Bug Summary

File:clang/lib/Analysis/CalledOnceCheck.cpp
Warning:line 932, column 26
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CalledOnceCheck.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/build-llvm/tools/clang/lib/Analysis -I /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis -I /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include -I /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/build-llvm/tools/clang/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-26-035717-31997-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp

/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp

1//===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/Analysis/Analyses/CalledOnceCheck.h"
10#include "clang/AST/Attr.h"
11#include "clang/AST/Decl.h"
12#include "clang/AST/DeclBase.h"
13#include "clang/AST/Expr.h"
14#include "clang/AST/ExprObjC.h"
15#include "clang/AST/OperationKinds.h"
16#include "clang/AST/ParentMap.h"
17#include "clang/AST/RecursiveASTVisitor.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/AST/Type.h"
22#include "clang/Analysis/AnalysisDeclContext.h"
23#include "clang/Analysis/CFG.h"
24#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
25#include "clang/Basic/IdentifierTable.h"
26#include "clang/Basic/LLVM.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/BitmaskEnum.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/Sequence.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ErrorHandling.h"
38#include <memory>
39
40using namespace clang;
41
42namespace {
43static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
44template <class T>
45using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
46static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
47template <class T>
48using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
49constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
50 "completionHandler", "completion", "withCompletionHandler"};
51constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
52 "WithCompletionHandler", "WithCompletion"};
53constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
54 "error", "cancel", "shouldCall", "done", "OK", "success"};
55
56class ParameterStatus {
57public:
58 // Status kind is basically the main part of parameter's status.
59 // The kind represents our knowledge (so far) about a tracked parameter
60 // in the context of this analysis.
61 //
62 // Since we want to report on missing and extraneous calls, we need to
63 // track the fact whether paramater was called or not. This automatically
64 // decides two kinds: `NotCalled` and `Called`.
65 //
66 // One of the erroneous situations is the case when parameter is called only
67 // on some of the paths. We could've considered it `NotCalled`, but we want
68 // to report double call warnings even if these two calls are not guaranteed
69 // to happen in every execution. We also don't want to have it as `Called`
70 // because not calling tracked parameter on all of the paths is an error
71 // on its own. For these reasons, we need to have a separate kind,
72 // `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
73 // confusion.
74 //
75 // Two violations of calling parameter more than once and not calling it on
76 // every path are not, however, mutually exclusive. In situations where both
77 // violations take place, we prefer to report ONLY double call. It's always
78 // harder to pinpoint a bug that has arisen when a user neglects to take the
79 // right action (and therefore, no action is taken), than when a user takes
80 // the wrong action. And, in order to remember that we already reported
81 // a double call, we need another kind: `Reported`.
82 //
83 // Our analysis is intra-procedural and, while in the perfect world,
84 // developers only use tracked parameters to call them, in the real world,
85 // the picture might be different. Parameters can be stored in global
86 // variables or leaked into other functions that we know nothing about.
87 // We try to be lenient and trust users. Another kind `Escaped` reflects
88 // such situations. We don't know if it gets called there or not, but we
89 // should always think of `Escaped` as the best possible option.
90 //
91 // Some of the paths in the analyzed functions might end with a call
92 // to noreturn functions. Such paths are not required to have parameter
93 // calls and we want to track that. For the purposes of better diagnostics,
94 // we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
95 //
96 // Additionally, we have `NotVisited` kind that tells us nothing about
97 // a tracked parameter, but is used for tracking analyzed (aka visited)
98 // basic blocks.
99 //
100 // If we consider `|` to be a JOIN operation of two kinds coming from
101 // two different paths, the following properties must hold:
102 //
103 // 1. for any Kind K: K | K == K
104 // Joining two identical kinds should result in the same kind.
105 //
106 // 2. for any Kind K: Reported | K == Reported
107 // Doesn't matter on which path it was reported, it still is.
108 //
109 // 3. for any Kind K: NoReturn | K == K
110 // We can totally ignore noreturn paths during merges.
111 //
112 // 4. DefinitelyCalled | NotCalled == MaybeCalled
113 // Called on one path, not called on another - that's simply
114 // a definition for MaybeCalled.
115 //
116 // 5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
117 // Escaped | K == K
118 // Escaped mirrors other statuses after joins.
119 // Every situation, when we join any of the listed kinds K,
120 // is a violation. For this reason, in order to assume the
121 // best outcome for this escape, we consider it to be the
122 // same as the other path.
123 //
124 // 6. for any Kind K in [DefinitelyCalled, NotCalled]:
125 // MaybeCalled | K == MaybeCalled
126 // MaybeCalled should basically stay after almost every join.
127 enum Kind {
128 // No-return paths should be absolutely transparent for the analysis.
129 // 0x0 is the identity element for selected join operation (binary or).
130 NoReturn = 0x0, /* 0000 */
131 // Escaped marks situations when marked parameter escaped into
132 // another function (so we can assume that it was possibly called there).
133 Escaped = 0x1, /* 0001 */
134 // Parameter was definitely called once at this point.
135 DefinitelyCalled = 0x3, /* 0011 */
136 // Kinds less or equal to NON_ERROR_STATUS are not considered errors.
137 NON_ERROR_STATUS = DefinitelyCalled,
138 // Parameter was not yet called.
139 NotCalled = 0x5, /* 0101 */
140 // Parameter was not called at least on one path leading to this point,
141 // while there is also at least one path that it gets called.
142 MaybeCalled = 0x7, /* 0111 */
143 // Parameter was not yet analyzed.
144 NotVisited = 0x8, /* 1000 */
145 // We already reported a violation and stopped tracking calls for this
146 // parameter.
147 Reported = 0x15, /* 1111 */
148 LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)LLVM_BITMASK_LARGEST_ENUMERATOR = Reported
149 };
150
151 constexpr ParameterStatus() = default;
152 /* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
153 assert(!seenAnyCalls(K) && "Can't initialize status without a call")((!seenAnyCalls(K) && "Can't initialize status without a call"
) ? static_cast<void> (0) : __assert_fail ("!seenAnyCalls(K) && \"Can't initialize status without a call\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 153, __PRETTY_FUNCTION__))
;
154 }
155 ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
156 assert(seenAnyCalls(K) && "This kind is not supposed to have a call")((seenAnyCalls(K) && "This kind is not supposed to have a call"
) ? static_cast<void> (0) : __assert_fail ("seenAnyCalls(K) && \"This kind is not supposed to have a call\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 156, __PRETTY_FUNCTION__))
;
157 }
158
159 const Expr &getCall() const {
160 assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call")((seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call"
) ? static_cast<void> (0) : __assert_fail ("seenAnyCalls(getKind()) && \"ParameterStatus doesn't have a call\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 160, __PRETTY_FUNCTION__))
;
161 return *Call;
162 }
163 static bool seenAnyCalls(Kind K) {
164 return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
165 }
166 bool seenAnyCalls() const { return seenAnyCalls(getKind()); }
167
168 static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
169 bool isErrorStatus() const { return isErrorStatus(getKind()); }
170
171 Kind getKind() const { return StatusKind; }
172
173 void join(const ParameterStatus &Other) {
174 // If we have a pointer already, let's keep it.
175 // For the purposes of the analysis, it doesn't really matter
176 // which call we report.
177 //
178 // If we don't have a pointer, let's take whatever gets joined.
179 if (!Call) {
180 Call = Other.Call;
181 }
182 // Join kinds.
183 StatusKind |= Other.getKind();
184 }
185
186 bool operator==(const ParameterStatus &Other) const {
187 // We compare only kinds, pointers on their own is only additional
188 // information.
189 return getKind() == Other.getKind();
190 }
191
192private:
193 // It would've been a perfect place to use llvm::PointerIntPair, but
194 // unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
195 Kind StatusKind = NotVisited;
196 const Expr *Call = nullptr;
197};
198
199/// State aggregates statuses of all tracked parameters.
200class State {
201public:
202 State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
203 : ParamData(Size, K) {}
204
205 /// Return status of a parameter with the given index.
206 /// \{
207 ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
208 const ParameterStatus &getStatusFor(unsigned Index) const {
209 return ParamData[Index];
210 }
211 /// \}
212
213 /// Return true if parameter with the given index can be called.
214 bool seenAnyCalls(unsigned Index) const {
215 return getStatusFor(Index).seenAnyCalls();
216 }
217 /// Return a reference that we consider a call.
218 ///
219 /// Should only be used for parameters that can be called.
220 const Expr &getCallFor(unsigned Index) const {
221 return getStatusFor(Index).getCall();
222 }
223 /// Return status kind of parameter with the given index.
224 ParameterStatus::Kind getKindFor(unsigned Index) const {
225 return getStatusFor(Index).getKind();
226 }
227
228 bool isVisited() const {
229 return llvm::all_of(ParamData, [](const ParameterStatus &S) {
230 return S.getKind() != ParameterStatus::NotVisited;
231 });
232 }
233
234 // Join other state into the current state.
235 void join(const State &Other) {
236 assert(ParamData.size() == Other.ParamData.size() &&((ParamData.size() == Other.ParamData.size() && "Couldn't join statuses with different sizes"
) ? static_cast<void> (0) : __assert_fail ("ParamData.size() == Other.ParamData.size() && \"Couldn't join statuses with different sizes\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 237, __PRETTY_FUNCTION__))
237 "Couldn't join statuses with different sizes")((ParamData.size() == Other.ParamData.size() && "Couldn't join statuses with different sizes"
) ? static_cast<void> (0) : __assert_fail ("ParamData.size() == Other.ParamData.size() && \"Couldn't join statuses with different sizes\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 237, __PRETTY_FUNCTION__))
;
238 for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
239 std::get<0>(Pair).join(std::get<1>(Pair));
240 }
241 }
242
243 using iterator = ParamSizedVector<ParameterStatus>::iterator;
244 using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;
245
246 iterator begin() { return ParamData.begin(); }
247 iterator end() { return ParamData.end(); }
248
249 const_iterator begin() const { return ParamData.begin(); }
250 const_iterator end() const { return ParamData.end(); }
251
252 bool operator==(const State &Other) const {
253 return ParamData == Other.ParamData;
254 }
255
256private:
257 ParamSizedVector<ParameterStatus> ParamData;
258};
259
260/// A simple class that finds DeclRefExpr in the given expression.
261///
262/// However, we don't want to find ANY nested DeclRefExpr skipping whatever
263/// expressions on our way. Only certain expressions considered "no-op"
264/// for our task are indeed skipped.
265class DeclRefFinder
266 : public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
267public:
268 /// Find a DeclRefExpr in the given expression.
269 ///
270 /// In its most basic form (ShouldRetrieveFromComparisons == false),
271 /// this function can be simply reduced to the following question:
272 ///
273 /// - If expression E is used as a function argument, could we say
274 /// that DeclRefExpr nested in E is used as an argument?
275 ///
276 /// According to this rule, we can say that parens, casts and dereferencing
277 /// (dereferencing only applied to function pointers, but this is our case)
278 /// can be skipped.
279 ///
280 /// When we should look into comparisons the question changes to:
281 ///
282 /// - If expression E is used as a condition, could we say that
283 /// DeclRefExpr is being checked?
284 ///
285 /// And even though, these are two different questions, they have quite a lot
286 /// in common. Actually, we can say that whatever expression answers
287 /// positively the first question also fits the second question as well.
288 ///
289 /// In addition, we skip binary operators == and !=, and unary opeartor !.
290 static const DeclRefExpr *find(const Expr *E,
291 bool ShouldRetrieveFromComparisons = false) {
292 return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
293 }
294
295 const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }
296
297 const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
298 switch (UO->getOpcode()) {
299 case UO_LNot:
300 // We care about logical not only if we care about comparisons.
301 if (!ShouldRetrieveFromComparisons)
302 return nullptr;
303 LLVM_FALLTHROUGH[[gnu::fallthrough]];
304 // Function pointer/references can be dereferenced before a call.
305 // That doesn't make it, however, any different from a regular call.
306 // For this reason, dereference operation is a "no-op".
307 case UO_Deref:
308 return Visit(UO->getSubExpr());
309 default:
310 return nullptr;
311 }
312 }
313
314 const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
315 if (!ShouldRetrieveFromComparisons)
316 return nullptr;
317
318 switch (BO->getOpcode()) {
319 case BO_EQ:
320 case BO_NE: {
321 const DeclRefExpr *LHS = Visit(BO->getLHS());
322 return LHS ? LHS : Visit(BO->getRHS());
323 }
324 default:
325 return nullptr;
326 }
327 }
328
329 const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
330 return Visit(OVE->getSourceExpr());
331 }
332
333 const DeclRefExpr *VisitExpr(const Expr *E) {
334 // It is a fallback method that gets called whenever the actual type
335 // of the given expression is not covered.
336 //
337 // We first check if we have anything to skip. And then repeat the whole
338 // procedure for a nested expression instead.
339 const Expr *DeclutteredExpr = E->IgnoreParenCasts();
340 return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
341 }
342
343private:
344 DeclRefFinder(bool ShouldRetrieveFromComparisons)
345 : ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}
346
347 bool ShouldRetrieveFromComparisons;
348};
349
350const DeclRefExpr *findDeclRefExpr(const Expr *In,
351 bool ShouldRetrieveFromComparisons = false) {
352 return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
353}
354
355const ParmVarDecl *
356findReferencedParmVarDecl(const Expr *In,
357 bool ShouldRetrieveFromComparisons = false) {
358 if (const DeclRefExpr *DR =
359 findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
360 return dyn_cast<ParmVarDecl>(DR->getDecl());
361 }
362
363 return nullptr;
364}
365
366/// Return conditions expression of a statement if it has one.
367const Expr *getCondition(const Stmt *S) {
368 if (!S) {
369 return nullptr;
370 }
371
372 if (const auto *If = dyn_cast<IfStmt>(S)) {
373 return If->getCond();
374 }
375 if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
376 return Ternary->getCond();
377 }
378
379 return nullptr;
380}
381
382/// A small helper class that collects all named identifiers in the given
383/// expression. It traverses it recursively, so names from deeper levels
384/// of the AST will end up in the results.
385/// Results might have duplicate names, if this is a problem, convert to
386/// string sets afterwards.
387class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
388public:
389 static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
390 using NameCollection =
391 llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;
392
393 static NameCollection collect(const Expr *From) {
394 NamesCollector Impl;
395 Impl.TraverseStmt(const_cast<Expr *>(From));
396 return Impl.Result;
397 }
398
399 bool VisitDeclRefExpr(const DeclRefExpr *E) {
400 Result.push_back(E->getDecl()->getName());
401 return true;
402 }
403
404 bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
405 llvm::StringRef Name;
406
407 if (E->isImplicitProperty()) {
408 ObjCMethodDecl *PropertyMethodDecl = nullptr;
409 if (E->isMessagingGetter()) {
410 PropertyMethodDecl = E->getImplicitPropertyGetter();
411 } else {
412 PropertyMethodDecl = E->getImplicitPropertySetter();
413 }
414 assert(PropertyMethodDecl &&((PropertyMethodDecl && "Implicit property must have associated declaration"
) ? static_cast<void> (0) : __assert_fail ("PropertyMethodDecl && \"Implicit property must have associated declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 415, __PRETTY_FUNCTION__))
415 "Implicit property must have associated declaration")((PropertyMethodDecl && "Implicit property must have associated declaration"
) ? static_cast<void> (0) : __assert_fail ("PropertyMethodDecl && \"Implicit property must have associated declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 415, __PRETTY_FUNCTION__))
;
416 Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
417 } else {
418 assert(E->isExplicitProperty())((E->isExplicitProperty()) ? static_cast<void> (0) :
__assert_fail ("E->isExplicitProperty()", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 418, __PRETTY_FUNCTION__))
;
419 Name = E->getExplicitProperty()->getName();
420 }
421
422 Result.push_back(Name);
423 return true;
424 }
425
426private:
427 NamesCollector() = default;
428 NameCollection Result;
429};
430
431/// Check whether the given expression mentions any of conventional names.
432bool mentionsAnyOfConventionalNames(const Expr *E) {
433 NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);
434
435 return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
436 return llvm::any_of(
437 CONVENTIONAL_CONDITIONS,
438 [ConditionName](const llvm::StringLiteral &Conventional) {
439 return ConditionName.contains_lower(Conventional);
440 });
441 });
442}
443
444/// Clarification is a simple pair of a reason why parameter is not called
445/// on every path and a statement to blame.
446struct Clarification {
447 NeverCalledReason Reason;
448 const Stmt *Location;
449};
450
451/// A helper class that can produce a clarification based on the given pair
452/// of basic blocks.
453class NotCalledClarifier
454 : public ConstStmtVisitor<NotCalledClarifier,
455 llvm::Optional<Clarification>> {
456public:
457 /// The main entrypoint for the class, the function that tries to find the
458 /// clarification of how to explain which sub-path starts with a CFG edge
459 /// from Conditional to SuccWithoutCall.
460 ///
461 /// This means that this function has one precondition:
462 /// SuccWithoutCall should be a successor block for Conditional.
463 ///
464 /// Because clarification is not needed for non-trivial pairs of blocks
465 /// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
466 /// results only for such cases. For this very reason, the parent basic
467 /// block, Conditional, is named that way, so it is clear what kind of
468 /// block is expected.
469 static llvm::Optional<Clarification>
470 clarify(const CFGBlock *Conditional, const CFGBlock *SuccWithoutCall) {
471 if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
472 return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
473 }
474 return llvm::None;
475 }
476
477 llvm::Optional<Clarification> VisitIfStmt(const IfStmt *If) {
478 return VisitBranchingBlock(If, NeverCalledReason::IfThen);
479 }
480
481 llvm::Optional<Clarification>
482 VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
483 return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
484 }
485
486 llvm::Optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
487 const Stmt *CaseToBlame = SuccInQuestion->getLabel();
488 if (!CaseToBlame) {
489 // If interesting basic block is not labeled, it means that this
490 // basic block does not represent any of the cases.
491 return Clarification{NeverCalledReason::SwitchSkipped, Switch};
492 }
493
494 for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
495 Case = Case->getNextSwitchCase()) {
496 if (Case == CaseToBlame) {
497 return Clarification{NeverCalledReason::Switch, Case};
498 }
499 }
500
501 llvm_unreachable("Found unexpected switch structure")::llvm::llvm_unreachable_internal("Found unexpected switch structure"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 501)
;
502 }
503
504 llvm::Optional<Clarification> VisitForStmt(const ForStmt *For) {
505 return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
506 }
507
508 llvm::Optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
509 return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
510 }
511
512 llvm::Optional<Clarification>
513 VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
514 assert(Parent->succ_size() == 2 &&((Parent->succ_size() == 2 && "Branching block should have exactly two successors"
) ? static_cast<void> (0) : __assert_fail ("Parent->succ_size() == 2 && \"Branching block should have exactly two successors\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 515, __PRETTY_FUNCTION__))
515 "Branching block should have exactly two successors")((Parent->succ_size() == 2 && "Branching block should have exactly two successors"
) ? static_cast<void> (0) : __assert_fail ("Parent->succ_size() == 2 && \"Branching block should have exactly two successors\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 515, __PRETTY_FUNCTION__))
;
516 unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
517 NeverCalledReason ActualReason =
518 updateForSuccessor(DefaultReason, SuccessorIndex);
519 return Clarification{ActualReason, Terminator};
520 }
521
522 llvm::Optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
523 // We don't want to report on short-curcuit logical operations.
524 return llvm::None;
525 }
526
527 llvm::Optional<Clarification> VisitStmt(const Stmt *Terminator) {
528 // If we got here, we didn't have a visit function for more derived
529 // classes of statement that this terminator actually belongs to.
530 //
531 // This is not a good scenario and should not happen in practice, but
532 // at least we'll warn the user.
533 return Clarification{NeverCalledReason::FallbackReason, Terminator};
534 }
535
536 static unsigned getSuccessorIndex(const CFGBlock *Parent,
537 const CFGBlock *Child) {
538 CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
539 assert(It != Parent->succ_end() &&((It != Parent->succ_end() && "Given blocks should be in parent-child relationship"
) ? static_cast<void> (0) : __assert_fail ("It != Parent->succ_end() && \"Given blocks should be in parent-child relationship\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 540, __PRETTY_FUNCTION__))
540 "Given blocks should be in parent-child relationship")((It != Parent->succ_end() && "Given blocks should be in parent-child relationship"
) ? static_cast<void> (0) : __assert_fail ("It != Parent->succ_end() && \"Given blocks should be in parent-child relationship\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 540, __PRETTY_FUNCTION__))
;
541 return It - Parent->succ_begin();
542 }
543
544 static NeverCalledReason
545 updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
546 unsigned SuccessorIndex) {
547 assert(SuccessorIndex <= 1)((SuccessorIndex <= 1) ? static_cast<void> (0) : __assert_fail
("SuccessorIndex <= 1", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 547, __PRETTY_FUNCTION__))
;
548 unsigned RawReason =
549 static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
550 assert(RawReason <=((RawReason <= static_cast<unsigned>(NeverCalledReason
::LARGEST_VALUE)) ? static_cast<void> (0) : __assert_fail
("RawReason <= static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE)"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 551, __PRETTY_FUNCTION__))
551 static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE))((RawReason <= static_cast<unsigned>(NeverCalledReason
::LARGEST_VALUE)) ? static_cast<void> (0) : __assert_fail
("RawReason <= static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE)"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 551, __PRETTY_FUNCTION__))
;
552 return static_cast<NeverCalledReason>(RawReason);
553 }
554
555private:
556 NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
557 : Parent(Parent), SuccInQuestion(SuccInQuestion) {}
558
559 const CFGBlock *Parent, *SuccInQuestion;
560};
561
562class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
563public:
564 static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
565 bool CheckConventionalParameters) {
566 CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
567 }
568
569private:
570 CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
571 bool CheckConventionalParameters)
572 : FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
573 CheckConventionalParameters(CheckConventionalParameters),
574 CurrentState(0) {
575 initDataStructures();
576 assert((size() == 0 || !States.empty()) &&(((size() == 0 || !States.empty()) && "Data structures are inconsistent"
) ? static_cast<void> (0) : __assert_fail ("(size() == 0 || !States.empty()) && \"Data structures are inconsistent\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 577, __PRETTY_FUNCTION__))
577 "Data structures are inconsistent")(((size() == 0 || !States.empty()) && "Data structures are inconsistent"
) ? static_cast<void> (0) : __assert_fail ("(size() == 0 || !States.empty()) && \"Data structures are inconsistent\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 577, __PRETTY_FUNCTION__))
;
578 }
579
580 //===----------------------------------------------------------------------===//
581 // Initializing functions
582 //===----------------------------------------------------------------------===//
583
584 void initDataStructures() {
585 const Decl *AnalyzedDecl = AC.getDecl();
586
587 if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
588 findParamsToTrack(Function);
589 } else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
590 findParamsToTrack(Method);
591 } else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
592 findCapturesToTrack(Block);
593 findParamsToTrack(Block);
594 }
595
596 // Have something to track, let's init states for every block from the CFG.
597 if (size() != 0) {
598 States =
599 CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
600 }
601 }
602
603 void findCapturesToTrack(const BlockDecl *Block) {
604 for (const auto &Capture : Block->captures()) {
605 if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
606 // Parameter DeclContext is its owning function or method.
