Bug Summary

File:utils/TableGen/CodeGenDAGPatterns.cpp
Warning:line 3187, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenDAGPatterns.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/utils/TableGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp -faddrsig
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/TableGen/Error.h"
27#include "llvm/TableGen/Record.h"
28#include <algorithm>
29#include <cstdio>
30#include <iterator>
31#include <set>
32using namespace llvm;
33
34#define DEBUG_TYPE"dag-patterns" "dag-patterns"
35
36static inline bool isIntegerOrPtr(MVT VT) {
37 return VT.isInteger() || VT == MVT::iPTR;
38}
39static inline bool isFloatingPoint(MVT VT) {
40 return VT.isFloatingPoint();
41}
42static inline bool isVector(MVT VT) {
43 return VT.isVector();
44}
45static inline bool isScalar(MVT VT) {
46 return !VT.isVector();
47}
48
49template <typename Predicate>
50static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51 bool Erased = false;
52 // It is ok to iterate over MachineValueTypeSet and remove elements from it
53 // at the same time.
54 for (MVT T : S) {
55 if (!P(T))
56 continue;
57 Erased = true;
58 S.erase(T);
59 }
60 return Erased;
61}
62
63// --- TypeSetByHwMode
64
65// This is a parameterized type-set class. For each mode there is a list
66// of types that are currently possible for a given tree node. Type
67// inference will apply to each mode separately.
68
69TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70 for (const ValueTypeByHwMode &VVT : VTList) {
71 insert(VVT);
72 AddrSpaces.push_back(VVT.PtrAddrSpace);
73 }
74}
75
76bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77 for (const auto &I : *this) {
78 if (I.second.size() > 1)
79 return false;
80 if (!AllowEmpty && I.second.empty())
81 return false;
82 }
83 return true;
84}
85
86ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87 assert(isValueTypeByHwMode(true) &&((isValueTypeByHwMode(true) && "The type set has multiple types for at least one HW mode"
) ? static_cast<void> (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 88, __PRETTY_FUNCTION__))
88 "The type set has multiple types for at least one HW mode")((isValueTypeByHwMode(true) && "The type set has multiple types for at least one HW mode"
) ? static_cast<void> (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 88, __PRETTY_FUNCTION__))
;
89 ValueTypeByHwMode VVT;
90 auto ASI = AddrSpaces.begin();
91
92 for (const auto &I : *this) {
93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94 VVT.getOrCreateTypeForMode(I.first, T);
95 if (ASI != AddrSpaces.end())
96 VVT.PtrAddrSpace = *ASI++;
97 }
98 return VVT;
99}
100
101bool TypeSetByHwMode::isPossible() const {
102 for (const auto &I : *this)
103 if (!I.second.empty())
104 return true;
105 return false;
106}
107
108bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109 bool Changed = false;
110 bool ContainsDefault = false;
111 MVT DT = MVT::Other;
112
113 SmallDenseSet<unsigned, 4> Modes;
114 for (const auto &P : VVT) {
115 unsigned M = P.first;
116 Modes.insert(M);
117 // Make sure there exists a set for each specific mode from VVT.
118 Changed |= getOrCreate(M).insert(P.second).second;
119 // Cache VVT's default mode.
120 if (DefaultMode == M) {
121 ContainsDefault = true;
122 DT = P.second;
123 }
124 }
125
126 // If VVT has a default mode, add the corresponding type to all
127 // modes in "this" that do not exist in VVT.
128 if (ContainsDefault)
129 for (auto &I : *this)
130 if (!Modes.count(I.first))
131 Changed |= I.second.insert(DT).second;
132
133 return Changed;
134}
135
136// Constrain the type set to be the intersection with VTS.
137bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138 bool Changed = false;
139 if (hasDefault()) {
140 for (const auto &I : VTS) {
141 unsigned M = I.first;
142 if (M == DefaultMode || hasMode(M))
143 continue;
144 Map.insert({M, Map.at(DefaultMode)});
145 Changed = true;
146 }
147 }
148
149 for (auto &I : *this) {
150 unsigned M = I.first;
151 SetType &S = I.second;
152 if (VTS.hasMode(M) || VTS.hasDefault()) {
153 Changed |= intersect(I.second, VTS.get(M));
154 } else if (!S.empty()) {
155 S.clear();
156 Changed = true;
157 }
158 }
159 return Changed;
160}
161
162template <typename Predicate>
163bool TypeSetByHwMode::constrain(Predicate P) {
164 bool Changed = false;
165 for (auto &I : *this)
166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167 return Changed;
168}
169
170template <typename Predicate>
171bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172 assert(empty())((empty()) ? static_cast<void> (0) : __assert_fail ("empty()"
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 172, __PRETTY_FUNCTION__))
;
173 for (const auto &I : VTS) {
174 SetType &S = getOrCreate(I.first);
175 for (auto J : I.second)
176 if (P(J))
177 S.insert(J);
178 }
179 return !empty();
180}
181
182void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183 SmallVector<unsigned, 4> Modes;
184 Modes.reserve(Map.size());
185
186 for (const auto &I : *this)
187 Modes.push_back(I.first);
188 if (Modes.empty()) {
189 OS << "{}";
190 return;
191 }
192 array_pod_sort(Modes.begin(), Modes.end());
193
194 OS << '{';
195 for (unsigned M : Modes) {
196 OS << ' ' << getModeName(M) << ':';
197 writeToStream(get(M), OS);
198 }
199 OS << " }";
200}
201
202void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203 SmallVector<MVT, 4> Types(S.begin(), S.end());
204 array_pod_sort(Types.begin(), Types.end());
205
206 OS << '[';
207 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208 OS << ValueTypeByHwMode::getMVTName(Types[i]);
209 if (i != e-1)
210 OS << ' ';
211 }
212 OS << ']';
213}
214
215bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216 // The isSimple call is much quicker than hasDefault - check this first.
