Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CallEvent.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/StaticAnalyzer/Core -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/StaticAnalyzer/Core -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp

1//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file This file defines CallEvent and its subclasses, which represent path-
11/// sensitive instances of different kinds of function and method calls
12/// (C, C++, and Objective-C).
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/ParentMap.h"
26#include "clang/AST/Stmt.h"
27#include "clang/AST/Type.h"
28#include "clang/Analysis/AnalysisDeclContext.h"
29#include "clang/Analysis/CFG.h"
30#include "clang/Analysis/CFGStmtMap.h"
31#include "clang/Analysis/ProgramPoint.h"
32#include "clang/CrossTU/CrossTranslationUnit.h"
33#include "clang/Basic/IdentifierTable.h"
34#include "clang/Basic/LLVM.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/Specifiers.h"
38#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
39#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
41#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
42#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
46#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48#include "llvm/ADT/ArrayRef.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/None.h"
51#include "llvm/ADT/Optional.h"
52#include "llvm/ADT/PointerIntPair.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SmallVector.h"
55#include "llvm/ADT/StringExtras.h"
56#include "llvm/ADT/StringRef.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/Compiler.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include <cassert>
63#include <utility>
64
65#define DEBUG_TYPE"static-analyzer-call-event" "static-analyzer-call-event"
66
67using namespace clang;
68using namespace ento;
69
70QualType CallEvent::getResultType() const {
71 ASTContext &Ctx = getState()->getStateManager().getContext();
72 const Expr *E = getOriginExpr();
73 if (!E)
74 return Ctx.VoidTy;
75 assert(E)((E) ? static_cast<void> (0) : __assert_fail ("E", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 75, __PRETTY_FUNCTION__))
;
76
77 QualType ResultTy = E->getType();
78
79 // A function that returns a reference to 'int' will have a result type
80 // of simply 'int'. Check the origin expr's value kind to recover the
81 // proper type.
82 switch (E->getValueKind()) {
83 case VK_LValue:
84 ResultTy = Ctx.getLValueReferenceType(ResultTy);
85 break;
86 case VK_XValue:
87 ResultTy = Ctx.getRValueReferenceType(ResultTy);
88 break;
89 case VK_RValue:
90 // No adjustment is necessary.
91 break;
92 }
93
94 return ResultTy;
95}
96
97static bool isCallback(QualType T) {
98 // If a parameter is a block or a callback, assume it can modify pointer.
99 if (T->isBlockPointerType() ||
100 T->isFunctionPointerType() ||
101 T->isObjCSelType())
102 return true;
103
104 // Check if a callback is passed inside a struct (for both, struct passed by
105 // reference and by value). Dig just one level into the struct for now.
106
107 if (T->isAnyPointerType() || T->isReferenceType())
108 T = T->getPointeeType();
109
110 if (const RecordType *RT = T->getAsStructureType()) {
111 const RecordDecl *RD = RT->getDecl();
112 for (const auto *I : RD->fields()) {
113 QualType FieldT = I->getType();
114 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115 return true;
116 }
117 }
118 return false;
119}
120
121static bool isVoidPointerToNonConst(QualType T) {
122 if (const auto *PT = T->getAs<PointerType>()) {
123 QualType PointeeTy = PT->getPointeeType();
124 if (PointeeTy.isConstQualified())
125 return false;
126 return PointeeTy->isVoidType();
127 } else
128 return false;
129}
130
131bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132 unsigned NumOfArgs = getNumArgs();
133
134 // If calling using a function pointer, assume the function does not
135 // satisfy the callback.
136 // TODO: We could check the types of the arguments here.
137 if (!getDecl())
138 return false;
139
140 unsigned Idx = 0;
141 for (CallEvent::param_type_iterator I = param_type_begin(),
142 E = param_type_end();
143 I != E && Idx < NumOfArgs; ++I, ++Idx) {
144 // If the parameter is 0, it's harmless.
145 if (getArgSVal(Idx).isZeroConstant())
146 continue;
147
148 if (Condition(*I))
149 return true;
150 }
151 return false;
152}
153
154bool CallEvent::hasNonZeroCallbackArg() const {
155 return hasNonNullArgumentsWithType(isCallback);
156}
157
158bool CallEvent::hasVoidPointerToNonConstArg() const {
159 return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160}
161
162bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164 if (!FD)
165 return false;
166
167 return CheckerContext::isCLibraryFunction(FD, FunctionName);
168}
169
170AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171 const Decl *D = getDecl();
172 if (!D)
173 return nullptr;
174
175 // TODO: For now we skip functions without definitions, even if we have
176 // our own getDecl(), because it's hard to find out which re-declaration
177 // is going to be used, and usually clients don't really care about this
178 // situation because there's a loss of precision anyway because we cannot
179 // inline the call.
180 RuntimeDefinition RD = getRuntimeDefinition();
181 if (!RD.getDecl())
182 return nullptr;
183
184 AnalysisDeclContext *ADC =
185 LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186
187 // TODO: For now we skip virtual functions, because this also rises
188 // the problem of which decl to use, but now it's across different classes.
189 if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190 return nullptr;
191
192 return ADC;
193}
194
195const StackFrameContext *CallEvent::getCalleeStackFrame() const {
196 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
197 if (!ADC)
198 return nullptr;
199
200 const Expr *E = getOriginExpr();
201 if (!E)
202 return nullptr;
203
204 // Recover CFG block via reverse lookup.
205 // TODO: If we were to keep CFG element information as part of the CallEvent
206 // instead of doing this reverse lookup, we would be able to build the stack
207 // frame for non-expression-based calls, and also we wouldn't need the reverse
208 // lookup.
209 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
210 const CFGBlock *B = Map->getBlock(E);
211 assert(B)((B) ? static_cast<void> (0) : __assert_fail ("B", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 211, __PRETTY_FUNCTION__))
;
212
213 // Also recover CFG index by scanning the CFG block.
214 unsigned Idx = 0, Sz = B->size();
215 for (; Idx < Sz; ++Idx)
216 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
217 if (StmtElem->getStmt() == E)
218 break;
219 assert(Idx < Sz)((Idx < Sz) ? static_cast<void> (0) : __assert_fail (
"Idx < Sz", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 219, __PRETTY_FUNCTION__))
;
220
221 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
222}
223
224const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
225 const StackFrameContext *SFC = getCalleeStackFrame();
226 // We cannot construct a VarRegion without a stack frame.
227 if (!SFC)
228 return nullptr;
229
230 // Retrieve parameters of the definition, which are different from
231 // CallEvent's parameters() because getDecl() isn't necessarily
232 // the definition. SFC contains the definition that would be used
233 // during analysis.
234 const Decl *D = SFC->getDecl();
235
236 // TODO: Refactor into a virtual method of CallEvent, like parameters().
237 const ParmVarDecl *PVD = nullptr;
238 if (const auto *FD = dyn_cast<FunctionDecl>(D))
239 PVD = FD->parameters()[Index];
240 else if (const auto *BD = dyn_cast<BlockDecl>(D))
241 PVD = BD->parameters()[Index];
242 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
243 PVD = MD->parameters()[Index];
244 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
245 PVD = CD->parameters()[Index];
246 assert(PVD && "Unexpected Decl kind!")((PVD && "Unexpected Decl kind!") ? static_cast<void
> (0) : __assert_fail ("PVD && \"Unexpected Decl kind!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 246, __PRETTY_FUNCTION__))
;
247
248 const VarRegion *VR =
249 State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
250
251 // This sanity check would fail if our parameter declaration doesn't
252 // correspond to the stack frame's function declaration.