607 const DeclContext *ParamContext = P->getDeclContext();
608 if (shouldBeCalledOnce(ParamContext, P)) {
609 TrackedParams.push_back(P);
610 }
611 }
612 }
613 }
614
615 template <class FunctionLikeDecl>
616 void findParamsToTrack(const FunctionLikeDecl *Function) {
617 for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
618 if (shouldBeCalledOnce(Function, Index)) {
619 TrackedParams.push_back(Function->getParamDecl(Index));
620 }
621 }
622 }
623
624 //===----------------------------------------------------------------------===//
625 // Main logic 'check' functions
626 //===----------------------------------------------------------------------===//
627
628 void check() {
629 // Nothing to check here: we don't have marked parameters.
630 if (size() == 0 || isPossiblyEmptyImpl())
631 return;
632
633 assert(((llvm::none_of(States, [](const State &S) { return S.isVisited
(); }) && "None of the blocks should be 'visited' before the analysis"
) ? static_cast<void> (0) : __assert_fail ("llvm::none_of(States, [](const State &S) { return S.isVisited(); }) && \"None of the blocks should be 'visited' before the analysis\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 635, __PRETTY_FUNCTION__))
634 llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&((llvm::none_of(States, [](const State &S) { return S.isVisited
(); }) && "None of the blocks should be 'visited' before the analysis"
) ? static_cast<void> (0) : __assert_fail ("llvm::none_of(States, [](const State &S) { return S.isVisited(); }) && \"None of the blocks should be 'visited' before the analysis\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 635, __PRETTY_FUNCTION__))
635 "None of the blocks should be 'visited' before the analysis")((llvm::none_of(States, [](const State &S) { return S.isVisited
(); }) && "None of the blocks should be 'visited' before the analysis"
) ? static_cast<void> (0) : __assert_fail ("llvm::none_of(States, [](const State &S) { return S.isVisited(); }) && \"None of the blocks should be 'visited' before the analysis\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 635, __PRETTY_FUNCTION__))
;
636
637 // For our task, both backward and forward approaches suite well.
638 // However, in order to report better diagnostics, we decided to go with
639 // backward analysis.
640 //
641 // Let's consider the following CFG and how forward and backward analyses
642 // will work for it.
643 //
644 // FORWARD: | BACKWARD:
645 // #1 | #1
646 // +---------+ | +-----------+
647 // | if | | |MaybeCalled|
648 // +---------+ | +-----------+
649 // |NotCalled| | | if |
650 // +---------+ | +-----------+
651 // / \ | / \
652 // #2 / \ #3 | #2 / \ #3
653 // +----------------+ +---------+ | +----------------+ +---------+
654 // | foo() | | ... | | |DefinitelyCalled| |NotCalled|
655 // +----------------+ +---------+ | +----------------+ +---------+
656 // |DefinitelyCalled| |NotCalled| | | foo() | | ... |
657 // +----------------+ +---------+ | +----------------+ +---------+
658 // \ / | \ /
659 // \ #4 / | \ #4 /
660 // +-----------+ | +---------+
661 // | ... | | |NotCalled|
662 // +-----------+ | +---------+
663 // |MaybeCalled| | | ... |
664 // +-----------+ | +---------+
665 //
666 // The most natural way to report lacking call in the block #3 would be to
667 // message that the false branch of the if statement in the block #1 doesn't
668 // have a call. And while with the forward approach we'll need to find a
669 // least common ancestor or something like that to find the 'if' to blame,
670 // backward analysis gives it to us out of the box.
671 BackwardDataflowWorklist Worklist(FunctionCFG, AC);
672
673 // Let's visit EXIT.
674 const CFGBlock *Exit = &FunctionCFG.getExit();
675 assignState(Exit, State(size(), ParameterStatus::NotCalled));
676 Worklist.enqueuePredecessors(Exit);
677
678 while (const CFGBlock *BB = Worklist.dequeue()) {
679 assert(BB && "Worklist should filter out null blocks")((BB && "Worklist should filter out null blocks") ? static_cast
<void> (0) : __assert_fail ("BB && \"Worklist should filter out null blocks\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 679, __PRETTY_FUNCTION__))
;
680 check(BB);
681 assert(CurrentState.isVisited() &&((CurrentState.isVisited() && "After the check, basic block should be visited"
) ? static_cast<void> (0) : __assert_fail ("CurrentState.isVisited() && \"After the check, basic block should be visited\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 682, __PRETTY_FUNCTION__))
682 "After the check, basic block should be visited")((CurrentState.isVisited() && "After the check, basic block should be visited"
) ? static_cast<void> (0) : __assert_fail ("CurrentState.isVisited() && \"After the check, basic block should be visited\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 682, __PRETTY_FUNCTION__))
;
683
684 // Traverse successor basic blocks if the status of this block
685 // has changed.
686 if (assignState(BB, CurrentState)) {
687 Worklist.enqueuePredecessors(BB);
688 }
689 }
690
691 // Check that we have all tracked parameters at the last block.
692 // As we are performing a backward version of the analysis,
693 // it should be the ENTRY block.
694 checkEntry(&FunctionCFG.getEntry());
695 }
696
697 void check(const CFGBlock *BB) {
698 // We start with a state 'inherited' from all the successors.
699 CurrentState = joinSuccessors(BB);
700 assert(CurrentState.isVisited() &&((CurrentState.isVisited() && "Shouldn't start with a 'not visited' state"
) ? static_cast<void> (0) : __assert_fail ("CurrentState.isVisited() && \"Shouldn't start with a 'not visited' state\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 701, __PRETTY_FUNCTION__))
701 "Shouldn't start with a 'not visited' state")((CurrentState.isVisited() && "Shouldn't start with a 'not visited' state"
) ? static_cast<void> (0) : __assert_fail ("CurrentState.isVisited() && \"Shouldn't start with a 'not visited' state\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 701, __PRETTY_FUNCTION__))
;
702
703 // This is the 'exit' situation, broken promises are probably OK
704 // in such scenarios.
705 if (BB->hasNoReturnElement()) {
706 markNoReturn();
707 // This block still can have calls (even multiple calls) and
708 // for this reason there is no early return here.
709 }
710
711 // We use a backward dataflow propagation and for this reason we
712 // should traverse basic blocks bottom-up.
713 for (const CFGElement &Element : llvm::reverse(*BB)) {
714 if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
715 check(S->getStmt());
716 }
717 }
718 }
719 void check(const Stmt *S) { Visit(S); }
720
721 void checkEntry(const CFGBlock *Entry) {
722 // We finalize this algorithm with the ENTRY block because
723 // we use a backward version of the analysis. This is where
724 // we can judge that some of the tracked parameters are not called on
725 // every path from ENTRY to EXIT.
726
727 const State &EntryStatus = getState(Entry);
728 llvm::BitVector NotCalledOnEveryPath(size(), false);
729 llvm::BitVector NotUsedOnEveryPath(size(), false);
730
731 // Check if there are no calls of the marked parameter at all
732 for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
733 const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
734
735 switch (IndexedStatus.value().getKind()) {
736 case ParameterStatus::NotCalled:
737 // If there were places where this parameter escapes (aka being used),
738 // we can provide a more useful diagnostic by pointing at the exact
739 // branches where it is not even mentioned.
740 if (!hasEverEscaped(IndexedStatus.index())) {
741 // This parameter is was not used at all, so we should report the
742 // most generic version of the warning.
743 if (isCaptured(Parameter)) {
744 // We want to specify that it was captured by the block.
745 Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
746 !isExplicitlyMarked(Parameter));
747 } else {
748 Handler.handleNeverCalled(Parameter,
749 !isExplicitlyMarked(Parameter));
750 }
751 } else {
752 // Mark it as 'interesting' to figure out which paths don't even
753 // have escapes.
754 NotUsedOnEveryPath[IndexedStatus.index()] = true;
755 }
756
757 break;
758 case ParameterStatus::MaybeCalled:
759 // If we have 'maybe called' at this point, we have an error
760 // that there is at least one path where this parameter
761 // is not called.
762 //
763 // However, reporting the warning with only that information can be
764 // too vague for the users. For this reason, we mark such parameters
765 // as "interesting" for further analysis.
766 NotCalledOnEveryPath[IndexedStatus.index()] = true;
767 break;
768 default:
769 break;
770 }
771 }
772
773 // Early exit if we don't have parameters for extra analysis.
774 if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none())
775 return;
776
777 // We are looking for a pair of blocks A, B so that the following is true:
778 // * A is a predecessor of B
779 // * B is marked as NotCalled
780 // * A has at least one successor marked as either
781 // Escaped or DefinitelyCalled
782 //
783 // In that situation, it is guaranteed that B is the first block of the path
784 // where the user doesn't call or use parameter in question.
785 //
786 // For this reason, branch A -> B can be used for reporting.
787 //
788 // This part of the algorithm is guarded by a condition that the function
789 // does indeed have a violation of contract. For this reason, we can
790 // spend more time to find a good spot to place the warning.
791 //
792 // The following algorithm has the worst case complexity of O(V + E),
793 // where V is the number of basic blocks in FunctionCFG,
794 // E is the number of edges between blocks in FunctionCFG.
795 for (const CFGBlock *BB : FunctionCFG) {
796 if (!BB)
797 continue;
798
799 const State &BlockState = getState(BB);
800
801 for (unsigned Index : llvm::seq(0u, size())) {
802 // We don't want to use 'isLosingCall' here because we want to report
803 // the following situation as well:
804 //
805 // MaybeCalled
806 // | ... |
807 // MaybeCalled NotCalled
808 //
809 // Even though successor is not 'DefinitelyCalled', it is still useful
810 // to report it, it is still a path without a call.
811 if (NotCalledOnEveryPath[Index] &&
812 BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {
813
814 findAndReportNotCalledBranches(BB, Index);
815 } else if (NotUsedOnEveryPath[Index] &&
816 isLosingEscape(BlockState, BB, Index)) {
817
818 findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
819 }
820 }
821 }
822 }
823
824 /// Check potential call of a tracked parameter.
825 void checkDirectCall(const CallExpr *Call) {
826 if (auto Index = getIndexOfCallee(Call)) {
827 processCallFor(*Index, Call);
828 }
829 }
830
831 /// Check the call expression for being an indirect call of one of the tracked
832 /// parameters. It is indirect in the sense that this particular call is not
833 /// calling the parameter itself, but rather uses it as the argument.
834 template <class CallLikeExpr>
835 void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
836 // CallExpr::arguments does not interact nicely with llvm::enumerate.
837 llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
838 CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
839
840 // Let's check if any of the call arguments is a point of interest.
841 for (const auto &Argument : llvm::enumerate(Arguments)) {
842 if (auto Index = getIndexOfExpression(Argument.value())) {
2
Taking false branch
3
Taking true branch
843 ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
844
845 if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
4
Calling 'CalledOnceChecker::shouldBeCalledOnce'
846 // If the corresponding parameter is marked as 'called_once' we should
847 // consider it as a call.
848 processCallFor(*Index, CallOrMessage);
849 } else if (CurrentParamStatus.getKind() == ParameterStatus::NotCalled) {
850 // Otherwise, we mark this parameter as escaped, which can be
851 // interpreted both as called or not called depending on the context.
852 CurrentParamStatus = ParameterStatus::Escaped;
853 }
854 // Otherwise, let's keep the state as it is.
855 }
856 }
857 }
858
859 /// Process call of the parameter with the given index
860 void processCallFor(unsigned Index, const Expr *Call) {
861 ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
862
863 if (CurrentParamStatus.seenAnyCalls()) {
864
865 // At this point, this parameter was called, so this is a second call.
866 const ParmVarDecl *Parameter = getParameter(Index);
867 Handler.handleDoubleCall(
868 Parameter, &CurrentState.getCallFor(Index), Call,
869 !isExplicitlyMarked(Parameter),
870 // We are sure that the second call is definitely
871 // going to happen if the status is 'DefinitelyCalled'.
872 CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);
873
874 // Mark this parameter as already reported on, so we don't repeat
875 // warnings.
876 CurrentParamStatus = ParameterStatus::Reported;
877
878 } else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
879 // If we didn't report anything yet, let's mark this parameter
880 // as called.
881 ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
882 CurrentParamStatus = Called;
883 }
884 }
885
886 void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
887 bool IsEscape = false) {
888 for (const CFGBlock *Succ : Parent->succs()) {
889 if (!Succ)
890 continue;
891
892 if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
893 assert(Parent->succ_size() >= 2 &&((Parent->succ_size() >= 2 && "Block should have at least two successors at this point"
) ? static_cast<void> (0) : __assert_fail ("Parent->succ_size() >= 2 && \"Block should have at least two successors at this point\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 894, __PRETTY_FUNCTION__))
894 "Block should have at least two successors at this point")((Parent->succ_size() >= 2 && "Block should have at least two successors at this point"
) ? static_cast<void> (0) : __assert_fail ("Parent->succ_size() >= 2 && \"Block should have at least two successors at this point\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 894, __PRETTY_FUNCTION__))
;
895 if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
896 const ParmVarDecl *Parameter = getParameter(Index);
897 Handler.handleNeverCalled(Parameter, Clarification->Location,
898 Clarification->Reason, !IsEscape,
899 !isExplicitlyMarked(Parameter));
900 }
901 }
902 }
903 }
904
905 //===----------------------------------------------------------------------===//
906 // Predicate functions to check parameters
907 //===----------------------------------------------------------------------===//
908
909 /// Return true if parameter is explicitly marked as 'called_once'.
910 static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
911 return Parameter->hasAttr<CalledOnceAttr>();
912 }
913
914 /// Return true if the given name matches conventional pattens.
915 static bool isConventional(llvm::StringRef Name) {
916 return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
917 }
918
919 /// Return true if the given name has conventional suffixes.
920 static bool hasConventionalSuffix(llvm::StringRef Name) {
921 return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
922 return Name.endswith(Suffix);
923 });
924 }
925
926 /// Return true if the given type can be used for conventional parameters.
927 static bool isConventional(QualType Ty) {
928 if (!Ty->isBlockPointerType()) {
12
Calling 'Type::isBlockPointerType'
15
Returning from 'Type::isBlockPointerType'
16
Taking false branch
929 return false;
930 }
931
932 QualType BlockType = Ty->getAs<BlockPointerType>()->getPointeeType();
17
Assuming the object is not a 'BlockPointerType'
18
Called C++ object pointer is null
933 // Completion handlers should have a block type with void return type.
934 return BlockType->getAs<FunctionType>()->getReturnType()->isVoidType();
935 }
936
937 /// Return true if the only parameter of the function is conventional.
938 static bool isOnlyParameterConventional(const FunctionDecl *Function) {
939 IdentifierInfo *II = Function->getIdentifier();
940 return Function->getNumParams() == 1 && II &&
941 hasConventionalSuffix(II->getName());
942 }
943
944 /// Return true/false if 'swift_async' attribute states that the given
945 /// parameter is conventionally called once.
946 /// Return llvm::None if the given declaration doesn't have 'swift_async'
947 /// attribute.
948 static llvm::Optional<bool> isConventionalSwiftAsync(const Decl *D,
949 unsigned ParamIndex) {
950 if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
951 if (A->getKind() == SwiftAsyncAttr::None) {
952 return false;
953 }
954
955 return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
956 }
957 return llvm::None;
958 }
959
960 /// Return true if the specified selector piece matches conventions.
961 static bool isConventionalSelectorPiece(Selector MethodSelector,
962 unsigned PieceIndex,
963 QualType PieceType) {
964 if (!isConventional(PieceType)) {
965 return false;
966 }
967
968 if (MethodSelector.getNumArgs() == 1) {
969 assert(PieceIndex == 0)((PieceIndex == 0) ? static_cast<void> (0) : __assert_fail
("PieceIndex == 0", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 969, __PRETTY_FUNCTION__))
;
970 return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
971 }
972
973 return isConventional(MethodSelector.getNameForSlot(PieceIndex));
974 }
975
976 bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
977 return isExplicitlyMarked(Parameter) ||
978 (CheckConventionalParameters &&
10
Assuming field 'CheckConventionalParameters' is true
979 isConventional(Parameter->getName()) &&
980 isConventional(Parameter->getType()));
11
Calling 'CalledOnceChecker::isConventional'
981 }
982
983 bool shouldBeCalledOnce(const DeclContext *ParamContext,
984 const ParmVarDecl *Param) {
985 unsigned ParamIndex = Param->getFunctionScopeIndex();
986 if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
987 return shouldBeCalledOnce(Function, ParamIndex);
988 }
989 if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
990 return shouldBeCalledOnce(Method, ParamIndex);
991 }
992 return shouldBeCalledOnce(Param);
993 }
994
995 bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
996 return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
997 }
998
999 bool shouldBeCalledOnce(const FunctionDecl *Function,
1000 unsigned ParamIndex) const {
1001 if (ParamIndex >= Function->getNumParams()) {
6
Assuming the condition is false
7
Taking false branch
1002 return false;
1003 }
1004 // 'swift_async' goes first and overrides anything else.
1005 if (auto ConventionalAsync =
8
Taking false branch
1006 isConventionalSwiftAsync(Function, ParamIndex)) {
1007 return ConventionalAsync.getValue();
1008 }
1009
1010 return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
9
Calling 'CalledOnceChecker::shouldBeCalledOnce'
1011 (CheckConventionalParameters &&
1012 isOnlyParameterConventional(Function));
1013 }
1014
1015 bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
1016 unsigned ParamIndex) const {
1017 Selector MethodSelector = Method->getSelector();
1018 if (ParamIndex >= MethodSelector.getNumArgs()) {
1019 return false;
1020 }
1021
1022 // 'swift_async' goes first and overrides anything else.
1023 if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
1024 return ConventionalAsync.getValue();
1025 }
1026
1027 const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
1028 return shouldBeCalledOnce(Parameter) ||
1029 (CheckConventionalParameters &&
1030 isConventionalSelectorPiece(MethodSelector, ParamIndex,
1031 Parameter->getType()));
1032 }
1033
1034 bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
1035 const FunctionDecl *Function = Call->getDirectCallee();
1036 return Function
4.1
'Function' is non-null
4.1
'Function' is non-null
&& shouldBeCalledOnce(Function, ParamIndex);
5
Calling 'CalledOnceChecker::shouldBeCalledOnce'
1037 }
1038
1039 bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
1040 unsigned ParamIndex) const {
1041 const ObjCMethodDecl *Method = Message->getMethodDecl();
1042 return Method && ParamIndex < Method->param_size() &&
1043 shouldBeCalledOnce(Method, ParamIndex);
1044 }
1045
1046 //===----------------------------------------------------------------------===//
1047 // Utility methods
1048 //===----------------------------------------------------------------------===//
1049
1050 bool isCaptured(const ParmVarDecl *Parameter) const {
1051 if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
1052 return Block->capturesVariable(Parameter);
1053 }
1054 return false;
1055 }
1056
1057 /// Return true if the analyzed function is actually a default implementation
1058 /// of the method that has to be overriden.
1059 ///
1060 /// These functions can have tracked parameters, but wouldn't call them
1061 /// because they are not designed to perform any meaningful actions.
1062 ///
1063 /// There are a couple of flavors of such default implementations:
1064 /// 1. Empty methods or methods with a single return statement
1065 /// 2. Methods that have one block with a call to no return function
1066 /// 3. Methods with only assertion-like operations
1067 bool isPossiblyEmptyImpl() const {
1068 if (!isa<ObjCMethodDecl>(AC.getDecl())) {
1069 // We care only about functions that are not supposed to be called.
1070 // Only methods can be overriden.
1071 return false;
1072 }
1073
1074 // Case #1 (without return statements)
1075 if (FunctionCFG.size() == 2) {
1076 // Method has only two blocks: ENTRY and EXIT.
1077 // This is equivalent to empty function.
1078 return true;
1079 }
1080
1081 // Case #2
1082 if (FunctionCFG.size() == 3) {
1083 const CFGBlock &Entry = FunctionCFG.getEntry();
1084 if (Entry.succ_empty()) {
1085 return false;
1086 }
1087
1088 const CFGBlock *OnlyBlock = *Entry.succ_begin();
1089 // Method has only one block, let's see if it has a no-return
1090 // element.
1091 if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
1092 return true;
1093 }
1094 // Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
1095 }
1096
1097 // Cases #1 (return statements) and #3.
1098 //
1099 // It is hard to detect that something is an assertion or came
1100 // from assertion. Here we use a simple heuristic:
1101 //
1102 // - If it came from a macro, it can be an assertion.
1103 //
1104 // Additionally, we can't assume a number of basic blocks or the CFG's
1105 // structure because assertions might include loops and conditions.
1106 return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
1107 if (!BB) {
1108 // Unreachable blocks are totally fine.
1109 return true;
1110 }
1111
1112 // Return statements can have sub-expressions that are represented as
1113 // separate statements of a basic block. We should allow this.
1114 // This parent map will be initialized with a parent tree for all
1115 // subexpressions of the block's return statement (if it has one).
1116 std::unique_ptr<ParentMap> ReturnChildren;
1117
1118 return llvm::all_of(
1119 llvm::reverse(*BB), // we should start with return statements, if we
1120 // have any, i.e. from the bottom of the block
1121 [&ReturnChildren](const CFGElement &Element) {
1122 if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
1123 const Stmt *SuspiciousStmt = S->getStmt();
1124
1125 if (isa<ReturnStmt>(SuspiciousStmt)) {
1126 // Let's initialize this structure to test whether
1127 // some further statement is a part of this return.
1128 ReturnChildren = std::make_unique<ParentMap>(
1129 const_cast<Stmt *>(SuspiciousStmt));
1130 // Return statements are allowed as part of #1.
1131 return true;
1132 }
1133
1134 return SuspiciousStmt->getBeginLoc().isMacroID() ||
1135 (ReturnChildren &&
1136 ReturnChildren->hasParent(SuspiciousStmt));
1137 }
1138 return true;
1139 });
1140 });
1141 }
1142
1143 /// Check if parameter with the given index has ever escaped.
1144 bool hasEverEscaped(unsigned Index) const {
1145 return llvm::any_of(States, [Index](const State &StateForOneBB) {
1146 return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
1147 });
1148 }
1149
1150 /// Return status stored for the given basic block.
1151 /// \{
1152 State &getState(const CFGBlock *BB) {
1153 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1153, __PRETTY_FUNCTION__))
;
1154 return States[BB->getBlockID()];
1155 }
1156 const State &getState(const CFGBlock *BB) const {
1157 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1157, __PRETTY_FUNCTION__))
;
1158 return States[BB->getBlockID()];
1159 }
1160 /// \}
1161
1162 /// Assign status to the given basic block.
1163 ///
1164 /// Returns true when the stored status changed.
1165 bool assignState(const CFGBlock *BB, const State &ToAssign) {
1166 State &Current = getState(BB);
1167 if (Current == ToAssign) {
1168 return false;
1169 }
1170
1171 Current = ToAssign;
1172 return true;
1173 }
1174
1175 /// Join all incoming statuses for the given basic block.
1176 State joinSuccessors(const CFGBlock *BB) const {
1177 auto Succs =
1178 llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
1179 return Succ && this->getState(Succ).isVisited();
1180 });
1181 // We came to this block from somewhere after all.
1182 assert(!Succs.empty() &&((!Succs.empty() && "Basic block should have at least one visited successor"
) ? static_cast<void> (0) : __assert_fail ("!Succs.empty() && \"Basic block should have at least one visited successor\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1183, __PRETTY_FUNCTION__))
1183 "Basic block should have at least one visited successor")((!Succs.empty() && "Basic block should have at least one visited successor"
) ? static_cast<void> (0) : __assert_fail ("!Succs.empty() && \"Basic block should have at least one visited successor\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1183, __PRETTY_FUNCTION__))
;
1184
1185 State Result = getState(*Succs.begin());
1186
1187 for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
1188 Result.join(getState(Succ));
1189 }
1190
1191 if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
1192 handleConditional(BB, Condition, Result);
1193 }
1194
1195 return Result;
1196 }
1197
1198 void handleConditional(const CFGBlock *BB, const Expr *Condition,
1199 State &ToAlter) const {
1200 handleParameterCheck(BB, Condition, ToAlter);
1201 if (SuppressOnConventionalErrorPaths) {
1202 handleConventionalCheck(BB, Condition, ToAlter);
1203 }
1204 }
1205
1206 void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
1207 State &ToAlter) const {
1208 // In this function, we try to deal with the following pattern:
1209 //
1210 // if (parameter)
1211 // parameter(...);
1212 //
1213 // It's not good to show a warning here because clearly 'parameter'
1214 // couldn't and shouldn't be called on the 'else' path.
