217 ConditionTruthVal isNonNull(SVal V) const;
218
219 /// Check if the given SVal is constrained to zero or is a zero
220 /// constant.
221 ConditionTruthVal isNull(SVal V) const;
222
223 /// \return Whether values \p Lhs and \p Rhs are equal.
224 ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;
225
226 /// Utility method for getting regions.
227 const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
228
229 //==---------------------------------------------------------------------==//
230 // Binding and retrieving values to/from the environment and symbolic store.
231 //==---------------------------------------------------------------------==//
232
233 /// Create a new state by binding the value 'V' to the statement 'S' in the
234 /// state's environment.
235 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef BindExpr(const Stmt *S,
236 const LocationContext *LCtx, SVal V,
237 bool Invalidate = true) const;
238
239 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef bindLoc(Loc location, SVal V,
240 const LocationContext *LCtx,
241 bool notifyChanges = true) const;
242
243 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef bindLoc(SVal location, SVal V,
244 const LocationContext *LCtx) const;
245
246 /// Initializes the region of memory represented by \p loc with an initial
247 /// value. Once initialized, all values loaded from any sub-regions of that
248 /// region will be equal to \p V, unless overwritten later by the program.
249 /// This method should not be used on regions that are already initialized.
250 /// If you need to indicate that memory contents have suddenly become unknown
251 /// within a certain region of memory, consider invalidateRegions().
252 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
253 bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;
254
255 /// Performs C++ zero-initialization procedure on the region of memory
256 /// represented by \p loc.
257 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
258 bindDefaultZero(SVal loc, const LocationContext *LCtx) const;
259
260 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef killBinding(Loc LV) const;
261
262 /// Returns the state with bindings for the given regions
263 /// cleared from the store.
264 ///
265 /// Optionally invalidates global regions as well.
266 ///
267 /// \param Regions the set of regions to be invalidated.
268 /// \param E the expression that caused the invalidation.
269 /// \param BlockCount The number of times the current basic block has been
270 // visited.
271 /// \param CausesPointerEscape the flag is set to true when
272 /// the invalidation entails escape of a symbol (representing a
273 /// pointer). For example, due to it being passed as an argument in a
274 /// call.
275 /// \param IS the set of invalidated symbols.
276 /// \param Call if non-null, the invalidated regions represent parameters to
277 /// the call and should be considered directly invalidated.
278 /// \param ITraits information about special handling for a particular
279 /// region/symbol.
280 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
281 invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
282 unsigned BlockCount, const LocationContext *LCtx,
283 bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
284 const CallEvent *Call = nullptr,
285 RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
286
287 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
288 invalidateRegions(ArrayRef<SVal> Regions, const Expr *E,
289 unsigned BlockCount, const LocationContext *LCtx,
290 bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
291 const CallEvent *Call = nullptr,
292 RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
293
294 /// enterStackFrame - Returns the state for entry to the given stack frame,
295 /// preserving the current state.
296 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef enterStackFrame(
297 const CallEvent &Call, const StackFrameContext *CalleeCtx) const;
298
299 /// Return the value of 'self' if available in the given context.
300 SVal getSelfSVal(const LocationContext *LC) const;
301
302 /// Get the lvalue for a base class object reference.
303 Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;
304
305 /// Get the lvalue for a base class object reference.
306 Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
307 bool IsVirtual) const;
308
309 /// Get the lvalue for a parameter.
310 Loc getLValue(const Expr *Call, unsigned Index,
311 const LocationContext *LC) const;
312
313 /// Get the lvalue for a variable reference.
314 Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
315
316 Loc getLValue(const CompoundLiteralExpr *literal,
317 const LocationContext *LC) const;
318
319 /// Get the lvalue for an ivar reference.
320 SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
321
322 /// Get the lvalue for a field reference.
323 SVal getLValue(const FieldDecl *decl, SVal Base) const;
324
325 /// Get the lvalue for an indirect field reference.
326 SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;
327
328 /// Get the lvalue for an array index.
329 SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
330
331 /// Returns the SVal bound to the statement 'S' in the state's environment.
332 SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;
333
334 SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;
335
336 /// Return the value bound to the specified location.
337 /// Returns UnknownVal() if none found.
338 SVal getSVal(Loc LV, QualType T = QualType()) const;
339
340 /// Returns the "raw" SVal bound to LV before any value simplfication.
341 SVal getRawSVal(Loc LV, QualType T= QualType()) const;
342
343 /// Return the value bound to the specified location.