253 assert(VR->getStackFrame() == SFC)((VR->getStackFrame() == SFC) ? static_cast<void> (0
) : __assert_fail ("VR->getStackFrame() == SFC", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 253, __PRETTY_FUNCTION__))
;
254
255 return VR;
256}
257
258/// Returns true if a type is a pointer-to-const or reference-to-const
259/// with no further indirection.
260static bool isPointerToConst(QualType Ty) {
261 QualType PointeeTy = Ty->getPointeeType();
262 if (PointeeTy == QualType())
263 return false;
264 if (!PointeeTy.isConstQualified())
265 return false;
266 if (PointeeTy->isAnyPointerType())
267 return false;
268 return true;
269}
270
271// Try to retrieve the function declaration and find the function parameter
272// types which are pointers/references to a non-pointer const.
273// We will not invalidate the corresponding argument regions.
274static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
275 const CallEvent &Call) {
276 unsigned Idx = 0;
277 for (CallEvent::param_type_iterator I = Call.param_type_begin(),
278 E = Call.param_type_end();
279 I != E; ++I, ++Idx) {
280 if (isPointerToConst(*I))
281 PreserveArgs.insert(Idx);
282 }
283}
284
285ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
286 ProgramStateRef Orig) const {
287 ProgramStateRef Result = (Orig ? Orig : getState());
288
289 // Don't invalidate anything if the callee is marked pure/const.
290 if (const Decl *callee = getDecl())
291 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
292 return Result;
293
294 SmallVector<SVal, 8> ValuesToInvalidate;
295 RegionAndSymbolInvalidationTraits ETraits;
296
297 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
298
299 // Indexes of arguments whose values will be preserved by the call.
300 llvm::SmallSet<unsigned, 4> PreserveArgs;
301 if (!argumentsMayEscape())
302 findPtrToConstParams(PreserveArgs, *this);
303
304 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
305 // Mark this region for invalidation. We batch invalidate regions
306 // below for efficiency.
307 if (PreserveArgs.count(Idx))
308 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
309 ETraits.setTrait(MR->getBaseRegion(),
310 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
311 // TODO: Factor this out + handle the lower level const pointers.
312
313 ValuesToInvalidate.push_back(getArgSVal(Idx));
314
315 // If a function accepts an object by argument (which would of course be a
316 // temporary that isn't lifetime-extended), invalidate the object itself,
317 // not only other objects reachable from it. This is necessary because the
318 // destructor has access to the temporary object after the call.
319 // TODO: Support placement arguments once we start
320 // constructing them directly.
321 // TODO: This is unnecessary when there's no destructor, but that's
322 // currently hard to figure out.
323 if (getKind() != CE_CXXAllocator)
324 if (isArgumentConstructedDirectly(Idx))
325 if (auto AdjIdx = getAdjustedParameterIndex(Idx))
326 if (const VarRegion *VR = getParameterLocation(*AdjIdx))
327 ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
328 }
329
330 // Invalidate designated regions using the batch invalidation API.
331 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
332 // global variables.
333 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
334 BlockCount, getLocationContext(),
335 /*CausedByPointerEscape*/ true,
336 /*Symbols=*/nullptr, this, &ETraits);
337}
338
339ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
340 const ProgramPointTag *Tag) const {
341 if (const Expr *E = getOriginExpr()) {
342 if (IsPreVisit)
343 return PreStmt(E, getLocationContext(), Tag);
344 return PostStmt(E, getLocationContext(), Tag);
345 }
346
347 const Decl *D = getDecl();
348 assert(D && "Cannot get a program point without a statement or decl")((D && "Cannot get a program point without a statement or decl"
) ? static_cast<void> (0) : __assert_fail ("D && \"Cannot get a program point without a statement or decl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 348, __PRETTY_FUNCTION__))
;
349
350 SourceLocation Loc = getSourceRange().getBegin();
351 if (IsPreVisit)
352 return PreImplicitCall(D, Loc, getLocationContext(), Tag);
353 return PostImplicitCall(D, Loc, getLocationContext(), Tag);
354}
355
356bool CallEvent::isCalled(const CallDescription &CD) const {
357 // FIXME: Add ObjC Message support.
358 if (getKind() == CE_ObjCMessage)
359 return false;
360 if (!CD.IsLookupDone) {
361 CD.IsLookupDone = true;
362 CD.II = &getState()->getStateManager().getContext().Idents.get(
363 CD.getFunctionName());
364 }
365 const IdentifierInfo *II = getCalleeIdentifier();
366 if (!II || II != CD.II)
367 return false;
368
369 const Decl *D = getDecl();
370 // If CallDescription provides prefix names, use them to improve matching
371 // accuracy.
372 if (CD.QualifiedName.size() > 1 && D) {
373 const DeclContext *Ctx = D->getDeclContext();
374 // See if we'll be able to match them all.
375 size_t NumUnmatched = CD.QualifiedName.size() - 1;
376 for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
377 if (NumUnmatched == 0)
378 break;
379
380 if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
381 if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
382 --NumUnmatched;
383 continue;
384 }
385
386 if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
387 if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
388 --NumUnmatched;
389 continue;
390 }
391 }
392
393 if (NumUnmatched > 0)
394 return false;
395 }
396
397 return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
398 CD.RequiredArgs == getNumArgs());
399}
400
401SVal CallEvent::getArgSVal(unsigned Index) const {
402 const Expr *ArgE = getArgExpr(Index);
403 if (!ArgE)
404 return UnknownVal();
405 return getSVal(ArgE);
406}
407
408SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
409 const Expr *ArgE = getArgExpr(Index);
410 if (!ArgE)
411 return {};
412 return ArgE->getSourceRange();
413}
414
415SVal CallEvent::getReturnValue() const {
416 const Expr *E = getOriginExpr();
417 if (!E)
418 return UndefinedVal();
419 return getSVal(E);
420}
421
422LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void CallEvent::dump() const { dump(llvm::errs()); }
423
424void CallEvent::dump(raw_ostream &Out) const {
425 ASTContext &Ctx = getState()->getStateManager().getContext();
426 if (const Expr *E = getOriginExpr()) {
427 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
428 Out << "\n";
429 return;
430 }
431
432 if (const Decl *D = getDecl()) {
433 Out << "Call to ";
434 D->print(Out, Ctx.getPrintingPolicy());
435 return;
436 }
437
438 // FIXME: a string representation of the kind would be nice.
439 Out << "Unknown call (type " << getKind() << ")";
440}
441
442bool CallEvent::isCallStmt(const Stmt *S) {
443 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
444 || isa<CXXConstructExpr>(S)
445 || isa<CXXNewExpr>(S);
446}
447
448QualType CallEvent::getDeclaredResultType(const Decl *D) {
449 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 449, __PRETTY_FUNCTION__))
;
450 if (const auto *FD = dyn_cast<FunctionDecl>(D))
451 return FD->getReturnType();
452 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
453 return MD->getReturnType();
454 if (const auto *BD = dyn_cast<BlockDecl>(D)) {
455 // Blocks are difficult because the return type may not be stored in the
456 // BlockDecl itself. The AST should probably be enhanced, but for now we
457 // just do what we can.
458 // If the block is declared without an explicit argument list, the
459 // signature-as-written just includes the return type, not the entire
460 // function type.
461 // FIXME: All blocks should have signatures-as-written, even if the return
462 // type is inferred. (That's signified with a dependent result type.)