1215 //
1216 // Let's check if this if statement has a check involving one of
1217 // the tracked parameters.
1218 if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
1219 Condition,
1220 /* ShouldRetrieveFromComparisons = */ true)) {
1221 if (const auto Index = getIndex(*Parameter)) {
1222 ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);
1223
1224 // We don't want to deep dive into semantics of the check and
1225 // figure out if that check was for null or something else.
1226 // We simply trust the user that they know what they are doing.
1227 //
1228 // For this reason, in the following loop we look for the
1229 // best-looking option.
1230 for (const CFGBlock *Succ : BB->succs()) {
1231 if (!Succ)
1232 continue;
1233
1234 const ParameterStatus &StatusInSucc =
1235 getState(Succ).getStatusFor(*Index);
1236
1237 if (StatusInSucc.isErrorStatus()) {
1238 continue;
1239 }
1240
1241 // Let's use this status instead.
1242 CurrentStatus = StatusInSucc;
1243
1244 if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
1245 // This is the best option to have and we already found it.
1246 break;
1247 }
1248
1249 // If we found 'Escaped' first, we still might find 'DefinitelyCalled'
1250 // on the other branch. And we prefer the latter.
1251 }
1252 }
1253 }
1254 }
1255
1256 void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
1257 State &ToAlter) const {
1258 // Even when the analysis is technically correct, it is a widespread pattern
1259 // not to call completion handlers in some scenarios. These usually have
1260 // typical conditional names, such as 'error' or 'cancel'.
1261 if (!mentionsAnyOfConventionalNames(Condition)) {
1262 return;
1263 }
1264
1265 for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
1266 const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
1267 // Conventions do not apply to explicitly marked parameters.
1268 if (isExplicitlyMarked(Parameter)) {
1269 continue;
1270 }
1271
1272 ParameterStatus &CurrentStatus = IndexedStatus.value();
1273 // If we did find that on one of the branches the user uses the callback
1274 // and doesn't on the other path, we believe that they know what they are
1275 // doing and trust them.
1276 //
1277 // There are two possible scenarios for that:
1278 // 1. Current status is 'MaybeCalled' and one of the branches is
1279 // 'DefinitelyCalled'
1280 // 2. Current status is 'NotCalled' and one of the branches is 'Escaped'
1281 if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
1282 isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
1283 CurrentStatus = ParameterStatus::Escaped;
1284 }
1285 }
1286 }
1287
1288 bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1289 unsigned ParameterIndex) const {
1290 // Let's check if the block represents DefinitelyCalled -> MaybeCalled
1291 // transition.
1292 return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
1293 ParameterStatus::MaybeCalled,
1294 ParameterStatus::DefinitelyCalled);
1295 }
1296
1297 bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1298 unsigned ParameterIndex) const {
1299 // Let's check if the block represents Escaped -> NotCalled transition.
1300 return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
1301 ParameterStatus::NotCalled, ParameterStatus::Escaped);
1302 }
1303
1304 bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1305 unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
1306 ParameterStatus::Kind BeforeJoin) const {
1307 assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&((!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus
::isErrorStatus(AfterJoin) && "It's not a losing join if statuses do not represent "
"correct-to-error transition") ? static_cast<void> (0)
: __assert_fail ("!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus::isErrorStatus(AfterJoin) && \"It's not a losing join if statuses do not represent \" \"correct-to-error transition\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1310, __PRETTY_FUNCTION__))
1308 ParameterStatus::isErrorStatus(AfterJoin) &&((!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus
::isErrorStatus(AfterJoin) && "It's not a losing join if statuses do not represent "
"correct-to-error transition") ? static_cast<void> (0)
: __assert_fail ("!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus::isErrorStatus(AfterJoin) && \"It's not a losing join if statuses do not represent \" \"correct-to-error transition\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1310, __PRETTY_FUNCTION__))
1309 "It's not a losing join if statuses do not represent "((!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus
::isErrorStatus(AfterJoin) && "It's not a losing join if statuses do not represent "
"correct-to-error transition") ? static_cast<void> (0)
: __assert_fail ("!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus::isErrorStatus(AfterJoin) && \"It's not a losing join if statuses do not represent \" \"correct-to-error transition\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1310, __PRETTY_FUNCTION__))
1310 "correct-to-error transition")((!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus
::isErrorStatus(AfterJoin) && "It's not a losing join if statuses do not represent "
"correct-to-error transition") ? static_cast<void> (0)
: __assert_fail ("!ParameterStatus::isErrorStatus(BeforeJoin) && ParameterStatus::isErrorStatus(AfterJoin) && \"It's not a losing join if statuses do not represent \" \"correct-to-error transition\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1310, __PRETTY_FUNCTION__))
;
1311
1312 const ParameterStatus &CurrentStatus =
1313 StateAfterJoin.getStatusFor(ParameterIndex);
1314
1315 return CurrentStatus.getKind() == AfterJoin &&
1316 anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
1317 }
1318
1319 /// Return true if any of the successors of the given basic block has
1320 /// a specified status for the given parameter.
1321 bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
1322 ParameterStatus::Kind ToFind) const {
1323 return llvm::any_of(
1324 Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
1325 return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
1326 });
1327 }
1328
1329 /// Check given expression that was discovered to escape.
1330 void checkEscapee(const Expr *E) {
1331 if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
1332 checkEscapee(*Parameter);
1333 }
1334 }
1335
1336 /// Check given parameter that was discovered to escape.
1337 void checkEscapee(const ParmVarDecl &Parameter) {
1338 if (auto Index = getIndex(Parameter)) {
1339 ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
1340
1341 if (CurrentParamStatus.getKind() == ParameterStatus::NotCalled) {
1342 CurrentParamStatus = ParameterStatus::Escaped;
1343 }
1344 }
1345 }
1346
1347 /// Mark all parameters in the current state as 'no-return'.
1348 void markNoReturn() {
1349 for (ParameterStatus &PS : CurrentState) {
1350 PS = ParameterStatus::NoReturn;
1351 }
1352 }
1353
1354 /// Check if the given assignment represents suppression and act on it.
1355 void checkSuppression(const BinaryOperator *Assignment) {
1356 // Suppression has the following form:
1357 // parameter = 0;
1358 // 0 can be of any form (NULL, nil, etc.)
1359 if (auto Index = getIndexOfExpression(Assignment->getLHS())) {
1360
1361 // We don't care what is written in the RHS, it could be whatever
1362 // we can interpret as 0.
1363 if (auto Constant =
1364 Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
1365 AC.getASTContext())) {
1366
1367 ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
1368
1369 if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
1370 // Even though this suppression mechanism is introduced to tackle
1371 // false positives for multiple calls, the fact that the user has
1372 // to use suppression can also tell us that we couldn't figure out
1373 // how different paths cancel each other out. And if that is true,
1374 // we will most certainly have false positives about parameters not
1375 // being called on certain paths.
1376 //
1377 // For this reason, we abandon tracking this parameter altogether.
1378 CurrentParamStatus = ParameterStatus::Reported;
1379 }
1380 }
1381 }
1382 }
1383
1384public:
1385 //===----------------------------------------------------------------------===//
1386 // Tree traversal methods
1387 //===----------------------------------------------------------------------===//
1388
1389 void VisitCallExpr(const CallExpr *Call) {
1390 // This call might be a direct call, i.e. a parameter call...
1391 checkDirectCall(Call);
1392 // ... or an indirect call, i.e. when parameter is an argument.
1393 checkIndirectCall(Call);
1
Calling 'CalledOnceChecker::checkIndirectCall'
1394 }
1395
1396 void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
1397 // The most common situation that we are defending against here is
1398 // copying a tracked parameter.
1399 if (const Expr *Receiver = Message->getInstanceReceiver()) {
1400 checkEscapee(Receiver);
1401 }
1402 // Message expressions unlike calls, could not be direct.
1403 checkIndirectCall(Message);
1404 }
1405
1406 void VisitBlockExpr(const BlockExpr *Block) {
1407 for (const auto &Capture : Block->getBlockDecl()->captures()) {
1408 // If a block captures a tracked parameter, it should be
1409 // considered escaped.
1410 // On one hand, blocks that do that should definitely call it on
1411 // every path. However, it is not guaranteed that the block
1412 // itself gets called whenever it gets created.
1413 //
1414 // Because we don't want to track blocks and whether they get called,
1415 // we consider such parameters simply escaped.
1416 if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
1417 checkEscapee(*Param);
1418 }
1419 }
1420 }
1421
1422 void VisitBinaryOperator(const BinaryOperator *Op) {
1423 if (Op->getOpcode() == clang::BO_Assign) {
1424 // Let's check if one of the tracked parameters is assigned into
1425 // something, and if it is we don't want to track extra variables, so we
1426 // consider it as an escapee.
1427 checkEscapee(Op->getRHS());
1428
1429 // Let's check whether this assignment is a suppression.
1430 checkSuppression(Op);
1431 }
1432 }
1433
1434 void VisitDeclStmt(const DeclStmt *DS) {
1435 // Variable initialization is not assignment and should be handled
1436 // separately.
1437 //
1438 // Multiple declarations can be a part of declaration statement.
1439 for (const auto *Declaration : DS->getDeclGroup()) {
1440 if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
1441 if (Var->getInit()) {
1442 checkEscapee(Var->getInit());
1443 }
1444 }
1445 }
1446 }
1447
1448 void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
1449 // We consider '(void)parameter' as a manual no-op escape.
1450 // It should be used to explicitly tell the analysis that this parameter
1451 // is intentionally not called on this path.
1452 if (Cast->getType().getCanonicalType()->isVoidType()) {
1453 checkEscapee(Cast->getSubExpr());
1454 }
1455 }
1456
1457 void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
1458 // It is OK not to call marked parameters on exceptional paths.
1459 markNoReturn();
1460 }
1461
1462private:
1463 unsigned size() const { return TrackedParams.size(); }
1464
1465 llvm::Optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
1466 return getIndexOfExpression(Call->getCallee());
1467 }
1468
1469 llvm::Optional<unsigned> getIndexOfExpression(const Expr *E) const {
1470 if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
1471 return getIndex(*Parameter);
1472 }
1473
1474 return llvm::None;
1475 }
1476
1477 llvm::Optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
1478 // Expected number of parameters that we actually track is 1.
1479 //
1480 // Also, the maximum number of declared parameters could not be on a scale
1481 // of hundreds of thousands.
1482 //
1483 // In this setting, linear search seems reasonable and even performs better
1484 // than bisection.
1485 ParamSizedVector<const ParmVarDecl *>::const_iterator It =
1486 llvm::find(TrackedParams, &Parameter);
1487
1488 if (It != TrackedParams.end()) {
1489 return It - TrackedParams.begin();
1490 }
1491
1492 return llvm::None;
1493 }
1494
1495 const ParmVarDecl *getParameter(unsigned Index) const {
1496 assert(Index < TrackedParams.size())((Index < TrackedParams.size()) ? static_cast<void> (
0) : __assert_fail ("Index < TrackedParams.size()", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/lib/Analysis/CalledOnceCheck.cpp"
, 1496, __PRETTY_FUNCTION__))
;
1497 return TrackedParams[Index];
1498 }
1499
1500 const CFG &FunctionCFG;
1501 AnalysisDeclContext &AC;
1502 CalledOnceCheckHandler &Handler;
1503 bool CheckConventionalParameters;
1504 // As of now, we turn this behavior off. So, we still are going to report
1505 // missing calls on paths that look like it was intentional.
1506 // Technically such reports are true positives, but they can make some users
1507 // grumpy because of the sheer number of warnings.
1508 // It can be turned back on if we decide that we want to have the other way
1509 // around.
1510 bool SuppressOnConventionalErrorPaths = false;
1511
1512 State CurrentState;
1513 ParamSizedVector<const ParmVarDecl *> TrackedParams;
1514 CFGSizedVector<State> States;
1515};
1516
1517} // end anonymous namespace
1518
1519namespace clang {
1520void checkCalledOnceParameters(AnalysisDeclContext &AC,
1521 CalledOnceCheckHandler &Handler,
1522 bool CheckConventionalParameters) {
1523 CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
1524}
1525} // end namespace clang

/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 282, __PRETTY_FUNCTION__))
;
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 286, __PRETTY_FUNCTION__))
;
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 293, __PRETTY_FUNCTION__))
;
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 297, __PRETTY_FUNCTION__))
;
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 315, __PRETTY_FUNCTION__))
;
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 343, __PRETTY_FUNCTION__))
;
344 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 344, __PRETTY_FUNCTION__))
;
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 373, __PRETTY_FUNCTION__))
;
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 382, __PRETTY_FUNCTION__))
;
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 388, __PRETTY_FUNCTION__))
;
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 397, __PRETTY_FUNCTION__))
;
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 401, __PRETTY_FUNCTION__))
;
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 408, __PRETTY_FUNCTION__))
;
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 463, __PRETTY_FUNCTION__))
463 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 463, __PRETTY_FUNCTION__))
;
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 465, __PRETTY_FUNCTION__))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 465, __PRETTY_FUNCTION__))
;
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 467, __PRETTY_FUNCTION__))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 467, __PRETTY_FUNCTION__))
;
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 // Consider pointer size address spaces to be equivalent to default.
490 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
491 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
492 }
493
494 /// Returns true if the address space in these qualifiers is equal to or
495 /// a superset of the address space in the argument qualifiers.
496 bool isAddressSpaceSupersetOf(Qualifiers other) const {
497 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
498 }
499
500 /// Determines if these qualifiers compatibly include another set.
501 /// Generally this answers the question of whether an object with the other
502 /// qualifiers can be safely used as an object with these qualifiers.
503 bool compatiblyIncludes(Qualifiers other) const {
504 return isAddressSpaceSupersetOf(other) &&
505 // ObjC GC qualifiers can match, be added, or be removed, but can't
506 // be changed.
507 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
508 !other.hasObjCGCAttr()) &&
509 // ObjC lifetime qualifiers must match exactly.
510 getObjCLifetime() == other.getObjCLifetime() &&
511 // CVR qualifiers may subset.
512 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
513 // U qualifier may superset.
514 (!other.hasUnaligned() || hasUnaligned());
515 }
516
517 /// Determines if these qualifiers compatibly include another set of
518 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
519 ///
520 /// One set of Objective-C lifetime qualifiers compatibly includes the other
521 /// if the lifetime qualifiers match, or if both are non-__weak and the
522 /// including set also contains the 'const' qualifier, or both are non-__weak
523 /// and one is None (which can only happen in non-ARC modes).
524 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
525 if (getObjCLifetime() == other.getObjCLifetime())
526 return true;
527
528 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
529 return false;
530
531 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
532 return true;
533
534 return hasConst();
535 }
536
537 /// Determine whether this set of qualifiers is a strict superset of
538 /// another set of qualifiers, not considering qualifier compatibility.
539 bool isStrictSupersetOf(Qualifiers Other) const;
540
541 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
542 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
543
544 explicit operator bool() const { return hasQualifiers(); }
545
546 Qualifiers &operator+=(Qualifiers R) {
547 addQualifiers(R);
548 return *this;
549 }
550
551 // Union two qualifier sets. If an enumerated qualifier appears
552 // in both sets, use the one from the right.
553 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
554 L += R;
555 return L;
556 }
557
558 Qualifiers &operator-=(Qualifiers R) {
559 removeQualifiers(R);
560 return *this;
561 }
562
563 /// Compute the difference between two qualifier sets.
564 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
565 L -= R;
566 return L;
567 }
568
569 std::string getAsString() const;
570 std::string getAsString(const PrintingPolicy &Policy) const;
571
572 static std::string getAddrSpaceAsString(LangAS AS);
573
574 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
575 void print(raw_ostream &OS, const PrintingPolicy &Policy,
576 bool appendSpaceIfNonEmpty = false) const;
577
578 void Profile(llvm::FoldingSetNodeID &ID) const {
579 ID.AddInteger(Mask);
580 }
581
582private:
583 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
584 // |C R V|U|GCAttr|Lifetime|AddressSpace|
585 uint32_t Mask = 0;
586
587 static const uint32_t UMask = 0x8;
588 static const uint32_t UShift = 3;
589 static const uint32_t GCAttrMask = 0x30;
590 static const uint32_t GCAttrShift = 4;
591 static const uint32_t LifetimeMask = 0x1C0;
592 static const uint32_t LifetimeShift = 6;
593 static const uint32_t AddressSpaceMask =
594 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
595 static const uint32_t AddressSpaceShift = 9;
596};
597
598/// A std::pair-like structure for storing a qualified type split
599/// into its local qualifiers and its locally-unqualified type.
600struct SplitQualType {
601 /// The locally-unqualified type.
602 const Type *Ty = nullptr;
603
604 /// The local qualifiers.
605 Qualifiers Quals;
606
607 SplitQualType() = default;
608 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
609
610 SplitQualType getSingleStepDesugaredType() const; // end of this file
611
612 // Make std::tie work.
613 std::pair<const Type *,Qualifiers> asPair() const {
614 return std::pair<const Type *, Qualifiers>(Ty, Quals);
615 }
616
617 friend bool operator==(SplitQualType a, SplitQualType b) {
618 return a.Ty == b.Ty && a.Quals == b.Quals;
619 }
620 friend bool operator!=(SplitQualType a, SplitQualType b) {
621 return a.Ty != b.Ty || a.Quals != b.Quals;
622 }
623};
624
625/// The kind of type we are substituting Objective-C type arguments into.
626///
627/// The kind of substitution affects the replacement of type parameters when
628/// no concrete type information is provided, e.g., when dealing with an
629/// unspecialized type.
630enum class ObjCSubstitutionContext {
631 /// An ordinary type.
632 Ordinary,
633
634 /// The result type of a method or function.
635 Result,
636
637 /// The parameter type of a method or function.
638 Parameter,
639
640 /// The type of a property.
641 Property,
642
643 /// The superclass of a type.
644 Superclass,
645};
646
647/// A (possibly-)qualified type.
648///
649/// For efficiency, we don't store CV-qualified types as nodes on their
650/// own: instead each reference to a type stores the qualifiers. This
651/// greatly reduces the number of nodes we need to allocate for types (for
652/// example we only need one for 'int', 'const int', 'volatile int',
653/// 'const volatile int', etc).
654///
655/// As an added efficiency bonus, instead of making this a pair, we
656/// just store the two bits we care about in the low bits of the
657/// pointer. To handle the packing/unpacking, we make QualType be a
658/// simple wrapper class that acts like a smart pointer. A third bit
659/// indicates whether there are extended qualifiers present, in which
660/// case the pointer points to a special structure.
661class QualType {
662 friend class QualifierCollector;
663
664 // Thankfully, these are efficiently composable.
665 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
666 Qualifiers::FastWidth> Value;
667
668 const ExtQuals *getExtQualsUnsafe() const {
669 return Value.getPointer().get<const ExtQuals*>();
670 }
671
672 const Type *getTypePtrUnsafe() const {
673 return Value.getPointer().get<const Type*>();
674 }
675
676 const ExtQualsTypeCommonBase *getCommonPtr() const {
677 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 677, __PRETTY_FUNCTION__))
;
678 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
679 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
680 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
681 }
682
683public:
684 QualType() = default;
685 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
686 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
687
688 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
689 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
690
691 /// Retrieves a pointer to the underlying (unqualified) type.
692 ///
693 /// This function requires that the type not be NULL. If the type might be
694 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
695 const Type *getTypePtr() const;
696
697 const Type *getTypePtrOrNull() const;
698
699 /// Retrieves a pointer to the name of the base type.
700 const IdentifierInfo *getBaseTypeIdentifier() const;
701
702 /// Divides a QualType into its unqualified type and a set of local
703 /// qualifiers.
704 SplitQualType split() const;
705
706 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
707
708 static QualType getFromOpaquePtr(const void *Ptr) {
709 QualType T;
710 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
711 return T;
712 }
713
714 const Type &operator*() const {
715 return *getTypePtr();
716 }
717
718 const Type *operator->() const {
719 return getTypePtr();
720 }
721
722 bool isCanonical() const;
723 bool isCanonicalAsParam() const;
724
725 /// Return true if this QualType doesn't point to a type yet.
726 bool isNull() const {
727 return Value.getPointer().isNull();
728 }
729
730 /// Determine whether this particular QualType instance has the
731 /// "const" qualifier set, without looking through typedefs that may have
732 /// added "const" at a different level.
733 bool isLocalConstQualified() const {
734 return (getLocalFastQualifiers() & Qualifiers::Const);
735 }
736
737 /// Determine whether this type is const-qualified.
738 bool isConstQualified() const;
739
740 /// Determine whether this particular QualType instance has the
741 /// "restrict" qualifier set, without looking through typedefs that may have
742 /// added "restrict" at a different level.
743 bool isLocalRestrictQualified() const {
744 return (getLocalFastQualifiers() & Qualifiers::Restrict);
745 }
746
747 /// Determine whether this type is restrict-qualified.
748 bool isRestrictQualified() const;
749
750 /// Determine whether this particular QualType instance has the
751 /// "volatile" qualifier set, without looking through typedefs that may have
752 /// added "volatile" at a different level.
753 bool isLocalVolatileQualified() const {
754 return (getLocalFastQualifiers() & Qualifiers::Volatile);
755 }
756
757 /// Determine whether this type is volatile-qualified.
758 bool isVolatileQualified() const;
759
760 /// Determine whether this particular QualType instance has any
761 /// qualifiers, without looking through any typedefs that might add
762 /// qualifiers at a different level.
763 bool hasLocalQualifiers() const {
764 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
765 }
766
767 /// Determine whether this type has any qualifiers.
768 bool hasQualifiers() const;
769
770 /// Determine whether this particular QualType instance has any
771 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
772 /// instance.
773 bool hasLocalNonFastQualifiers() const {
774 return Value.getPointer().is<const ExtQuals*>();
775 }
776
777 /// Retrieve the set of qualifiers local to this particular QualType
778 /// instance, not including any qualifiers acquired through typedefs or
779 /// other sugar.
780 Qualifiers getLocalQualifiers() const;
781
782 /// Retrieve the set of qualifiers applied to this type.
783 Qualifiers getQualifiers() const;
784
785 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
786 /// local to this particular QualType instance, not including any qualifiers
787 /// acquired through typedefs or other sugar.
788 unsigned getLocalCVRQualifiers() const {
789 return getLocalFastQualifiers();
790 }
791
792 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
793 /// applied to this type.
794 unsigned getCVRQualifiers() const;
795
796 bool isConstant(const ASTContext& Ctx) const {
797 return QualType::isConstant(*this, Ctx);
798 }
799
800 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
801 bool isPODType(const ASTContext &Context) const;
802
803 /// Return true if this is a POD type according to the rules of the C++98
804 /// standard, regardless of the current compilation's language.
805 bool isCXX98PODType(const ASTContext &Context) const;
806
807 /// Return true if this is a POD type according to the more relaxed rules
808 /// of the C++11 standard, regardless of the current compilation's language.
