Bug Summary

File:llvm/lib/Transforms/Utils/CodeExtractor.cpp
Warning:line 942, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeExtractor.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fdenormal-fp-math=ieee,ieee -fdenormal-fp-math-f32=ieee,ieee -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/build-llvm/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/build-llvm/lib/Transforms/Utils -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-03-072104-41066-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the interface to tear out a code region, such as an
10// individual loop or a parallel section, into a new function, replacing it with
11// a call to the new function.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/CodeExtractor.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/BlockFrequencyInfo.h"
25#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26#include "llvm/Analysis/BranchProbabilityInfo.h"
27#include "llvm/Analysis/LoopInfo.h"
28#include "llvm/IR/Argument.h"
29#include "llvm/IR/Attributes.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DIBuilder.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfoMetadata.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/InstIterator.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/MDBuilder.h"
49#include "llvm/IR/Module.h"
50#include "llvm/IR/PatternMatch.h"
51#include "llvm/IR/Type.h"
52#include "llvm/IR/User.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/Verifier.h"
55#include "llvm/Pass.h"
56#include "llvm/Support/BlockFrequency.h"
57#include "llvm/Support/BranchProbability.h"
58#include "llvm/Support/Casting.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Transforms/Utils/BasicBlockUtils.h"
64#include "llvm/Transforms/Utils/Local.h"
65#include <cassert>
66#include <cstdint>
67#include <iterator>
68#include <map>
69#include <set>
70#include <utility>
71#include <vector>
72
73using namespace llvm;
74using namespace llvm::PatternMatch;
75using ProfileCount = Function::ProfileCount;
76
77#define DEBUG_TYPE"code-extractor" "code-extractor"
78
79// Provide a command-line option to aggregate function arguments into a struct
80// for functions produced by the code extractor. This is useful when converting
81// extracted functions to pthread-based code, as only one argument (void*) can
82// be passed in to pthread_create().
83static cl::opt<bool>
84AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85 cl::desc("Aggregate arguments to code-extracted functions"));
86
87/// Test whether a block is valid for extraction.
88static bool isBlockValidForExtraction(const BasicBlock &BB,
89 const SetVector<BasicBlock *> &Result,
90 bool AllowVarArgs, bool AllowAlloca) {
91 // taking the address of a basic block moved to another function is illegal
92 if (BB.hasAddressTaken())
93 return false;
94
95 // don't hoist code that uses another basicblock address, as it's likely to
96 // lead to unexpected behavior, like cross-function jumps
97 SmallPtrSet<User const *, 16> Visited;
98 SmallVector<User const *, 16> ToVisit;
99
100 for (Instruction const &Inst : BB)
101 ToVisit.push_back(&Inst);
102
103 while (!ToVisit.empty()) {
104 User const *Curr = ToVisit.pop_back_val();
105 if (!Visited.insert(Curr).second)
106 continue;
107 if (isa<BlockAddress const>(Curr))
108 return false; // even a reference to self is likely to be not compatible
109
110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111 continue;
112
113 for (auto const &U : Curr->operands()) {
114 if (auto *UU = dyn_cast<User>(U))
115 ToVisit.push_back(UU);
116 }
117 }
118
119 // If explicitly requested, allow vastart and alloca. For invoke instructions
120 // verify that extraction is valid.
121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122 if (isa<AllocaInst>(I)) {
123 if (!AllowAlloca)
124 return false;
125 continue;
126 }
127
128 if (const auto *II = dyn_cast<InvokeInst>(I)) {
129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130 // must be a part of the subgraph which is being extracted.
131 if (auto *UBB = II->getUnwindDest())
132 if (!Result.count(UBB))
133 return false;
134 continue;
135 }
136
137 // All catch handlers of a catchswitch instruction as well as the unwind
138 // destination must be in the subgraph.
139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140 if (auto *UBB = CSI->getUnwindDest())
141 if (!Result.count(UBB))
142 return false;
143 for (auto *HBB : CSI->handlers())
144 if (!Result.count(const_cast<BasicBlock*>(HBB)))
145 return false;
146 continue;
147 }
148
149 // Make sure that entire catch handler is within subgraph. It is sufficient
150 // to check that catch return's block is in the list.
151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152 for (const auto *U : CPI->users())
153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155 return false;
156 continue;
157 }
158
159 // And do similar checks for cleanup handler - the entire handler must be
160 // in subgraph which is going to be extracted. For cleanup return should
161 // additionally check that the unwind destination is also in the subgraph.
162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163 for (const auto *U : CPI->users())
164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166 return false;
167 continue;
168 }
169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170 if (auto *UBB = CRI->getUnwindDest())
171 if (!Result.count(UBB))
172 return false;
173 continue;
174 }
175
176 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177 if (const Function *F = CI->getCalledFunction()) {
178 auto IID = F->getIntrinsicID();
179 if (IID == Intrinsic::vastart) {
180 if (AllowVarArgs)
181 continue;
182 else
183 return false;
184 }
185
186 // Currently, we miscompile outlined copies of eh_typid_for. There are
187 // proposals for fixing this in llvm.org/PR39545.
188 if (IID == Intrinsic::eh_typeid_for)
189 return false;
190 }
191 }
192 }
193
194 return true;
195}
196
197/// Build a set of blocks to extract if the input blocks are viable.
198static SetVector<BasicBlock *>
199buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200 bool AllowVarArgs, bool AllowAlloca) {
201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty")((!BBs.empty() && "The set of blocks to extract must be non-empty"
) ? static_cast<void> (0) : __assert_fail ("!BBs.empty() && \"The set of blocks to extract must be non-empty\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 201, __PRETTY_FUNCTION__))
;
202 SetVector<BasicBlock *> Result;
203
204 // Loop over the blocks, adding them to our set-vector, and aborting with an
205 // empty set if we encounter invalid blocks.
206 for (BasicBlock *BB : BBs) {
207 // If this block is dead, don't process it.
208 if (DT && !DT->isReachableFromEntry(BB))
209 continue;
210
211 if (!Result.insert(BB))
212 llvm_unreachable("Repeated basic blocks in extraction input")::llvm::llvm_unreachable_internal("Repeated basic blocks in extraction input"
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 212)
;
213 }
214
215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Region front block: " <<
Result.front()->getName() << '\n'; } } while (false
)
216 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Region front block: " <<
Result.front()->getName() << '\n'; } } while (false
)
;
217
218 for (auto *BB : Result) {
219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220 return {};
221
222 // Make sure that the first block is not a landing pad.
223 if (BB == Result.front()) {
224 if (BB->isEHPad()) {
225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "The first block cannot be an unwind block\n"
; } } while (false)
;
226 return {};
227 }
228 continue;
229 }
230
231 // All blocks other than the first must not have predecessors outside of
232 // the subgraph which is being extracted.
233 for (auto *PBB : predecessors(BB))
234 if (!Result.count(PBB)) {
235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "No blocks in this region may have entries from "
"outside the region except for the first block!\n" << "Problematic source BB: "
<< BB->getName() << "\n" << "Problematic destination BB: "
<< PBB->getName() << "\n"; } } while (false)
236 "outside the region except for the first block!\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "No blocks in this region may have entries from "
"outside the region except for the first block!\n" << "Problematic source BB: "
<< BB->getName() << "\n" << "Problematic destination BB: "
<< PBB->getName() << "\n"; } } while (false)
237 << "Problematic source BB: " << BB->getName() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "No blocks in this region may have entries from "
"outside the region except for the first block!\n" << "Problematic source BB: "
<< BB->getName() << "\n" << "Problematic destination BB: "
<< PBB->getName() << "\n"; } } while (false)
238 << "Problematic destination BB: " << PBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "No blocks in this region may have entries from "
"outside the region except for the first block!\n" << "Problematic source BB: "
<< BB->getName() << "\n" << "Problematic destination BB: "
<< PBB->getName() << "\n"; } } while (false)
239 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "No blocks in this region may have entries from "
"outside the region except for the first block!\n" << "Problematic source BB: "
<< BB->getName() << "\n" << "Problematic destination BB: "
<< PBB->getName() << "\n"; } } while (false)
;
240 return {};
241 }
242 }
243
244 return Result;
245}
246
247CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248 bool AggregateArgs, BlockFrequencyInfo *BFI,
249 BranchProbabilityInfo *BPI, AssumptionCache *AC,
250 bool AllowVarArgs, bool AllowAlloca,
251 std::string Suffix)
252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255 Suffix(Suffix) {}
256
257CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258 BlockFrequencyInfo *BFI,
259 BranchProbabilityInfo *BPI, AssumptionCache *AC,
260 std::string Suffix)
261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262 BPI(BPI), AC(AC), AllowVarArgs(false),
263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264 /* AllowVarArgs */ false,
265 /* AllowAlloca */ false)),
266 Suffix(Suffix) {}
267
268/// definedInRegion - Return true if the specified value is defined in the
269/// extracted region.