463 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
464 QualType Ty = TSI->getType();
465 if (const FunctionType *FT = Ty->getAs<FunctionType>())
466 Ty = FT->getReturnType();
467 if (!Ty->isDependentType())
468 return Ty;
469 }
470
471 return {};
472 }
473
474 llvm_unreachable("unknown callable kind")::llvm::llvm_unreachable_internal("unknown callable kind", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 474)
;
475}
476
477bool CallEvent::isVariadic(const Decl *D) {
478 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 478, __PRETTY_FUNCTION__))
;
479
480 if (const auto *FD = dyn_cast<FunctionDecl>(D))
481 return FD->isVariadic();
482 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
483 return MD->isVariadic();
484 if (const auto *BD = dyn_cast<BlockDecl>(D))
485 return BD->isVariadic();
486
487 llvm_unreachable("unknown callable kind")::llvm::llvm_unreachable_internal("unknown callable kind", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 487)
;
488}
489
490static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
491 CallEvent::BindingsTy &Bindings,
492 SValBuilder &SVB,
493 const CallEvent &Call,
494 ArrayRef<ParmVarDecl*> parameters) {
495 MemRegionManager &MRMgr = SVB.getRegionManager();
496
497 // If the function has fewer parameters than the call has arguments, we simply
498 // do not bind any values to them.
499 unsigned NumArgs = Call.getNumArgs();
500 unsigned Idx = 0;
501 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
502 for (; I != E && Idx < NumArgs; ++I, ++Idx) {
503 const ParmVarDecl *ParamDecl = *I;
504 assert(ParamDecl && "Formal parameter has no decl?")((ParamDecl && "Formal parameter has no decl?") ? static_cast
<void> (0) : __assert_fail ("ParamDecl && \"Formal parameter has no decl?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 504, __PRETTY_FUNCTION__))
;
505
506 // TODO: Support allocator calls.
507 if (Call.getKind() != CE_CXXAllocator)
508 if (Call.isArgumentConstructedDirectly(Idx))
509 continue;
510
511 // TODO: Allocators should receive the correct size and possibly alignment,
512 // determined in compile-time but not represented as arg-expressions,
513 // which makes getArgSVal() fail and return UnknownVal.
514 SVal ArgVal = Call.getArgSVal(Idx);
515 if (!ArgVal.isUnknown()) {
516 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
517 Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
518 }
519 }
520
521 // FIXME: Variadic arguments are not handled at all right now.
522}
523
524ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
525 const FunctionDecl *D = getDecl();
526 if (!D)
527 return None;
528 return D->parameters();
529}
530
531RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
532 const FunctionDecl *FD = getDecl();
533 if (!FD)
7
Assuming 'FD' is non-null
8
Taking false branch
534 return {};
535
536 // Note that the AnalysisDeclContext will have the FunctionDecl with
537 // the definition (if one exists).
538 AnalysisDeclContext *AD =
539 getLocationContext()->getAnalysisDeclContext()->
540 getManager()->getContext(FD);
541 bool IsAutosynthesized;
542 Stmt* Body = AD->getBody(IsAutosynthesized);
543 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("static-analyzer-call-event")) { { if (IsAutosynthesized) llvm
::dbgs() << "Using autosynthesized body for " << FD
->getName() << "\n"; }; } } while (false)
544 if (IsAutosynthesized)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("static-analyzer-call-event")) { { if (IsAutosynthesized) llvm
::dbgs() << "Using autosynthesized body for " << FD
->getName() << "\n"; }; } } while (false)
545 llvm::dbgs() << "Using autosynthesized body for " << FD->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("static-analyzer-call-event")) { { if (IsAutosynthesized) llvm
::dbgs() << "Using autosynthesized body for " << FD
->getName() << "\n"; }; } } while (false)
546 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("static-analyzer-call-event")) { { if (IsAutosynthesized) llvm
::dbgs() << "Using autosynthesized body for " << FD
->getName() << "\n"; }; } } while (false)
547 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("static-analyzer-call-event")) { { if (IsAutosynthesized) llvm
::dbgs() << "Using autosynthesized body for " << FD
->getName() << "\n"; }; } } while (false)
;
548 if (Body) {
9
Assuming 'Body' is null
10
Taking false branch
549 const Decl* Decl = AD->getDecl();
550 return RuntimeDefinition(Decl);
551 }
552
553 SubEngine *Engine = getState()->getStateManager().getOwningEngine();
554 AnalyzerOptions &Opts = Engine->getAnalysisManager().options;
555
556 // Try to get CTU definition only if CTUDir is provided.
557 if (!Opts.naiveCTUEnabled())
11
Assuming the condition is false
12
Taking false branch
558 return {};
559
560 cross_tu::CrossTranslationUnitContext &CTUCtx =
561 *Engine->getCrossTranslationUnitContext();
562 llvm::Expected<const FunctionDecl *> CTUDeclOrError =
563 CTUCtx.getCrossTUDefinition(FD, Opts.getCTUDir(), Opts.getCTUIndexName());
564
565 if (!CTUDeclOrError) {
13
Taking true branch
566 handleAllErrors(CTUDeclOrError.takeError(),
14
Calling 'handleAllErrors<(lambda at /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp:567:21)>'
567 [&](const cross_tu::IndexError &IE) {
568 CTUCtx.emitCrossTUDiagnostics(IE);
569 });
570 return {};
571 }
572
573 return RuntimeDefinition(*CTUDeclOrError);
574}
575
576void AnyFunctionCall::getInitialStackFrameContents(
577 const StackFrameContext *CalleeCtx,
578 BindingsTy &Bindings) const {
579 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
580 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
581 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
582 D->parameters());
583}
584
585bool AnyFunctionCall::argumentsMayEscape() const {
586 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
587 return true;
588
589 const FunctionDecl *D = getDecl();
590 if (!D)
591 return true;
592
593 const IdentifierInfo *II = D->getIdentifier();
594 if (!II)
595 return false;
596
597 // This set of "escaping" APIs is
598
599 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
600 // value into thread local storage. The value can later be retrieved with
601 // 'void *ptheread_getspecific(pthread_key)'. So even thought the
602 // parameter is 'const void *', the region escapes through the call.
603 if (II->isStr("pthread_setspecific"))
604 return true;
605
606 // - xpc_connection_set_context stores a value which can be retrieved later
607 // with xpc_connection_get_context.
608 if (II->isStr("xpc_connection_set_context"))
609 return true;
610
611 // - funopen - sets a buffer for future IO calls.
612 if (II->isStr("funopen"))
613 return true;
614
615 // - __cxa_demangle - can reallocate memory and can return the pointer to
616 // the input buffer.
617 if (II->isStr("__cxa_demangle"))
618 return true;
619
620 StringRef FName = II->getName();
621
622 // - CoreFoundation functions that end with "NoCopy" can free a passed-in
623 // buffer even if it is const.
624 if (FName.endswith("NoCopy"))
625 return true;
626
627 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
628 // be deallocated by NSMapRemove.
629 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
630 return true;
631
632 // - Many CF containers allow objects to escape through custom
633 // allocators/deallocators upon container construction. (PR12101)
634 if (FName.startswith("CF") || FName.startswith("CG")) {
635 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
636 StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
637 StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
638 StrInStrNoCase(FName, "WithData") != StringRef::npos ||
639 StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
640 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
641 }
642
643 return false;
644}
645
646const FunctionDecl *SimpleFunctionCall::getDecl() const {
647 const FunctionDecl *D = getOriginExpr()->getDirectCallee();
648 if (D)
649 return D;
650
651 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
652}
653
654const FunctionDecl *CXXInstanceCall::getDecl() const {
655 const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
656 if (!CE)
657 return AnyFunctionCall::getDecl();
658
659 const FunctionDecl *D = CE->getDirectCallee();
660 if (D)
661 return D;
662
663 return getSVal(CE->getCallee()).getAsFunctionDecl();
664}
665
666void CXXInstanceCall::getExtraInvalidatedValues(
667 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
668 SVal ThisVal = getCXXThisVal();
669 Values.push_back(ThisVal);
670
671 // Don't invalidate if the method is const and there are no mutable fields.