217 bool IsSimple = isSimple();
218 bool VTSIsSimple = VTS.isSimple();
219 if (IsSimple && VTSIsSimple)
220 return *begin() == *VTS.begin();
221
222 // Speedup: We have a default if the set is simple.
223 bool HaveDefault = IsSimple || hasDefault();
224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225 if (HaveDefault != VTSHaveDefault)
226 return false;
227
228 SmallDenseSet<unsigned, 4> Modes;
229 for (auto &I : *this)
230 Modes.insert(I.first);
231 for (const auto &I : VTS)
232 Modes.insert(I.first);
233
234 if (HaveDefault) {
235 // Both sets have default mode.
236 for (unsigned M : Modes) {
237 if (get(M) != VTS.get(M))
238 return false;
239 }
240 } else {
241 // Neither set has default mode.
242 for (unsigned M : Modes) {
243 // If there is no default mode, an empty set is equivalent to not having
244 // the corresponding mode.
245 bool NoModeThis = !hasMode(M) || get(M).empty();
246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247 if (NoModeThis != NoModeVTS)
248 return false;
249 if (!NoModeThis)
250 if (get(M) != VTS.get(M))
251 return false;
252 }
253 }
254
255 return true;
256}
257
258namespace llvm {
259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260 T.writeToStream(OS);
261 return OS;
262 }
263}
264
265LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
266void TypeSetByHwMode::dump() const {
267 dbgs() << *this << '\n';
268}
269
270bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273
274 if (OutP == InP)
275 return berase_if(Out, Int);
276
277 // Compute the intersection of scalars separately to account for only
278 // one set containing iPTR.
279 // The itersection of iPTR with a set of integer scalar types that does not
280 // include iPTR will result in the most specific scalar type:
281 // - iPTR is more specific than any set with two elements or more
282 // - iPTR is less specific than any single integer scalar type.
283 // For example
284 // { iPTR } * { i32 } -> { i32 }
285 // { iPTR } * { i32 i64 } -> { iPTR }
286 // and
287 // { iPTR i32 } * { i32 } -> { i32 }
288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290
291 // Compute the difference between the two sets in such a way that the
292 // iPTR is in the set that is being subtracted. This is to see if there
293 // are any extra scalars in the set without iPTR that are not in the
294 // set containing iPTR. Then the iPTR could be considered a "wildcard"
295 // matching these scalars. If there is only one such scalar, it would
296 // replace the iPTR, if there are more, the iPTR would be retained.
297 SetType Diff;
298 if (InP) {
299 Diff = Out;
300 berase_if(Diff, [&In](MVT T) { return In.count(T); });
301 // Pre-remove these elements and rely only on InP/OutP to determine
302 // whether a change has been made.
303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304 } else {
305 Diff = In;
306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307 Out.erase(MVT::iPTR);
308 }
309
310 // The actual intersection.
311 bool Changed = berase_if(Out, Int);
312 unsigned NumD = Diff.size();
313 if (NumD == 0)
314 return Changed;
315
316 if (NumD == 1) {
317 Out.insert(*Diff.begin());
318 // This is a change only if Out was the one with iPTR (which is now
319 // being replaced).
320 Changed |= OutP;
321 } else {
322 // Multiple elements from Out are now replaced with iPTR.
323 Out.insert(MVT::iPTR);
324 Changed |= !OutP;
325 }
326 return Changed;
327}
328
329bool TypeSetByHwMode::validate() const {
330#ifndef NDEBUG
331 if (empty())
332 return true;
333 bool AllEmpty = true;
334 for (const auto &I : *this)
335 AllEmpty &= I.second.empty();
336 return !AllEmpty;
337#endif
338 return true;
339}
340
341// --- TypeInfer
342
343bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344 const TypeSetByHwMode &In) {
345 ValidateOnExit _1(Out, *this);
346 In.validate();
347 if (In.empty() || Out == In || TP.hasError())
348 return false;
349 if (Out.empty()) {
350 Out = In;
351 return true;
352 }
353
354 bool Changed = Out.constrain(In);
355 if (Changed && Out.empty())
356 TP.error("Type contradiction");
357
358 return Changed;
359}
360
361bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362 ValidateOnExit _1(Out, *this);
363 if (TP.hasError())
364 return false;
365 assert(!Out.empty() && "cannot pick from an empty set")((!Out.empty() && "cannot pick from an empty set") ? static_cast
<void> (0) : __assert_fail ("!Out.empty() && \"cannot pick from an empty set\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 365, __PRETTY_FUNCTION__))
;
366
367 bool Changed = false;
368 for (auto &I : Out) {
369 TypeSetByHwMode::SetType &S = I.second;
370 if (S.size() <= 1)
371 continue;