270static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271 if (Instruction *I = dyn_cast<Instruction>(V))
272 if (Blocks.count(I->getParent()))
273 return true;
274 return false;
275}
276
277/// definedInCaller - Return true if the specified value is defined in the
278/// function being code extracted, but not in the region being extracted.
279/// These values must be passed in as live-ins to the function.
280static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281 if (isa<Argument>(V)) return true;
282 if (Instruction *I = dyn_cast<Instruction>(V))
283 if (!Blocks.count(I->getParent()))
284 return true;
285 return false;
286}
287
288static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289 BasicBlock *CommonExitBlock = nullptr;
290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291 for (auto *Succ : successors(Block)) {
292 // Internal edges, ok.
293 if (Blocks.count(Succ))
294 continue;
295 if (!CommonExitBlock) {
296 CommonExitBlock = Succ;
297 continue;
298 }
299 if (CommonExitBlock != Succ)
300 return true;
301 }
302 return false;
303 };
304
305 if (any_of(Blocks, hasNonCommonExitSucc))
306 return nullptr;
307
308 return CommonExitBlock;
309}
310
311CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312 for (BasicBlock &BB : F) {
313 for (Instruction &II : BB.instructionsWithoutDebug())
314 if (auto *AI = dyn_cast<AllocaInst>(&II))
315 Allocas.push_back(AI);
316
317 findSideEffectInfoForBlock(BB);
318 }
319}
320
321void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322 for (Instruction &II : BB.instructionsWithoutDebug()) {
323 unsigned Opcode = II.getOpcode();
324 Value *MemAddr = nullptr;
325 switch (Opcode) {
326 case Instruction::Store:
327 case Instruction::Load: {
328 if (Opcode == Instruction::Store) {
329 StoreInst *SI = cast<StoreInst>(&II);
330 MemAddr = SI->getPointerOperand();
331 } else {
332 LoadInst *LI = cast<LoadInst>(&II);
333 MemAddr = LI->getPointerOperand();
334 }
335 // Global variable can not be aliased with locals.
336 if (dyn_cast<Constant>(MemAddr))
337 break;
338 Value *Base = MemAddr->stripInBoundsConstantOffsets();
339 if (!isa<AllocaInst>(Base)) {
340 SideEffectingBlocks.insert(&BB);
341 return;
342 }
343 BaseMemAddrs[&BB].insert(Base);
344 break;
345 }
346 default: {
347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348 if (IntrInst) {
349 if (IntrInst->isLifetimeStartOrEnd())
350 break;
351 SideEffectingBlocks.insert(&BB);
352 return;
353 }
354 // Treat all the other cases conservatively if it has side effects.
355 if (II.mayHaveSideEffects()) {
356 SideEffectingBlocks.insert(&BB);
357 return;
358 }
359 }
360 }
361 }
362}
363
364bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365 BasicBlock &BB, AllocaInst *Addr) const {
366 if (SideEffectingBlocks.count(&BB))
367 return true;
368 auto It = BaseMemAddrs.find(&BB);
369 if (It != BaseMemAddrs.end())
370 return It->second.count(Addr);
371 return false;
372}
373
374bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377 Function *Func = (*Blocks.begin())->getParent();
378 for (BasicBlock &BB : *Func) {
379 if (Blocks.count(&BB))
380 continue;
381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382 return false;
383 }
384 return true;
385}
386
387BasicBlock *
388CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389 BasicBlock *SinglePredFromOutlineRegion = nullptr;
390 assert(!Blocks.count(CommonExitBlock) &&((!Blocks.count(CommonExitBlock) && "Expect a block outside the region!"
) ? static_cast<void> (0) : __assert_fail ("!Blocks.count(CommonExitBlock) && \"Expect a block outside the region!\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 391, __PRETTY_FUNCTION__))
391 "Expect a block outside the region!")((!Blocks.count(CommonExitBlock) && "Expect a block outside the region!"
) ? static_cast<void> (0) : __assert_fail ("!Blocks.count(CommonExitBlock) && \"Expect a block outside the region!\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 391, __PRETTY_FUNCTION__))
;
392 for (auto *Pred : predecessors(CommonExitBlock)) {
393 if (!Blocks.count(Pred))
394 continue;
395 if (!SinglePredFromOutlineRegion) {
396 SinglePredFromOutlineRegion = Pred;
397 } else if (SinglePredFromOutlineRegion != Pred) {
398 SinglePredFromOutlineRegion = nullptr;
399 break;
400 }
401 }
402
403 if (SinglePredFromOutlineRegion)
404 return SinglePredFromOutlineRegion;
405
406#ifndef NDEBUG
407 auto getFirstPHI = [](BasicBlock *BB) {
408 BasicBlock::iterator I = BB->begin();
409 PHINode *FirstPhi = nullptr;
410 while (I != BB->end()) {
411 PHINode *Phi = dyn_cast<PHINode>(I);
412 if (!Phi)
413 break;
414 if (!FirstPhi) {
415 FirstPhi = Phi;
416 break;
417 }
418 }
419 return FirstPhi;
420 };
421 // If there are any phi nodes, the single pred either exists or has already
422 // be created before code extraction.
423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected")((!getFirstPHI(CommonExitBlock) && "Phi not expected"
) ? static_cast<void> (0) : __assert_fail ("!getFirstPHI(CommonExitBlock) && \"Phi not expected\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 423, __PRETTY_FUNCTION__))
;
424#endif
425
426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427 CommonExitBlock->getFirstNonPHI()->getIterator());
428
429 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
430 PI != PE;) {
431 BasicBlock *Pred = *PI++;
432 if (Blocks.count(Pred))
433 continue;
434 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
435 }
436 // Now add the old exit block to the outline region.
437 Blocks.insert(CommonExitBlock);
438 return CommonExitBlock;
439}
440
441// Find the pair of life time markers for address 'Addr' that are either
442// defined inside the outline region or can legally be shrinkwrapped into the
443// outline region. If there are not other untracked uses of the address, return
444// the pair of markers if found; otherwise return a pair of nullptr.
445CodeExtractor::LifetimeMarkerInfo
446CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447 Instruction *Addr,
448 BasicBlock *ExitBlock) const {
449 LifetimeMarkerInfo Info;
450
451 for (User *U : Addr->users()) {
452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453 if (IntrInst) {
454 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
455 // Do not handle the case where Addr has multiple start markers.
456 if (Info.LifeStart)
457 return {};
458 Info.LifeStart = IntrInst;
459 }
460 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
461 if (Info.LifeEnd)
462 return {};
463 Info.LifeEnd = IntrInst;
464 }
465 continue;
466 }
467 // Find untracked uses of the address, bail.
468 if (!definedInRegion(Blocks, U))
469 return {};
470 }
471
472 if (!Info.LifeStart || !Info.LifeEnd)
473 return {};
474
475 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
476 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
477 // Do legality check.
478 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
479 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
480 return {};
481
482 // Check to see if we have a place to do hoisting, if not, bail.
483 if (Info.HoistLifeEnd && !ExitBlock)
484 return {};
485
486 return Info;
487}
488
489void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
490 ValueSet &SinkCands, ValueSet &HoistCands,
491 BasicBlock *&ExitBlock) const {
492 Function *Func = (*Blocks.begin())->getParent();
493 ExitBlock = getCommonExitBlock(Blocks);
494
495 auto moveOrIgnoreLifetimeMarkers =
496 [&](const LifetimeMarkerInfo &LMI) -> bool {
497 if (!LMI.LifeStart)
498 return false;
499 if (LMI.SinkLifeStart) {
500 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStartdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Sinking lifetime.start: "
<< *LMI.LifeStart << "\n"; } } while (false)
501 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Sinking lifetime.start: "
<< *LMI.LifeStart << "\n"; } } while (false)
;
502 SinkCands.insert(LMI.LifeStart);
503 }
504 if (LMI.HoistLifeEnd) {
505 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Hoisting lifetime.end: "
<< *LMI.LifeEnd << "\n"; } } while (false)
;
506 HoistCands.insert(LMI.LifeEnd);
507 }
508 return true;
509 };
510
511 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
512 // this is much faster than walking all the instructions.