344 /// Returns UnknownVal() if none found.
345 SVal getSVal(const MemRegion* R, QualType T = QualType()) const;
346
347 /// Return the value bound to the specified location, assuming
348 /// that the value is a scalar integer or an enumeration or a pointer.
349 /// Returns UnknownVal() if none found or the region is not known to hold
350 /// a value of such type.
351 SVal getSValAsScalarOrLoc(const MemRegion *R) const;
352
353 using region_iterator = const MemRegion **;
354
355 /// Visits the symbols reachable from the given SVal using the provided
356 /// SymbolVisitor.
357 ///
358 /// This is a convenience API. Consider using ScanReachableSymbols class
359 /// directly when making multiple scans on the same state with the same
360 /// visitor to avoid repeated initialization cost.
361 /// \sa ScanReachableSymbols
362 bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
363
364 /// Visits the symbols reachable from the regions in the given
365 /// MemRegions range using the provided SymbolVisitor.
366 bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
367 SymbolVisitor &visitor) const;
368
369 template <typename CB> CB scanReachableSymbols(SVal val) const;
370 template <typename CB> CB
371 scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;
372
373 //==---------------------------------------------------------------------==//
374 // Accessing the Generic Data Map (GDM).
375 //==---------------------------------------------------------------------==//
376
377 void *const* FindGDM(void *K) const;
378
379 template <typename T>
380 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
381 add(typename ProgramStateTrait<T>::key_type K) const;
382
383 template <typename T>
384 typename ProgramStateTrait<T>::data_type
385 get() const {
386 return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
387 }
388
389 template<typename T>
390 typename ProgramStateTrait<T>::lookup_type
391 get(typename ProgramStateTrait<T>::key_type key) const {
392 void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
393 return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
394 }
395
396 template <typename T>
397 typename ProgramStateTrait<T>::context_type get_context() const;
398
399 template <typename T>
400 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
401 remove(typename ProgramStateTrait<T>::key_type K) const;
402
403 template <typename T>
404 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
405 remove(typename ProgramStateTrait<T>::key_type K,
406 typename ProgramStateTrait<T>::context_type C) const;
407
408 template <typename T> LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef remove() const;
409
410 template <typename T>
411 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
412 set(typename ProgramStateTrait<T>::data_type D) const;
413
414 template <typename T>
415 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
416 set(typename ProgramStateTrait<T>::key_type K,
417 typename ProgramStateTrait<T>::value_type E) const;
418
419 template <typename T>
420 LLVM_NODISCARD[[clang::warn_unused_result]] ProgramStateRef
421 set(typename ProgramStateTrait<T>::key_type K,
422 typename ProgramStateTrait<T>::value_type E,
423 typename ProgramStateTrait<T>::context_type C) const;
424
425 template<typename T>
426 bool contains(typename ProgramStateTrait<T>::key_type key) const {
427 void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
428 return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
429 }
430
431 // Pretty-printing.
432 void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
433 const char *NL = "\n", unsigned int Space = 0,
434 bool IsDot = false) const;
435
436 void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
437 unsigned int Space = 0) const;
438
439 void dump() const;
440
441private:
442 friend void ProgramStateRetain(const ProgramState *state);
443 friend void ProgramStateRelease(const ProgramState *state);
444
445 /// \sa invalidateValues()
446 /// \sa invalidateRegions()
447 ProgramStateRef
448 invalidateRegionsImpl(ArrayRef<SVal> Values,
449 const Expr *E, unsigned BlockCount,
450 const LocationContext *LCtx,
451 bool ResultsInSymbolEscape,
452 InvalidatedSymbols *IS,
453 RegionAndSymbolInvalidationTraits *HTraits,
454 const CallEvent *Call) const;
455};
456
457//===----------------------------------------------------------------------===//
458// ProgramStateManager - Factory object for ProgramStates.
459//===----------------------------------------------------------------------===//
460
461class ProgramStateManager {
462 friend class ProgramState;
463 friend void ProgramStateRelease(const ProgramState *state);
464private:
465 /// Eng - The ExprEngine that owns this state manager.
466 ExprEngine *Eng; /* Can be null. */
467
468 EnvironmentManager EnvMgr;
469 std::unique_ptr<StoreManager> StoreMgr;
470 std::unique_ptr<ConstraintManager> ConstraintMgr;
471
472 ProgramState::GenericDataMap::Factory GDMFactory;
473
474 typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
475 GDMContextsTy GDMContexts;
476
477 /// StateSet - FoldingSet containing all the states created for analyzing
478 /// a particular function. This is used to unique states.