372 MVT T = *S.begin(); // Pick the first element.
373 S.clear();
374 S.insert(T);
375 Changed = true;
376 }
377 return Changed;
378}
379
380bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381 ValidateOnExit _1(Out, *this);
382 if (TP.hasError())
383 return false;
384 if (!Out.empty())
385 return Out.constrain(isIntegerOrPtr);
386
387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388}
389
390bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391 ValidateOnExit _1(Out, *this);
392 if (TP.hasError())
393 return false;
394 if (!Out.empty())
395 return Out.constrain(isFloatingPoint);
396
397 return Out.assign_if(getLegalTypes(), isFloatingPoint);
398}
399
400bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401 ValidateOnExit _1(Out, *this);
402 if (TP.hasError())
403 return false;
404 if (!Out.empty())
405 return Out.constrain(isScalar);
406
407 return Out.assign_if(getLegalTypes(), isScalar);
408}
409
410bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411 ValidateOnExit _1(Out, *this);
412 if (TP.hasError())
413 return false;
414 if (!Out.empty())
415 return Out.constrain(isVector);
416
417 return Out.assign_if(getLegalTypes(), isVector);
418}
419
420bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421 ValidateOnExit _1(Out, *this);
422 if (TP.hasError() || !Out.empty())
423 return false;
424
425 Out = getLegalTypes();
426 return true;
427}
428
429template <typename Iter, typename Pred, typename Less>
430static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431 if (B == E)
432 return E;
433 Iter Min = E;
434 for (Iter I = B; I != E; ++I) {
435 if (!P(*I))
436 continue;
437 if (Min == E || L(*I, *Min))
438 Min = I;
439 }
440 return Min;
441}
442
443template <typename Iter, typename Pred, typename Less>
444static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445 if (B == E)
446 return E;
447 Iter Max = E;
448 for (Iter I = B; I != E; ++I) {
449 if (!P(*I))
450 continue;
451 if (Max == E || L(*Max, *I))
452 Max = I;
453 }
454 return Max;
455}
456
457/// Make sure that for each type in Small, there exists a larger type in Big.
458bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459 TypeSetByHwMode &Big) {
460 ValidateOnExit _1(Small, *this), _2(Big, *this);
461 if (TP.hasError())
462 return false;
463 bool Changed = false;
464
465 if (Small.empty())
466 Changed |= EnforceAny(Small);
467 if (Big.empty())
468 Changed |= EnforceAny(Big);
469
470 assert(Small.hasDefault() && Big.hasDefault())((Small.hasDefault() && Big.hasDefault()) ? static_cast
<void> (0) : __assert_fail ("Small.hasDefault() && Big.hasDefault()"
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 470, __PRETTY_FUNCTION__))
;
471
472 std::vector<unsigned> Modes = union_modes(Small, Big);
473
474 // 1. Only allow integer or floating point types and make sure that
475 // both sides are both integer or both floating point.
476 // 2. Make sure that either both sides have vector types, or neither
477 // of them does.
478 for (unsigned M : Modes) {
479 TypeSetByHwMode::SetType &S = Small.get(M);
480 TypeSetByHwMode::SetType &B = Big.get(M);
481
482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484 Changed |= berase_if(S, NotInt) |
485 berase_if(B, NotInt);
486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488 Changed |= berase_if(S, NotFP) |
489 berase_if(B, NotFP);
490 } else if (S.empty() || B.empty()) {
491 Changed = !S.empty() || !B.empty();
492 S.clear();
493 B.clear();
494 } else {
495 TP.error("Incompatible types");
496 return Changed;
497 }
498
499 if (none_of(S, isVector) || none_of(B, isVector)) {
500 Changed |= berase_if(S, isVector) |
501 berase_if(B, isVector);
502 }
503 }
504
505 auto LT = [](MVT A, MVT B) -> bool {
506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508 A.getSizeInBits() < B.getSizeInBits());
509 };
510 auto LE = [&LT](MVT A, MVT B) -> bool {
511 // This function is used when removing elements: when a vector is compared
512 // to a non-vector, it should return false (to avoid removal).
513 if (A.isVector() != B.isVector())
514 return false;
515
516 return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517 A.getSizeInBits() == B.getSizeInBits());
518 };
519
520 for (unsigned M : Modes) {
521 TypeSetByHwMode::SetType &S = Small.get(M);
522 TypeSetByHwMode::SetType &B = Big.get(M);
523 // MinS = min scalar in Small, remove all scalars from Big that are
524 // smaller-or-equal than MinS.
525 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526 if (MinS != S.end())
527 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528
529 // MaxS = max scalar in Big, remove all scalars from Small that are
530 // larger than MaxS.
531 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532 if (MaxS != B.end())
533 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534
535 // MinV = min vector in Small, remove all vectors from Big that are
536 // smaller-or-equal than MinV.
537 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538 if (MinV != S.end())
539 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540
541 // MaxV = max vector in Big, remove all vectors from Small that are
542 // larger than MaxV.
543 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544 if (MaxV != B.end())
545 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546 }
547
548 return Changed;
549}
550
551/// 1. Ensure that for each type T in Vec, T is a vector type, and that
552/// for each type U in Elem, U is a scalar type.