672 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
673 if (!D->isConst())
674 return;
675 // Get the record decl for the class of 'This'. D->getParent() may return a
676 // base class decl, rather than the class of the instance which needs to be
677 // checked for mutable fields.
678 // TODO: We might as well look at the dynamic type of the object.
679 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
680 QualType T = Ex->getType();
681 if (T->isPointerType()) // Arrow or implicit-this syntax?
682 T = T->getPointeeType();
683 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
684 assert(ParentRecord)((ParentRecord) ? static_cast<void> (0) : __assert_fail
("ParentRecord", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 684, __PRETTY_FUNCTION__))
;
685 if (ParentRecord->hasMutableFields())
686 return;
687 // Preserve CXXThis.
688 const MemRegion *ThisRegion = ThisVal.getAsRegion();
689 if (!ThisRegion)
690 return;
691
692 ETraits->setTrait(ThisRegion->getBaseRegion(),
693 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
694 }
695}
696
697SVal CXXInstanceCall::getCXXThisVal() const {
698 const Expr *Base = getCXXThisExpr();
699 // FIXME: This doesn't handle an overloaded ->* operator.
700 if (!Base)
701 return UnknownVal();
702
703 SVal ThisVal = getSVal(Base);
704 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>())((ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()) ?
static_cast<void> (0) : __assert_fail ("ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 704, __PRETTY_FUNCTION__))
;
705 return ThisVal;
706}
707
708RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
709 // Do we have a decl at all?
710 const Decl *D = getDecl();
711 if (!D)
3
Assuming 'D' is non-null
4
Taking false branch
712 return {};
713
714 // If the method is non-virtual, we know we can inline it.
715 const auto *MD = cast<CXXMethodDecl>(D);
716 if (!MD->isVirtual())
5
Taking true branch
717 return AnyFunctionCall::getRuntimeDefinition();
6
Calling 'AnyFunctionCall::getRuntimeDefinition'
718
719 // Do we know the implicit 'this' object being called?
720 const MemRegion *R = getCXXThisVal().getAsRegion();
721 if (!R)
722 return {};
723
724 // Do we know anything about the type of 'this'?
725 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
726 if (!DynType.isValid())
727 return {};
728
729 // Is the type a C++ class? (This is mostly a defensive check.)
730 QualType RegionType = DynType.getType()->getPointeeType();
731 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.")((!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."
) ? static_cast<void> (0) : __assert_fail ("!RegionType.isNull() && \"DynamicTypeInfo should always be a pointer.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 731, __PRETTY_FUNCTION__))
;
732
733 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
734 if (!RD || !RD->hasDefinition())
735 return {};
736
737 // Find the decl for this method in that class.
738 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
739 if (!Result) {
740 // We might not even get the original statically-resolved method due to
741 // some particularly nasty casting (e.g. casts to sister classes).
742 // However, we should at least be able to search up and down our own class
743 // hierarchy, and some real bugs have been caught by checking this.
744 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method")((!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDerivedFrom(MD->getParent()) && \"Couldn't find known method\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 744, __PRETTY_FUNCTION__))
;
745
746 // FIXME: This is checking that our DynamicTypeInfo is at least as good as
747 // the static type. However, because we currently don't update
748 // DynamicTypeInfo when an object is cast, we can't actually be sure the
749 // DynamicTypeInfo is up to date. This assert should be re-enabled once
750 // this is fixed. <rdar://problem/12287087>
751 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
752
753 return {};
754 }
755
756 // Does the decl that we found have an implementation?
757 const FunctionDecl *Definition;
758 if (!Result->hasBody(Definition))
759 return {};
760
761 // We found a definition. If we're not sure that this devirtualization is
762 // actually what will happen at runtime, make sure to provide the region so
763 // that ExprEngine can decide what to do with it.
764 if (DynType.canBeASubClass())
765 return RuntimeDefinition(Definition, R->StripCasts());
766 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
767}
768
769void CXXInstanceCall::getInitialStackFrameContents(
770 const StackFrameContext *CalleeCtx,
771 BindingsTy &Bindings) const {
772 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
773
774 // Handle the binding of 'this' in the new stack frame.
775 SVal ThisVal = getCXXThisVal();
776 if (!ThisVal.isUnknown()) {
777 ProgramStateManager &StateMgr = getState()->getStateManager();
778 SValBuilder &SVB = StateMgr.getSValBuilder();
779
780 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
781 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
782
783 // If we devirtualized to a different member function, we need to make sure
784 // we have the proper layering of CXXBaseObjectRegions.
785 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
786 ASTContext &Ctx = SVB.getContext();
787 const CXXRecordDecl *Class = MD->getParent();
788 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
789
790 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
791 bool Failed;
792 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
793 if (Failed) {
794 // We might have suffered some sort of placement new earlier, so
795 // we're constructing in a completely unexpected storage.
796 // Fall back to a generic pointer cast for this-value.
797 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
798 const CXXRecordDecl *StaticClass = StaticMD->getParent();
799 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
800 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
801 }
802 }
803
804 if (!ThisVal.isUnknown())
805 Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
806 }
807}
808
809const Expr *CXXMemberCall::getCXXThisExpr() const {
810 return getOriginExpr()->getImplicitObjectArgument();
811}
812
813RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
814 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
815 // id-expression in the class member access expression is a qualified-id,
816 // that function is called. Otherwise, its final overrider in the dynamic type
817 // of the object expression is called.
818 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
819 if (ME->hasQualifier())
820 return AnyFunctionCall::getRuntimeDefinition();
821
822 return CXXInstanceCall::getRuntimeDefinition();
823}
824
825const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
826 return getOriginExpr()->getArg(0);
827}
828
829const BlockDataRegion *BlockCall::getBlockRegion() const {
830 const Expr *Callee = getOriginExpr()->getCallee();
831 const MemRegion *DataReg = getSVal(Callee).getAsRegion();
832
833 return dyn_cast_or_null<BlockDataRegion>(DataReg);
834}
835
836ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
837 const BlockDecl *D = getDecl();
838 if (!D)
839 return nullptr;
840 return D->parameters();
841}
842
843void BlockCall::getExtraInvalidatedValues(ValueList &Values,
844 RegionAndSymbolInvalidationTraits *ETraits) const {
845 // FIXME: This also needs to invalidate captured globals.
846 if (const MemRegion *R = getBlockRegion())
847 Values.push_back(loc::MemRegionVal(R));
848}
849
850void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
851 BindingsTy &Bindings) const {
852 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
853 ArrayRef<ParmVarDecl*> Params;
854 if (isConversionFromLambda()) {
855 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
856 Params = LambdaOperatorDecl->parameters();
857
858 // For blocks converted from a C++ lambda, the callee declaration is the
859 // operator() method on the lambda so we bind "this" to
860 // the lambda captured by the block.