479 llvm::FoldingSet<ProgramState> StateSet;
480
481 /// Object that manages the data for all created SVals.
482 std::unique_ptr<SValBuilder> svalBuilder;
483
484 /// Manages memory for created CallEvents.
485 std::unique_ptr<CallEventManager> CallEventMgr;
486
487 /// A BumpPtrAllocator to allocate states.
488 llvm::BumpPtrAllocator &Alloc;
489
490 /// A vector of ProgramStates that we can reuse.
491 std::vector<ProgramState *> freeStates;
492
493public:
494 ProgramStateManager(ASTContext &Ctx,
495 StoreManagerCreator CreateStoreManager,
496 ConstraintManagerCreator CreateConstraintManager,
497 llvm::BumpPtrAllocator& alloc,
498 ExprEngine *expreng);
499
500 ~ProgramStateManager();
501
502 ProgramStateRef getInitialState(const LocationContext *InitLoc);
503
504 ASTContext &getContext() { return svalBuilder->getContext(); }
505 const ASTContext &getContext() const { return svalBuilder->getContext(); }
506
507 BasicValueFactory &getBasicVals() {
508 return svalBuilder->getBasicValueFactory();
509 }
510
511 SValBuilder &getSValBuilder() {
512 return *svalBuilder;
513 }
514
515 const SValBuilder &getSValBuilder() const {
516 return *svalBuilder;
517 }
518
519 SymbolManager &getSymbolManager() {
520 return svalBuilder->getSymbolManager();
521 }
522 const SymbolManager &getSymbolManager() const {
523 return svalBuilder->getSymbolManager();
524 }
525
526 llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
527
528 MemRegionManager& getRegionManager() {
529 return svalBuilder->getRegionManager();
530 }
531 const MemRegionManager &getRegionManager() const {
532 return svalBuilder->getRegionManager();
533 }
534
535 CallEventManager &getCallEventManager() { return *CallEventMgr; }
536
537 StoreManager &getStoreManager() { return *StoreMgr; }
538 ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
539 ExprEngine &getOwningEngine() { return *Eng; }
540
541 ProgramStateRef
542 removeDeadBindingsFromEnvironmentAndStore(ProgramStateRef St,
543 const StackFrameContext *LCtx,
544 SymbolReaper &SymReaper);
545
546public:
547
548 SVal ArrayToPointer(Loc Array, QualType ElementTy) {
549 return StoreMgr->ArrayToPointer(Array, ElementTy);
550 }
551
552 // Methods that manipulate the GDM.
553 ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
554 ProgramStateRef removeGDM(ProgramStateRef state, void *Key);
555
556 // Methods that query & manipulate the Store.
557
558 void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
559 StoreMgr->iterBindings(state->getStore(), F);
560 }
561
562 ProgramStateRef getPersistentState(ProgramState &Impl);
563 ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
564 ProgramStateRef GDMState);
565
566 bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
567 return ConstraintMgr->haveEqualConstraints(S1, S2);
568 }
569
570 bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
571 return S1->Env == S2->Env;
572 }
573
574 bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
575 return S1->store == S2->store;
576 }
577
578 //==---------------------------------------------------------------------==//
579 // Generic Data Map methods.
580 //==---------------------------------------------------------------------==//
581 //
582 // ProgramStateManager and ProgramState support a "generic data map" that allows
583 // different clients of ProgramState objects to embed arbitrary data within a
584 // ProgramState object. The generic data map is essentially an immutable map
585 // from a "tag" (that acts as the "key" for a client) and opaque values.
586 // Tags/keys and values are simply void* values. The typical way that clients
587 // generate unique tags are by taking the address of a static variable.
588 // Clients are responsible for ensuring that data values referred to by a
589 // the data pointer are immutable (and thus are essentially purely functional
590 // data).
591 //
592 // The templated methods below use the ProgramStateTrait<T> class
593 // to resolve keys into the GDM and to return data values to clients.
594 //
595
596 // Trait based GDM dispatch.