553/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554/// type T in Vec, such that U is the element type of T.
555bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556 TypeSetByHwMode &Elem) {
557 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558 if (TP.hasError())
559 return false;
560 bool Changed = false;
561
562 if (Vec.empty())
563 Changed |= EnforceVector(Vec);
564 if (Elem.empty())
565 Changed |= EnforceScalar(Elem);
566
567 for (unsigned M : union_modes(Vec, Elem)) {
568 TypeSetByHwMode::SetType &V = Vec.get(M);
569 TypeSetByHwMode::SetType &E = Elem.get(M);
570
571 Changed |= berase_if(V, isScalar); // Scalar = !vector
572 Changed |= berase_if(E, isVector); // Vector = !scalar
573 assert(!V.empty() && !E.empty())((!V.empty() && !E.empty()) ? static_cast<void>
(0) : __assert_fail ("!V.empty() && !E.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 573, __PRETTY_FUNCTION__))
;
574
575 SmallSet<MVT,4> VT, ST;
576 // Collect element types from the "vector" set.
577 for (MVT T : V)
578 VT.insert(T.getVectorElementType());
579 // Collect scalar types from the "element" set.
580 for (MVT T : E)
581 ST.insert(T);
582
583 // Remove from V all (vector) types whose element type is not in S.
584 Changed |= berase_if(V, [&ST](MVT T) -> bool {
585 return !ST.count(T.getVectorElementType());
586 });
587 // Remove from E all (scalar) types, for which there is no corresponding
588 // type in V.
589 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590 }
591
592 return Changed;
593}
594
595bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596 const ValueTypeByHwMode &VVT) {
597 TypeSetByHwMode Tmp(VVT);
598 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599 return EnforceVectorEltTypeIs(Vec, Tmp);
600}
601
602/// Ensure that for each type T in Sub, T is a vector type, and there
603/// exists a type U in Vec such that U is a vector type with the same
604/// element type as T and at least as many elements as T.
605bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606 TypeSetByHwMode &Sub) {
607 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608 if (TP.hasError())
609 return false;
610
611 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612 auto IsSubVec = [](MVT B, MVT P) -> bool {
613 if (!B.isVector() || !P.isVector())
614 return false;
615 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616 // but until there are obvious use-cases for this, keep the
617 // types separate.
618 if (B.isScalableVector() != P.isScalableVector())
619 return false;
620 if (B.getVectorElementType() != P.getVectorElementType())
621 return false;
622 return B.getVectorNumElements() < P.getVectorNumElements();
623 };
624
625 /// Return true if S has no element (vector type) that T is a sub-vector of,
626 /// i.e. has the same element type as T and more elements.
627 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628 for (const auto &I : S)
629 if (IsSubVec(T, I))
630 return false;
631 return true;
632 };
633
634 /// Return true if S has no element (vector type) that T is a super-vector
635 /// of, i.e. has the same element type as T and fewer elements.
636 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637 for (const auto &I : S)
638 if (IsSubVec(I, T))
639 return false;
640 return true;
641 };
642
643 bool Changed = false;
644
645 if (Vec.empty())
646 Changed |= EnforceVector(Vec);
647 if (Sub.empty())
648 Changed |= EnforceVector(Sub);
649
650 for (unsigned M : union_modes(Vec, Sub)) {
651 TypeSetByHwMode::SetType &S = Sub.get(M);
652 TypeSetByHwMode::SetType &V = Vec.get(M);
653
654 Changed |= berase_if(S, isScalar);
655
656 // Erase all types from S that are not sub-vectors of a type in V.
657 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658
659 // Erase all types from V that are not super-vectors of a type in S.
660 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661 }
662
663 return Changed;
664}
665
666/// 1. Ensure that V has a scalar type iff W has a scalar type.
667/// 2. Ensure that for each vector type T in V, there exists a vector
668/// type U in W, such that T and U have the same number of elements.
669/// 3. Ensure that for each vector type U in W, there exists a vector
670/// type T in V, such that T and U have the same number of elements
671/// (reverse of 2).
672bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673 ValidateOnExit _1(V, *this), _2(W, *this);
674 if (TP.hasError())
675 return false;
676
677 bool Changed = false;
678 if (V.empty())
679 Changed |= EnforceAny(V);
680 if (W.empty())
681 Changed |= EnforceAny(W);
682
683 // An actual vector type cannot have 0 elements, so we can treat scalars
684 // as zero-length vectors. This way both vectors and scalars can be
685 // processed identically.
686 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688 };
689
690 for (unsigned M : union_modes(V, W)) {
691 TypeSetByHwMode::SetType &VS = V.get(M);
692 TypeSetByHwMode::SetType &WS = W.get(M);
693
694 SmallSet<unsigned,2> VN, WN;
695 for (MVT T : VS)
696 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697 for (MVT T : WS)
698 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699
700 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702 }
703 return Changed;
704}
705
706/// 1. Ensure that for each type T in A, there exists a type U in B,
707/// such that T and U have equal size in bits.
708/// 2. Ensure that for each type U in B, there exists a type T in A
709/// such that T and U have equal size in bits (reverse of 1).
710bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711 ValidateOnExit _1(A, *this), _2(B, *this);
712 if (TP.hasError())
713 return false;
714 bool Changed = false;
715 if (A.empty())
716 Changed |= EnforceAny(A);
717 if (B.empty())
718 Changed |= EnforceAny(B);
719
720 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721 return !Sizes.count(T.getSizeInBits());
722 };
723
724 for (unsigned M : union_modes(A, B)) {
725 TypeSetByHwMode::SetType &AS = A.get(M);
726 TypeSetByHwMode::SetType &BS = B.get(M);
727 SmallSet<unsigned,2> AN, BN;
728
729 for (MVT T : AS)
730 AN.insert(T.getSizeInBits());
731 for (MVT T : BS)
732 BN.insert(T.getSizeInBits());
733
734 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736 }
737
738 return Changed;
739}
740
741void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742 ValidateOnExit _1(VTS, *this);
743 const TypeSetByHwMode &Legal = getLegalTypes();
744 assert(Legal.isDefaultOnly() && "Default-mode only expected")((Legal.isDefaultOnly() && "Default-mode only expected"
) ? static_cast<void> (0) : __assert_fail ("Legal.isDefaultOnly() && \"Default-mode only expected\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 744, __PRETTY_FUNCTION__))
;
745 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746
747 for (auto &I : VTS)
748 expandOverloads(I.second, LegalTypes);
749}
750
751void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752 const TypeSetByHwMode::SetType &Legal) {
753 std::set<MVT> Ovs;
754 for (MVT T : Out) {
755 if (!T.isOverloaded())
756 continue;
757
758 Ovs.insert(T);
759 // MachineValueTypeSet allows iteration and erasing.
760 Out.erase(T);
761 }
762
763 for (MVT Ov : Ovs) {
764 switch (Ov.SimpleTy) {
765 case MVT::iPTRAny:
766 Out.insert(MVT::iPTR);
767 return;
768 case MVT::iAny:
769 for (MVT T : MVT::integer_valuetypes())
770 if (Legal.count(T))
771 Out.insert(T);
772 for (MVT T : MVT::integer_vector_valuetypes())
773 if (Legal.count(T))
774 Out.insert(T);
775 return;
776 case MVT::fAny:
777 for (MVT T : MVT::fp_valuetypes())
778 if (Legal.count(T))
779 Out.insert(T);
780 for (MVT T : MVT::fp_vector_valuetypes())
781 if (Legal.count(T))
782 Out.insert(T);
783 return;
784 case MVT::vAny:
785 for (MVT T : MVT::vector_valuetypes())
786 if (Legal.count(T))
787 Out.insert(T);
788 return;
789 case MVT::Any:
790 for (MVT T : MVT::all_valuetypes())
791 if (Legal.count(T))
792 Out.insert(T);
793 return;
794 default:
795 break;
796 }
797 }
798}
799
800const TypeSetByHwMode &TypeInfer::getLegalTypes() {
801 if (!LegalTypesCached) {
802 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
803 // Stuff all types from all modes into the default mode.
804 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
805 for (const auto &I : LTS)
806 LegalTypes.insert(I.second);
807 LegalTypesCached = true;
808 }
809 assert(LegalCache.isDefaultOnly() && "Default-mode only expected")((LegalCache.isDefaultOnly() && "Default-mode only expected"
) ? static_cast<void> (0) : __assert_fail ("LegalCache.isDefaultOnly() && \"Default-mode only expected\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 809, __PRETTY_FUNCTION__))
;
810 return LegalCache;
811}
812
813#ifndef NDEBUG
814TypeInfer::ValidateOnExit::~ValidateOnExit() {
815 if (Infer.Validate && !VTS.validate()) {
816 dbgs() << "Type set is empty for each HW mode:\n"
817 "possible type contradiction in the pattern below "
818 "(use -print-records with llvm-tblgen to see all "
819 "expanded records).\n";
820 Infer.TP.dump();
821 llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 821)
;
822 }
823}
824#endif
825
826
827//===----------------------------------------------------------------------===//
828// ScopedName Implementation
829//===----------------------------------------------------------------------===//
830
831bool ScopedName::operator==(const ScopedName &o) const {
832 return Scope == o.Scope && Identifier == o.Identifier;
833}
834
835bool ScopedName::operator!=(const ScopedName &o) const {
836 return !(*this == o);
837}
838
839
840//===----------------------------------------------------------------------===//
841// TreePredicateFn Implementation
842//===----------------------------------------------------------------------===//
843
844/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
845TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
846 assert((((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 848, __PRETTY_FUNCTION__))
847 (!hasPredCode() || !hasImmCode()) &&(((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 848, __PRETTY_FUNCTION__))
848 ".td file corrupt: can't have a node predicate *and* an imm predicate")(((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 848, __PRETTY_FUNCTION__))
;
849}
850
851bool TreePredicateFn::hasPredCode() const {
852 return isLoad() || isStore() || isAtomic() ||
853 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
854}
855
856std::string TreePredicateFn::getPredCode() const {
857 std::string Code = "";
858
859 if (!isLoad() && !isStore() && !isAtomic()) {
860 Record *MemoryVT = getMemoryVT();
861
862 if (MemoryVT)
863 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864 "MemoryVT requires IsLoad or IsStore");
865 }
866
867 if (!isLoad() && !isStore()) {
868 if (isUnindexed())
869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870 "IsUnindexed requires IsLoad or IsStore");
871
872 Record *ScalarMemoryVT = getScalarMemoryVT();
873
874 if (ScalarMemoryVT)
875 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876 "ScalarMemoryVT requires IsLoad or IsStore");
877 }
878
879 if (isLoad() + isStore() + isAtomic() > 1)
880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
882
883 if (isLoad()) {
884 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
885 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
886 getScalarMemoryVT() == nullptr)
887 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
888 "IsLoad cannot be used by itself");
889 } else {
890 if (isNonExtLoad())
891 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
892 "IsNonExtLoad requires IsLoad");
893 if (isAnyExtLoad())
894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895 "IsAnyExtLoad requires IsLoad");
896 if (isSignExtLoad())