861 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
862 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
863 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
864 Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
865 } else {
866 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
867 }
868
869 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
870 Params);
871}
872
873SVal CXXConstructorCall::getCXXThisVal() const {
874 if (Data)
875 return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
876 return UnknownVal();
877}
878
879void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
880 RegionAndSymbolInvalidationTraits *ETraits) const {
881 if (Data) {
882 loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
883 if (SymbolRef Sym = MV.getAsSymbol(true))
884 ETraits->setTrait(Sym,
885 RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
886 Values.push_back(MV);
887 }
888}
889
890void CXXConstructorCall::getInitialStackFrameContents(
891 const StackFrameContext *CalleeCtx,
892 BindingsTy &Bindings) const {
893 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
894
895 SVal ThisVal = getCXXThisVal();
896 if (!ThisVal.isUnknown()) {
897 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
898 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
899 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
900 Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
901 }
902}
903
904SVal CXXDestructorCall::getCXXThisVal() const {
905 if (Data)
906 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
907 return UnknownVal();
908}
909
910RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
911 // Base destructors are always called non-virtually.
912 // Skip CXXInstanceCall's devirtualization logic in this case.
913 if (isBaseDestructor())
1
Taking false branch
914 return AnyFunctionCall::getRuntimeDefinition();
915
916 return CXXInstanceCall::getRuntimeDefinition();
2
Calling 'CXXInstanceCall::getRuntimeDefinition'
917}
918
919ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
920 const ObjCMethodDecl *D = getDecl();
921 if (!D)
922 return None;
923 return D->parameters();
924}
925
926void ObjCMethodCall::getExtraInvalidatedValues(
927 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
928
929 // If the method call is a setter for property known to be backed by
930 // an instance variable, don't invalidate the entire receiver, just
931 // the storage for that instance variable.
932 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
933 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
934 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
935 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
936 ETraits->setTrait(
937 IvarRegion,
938 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
939 ETraits->setTrait(
940 IvarRegion,
941 RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
942 Values.push_back(IvarLVal);
943 }
944 return;
945 }
946 }
947
948 Values.push_back(getReceiverSVal());
949}
950
951SVal ObjCMethodCall::getSelfSVal() const {
952 const LocationContext *LCtx = getLocationContext();
953 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
954 if (!SelfDecl)
955 return SVal();
956 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
957}
958
959SVal ObjCMethodCall::getReceiverSVal() const {
960 // FIXME: Is this the best way to handle class receivers?
961 if (!isInstanceMessage())
962 return UnknownVal();
963
964 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
965 return getSVal(RecE);
966
967 // An instance message with no expression means we are sending to super.
968 // In this case the object reference is the same as 'self'.
969 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance)((getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance
) ? static_cast<void> (0) : __assert_fail ("getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 969, __PRETTY_FUNCTION__))
;
970 SVal SelfVal = getSelfSVal();
971 assert(SelfVal.isValid() && "Calling super but not in ObjC method")((SelfVal.isValid() && "Calling super but not in ObjC method"
) ? static_cast<void> (0) : __assert_fail ("SelfVal.isValid() && \"Calling super but not in ObjC method\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 971, __PRETTY_FUNCTION__))
;
972 return SelfVal;
973}
974
975bool ObjCMethodCall::isReceiverSelfOrSuper() const {
976 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
977 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
978 return true;
979
980 if (!isInstanceMessage())
981 return false;
982
983 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
984
985 return (RecVal == getSelfSVal());
986}
987
988SourceRange ObjCMethodCall::getSourceRange() const {
989 switch (getMessageKind()) {
990 case OCM_Message:
991 return getOriginExpr()->getSourceRange();
992 case OCM_PropertyAccess:
993 case OCM_Subscript:
994 return getContainingPseudoObjectExpr()->getSourceRange();
995 }
996 llvm_unreachable("unknown message kind")::llvm::llvm_unreachable_internal("unknown message kind", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 996)
;
997}
998
999using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1000
1001const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1002 assert(Data && "Lazy lookup not yet performed.")((Data && "Lazy lookup not yet performed.") ? static_cast
<void> (0) : __assert_fail ("Data && \"Lazy lookup not yet performed.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1002, __PRETTY_FUNCTION__))
;
1003 assert(getMessageKind() != OCM_Message && "Explicit message send.")((getMessageKind() != OCM_Message && "Explicit message send."
) ? static_cast<void> (0) : __assert_fail ("getMessageKind() != OCM_Message && \"Explicit message send.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1003, __PRETTY_FUNCTION__))
;
1004 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1005}
1006
1007static const Expr *
1008getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1009 const Expr *Syntactic = POE->getSyntacticForm();
1010
1011 // This handles the funny case of assigning to the result of a getter.
1012 // This can happen if the getter returns a non-const reference.
1013 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1014 Syntactic = BO->getLHS();
1015
1016 return Syntactic;
1017}
1018
1019ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1020 if (!Data) {
1021 // Find the parent, ignoring implicit casts.
1022 ParentMap &PM = getLocationContext()->getParentMap();
1023 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1024
1025 // Check if parent is a PseudoObjectExpr.
1026 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1027 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1028
1029 ObjCMessageKind K;
1030 switch (Syntactic->getStmtClass()) {
1031 case Stmt::ObjCPropertyRefExprClass:
1032 K = OCM_PropertyAccess;
1033 break;
1034 case Stmt::ObjCSubscriptRefExprClass:
1035 K = OCM_Subscript;
1036 break;
1037 default:
1038 // FIXME: Can this ever happen?
1039 K = OCM_Message;
1040 break;
1041 }
1042
1043 if (K != OCM_Message) {
1044 const_cast<ObjCMethodCall *>(this)->Data
1045 = ObjCMessageDataTy(POE, K).getOpaqueValue();
1046 assert(getMessageKind() == K)((getMessageKind() == K) ? static_cast<void> (0) : __assert_fail
("getMessageKind() == K", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1046, __PRETTY_FUNCTION__))
;
1047 return K;
1048 }
1049 }
1050
1051 const_cast<ObjCMethodCall *>(this)->Data
1052 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1053 assert(getMessageKind() == OCM_Message)((getMessageKind() == OCM_Message) ? static_cast<void> (
0) : __assert_fail ("getMessageKind() == OCM_Message", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1053, __PRETTY_FUNCTION__))
;
1054 return OCM_Message;
1055 }
1056
1057 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1058 if (!Info.getPointer())
1059 return OCM_Message;
1060 return static_cast<ObjCMessageKind>(Info.getInt());
1061}
1062
1063const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1064 // Look for properties accessed with property syntax (foo.bar = ...)
1065 if ( getMessageKind() == OCM_PropertyAccess) {
1066 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1067 assert(POE && "Property access without PseudoObjectExpr?")((POE && "Property access without PseudoObjectExpr?")
? static_cast<void> (0) : __assert_fail ("POE && \"Property access without PseudoObjectExpr?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1067, __PRETTY_FUNCTION__))
;
1068
1069 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1070 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1071
1072 if (RefExpr->isExplicitProperty())
1073 return RefExpr->getExplicitProperty();
1074 }
1075
1076 // Look for properties accessed with method syntax ([foo setBar:...]).
1077 const ObjCMethodDecl *MD = getDecl();
1078 if (!MD || !MD->isPropertyAccessor())
1079 return nullptr;
1080
1081 // Note: This is potentially quite slow.
1082 return MD->findPropertyDecl();
1083}
1084
1085bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1086 Selector Sel) const {
1087 assert(IDecl)((IDecl) ? static_cast<void> (0) : __assert_fail ("IDecl"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1087, __PRETTY_FUNCTION__))
;
1088 AnalysisManager &AMgr =
1089 getState()->getStateManager().getOwningEngine()->getAnalysisManager();
1090 // If the class interface is declared inside the main file, assume it is not
1091 // subcassed.
1092 // TODO: It could actually be subclassed if the subclass is private as well.
1093 // This is probably very rare.
1094 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1095 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1096 return false;
1097
1098 // Assume that property accessors are not overridden.