597 template <typename T>
598 ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
599 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
600 ProgramStateTrait<T>::MakeVoidPtr(D));
601 }
602
603 template<typename T>
604 ProgramStateRef set(ProgramStateRef st,
605 typename ProgramStateTrait<T>::key_type K,
606 typename ProgramStateTrait<T>::value_type V,
607 typename ProgramStateTrait<T>::context_type C) {
608
609 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
610 ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
611 }
612
613 template <typename T>
614 ProgramStateRef add(ProgramStateRef st,
615 typename ProgramStateTrait<T>::key_type K,
616 typename ProgramStateTrait<T>::context_type C) {
617 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
618 ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
619 }
620
621 template <typename T>
622 ProgramStateRef remove(ProgramStateRef st,
623 typename ProgramStateTrait<T>::key_type K,
624 typename ProgramStateTrait<T>::context_type C) {
625
626 return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
627 ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
628 }
629
630 template <typename T>
631 ProgramStateRef remove(ProgramStateRef st) {
632 return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
633 }
634
635 void *FindGDMContext(void *index,
636 void *(*CreateContext)(llvm::BumpPtrAllocator&),
637 void (*DeleteContext)(void*));
638
639 template <typename T>
640 typename ProgramStateTrait<T>::context_type get_context() {
641 void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
642 ProgramStateTrait<T>::CreateContext,
643 ProgramStateTrait<T>::DeleteContext);
644
645 return ProgramStateTrait<T>::MakeContext(p);
646 }
647};
648
649
650//===----------------------------------------------------------------------===//
651// Out-of-line method definitions for ProgramState.
652//===----------------------------------------------------------------------===//
653
654inline ConstraintManager &ProgramState::getConstraintManager() const {
655 return stateMgr->getConstraintManager();
656}
657
658inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
659 const LocationContext *LC) const
660{
661 return getStateManager().getRegionManager().getVarRegion(D, LC);
662}
663
664inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
665 bool Assumption) const {
666 if (Cond.isUnknown())
16
Taking false branch
667 return this;
668
669 return getStateManager().ConstraintMgr
17
Value assigned to 'S.Obj'
670 ->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
671}
672
673inline std::pair<ProgramStateRef , ProgramStateRef >
674ProgramState::assume(DefinedOrUnknownSVal Cond) const {
675 if (Cond.isUnknown())
676 return std::make_pair(this, this);
677
678 return getStateManager().ConstraintMgr
679 ->assumeDual(this, Cond.castAs<DefinedSVal>());
680}
681
682inline ProgramStateRef ProgramState::assumeInclusiveRange(
683 DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
684 bool Assumption) const {
685 if (Val.isUnknown())
686 return this;
687
688 assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!")(static_cast <bool> (Val.getAs<NonLoc>() &&
"Only NonLocs are supported!") ? void (0) : __assert_fail ("Val.getAs<NonLoc>() && \"Only NonLocs are supported!\""
, "clang/include/clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
, 688, __extension__ __PRETTY_FUNCTION__))
;
689
690 return getStateManager().ConstraintMgr->assumeInclusiveRange(
691 this, Val.castAs<NonLoc>(), From, To, Assumption);
692}
693
694inline std::pair<ProgramStateRef, ProgramStateRef>
695ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
696 const llvm::APSInt &From,
697 const llvm::APSInt &To) const {
698 if (Val.isUnknown())
699 return std::make_pair(this, this);
700
701 assert(Val.getAs<NonLoc>() && "Only NonLocs are supported!")(static_cast <bool> (Val.getAs<NonLoc>() &&
"Only NonLocs are supported!") ? void (0) : __assert_fail ("Val.getAs<NonLoc>() && \"Only NonLocs are supported!\""
, "clang/include/clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
, 701, __extension__ __PRETTY_FUNCTION__))
;
702
703 return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
704 this, Val.castAs<NonLoc>(), From, To);
705}
706
707inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
708 if (Optional<Loc> L = LV.getAs<Loc>())
709 return bindLoc(*L, V, LCtx);
710 return this;
711}
712
713inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
714 const SubRegion *Super) const {
715 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
716 return loc::MemRegionVal(
717 getStateManager().getRegionManager().getCXXBaseObjectRegion(
718 Base, Super, BaseSpec.isVirtual()));
719}
720
721inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
722 const SubRegion *Super,
723 bool IsVirtual) const {
724 return loc::MemRegionVal(
725 getStateManager().getRegionManager().getCXXBaseObjectRegion(
726 BaseClass, Super, IsVirtual));