513 for (AllocaInst *AI : CEAC.getAllocas()) {
514 BasicBlock *BB = AI->getParent();
515 if (Blocks.count(BB))
516 continue;
517
518 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
519 // check whether it is actually still in the original function.
520 Function *AIFunc = BB->getParent();
521 if (AIFunc != Func)
522 continue;
523
524 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
525 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
526 if (Moved) {
527 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Sinking alloca: " <<
*AI << "\n"; } } while (false)
;
528 SinkCands.insert(AI);
529 continue;
530 }
531
532 // Follow any bitcasts.
533 SmallVector<Instruction *, 2> Bitcasts;
534 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
535 for (User *U : AI->users()) {
536 if (U->stripInBoundsConstantOffsets() == AI) {
537 Instruction *Bitcast = cast<Instruction>(U);
538 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
539 if (LMI.LifeStart) {
540 Bitcasts.push_back(Bitcast);
541 BitcastLifetimeInfo.push_back(LMI);
542 continue;
543 }
544 }
545
546 // Found unknown use of AI.
547 if (!definedInRegion(Blocks, U)) {
548 Bitcasts.clear();
549 break;
550 }
551 }
552
553 // Either no bitcasts reference the alloca or there are unknown uses.
554 if (Bitcasts.empty())
555 continue;
556
557 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Sinking alloca (via bitcast): "
<< *AI << "\n"; } } while (false)
;
558 SinkCands.insert(AI);
559 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
560 Instruction *BitcastAddr = Bitcasts[I];
561 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
562 assert(LMI.LifeStart &&((LMI.LifeStart && "Unsafe to sink bitcast without lifetime markers"
) ? static_cast<void> (0) : __assert_fail ("LMI.LifeStart && \"Unsafe to sink bitcast without lifetime markers\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 563, __PRETTY_FUNCTION__))
563 "Unsafe to sink bitcast without lifetime markers")((LMI.LifeStart && "Unsafe to sink bitcast without lifetime markers"
) ? static_cast<void> (0) : __assert_fail ("LMI.LifeStart && \"Unsafe to sink bitcast without lifetime markers\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 563, __PRETTY_FUNCTION__))
;
564 moveOrIgnoreLifetimeMarkers(LMI);
565 if (!definedInRegion(Blocks, BitcastAddr)) {
566 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Sinking bitcast-of-alloca: "
<< *BitcastAddr << "\n"; } } while (false)
567 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "Sinking bitcast-of-alloca: "
<< *BitcastAddr << "\n"; } } while (false)
;
568 SinkCands.insert(BitcastAddr);
569 }
570 }
571 }
572}
573
574bool CodeExtractor::isEligible() const {
575 if (Blocks.empty())
576 return false;
577 BasicBlock *Header = *Blocks.begin();
578 Function *F = Header->getParent();
579
580 // For functions with varargs, check that varargs handling is only done in the
581 // outlined function, i.e vastart and vaend are only used in outlined blocks.
582 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
583 auto containsVarArgIntrinsic = [](const Instruction &I) {
584 if (const CallInst *CI = dyn_cast<CallInst>(&I))
585 if (const Function *Callee = CI->getCalledFunction())
586 return Callee->getIntrinsicID() == Intrinsic::vastart ||
587 Callee->getIntrinsicID() == Intrinsic::vaend;
588 return false;
589 };
590
591 for (auto &BB : *F) {
592 if (Blocks.count(&BB))
593 continue;
594 if (llvm::any_of(BB, containsVarArgIntrinsic))
595 return false;
596 }
597 }
598 return true;
599}
600
601void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
602 const ValueSet &SinkCands) const {
603 for (BasicBlock *BB : Blocks) {
604 // If a used value is defined outside the region, it's an input. If an
605 // instruction is used outside the region, it's an output.
606 for (Instruction &II : *BB) {
607 for (auto &OI : II.operands()) {
608 Value *V = OI;
609 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
610 Inputs.insert(V);
611 }
612
613 for (User *U : II.users())
614 if (!definedInRegion(Blocks, U)) {
615 Outputs.insert(&II);
616 break;
617 }
618 }
619 }
620}
621
622/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
623/// of the region, we need to split the entry block of the region so that the
624/// PHI node is easier to deal with.
625void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
626 unsigned NumPredsFromRegion = 0;
627 unsigned NumPredsOutsideRegion = 0;
628
629 if (Header != &Header->getParent()->getEntryBlock()) {
630 PHINode *PN = dyn_cast<PHINode>(Header->begin());
631 if (!PN) return; // No PHI nodes.
632
633 // If the header node contains any PHI nodes, check to see if there is more
634 // than one entry from outside the region. If so, we need to sever the
635 // header block into two.
636 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
637 if (Blocks.count(PN->getIncomingBlock(i)))
638 ++NumPredsFromRegion;
639 else
640 ++NumPredsOutsideRegion;
641
642 // If there is one (or fewer) predecessor from outside the region, we don't
643 // need to do anything special.
644 if (NumPredsOutsideRegion <= 1) return;
645 }
646
647 // Otherwise, we need to split the header block into two pieces: one
648 // containing PHI nodes merging values from outside of the region, and a
649 // second that contains all of the code for the block and merges back any
650 // incoming values from inside of the region.
651 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
652
653 // We only want to code extract the second block now, and it becomes the new
654 // header of the region.
655 BasicBlock *OldPred = Header;
656 Blocks.remove(OldPred);
657 Blocks.insert(NewBB);
658 Header = NewBB;
659
660 // Okay, now we need to adjust the PHI nodes and any branches from within the
661 // region to go to the new header block instead of the old header block.
662 if (NumPredsFromRegion) {
663 PHINode *PN = cast<PHINode>(OldPred->begin());
664 // Loop over all of the predecessors of OldPred that are in the region,
665 // changing them to branch to NewBB instead.
666 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
667 if (Blocks.count(PN->getIncomingBlock(i))) {
668 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
669 TI->replaceUsesOfWith(OldPred, NewBB);
670 }
671
672 // Okay, everything within the region is now branching to the right block, we
673 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
674 BasicBlock::iterator AfterPHIs;
675 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
676 PHINode *PN = cast<PHINode>(AfterPHIs);
677 // Create a new PHI node in the new region, which has an incoming value
678 // from OldPred of PN.
679 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
680 PN->getName() + ".ce", &NewBB->front());
681 PN->replaceAllUsesWith(NewPN);
682 NewPN->addIncoming(PN, OldPred);
683
684 // Loop over all of the incoming value in PN, moving them to NewPN if they
685 // are from the extracted region.
686 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
687 if (Blocks.count(PN->getIncomingBlock(i))) {
688 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
689 PN->removeIncomingValue(i);
690 --i;
691 }
692 }
693 }
694 }
695}
696
697/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
698/// outlined region, we split these PHIs on two: one with inputs from region
699/// and other with remaining incoming blocks; then first PHIs are placed in
700/// outlined region.
701void CodeExtractor::severSplitPHINodesOfExits(
702 const SmallPtrSetImpl<BasicBlock *> &Exits) {
703 for (BasicBlock *ExitBB : Exits) {
704 BasicBlock *NewBB = nullptr;
705
706 for (PHINode &PN : ExitBB->phis()) {
707 // Find all incoming values from the outlining region.
708 SmallVector<unsigned, 2> IncomingVals;
709 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
710 if (Blocks.count(PN.getIncomingBlock(i)))
711 IncomingVals.push_back(i);
712
713 // Do not process PHI if there is one (or fewer) predecessor from region.
714 // If PHI has exactly one predecessor from region, only this one incoming
715 // will be replaced on codeRepl block, so it should be safe to skip PHI.
716 if (IncomingVals.size() <= 1)
717 continue;
718
719 // Create block for new PHIs and add it to the list of outlined if it
720 // wasn't done before.
721 if (!NewBB) {
722 NewBB = BasicBlock::Create(ExitBB->getContext(),
723 ExitBB->getName() + ".split",
724 ExitBB->getParent(), ExitBB);
725 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
726 pred_end(ExitBB));
727 for (BasicBlock *PredBB : Preds)
728 if (Blocks.count(PredBB))
729 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
730 BranchInst::Create(ExitBB, NewBB);
731 Blocks.insert(NewBB);
732 }
733
734 // Split this PHI.