1099 if (getMessageKind() == OCM_PropertyAccess)
1100 return false;
1101
1102 // We assume that if the method is public (declared outside of main file) or
1103 // has a parent which publicly declares the method, the method could be
1104 // overridden in a subclass.
1105
1106 // Find the first declaration in the class hierarchy that declares
1107 // the selector.
1108 ObjCMethodDecl *D = nullptr;
1109 while (true) {
1110 D = IDecl->lookupMethod(Sel, true);
1111
1112 // Cannot find a public definition.
1113 if (!D)
1114 return false;
1115
1116 // If outside the main file,
1117 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1118 return true;
1119
1120 if (D->isOverriding()) {
1121 // Search in the superclass on the next iteration.
1122 IDecl = D->getClassInterface();
1123 if (!IDecl)
1124 return false;
1125
1126 IDecl = IDecl->getSuperClass();
1127 if (!IDecl)
1128 return false;
1129
1130 continue;
1131 }
1132
1133 return false;
1134 };
1135
1136 llvm_unreachable("The while loop should always terminate.")::llvm::llvm_unreachable_internal("The while loop should always terminate."
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1136)
;
1137}
1138
1139static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1140 if (!MD)
1141 return MD;
1142
1143 // Find the redeclaration that defines the method.
1144 if (!MD->hasBody()) {
1145 for (auto I : MD->redecls())
1146 if (I->hasBody())
1147 MD = cast<ObjCMethodDecl>(I);
1148 }
1149 return MD;
1150}
1151
1152static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1153 const Expr* InstRec = ME->getInstanceReceiver();
1154 if (!InstRec)
1155 return false;
1156 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1157
1158 // Check that receiver is called 'self'.
1159 if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1160 !InstRecIg->getFoundDecl()->getName().equals("self"))
1161 return false;
1162
1163 // Check that the method name is 'class'.
1164 if (ME->getSelector().getNumArgs() != 0 ||
1165 !ME->getSelector().getNameForSlot(0).equals("class"))
1166 return false;
1167
1168 return true;
1169}
1170
1171RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1172 const ObjCMessageExpr *E = getOriginExpr();
1173 assert(E)((E) ? static_cast<void> (0) : __assert_fail ("E", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1173, __PRETTY_FUNCTION__))
;
1174 Selector Sel = E->getSelector();
1175
1176 if (E->isInstanceMessage()) {
1177 // Find the receiver type.
1178 const ObjCObjectPointerType *ReceiverT = nullptr;
1179 bool CanBeSubClassed = false;
1180 QualType SupersType = E->getSuperType();
1181 const MemRegion *Receiver = nullptr;
1182
1183 if (!SupersType.isNull()) {
1184 // The receiver is guaranteed to be 'super' in this case.
1185 // Super always means the type of immediate predecessor to the method
1186 // where the call occurs.
1187 ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1188 } else {
1189 Receiver = getReceiverSVal().getAsRegion();
1190 if (!Receiver)
1191 return {};
1192
1193 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1194 if (!DTI.isValid()) {
1195 assert(isa<AllocaRegion>(Receiver) &&((isa<AllocaRegion>(Receiver) && "Unhandled untyped region class!"
) ? static_cast<void> (0) : __assert_fail ("isa<AllocaRegion>(Receiver) && \"Unhandled untyped region class!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1196, __PRETTY_FUNCTION__))
1196 "Unhandled untyped region class!")((isa<AllocaRegion>(Receiver) && "Unhandled untyped region class!"
) ? static_cast<void> (0) : __assert_fail ("isa<AllocaRegion>(Receiver) && \"Unhandled untyped region class!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1196, __PRETTY_FUNCTION__))
;
1197 return {};
1198 }
1199
1200 QualType DynType = DTI.getType();
1201 CanBeSubClassed = DTI.canBeASubClass();
1202 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1203
1204 if (ReceiverT && CanBeSubClassed)
1205 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1206 if (!canBeOverridenInSubclass(IDecl, Sel))
1207 CanBeSubClassed = false;
1208 }
1209
1210 // Handle special cases of '[self classMethod]' and
1211 // '[[self class] classMethod]', which are treated by the compiler as
1212 // instance (not class) messages. We will statically dispatch to those.
1213 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1214 // For [self classMethod], return the compiler visible declaration.
1215 if (PT->getObjectType()->isObjCClass() &&
1216 Receiver == getSelfSVal().getAsRegion())
1217 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1218
1219 // Similarly, handle [[self class] classMethod].
1220 // TODO: We are currently doing a syntactic match for this pattern with is
1221 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1222 // shows. A better way would be to associate the meta type with the symbol
1223 // using the dynamic type info tracking and use it here. We can add a new
1224 // SVal for ObjC 'Class' values that know what interface declaration they
1225 // come from. Then 'self' in a class method would be filled in with
1226 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1227 // do proper dynamic dispatch for class methods just like we do for
1228 // instance methods now.
1229 if (E->getInstanceReceiver())
1230 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1231 if (isCallToSelfClass(M))
1232 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1233 }
1234
1235 // Lookup the instance method implementation.
1236 if (ReceiverT)
1237 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1238 // Repeatedly calling lookupPrivateMethod() is expensive, especially
1239 // when in many cases it returns null. We cache the results so
1240 // that repeated queries on the same ObjCIntefaceDecl and Selector
1241 // don't incur the same cost. On some test cases, we can see the
1242 // same query being issued thousands of times.
1243 //
1244 // NOTE: This cache is essentially a "global" variable, but it
1245 // only gets lazily created when we get here. The value of the
1246 // cache probably comes from it being global across ExprEngines,
1247 // where the same queries may get issued. If we are worried about
1248 // concurrency, or possibly loading/unloading ASTs, etc., we may
1249 // need to revisit this someday. In terms of memory, this table
1250 // stays around until clang quits, which also may be bad if we
1251 // need to release memory.
1252 using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1253 using PrivateMethodCache =
1254 llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1255
1256 static PrivateMethodCache PMC;
1257 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1258
1259 // Query lookupPrivateMethod() if the cache does not hit.
1260 if (!Val.hasValue()) {
1261 Val = IDecl->lookupPrivateMethod(Sel);
1262
1263 // If the method is a property accessor, we should try to "inline" it
1264 // even if we don't actually have an implementation.
1265 if (!*Val)
1266 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1267 if (CompileTimeMD->isPropertyAccessor()) {
1268 if (!CompileTimeMD->getSelfDecl() &&
1269 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1270 // If the method is an accessor in a category, and it doesn't
1271 // have a self declaration, first
1272 // try to find the method in a class extension. This
1273 // works around a bug in Sema where multiple accessors
1274 // are synthesized for properties in class
1275 // extensions that are redeclared in a category and the
1276 // the implicit parameters are not filled in for
1277 // the method on the category.
1278 // This ensures we find the accessor in the extension, which
1279 // has the implicit parameters filled in.
1280 auto *ID = CompileTimeMD->getClassInterface();
1281 for (auto *CatDecl : ID->visible_extensions()) {
1282 Val = CatDecl->getMethod(Sel,
1283 CompileTimeMD->isInstanceMethod());
1284 if (*Val)
1285 break;
1286 }
1287 }
1288 if (!*Val)
1289 Val = IDecl->lookupInstanceMethod(Sel);
1290 }
1291 }
1292
1293 const ObjCMethodDecl *MD = Val.getValue();
1294 if (CanBeSubClassed)
1295 return RuntimeDefinition(MD, Receiver);
1296 else
1297 return RuntimeDefinition(MD, nullptr);
1298 }
1299 } else {
1300 // This is a class method.
1301 // If we have type info for the receiver class, we are calling via
1302 // class name.