809 /// (C++0x [basic.types]p9). Note that, unlike
810 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
811 bool isCXX11PODType(const ASTContext &Context) const;
812
813 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
814 bool isTrivialType(const ASTContext &Context) const;
815
816 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
817 bool isTriviallyCopyableType(const ASTContext &Context) const;
818
819
820 /// Returns true if it is a class and it might be dynamic.
821 bool mayBeDynamicClass() const;
822
823 /// Returns true if it is not a class or if the class might not be dynamic.
824 bool mayBeNotDynamicClass() const;
825
826 // Don't promise in the API that anything besides 'const' can be
827 // easily added.
828
829 /// Add the `const` type qualifier to this QualType.
830 void addConst() {
831 addFastQualifiers(Qualifiers::Const);
832 }
833 QualType withConst() const {
834 return withFastQualifiers(Qualifiers::Const);
835 }
836
837 /// Add the `volatile` type qualifier to this QualType.
838 void addVolatile() {
839 addFastQualifiers(Qualifiers::Volatile);
840 }
841 QualType withVolatile() const {
842 return withFastQualifiers(Qualifiers::Volatile);
843 }
844
845 /// Add the `restrict` qualifier to this QualType.
846 void addRestrict() {
847 addFastQualifiers(Qualifiers::Restrict);
848 }
849 QualType withRestrict() const {
850 return withFastQualifiers(Qualifiers::Restrict);
851 }
852
853 QualType withCVRQualifiers(unsigned CVR) const {
854 return withFastQualifiers(CVR);
855 }
856
857 void addFastQualifiers(unsigned TQs) {
858 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 859, __PRETTY_FUNCTION__))
859 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 859, __PRETTY_FUNCTION__))
;
860 Value.setInt(Value.getInt() | TQs);
861 }
862
863 void removeLocalConst();
864 void removeLocalVolatile();
865 void removeLocalRestrict();
866 void removeLocalCVRQualifiers(unsigned Mask);
867
868 void removeLocalFastQualifiers() { Value.setInt(0); }
869 void removeLocalFastQualifiers(unsigned Mask) {
870 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 870, __PRETTY_FUNCTION__))
;
871 Value.setInt(Value.getInt() & ~Mask);
872 }
873
874 // Creates a type with the given qualifiers in addition to any
875 // qualifiers already on this type.
876 QualType withFastQualifiers(unsigned TQs) const {
877 QualType T = *this;
878 T.addFastQualifiers(TQs);
879 return T;
880 }
881
882 // Creates a type with exactly the given fast qualifiers, removing
883 // any existing fast qualifiers.
884 QualType withExactLocalFastQualifiers(unsigned TQs) const {
885 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
886 }
887
888 // Removes fast qualifiers, but leaves any extended qualifiers in place.
889 QualType withoutLocalFastQualifiers() const {
890 QualType T = *this;
891 T.removeLocalFastQualifiers();
892 return T;
893 }
894
895 QualType getCanonicalType() const;
896
897 /// Return this type with all of the instance-specific qualifiers
898 /// removed, but without removing any qualifiers that may have been applied
899 /// through typedefs.
900 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
901
902 /// Retrieve the unqualified variant of the given type,
903 /// removing as little sugar as possible.
904 ///
905 /// This routine looks through various kinds of sugar to find the
906 /// least-desugared type that is unqualified. For example, given:
907 ///
908 /// \code
909 /// typedef int Integer;
910 /// typedef const Integer CInteger;
911 /// typedef CInteger DifferenceType;
912 /// \endcode
913 ///
914 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
915 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
916 ///
917 /// The resulting type might still be qualified if it's sugar for an array
918 /// type. To strip qualifiers even from within a sugared array type, use
919 /// ASTContext::getUnqualifiedArrayType.
920 inline QualType getUnqualifiedType() const;
921
922 /// Retrieve the unqualified variant of the given type, removing as little
923 /// sugar as possible.
924 ///
925 /// Like getUnqualifiedType(), but also returns the set of
926 /// qualifiers that were built up.
927 ///
928 /// The resulting type might still be qualified if it's sugar for an array
929 /// type. To strip qualifiers even from within a sugared array type, use
930 /// ASTContext::getUnqualifiedArrayType.
931 inline SplitQualType getSplitUnqualifiedType() const;
932
933 /// Determine whether this type is more qualified than the other
934 /// given type, requiring exact equality for non-CVR qualifiers.
935 bool isMoreQualifiedThan(QualType Other) const;
936
937 /// Determine whether this type is at least as qualified as the other
938 /// given type, requiring exact equality for non-CVR qualifiers.
939 bool isAtLeastAsQualifiedAs(QualType Other) const;
940
941 QualType getNonReferenceType() const;
942
943 /// Determine the type of a (typically non-lvalue) expression with the
944 /// specified result type.
945 ///
946 /// This routine should be used for expressions for which the return type is
947 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
948 /// an lvalue. It removes a top-level reference (since there are no
949 /// expressions of reference type) and deletes top-level cvr-qualifiers
950 /// from non-class types (in C++) or all types (in C).
951 QualType getNonLValueExprType(const ASTContext &Context) const;
952
953 /// Remove an outer pack expansion type (if any) from this type. Used as part
954 /// of converting the type of a declaration to the type of an expression that
955 /// references that expression. It's meaningless for an expression to have a
956 /// pack expansion type.
957 QualType getNonPackExpansionType() const;
958
959 /// Return the specified type with any "sugar" removed from
960 /// the type. This takes off typedefs, typeof's etc. If the outer level of
961 /// the type is already concrete, it returns it unmodified. This is similar
962 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
963 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
964 /// concrete.
965 ///
966 /// Qualifiers are left in place.
967 QualType getDesugaredType(const ASTContext &Context) const {
968 return getDesugaredType(*this, Context);
969 }
970
971 SplitQualType getSplitDesugaredType() const {
972 return getSplitDesugaredType(*this);
973 }
974
975 /// Return the specified type with one level of "sugar" removed from
976 /// the type.
977 ///
978 /// This routine takes off the first typedef, typeof, etc. If the outer level
979 /// of the type is already concrete, it returns it unmodified.
980 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
981 return getSingleStepDesugaredTypeImpl(*this, Context);
982 }
983
984 /// Returns the specified type after dropping any
985 /// outer-level parentheses.
986 QualType IgnoreParens() const {
987 if (isa<ParenType>(*this))
988 return QualType::IgnoreParens(*this);
989 return *this;
990 }
991
992 /// Indicate whether the specified types and qualifiers are identical.
993 friend bool operator==(const QualType &LHS, const QualType &RHS) {
994 return LHS.Value == RHS.Value;
995 }
996 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
997 return LHS.Value != RHS.Value;
998 }
999 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1000 return LHS.Value < RHS.Value;
1001 }
1002
1003 static std::string getAsString(SplitQualType split,
1004 const PrintingPolicy &Policy) {
1005 return getAsString(split.Ty, split.Quals, Policy);
1006 }
1007 static std::string getAsString(const Type *ty, Qualifiers qs,
1008 const PrintingPolicy &Policy);
1009
1010 std::string getAsString() const;
1011 std::string getAsString(const PrintingPolicy &Policy) const;
1012
1013 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1014 const Twine &PlaceHolder = Twine(),
1015 unsigned Indentation = 0) const;
1016
1017 static void print(SplitQualType split, raw_ostream &OS,
1018 const PrintingPolicy &policy, const Twine &PlaceHolder,
1019 unsigned Indentation = 0) {
1020 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1021 }
1022
1023 static void print(const Type *ty, Qualifiers qs,
1024 raw_ostream &OS, const PrintingPolicy &policy,
1025 const Twine &PlaceHolder,
1026 unsigned Indentation = 0);
1027
1028 void getAsStringInternal(std::string &Str,
1029 const PrintingPolicy &Policy) const;
1030
1031 static void getAsStringInternal(SplitQualType split, std::string &out,
1032 const PrintingPolicy &policy) {
1033 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1034 }
1035
1036 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1037 std::string &out,
1038 const PrintingPolicy &policy);
1039
1040 class StreamedQualTypeHelper {
1041 const QualType &T;
1042 const PrintingPolicy &Policy;
1043 const Twine &PlaceHolder;
1044 unsigned Indentation;
1045
1046 public:
1047 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1048 const Twine &PlaceHolder, unsigned Indentation)
1049 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1050 Indentation(Indentation) {}
1051
1052 friend raw_ostream &operator<<(raw_ostream &OS,
1053 const StreamedQualTypeHelper &SQT) {
1054 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1055 return OS;
1056 }
1057 };
1058
1059 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder = Twine(),
1061 unsigned Indentation = 0) const {
1062 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1063 }
1064
1065 void dump(const char *s) const;
1066 void dump() const;
1067 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1068
1069 void Profile(llvm::FoldingSetNodeID &ID) const {
1070 ID.AddPointer(getAsOpaquePtr());
1071 }
1072
1073 /// Check if this type has any address space qualifier.
1074 inline bool hasAddressSpace() const;
1075
1076 /// Return the address space of this type.
1077 inline LangAS getAddressSpace() const;
1078
1079 /// Returns true if address space qualifiers overlap with T address space
1080 /// qualifiers.
1081 /// OpenCL C defines conversion rules for pointers to different address spaces
1082 /// and notion of overlapping address spaces.
1083 /// CL1.1 or CL1.2:
1084 /// address spaces overlap iff they are they same.
1085 /// OpenCL C v2.0 s6.5.5 adds:
1086 /// __generic overlaps with any address space except for __constant.
1087 bool isAddressSpaceOverlapping(QualType T) const {
1088 Qualifiers Q = getQualifiers();
1089 Qualifiers TQ = T.getQualifiers();
1090 // Address spaces overlap if at least one of them is a superset of another
1091 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1092 }
1093
1094 /// Returns gc attribute of this type.
1095 inline Qualifiers::GC getObjCGCAttr() const;
1096
1097 /// true when Type is objc's weak.
1098 bool isObjCGCWeak() const {
1099 return getObjCGCAttr() == Qualifiers::Weak;
1100 }
1101
1102 /// true when Type is objc's strong.
1103 bool isObjCGCStrong() const {
1104 return getObjCGCAttr() == Qualifiers::Strong;
1105 }
1106
1107 /// Returns lifetime attribute of this type.
1108 Qualifiers::ObjCLifetime getObjCLifetime() const {
1109 return getQualifiers().getObjCLifetime();
1110 }
1111
1112 bool hasNonTrivialObjCLifetime() const {
1113 return getQualifiers().hasNonTrivialObjCLifetime();
1114 }
1115
1116 bool hasStrongOrWeakObjCLifetime() const {
1117 return getQualifiers().hasStrongOrWeakObjCLifetime();
1118 }
1119
1120 // true when Type is objc's weak and weak is enabled but ARC isn't.
1121 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1122
1123 enum PrimitiveDefaultInitializeKind {
1124 /// The type does not fall into any of the following categories. Note that
1125 /// this case is zero-valued so that values of this enum can be used as a
1126 /// boolean condition for non-triviality.
1127 PDIK_Trivial,
1128
1129 /// The type is an Objective-C retainable pointer type that is qualified
1130 /// with the ARC __strong qualifier.
1131 PDIK_ARCStrong,
1132
1133 /// The type is an Objective-C retainable pointer type that is qualified
1134 /// with the ARC __weak qualifier.
1135 PDIK_ARCWeak,
1136
1137 /// The type is a struct containing a field whose type is not PCK_Trivial.
1138 PDIK_Struct
1139 };
1140
1141 /// Functions to query basic properties of non-trivial C struct types.
1142
1143 /// Check if this is a non-trivial type that would cause a C struct
1144 /// transitively containing this type to be non-trivial to default initialize
1145 /// and return the kind.
1146 PrimitiveDefaultInitializeKind
1147 isNonTrivialToPrimitiveDefaultInitialize() const;
1148
1149 enum PrimitiveCopyKind {
1150 /// The type does not fall into any of the following categories. Note that
1151 /// this case is zero-valued so that values of this enum can be used as a
1152 /// boolean condition for non-triviality.
1153 PCK_Trivial,
1154
1155 /// The type would be trivial except that it is volatile-qualified. Types
1156 /// that fall into one of the other non-trivial cases may additionally be
1157 /// volatile-qualified.
1158 PCK_VolatileTrivial,
1159
1160 /// The type is an Objective-C retainable pointer type that is qualified
1161 /// with the ARC __strong qualifier.
1162 PCK_ARCStrong,
1163
1164 /// The type is an Objective-C retainable pointer type that is qualified
1165 /// with the ARC __weak qualifier.
1166 PCK_ARCWeak,
1167
1168 /// The type is a struct containing a field whose type is neither
1169 /// PCK_Trivial nor PCK_VolatileTrivial.
1170 /// Note that a C++ struct type does not necessarily match this; C++ copying
1171 /// semantics are too complex to express here, in part because they depend
1172 /// on the exact constructor or assignment operator that is chosen by
1173 /// overload resolution to do the copy.
1174 PCK_Struct
1175 };
1176
1177 /// Check if this is a non-trivial type that would cause a C struct
1178 /// transitively containing this type to be non-trivial to copy and return the
1179 /// kind.
1180 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1181
1182 /// Check if this is a non-trivial type that would cause a C struct
1183 /// transitively containing this type to be non-trivial to destructively
1184 /// move and return the kind. Destructive move in this context is a C++-style
1185 /// move in which the source object is placed in a valid but unspecified state
1186 /// after it is moved, as opposed to a truly destructive move in which the
1187 /// source object is placed in an uninitialized state.
1188 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1189
1190 enum DestructionKind {
1191 DK_none,
1192 DK_cxx_destructor,
1193 DK_objc_strong_lifetime,
1194 DK_objc_weak_lifetime,
1195 DK_nontrivial_c_struct
1196 };
1197
1198 /// Returns a nonzero value if objects of this type require
1199 /// non-trivial work to clean up after. Non-zero because it's
1200 /// conceivable that qualifiers (objc_gc(weak)?) could make
1201 /// something require destruction.
1202 DestructionKind isDestructedType() const {
1203 return isDestructedTypeImpl(*this);
1204 }
1205
1206 /// Check if this is or contains a C union that is non-trivial to
1207 /// default-initialize, which is a union that has a member that is non-trivial
1208 /// to default-initialize. If this returns true,
1209 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1210 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1211
1212 /// Check if this is or contains a C union that is non-trivial to destruct,
1213 /// which is a union that has a member that is non-trivial to destruct. If
1214 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1215 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1216
1217 /// Check if this is or contains a C union that is non-trivial to copy, which
1218 /// is a union that has a member that is non-trivial to copy. If this returns
1219 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1220 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1221
1222 /// Determine whether expressions of the given type are forbidden
1223 /// from being lvalues in C.
1224 ///
1225 /// The expression types that are forbidden to be lvalues are:
1226 /// - 'void', but not qualified void
1227 /// - function types
1228 ///
1229 /// The exact rule here is C99 6.3.2.1:
1230 /// An lvalue is an expression with an object type or an incomplete
1231 /// type other than void.
1232 bool isCForbiddenLValueType() const;
1233
1234 /// Substitute type arguments for the Objective-C type parameters used in the
1235 /// subject type.
1236 ///
1237 /// \param ctx ASTContext in which the type exists.
1238 ///
1239 /// \param typeArgs The type arguments that will be substituted for the
1240 /// Objective-C type parameters in the subject type, which are generally
1241 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1242 /// parameters will be replaced with their bounds or id/Class, as appropriate
1243 /// for the context.
1244 ///
1245 /// \param context The context in which the subject type was written.
1246 ///
1247 /// \returns the resulting type.
1248 QualType substObjCTypeArgs(ASTContext &ctx,
1249 ArrayRef<QualType> typeArgs,
1250 ObjCSubstitutionContext context) const;
1251
1252 /// Substitute type arguments from an object type for the Objective-C type
1253 /// parameters used in the subject type.
1254 ///
1255 /// This operation combines the computation of type arguments for
1256 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1257 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1258 /// callers that need to perform a single substitution in isolation.
1259 ///
1260 /// \param objectType The type of the object whose member type we're
1261 /// substituting into. For example, this might be the receiver of a message
1262 /// or the base of a property access.
1263 ///
1264 /// \param dc The declaration context from which the subject type was
1265 /// retrieved, which indicates (for example) which type parameters should
1266 /// be substituted.
1267 ///
1268 /// \param context The context in which the subject type was written.
1269 ///
1270 /// \returns the subject type after replacing all of the Objective-C type
1271 /// parameters with their corresponding arguments.
1272 QualType substObjCMemberType(QualType objectType,
1273 const DeclContext *dc,
1274 ObjCSubstitutionContext context) const;
1275
1276 /// Strip Objective-C "__kindof" types from the given type.
1277 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1278
1279 /// Remove all qualifiers including _Atomic.
1280 QualType getAtomicUnqualifiedType() const;
1281
1282private:
1283 // These methods are implemented in a separate translation unit;
1284 // "static"-ize them to avoid creating temporary QualTypes in the
1285 // caller.
1286 static bool isConstant(QualType T, const ASTContext& Ctx);
1287 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1288 static SplitQualType getSplitDesugaredType(QualType T);
1289 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1290 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1291 const ASTContext &C);
1292 static QualType IgnoreParens(QualType T);
1293 static DestructionKind isDestructedTypeImpl(QualType type);
1294
1295 /// Check if \param RD is or contains a non-trivial C union.
1296 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1297 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1298 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1299};
1300
1301} // namespace clang
1302
1303namespace llvm {
1304
1305/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1306/// to a specific Type class.
1307template<> struct simplify_type< ::clang::QualType> {
1308 using SimpleType = const ::clang::Type *;
1309
1310 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1311 return Val.getTypePtr();
1312 }
1313};
1314
1315// Teach SmallPtrSet that QualType is "basically a pointer".
1316template<>
1317struct PointerLikeTypeTraits<clang::QualType> {
1318 static inline void *getAsVoidPointer(clang::QualType P) {
1319 return P.getAsOpaquePtr();
1320 }
1321
1322 static inline clang::QualType getFromVoidPointer(void *P) {
1323 return clang::QualType::getFromOpaquePtr(P);
1324 }
1325
1326 // Various qualifiers go in low bits.
1327 static constexpr int NumLowBitsAvailable = 0;
1328};
1329
1330} // namespace llvm
1331
1332namespace clang {
1333
1334/// Base class that is common to both the \c ExtQuals and \c Type
1335/// classes, which allows \c QualType to access the common fields between the
1336/// two.
1337class ExtQualsTypeCommonBase {
1338 friend class ExtQuals;
1339 friend class QualType;
1340 friend class Type;
1341
1342 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1343 /// a self-referential pointer (for \c Type).
1344 ///
1345 /// This pointer allows an efficient mapping from a QualType to its
1346 /// underlying type pointer.
1347 const Type *const BaseType;
1348
1349 /// The canonical type of this type. A QualType.
1350 QualType CanonicalType;
1351
1352 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1353 : BaseType(baseType), CanonicalType(canon) {}
1354};
1355
1356/// We can encode up to four bits in the low bits of a
1357/// type pointer, but there are many more type qualifiers that we want
1358/// to be able to apply to an arbitrary type. Therefore we have this
1359/// struct, intended to be heap-allocated and used by QualType to
1360/// store qualifiers.
1361///
1362/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1363/// in three low bits on the QualType pointer; a fourth bit records whether
1364/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1365/// Objective-C GC attributes) are much more rare.
1366class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1367 // NOTE: changing the fast qualifiers should be straightforward as
1368 // long as you don't make 'const' non-fast.
1369 // 1. Qualifiers:
1370 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1371 // Fast qualifiers must occupy the low-order bits.
1372 // b) Update Qualifiers::FastWidth and FastMask.
1373 // 2. QualType:
1374 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1375 // b) Update remove{Volatile,Restrict}, defined near the end of
1376 // this header.
1377 // 3. ASTContext:
1378 // a) Update get{Volatile,Restrict}Type.
1379
1380 /// The immutable set of qualifiers applied by this node. Always contains
1381 /// extended qualifiers.
1382 Qualifiers Quals;
1383
1384 ExtQuals *this_() { return this; }
1385
1386public:
1387 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1388 : ExtQualsTypeCommonBase(baseType,
1389 canon.isNull() ? QualType(this_(), 0) : canon),
1390 Quals(quals) {
1391 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1392, __PRETTY_FUNCTION__))
1392 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1392, __PRETTY_FUNCTION__))
;
1393 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1394, __PRETTY_FUNCTION__))
1394 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1394, __PRETTY_FUNCTION__))
;
1395 }
1396
1397 Qualifiers getQualifiers() const { return Quals; }
1398
1399 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1400 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1401
1402 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1403 Qualifiers::ObjCLifetime getObjCLifetime() const {
1404 return Quals.getObjCLifetime();
1405 }
1406
1407 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1408 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1409
1410 const Type *getBaseType() const { return BaseType; }
1411
1412public:
1413 void Profile(llvm::FoldingSetNodeID &ID) const {
1414 Profile(ID, getBaseType(), Quals);
1415 }
1416
1417 static void Profile(llvm::FoldingSetNodeID &ID,
1418 const Type *BaseType,
1419 Qualifiers Quals) {
1420 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1420, __PRETTY_FUNCTION__))
;
1421 ID.AddPointer(BaseType);
1422 Quals.Profile(ID);
1423 }
1424};
1425
1426/// The kind of C++11 ref-qualifier associated with a function type.
1427/// This determines whether a member function's "this" object can be an
1428/// lvalue, rvalue, or neither.
1429enum RefQualifierKind {
1430 /// No ref-qualifier was provided.
1431 RQ_None = 0,
1432
1433 /// An lvalue ref-qualifier was provided (\c &).
1434 RQ_LValue,
1435
1436 /// An rvalue ref-qualifier was provided (\c &&).
1437 RQ_RValue
1438};
1439
1440/// Which keyword(s) were used to create an AutoType.
1441enum class AutoTypeKeyword {
1442 /// auto
1443 Auto,
1444
1445 /// decltype(auto)
1446 DecltypeAuto,
1447
1448 /// __auto_type (GNU extension)
1449 GNUAutoType
1450};
1451
1452/// The base class of the type hierarchy.
1453///
1454/// A central concept with types is that each type always has a canonical
1455/// type. A canonical type is the type with any typedef names stripped out
1456/// of it or the types it references. For example, consider:
1457///
1458/// typedef int foo;
1459/// typedef foo* bar;
1460/// 'int *' 'foo *' 'bar'
1461///
1462/// There will be a Type object created for 'int'. Since int is canonical, its
1463/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1464/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1465/// there is a PointerType that represents 'int*', which, like 'int', is
1466/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1467/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1468/// is also 'int*'.
1469///
1470/// Non-canonical types are useful for emitting diagnostics, without losing
1471/// information about typedefs being used. Canonical types are useful for type
1472/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1473/// about whether something has a particular form (e.g. is a function type),
1474/// because they implicitly, recursively, strip all typedefs out of a type.
1475///
1476/// Types, once created, are immutable.
1477///
1478class alignas(8) Type : public ExtQualsTypeCommonBase {
1479public:
1480 enum TypeClass {
1481#define TYPE(Class, Base) Class,
1482#define LAST_TYPE(Class) TypeLast = Class
1483#define ABSTRACT_TYPE(Class, Base)
1484#include "clang/AST/TypeNodes.inc"
1485 };
1486
1487private:
1488 /// Bitfields required by the Type class.
1489 class TypeBitfields {
1490 friend class Type;
1491 template <class T> friend class TypePropertyCache;
1492
1493 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1494 unsigned TC : 8;
1495
1496 /// Store information on the type dependency.