897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898 "IsSignExtLoad requires IsLoad");
899 if (isZeroExtLoad())
900 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
901 "IsZeroExtLoad requires IsLoad");
902 }
903
904 if (isStore()) {
905 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
906 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908 "IsStore cannot be used by itself");
909 } else {
910 if (isNonTruncStore())
911 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
912 "IsNonTruncStore requires IsStore");
913 if (isTruncStore())
914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915 "IsTruncStore requires IsStore");
916 }
917
918 if (isAtomic()) {
919 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
920 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
921 !isAtomicOrderingAcquireRelease() &&
922 !isAtomicOrderingSequentiallyConsistent() &&
923 !isAtomicOrderingAcquireOrStronger() &&
924 !isAtomicOrderingReleaseOrStronger() &&
925 !isAtomicOrderingWeakerThanAcquire() &&
926 !isAtomicOrderingWeakerThanRelease())
927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928 "IsAtomic cannot be used by itself");
929 } else {
930 if (isAtomicOrderingMonotonic())
931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932 "IsAtomicOrderingMonotonic requires IsAtomic");
933 if (isAtomicOrderingAcquire())
934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935 "IsAtomicOrderingAcquire requires IsAtomic");
936 if (isAtomicOrderingRelease())
937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938 "IsAtomicOrderingRelease requires IsAtomic");
939 if (isAtomicOrderingAcquireRelease())
940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941 "IsAtomicOrderingAcquireRelease requires IsAtomic");
942 if (isAtomicOrderingSequentiallyConsistent())
943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
945 if (isAtomicOrderingAcquireOrStronger())
946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
948 if (isAtomicOrderingReleaseOrStronger())
949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
951 if (isAtomicOrderingWeakerThanAcquire())
952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
954 }
955
956 if (isLoad() || isStore() || isAtomic()) {
957 StringRef SDNodeName =
958 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
959
960 Record *MemoryVT = getMemoryVT();
961
962 if (MemoryVT)
963 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
964 MemoryVT->getName() + ") return false;\n")
965 .str();
966 }
967
968 if (isAtomic() && isAtomicOrderingMonotonic())
969 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
970 "AtomicOrdering::Monotonic) return false;\n";
971 if (isAtomic() && isAtomicOrderingAcquire())
972 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
973 "AtomicOrdering::Acquire) return false;\n";
974 if (isAtomic() && isAtomicOrderingRelease())
975 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
976 "AtomicOrdering::Release) return false;\n";
977 if (isAtomic() && isAtomicOrderingAcquireRelease())
978 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
979 "AtomicOrdering::AcquireRelease) return false;\n";
980 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
981 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
982 "AtomicOrdering::SequentiallyConsistent) return false;\n";
983
984 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
985 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
986 "return false;\n";
987 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
988 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
989 "return false;\n";
990
991 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
992 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
993 "return false;\n";
994 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
995 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
996 "return false;\n";
997
998 if (isLoad() || isStore()) {
999 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1000
1001 if (isUnindexed())
1002 Code += ("if (cast<" + SDNodeName +
1003 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1004 "return false;\n")
1005 .str();
1006
1007 if (isLoad()) {
1008 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1009 isZeroExtLoad()) > 1)
1010 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1011 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1012 "IsZeroExtLoad are mutually exclusive");
1013 if (isNonExtLoad())
1014 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1015 "ISD::NON_EXTLOAD) return false;\n";
1016 if (isAnyExtLoad())
1017 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1018 "return false;\n";
1019 if (isSignExtLoad())
1020 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1021 "return false;\n";
1022 if (isZeroExtLoad())
1023 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1024 "return false;\n";
1025 } else {
1026 if ((isNonTruncStore() + isTruncStore()) > 1)
1027 PrintFatalError(
1028 getOrigPatFragRecord()->getRecord()->getLoc(),
1029 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1030 if (isNonTruncStore())
1031 Code +=
1032 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1033 if (isTruncStore())
1034 Code +=
1035 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1036 }
1037
1038 Record *ScalarMemoryVT = getScalarMemoryVT();
1039
1040 if (ScalarMemoryVT)
1041 Code += ("if (cast<" + SDNodeName +
1042 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1043 ScalarMemoryVT->getName() + ") return false;\n")
1044 .str();
1045 }
1046
1047 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1048
1049 Code += PredicateCode;
1050
1051 if (PredicateCode.empty() && !Code.empty())
1052 Code += "return true;\n";
1053
1054 return Code;
1055}
1056
1057bool TreePredicateFn::hasImmCode() const {
1058 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1059}
1060
1061std::string TreePredicateFn::getImmCode() const {
1062 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1063}
1064
1065bool TreePredicateFn::immCodeUsesAPInt() const {
1066 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1067}
1068
1069bool TreePredicateFn::immCodeUsesAPFloat() const {
1070 bool Unset;
1071 // The return value will be false when IsAPFloat is unset.