727}
728
729inline Loc ProgramState::getLValue(const VarDecl *VD,
730 const LocationContext *LC) const {
731 return getStateManager().StoreMgr->getLValueVar(VD, LC);
732}
733
734inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
735 const LocationContext *LC) const {
736 return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
737}
738
739inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
740 return getStateManager().StoreMgr->getLValueIvar(D, Base);
741}
742
743inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
744 return getStateManager().StoreMgr->getLValueField(D, Base);
745}
746
747inline SVal ProgramState::getLValue(const IndirectFieldDecl *D,
748 SVal Base) const {
749 StoreManager &SM = *getStateManager().StoreMgr;
750 for (const auto *I : D->chain()) {
751 Base = SM.getLValueField(cast<FieldDecl>(I), Base);
752 }
753
754 return Base;
755}
756
757inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
758 if (Optional<NonLoc> N = Idx.getAs<NonLoc>())
759 return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
760 return UnknownVal();
761}
762
763inline SVal ProgramState::getSVal(const Stmt *Ex,
764 const LocationContext *LCtx) const{
765 return Env.getSVal(EnvironmentEntry(Ex, LCtx),
766 *getStateManager().svalBuilder);
767}
768
769inline SVal
770ProgramState::getSValAsScalarOrLoc(const Stmt *S,
771 const LocationContext *LCtx) const {
772 if (const Expr *Ex = dyn_cast<Expr>(S)) {
773 QualType T = Ex->getType();
774 if (Ex->isGLValue() || Loc::isLocType(T) ||
775 T->isIntegralOrEnumerationType())
776 return getSVal(S, LCtx);
777 }
778
779 return UnknownVal();
780}
781
782inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
783 return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
784}
785
786inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
787 return getStateManager().StoreMgr->getBinding(getStore(),
788 loc::MemRegionVal(R),
789 T);
790}
791
792inline BasicValueFactory &ProgramState::getBasicVals() const {
793 return getStateManager().getBasicVals();
794}
795
796inline SymbolManager &ProgramState::getSymbolManager() const {
797 return getStateManager().getSymbolManager();
798}
799
800template<typename T>
801ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
802 return getStateManager().add<T>(this, K, get_context<T>());
803}
804
805template <typename T>
806typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
807 return getStateManager().get_context<T>();
808}
809
810template<typename T>
811ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
812 return getStateManager().remove<T>(this, K, get_context<T>());
813}
814
815template<typename T>
816ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
817 typename ProgramStateTrait<T>::context_type C) const {
818 return getStateManager().remove<T>(this, K, C);
819}
820
821template <typename T>
822ProgramStateRef ProgramState::remove() const {
823 return getStateManager().remove<T>(this);
824}
825
826template<typename T>
827ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
828 return getStateManager().set<T>(this, D);
829}
830
831template<typename T>
832ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
833 typename ProgramStateTrait<T>::value_type E) const {
834 return getStateManager().set<T>(this, K, E, get_context<T>());
835}
836
837template<typename T>
838ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
839 typename ProgramStateTrait<T>::value_type E,
840 typename ProgramStateTrait<T>::context_type C) const {
841 return getStateManager().set<T>(this, K, E, C);
842}
843
844template <typename CB>
845CB ProgramState::scanReachableSymbols(SVal val) const {
846 CB cb(this);
847 scanReachableSymbols(val, cb);
848 return cb;
849}
850
851template <typename CB>
852CB ProgramState::scanReachableSymbols(
853 llvm::iterator_range<region_iterator> Reachable) const {
854 CB cb(this);
855 scanReachableSymbols(Reachable, cb);
856 return cb;
857}
858
859/// \class ScanReachableSymbols
860/// A utility class that visits the reachable symbols using a custom
861/// SymbolVisitor. Terminates recursive traversal when the visitor function
862/// returns false.
863class ScanReachableSymbols {
864 typedef llvm::DenseSet<const void*> VisitedItems;
865
866 VisitedItems visited;
867 ProgramStateRef state;
868 SymbolVisitor &visitor;
869public:
870 ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
871 : state(std::move(st)), visitor(v) {}
872
873 bool scan(nonloc::LazyCompoundVal val);
874 bool scan(nonloc::CompoundVal val);
875 bool scan(SVal val);
876 bool scan(const MemRegion *R);
877 bool scan(const SymExpr *sym);
878};
879
880} // end ento namespace
881
882} // end clang namespace
883
884#endif

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h

1//==- llvm/ADT/IntrusiveRefCntPtr.h - Smart Refcounting Pointer --*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the RefCountedBase, ThreadSafeRefCountedBase, and
11/// IntrusiveRefCntPtr classes.