1497 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1498
1499 /// True if the cache (i.e. the bitfields here starting with
1500 /// 'Cache') is valid.
1501 mutable unsigned CacheValid : 1;
1502
1503 /// Linkage of this type.
1504 mutable unsigned CachedLinkage : 3;
1505
1506 /// Whether this type involves and local or unnamed types.
1507 mutable unsigned CachedLocalOrUnnamed : 1;
1508
1509 /// Whether this type comes from an AST file.
1510 mutable unsigned FromAST : 1;
1511
1512 bool isCacheValid() const {
1513 return CacheValid;
1514 }
1515
1516 Linkage getLinkage() const {
1517 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1517, __PRETTY_FUNCTION__))
;
1518 return static_cast<Linkage>(CachedLinkage);
1519 }
1520
1521 bool hasLocalOrUnnamedType() const {
1522 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 1522, __PRETTY_FUNCTION__))
;
1523 return CachedLocalOrUnnamed;
1524 }
1525 };
1526 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1527
1528protected:
1529 // These classes allow subclasses to somewhat cleanly pack bitfields
1530 // into Type.
1531
1532 class ArrayTypeBitfields {
1533 friend class ArrayType;
1534
1535 unsigned : NumTypeBits;
1536
1537 /// CVR qualifiers from declarations like
1538 /// 'int X[static restrict 4]'. For function parameters only.
1539 unsigned IndexTypeQuals : 3;
1540
1541 /// Storage class qualifiers from declarations like
1542 /// 'int X[static restrict 4]'. For function parameters only.
1543 /// Actually an ArrayType::ArraySizeModifier.
1544 unsigned SizeModifier : 3;
1545 };
1546
1547 class ConstantArrayTypeBitfields {
1548 friend class ConstantArrayType;
1549
1550 unsigned : NumTypeBits + 3 + 3;
1551
1552 /// Whether we have a stored size expression.
1553 unsigned HasStoredSizeExpr : 1;
1554 };
1555
1556 class BuiltinTypeBitfields {
1557 friend class BuiltinType;
1558
1559 unsigned : NumTypeBits;
1560
1561 /// The kind (BuiltinType::Kind) of builtin type this is.
1562 unsigned Kind : 8;
1563 };
1564
1565 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1566 /// Only common bits are stored here. Additional uncommon bits are stored
1567 /// in a trailing object after FunctionProtoType.
1568 class FunctionTypeBitfields {
1569 friend class FunctionProtoType;
1570 friend class FunctionType;
1571
1572 unsigned : NumTypeBits;
1573
1574 /// Extra information which affects how the function is called, like
1575 /// regparm and the calling convention.
1576 unsigned ExtInfo : 13;
1577
1578 /// The ref-qualifier associated with a \c FunctionProtoType.
1579 ///
1580 /// This is a value of type \c RefQualifierKind.
1581 unsigned RefQualifier : 2;
1582
1583 /// Used only by FunctionProtoType, put here to pack with the
1584 /// other bitfields.
1585 /// The qualifiers are part of FunctionProtoType because...
1586 ///
1587 /// C++ 8.3.5p4: The return type, the parameter type list and the
1588 /// cv-qualifier-seq, [...], are part of the function type.
1589 unsigned FastTypeQuals : Qualifiers::FastWidth;
1590 /// Whether this function has extended Qualifiers.
1591 unsigned HasExtQuals : 1;
1592
1593 /// The number of parameters this function has, not counting '...'.
1594 /// According to [implimits] 8 bits should be enough here but this is
1595 /// somewhat easy to exceed with metaprogramming and so we would like to
1596 /// keep NumParams as wide as reasonably possible.
1597 unsigned NumParams : 16;
1598
1599 /// The type of exception specification this function has.
1600 unsigned ExceptionSpecType : 4;
1601
1602 /// Whether this function has extended parameter information.
1603 unsigned HasExtParameterInfos : 1;
1604
1605 /// Whether the function is variadic.
1606 unsigned Variadic : 1;
1607
1608 /// Whether this function has a trailing return type.
1609 unsigned HasTrailingReturn : 1;
1610 };
1611
1612 class ObjCObjectTypeBitfields {
1613 friend class ObjCObjectType;
1614
1615 unsigned : NumTypeBits;
1616
1617 /// The number of type arguments stored directly on this object type.
1618 unsigned NumTypeArgs : 7;
1619
1620 /// The number of protocols stored directly on this object type.
1621 unsigned NumProtocols : 6;
1622
1623 /// Whether this is a "kindof" type.
1624 unsigned IsKindOf : 1;
1625 };
1626
1627 class ReferenceTypeBitfields {
1628 friend class ReferenceType;
1629
1630 unsigned : NumTypeBits;
1631
1632 /// True if the type was originally spelled with an lvalue sigil.
1633 /// This is never true of rvalue references but can also be false
1634 /// on lvalue references because of C++0x [dcl.typedef]p9,
1635 /// as follows:
1636 ///
1637 /// typedef int &ref; // lvalue, spelled lvalue
1638 /// typedef int &&rvref; // rvalue
1639 /// ref &a; // lvalue, inner ref, spelled lvalue
1640 /// ref &&a; // lvalue, inner ref
1641 /// rvref &a; // lvalue, inner ref, spelled lvalue
1642 /// rvref &&a; // rvalue, inner ref
1643 unsigned SpelledAsLValue : 1;
1644
1645 /// True if the inner type is a reference type. This only happens
1646 /// in non-canonical forms.
1647 unsigned InnerRef : 1;
1648 };
1649
1650 class TypeWithKeywordBitfields {
1651 friend class TypeWithKeyword;
1652
1653 unsigned : NumTypeBits;
1654
1655 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1656 unsigned Keyword : 8;
1657 };
1658
1659 enum { NumTypeWithKeywordBits = 8 };
1660
1661 class ElaboratedTypeBitfields {
1662 friend class ElaboratedType;
1663
1664 unsigned : NumTypeBits;
1665 unsigned : NumTypeWithKeywordBits;
1666
1667 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1668 unsigned HasOwnedTagDecl : 1;
1669 };
1670
1671 class VectorTypeBitfields {
1672 friend class VectorType;
1673 friend class DependentVectorType;
1674
1675 unsigned : NumTypeBits;
1676
1677 /// The kind of vector, either a generic vector type or some
1678 /// target-specific vector type such as for AltiVec or Neon.
1679 unsigned VecKind : 3;
1680 /// The number of elements in the vector.
1681 uint32_t NumElements;
1682 };
1683
1684 class AttributedTypeBitfields {
1685 friend class AttributedType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// An AttributedType::Kind
1690 unsigned AttrKind : 32 - NumTypeBits;
1691 };
1692
1693 class AutoTypeBitfields {
1694 friend class AutoType;
1695
1696 unsigned : NumTypeBits;
1697
1698 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1699 /// or '__auto_type'? AutoTypeKeyword value.
1700 unsigned Keyword : 2;
1701
1702 /// The number of template arguments in the type-constraints, which is
1703 /// expected to be able to hold at least 1024 according to [implimits].
1704 /// However as this limit is somewhat easy to hit with template
1705 /// metaprogramming we'd prefer to keep it as large as possible.
1706 /// At the moment it has been left as a non-bitfield since this type
1707 /// safely fits in 64 bits as an unsigned, so there is no reason to
1708 /// introduce the performance impact of a bitfield.
1709 unsigned NumArgs;
1710 };
1711
1712 class SubstTemplateTypeParmPackTypeBitfields {
1713 friend class SubstTemplateTypeParmPackType;
1714
1715 unsigned : NumTypeBits;
1716
1717 /// The number of template arguments in \c Arguments, which is
1718 /// expected to be able to hold at least 1024 according to [implimits].
1719 /// However as this limit is somewhat easy to hit with template
1720 /// metaprogramming we'd prefer to keep it as large as possible.
1721 /// At the moment it has been left as a non-bitfield since this type
1722 /// safely fits in 64 bits as an unsigned, so there is no reason to
1723 /// introduce the performance impact of a bitfield.
1724 unsigned NumArgs;
1725 };
1726
1727 class TemplateSpecializationTypeBitfields {
1728 friend class TemplateSpecializationType;
1729
1730 unsigned : NumTypeBits;
1731
1732 /// Whether this template specialization type is a substituted type alias.
1733 unsigned TypeAlias : 1;
1734
1735 /// The number of template arguments named in this class template
1736 /// specialization, which is expected to be able to hold at least 1024
1737 /// according to [implimits]. However, as this limit is somewhat easy to
1738 /// hit with template metaprogramming we'd prefer to keep it as large
1739 /// as possible. At the moment it has been left as a non-bitfield since
1740 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1741 /// to introduce the performance impact of a bitfield.
1742 unsigned NumArgs;
1743 };
1744
1745 class DependentTemplateSpecializationTypeBitfields {
1746 friend class DependentTemplateSpecializationType;
1747
1748 unsigned : NumTypeBits;
1749 unsigned : NumTypeWithKeywordBits;
1750
1751 /// The number of template arguments named in this class template
1752 /// specialization, which is expected to be able to hold at least 1024
1753 /// according to [implimits]. However, as this limit is somewhat easy to
1754 /// hit with template metaprogramming we'd prefer to keep it as large
1755 /// as possible. At the moment it has been left as a non-bitfield since
1756 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1757 /// to introduce the performance impact of a bitfield.
1758 unsigned NumArgs;
1759 };
1760
1761 class PackExpansionTypeBitfields {
1762 friend class PackExpansionType;
1763
1764 unsigned : NumTypeBits;
1765
1766 /// The number of expansions that this pack expansion will
1767 /// generate when substituted (+1), which is expected to be able to
1768 /// hold at least 1024 according to [implimits]. However, as this limit
1769 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1770 /// keep it as large as possible. At the moment it has been left as a
1771 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1772 /// there is no reason to introduce the performance impact of a bitfield.
1773 ///
1774 /// This field will only have a non-zero value when some of the parameter
1775 /// packs that occur within the pattern have been substituted but others
1776 /// have not.
1777 unsigned NumExpansions;
1778 };
1779
1780 union {
1781 TypeBitfields TypeBits;
1782 ArrayTypeBitfields ArrayTypeBits;
1783 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1784 AttributedTypeBitfields AttributedTypeBits;
1785 AutoTypeBitfields AutoTypeBits;
1786 BuiltinTypeBitfields BuiltinTypeBits;
1787 FunctionTypeBitfields FunctionTypeBits;
1788 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1789 ReferenceTypeBitfields ReferenceTypeBits;
1790 TypeWithKeywordBitfields TypeWithKeywordBits;
1791 ElaboratedTypeBitfields ElaboratedTypeBits;
1792 VectorTypeBitfields VectorTypeBits;
1793 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1794 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1795 DependentTemplateSpecializationTypeBitfields
1796 DependentTemplateSpecializationTypeBits;
1797 PackExpansionTypeBitfields PackExpansionTypeBits;
1798 };
1799
1800private:
1801 template <class T> friend class TypePropertyCache;
1802
1803 /// Set whether this type comes from an AST file.
1804 void setFromAST(bool V = true) const {
1805 TypeBits.FromAST = V;
1806 }
1807
1808protected:
1809 friend class ASTContext;
1810
1811 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1812 : ExtQualsTypeCommonBase(this,
1813 canon.isNull() ? QualType(this_(), 0) : canon) {
1814 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1815 "changing bitfields changed sizeof(Type)!");
1816 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1817 "Insufficient alignment!");
1818 TypeBits.TC = tc;
1819 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1820 TypeBits.CacheValid = false;
1821 TypeBits.CachedLocalOrUnnamed = false;
1822 TypeBits.CachedLinkage = NoLinkage;
1823 TypeBits.FromAST = false;
1824 }
1825
1826 // silence VC++ warning C4355: 'this' : used in base member initializer list
1827 Type *this_() { return this; }
1828
1829 void setDependence(TypeDependence D) {
1830 TypeBits.Dependence = static_cast<unsigned>(D);
1831 }
1832
1833 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1834
1835public:
1836 friend class ASTReader;
1837 friend class ASTWriter;
1838 template <class T> friend class serialization::AbstractTypeReader;
1839 template <class T> friend class serialization::AbstractTypeWriter;
1840
1841 Type(const Type &) = delete;
1842 Type(Type &&) = delete;
1843 Type &operator=(const Type &) = delete;
1844 Type &operator=(Type &&) = delete;
1845
1846 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1847
1848 /// Whether this type comes from an AST file.
1849 bool isFromAST() const { return TypeBits.FromAST; }
1850
1851 /// Whether this type is or contains an unexpanded parameter
1852 /// pack, used to support C++0x variadic templates.
1853 ///
1854 /// A type that contains a parameter pack shall be expanded by the
1855 /// ellipsis operator at some point. For example, the typedef in the
1856 /// following example contains an unexpanded parameter pack 'T':
1857 ///
1858 /// \code
1859 /// template<typename ...T>
1860 /// struct X {
1861 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1862 /// };
1863 /// \endcode
1864 ///
1865 /// Note that this routine does not specify which
1866 bool containsUnexpandedParameterPack() const {
1867 return getDependence() & TypeDependence::UnexpandedPack;
1868 }
1869
1870 /// Determines if this type would be canonical if it had no further
1871 /// qualification.
1872 bool isCanonicalUnqualified() const {
1873 return CanonicalType == QualType(this, 0);
1874 }
1875
1876 /// Pull a single level of sugar off of this locally-unqualified type.
1877 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1878 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1879 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1880
1881 /// As an extension, we classify types as one of "sized" or "sizeless";
1882 /// every type is one or the other. Standard types are all sized;
1883 /// sizeless types are purely an extension.
1884 ///
1885 /// Sizeless types contain data with no specified size, alignment,
1886 /// or layout.
1887 bool isSizelessType() const;
1888 bool isSizelessBuiltinType() const;
1889
1890 /// Determines if this is a sizeless type supported by the
1891 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1892 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1893 bool isVLSTBuiltinType() const;
1894
1895 /// Returns the representative type for the element of an SVE builtin type.
1896 /// This is used to represent fixed-length SVE vectors created with the
1897 /// 'arm_sve_vector_bits' type attribute as VectorType.
1898 QualType getSveEltType(const ASTContext &Ctx) const;
1899
1900 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1901 /// object types, function types, and incomplete types.
1902
1903 /// Return true if this is an incomplete type.
1904 /// A type that can describe objects, but which lacks information needed to
1905 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1906 /// routine will need to determine if the size is actually required.
1907 ///
1908 /// Def If non-null, and the type refers to some kind of declaration
1909 /// that can be completed (such as a C struct, C++ class, or Objective-C
1910 /// class), will be set to the declaration.
1911 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1912
1913 /// Return true if this is an incomplete or object
1914 /// type, in other words, not a function type.
1915 bool isIncompleteOrObjectType() const {
1916 return !isFunctionType();
1917 }
1918
1919 /// Determine whether this type is an object type.
1920 bool isObjectType() const {
1921 // C++ [basic.types]p8:
1922 // An object type is a (possibly cv-qualified) type that is not a
1923 // function type, not a reference type, and not a void type.
1924 return !isReferenceType() && !isFunctionType() && !isVoidType();
1925 }
1926
1927 /// Return true if this is a literal type
1928 /// (C++11 [basic.types]p10)
1929 bool isLiteralType(const ASTContext &Ctx) const;
1930
1931 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1932 bool isStructuralType() const;
1933
1934 /// Test if this type is a standard-layout type.
1935 /// (C++0x [basic.type]p9)
1936 bool isStandardLayoutType() const;
1937
1938 /// Helper methods to distinguish type categories. All type predicates
1939 /// operate on the canonical type, ignoring typedefs and qualifiers.
1940
1941 /// Returns true if the type is a builtin type.
1942 bool isBuiltinType() const;
1943
1944 /// Test for a particular builtin type.
1945 bool isSpecificBuiltinType(unsigned K) const;
1946
1947 /// Test for a type which does not represent an actual type-system type but
1948 /// is instead used as a placeholder for various convenient purposes within
1949 /// Clang. All such types are BuiltinTypes.
1950 bool isPlaceholderType() const;
1951 const BuiltinType *getAsPlaceholderType() const;
1952
1953 /// Test for a specific placeholder type.
1954 bool isSpecificPlaceholderType(unsigned K) const;
1955
1956 /// Test for a placeholder type other than Overload; see
1957 /// BuiltinType::isNonOverloadPlaceholderType.
1958 bool isNonOverloadPlaceholderType() const;
1959
1960 /// isIntegerType() does *not* include complex integers (a GCC extension).
1961 /// isComplexIntegerType() can be used to test for complex integers.
1962 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1963 bool isEnumeralType() const;
1964
1965 /// Determine whether this type is a scoped enumeration type.
1966 bool isScopedEnumeralType() const;
1967 bool isBooleanType() const;
1968 bool isCharType() const;
1969 bool isWideCharType() const;
1970 bool isChar8Type() const;
1971 bool isChar16Type() const;
1972 bool isChar32Type() const;
1973 bool isAnyCharacterType() const;
1974 bool isIntegralType(const ASTContext &Ctx) const;
1975
1976 /// Determine whether this type is an integral or enumeration type.
1977 bool isIntegralOrEnumerationType() const;
1978
1979 /// Determine whether this type is an integral or unscoped enumeration type.
1980 bool isIntegralOrUnscopedEnumerationType() const;
1981 bool isUnscopedEnumerationType() const;
1982
1983 /// Floating point categories.
1984 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1985 /// isComplexType() does *not* include complex integers (a GCC extension).
1986 /// isComplexIntegerType() can be used to test for complex integers.
1987 bool isComplexType() const; // C99 6.2.5p11 (complex)
1988 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1989 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1990 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1991 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1992 bool isBFloat16Type() const;
1993 bool isFloat128Type() const;
1994 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1995 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1996 bool isVoidType() const; // C99 6.2.5p19
1997 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1998 bool isAggregateType() const;
1999 bool isFundamentalType() const;
2000 bool isCompoundType() const;
2001
2002 // Type Predicates: Check to see if this type is structurally the specified
2003 // type, ignoring typedefs and qualifiers.
2004 bool isFunctionType() const;
2005 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2006 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2007 bool isPointerType() const;
2008 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2009 bool isBlockPointerType() const;
2010 bool isVoidPointerType() const;
2011 bool isReferenceType() const;
2012 bool isLValueReferenceType() const;
2013 bool isRValueReferenceType() const;
2014 bool isObjectPointerType() const;
2015 bool isFunctionPointerType() const;
2016 bool isFunctionReferenceType() const;
2017 bool isMemberPointerType() const;
2018 bool isMemberFunctionPointerType() const;
2019 bool isMemberDataPointerType() const;
2020 bool isArrayType() const;
2021 bool isConstantArrayType() const;
2022 bool isIncompleteArrayType() const;
2023 bool isVariableArrayType() const;
2024 bool isDependentSizedArrayType() const;
2025 bool isRecordType() const;
2026 bool isClassType() const;
2027 bool isStructureType() const;
2028 bool isObjCBoxableRecordType() const;
2029 bool isInterfaceType() const;
2030 bool isStructureOrClassType() const;
2031 bool isUnionType() const;
2032 bool isComplexIntegerType() const; // GCC _Complex integer type.
2033 bool isVectorType() const; // GCC vector type.
2034 bool isExtVectorType() const; // Extended vector type.
2035 bool isMatrixType() const; // Matrix type.
2036 bool isConstantMatrixType() const; // Constant matrix type.
2037 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2038 bool isObjCObjectPointerType() const; // pointer to ObjC object
2039 bool isObjCRetainableType() const; // ObjC object or block pointer
2040 bool isObjCLifetimeType() const; // (array of)* retainable type
2041 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2042 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2043 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2044 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2045 // for the common case.
2046 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2047 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2048 bool isObjCQualifiedIdType() const; // id<foo>
2049 bool isObjCQualifiedClassType() const; // Class<foo>
2050 bool isObjCObjectOrInterfaceType() const;
2051 bool isObjCIdType() const; // id
2052 bool isDecltypeType() const;
2053 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2054 /// qualifier?
2055 ///
2056 /// This approximates the answer to the following question: if this
2057 /// translation unit were compiled in ARC, would this type be qualified
2058 /// with __unsafe_unretained?
2059 bool isObjCInertUnsafeUnretainedType() const {
2060 return hasAttr(attr::ObjCInertUnsafeUnretained);
2061 }
2062
2063 /// Whether the type is Objective-C 'id' or a __kindof type of an
2064 /// object type, e.g., __kindof NSView * or __kindof id
2065 /// <NSCopying>.
2066 ///
2067 /// \param bound Will be set to the bound on non-id subtype types,
2068 /// which will be (possibly specialized) Objective-C class type, or
2069 /// null for 'id.
2070 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2071 const ObjCObjectType *&bound) const;
2072
2073 bool isObjCClassType() const; // Class
2074
2075 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2076 /// Class type, e.g., __kindof Class <NSCopying>.
2077 ///
2078 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2079 /// here because Objective-C's type system cannot express "a class
2080 /// object for a subclass of NSFoo".
2081 bool isObjCClassOrClassKindOfType() const;
2082
2083 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2084 bool isObjCSelType() const; // Class
2085 bool isObjCBuiltinType() const; // 'id' or 'Class'
2086 bool isObjCARCBridgableType() const;
2087 bool isCARCBridgableType() const;
2088 bool isTemplateTypeParmType() const; // C++ template type parameter
2089 bool isNullPtrType() const; // C++11 std::nullptr_t
2090 bool isNothrowT() const; // C++ std::nothrow_t
2091 bool isAlignValT() const; // C++17 std::align_val_t
2092 bool isStdByteType() const; // C++17 std::byte
2093 bool isAtomicType() const; // C11 _Atomic()
2094 bool isUndeducedAutoType() const; // C++11 auto or
2095 // C++14 decltype(auto)
2096 bool isTypedefNameType() const; // typedef or alias template
2097
2098#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2099 bool is##Id##Type() const;
2100#include "clang/Basic/OpenCLImageTypes.def"
2101
2102 bool isImageType() const; // Any OpenCL image type
2103
2104 bool isSamplerT() const; // OpenCL sampler_t
2105 bool isEventT() const; // OpenCL event_t
2106 bool isClkEventT() const; // OpenCL clk_event_t
2107 bool isQueueT() const; // OpenCL queue_t
2108 bool isReserveIDT() const; // OpenCL reserve_id_t
2109
2110#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLExtensionTypes.def"
2113 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2114 bool isOCLIntelSubgroupAVCType() const;
2115 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2116
2117 bool isPipeType() const; // OpenCL pipe type
2118 bool isExtIntType() const; // Extended Int Type
2119 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2120
2121 /// Determines if this type, which must satisfy
2122 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2123 /// than implicitly __strong.
2124 bool isObjCARCImplicitlyUnretainedType() const;
2125
2126 /// Check if the type is the CUDA device builtin surface type.
2127 bool isCUDADeviceBuiltinSurfaceType() const;
2128 /// Check if the type is the CUDA device builtin texture type.
2129 bool isCUDADeviceBuiltinTextureType() const;
2130
2131 /// Return the implicit lifetime for this type, which must not be dependent.
2132 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2133
2134 enum ScalarTypeKind {
2135 STK_CPointer,
2136 STK_BlockPointer,
2137 STK_ObjCObjectPointer,
2138 STK_MemberPointer,
2139 STK_Bool,
2140 STK_Integral,
2141 STK_Floating,
2142 STK_IntegralComplex,
2143 STK_FloatingComplex,
2144 STK_FixedPoint
2145 };
2146
2147 /// Given that this is a scalar type, classify it.