1072 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1073 Unset);
1074}
1075
1076bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1077 bool Value) const {
1078 bool Unset;
1079 bool Result =
1080 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1081 if (Unset)
1082 return false;
1083 return Result == Value;
1084}
1085bool TreePredicateFn::usesOperands() const {
1086 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1087}
1088bool TreePredicateFn::isLoad() const {
1089 return isPredefinedPredicateEqualTo("IsLoad", true);
1090}
1091bool TreePredicateFn::isStore() const {
1092 return isPredefinedPredicateEqualTo("IsStore", true);
1093}
1094bool TreePredicateFn::isAtomic() const {
1095 return isPredefinedPredicateEqualTo("IsAtomic", true);
1096}
1097bool TreePredicateFn::isUnindexed() const {
1098 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1099}
1100bool TreePredicateFn::isNonExtLoad() const {
1101 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1102}
1103bool TreePredicateFn::isAnyExtLoad() const {
1104 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1105}
1106bool TreePredicateFn::isSignExtLoad() const {
1107 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1108}
1109bool TreePredicateFn::isZeroExtLoad() const {
1110 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1111}
1112bool TreePredicateFn::isNonTruncStore() const {
1113 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1114}
1115bool TreePredicateFn::isTruncStore() const {
1116 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1117}
1118bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1119 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1120}
1121bool TreePredicateFn::isAtomicOrderingAcquire() const {
1122 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1123}
1124bool TreePredicateFn::isAtomicOrderingRelease() const {
1125 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1126}
1127bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1128 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1129}
1130bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1131 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1132 true);
1133}
1134bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1135 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1136}
1137bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1138 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1139}
1140bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1141 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1142}
1143bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1144 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1145}
1146Record *TreePredicateFn::getMemoryVT() const {
1147 Record *R = getOrigPatFragRecord()->getRecord();
1148 if (R->isValueUnset("MemoryVT"))
1149 return nullptr;
1150 return R->getValueAsDef("MemoryVT");
1151}
1152Record *TreePredicateFn::getScalarMemoryVT() const {
1153 Record *R = getOrigPatFragRecord()->getRecord();
1154 if (R->isValueUnset("ScalarMemoryVT"))
1155 return nullptr;
1156 return R->getValueAsDef("ScalarMemoryVT");
1157}
1158bool TreePredicateFn::hasGISelPredicateCode() const {
1159 return !PatFragRec->getRecord()
1160 ->getValueAsString("GISelPredicateCode")
1161 .empty();
1162}
1163std::string TreePredicateFn::getGISelPredicateCode() const {
1164 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1165}
1166
1167StringRef TreePredicateFn::getImmType() const {
1168 if (immCodeUsesAPInt())
1169 return "const APInt &";
1170 if (immCodeUsesAPFloat())
1171 return "const APFloat &";
1172 return "int64_t";
1173}
1174
1175StringRef TreePredicateFn::getImmTypeIdentifier() const {
1176 if (immCodeUsesAPInt())
1177 return "APInt";
1178 else if (immCodeUsesAPFloat())
1179 return "APFloat";
1180 return "I64";
1181}
1182
1183/// isAlwaysTrue - Return true if this is a noop predicate.
1184bool TreePredicateFn::isAlwaysTrue() const {
1185 return !hasPredCode() && !hasImmCode();
1186}
1187
1188/// Return the name to use in the generated code to reference this, this is
1189/// "Predicate_foo" if from a pattern fragment "foo".
1190std::string TreePredicateFn::getFnName() const {
1191 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1192}
1193
1194/// getCodeToRunOnSDNode - Return the code for the function body that
1195/// evaluates this predicate. The argument is expected to be in "Node",
1196/// not N. This handles casting and conversion to a concrete node type as
1197/// appropriate.
1198std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1199 // Handle immediate predicates first.
1200 std::string ImmCode = getImmCode();
1201 if (!ImmCode.empty()) {
1202 if (isLoad())
1203 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1204 "IsLoad cannot be used with ImmLeaf or its subclasses");
1205 if (isStore())
1206 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1207 "IsStore cannot be used with ImmLeaf or its subclasses");
1208 if (isUnindexed())
1209 PrintFatalError(
1210 getOrigPatFragRecord()->getRecord()->getLoc(),
1211 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1212 if (isNonExtLoad())
1213 PrintFatalError(
1214 getOrigPatFragRecord()->getRecord()->getLoc(),
1215 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1216 if (isAnyExtLoad())
1217 PrintFatalError(
1218 getOrigPatFragRecord()->getRecord()->getLoc(),
1219 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1220 if (isSignExtLoad())
1221 PrintFatalError(
1222 getOrigPatFragRecord()->getRecord()->getLoc(),
1223 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1224 if (isZeroExtLoad())
1225 PrintFatalError(
1226 getOrigPatFragRecord()->getRecord()->getLoc(),
1227 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1228 if (isNonTruncStore())
1229 PrintFatalError(
1230 getOrigPatFragRecord()->getRecord()->getLoc(),
1231 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1232 if (isTruncStore())
1233 PrintFatalError(
1234 getOrigPatFragRecord()->getRecord()->getLoc(),
1235 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1236 if (getMemoryVT())
1237 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1238 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1239 if (getScalarMemoryVT())
1240 PrintFatalError(
1241 getOrigPatFragRecord()->getRecord()->getLoc(),
1242 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1243
1244 std::string Result = (" " + getImmType() + " Imm = ").str();
1245 if (immCodeUsesAPFloat())
1246 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1247 else if (immCodeUsesAPInt())
1248 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1249 else
1250 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1251 return Result + ImmCode;
1252 }
1253
1254 // Handle arbitrary node predicates.