12///
13/// IntrusiveRefCntPtr is a smart pointer to an object which maintains a
14/// reference count. (ThreadSafe)RefCountedBase is a mixin class that adds a
15/// refcount member variable and methods for updating the refcount. An object
16/// that inherits from (ThreadSafe)RefCountedBase deletes itself when its
17/// refcount hits zero.
18///
19/// For example:
20///
21/// ```
22/// class MyClass : public RefCountedBase<MyClass> {};
23///
24/// void foo() {
25/// // Constructing an IntrusiveRefCntPtr increases the pointee's refcount
26/// // by 1 (from 0 in this case).
27/// IntrusiveRefCntPtr<MyClass> Ptr1(new MyClass());
28///
29/// // Copying an IntrusiveRefCntPtr increases the pointee's refcount by 1.
30/// IntrusiveRefCntPtr<MyClass> Ptr2(Ptr1);
31///
32/// // Constructing an IntrusiveRefCntPtr has no effect on the object's
33/// // refcount. After a move, the moved-from pointer is null.
34/// IntrusiveRefCntPtr<MyClass> Ptr3(std::move(Ptr1));
35/// assert(Ptr1 == nullptr);
36///
37/// // Clearing an IntrusiveRefCntPtr decreases the pointee's refcount by 1.
38/// Ptr2.reset();
39///
40/// // The object deletes itself when we return from the function, because
41/// // Ptr3's destructor decrements its refcount to 0.
42/// }
43/// ```
44///
45/// You can use IntrusiveRefCntPtr with isa<T>(), dyn_cast<T>(), etc.:
46///
47/// ```
48/// IntrusiveRefCntPtr<MyClass> Ptr(new MyClass());
49/// OtherClass *Other = dyn_cast<OtherClass>(Ptr); // Ptr.get() not required
50/// ```
51///
52/// IntrusiveRefCntPtr works with any class that
53///
54/// - inherits from (ThreadSafe)RefCountedBase,
55/// - has Retain() and Release() methods, or
56/// - specializes IntrusiveRefCntPtrInfo.
57///
58//===----------------------------------------------------------------------===//
59
60#ifndef LLVM_ADT_INTRUSIVEREFCNTPTR_H
61#define LLVM_ADT_INTRUSIVEREFCNTPTR_H
62
63#include <atomic>
64#include <cassert>
65#include <cstddef>
66#include <memory>
67
68namespace llvm {
69
70/// A CRTP mixin class that adds reference counting to a type.
71///
72/// The lifetime of an object which inherits from RefCountedBase is managed by
73/// calls to Release() and Retain(), which increment and decrement the object's
74/// refcount, respectively. When a Release() call decrements the refcount to 0,
75/// the object deletes itself.
76template <class Derived> class RefCountedBase {
77 mutable unsigned RefCount = 0;
78
79protected:
80 RefCountedBase() = default;
81 RefCountedBase(const RefCountedBase &) {}
82 RefCountedBase &operator=(const RefCountedBase &) = delete;
83
84#ifndef NDEBUG
85 ~RefCountedBase() {
86 assert(RefCount == 0 &&(static_cast <bool> (RefCount == 0 && "Destruction occurred when there are still references to this."
) ? void (0) : __assert_fail ("RefCount == 0 && \"Destruction occurred when there are still references to this.\""
, "llvm/include/llvm/ADT/IntrusiveRefCntPtr.h", 87, __extension__
__PRETTY_FUNCTION__))
87 "Destruction occurred when there are still references to this.")(static_cast <bool> (RefCount == 0 && "Destruction occurred when there are still references to this."
) ? void (0) : __assert_fail ("RefCount == 0 && \"Destruction occurred when there are still references to this.\""
, "llvm/include/llvm/ADT/IntrusiveRefCntPtr.h", 87, __extension__
__PRETTY_FUNCTION__))
;
88 }
89#else
90 // Default the destructor in release builds, A trivial destructor may enable
91 // better codegen.
92 ~RefCountedBase() = default;
93#endif
94
95public:
96 void Retain() const { ++RefCount; }
97
98 void Release() const {
99 assert(RefCount > 0 && "Reference count is already zero.")(static_cast <bool> (RefCount > 0 && "Reference count is already zero."
) ? void (0) : __assert_fail ("RefCount > 0 && \"Reference count is already zero.\""
, "llvm/include/llvm/ADT/IntrusiveRefCntPtr.h", 99, __extension__
__PRETTY_FUNCTION__))
;
100 if (--RefCount == 0)
101 delete static_cast<const Derived *>(this);
102 }
103};
104
105/// A thread-safe version of \c RefCountedBase.