2148 ScalarTypeKind getScalarTypeKind() const;
2149
2150 TypeDependence getDependence() const {
2151 return static_cast<TypeDependence>(TypeBits.Dependence);
2152 }
2153
2154 /// Whether this type is an error type.
2155 bool containsErrors() const {
2156 return getDependence() & TypeDependence::Error;
2157 }
2158
2159 /// Whether this type is a dependent type, meaning that its definition
2160 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2161 bool isDependentType() const {
2162 return getDependence() & TypeDependence::Dependent;
2163 }
2164
2165 /// Determine whether this type is an instantiation-dependent type,
2166 /// meaning that the type involves a template parameter (even if the
2167 /// definition does not actually depend on the type substituted for that
2168 /// template parameter).
2169 bool isInstantiationDependentType() const {
2170 return getDependence() & TypeDependence::Instantiation;
2171 }
2172
2173 /// Determine whether this type is an undeduced type, meaning that
2174 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2175 /// deduced.
2176 bool isUndeducedType() const;
2177
2178 /// Whether this type is a variably-modified type (C99 6.7.5).
2179 bool isVariablyModifiedType() const {
2180 return getDependence() & TypeDependence::VariablyModified;
2181 }
2182
2183 /// Whether this type involves a variable-length array type
2184 /// with a definite size.
2185 bool hasSizedVLAType() const;
2186
2187 /// Whether this type is or contains a local or unnamed type.
2188 bool hasUnnamedOrLocalType() const;
2189
2190 bool isOverloadableType() const;
2191
2192 /// Determine wither this type is a C++ elaborated-type-specifier.
2193 bool isElaboratedTypeSpecifier() const;
2194
2195 bool canDecayToPointerType() const;
2196
2197 /// Whether this type is represented natively as a pointer. This includes
2198 /// pointers, references, block pointers, and Objective-C interface,
2199 /// qualified id, and qualified interface types, as well as nullptr_t.
2200 bool hasPointerRepresentation() const;
2201
2202 /// Whether this type can represent an objective pointer type for the
2203 /// purpose of GC'ability
2204 bool hasObjCPointerRepresentation() const;
2205
2206 /// Determine whether this type has an integer representation
2207 /// of some sort, e.g., it is an integer type or a vector.
2208 bool hasIntegerRepresentation() const;
2209
2210 /// Determine whether this type has an signed integer representation
2211 /// of some sort, e.g., it is an signed integer type or a vector.
2212 bool hasSignedIntegerRepresentation() const;
2213
2214 /// Determine whether this type has an unsigned integer representation
2215 /// of some sort, e.g., it is an unsigned integer type or a vector.
2216 bool hasUnsignedIntegerRepresentation() const;
2217
2218 /// Determine whether this type has a floating-point representation
2219 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2220 bool hasFloatingRepresentation() const;
2221
2222 // Type Checking Functions: Check to see if this type is structurally the
2223 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2224 // the best type we can.
2225 const RecordType *getAsStructureType() const;
2226 /// NOTE: getAs*ArrayType are methods on ASTContext.
2227 const RecordType *getAsUnionType() const;
2228 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2229 const ObjCObjectType *getAsObjCInterfaceType() const;
2230
2231 // The following is a convenience method that returns an ObjCObjectPointerType
2232 // for object declared using an interface.
2233 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2234 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2235 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2236 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2237
2238 /// Retrieves the CXXRecordDecl that this type refers to, either
2239 /// because the type is a RecordType or because it is the injected-class-name
2240 /// type of a class template or class template partial specialization.
2241 CXXRecordDecl *getAsCXXRecordDecl() const;
2242
2243 /// Retrieves the RecordDecl this type refers to.
2244 RecordDecl *getAsRecordDecl() const;
2245
2246 /// Retrieves the TagDecl that this type refers to, either
2247 /// because the type is a TagType or because it is the injected-class-name
2248 /// type of a class template or class template partial specialization.
2249 TagDecl *getAsTagDecl() const;
2250
2251 /// If this is a pointer or reference to a RecordType, return the
2252 /// CXXRecordDecl that the type refers to.
2253 ///
2254 /// If this is not a pointer or reference, or the type being pointed to does
2255 /// not refer to a CXXRecordDecl, returns NULL.
2256 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2257
2258 /// Get the DeducedType whose type will be deduced for a variable with
2259 /// an initializer of this type. This looks through declarators like pointer
2260 /// types, but not through decltype or typedefs.
2261 DeducedType *getContainedDeducedType() const;
2262
2263 /// Get the AutoType whose type will be deduced for a variable with
2264 /// an initializer of this type. This looks through declarators like pointer
2265 /// types, but not through decltype or typedefs.
2266 AutoType *getContainedAutoType() const {
2267 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2268 }
2269
2270 /// Determine whether this type was written with a leading 'auto'
2271 /// corresponding to a trailing return type (possibly for a nested
2272 /// function type within a pointer to function type or similar).
2273 bool hasAutoForTrailingReturnType() const;
2274
2275 /// Member-template getAs<specific type>'. Look through sugar for
2276 /// an instance of \<specific type>. This scheme will eventually
2277 /// replace the specific getAsXXXX methods above.
2278 ///
2279 /// There are some specializations of this member template listed
2280 /// immediately following this class.
2281 template <typename T> const T *getAs() const;
2282
2283 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2284 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2285 /// This is used when you need to walk over sugar nodes that represent some
2286 /// kind of type adjustment from a type that was written as a \<specific type>
2287 /// to another type that is still canonically a \<specific type>.
2288 template <typename T> const T *getAsAdjusted() const;
2289
2290 /// A variant of getAs<> for array types which silently discards
2291 /// qualifiers from the outermost type.
2292 const ArrayType *getAsArrayTypeUnsafe() const;
2293
2294 /// Member-template castAs<specific type>. Look through sugar for
2295 /// the underlying instance of \<specific type>.
2296 ///
2297 /// This method has the same relationship to getAs<T> as cast<T> has
2298 /// to dyn_cast<T>; which is to say, the underlying type *must*
2299 /// have the intended type, and this method will never return null.
2300 template <typename T> const T *castAs() const;
2301
2302 /// A variant of castAs<> for array type which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *castAsArrayTypeUnsafe() const;
2305
2306 /// Determine whether this type had the specified attribute applied to it
2307 /// (looking through top-level type sugar).
2308 bool hasAttr(attr::Kind AK) const;
2309
2310 /// Get the base element type of this type, potentially discarding type
2311 /// qualifiers. This should never be used when type qualifiers
2312 /// are meaningful.
2313 const Type *getBaseElementTypeUnsafe() const;
2314
2315 /// If this is an array type, return the element type of the array,
2316 /// potentially with type qualifiers missing.
2317 /// This should never be used when type qualifiers are meaningful.
2318 const Type *getArrayElementTypeNoTypeQual() const;
2319
2320 /// If this is a pointer type, return the pointee type.
2321 /// If this is an array type, return the array element type.
2322 /// This should never be used when type qualifiers are meaningful.
2323 const Type *getPointeeOrArrayElementType() const;
2324
2325 /// If this is a pointer, ObjC object pointer, or block
2326 /// pointer, this returns the respective pointee.
2327 QualType getPointeeType() const;
2328
2329 /// Return the specified type with any "sugar" removed from the type,
2330 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2331 const Type *getUnqualifiedDesugaredType() const;
2332
2333 /// More type predicates useful for type checking/promotion
2334 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2335
2336 /// Return true if this is an integer type that is
2337 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2338 /// or an enum decl which has a signed representation.
2339 bool isSignedIntegerType() const;
2340
2341 /// Return true if this is an integer type that is
2342 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2343 /// or an enum decl which has an unsigned representation.
2344 bool isUnsignedIntegerType() const;
2345
2346 /// Determines whether this is an integer type that is signed or an
2347 /// enumeration types whose underlying type is a signed integer type.
2348 bool isSignedIntegerOrEnumerationType() const;
2349
2350 /// Determines whether this is an integer type that is unsigned or an
2351 /// enumeration types whose underlying type is a unsigned integer type.
2352 bool isUnsignedIntegerOrEnumerationType() const;
2353
2354 /// Return true if this is a fixed point type according to
2355 /// ISO/IEC JTC1 SC22 WG14 N1169.
2356 bool isFixedPointType() const;
2357
2358 /// Return true if this is a fixed point or integer type.
2359 bool isFixedPointOrIntegerType() const;
2360
2361 /// Return true if this is a saturated fixed point type according to
2362 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2363 bool isSaturatedFixedPointType() const;
2364
2365 /// Return true if this is a saturated fixed point type according to
2366 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2367 bool isUnsaturatedFixedPointType() const;
2368
2369 /// Return true if this is a fixed point type that is signed according
2370 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2371 bool isSignedFixedPointType() const;
2372
2373 /// Return true if this is a fixed point type that is unsigned according
2374 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2375 bool isUnsignedFixedPointType() const;
2376
2377 /// Return true if this is not a variable sized type,
2378 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2379 /// incomplete types.
2380 bool isConstantSizeType() const;
2381
2382 /// Returns true if this type can be represented by some
2383 /// set of type specifiers.
2384 bool isSpecifierType() const;
2385
2386 /// Determine the linkage of this type.
2387 Linkage getLinkage() const;
2388
2389 /// Determine the visibility of this type.
2390 Visibility getVisibility() const {
2391 return getLinkageAndVisibility().getVisibility();
2392 }
2393
2394 /// Return true if the visibility was explicitly set is the code.
2395 bool isVisibilityExplicit() const {
2396 return getLinkageAndVisibility().isVisibilityExplicit();
2397 }
2398
2399 /// Determine the linkage and visibility of this type.
2400 LinkageInfo getLinkageAndVisibility() const;
2401
2402 /// True if the computed linkage is valid. Used for consistency
2403 /// checking. Should always return true.
2404 bool isLinkageValid() const;
2405
2406 /// Determine the nullability of the given type.
2407 ///
2408 /// Note that nullability is only captured as sugar within the type
2409 /// system, not as part of the canonical type, so nullability will
2410 /// be lost by canonicalization and desugaring.
2411 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2412
2413 /// Determine whether the given type can have a nullability
2414 /// specifier applied to it, i.e., if it is any kind of pointer type.
2415 ///
2416 /// \param ResultIfUnknown The value to return if we don't yet know whether
2417 /// this type can have nullability because it is dependent.
2418 bool canHaveNullability(bool ResultIfUnknown = true) const;
2419
2420 /// Retrieve the set of substitutions required when accessing a member
2421 /// of the Objective-C receiver type that is declared in the given context.
2422 ///
2423 /// \c *this is the type of the object we're operating on, e.g., the
2424 /// receiver for a message send or the base of a property access, and is
2425 /// expected to be of some object or object pointer type.
2426 ///
2427 /// \param dc The declaration context for which we are building up a
2428 /// substitution mapping, which should be an Objective-C class, extension,
2429 /// category, or method within.
2430 ///
2431 /// \returns an array of type arguments that can be substituted for
2432 /// the type parameters of the given declaration context in any type described
2433 /// within that context, or an empty optional to indicate that no
2434 /// substitution is required.
2435 Optional<ArrayRef<QualType>>
2436 getObjCSubstitutions(const DeclContext *dc) const;
2437
2438 /// Determines if this is an ObjC interface type that may accept type
2439 /// parameters.
2440 bool acceptsObjCTypeParams() const;
2441
2442 const char *getTypeClassName() const;
2443
2444 QualType getCanonicalTypeInternal() const {
2445 return CanonicalType;
2446 }
2447
2448 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2449 void dump() const;
2450 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2451};
2452
2453/// This will check for a TypedefType by removing any existing sugar
2454/// until it reaches a TypedefType or a non-sugared type.
2455template <> const TypedefType *Type::getAs() const;
2456
2457/// This will check for a TemplateSpecializationType by removing any
2458/// existing sugar until it reaches a TemplateSpecializationType or a
2459/// non-sugared type.
2460template <> const TemplateSpecializationType *Type::getAs() const;
2461
2462/// This will check for an AttributedType by removing any existing sugar
2463/// until it reaches an AttributedType or a non-sugared type.
2464template <> const AttributedType *Type::getAs() const;
2465
2466// We can do canonical leaf types faster, because we don't have to
2467// worry about preserving child type decoration.
2468#define TYPE(Class, Base)
2469#define LEAF_TYPE(Class) \
2470template <> inline const Class##Type *Type::getAs() const { \
2471 return dyn_cast<Class##Type>(CanonicalType); \
2472} \
2473template <> inline const Class##Type *Type::castAs() const { \
2474 return cast<Class##Type>(CanonicalType); \
2475}
2476#include "clang/AST/TypeNodes.inc"
2477
2478/// This class is used for builtin types like 'int'. Builtin
2479/// types are always canonical and have a literal name field.
2480class BuiltinType : public Type {
2481public:
2482 enum Kind {
2483// OpenCL image types
2484#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2485#include "clang/Basic/OpenCLImageTypes.def"
2486// OpenCL extension types
2487#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2488#include "clang/Basic/OpenCLExtensionTypes.def"
2489// SVE Types
2490#define SVE_TYPE(Name, Id, SingletonId) Id,
2491#include "clang/Basic/AArch64SVEACLETypes.def"
2492// PPC MMA Types
2493#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2494#include "clang/Basic/PPCTypes.def"
2495// All other builtin types
2496#define BUILTIN_TYPE(Id, SingletonId) Id,
2497#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2498#include "clang/AST/BuiltinTypes.def"
2499 };
2500
2501private:
2502 friend class ASTContext; // ASTContext creates these.
2503
2504 BuiltinType(Kind K)
2505 : Type(Builtin, QualType(),
2506 K == Dependent ? TypeDependence::DependentInstantiation
2507 : TypeDependence::None) {
2508 BuiltinTypeBits.Kind = K;
2509 }
2510
2511public:
2512 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2513 StringRef getName(const PrintingPolicy &Policy) const;
2514
2515 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2516 // The StringRef is null-terminated.
2517 StringRef str = getName(Policy);
2518 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 2518, __PRETTY_FUNCTION__))
;
2519 return str.data();
2520 }
2521
2522 bool isSugared() const { return false; }
2523 QualType desugar() const { return QualType(this, 0); }
2524
2525 bool isInteger() const {
2526 return getKind() >= Bool && getKind() <= Int128;
2527 }
2528
2529 bool isSignedInteger() const {
2530 return getKind() >= Char_S && getKind() <= Int128;
2531 }
2532
2533 bool isUnsignedInteger() const {
2534 return getKind() >= Bool && getKind() <= UInt128;
2535 }
2536
2537 bool isFloatingPoint() const {
2538 return getKind() >= Half && getKind() <= Float128;
2539 }
2540
2541 /// Determines whether the given kind corresponds to a placeholder type.
2542 static bool isPlaceholderTypeKind(Kind K) {
2543 return K >= Overload;
2544 }
2545
2546 /// Determines whether this type is a placeholder type, i.e. a type
2547 /// which cannot appear in arbitrary positions in a fully-formed
2548 /// expression.
2549 bool isPlaceholderType() const {
2550 return isPlaceholderTypeKind(getKind());
2551 }
2552
2553 /// Determines whether this type is a placeholder type other than
2554 /// Overload. Most placeholder types require only syntactic
2555 /// information about their context in order to be resolved (e.g.
2556 /// whether it is a call expression), which means they can (and
2557 /// should) be resolved in an earlier "phase" of analysis.
2558 /// Overload expressions sometimes pick up further information
2559 /// from their context, like whether the context expects a
2560 /// specific function-pointer type, and so frequently need
2561 /// special treatment.
2562 bool isNonOverloadPlaceholderType() const {
2563 return getKind() > Overload;
2564 }
2565
2566 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2567};
2568
2569/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2570/// types (_Complex float etc) as well as the GCC integer complex extensions.
2571class ComplexType : public Type, public llvm::FoldingSetNode {
2572 friend class ASTContext; // ASTContext creates these.
2573
2574 QualType ElementType;
2575
2576 ComplexType(QualType Element, QualType CanonicalPtr)
2577 : Type(Complex, CanonicalPtr, Element->getDependence()),
2578 ElementType(Element) {}
2579
2580public:
2581 QualType getElementType() const { return ElementType; }
2582
2583 bool isSugared() const { return false; }
2584 QualType desugar() const { return QualType(this, 0); }
2585
2586 void Profile(llvm::FoldingSetNodeID &ID) {
2587 Profile(ID, getElementType());
2588 }
2589
2590 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2591 ID.AddPointer(Element.getAsOpaquePtr());
2592 }
2593
2594 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2595};
2596
2597/// Sugar for parentheses used when specifying types.
2598class ParenType : public Type, public llvm::FoldingSetNode {
2599 friend class ASTContext; // ASTContext creates these.
2600
2601 QualType Inner;
2602
2603 ParenType(QualType InnerType, QualType CanonType)
2604 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2605
2606public:
2607 QualType getInnerType() const { return Inner; }
2608
2609 bool isSugared() const { return true; }
2610 QualType desugar() const { return getInnerType(); }
2611
2612 void Profile(llvm::FoldingSetNodeID &ID) {
2613 Profile(ID, getInnerType());
2614 }
2615
2616 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2617 Inner.Profile(ID);
2618 }
2619
2620 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2621};
2622
2623/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2624class PointerType : public Type, public llvm::FoldingSetNode {
2625 friend class ASTContext; // ASTContext creates these.
2626
2627 QualType PointeeType;
2628
2629 PointerType(QualType Pointee, QualType CanonicalPtr)
2630 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2631 PointeeType(Pointee) {}
2632
2633public:
2634 QualType getPointeeType() const { return PointeeType; }
2635
2636 bool isSugared() const { return false; }
2637 QualType desugar() const { return QualType(this, 0); }
2638
2639 void Profile(llvm::FoldingSetNodeID &ID) {
2640 Profile(ID, getPointeeType());
2641 }
2642
2643 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2644 ID.AddPointer(Pointee.getAsOpaquePtr());
2645 }
2646
2647 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2648};
2649
2650/// Represents a type which was implicitly adjusted by the semantic
2651/// engine for arbitrary reasons. For example, array and function types can
2652/// decay, and function types can have their calling conventions adjusted.
2653class AdjustedType : public Type, public llvm::FoldingSetNode {
2654 QualType OriginalTy;
2655 QualType AdjustedTy;
2656
2657protected:
2658 friend class ASTContext; // ASTContext creates these.
2659
2660 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2661 QualType CanonicalPtr)
2662 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2663 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2664
2665public:
2666 QualType getOriginalType() const { return OriginalTy; }
2667 QualType getAdjustedType() const { return AdjustedTy; }
2668
2669 bool isSugared() const { return true; }
2670 QualType desugar() const { return AdjustedTy; }
2671
2672 void Profile(llvm::FoldingSetNodeID &ID) {
2673 Profile(ID, OriginalTy, AdjustedTy);
2674 }
2675
2676 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2677 ID.AddPointer(Orig.getAsOpaquePtr());
2678 ID.AddPointer(New.getAsOpaquePtr());
2679 }
2680
2681 static bool classof(const Type *T) {
2682 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2683 }
2684};
2685
2686/// Represents a pointer type decayed from an array or function type.
2687class DecayedType : public AdjustedType {
2688 friend class ASTContext; // ASTContext creates these.
2689
2690 inline
2691 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2692
2693public:
2694 QualType getDecayedType() const { return getAdjustedType(); }
2695
2696 inline QualType getPointeeType() const;
2697
2698 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2699};
2700
2701/// Pointer to a block type.
2702/// This type is to represent types syntactically represented as
2703/// "void (^)(int)", etc. Pointee is required to always be a function type.
2704class BlockPointerType : public Type, public llvm::FoldingSetNode {
2705 friend class ASTContext; // ASTContext creates these.
2706
2707 // Block is some kind of pointer type
2708 QualType PointeeType;
2709
2710 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2711 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2712 PointeeType(Pointee) {}
2713
2714public:
2715 // Get the pointee type. Pointee is required to always be a function type.
2716 QualType getPointeeType() const { return PointeeType; }
2717
2718 bool isSugared() const { return false; }
2719 QualType desugar() const { return QualType(this, 0); }
2720
2721 void Profile(llvm::FoldingSetNodeID &ID) {
2722 Profile(ID, getPointeeType());
2723 }
2724
2725 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2726 ID.AddPointer(Pointee.getAsOpaquePtr());
2727 }
2728
2729 static bool classof(const Type *T) {
2730 return T->getTypeClass() == BlockPointer;
2731 }
2732};
2733
2734/// Base for LValueReferenceType and RValueReferenceType
2735class ReferenceType : public Type, public llvm::FoldingSetNode {
2736 QualType PointeeType;
2737
2738protected:
2739 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2740 bool SpelledAsLValue)
2741 : Type(tc, CanonicalRef, Referencee->getDependence()),
2742 PointeeType(Referencee) {
2743 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2744 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2745 }
2746
2747public:
2748 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2749 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2750
2751 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2752
2753 QualType getPointeeType() const {
2754 // FIXME: this might strip inner qualifiers; okay?
2755 const ReferenceType *T = this;
2756 while (T->isInnerRef())
2757 T = T->PointeeType->castAs<ReferenceType>();
2758 return T->PointeeType;
2759 }
2760
2761 void Profile(llvm::FoldingSetNodeID &ID) {
2762 Profile(ID, PointeeType, isSpelledAsLValue());
2763 }
2764
2765 static void Profile(llvm::FoldingSetNodeID &ID,
2766 QualType Referencee,
2767 bool SpelledAsLValue) {
2768 ID.AddPointer(Referencee.getAsOpaquePtr());
2769 ID.AddBoolean(SpelledAsLValue);
2770 }
2771
2772 static bool classof(const Type *T) {
2773 return T->getTypeClass() == LValueReference ||
2774 T->getTypeClass() == RValueReference;
2775 }
2776};
2777
2778/// An lvalue reference type, per C++11 [dcl.ref].
2779class LValueReferenceType : public ReferenceType {
2780 friend class ASTContext; // ASTContext creates these
2781
2782 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2783 bool SpelledAsLValue)
2784 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2785 SpelledAsLValue) {}
2786
2787public:
2788 bool isSugared() const { return false; }
2789 QualType desugar() const { return QualType(this, 0); }
2790
2791 static bool classof(const Type *T) {
2792 return T->getTypeClass() == LValueReference;
2793 }
2794};
2795
2796/// An rvalue reference type, per C++11 [dcl.ref].
2797class RValueReferenceType : public ReferenceType {
2798 friend class ASTContext; // ASTContext creates these
2799
2800 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2801 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2802
2803public:
2804 bool isSugared() const { return false; }
2805 QualType desugar() const { return QualType(this, 0); }
2806
2807 static bool classof(const Type *T) {
2808 return T->getTypeClass() == RValueReference;
2809 }
2810};
2811
2812/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2813///
2814/// This includes both pointers to data members and pointer to member functions.
2815class MemberPointerType : public Type, public llvm::FoldingSetNode {
2816 friend class ASTContext; // ASTContext creates these.
2817
2818 QualType PointeeType;
2819
2820 /// The class of which the pointee is a member. Must ultimately be a
2821 /// RecordType, but could be a typedef or a template parameter too.
2822 const Type *Class;
2823
2824 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2825 : Type(MemberPointer, CanonicalPtr,
2826 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2827 Pointee->getDependence()),
2828 PointeeType(Pointee), Class(Cls) {}
2829
2830public:
2831 QualType getPointeeType() const { return PointeeType; }
2832
2833 /// Returns true if the member type (i.e. the pointee type) is a
2834 /// function type rather than a data-member type.