1303 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1304 // Find/Return the method implementation.
1305 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1306 }
1307 }
1308
1309 return {};
1310}
1311
1312bool ObjCMethodCall::argumentsMayEscape() const {
1313 if (isInSystemHeader() && !isInstanceMessage()) {
1314 Selector Sel = getSelector();
1315 if (Sel.getNumArgs() == 1 &&
1316 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1317 return true;
1318 }
1319
1320 return CallEvent::argumentsMayEscape();
1321}
1322
1323void ObjCMethodCall::getInitialStackFrameContents(
1324 const StackFrameContext *CalleeCtx,
1325 BindingsTy &Bindings) const {
1326 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1327 SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1328 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1329 D->parameters());
1330
1331 SVal SelfVal = getReceiverSVal();
1332 if (!SelfVal.isUnknown()) {
1333 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1334 MemRegionManager &MRMgr = SVB.getRegionManager();
1335 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1336 Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1337 }
1338}
1339
1340CallEventRef<>
1341CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1342 const LocationContext *LCtx) {
1343 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1344 return create<CXXMemberCall>(MCE, State, LCtx);
1345
1346 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1347 const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1348 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1349 if (MD->isInstance())
1350 return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1351
1352 } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1353 return create<BlockCall>(CE, State, LCtx);
1354 }
1355
1356 // Otherwise, it's a normal function call, static member function call, or
1357 // something we can't reason about.
1358 return create<SimpleFunctionCall>(CE, State, LCtx);
1359}
1360
1361CallEventRef<>
1362CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1363 ProgramStateRef State) {
1364 const LocationContext *ParentCtx = CalleeCtx->getParent();
1365 const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1366 assert(CallerCtx && "This should not be used for top-level stack frames")((CallerCtx && "This should not be used for top-level stack frames"
) ? static_cast<void> (0) : __assert_fail ("CallerCtx && \"This should not be used for top-level stack frames\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1366, __PRETTY_FUNCTION__))
;
1367
1368 const Stmt *CallSite = CalleeCtx->getCallSite();
1369
1370 if (CallSite) {
1371 if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1372 return getSimpleCall(CE, State, CallerCtx);
1373
1374 switch (CallSite->getStmtClass()) {
1375 case Stmt::CXXConstructExprClass:
1376 case Stmt::CXXTemporaryObjectExprClass: {
1377 SValBuilder &SVB = State->getStateManager().getSValBuilder();
1378 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1379 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1380 SVal ThisVal = State->getSVal(ThisPtr);
1381
1382 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1383 ThisVal.getAsRegion(), State, CallerCtx);
1384 }
1385 case Stmt::CXXNewExprClass:
1386 return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1387 case Stmt::ObjCMessageExprClass:
1388 return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1389 State, CallerCtx);
1390 default:
1391 llvm_unreachable("This is not an inlineable statement.")::llvm::llvm_unreachable_internal("This is not an inlineable statement."
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1391)
;
1392 }
1393 }
1394
1395 // Fall back to the CFG. The only thing we haven't handled yet is
1396 // destructors, though this could change in the future.
1397 const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1398 CFGElement E = (*B)[CalleeCtx->getIndex()];
1399 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&(((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor
>()) && "All other CFG elements should have exprs"
) ? static_cast<void> (0) : __assert_fail ("(E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && \"All other CFG elements should have exprs\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1400, __PRETTY_FUNCTION__))
1400 "All other CFG elements should have exprs")(((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor
>()) && "All other CFG elements should have exprs"
) ? static_cast<void> (0) : __assert_fail ("(E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && \"All other CFG elements should have exprs\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp"
, 1400, __PRETTY_FUNCTION__))
;
1401
1402 SValBuilder &SVB = State->getStateManager().getSValBuilder();
1403 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1404 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1405 SVal ThisVal = State->getSVal(ThisPtr);
1406
1407 const Stmt *Trigger;
1408 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1409 Trigger = AutoDtor->getTriggerStmt();
1410 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1411 Trigger = DeleteDtor->getDeleteExpr();
1412 else
1413 Trigger = Dtor->getBody();
1414
1415 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1416 E.getAs<CFGBaseDtor>().hasValue(), State,
1417 CallerCtx);
1418}

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
28
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
20
Taking false branch
394 return E2;
395 if (!E2)
21
Taking false branch
396 return E1;
397 if (E1.isA<ErrorList>()) {
22
Assuming the condition is false
23
Taking false branch
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
24
Assuming the condition is false
25
Taking false branch
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
27
Calling constructor for 'Error'
415 new ErrorList(E1.takePayload(), E2.takePayload())));
26
Memory is allocated
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
16
Taking false branch
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
17
Assuming the condition is true
18
Taking true branch
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
19
Calling 'ErrorList::join'
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
15
Calling 'handleErrors<(lambda at /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/StaticAnalyzer/Core/CallEvent.cpp:567:21)>'
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This is useful in the base level of your program to allow clean termination
957/// (allowing clean deallocation of resources, etc.), while reporting error
958/// information to the user.
959void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner);
960
961/// Write all error messages (if any) in E to a string. The newline character
962/// is used to separate error messages.
963inline std::string toString(Error E) {
964 SmallVector<std::string, 2> Errors;
965 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
966 Errors.push_back(EI.message());
967 });
968 return join(Errors.begin(), Errors.end(), "\n");
969}
970
971/// Consume a Error without doing anything. This method should be used
972/// only where an error can be considered a reasonable and expected return
973/// value.
974///
975/// Uses of this method are potentially indicative of design problems: If it's
976/// legitimate to do nothing while processing an "error", the error-producer
977/// might be more clearly refactored to return an Optional<T>.
978inline void consumeError(Error Err) {
979 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
980}
981
982/// Helper for converting an Error to a bool.
983///
984/// This method returns true if Err is in an error state, or false if it is
985/// in a success state. Puts Err in a checked state in both cases (unlike
986/// Error::operator bool(), which only does this for success states).
987inline bool errorToBool(Error Err) {
988 bool IsError = static_cast<bool>(Err);
989 if (IsError)
990 consumeError(std::move(Err));
991 return IsError;
992}
993
994/// Helper for Errors used as out-parameters.
995///
996/// This helper is for use with the Error-as-out-parameter idiom, where an error
997/// is passed to a function or method by reference, rather than being returned.
998/// In such cases it is helpful to set the checked bit on entry to the function
999/// so that the error can be written to (unchecked Errors abort on assignment)
1000/// and clear the checked bit on exit so that clients cannot accidentally forget
1001/// to check the result. This helper performs these actions automatically using
1002/// RAII:
1003///
1004/// @code{.cpp}
1005/// Result foo(Error &Err) {
1006/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1007/// // <body of foo>
1008/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1009/// }
1010/// @endcode
1011///
1012/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1013/// used with optional Errors (Error pointers that are allowed to be null). If
1014/// ErrorAsOutParameter took an Error reference, an instance would have to be
1015/// created inside every condition that verified that Error was non-null. By
1016/// taking an Error pointer we can just create one instance at the top of the
1017/// function.
1018class ErrorAsOutParameter {
1019public:
1020 ErrorAsOutParameter(Error *Err) : Err(Err) {
1021 // Raise the checked bit if Err is success.
1022 if (Err)
1023 (void)!!*Err;
1024 }
1025
1026 ~ErrorAsOutParameter() {
1027 // Clear the checked bit.
1028 if (Err && !*Err)
1029 *Err = Error::success();
1030 }
1031
1032private:
1033 Error *Err;
1034};
1035
1036/// Helper for Expected<T>s used as out-parameters.