735 PHINode *NewPN =
736 PHINode::Create(PN.getType(), IncomingVals.size(),
737 PN.getName() + ".ce", NewBB->getFirstNonPHI());
738 for (unsigned i : IncomingVals)
739 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
740 for (unsigned i : reverse(IncomingVals))
741 PN.removeIncomingValue(i, false);
742 PN.addIncoming(NewPN, NewBB);
743 }
744 }
745}
746
747void CodeExtractor::splitReturnBlocks() {
748 for (BasicBlock *Block : Blocks)
749 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
750 BasicBlock *New =
751 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
752 if (DT) {
753 // Old dominates New. New node dominates all other nodes dominated
754 // by Old.
755 DomTreeNode *OldNode = DT->getNode(Block);
756 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
757 OldNode->end());
758
759 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
760
761 for (DomTreeNode *I : Children)
762 DT->changeImmediateDominator(I, NewNode);
763 }
764 }
765}
766
767/// constructFunction - make a function based on inputs and outputs, as follows:
768/// f(in0, ..., inN, out0, ..., outN)
769Function *CodeExtractor::constructFunction(const ValueSet &inputs,
770 const ValueSet &outputs,
771 BasicBlock *header,
772 BasicBlock *newRootNode,
773 BasicBlock *newHeader,
774 Function *oldFunction,
775 Module *M) {
776 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "inputs: " << inputs
.size() << "\n"; } } while (false)
;
1
Assuming 'DebugFlag' is false
2
Loop condition is false. Exiting loop
777 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "outputs: " << outputs
.size() << "\n"; } } while (false)
;
3
Loop condition is false. Exiting loop
778
779 // This function returns unsigned, outputs will go back by reference.
780 switch (NumExitBlocks) {
4
Control jumps to the 'default' case at line 784
781 case 0:
782 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
783 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
784 default: RetTy = Type::getInt16Ty(header->getContext()); break;
5
Execution continues on line 787
785 }
786
787 std::vector<Type *> paramTy;
788
789 // Add the types of the input values to the function's argument list
790 for (Value *value : inputs) {
791 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "value used in func: " <<
*value << "\n"; } } while (false)
;
792 paramTy.push_back(value->getType());
793 }
794
795 // Add the types of the output values to the function's argument list.
796 for (Value *output : outputs) {
797 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { dbgs() << "instr used in func: " <<
*output << "\n"; } } while (false)
;
798 if (AggregateArgs)
799 paramTy.push_back(output->getType());
800 else
801 paramTy.push_back(PointerType::getUnqual(output->getType()));
802 }
803
804 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { { dbgs() << "Function type: " <<
*RetTy << " f("; for (Type *i : paramTy) dbgs() <<
*i << ", "; dbgs() << ")\n"; }; } } while (false
)
6
Assuming 'DebugFlag' is false
7
Loop condition is false. Exiting loop
805 dbgs() << "Function type: " << *RetTy << " f(";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { { dbgs() << "Function type: " <<
*RetTy << " f("; for (Type *i : paramTy) dbgs() <<
*i << ", "; dbgs() << ")\n"; }; } } while (false
)
806 for (Type *i : paramTy)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { { dbgs() << "Function type: " <<
*RetTy << " f("; for (Type *i : paramTy) dbgs() <<
*i << ", "; dbgs() << ")\n"; }; } } while (false
)
807 dbgs() << *i << ", ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { { dbgs() << "Function type: " <<
*RetTy << " f("; for (Type *i : paramTy) dbgs() <<
*i << ", "; dbgs() << ")\n"; }; } } while (false
)
808 dbgs() << ")\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { { dbgs() << "Function type: " <<
*RetTy << " f("; for (Type *i : paramTy) dbgs() <<
*i << ", "; dbgs() << ")\n"; }; } } while (false
)
809 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { { dbgs() << "Function type: " <<
*RetTy << " f("; for (Type *i : paramTy) dbgs() <<
*i << ", "; dbgs() << ")\n"; }; } } while (false
)
;
810
811 StructType *StructTy = nullptr;
8
'StructTy' initialized to a null pointer value
812 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
9
Assuming field 'AggregateArgs' is true
10
Assuming the condition is false
11
Taking false branch
813 StructTy = StructType::get(M->getContext(), paramTy);
814 paramTy.clear();
815 paramTy.push_back(PointerType::getUnqual(StructTy));
816 }
817 FunctionType *funcType =
818 FunctionType::get(RetTy, paramTy,
819 AllowVarArgs && oldFunction->isVarArg());
12
Assuming field 'AllowVarArgs' is false
820
821 std::string SuffixToUse =
822 Suffix.empty()
13
Assuming the condition is false
14
'?' condition is false
823 ? (header->getName().empty() ? "extracted" : header->getName().str())
824 : Suffix;
825 // Create the new function
826 Function *newFunction = Function::Create(
827 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
828 oldFunction->getName() + "." + SuffixToUse, M);
829 // If the old function is no-throw, so is the new one.
830 if (oldFunction->doesNotThrow())
15
Assuming the condition is false
16
Taking false branch
831 newFunction->setDoesNotThrow();
832
833 // Inherit the uwtable attribute if we need to.
834 if (oldFunction->hasUWTable())
17
Assuming the condition is false
18
Taking false branch
835 newFunction->setHasUWTable();
836
837 // Inherit all of the target dependent attributes and white-listed
838 // target independent attributes.
839 // (e.g. If the extracted region contains a call to an x86.sse
840 // instruction we need to make sure that the extracted region has the
841 // "target-features" attribute allowing it to be lowered.
842 // FIXME: This should be changed to check to see if a specific
843 // attribute can not be inherited.
844 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
19
Assuming '__begin1' is equal to '__end1'
845 if (Attr.isStringAttribute()) {
846 if (Attr.getKindAsString() == "thunk")
847 continue;
848 } else
849 switch (Attr.getKindAsEnum()) {
850 // Those attributes cannot be propagated safely. Explicitly list them
851 // here so we get a warning if new attributes are added. This list also
852 // includes non-function attributes.
853 case Attribute::Alignment:
854 case Attribute::AllocSize:
855 case Attribute::ArgMemOnly:
856 case Attribute::Builtin:
857 case Attribute::ByVal:
858 case Attribute::Convergent:
859 case Attribute::Dereferenceable:
860 case Attribute::DereferenceableOrNull:
861 case Attribute::InAlloca:
862 case Attribute::InReg:
863 case Attribute::InaccessibleMemOnly:
864 case Attribute::InaccessibleMemOrArgMemOnly:
865 case Attribute::JumpTable:
866 case Attribute::Naked:
867 case Attribute::Nest:
868 case Attribute::NoAlias:
869 case Attribute::NoBuiltin:
870 case Attribute::NoCapture:
871 case Attribute::NoReturn:
872 case Attribute::NoSync:
873 case Attribute::None:
874 case Attribute::NonNull:
875 case Attribute::ReadNone:
876 case Attribute::ReadOnly:
877 case Attribute::Returned:
878 case Attribute::ReturnsTwice:
879 case Attribute::SExt:
880 case Attribute::Speculatable:
881 case Attribute::StackAlignment:
882 case Attribute::StructRet:
883 case Attribute::SwiftError:
884 case Attribute::SwiftSelf:
885 case Attribute::WillReturn:
886 case Attribute::WriteOnly:
887 case Attribute::ZExt:
888 case Attribute::ImmArg:
889 case Attribute::EndAttrKinds:
890 continue;
891 // Those attributes should be safe to propagate to the extracted function.
892 case Attribute::AlwaysInline:
893 case Attribute::Cold:
894 case Attribute::NoRecurse:
895 case Attribute::InlineHint:
896 case Attribute::MinSize:
897 case Attribute::NoDuplicate:
898 case Attribute::NoFree:
899 case Attribute::NoImplicitFloat:
900 case Attribute::NoInline:
901 case Attribute::NonLazyBind:
902 case Attribute::NoRedZone:
903 case Attribute::NoUnwind:
904 case Attribute::OptForFuzzing:
905 case Attribute::OptimizeNone:
906 case Attribute::OptimizeForSize:
907 case Attribute::SafeStack:
908 case Attribute::ShadowCallStack:
909 case Attribute::SanitizeAddress:
910 case Attribute::SanitizeMemory:
911 case Attribute::SanitizeThread:
912 case Attribute::SanitizeHWAddress:
913 case Attribute::SanitizeMemTag:
914 case Attribute::SpeculativeLoadHardening:
915 case Attribute::StackProtect:
916 case Attribute::StackProtectReq:
917 case Attribute::StackProtectStrong:
918 case Attribute::StrictFP:
919 case Attribute::UWTable:
920 case Attribute::NoCfCheck:
921 break;
922 }
923
924 newFunction->addFnAttr(Attr);
925 }
926 newFunction->getBasicBlockList().push_back(newRootNode);
927
928 // Create an iterator to name all of the arguments we inserted.