2835 bool isMemberFunctionPointer() const {
2836 return PointeeType->isFunctionProtoType();
2837 }
2838
2839 /// Returns true if the member type (i.e. the pointee type) is a
2840 /// data type rather than a function type.
2841 bool isMemberDataPointer() const {
2842 return !PointeeType->isFunctionProtoType();
2843 }
2844
2845 const Type *getClass() const { return Class; }
2846 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2847
2848 bool isSugared() const { return false; }
2849 QualType desugar() const { return QualType(this, 0); }
2850
2851 void Profile(llvm::FoldingSetNodeID &ID) {
2852 Profile(ID, getPointeeType(), getClass());
2853 }
2854
2855 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2856 const Type *Class) {
2857 ID.AddPointer(Pointee.getAsOpaquePtr());
2858 ID.AddPointer(Class);
2859 }
2860
2861 static bool classof(const Type *T) {
2862 return T->getTypeClass() == MemberPointer;
2863 }
2864};
2865
2866/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2867class ArrayType : public Type, public llvm::FoldingSetNode {
2868public:
2869 /// Capture whether this is a normal array (e.g. int X[4])
2870 /// an array with a static size (e.g. int X[static 4]), or an array
2871 /// with a star size (e.g. int X[*]).
2872 /// 'static' is only allowed on function parameters.
2873 enum ArraySizeModifier {
2874 Normal, Static, Star
2875 };
2876
2877private:
2878 /// The element type of the array.
2879 QualType ElementType;
2880
2881protected:
2882 friend class ASTContext; // ASTContext creates these.
2883
2884 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2885 unsigned tq, const Expr *sz = nullptr);
2886
2887public:
2888 QualType getElementType() const { return ElementType; }
2889
2890 ArraySizeModifier getSizeModifier() const {
2891 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2892 }
2893
2894 Qualifiers getIndexTypeQualifiers() const {
2895 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2896 }
2897
2898 unsigned getIndexTypeCVRQualifiers() const {
2899 return ArrayTypeBits.IndexTypeQuals;
2900 }
2901
2902 static bool classof(const Type *T) {
2903 return T->getTypeClass() == ConstantArray ||
2904 T->getTypeClass() == VariableArray ||
2905 T->getTypeClass() == IncompleteArray ||
2906 T->getTypeClass() == DependentSizedArray;
2907 }
2908};
2909
2910/// Represents the canonical version of C arrays with a specified constant size.
2911/// For example, the canonical type for 'int A[4 + 4*100]' is a
2912/// ConstantArrayType where the element type is 'int' and the size is 404.
2913class ConstantArrayType final
2914 : public ArrayType,
2915 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2916 friend class ASTContext; // ASTContext creates these.
2917 friend TrailingObjects;
2918
2919 llvm::APInt Size; // Allows us to unique the type.
2920
2921 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2922 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2923 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2924 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2925 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2926 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 2926, __PRETTY_FUNCTION__))
;
2927 *getTrailingObjects<const Expr*>() = sz;
2928 }
2929 }
2930
2931 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2932 return ConstantArrayTypeBits.HasStoredSizeExpr;
2933 }
2934
2935public:
2936 const llvm::APInt &getSize() const { return Size; }
2937 const Expr *getSizeExpr() const {
2938 return ConstantArrayTypeBits.HasStoredSizeExpr
2939 ? *getTrailingObjects<const Expr *>()
2940 : nullptr;
2941 }
2942 bool isSugared() const { return false; }
2943 QualType desugar() const { return QualType(this, 0); }
2944
2945 /// Determine the number of bits required to address a member of
2946 // an array with the given element type and number of elements.
2947 static unsigned getNumAddressingBits(const ASTContext &Context,
2948 QualType ElementType,
2949 const llvm::APInt &NumElements);
2950
2951 /// Determine the maximum number of active bits that an array's size
2952 /// can require, which limits the maximum size of the array.
2953 static unsigned getMaxSizeBits(const ASTContext &Context);
2954
2955 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2956 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2957 getSizeModifier(), getIndexTypeCVRQualifiers());
2958 }
2959
2960 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2961 QualType ET, const llvm::APInt &ArraySize,
2962 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2963 unsigned TypeQuals);
2964
2965 static bool classof(const Type *T) {
2966 return T->getTypeClass() == ConstantArray;
2967 }
2968};
2969
2970/// Represents a C array with an unspecified size. For example 'int A[]' has
2971/// an IncompleteArrayType where the element type is 'int' and the size is
2972/// unspecified.
2973class IncompleteArrayType : public ArrayType {
2974 friend class ASTContext; // ASTContext creates these.
2975
2976 IncompleteArrayType(QualType et, QualType can,
2977 ArraySizeModifier sm, unsigned tq)
2978 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2979
2980public:
2981 friend class StmtIteratorBase;
2982
2983 bool isSugared() const { return false; }
2984 QualType desugar() const { return QualType(this, 0); }
2985
2986 static bool classof(const Type *T) {
2987 return T->getTypeClass() == IncompleteArray;
2988 }
2989
2990 void Profile(llvm::FoldingSetNodeID &ID) {
2991 Profile(ID, getElementType(), getSizeModifier(),
2992 getIndexTypeCVRQualifiers());
2993 }
2994
2995 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2996 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2997 ID.AddPointer(ET.getAsOpaquePtr());
2998 ID.AddInteger(SizeMod);
2999 ID.AddInteger(TypeQuals);
3000 }
3001};
3002
3003/// Represents a C array with a specified size that is not an
3004/// integer-constant-expression. For example, 'int s[x+foo()]'.
3005/// Since the size expression is an arbitrary expression, we store it as such.
3006///
3007/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3008/// should not be: two lexically equivalent variable array types could mean
3009/// different things, for example, these variables do not have the same type
3010/// dynamically:
3011///
3012/// void foo(int x) {
3013/// int Y[x];
3014/// ++x;
3015/// int Z[x];
3016/// }
3017class VariableArrayType : public ArrayType {
3018 friend class ASTContext; // ASTContext creates these.
3019
3020 /// An assignment-expression. VLA's are only permitted within
3021 /// a function block.
3022 Stmt *SizeExpr;
3023
3024 /// The range spanned by the left and right array brackets.
3025 SourceRange Brackets;
3026
3027 VariableArrayType(QualType et, QualType can, Expr *e,
3028 ArraySizeModifier sm, unsigned tq,
3029 SourceRange brackets)
3030 : ArrayType(VariableArray, et, can, sm, tq, e),
3031 SizeExpr((Stmt*) e), Brackets(brackets) {}
3032
3033public:
3034 friend class StmtIteratorBase;
3035
3036 Expr *getSizeExpr() const {
3037 // We use C-style casts instead of cast<> here because we do not wish
3038 // to have a dependency of Type.h on Stmt.h/Expr.h.
3039 return (Expr*) SizeExpr;
3040 }
3041
3042 SourceRange getBracketsRange() const { return Brackets; }
3043 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3044 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3045
3046 bool isSugared() const { return false; }
3047 QualType desugar() const { return QualType(this, 0); }
3048
3049 static bool classof(const Type *T) {
3050 return T->getTypeClass() == VariableArray;
3051 }
3052
3053 void Profile(llvm::FoldingSetNodeID &ID) {
3054 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 3054)
;
3055 }
3056};
3057
3058/// Represents an array type in C++ whose size is a value-dependent expression.
3059///
3060/// For example:
3061/// \code
3062/// template<typename T, int Size>
3063/// class array {
3064/// T data[Size];
3065/// };
3066/// \endcode
3067///
3068/// For these types, we won't actually know what the array bound is
3069/// until template instantiation occurs, at which point this will
3070/// become either a ConstantArrayType or a VariableArrayType.
3071class DependentSizedArrayType : public ArrayType {
3072 friend class ASTContext; // ASTContext creates these.
3073
3074 const ASTContext &Context;
3075
3076 /// An assignment expression that will instantiate to the
3077 /// size of the array.
3078 ///
3079 /// The expression itself might be null, in which case the array
3080 /// type will have its size deduced from an initializer.
3081 Stmt *SizeExpr;
3082
3083 /// The range spanned by the left and right array brackets.
3084 SourceRange Brackets;
3085
3086 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3087 Expr *e, ArraySizeModifier sm, unsigned tq,
3088 SourceRange brackets);
3089
3090public:
3091 friend class StmtIteratorBase;
3092
3093 Expr *getSizeExpr() const {
3094 // We use C-style casts instead of cast<> here because we do not wish
3095 // to have a dependency of Type.h on Stmt.h/Expr.h.
3096 return (Expr*) SizeExpr;
3097 }
3098
3099 SourceRange getBracketsRange() const { return Brackets; }
3100 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3101 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3102
3103 bool isSugared() const { return false; }
3104 QualType desugar() const { return QualType(this, 0); }
3105
3106 static bool classof(const Type *T) {
3107 return T->getTypeClass() == DependentSizedArray;
3108 }
3109
3110 void Profile(llvm::FoldingSetNodeID &ID) {
3111 Profile(ID, Context, getElementType(),
3112 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3113 }
3114
3115 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3116 QualType ET, ArraySizeModifier SizeMod,
3117 unsigned TypeQuals, Expr *E);
3118};
3119
3120/// Represents an extended address space qualifier where the input address space
3121/// value is dependent. Non-dependent address spaces are not represented with a
3122/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3123///
3124/// For example:
3125/// \code
3126/// template<typename T, int AddrSpace>
3127/// class AddressSpace {
3128/// typedef T __attribute__((address_space(AddrSpace))) type;
3129/// }
3130/// \endcode
3131class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3132 friend class ASTContext;
3133
3134 const ASTContext &Context;
3135 Expr *AddrSpaceExpr;
3136 QualType PointeeType;
3137 SourceLocation loc;
3138
3139 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3140 QualType can, Expr *AddrSpaceExpr,
3141 SourceLocation loc);
3142
3143public:
3144 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3145 QualType getPointeeType() const { return PointeeType; }
3146 SourceLocation getAttributeLoc() const { return loc; }
3147
3148 bool isSugared() const { return false; }
3149 QualType desugar() const { return QualType(this, 0); }
3150
3151 static bool classof(const Type *T) {
3152 return T->getTypeClass() == DependentAddressSpace;
3153 }
3154
3155 void Profile(llvm::FoldingSetNodeID &ID) {
3156 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3157 }
3158
3159 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3160 QualType PointeeType, Expr *AddrSpaceExpr);
3161};
3162
3163/// Represents an extended vector type where either the type or size is
3164/// dependent.
3165///
3166/// For example:
3167/// \code
3168/// template<typename T, int Size>
3169/// class vector {
3170/// typedef T __attribute__((ext_vector_type(Size))) type;
3171/// }
3172/// \endcode
3173class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3174 friend class ASTContext;
3175
3176 const ASTContext &Context;
3177 Expr *SizeExpr;
3178
3179 /// The element type of the array.
3180 QualType ElementType;
3181
3182 SourceLocation loc;
3183
3184 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3185 QualType can, Expr *SizeExpr, SourceLocation loc);
3186
3187public:
3188 Expr *getSizeExpr() const { return SizeExpr; }
3189 QualType getElementType() const { return ElementType; }
3190 SourceLocation getAttributeLoc() const { return loc; }
3191
3192 bool isSugared() const { return false; }
3193 QualType desugar() const { return QualType(this, 0); }
3194
3195 static bool classof(const Type *T) {
3196 return T->getTypeClass() == DependentSizedExtVector;
3197 }
3198
3199 void Profile(llvm::FoldingSetNodeID &ID) {
3200 Profile(ID, Context, getElementType(), getSizeExpr());
3201 }
3202
3203 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3204 QualType ElementType, Expr *SizeExpr);
3205};
3206
3207
3208/// Represents a GCC generic vector type. This type is created using
3209/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3210/// bytes; or from an Altivec __vector or vector declaration.
3211/// Since the constructor takes the number of vector elements, the
3212/// client is responsible for converting the size into the number of elements.
3213class VectorType : public Type, public llvm::FoldingSetNode {
3214public:
3215 enum VectorKind {
3216 /// not a target-specific vector type
3217 GenericVector,
3218
3219 /// is AltiVec vector
3220 AltiVecVector,
3221
3222 /// is AltiVec 'vector Pixel'
3223 AltiVecPixel,
3224
3225 /// is AltiVec 'vector bool ...'
3226 AltiVecBool,
3227
3228 /// is ARM Neon vector
3229 NeonVector,
3230
3231 /// is ARM Neon polynomial vector
3232 NeonPolyVector,
3233
3234 /// is AArch64 SVE fixed-length data vector
3235 SveFixedLengthDataVector,
3236
3237 /// is AArch64 SVE fixed-length predicate vector
3238 SveFixedLengthPredicateVector
3239 };
3240
3241protected:
3242 friend class ASTContext; // ASTContext creates these.
3243
3244 /// The element type of the vector.
3245 QualType ElementType;
3246
3247 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3248 VectorKind vecKind);
3249
3250 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3251 QualType canonType, VectorKind vecKind);
3252
3253public:
3254 QualType getElementType() const { return ElementType; }
3255 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3256
3257 bool isSugared() const { return false; }
3258 QualType desugar() const { return QualType(this, 0); }
3259
3260 VectorKind getVectorKind() const {
3261 return VectorKind(VectorTypeBits.VecKind);
3262 }
3263
3264 void Profile(llvm::FoldingSetNodeID &ID) {
3265 Profile(ID, getElementType(), getNumElements(),
3266 getTypeClass(), getVectorKind());
3267 }
3268
3269 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3270 unsigned NumElements, TypeClass TypeClass,
3271 VectorKind VecKind) {
3272 ID.AddPointer(ElementType.getAsOpaquePtr());
3273 ID.AddInteger(NumElements);
3274 ID.AddInteger(TypeClass);
3275 ID.AddInteger(VecKind);
3276 }
3277
3278 static bool classof(const Type *T) {
3279 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3280 }
3281};
3282
3283/// Represents a vector type where either the type or size is dependent.
3284////
3285/// For example:
3286/// \code
3287/// template<typename T, int Size>
3288/// class vector {
3289/// typedef T __attribute__((vector_size(Size))) type;
3290/// }
3291/// \endcode
3292class DependentVectorType : public Type, public llvm::FoldingSetNode {
3293 friend class ASTContext;
3294
3295 const ASTContext &Context;
3296 QualType ElementType;
3297 Expr *SizeExpr;
3298 SourceLocation Loc;
3299
3300 DependentVectorType(const ASTContext &Context, QualType ElementType,
3301 QualType CanonType, Expr *SizeExpr,
3302 SourceLocation Loc, VectorType::VectorKind vecKind);
3303
3304public:
3305 Expr *getSizeExpr() const { return SizeExpr; }
3306 QualType getElementType() const { return ElementType; }
3307 SourceLocation getAttributeLoc() const { return Loc; }
3308 VectorType::VectorKind getVectorKind() const {
3309 return VectorType::VectorKind(VectorTypeBits.VecKind);
3310 }
3311
3312 bool isSugared() const { return false; }
3313 QualType desugar() const { return QualType(this, 0); }
3314
3315 static bool classof(const Type *T) {
3316 return T->getTypeClass() == DependentVector;
3317 }
3318
3319 void Profile(llvm::FoldingSetNodeID &ID) {
3320 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3321 }
3322
3323 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3324 QualType ElementType, const Expr *SizeExpr,
3325 VectorType::VectorKind VecKind);
3326};
3327
3328/// ExtVectorType - Extended vector type. This type is created using
3329/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3330/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3331/// class enables syntactic extensions, like Vector Components for accessing
3332/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3333/// Shading Language).
3334class ExtVectorType : public VectorType {
3335 friend class ASTContext; // ASTContext creates these.
3336
3337 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3338 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3339
3340public:
3341 static int getPointAccessorIdx(char c) {
3342 switch (c) {
3343 default: return -1;
3344 case 'x': case 'r': return 0;
3345 case 'y': case 'g': return 1;
3346 case 'z': case 'b': return 2;
3347 case 'w': case 'a': return 3;
3348 }
3349 }
3350
3351 static int getNumericAccessorIdx(char c) {
3352 switch (c) {
3353 default: return -1;
3354 case '0': return 0;
3355 case '1': return 1;
3356 case '2': return 2;
3357 case '3': return 3;
3358 case '4': return 4;
3359 case '5': return 5;
3360 case '6': return 6;
3361 case '7': return 7;
3362 case '8': return 8;
3363 case '9': return 9;
3364 case 'A':
3365 case 'a': return 10;
3366 case 'B':
3367 case 'b': return 11;
3368 case 'C':
3369 case 'c': return 12;
3370 case 'D':
3371 case 'd': return 13;
3372 case 'E':
3373 case 'e': return 14;
3374 case 'F':
3375 case 'f': return 15;
3376 }
3377 }
3378
3379 static int getAccessorIdx(char c, bool isNumericAccessor) {
3380 if (isNumericAccessor)
3381 return getNumericAccessorIdx(c);
3382 else
3383 return getPointAccessorIdx(c);
3384 }
3385
3386 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3387 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3388 return unsigned(idx-1) < getNumElements();
3389 return false;
3390 }
3391
3392 bool isSugared() const { return false; }
3393 QualType desugar() const { return QualType(this, 0); }
3394
3395 static bool classof(const Type *T) {
3396 return T->getTypeClass() == ExtVector;
3397 }
3398};
3399
3400/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3401/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3402/// number of rows and "columns" specifies the number of columns.
3403class MatrixType : public Type, public llvm::FoldingSetNode {
3404protected:
3405 friend class ASTContext;
3406
3407 /// The element type of the matrix.
3408 QualType ElementType;
3409
3410 MatrixType(QualType ElementTy, QualType CanonElementTy);
3411
3412 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3413 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3414
3415public:
3416 /// Returns type of the elements being stored in the matrix
3417 QualType getElementType() const { return ElementType; }
3418
3419 /// Valid elements types are the following:
3420 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3421 /// and _Bool
3422 /// * the standard floating types float or double
3423 /// * a half-precision floating point type, if one is supported on the target
3424 static bool isValidElementType(QualType T) {
3425 return T->isDependentType() ||
3426 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3427 }
3428
3429 bool isSugared() const { return false; }
3430 QualType desugar() const { return QualType(this, 0); }
3431
3432 static bool classof(const Type *T) {
3433 return T->getTypeClass() == ConstantMatrix ||
3434 T->getTypeClass() == DependentSizedMatrix;
3435 }
3436};
3437
3438/// Represents a concrete matrix type with constant number of rows and columns
3439class ConstantMatrixType final : public MatrixType {
3440protected:
3441 friend class ASTContext;
3442
3443 /// The element type of the matrix.
3444 // FIXME: Appears to be unused? There is also MatrixType::ElementType...
3445 QualType ElementType;
3446
3447 /// Number of rows and columns.
3448 unsigned NumRows;
3449 unsigned NumColumns;
3450
3451 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3452
3453 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3454 unsigned NColumns, QualType CanonElementType);
3455
3456 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3457 unsigned NColumns, QualType CanonElementType);
3458
3459public:
3460 /// Returns the number of rows in the matrix.
3461 unsigned getNumRows() const { return NumRows; }
3462
3463 /// Returns the number of columns in the matrix.
3464 unsigned getNumColumns() const { return NumColumns; }
3465
3466 /// Returns the number of elements required to embed the matrix into a vector.
3467 unsigned getNumElementsFlattened() const {
3468 return getNumRows() * getNumColumns();
3469 }
3470
3471 /// Returns true if \p NumElements is a valid matrix dimension.
3472 static constexpr bool isDimensionValid(size_t NumElements) {
3473 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3474 }
3475
3476 /// Returns the maximum number of elements per dimension.
3477 static constexpr unsigned getMaxElementsPerDimension() {
3478 return MaxElementsPerDimension;
3479 }
3480
3481 void Profile(llvm::FoldingSetNodeID &ID) {
3482 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3483 getTypeClass());
3484 }
3485
3486 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3487 unsigned NumRows, unsigned NumColumns,
3488 TypeClass TypeClass) {
3489 ID.AddPointer(ElementType.getAsOpaquePtr());
3490 ID.AddInteger(NumRows);
3491 ID.AddInteger(NumColumns);
3492 ID.AddInteger(TypeClass);
3493 }
3494
3495 static bool classof(const Type *T) {
3496 return T->getTypeClass() == ConstantMatrix;
3497 }
3498};
3499
3500/// Represents a matrix type where the type and the number of rows and columns
3501/// is dependent on a template.
3502class DependentSizedMatrixType final : public MatrixType {
3503 friend class ASTContext;
3504
3505 const ASTContext &Context;
3506 Expr *RowExpr;
3507 Expr *ColumnExpr;
3508
3509 SourceLocation loc;
3510
3511 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3512 QualType CanonicalType, Expr *RowExpr,
3513 Expr *ColumnExpr, SourceLocation loc);
3514
3515public:
3516 QualType getElementType() const { return ElementType; }
3517 Expr *getRowExpr() const { return RowExpr; }
3518 Expr *getColumnExpr() const { return ColumnExpr; }
3519 SourceLocation getAttributeLoc() const { return loc; }
3520
3521 bool isSugared() const { return false; }
3522 QualType desugar() const { return QualType(this, 0); }
3523
3524 static bool classof(const Type *T) {
3525 return T->getTypeClass() == DependentSizedMatrix;
3526 }
3527
3528 void Profile(llvm::FoldingSetNodeID &ID) {
3529 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3530 }
3531
3532 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3533 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3534};
3535
3536/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3537/// class of FunctionNoProtoType and FunctionProtoType.
3538class FunctionType : public Type {
3539 // The type returned by the function.
3540 QualType ResultType;
3541
3542public:
3543 /// Interesting information about a specific parameter that can't simply
3544 /// be reflected in parameter's type. This is only used by FunctionProtoType
3545 /// but is in FunctionType to make this class available during the
3546 /// specification of the bases of FunctionProtoType.
3547 ///
3548 /// It makes sense to model language features this way when there's some
3549 /// sort of parameter-specific override (such as an attribute) that
3550 /// affects how the function is called. For example, the ARC ns_consumed
3551 /// attribute changes whether a parameter is passed at +0 (the default)
3552 /// or +1 (ns_consumed). This must be reflected in the function type,
3553 /// but isn't really a change to the parameter type.
3554 ///
3555 /// One serious disadvantage of modelling language features this way is
3556 /// that they generally do not work with language features that attempt
3557 /// to destructure types. For example, template argument deduction will
3558 /// not be able to match a parameter declared as
3559 /// T (*)(U)
3560 /// against an argument of type
3561 /// void (*)(__attribute__((ns_consumed)) id)
3562 /// because the substitution of T=void, U=id into the former will
3563 /// not produce the latter.
3564 class ExtParameterInfo {
3565 enum {
3566 ABIMask = 0x0F,
3567 IsConsumed = 0x10,
3568 HasPassObjSize = 0x20,
3569 IsNoEscape = 0x40,
3570 };
3571 unsigned char Data = 0;
3572
3573 public:
3574 ExtParameterInfo() = default;
3575
3576 /// Return the ABI treatment of this parameter.
3577 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3578 ExtParameterInfo withABI(ParameterABI kind) const {
3579 ExtParameterInfo copy = *this;
3580 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3581 return copy;
3582 }
3583
3584 /// Is this parameter considered "consumed" by Objective-C ARC?
3585 /// Consumed parameters must have retainable object type.