106template <class Derived> class ThreadSafeRefCountedBase {
107 mutable std::atomic<int> RefCount{0};
108
109protected:
110 ThreadSafeRefCountedBase() = default;
111 ThreadSafeRefCountedBase(const ThreadSafeRefCountedBase &) {}
112 ThreadSafeRefCountedBase &
113 operator=(const ThreadSafeRefCountedBase &) = delete;
114
115#ifndef NDEBUG
116 ~ThreadSafeRefCountedBase() {
117 assert(RefCount == 0 &&(static_cast <bool> (RefCount == 0 && "Destruction occurred when there are still references to this."
) ? void (0) : __assert_fail ("RefCount == 0 && \"Destruction occurred when there are still references to this.\""
, "llvm/include/llvm/ADT/IntrusiveRefCntPtr.h", 118, __extension__
__PRETTY_FUNCTION__))
118 "Destruction occurred when there are still references to this.")(static_cast <bool> (RefCount == 0 && "Destruction occurred when there are still references to this."
) ? void (0) : __assert_fail ("RefCount == 0 && \"Destruction occurred when there are still references to this.\""
, "llvm/include/llvm/ADT/IntrusiveRefCntPtr.h", 118, __extension__
__PRETTY_FUNCTION__))
;
119 }
120#else
121 // Default the destructor in release builds, A trivial destructor may enable
122 // better codegen.
123 ~ThreadSafeRefCountedBase() = default;
124#endif
125
126public:
127 void Retain() const { RefCount.fetch_add(1, std::memory_order_relaxed); }
128
129 void Release() const {
130 int NewRefCount = RefCount.fetch_sub(1, std::memory_order_acq_rel) - 1;
131 assert(NewRefCount >= 0 && "Reference count was already zero.")(static_cast <bool> (NewRefCount >= 0 && "Reference count was already zero."
) ? void (0) : __assert_fail ("NewRefCount >= 0 && \"Reference count was already zero.\""
, "llvm/include/llvm/ADT/IntrusiveRefCntPtr.h", 131, __extension__
__PRETTY_FUNCTION__))
;
132 if (NewRefCount == 0)
133 delete static_cast<const Derived *>(this);
134 }
135};
136
137/// Class you can specialize to provide custom retain/release functionality for
138/// a type.
139///
140/// Usually specializing this class is not necessary, as IntrusiveRefCntPtr
141/// works with any type which defines Retain() and Release() functions -- you
142/// can define those functions yourself if RefCountedBase doesn't work for you.
143///
144/// One case when you might want to specialize this type is if you have
145/// - Foo.h defines type Foo and includes Bar.h, and
146/// - Bar.h uses IntrusiveRefCntPtr<Foo> in inline functions.
147///
148/// Because Foo.h includes Bar.h, Bar.h can't include Foo.h in order to pull in
149/// the declaration of Foo. Without the declaration of Foo, normally Bar.h
150/// wouldn't be able to use IntrusiveRefCntPtr<Foo>, which wants to call
151/// T::Retain and T::Release.
152///
153/// To resolve this, Bar.h could include a third header, FooFwd.h, which
154/// forward-declares Foo and specializes IntrusiveRefCntPtrInfo<Foo>. Then
155/// Bar.h could use IntrusiveRefCntPtr<Foo>, although it still couldn't call any
156/// functions on Foo itself, because Foo would be an incomplete type.
157template <typename T> struct IntrusiveRefCntPtrInfo {
158 static void retain(T *obj) { obj->Retain(); }
159 static void release(T *obj) { obj->Release(); }
160};
161
162/// A smart pointer to a reference-counted object that inherits from
163/// RefCountedBase or ThreadSafeRefCountedBase.
164///
165/// This class increments its pointee's reference count when it is created, and
166/// decrements its refcount when it's destroyed (or is changed to point to a
167/// different object).