929 Function::arg_iterator AI = newFunction->arg_begin();
930
931 // Rewrite all users of the inputs in the extracted region to use the
932 // arguments (or appropriate addressing into struct) instead.
933 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
20
Assuming 'i' is not equal to 'e'
21
Loop condition is true. Entering loop body
934 Value *RewriteVal;
935 if (AggregateArgs
21.1
Field 'AggregateArgs' is true
) {
22
Taking true branch
936 Value *Idx[2];
937 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
938 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
939 Instruction *TI = newFunction->begin()->getTerminator();
940 GetElementPtrInst *GEP = GetElementPtrInst::Create(
941 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
942 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
23
Called C++ object pointer is null
943 "loadgep_" + inputs[i]->getName(), TI);
944 } else
945 RewriteVal = &*AI++;
946
947 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
948 for (User *use : Users)
949 if (Instruction *inst = dyn_cast<Instruction>(use))
950 if (Blocks.count(inst->getParent()))
951 inst->replaceUsesOfWith(inputs[i], RewriteVal);
952 }
953
954 // Set names for input and output arguments.
955 if (!AggregateArgs) {
956 AI = newFunction->arg_begin();
957 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
958 AI->setName(inputs[i]->getName());
959 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
960 AI->setName(outputs[i]->getName()+".out");
961 }
962
963 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
964 // within the new function. This must be done before we lose track of which
965 // blocks were originally in the code region.
966 std::vector<User *> Users(header->user_begin(), header->user_end());
967 for (auto &U : Users)
968 // The BasicBlock which contains the branch is not in the region
969 // modify the branch target to a new block
970 if (Instruction *I = dyn_cast<Instruction>(U))
971 if (I->isTerminator() && I->getFunction() == oldFunction &&
972 !Blocks.count(I->getParent()))
973 I->replaceUsesOfWith(header, newHeader);
974
975 return newFunction;
976}
977
978/// Erase lifetime.start markers which reference inputs to the extraction
979/// region, and insert the referenced memory into \p LifetimesStart.
980///
981/// The extraction region is defined by a set of blocks (\p Blocks), and a set
982/// of allocas which will be moved from the caller function into the extracted
983/// function (\p SunkAllocas).
984static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
985 const SetVector<Value *> &SunkAllocas,
986 SetVector<Value *> &LifetimesStart) {
987 for (BasicBlock *BB : Blocks) {
988 for (auto It = BB->begin(), End = BB->end(); It != End;) {
989 auto *II = dyn_cast<IntrinsicInst>(&*It);
990 ++It;
991 if (!II || !II->isLifetimeStartOrEnd())
992 continue;
993
994 // Get the memory operand of the lifetime marker. If the underlying
995 // object is a sunk alloca, or is otherwise defined in the extraction
996 // region, the lifetime marker must not be erased.
997 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
998 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
999 continue;
1000
1001 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1002 LifetimesStart.insert(Mem);
1003 II->eraseFromParent();
1004 }
1005 }
1006}
1007
1008/// Insert lifetime start/end markers surrounding the call to the new function
1009/// for objects defined in the caller.
1010static void insertLifetimeMarkersSurroundingCall(
1011 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1012 CallInst *TheCall) {
1013 LLVMContext &Ctx = M->getContext();
1014 auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1015 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1016 Instruction *Term = TheCall->getParent()->getTerminator();
1017
1018 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1019 // needed to satisfy this requirement so they may be reused.
1020 DenseMap<Value *, Value *> Bitcasts;
1021
1022 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1023 // markers before the call if \p InsertBefore, and after the call otherwise.
1024 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1025 bool InsertBefore) {
1026 for (Value *Mem : Objects) {
1027 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==(((!isa<Instruction>(Mem) || cast<Instruction>(Mem
)->getFunction() == TheCall->getFunction()) && "Input memory not defined in original function"
) ? static_cast<void> (0) : __assert_fail ("(!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == TheCall->getFunction()) && \"Input memory not defined in original function\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1029, __PRETTY_FUNCTION__))
1028 TheCall->getFunction()) &&(((!isa<Instruction>(Mem) || cast<Instruction>(Mem
)->getFunction() == TheCall->getFunction()) && "Input memory not defined in original function"
) ? static_cast<void> (0) : __assert_fail ("(!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == TheCall->getFunction()) && \"Input memory not defined in original function\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1029, __PRETTY_FUNCTION__))
1029 "Input memory not defined in original function")(((!isa<Instruction>(Mem) || cast<Instruction>(Mem
)->getFunction() == TheCall->getFunction()) && "Input memory not defined in original function"
) ? static_cast<void> (0) : __assert_fail ("(!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == TheCall->getFunction()) && \"Input memory not defined in original function\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1029, __PRETTY_FUNCTION__))
;
1030 Value *&MemAsI8Ptr = Bitcasts[Mem];
1031 if (!MemAsI8Ptr) {
1032 if (Mem->getType() == Int8PtrTy)
1033 MemAsI8Ptr = Mem;
1034 else
1035 MemAsI8Ptr =
1036 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1037 }
1038
1039 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1040 if (InsertBefore)
1041 Marker->insertBefore(TheCall);
1042 else
1043 Marker->insertBefore(Term);
1044 }
1045 };
1046
1047 if (!LifetimesStart.empty()) {
1048 auto StartFn = llvm::Intrinsic::getDeclaration(
1049 M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1050 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1051 }
1052
1053 if (!LifetimesEnd.empty()) {
1054 auto EndFn = llvm::Intrinsic::getDeclaration(
1055 M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1056 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1057 }
1058}
1059
1060/// emitCallAndSwitchStatement - This method sets up the caller side by adding
1061/// the call instruction, splitting any PHI nodes in the header block as
1062/// necessary.
1063CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1064 BasicBlock *codeReplacer,
1065 ValueSet &inputs,
1066 ValueSet &outputs) {
1067 // Emit a call to the new function, passing in: *pointer to struct (if
1068 // aggregating parameters), or plan inputs and allocated memory for outputs
1069 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1070
1071 Module *M = newFunction->getParent();
1072 LLVMContext &Context = M->getContext();
1073 const DataLayout &DL = M->getDataLayout();
1074 CallInst *call = nullptr;
1075
1076 // Add inputs as params, or to be filled into the struct
1077 unsigned ArgNo = 0;
1078 SmallVector<unsigned, 1> SwiftErrorArgs;
1079 for (Value *input : inputs) {
1080 if (AggregateArgs)
1081 StructValues.push_back(input);
1082 else {
1083 params.push_back(input);
1084 if (input->isSwiftError())
1085 SwiftErrorArgs.push_back(ArgNo);
1086 }
1087 ++ArgNo;
1088 }
1089
1090 // Create allocas for the outputs
1091 for (Value *output : outputs) {
1092 if (AggregateArgs) {
1093 StructValues.push_back(output);
1094 } else {
1095 AllocaInst *alloca =
1096 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1097 nullptr, output->getName() + ".loc",
1098 &codeReplacer->getParent()->front().front());
1099 ReloadOutputs.push_back(alloca);
1100 params.push_back(alloca);
1101 }
1102 }
1103
1104 StructType *StructArgTy = nullptr;
1105 AllocaInst *Struct = nullptr;
1106 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1107 std::vector<Type *> ArgTypes;
1108 for (ValueSet::iterator v = StructValues.begin(),
1109 ve = StructValues.end(); v != ve; ++v)
1110 ArgTypes.push_back((*v)->getType());
1111
1112 // Allocate a struct at the beginning of this function
1113 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1114 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1115 "structArg",
1116 &codeReplacer->getParent()->front().front());
1117 params.push_back(Struct);
1118
1119 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1120 Value *Idx[2];
1121 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1122 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1123 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1124 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1125 codeReplacer->getInstList().push_back(GEP);
1126 StoreInst *SI = new StoreInst(StructValues[i], GEP);
1127 codeReplacer->getInstList().push_back(SI);
1128 }
1129 }
1130
1131 // Emit the call to the function
1132 call = CallInst::Create(newFunction, params,
1133 NumExitBlocks > 1 ? "targetBlock" : "");
1134 // Add debug location to the new call, if the original function has debug
1135 // info. In that case, the terminator of the entry block of the extracted
1136 // function contains the first debug location of the extracted function,
1137 // set in extractCodeRegion.