1037///
1038/// See ErrorAsOutParameter.
1039template <typename T>
1040class ExpectedAsOutParameter {
1041public:
1042 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1043 : ValOrErr(ValOrErr) {
1044 if (ValOrErr)
1045 (void)!!*ValOrErr;
1046 }
1047
1048 ~ExpectedAsOutParameter() {
1049 if (ValOrErr)
1050 ValOrErr->setUnchecked();
1051 }
1052
1053private:
1054 Expected<T> *ValOrErr;
1055};
1056
1057/// This class wraps a std::error_code in a Error.
1058///
1059/// This is useful if you're writing an interface that returns a Error
1060/// (or Expected) and you want to call code that still returns
1061/// std::error_codes.
1062class ECError : public ErrorInfo<ECError> {
1063 friend Error errorCodeToError(std::error_code);
1064
1065public:
1066 void setErrorCode(std::error_code EC) { this->EC = EC; }
1067 std::error_code convertToErrorCode() const override { return EC; }
1068 void log(raw_ostream &OS) const override { OS << EC.message(); }
1069
1070 // Used by ErrorInfo::classID.
1071 static char ID;
1072
1073protected:
1074 ECError() = default;
1075 ECError(std::error_code EC) : EC(EC) {}
1076
1077 std::error_code EC;
1078};
1079
1080/// The value returned by this function can be returned from convertToErrorCode
1081/// for Error values where no sensible translation to std::error_code exists.
1082/// It should only be used in this situation, and should never be used where a
1083/// sensible conversion to std::error_code is available, as attempts to convert
1084/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1085///error to try to convert such a value).
1086std::error_code inconvertibleErrorCode();
1087
1088/// Helper for converting an std::error_code to a Error.
1089Error errorCodeToError(std::error_code EC);
1090
1091/// Helper for converting an ECError to a std::error_code.
1092///
1093/// This method requires that Err be Error() or an ECError, otherwise it
1094/// will trigger a call to abort().
1095std::error_code errorToErrorCode(Error Err);
1096
1097/// Convert an ErrorOr<T> to an Expected<T>.
1098template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1099 if (auto EC = EO.getError())
1100 return errorCodeToError(EC);
1101 return std::move(*EO);
1102}
1103
1104/// Convert an Expected<T> to an ErrorOr<T>.
1105template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1106 if (auto Err = E.takeError())
1107 return errorToErrorCode(std::move(Err));
1108 return std::move(*E);
1109}
1110
1111/// This class wraps a string in an Error.
1112///
1113/// StringError is useful in cases where the client is not expected to be able
1114/// to consume the specific error message programmatically (for example, if the
1115/// error message is to be presented to the user).
1116///
1117/// StringError can also be used when additional information is to be printed
1118/// along with a error_code message. Depending on the constructor called, this
1119/// class can either display:
1120/// 1. the error_code message (ECError behavior)
1121/// 2. a string
1122/// 3. the error_code message and a string
1123///
1124/// These behaviors are useful when subtyping is required; for example, when a
1125/// specific library needs an explicit error type. In the example below,
1126/// PDBError is derived from StringError:
1127///
1128/// @code{.cpp}
1129/// Expected<int> foo() {
1130/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1131/// "Additional information");
1132/// }
1133/// @endcode
1134///
1135class StringError : public ErrorInfo<StringError> {
1136public:
1137 static char ID;
1138
1139 // Prints EC + S and converts to EC
1140 StringError(std::error_code EC, const Twine &S = Twine());
1141
1142 // Prints S and converts to EC
1143 StringError(const Twine &S, std::error_code EC);
1144
1145 void log(raw_ostream &OS) const override;
1146 std::error_code convertToErrorCode() const override;
1147
1148 const std::string &getMessage() const { return Msg; }
1149
1150private:
1151 std::string Msg;
1152 std::error_code EC;
1153 const bool PrintMsgOnly = false;
1154};
1155
1156/// Create formatted StringError object.
1157template <typename... Ts>
1158Error createStringError(std::error_code EC, char const *Fmt,
1159 const Ts &... Vals) {
1160 std::string Buffer;
1161 raw_string_ostream Stream(Buffer);
1162 Stream << format(Fmt, Vals...);
1163 return make_error<StringError>(Stream.str(), EC);
1164}
1165
1166Error createStringError(std::error_code EC, char const *Msg);
1167
1168/// This class wraps a filename and another Error.
1169///
1170/// In some cases, an error needs to live along a 'source' name, in order to
1171/// show more detailed information to the user.
1172class FileError final : public ErrorInfo<FileError> {
1173
1174 friend Error createFileError(std::string, Error);
1175
1176public:
1177 void log(raw_ostream &OS) const override {
1178 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1178, __PRETTY_FUNCTION__))
;
1179 OS << "'" << FileName << "': ";
1180 Err->log(OS);
1181 }
1182
1183 Error takeError() { return Error(std::move(Err)); }
1184
1185 std::error_code convertToErrorCode() const override;
1186
1187 // Used by ErrorInfo::classID.
1188 static char ID;
1189
1190private:
1191 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1192 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1192, __PRETTY_FUNCTION__))
;
1193 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
1194 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
;
1195 FileName = F;
1196 Err = std::move(E);
1197 }
1198
1199 static Error build(std::string F, Error E) {
1200 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1201 }
1202
1203 std::string FileName;
1204 std::unique_ptr<ErrorInfoBase> Err;
1205};
1206
1207/// Concatenate a source file path and/or name with an Error. The resulting
1208/// Error is unchecked.
1209inline Error createFileError(std::string F, Error E) {
1210 return FileError::build(F, std::move(E));
1211}
1212
1213Error createFileError(std::string F, ErrorSuccess) = delete;
1214
1215/// Helper for check-and-exit error handling.
1216///
1217/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1218///
1219class ExitOnError {
1220public:
1221 /// Create an error on exit helper.
1222 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1223 : Banner(std::move(Banner)),
1224 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1225
1226 /// Set the banner string for any errors caught by operator().
1227 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1228
1229 /// Set the exit-code mapper function.
1230 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1231 this->GetExitCode = std::move(GetExitCode);
1232 }
1233
1234 /// Check Err. If it's in a failure state log the error(s) and exit.
1235 void operator()(Error Err) const { checkError(std::move(Err)); }
1236
1237 /// Check E. If it's in a success state then return the contained value. If
1238 /// it's in a failure state log the error(s) and exit.
1239 template <typename T> T operator()(Expected<T> &&E) const {
1240 checkError(E.takeError());
1241 return std::move(*E);
1242 }
1243
1244 /// Check E. If it's in a success state then return the contained reference. If
1245 /// it's in a failure state log the error(s) and exit.
1246 template <typename T> T& operator()(Expected<T&> &&E) const {
1247 checkError(E.takeError());
1248 return *E;
1249 }
1250
1251private:
1252 void checkError(Error Err) const {
1253 if (Err) {
1254 int ExitCode = GetExitCode(Err);
1255 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1256 exit(ExitCode);
1257 }
1258 }
1259
1260 std::string Banner;
1261 std::function<int(const Error &)> GetExitCode;
1262};
1263
1264/// Conversion from Error to LLVMErrorRef for C error bindings.
1265inline LLVMErrorRef wrap(Error Err) {
1266 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1267}
1268
1269/// Conversion from LLVMErrorRef to Error for C error bindings.
1270inline Error unwrap(LLVMErrorRef ErrRef) {
1271 return Error(std::unique_ptr<ErrorInfoBase>(
1272 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1273}
1274
1275} // end namespace llvm
1276
1277#endif // LLVM_SUPPORT_ERROR_H