168template <typename T> class IntrusiveRefCntPtr {
169 T *Obj = nullptr;
170
171public:
172 using element_type = T;
173
174 explicit IntrusiveRefCntPtr() = default;
175 IntrusiveRefCntPtr(T *obj) : Obj(obj) { retain(); }
176 IntrusiveRefCntPtr(const IntrusiveRefCntPtr &S) : Obj(S.Obj) { retain(); }
177 IntrusiveRefCntPtr(IntrusiveRefCntPtr &&S) : Obj(S.Obj) { S.Obj = nullptr; }
178
179 template <class X,
180 std::enable_if_t<std::is_convertible<X *, T *>::value, bool> = true>
181 IntrusiveRefCntPtr(IntrusiveRefCntPtr<X> S) : Obj(S.get()) {
182 S.Obj = nullptr;
183 }
184
185 template <class X,
186 std::enable_if_t<std::is_convertible<X *, T *>::value, bool> = true>
187 IntrusiveRefCntPtr(std::unique_ptr<X> S) : Obj(S.release()) {
188 retain();
189 }
190
191 ~IntrusiveRefCntPtr() { release(); }
192
193 IntrusiveRefCntPtr &operator=(IntrusiveRefCntPtr S) {
194 swap(S);
20
Calling 'IntrusiveRefCntPtr::swap'
23
Returning from 'IntrusiveRefCntPtr::swap'
195 return *this;
196 }
197
198 T &operator*() const { return *Obj; }
199 T *operator->() const { return Obj; }
200 T *get() const { return Obj; }
201 explicit operator bool() const { return Obj; }
202
203 void swap(IntrusiveRefCntPtr &other) {
204 T *tmp = other.Obj;
21
'tmp' initialized here
205 other.Obj = Obj;
206 Obj = tmp;
22
The value of 'tmp' is assigned to 'state.Obj'
207 }
208
209 void reset() {
210 release();
211 Obj = nullptr;
212 }
213
214 void resetWithoutRelease() { Obj = nullptr; }
215
216private:
217 void retain() {
218 if (Obj)
219 IntrusiveRefCntPtrInfo<T>::retain(Obj);
220 }
221
222 void release() {
223 if (Obj)
224 IntrusiveRefCntPtrInfo<T>::release(Obj);
225 }
226
227 template <typename X> friend class IntrusiveRefCntPtr;
228};
229
230template <class T, class U>
231inline bool operator==(const IntrusiveRefCntPtr<T> &A,
232 const IntrusiveRefCntPtr<U> &B) {
233 return A.get() == B.get();
234}
235
236template <class T, class U>
237inline bool operator!=(const IntrusiveRefCntPtr<T> &A,
238 const IntrusiveRefCntPtr<U> &B) {
239 return A.get() != B.get();
240}
241
242template <class T, class U>
243inline bool operator==(const IntrusiveRefCntPtr<T> &A, U *B) {
244 return A.get() == B;
245}
246
247template <class T, class U>
248inline bool operator!=(const IntrusiveRefCntPtr<T> &A, U *B) {
249 return A.get() != B;
250}
251
252template <class T, class U>
253inline bool operator==(T *A, const IntrusiveRefCntPtr<U> &B) {
254 return A == B.get();
255}
256
257template <class T, class U>
258inline bool operator!=(T *A, const IntrusiveRefCntPtr<U> &B) {
259 return A != B.get();
260}
261
262template <class T>
263bool operator==(std::nullptr_t, const IntrusiveRefCntPtr<T> &B) {
264 return !B;
265}
266
267template <class T>
268bool operator==(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
269 return B == A;
270}
271
272template <class T>
273bool operator!=(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) {
274 return !(A == B);
275}
276
277template <class T>
278bool operator!=(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
279 return !(A == B);
280}
281
282// Make IntrusiveRefCntPtr work with dyn_cast, isa, and the other idioms from
283// Casting.h.
284template <typename From> struct simplify_type;
285
286template <class T> struct simplify_type<IntrusiveRefCntPtr<T>> {
287 using SimpleType = T *;
288
289 static SimpleType getSimplifiedValue(IntrusiveRefCntPtr<T> &Val) {
290 return Val.get();
291 }
292};
293
294template <class T> struct simplify_type<const IntrusiveRefCntPtr<T>> {
295 using SimpleType = /*const*/ T *;
296
297 static SimpleType getSimplifiedValue(const IntrusiveRefCntPtr<T> &Val) {
298 return Val.get();
299 }
300};
301
302/// Factory function for creating intrusive ref counted pointers.
303template <typename T, typename... Args>
304IntrusiveRefCntPtr<T> makeIntrusiveRefCnt(Args &&...A) {
305 return IntrusiveRefCntPtr<T>(new T(std::forward<Args>(A)...));
306}
307
308} // end namespace llvm
309
310#endif // LLVM_ADT_INTRUSIVEREFCNTPTR_H