1138 if (codeReplacer->getParent()->getSubprogram()) {
1139 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1140 call->setDebugLoc(DL);
1141 }
1142 codeReplacer->getInstList().push_back(call);
1143
1144 // Set swifterror parameter attributes.
1145 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1146 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1147 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1148 }
1149
1150 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1151 unsigned FirstOut = inputs.size();
1152 if (!AggregateArgs)
1153 std::advance(OutputArgBegin, inputs.size());
1154
1155 // Reload the outputs passed in by reference.
1156 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1157 Value *Output = nullptr;
1158 if (AggregateArgs) {
1159 Value *Idx[2];
1160 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1161 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1162 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1163 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1164 codeReplacer->getInstList().push_back(GEP);
1165 Output = GEP;
1166 } else {
1167 Output = ReloadOutputs[i];
1168 }
1169 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1170 outputs[i]->getName() + ".reload");
1171 Reloads.push_back(load);
1172 codeReplacer->getInstList().push_back(load);
1173 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1174 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1175 Instruction *inst = cast<Instruction>(Users[u]);
1176 if (!Blocks.count(inst->getParent()))
1177 inst->replaceUsesOfWith(outputs[i], load);
1178 }
1179 }
1180
1181 // Now we can emit a switch statement using the call as a value.
1182 SwitchInst *TheSwitch =
1183 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1184 codeReplacer, 0, codeReplacer);
1185
1186 // Since there may be multiple exits from the original region, make the new
1187 // function return an unsigned, switch on that number. This loop iterates
1188 // over all of the blocks in the extracted region, updating any terminator
1189 // instructions in the to-be-extracted region that branch to blocks that are
1190 // not in the region to be extracted.
1191 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1192
1193 unsigned switchVal = 0;
1194 for (BasicBlock *Block : Blocks) {
1195 Instruction *TI = Block->getTerminator();
1196 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1197 if (!Blocks.count(TI->getSuccessor(i))) {
1198 BasicBlock *OldTarget = TI->getSuccessor(i);
1199 // add a new basic block which returns the appropriate value
1200 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1201 if (!NewTarget) {
1202 // If we don't already have an exit stub for this non-extracted
1203 // destination, create one now!
1204 NewTarget = BasicBlock::Create(Context,
1205 OldTarget->getName() + ".exitStub",
1206 newFunction);
1207 unsigned SuccNum = switchVal++;
1208
1209 Value *brVal = nullptr;
1210 switch (NumExitBlocks) {
1211 case 0:
1212 case 1: break; // No value needed.
1213 case 2: // Conditional branch, return a bool
1214 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1215 break;
1216 default:
1217 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1218 break;
1219 }
1220
1221 ReturnInst::Create(Context, brVal, NewTarget);
1222
1223 // Update the switch instruction.
1224 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1225 SuccNum),
1226 OldTarget);
1227 }
1228
1229 // rewrite the original branch instruction with this new target
1230 TI->setSuccessor(i, NewTarget);
1231 }
1232 }
1233
1234 // Store the arguments right after the definition of output value.
1235 // This should be proceeded after creating exit stubs to be ensure that invoke
1236 // result restore will be placed in the outlined function.
1237 Function::arg_iterator OAI = OutputArgBegin;
1238 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1239 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1240 if (!OutI)
1241 continue;
1242
1243 // Find proper insertion point.
1244 BasicBlock::iterator InsertPt;
1245 // In case OutI is an invoke, we insert the store at the beginning in the
1246 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1247 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1248 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1249 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1250 InsertPt = Phi->getParent()->getFirstInsertionPt();
1251 else
1252 InsertPt = std::next(OutI->getIterator());
1253
1254 Instruction *InsertBefore = &*InsertPt;
1255 assert((InsertBefore->getFunction() == newFunction ||(((InsertBefore->getFunction() == newFunction || Blocks.count
(InsertBefore->getParent())) && "InsertPt should be in new function"
) ? static_cast<void> (0) : __assert_fail ("(InsertBefore->getFunction() == newFunction || Blocks.count(InsertBefore->getParent())) && \"InsertPt should be in new function\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1257, __PRETTY_FUNCTION__))
1256 Blocks.count(InsertBefore->getParent())) &&(((InsertBefore->getFunction() == newFunction || Blocks.count
(InsertBefore->getParent())) && "InsertPt should be in new function"
) ? static_cast<void> (0) : __assert_fail ("(InsertBefore->getFunction() == newFunction || Blocks.count(InsertBefore->getParent())) && \"InsertPt should be in new function\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1257, __PRETTY_FUNCTION__))
1257 "InsertPt should be in new function")(((InsertBefore->getFunction() == newFunction || Blocks.count
(InsertBefore->getParent())) && "InsertPt should be in new function"
) ? static_cast<void> (0) : __assert_fail ("(InsertBefore->getFunction() == newFunction || Blocks.count(InsertBefore->getParent())) && \"InsertPt should be in new function\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1257, __PRETTY_FUNCTION__))
;
1258 assert(OAI != newFunction->arg_end() &&((OAI != newFunction->arg_end() && "Number of output arguments should match "
"the amount of defined values") ? static_cast<void> (0
) : __assert_fail ("OAI != newFunction->arg_end() && \"Number of output arguments should match \" \"the amount of defined values\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1260, __PRETTY_FUNCTION__))
1259 "Number of output arguments should match "((OAI != newFunction->arg_end() && "Number of output arguments should match "
"the amount of defined values") ? static_cast<void> (0
) : __assert_fail ("OAI != newFunction->arg_end() && \"Number of output arguments should match \" \"the amount of defined values\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1260, __PRETTY_FUNCTION__))
1260 "the amount of defined values")((OAI != newFunction->arg_end() && "Number of output arguments should match "
"the amount of defined values") ? static_cast<void> (0
) : __assert_fail ("OAI != newFunction->arg_end() && \"Number of output arguments should match \" \"the amount of defined values\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1260, __PRETTY_FUNCTION__))
;
1261 if (AggregateArgs) {
1262 Value *Idx[2];
1263 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1264 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1265 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1266 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1267 InsertBefore);
1268 new StoreInst(outputs[i], GEP, InsertBefore);
1269 // Since there should be only one struct argument aggregating
1270 // all the output values, we shouldn't increment OAI, which always
1271 // points to the struct argument, in this case.
1272 } else {
1273 new StoreInst(outputs[i], &*OAI, InsertBefore);
1274 ++OAI;
1275 }
1276 }
1277
1278 // Now that we've done the deed, simplify the switch instruction.
1279 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1280 switch (NumExitBlocks) {
1281 case 0:
1282 // There are no successors (the block containing the switch itself), which
1283 // means that previously this was the last part of the function, and hence
1284 // this should be rewritten as a `ret'
1285
1286 // Check if the function should return a value
1287 if (OldFnRetTy->isVoidTy()) {
1288 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1289 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1290 // return what we have
1291 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1292 } else {
1293 // Otherwise we must have code extracted an unwind or something, just
1294 // return whatever we want.
1295 ReturnInst::Create(Context,
1296 Constant::getNullValue(OldFnRetTy), TheSwitch);
1297 }
1298
1299 TheSwitch->eraseFromParent();
1300 break;
1301 case 1:
1302 // Only a single destination, change the switch into an unconditional
1303 // branch.
1304 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1305 TheSwitch->eraseFromParent();
1306 break;
1307 case 2:
1308 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1309 call, TheSwitch);
1310 TheSwitch->eraseFromParent();
1311 break;
1312 default:
1313 // Otherwise, make the default destination of the switch instruction be one
1314 // of the other successors.
1315 TheSwitch->setCondition(call);
1316 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1317 // Remove redundant case
1318 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1319 break;
1320 }
1321
1322 // Insert lifetime markers around the reloads of any output values. The
1323 // allocas output values are stored in are only in-use in the codeRepl block.
1324 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1325
1326 return call;
1327}
1328
1329void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1330 Function *oldFunc = (*Blocks.begin())->getParent();
1331 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1332 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1333
1334 for (BasicBlock *Block : Blocks) {
1335 // Delete the basic block from the old function, and the list of blocks
1336 oldBlocks.remove(Block);
1337
1338 // Insert this basic block into the new function
1339 newBlocks.push_back(Block);
1340 }
1341}
1342
1343void CodeExtractor::calculateNewCallTerminatorWeights(
1344 BasicBlock *CodeReplacer,
1345 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1346 BranchProbabilityInfo *BPI) {
1347 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1348 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1349
1350 // Update the branch weights for the exit block.