3586 bool isConsumed() const { return (Data & IsConsumed); }
3587 ExtParameterInfo withIsConsumed(bool consumed) const {
3588 ExtParameterInfo copy = *this;
3589 if (consumed)
3590 copy.Data |= IsConsumed;
3591 else
3592 copy.Data &= ~IsConsumed;
3593 return copy;
3594 }
3595
3596 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3597 ExtParameterInfo withHasPassObjectSize() const {
3598 ExtParameterInfo Copy = *this;
3599 Copy.Data |= HasPassObjSize;
3600 return Copy;
3601 }
3602
3603 bool isNoEscape() const { return Data & IsNoEscape; }
3604 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3605 ExtParameterInfo Copy = *this;
3606 if (NoEscape)
3607 Copy.Data |= IsNoEscape;
3608 else
3609 Copy.Data &= ~IsNoEscape;
3610 return Copy;
3611 }
3612
3613 unsigned char getOpaqueValue() const { return Data; }
3614 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3615 ExtParameterInfo result;
3616 result.Data = data;
3617 return result;
3618 }
3619
3620 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3621 return lhs.Data == rhs.Data;
3622 }
3623
3624 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3625 return lhs.Data != rhs.Data;
3626 }
3627 };
3628
3629 /// A class which abstracts out some details necessary for
3630 /// making a call.
3631 ///
3632 /// It is not actually used directly for storing this information in
3633 /// a FunctionType, although FunctionType does currently use the
3634 /// same bit-pattern.
3635 ///
3636 // If you add a field (say Foo), other than the obvious places (both,
3637 // constructors, compile failures), what you need to update is
3638 // * Operator==
3639 // * getFoo
3640 // * withFoo
3641 // * functionType. Add Foo, getFoo.
3642 // * ASTContext::getFooType
3643 // * ASTContext::mergeFunctionTypes
3644 // * FunctionNoProtoType::Profile
3645 // * FunctionProtoType::Profile
3646 // * TypePrinter::PrintFunctionProto
3647 // * AST read and write
3648 // * Codegen
3649 class ExtInfo {
3650 friend class FunctionType;
3651
3652 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3653 // adjust the Bits field below, and if you add bits, you'll need to adjust
3654 // Type::FunctionTypeBitfields::ExtInfo as well.
3655
3656 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3657 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3658 //
3659 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3660 enum { CallConvMask = 0x1F };
3661 enum { NoReturnMask = 0x20 };
3662 enum { ProducesResultMask = 0x40 };
3663 enum { NoCallerSavedRegsMask = 0x80 };
3664 enum {
3665 RegParmMask = 0x700,
3666 RegParmOffset = 8
3667 };
3668 enum { NoCfCheckMask = 0x800 };
3669 enum { CmseNSCallMask = 0x1000 };
3670 uint16_t Bits = CC_C;
3671
3672 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3673
3674 public:
3675 // Constructor with no defaults. Use this when you know that you
3676 // have all the elements (when reading an AST file for example).
3677 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3678 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3679 bool cmseNSCall) {
3680 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 3680, __PRETTY_FUNCTION__))
;
3681 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3682 (producesResult ? ProducesResultMask : 0) |
3683 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3684 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3685 (NoCfCheck ? NoCfCheckMask : 0) |
3686 (cmseNSCall ? CmseNSCallMask : 0);
3687 }
3688
3689 // Constructor with all defaults. Use when for example creating a
3690 // function known to use defaults.
3691 ExtInfo() = default;
3692
3693 // Constructor with just the calling convention, which is an important part
3694 // of the canonical type.
3695 ExtInfo(CallingConv CC) : Bits(CC) {}
3696
3697 bool getNoReturn() const { return Bits & NoReturnMask; }
3698 bool getProducesResult() const { return Bits & ProducesResultMask; }
3699 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3700 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3701 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3702 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3703
3704 unsigned getRegParm() const {
3705 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3706 if (RegParm > 0)
3707 --RegParm;
3708 return RegParm;
3709 }
3710
3711 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3712
3713 bool operator==(ExtInfo Other) const {
3714 return Bits == Other.Bits;
3715 }
3716 bool operator!=(ExtInfo Other) const {
3717 return Bits != Other.Bits;
3718 }
3719
3720 // Note that we don't have setters. That is by design, use
3721 // the following with methods instead of mutating these objects.
3722
3723 ExtInfo withNoReturn(bool noReturn) const {
3724 if (noReturn)
3725 return ExtInfo(Bits | NoReturnMask);
3726 else
3727 return ExtInfo(Bits & ~NoReturnMask);
3728 }
3729
3730 ExtInfo withProducesResult(bool producesResult) const {
3731 if (producesResult)
3732 return ExtInfo(Bits | ProducesResultMask);
3733 else
3734 return ExtInfo(Bits & ~ProducesResultMask);
3735 }
3736
3737 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3738 if (cmseNSCall)
3739 return ExtInfo(Bits | CmseNSCallMask);
3740 else
3741 return ExtInfo(Bits & ~CmseNSCallMask);
3742 }
3743
3744 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3745 if (noCallerSavedRegs)
3746 return ExtInfo(Bits | NoCallerSavedRegsMask);
3747 else
3748 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3749 }
3750
3751 ExtInfo withNoCfCheck(bool noCfCheck) const {
3752 if (noCfCheck)
3753 return ExtInfo(Bits | NoCfCheckMask);
3754 else
3755 return ExtInfo(Bits & ~NoCfCheckMask);
3756 }
3757
3758 ExtInfo withRegParm(unsigned RegParm) const {
3759 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 3759, __PRETTY_FUNCTION__))
;
3760 return ExtInfo((Bits & ~RegParmMask) |
3761 ((RegParm + 1) << RegParmOffset));
3762 }
3763
3764 ExtInfo withCallingConv(CallingConv cc) const {
3765 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3766 }
3767
3768 void Profile(llvm::FoldingSetNodeID &ID) const {
3769 ID.AddInteger(Bits);
3770 }
3771 };
3772
3773 /// A simple holder for a QualType representing a type in an
3774 /// exception specification. Unfortunately needed by FunctionProtoType
3775 /// because TrailingObjects cannot handle repeated types.
3776 struct ExceptionType { QualType Type; };
3777
3778 /// A simple holder for various uncommon bits which do not fit in
3779 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3780 /// alignment of subsequent objects in TrailingObjects. You must update
3781 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3782 struct alignas(void *) FunctionTypeExtraBitfields {
3783 /// The number of types in the exception specification.
3784 /// A whole unsigned is not needed here and according to
3785 /// [implimits] 8 bits would be enough here.
3786 unsigned NumExceptionType;
3787 };
3788
3789protected:
3790 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3791 TypeDependence Dependence, ExtInfo Info)
3792 : Type(tc, Canonical, Dependence), ResultType(res) {
3793 FunctionTypeBits.ExtInfo = Info.Bits;
3794 }
3795
3796 Qualifiers getFastTypeQuals() const {
3797 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3798 }
3799
3800public:
3801 QualType getReturnType() const { return ResultType; }
3802
3803 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3804 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3805
3806 /// Determine whether this function type includes the GNU noreturn
3807 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3808 /// type.
3809 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3810
3811 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3812 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3813 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3814
3815 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3816 "Const, volatile and restrict are assumed to be a subset of "
3817 "the fast qualifiers.");
3818
3819 bool isConst() const { return getFastTypeQuals().hasConst(); }
3820 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3821 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3822
3823 /// Determine the type of an expression that calls a function of
3824 /// this type.
3825 QualType getCallResultType(const ASTContext &Context) const {
3826 return getReturnType().getNonLValueExprType(Context);
3827 }
3828
3829 static StringRef getNameForCallConv(CallingConv CC);
3830
3831 static bool classof(const Type *T) {
3832 return T->getTypeClass() == FunctionNoProto ||
3833 T->getTypeClass() == FunctionProto;
3834 }
3835};
3836
3837/// Represents a K&R-style 'int foo()' function, which has
3838/// no information available about its arguments.
3839class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3840 friend class ASTContext; // ASTContext creates these.
3841
3842 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3843 : FunctionType(FunctionNoProto, Result, Canonical,
3844 Result->getDependence() &
3845 ~(TypeDependence::DependentInstantiation |
3846 TypeDependence::UnexpandedPack),
3847 Info) {}
3848
3849public:
3850 // No additional state past what FunctionType provides.
3851
3852 bool isSugared() const { return false; }
3853 QualType desugar() const { return QualType(this, 0); }
3854
3855 void Profile(llvm::FoldingSetNodeID &ID) {
3856 Profile(ID, getReturnType(), getExtInfo());
3857 }
3858
3859 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3860 ExtInfo Info) {
3861 Info.Profile(ID);
3862 ID.AddPointer(ResultType.getAsOpaquePtr());
3863 }
3864
3865 static bool classof(const Type *T) {
3866 return T->getTypeClass() == FunctionNoProto;
3867 }
3868};
3869
3870/// Represents a prototype with parameter type info, e.g.
3871/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3872/// parameters, not as having a single void parameter. Such a type can have
3873/// an exception specification, but this specification is not part of the
3874/// canonical type. FunctionProtoType has several trailing objects, some of
3875/// which optional. For more information about the trailing objects see
3876/// the first comment inside FunctionProtoType.
3877class FunctionProtoType final
3878 : public FunctionType,
3879 public llvm::FoldingSetNode,
3880 private llvm::TrailingObjects<
3881 FunctionProtoType, QualType, SourceLocation,
3882 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3883 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3884 friend class ASTContext; // ASTContext creates these.
3885 friend TrailingObjects;
3886
3887 // FunctionProtoType is followed by several trailing objects, some of
3888 // which optional. They are in order:
3889 //
3890 // * An array of getNumParams() QualType holding the parameter types.
3891 // Always present. Note that for the vast majority of FunctionProtoType,
3892 // these will be the only trailing objects.
3893 //
3894 // * Optionally if the function is variadic, the SourceLocation of the
3895 // ellipsis.
3896 //
3897 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3898 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3899 // a single FunctionTypeExtraBitfields. Present if and only if
3900 // hasExtraBitfields() is true.
3901 //
3902 // * Optionally exactly one of:
3903 // * an array of getNumExceptions() ExceptionType,
3904 // * a single Expr *,
3905 // * a pair of FunctionDecl *,
3906 // * a single FunctionDecl *
3907 // used to store information about the various types of exception
3908 // specification. See getExceptionSpecSize for the details.
3909 //
3910 // * Optionally an array of getNumParams() ExtParameterInfo holding
3911 // an ExtParameterInfo for each of the parameters. Present if and
3912 // only if hasExtParameterInfos() is true.
3913 //
3914 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3915 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3916 // if hasExtQualifiers() is true.
3917 //
3918 // The optional FunctionTypeExtraBitfields has to be before the data
3919 // related to the exception specification since it contains the number
3920 // of exception types.
3921 //
3922 // We put the ExtParameterInfos last. If all were equal, it would make
3923 // more sense to put these before the exception specification, because
3924 // it's much easier to skip past them compared to the elaborate switch
3925 // required to skip the exception specification. However, all is not
3926 // equal; ExtParameterInfos are used to model very uncommon features,
3927 // and it's better not to burden the more common paths.
3928
3929public:
3930 /// Holds information about the various types of exception specification.
3931 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3932 /// used to group together the various bits of information about the
3933 /// exception specification.
3934 struct ExceptionSpecInfo {
3935 /// The kind of exception specification this is.
3936 ExceptionSpecificationType Type = EST_None;
3937
3938 /// Explicitly-specified list of exception types.
3939 ArrayRef<QualType> Exceptions;
3940
3941 /// Noexcept expression, if this is a computed noexcept specification.
3942 Expr *NoexceptExpr = nullptr;
3943
3944 /// The function whose exception specification this is, for
3945 /// EST_Unevaluated and EST_Uninstantiated.
3946 FunctionDecl *SourceDecl = nullptr;
3947
3948 /// The function template whose exception specification this is instantiated
3949 /// from, for EST_Uninstantiated.
3950 FunctionDecl *SourceTemplate = nullptr;
3951
3952 ExceptionSpecInfo() = default;
3953
3954 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3955 };
3956
3957 /// Extra information about a function prototype. ExtProtoInfo is not
3958 /// stored as such in FunctionProtoType but is used to group together
3959 /// the various bits of extra information about a function prototype.
3960 struct ExtProtoInfo {
3961 FunctionType::ExtInfo ExtInfo;
3962 bool Variadic : 1;
3963 bool HasTrailingReturn : 1;
3964 Qualifiers TypeQuals;
3965 RefQualifierKind RefQualifier = RQ_None;
3966 ExceptionSpecInfo ExceptionSpec;
3967 const ExtParameterInfo *ExtParameterInfos = nullptr;
3968 SourceLocation EllipsisLoc;
3969
3970 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3971
3972 ExtProtoInfo(CallingConv CC)
3973 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3974
3975 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3976 ExtProtoInfo Result(*this);
3977 Result.ExceptionSpec = ESI;
3978 return Result;
3979 }
3980 };
3981
3982private:
3983 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3984 return getNumParams();
3985 }
3986
3987 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3988 return isVariadic();
3989 }
3990
3991 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3992 return hasExtraBitfields();
3993 }
3994
3995 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3996 return getExceptionSpecSize().NumExceptionType;
3997 }
3998
3999 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4000 return getExceptionSpecSize().NumExprPtr;
4001 }
4002
4003 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4004 return getExceptionSpecSize().NumFunctionDeclPtr;
4005 }
4006
4007 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4008 return hasExtParameterInfos() ? getNumParams() : 0;
4009 }
4010
4011 /// Determine whether there are any argument types that
4012 /// contain an unexpanded parameter pack.
4013 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4014 unsigned numArgs) {
4015 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4016 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4017 return true;
4018
4019 return false;
4020 }
4021
4022 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4023 QualType canonical, const ExtProtoInfo &epi);
4024
4025 /// This struct is returned by getExceptionSpecSize and is used to
4026 /// translate an ExceptionSpecificationType to the number and kind
4027 /// of trailing objects related to the exception specification.
4028 struct ExceptionSpecSizeHolder {
4029 unsigned NumExceptionType;
4030 unsigned NumExprPtr;
4031 unsigned NumFunctionDeclPtr;
4032 };
4033
4034 /// Return the number and kind of trailing objects
4035 /// related to the exception specification.
4036 static ExceptionSpecSizeHolder
4037 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4038 switch (EST) {
4039 case EST_None:
4040 case EST_DynamicNone:
4041 case EST_MSAny:
4042 case EST_BasicNoexcept:
4043 case EST_Unparsed:
4044 case EST_NoThrow:
4045 return {0, 0, 0};
4046
4047 case EST_Dynamic:
4048 return {NumExceptions, 0, 0};
4049
4050 case EST_DependentNoexcept:
4051 case EST_NoexceptFalse:
4052 case EST_NoexceptTrue:
4053 return {0, 1, 0};
4054
4055 case EST_Uninstantiated:
4056 return {0, 0, 2};
4057
4058 case EST_Unevaluated:
4059 return {0, 0, 1};
4060 }
4061 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4061)
;
4062 }
4063
4064 /// Return the number and kind of trailing objects
4065 /// related to the exception specification.
4066 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4067 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4068 }
4069
4070 /// Whether the trailing FunctionTypeExtraBitfields is present.
4071 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4072 // If the exception spec type is EST_Dynamic then we have > 0 exception
4073 // types and the exact number is stored in FunctionTypeExtraBitfields.
4074 return EST == EST_Dynamic;
4075 }
4076
4077 /// Whether the trailing FunctionTypeExtraBitfields is present.
4078 bool hasExtraBitfields() const {
4079 return hasExtraBitfields(getExceptionSpecType());
4080 }
4081
4082 bool hasExtQualifiers() const {
4083 return FunctionTypeBits.HasExtQuals;
4084 }
4085
4086public:
4087 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4088
4089 QualType getParamType(unsigned i) const {
4090 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4090, __PRETTY_FUNCTION__))
;
4091 return param_type_begin()[i];
4092 }
4093
4094 ArrayRef<QualType> getParamTypes() const {
4095 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4096 }
4097
4098 ExtProtoInfo getExtProtoInfo() const {
4099 ExtProtoInfo EPI;
4100 EPI.ExtInfo = getExtInfo();
4101 EPI.Variadic = isVariadic();
4102 EPI.EllipsisLoc = getEllipsisLoc();
4103 EPI.HasTrailingReturn = hasTrailingReturn();
4104 EPI.ExceptionSpec = getExceptionSpecInfo();
4105 EPI.TypeQuals = getMethodQuals();
4106 EPI.RefQualifier = getRefQualifier();
4107 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4108 return EPI;
4109 }
4110
4111 /// Get the kind of exception specification on this function.
4112 ExceptionSpecificationType getExceptionSpecType() const {
4113 return static_cast<ExceptionSpecificationType>(
4114 FunctionTypeBits.ExceptionSpecType);
4115 }
4116
4117 /// Return whether this function has any kind of exception spec.
4118 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4119
4120 /// Return whether this function has a dynamic (throw) exception spec.
4121 bool hasDynamicExceptionSpec() const {
4122 return isDynamicExceptionSpec(getExceptionSpecType());
4123 }
4124
4125 /// Return whether this function has a noexcept exception spec.
4126 bool hasNoexceptExceptionSpec() const {
4127 return isNoexceptExceptionSpec(getExceptionSpecType());
4128 }
4129
4130 /// Return whether this function has a dependent exception spec.
4131 bool hasDependentExceptionSpec() const;
4132
4133 /// Return whether this function has an instantiation-dependent exception
4134 /// spec.
4135 bool hasInstantiationDependentExceptionSpec() const;
4136
4137 /// Return all the available information about this type's exception spec.
4138 ExceptionSpecInfo getExceptionSpecInfo() const {
4139 ExceptionSpecInfo Result;
4140 Result.Type = getExceptionSpecType();
4141 if (Result.Type == EST_Dynamic) {
4142 Result.Exceptions = exceptions();
4143 } else if (isComputedNoexcept(Result.Type)) {
4144 Result.NoexceptExpr = getNoexceptExpr();
4145 } else if (Result.Type == EST_Uninstantiated) {
4146 Result.SourceDecl = getExceptionSpecDecl();
4147 Result.SourceTemplate = getExceptionSpecTemplate();
4148 } else if (Result.Type == EST_Unevaluated) {
4149 Result.SourceDecl = getExceptionSpecDecl();
4150 }
4151 return Result;
4152 }
4153
4154 /// Return the number of types in the exception specification.
4155 unsigned getNumExceptions() const {
4156 return getExceptionSpecType() == EST_Dynamic
4157 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4158 ->NumExceptionType
4159 : 0;
4160 }
4161
4162 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4163 QualType getExceptionType(unsigned i) const {
4164 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4164, __PRETTY_FUNCTION__))
;
4165 return exception_begin()[i];
4166 }
4167
4168 /// Return the expression inside noexcept(expression), or a null pointer
4169 /// if there is none (because the exception spec is not of this form).
4170 Expr *getNoexceptExpr() const {
4171 if (!isComputedNoexcept(getExceptionSpecType()))
4172 return nullptr;
4173 return *getTrailingObjects<Expr *>();
4174 }
4175
4176 /// If this function type has an exception specification which hasn't
4177 /// been determined yet (either because it has not been evaluated or because
4178 /// it has not been instantiated), this is the function whose exception
4179 /// specification is represented by this type.
4180 FunctionDecl *getExceptionSpecDecl() const {
4181 if (getExceptionSpecType() != EST_Uninstantiated &&
4182 getExceptionSpecType() != EST_Unevaluated)
4183 return nullptr;
4184 return getTrailingObjects<FunctionDecl *>()[0];
4185 }
4186
4187 /// If this function type has an uninstantiated exception
4188 /// specification, this is the function whose exception specification
4189 /// should be instantiated to find the exception specification for
4190 /// this type.
4191 FunctionDecl *getExceptionSpecTemplate() const {
4192 if (getExceptionSpecType() != EST_Uninstantiated)
4193 return nullptr;
4194 return getTrailingObjects<FunctionDecl *>()[1];
4195 }
4196
4197 /// Determine whether this function type has a non-throwing exception
4198 /// specification.
4199 CanThrowResult canThrow() const;
4200
4201 /// Determine whether this function type has a non-throwing exception
4202 /// specification. If this depends on template arguments, returns
4203 /// \c ResultIfDependent.
4204 bool isNothrow(bool ResultIfDependent = false) const {
4205 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4206 }
4207
4208 /// Whether this function prototype is variadic.
4209 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4210
4211 SourceLocation getEllipsisLoc() const {
4212 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4213 : SourceLocation();
4214 }
4215
4216 /// Determines whether this function prototype contains a
4217 /// parameter pack at the end.
4218 ///
4219 /// A function template whose last parameter is a parameter pack can be
4220 /// called with an arbitrary number of arguments, much like a variadic
4221 /// function.
4222 bool isTemplateVariadic() const;
4223
4224 /// Whether this function prototype has a trailing return type.
4225 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4226
4227 Qualifiers getMethodQuals() const {
4228 if (hasExtQualifiers())
4229 return *getTrailingObjects<Qualifiers>();
4230 else
4231 return getFastTypeQuals();
4232 }
4233
4234 /// Retrieve the ref-qualifier associated with this function type.
4235 RefQualifierKind getRefQualifier() const {
4236 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4237 }
4238
4239 using param_type_iterator = const QualType *;
4240 using param_type_range = llvm::iterator_range<param_type_iterator>;
4241
4242 param_type_range param_types() const {
4243 return param_type_range(param_type_begin(), param_type_end());
4244 }
4245
4246 param_type_iterator param_type_begin() const {
4247 return getTrailingObjects<QualType>();
4248 }
4249
4250 param_type_iterator param_type_end() const {
4251 return param_type_begin() + getNumParams();
4252 }
4253
4254 using exception_iterator = const QualType *;
4255
4256 ArrayRef<QualType> exceptions() const {
4257 return llvm::makeArrayRef(exception_begin(), exception_end());
4258 }
4259
4260 exception_iterator exception_begin() const {
4261 return reinterpret_cast<exception_iterator>(
4262 getTrailingObjects<ExceptionType>());
4263 }
4264
4265 exception_iterator exception_end() const {
4266 return exception_begin() + getNumExceptions();
4267 }
4268
4269 /// Is there any interesting extra information for any of the parameters
4270 /// of this function type?
4271 bool hasExtParameterInfos() const {
4272 return FunctionTypeBits.HasExtParameterInfos;
4273 }
4274
4275 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4276 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4276, __PRETTY_FUNCTION__))
;
4277 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4278 getNumParams());
4279 }
4280
4281 /// Return a pointer to the beginning of the array of extra parameter
4282 /// information, if present, or else null if none of the parameters
4283 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4284 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4285 if (!hasExtParameterInfos())
4286 return nullptr;
4287 return getTrailingObjects<ExtParameterInfo>();
4288 }
4289
4290 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4291 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4291, __PRETTY_FUNCTION__))
;
4292 if (hasExtParameterInfos())
4293 return getTrailingObjects<ExtParameterInfo>()[I];
4294 return ExtParameterInfo();
4295 }
4296
4297 ParameterABI getParameterABI(unsigned I) const {
4298 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4298, __PRETTY_FUNCTION__))
;
4299 if (hasExtParameterInfos())
4300 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4301 return ParameterABI::Ordinary;
4302 }
4303
4304 bool isParamConsumed(unsigned I) const {
4305 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20210125100614+2cdb34efdac5/clang/include/clang/AST/Type.h"
, 4305, __PRETTY_FUNCTION__))
;
4306 if (hasExtParameterInfos())
4307 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4308 return false;
4309 }
4310
4311 bool isSugared() const { return false; }
4312 QualType desugar() const { return QualType(this, 0); }
4313
4314 void printExceptionSpecification(raw_ostream &OS,
4315 const PrintingPolicy &Policy) const;
4316
4317 static bool classof(const Type *T) {