1351 Instruction *TI = CodeReplacer->getTerminator();
1352 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1353
1354 // Block Frequency distribution with dummy node.
1355 Distribution BranchDist;
1356
1357 // Add each of the frequencies of the successors.
1358 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1359 BlockNode ExitNode(i);
1360 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1361 if (ExitFreq != 0)
1362 BranchDist.addExit(ExitNode, ExitFreq);
1363 else
1364 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1365 }
1366
1367 // Check for no total weight.
1368 if (BranchDist.Total == 0)
1369 return;
1370
1371 // Normalize the distribution so that they can fit in unsigned.
1372 BranchDist.normalize();
1373
1374 // Create normalized branch weights and set the metadata.
1375 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1376 const auto &Weight = BranchDist.Weights[I];
1377
1378 // Get the weight and update the current BFI.
1379 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1380 BranchProbability BP(Weight.Amount, BranchDist.Total);
1381 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1382 }
1383 TI->setMetadata(
1384 LLVMContext::MD_prof,
1385 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1386}
1387
1388/// Erase debug info intrinsics which refer to values in \p F but aren't in
1389/// \p F.
1390static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1391 for (Instruction &I : instructions(F)) {
1392 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1393 findDbgUsers(DbgUsers, &I);
1394 for (DbgVariableIntrinsic *DVI : DbgUsers)
1395 if (DVI->getFunction() != &F)
1396 DVI->eraseFromParent();
1397 }
1398}
1399
1400/// Fix up the debug info in the old and new functions by pointing line
1401/// locations and debug intrinsics to the new subprogram scope, and by deleting
1402/// intrinsics which point to values outside of the new function.
1403static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1404 CallInst &TheCall) {
1405 DISubprogram *OldSP = OldFunc.getSubprogram();
1406 LLVMContext &Ctx = OldFunc.getContext();
1407
1408 if (!OldSP) {
1409 // Erase any debug info the new function contains.
1410 stripDebugInfo(NewFunc);
1411 // Make sure the old function doesn't contain any non-local metadata refs.
1412 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1413 return;
1414 }
1415
1416 // Create a subprogram for the new function. Leave out a description of the
1417 // function arguments, as the parameters don't correspond to anything at the
1418 // source level.
1419 assert(OldSP->getUnit() && "Missing compile unit for subprogram")((OldSP->getUnit() && "Missing compile unit for subprogram"
) ? static_cast<void> (0) : __assert_fail ("OldSP->getUnit() && \"Missing compile unit for subprogram\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1419, __PRETTY_FUNCTION__))
;
1420 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false,
1421 OldSP->getUnit());
1422 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1423 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1424 DISubprogram::SPFlagOptimized |
1425 DISubprogram::SPFlagLocalToUnit;
1426 auto NewSP = DIB.createFunction(
1427 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1428 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1429 NewFunc.setSubprogram(NewSP);
1430
1431 // Debug intrinsics in the new function need to be updated in one of two
1432 // ways:
1433 // 1) They need to be deleted, because they describe a value in the old
1434 // function.
1435 // 2) They need to point to fresh metadata, e.g. because they currently
1436 // point to a variable in the wrong scope.
1437 SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1438 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1439 for (Instruction &I : instructions(NewFunc)) {
1440 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1441 if (!DII)
1442 continue;
1443
1444 // Point the intrinsic to a fresh label within the new function.
1445 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1446 DILabel *OldLabel = DLI->getLabel();
1447 DINode *&NewLabel = RemappedMetadata[OldLabel];
1448 if (!NewLabel)
1449 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1450 OldLabel->getFile(), OldLabel->getLine());
1451 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1452 continue;
1453 }
1454
1455 // If the location isn't a constant or an instruction, delete the
1456 // intrinsic.
1457 auto *DVI = cast<DbgVariableIntrinsic>(DII);
1458 Value *Location = DVI->getVariableLocation();
1459 if (!Location ||
1460 (!isa<Constant>(Location) && !isa<Instruction>(Location))) {
1461 DebugIntrinsicsToDelete.push_back(DVI);
1462 continue;
1463 }
1464
1465 // If the variable location is an instruction but isn't in the new
1466 // function, delete the intrinsic.
1467 Instruction *LocationInst = dyn_cast<Instruction>(Location);
1468 if (LocationInst && LocationInst->getFunction() != &NewFunc) {
1469 DebugIntrinsicsToDelete.push_back(DVI);
1470 continue;
1471 }
1472
1473 // Point the intrinsic to a fresh variable within the new function.
1474 DILocalVariable *OldVar = DVI->getVariable();
1475 DINode *&NewVar = RemappedMetadata[OldVar];
1476 if (!NewVar)
1477 NewVar = DIB.createAutoVariable(
1478 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1479 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1480 OldVar->getAlignInBits());
1481 DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar));
1482 }
1483 for (auto *DII : DebugIntrinsicsToDelete)
1484 DII->eraseFromParent();
1485 DIB.finalizeSubprogram(NewSP);
1486
1487 // Fix up the scope information attached to the line locations in the new
1488 // function.
1489 for (Instruction &I : instructions(NewFunc)) {
1490 if (const DebugLoc &DL = I.getDebugLoc())
1491 I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP));
1492
1493 // Loop info metadata may contain line locations. Fix them up.
1494 auto updateLoopInfoLoc = [&Ctx,
1495 NewSP](const DILocation &Loc) -> DILocation * {
1496 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP,
1497 nullptr);
1498 };
1499 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1500 }
1501 if (!TheCall.getDebugLoc())
1502 TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP));
1503
1504 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1505}
1506
1507Function *
1508CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1509 if (!isEligible())
1510 return nullptr;
1511
1512 // Assumption: this is a single-entry code region, and the header is the first
1513 // block in the region.
1514 BasicBlock *header = *Blocks.begin();
1515 Function *oldFunction = header->getParent();
1516
1517 // Calculate the entry frequency of the new function before we change the root
1518 // block.
1519 BlockFrequency EntryFreq;
1520 if (BFI) {
1521 assert(BPI && "Both BPI and BFI are required to preserve profile info")((BPI && "Both BPI and BFI are required to preserve profile info"
) ? static_cast<void> (0) : __assert_fail ("BPI && \"Both BPI and BFI are required to preserve profile info\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1521, __PRETTY_FUNCTION__))
;
1522 for (BasicBlock *Pred : predecessors(header)) {
1523 if (Blocks.count(Pred))
1524 continue;
1525 EntryFreq +=
1526 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1527 }
1528 }
1529
1530 // Remove @llvm.assume calls that will be moved to the new function from the
1531 // old function's assumption cache.
1532 for (BasicBlock *Block : Blocks) {
1533 for (auto It = Block->begin(), End = Block->end(); It != End;) {
1534 Instruction *I = &*It;
1535 ++It;
1536
1537 if (match(I, m_Intrinsic<Intrinsic::assume>())) {
1538 if (AC)
1539 AC->unregisterAssumption(cast<CallInst>(I));
1540 I->eraseFromParent();
1541 }
1542 }
1543 }
1544
1545 // If we have any return instructions in the region, split those blocks so
1546 // that the return is not in the region.
1547 splitReturnBlocks();
1548
1549 // Calculate the exit blocks for the extracted region and the total exit
1550 // weights for each of those blocks.
1551 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1552 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1553 for (BasicBlock *Block : Blocks) {
1554 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1555 ++SI) {
1556 if (!Blocks.count(*SI)) {
1557 // Update the branch weight for this successor.
1558 if (BFI) {
1559 BlockFrequency &BF = ExitWeights[*SI];
1560 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1561 }
1562 ExitBlocks.insert(*SI);
1563 }
1564 }
1565 }
1566 NumExitBlocks = ExitBlocks.size();
1567
1568 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1569 severSplitPHINodesOfEntry(header);
1570 severSplitPHINodesOfExits(ExitBlocks);
1571
1572 // This takes place of the original loop
1573 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1574 "codeRepl", oldFunction,
1575 header);
1576
1577 // The new function needs a root node because other nodes can branch to the
1578 // head of the region, but the entry node of a function cannot have preds.
1579 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1580 "newFuncRoot");
1581 auto *BranchI = BranchInst::Create(header);
1582 // If the original function has debug info, we have to add a debug location
1583 // to the new branch instruction from the artificial entry block.
1584 // We use the debug location of the first instruction in the extracted
1585 // blocks, as there is no other equivalent line in the source code.
1586 if (oldFunction->getSubprogram()) {
1587 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1588 return any_of(*BB, [&BranchI](const Instruction &I) {
1589 if (!I.getDebugLoc())
1590 return false;
1591 BranchI->setDebugLoc(I.getDebugLoc());
1592 return true;
1593 });
1594 });
1595 }
1596 newFuncRoot->getInstList().push_back(BranchI);
1597
1598 ValueSet inputs, outputs, SinkingCands, HoistingCands;
1599 BasicBlock *CommonExit = nullptr;
1600 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1601 assert(HoistingCands.empty() || CommonExit)((HoistingCands.empty() || CommonExit) ? static_cast<void>
(0) : __assert_fail ("HoistingCands.empty() || CommonExit", "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1601, __PRETTY_FUNCTION__))
;
1602
1603 // Find inputs to, outputs from the code region.
1604 findInputsOutputs(inputs, outputs, SinkingCands);
1605
1606 // Now sink all instructions which only have non-phi uses inside the region.
1607 // Group the allocas at the start of the block, so that any bitcast uses of
1608 // the allocas are well-defined.
1609 AllocaInst *FirstSunkAlloca = nullptr;
1610 for (auto *II : SinkingCands) {
1611 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1612 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1613 if (!FirstSunkAlloca)
1614 FirstSunkAlloca = AI;
1615 }
1616 }
1617 assert((SinkingCands.empty() || FirstSunkAlloca) &&(((SinkingCands.empty() || FirstSunkAlloca) && "Did not expect a sink candidate without any allocas"
) ? static_cast<void> (0) : __assert_fail ("(SinkingCands.empty() || FirstSunkAlloca) && \"Did not expect a sink candidate without any allocas\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1618, __PRETTY_FUNCTION__))
1618 "Did not expect a sink candidate without any allocas")(((SinkingCands.empty() || FirstSunkAlloca) && "Did not expect a sink candidate without any allocas"
) ? static_cast<void> (0) : __assert_fail ("(SinkingCands.empty() || FirstSunkAlloca) && \"Did not expect a sink candidate without any allocas\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1618, __PRETTY_FUNCTION__))
;
1619 for (auto *II : SinkingCands) {
1620 if (!isa<AllocaInst>(II)) {
1621 cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1622 }
1623 }
1624
1625 if (!HoistingCands.empty()) {
1626 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1627 Instruction *TI = HoistToBlock->getTerminator();
1628 for (auto *II : HoistingCands)
1629 cast<Instruction>(II)->moveBefore(TI);
1630 }
1631
1632 // Collect objects which are inputs to the extraction region and also
1633 // referenced by lifetime start markers within it. The effects of these
1634 // markers must be replicated in the calling function to prevent the stack
1635 // coloring pass from merging slots which store input objects.
1636 ValueSet LifetimesStart;
1637 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1638
1639 // Construct new function based on inputs/outputs & add allocas for all defs.
1640 Function *newFunction =
1641 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1642 oldFunction, oldFunction->getParent());
1643
1644 // Update the entry count of the function.
1645 if (BFI) {
1646 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1647 if (Count.hasValue())
1648 newFunction->setEntryCount(
1649 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1650 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1651 }
1652
1653 CallInst *TheCall =
1654 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1655
1656 moveCodeToFunction(newFunction);
1657
1658 // Replicate the effects of any lifetime start/end markers which referenced
1659 // input objects in the extraction region by placing markers around the call.
1660 insertLifetimeMarkersSurroundingCall(
1661 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1662
1663 // Propagate personality info to the new function if there is one.
1664 if (oldFunction->hasPersonalityFn())
1665 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1666
1667 // Update the branch weights for the exit block.
1668 if (BFI && NumExitBlocks > 1)
1669 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1670
1671 // Loop over all of the PHI nodes in the header and exit blocks, and change
1672 // any references to the old incoming edge to be the new incoming edge.
1673 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1674 PHINode *PN = cast<PHINode>(I);
1675 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1676 if (!Blocks.count(PN->getIncomingBlock(i)))
1677 PN->setIncomingBlock(i, newFuncRoot);
1678 }
1679
1680 for (BasicBlock *ExitBB : ExitBlocks)
1681 for (PHINode &PN : ExitBB->phis()) {
1682 Value *IncomingCodeReplacerVal = nullptr;
1683 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1684 // Ignore incoming values from outside of the extracted region.
1685 if (!Blocks.count(PN.getIncomingBlock(i)))
1686 continue;
1687
1688 // Ensure that there is only one incoming value from codeReplacer.
1689 if (!IncomingCodeReplacerVal) {
1690 PN.setIncomingBlock(i, codeReplacer);
1691 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1692 } else
1693 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&((IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
"PHI has two incompatbile incoming values from codeRepl") ? static_cast
<void> (0) : __assert_fail ("IncomingCodeReplacerVal == PN.getIncomingValue(i) && \"PHI has two incompatbile incoming values from codeRepl\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1694, __PRETTY_FUNCTION__))
1694 "PHI has two incompatbile incoming values from codeRepl")((IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
"PHI has two incompatbile incoming values from codeRepl") ? static_cast
<void> (0) : __assert_fail ("IncomingCodeReplacerVal == PN.getIncomingValue(i) && \"PHI has two incompatbile incoming values from codeRepl\""
, "/build/llvm-toolchain-snapshot-11~++20200302101545+e3afe5952df/llvm/lib/Transforms/Utils/CodeExtractor.cpp"
, 1694, __PRETTY_FUNCTION__))
;
1695 }
1696 }
1697
1698 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1699
1700 // Mark the new function `noreturn` if applicable. Terminators which resume
1701 // exception propagation are treated as returning instructions. This is to
1702 // avoid inserting traps after calls to outlined functions which unwind.
1703 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1704 const Instruction *Term = BB.getTerminator();
1705 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1706 });
1707 if (doesNotReturn)
1708 newFunction->setDoesNotReturn();
1709
1710 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (verifyFunction(*newFunction, &errs
())) { newFunction->dump(); report_fatal_error("verification of newFunction failed!"
); }; } } while (false)
1711 newFunction->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (verifyFunction(*newFunction, &errs
())) { newFunction->dump(); report_fatal_error("verification of newFunction failed!"
); }; } } while (false)
1712 report_fatal_error("verification of newFunction failed!");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (verifyFunction(*newFunction, &errs
())) { newFunction->dump(); report_fatal_error("verification of newFunction failed!"
); }; } } while (false)
1713 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (verifyFunction(*newFunction, &errs
())) { newFunction->dump(); report_fatal_error("verification of newFunction failed!"
); }; } } while (false)
;
1714 LLVM_DEBUG(if (verifyFunction(*oldFunction))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (verifyFunction(*oldFunction)) report_fatal_error
("verification of oldFunction failed!"); } } while (false)
1715 report_fatal_error("verification of oldFunction failed!"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (verifyFunction(*oldFunction)) report_fatal_error
("verification of oldFunction failed!"); } } while (false)
;
1716 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (AC && verifyAssumptionCache
(*oldFunction, *newFunction, AC)) report_fatal_error("Stale Asumption cache for old Function!"
); } } while (false)
1717 report_fatal_error("Stale Asumption cache for old Function!"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("code-extractor")) { if (AC && verifyAssumptionCache
(*oldFunction, *newFunction, AC)) report_fatal_error("Stale Asumption cache for old Function!"
); } } while (false)
;
1718 return newFunction;
1719}
1720
1721bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1722 const Function &NewFunc,
1723 AssumptionCache *AC) {
1724 for (auto AssumeVH : AC->assumptions()) {
1725 CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH);
1726 if (!I)
1727 continue;
1728
1729 // There shouldn't be any llvm.assume intrinsics in the new function.
1730 if (I->getFunction() != &OldFunc)
1731 return true;
1732
1733 // There shouldn't be any stale affected values in the assumption cache
1734 // that were previously in the old function, but that have now been moved
1735 // to the new function.
1736 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1737 CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1738 if (!AffectedCI)
1739 continue;
1740 if (AffectedCI->getFunction() != &OldFunc)
1741 return true;
1742 auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0));
1743 if (AssumedInst->getFunction() != &OldFunc)
1744 return true;
1745 }
1746 }
1747 return false;
1748}