1255 assert(hasPredCode() && "Don't have any predicate code!")((hasPredCode() && "Don't have any predicate code!") ?
static_cast<void> (0) : __assert_fail ("hasPredCode() && \"Don't have any predicate code!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1255, __PRETTY_FUNCTION__))
;
1256 StringRef ClassName;
1257 if (PatFragRec->getOnlyTree()->isLeaf())
1258 ClassName = "SDNode";
1259 else {
1260 Record *Op = PatFragRec->getOnlyTree()->getOperator();
1261 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1262 }
1263 std::string Result;
1264 if (ClassName == "SDNode")
1265 Result = " SDNode *N = Node;\n";
1266 else
1267 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1268
1269 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1270}
1271
1272//===----------------------------------------------------------------------===//
1273// PatternToMatch implementation
1274//
1275
1276static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1277 if (!P->isLeaf())
1278 return false;
1279 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1280 if (!DI)
1281 return false;
1282
1283 Record *R = DI->getDef();
1284 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1285}
1286
1287/// getPatternSize - Return the 'size' of this pattern. We want to match large
1288/// patterns before small ones. This is used to determine the size of a
1289/// pattern.
1290static unsigned getPatternSize(const TreePatternNode *P,
1291 const CodeGenDAGPatterns &CGP) {
1292 unsigned Size = 3; // The node itself.
1293 // If the root node is a ConstantSDNode, increases its size.
1294 // e.g. (set R32:$dst, 0).
1295 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1296 Size += 2;
1297
1298 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1299 Size += AM->getComplexity();
1300 // We don't want to count any children twice, so return early.
1301 return Size;
1302 }
1303
1304 // If this node has some predicate function that must match, it adds to the
1305 // complexity of this node.
1306 if (!P->getPredicateCalls().empty())
1307 ++Size;
1308
1309 // Count children in the count if they are also nodes.
1310 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1311 const TreePatternNode *Child = P->getChild(i);
1312 if (!Child->isLeaf() && Child->getNumTypes()) {
1313 const TypeSetByHwMode &T0 = Child->getExtType(0);
1314 // At this point, all variable type sets should be simple, i.e. only
1315 // have a default mode.
1316 if (T0.getMachineValueType() != MVT::Other) {
1317 Size += getPatternSize(Child, CGP);
1318 continue;
1319 }
1320 }
1321 if (Child->isLeaf()) {
1322 if (isa<IntInit>(Child->getLeafValue()))
1323 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1324 else if (Child->getComplexPatternInfo(CGP))
1325 Size += getPatternSize(Child, CGP);
1326 else if (isImmAllOnesAllZerosMatch(Child))
1327 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1328 else if (!Child->getPredicateCalls().empty())
1329 ++Size;
1330 }
1331 }
1332
1333 return Size;
1334}
1335
1336/// Compute the complexity metric for the input pattern. This roughly
1337/// corresponds to the number of nodes that are covered.
1338int PatternToMatch::
1339getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1340 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1341}
1342
1343/// getPredicateCheck - Return a single string containing all of this
1344/// pattern's predicates concatenated with "&&" operators.
1345///
1346std::string PatternToMatch::getPredicateCheck() const {
1347 SmallVector<const Predicate*,4> PredList;
1348 for (const Predicate &P : Predicates)
1349 PredList.push_back(&P);
1350 llvm::sort(PredList, deref<llvm::less>());
1351
1352 std::string Check;
1353 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1354 if (i != 0)
1355 Check += " && ";
1356 Check += '(' + PredList[i]->getCondString() + ')';
1357 }
1358 return Check;
1359}
1360
1361//===----------------------------------------------------------------------===//
1362// SDTypeConstraint implementation
1363//
1364
1365SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1366 OperandNo = R->getValueAsInt("OperandNum");
1367
1368 if (R->isSubClassOf("SDTCisVT")) {
1369 ConstraintType = SDTCisVT;
1370 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1371 for (const auto &P : VVT)
1372 if (P.second == MVT::isVoid)
1373 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1374 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1375 ConstraintType = SDTCisPtrTy;
1376 } else if (R->isSubClassOf("SDTCisInt")) {
1377 ConstraintType = SDTCisInt;
1378 } else if (R->isSubClassOf("SDTCisFP")) {
1379 ConstraintType = SDTCisFP;
1380 } else if (R->isSubClassOf("SDTCisVec")) {
1381 ConstraintType = SDTCisVec;
1382 } else if (R->isSubClassOf("SDTCisSameAs")) {
1383 ConstraintType = SDTCisSameAs;
1384 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1385 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1386 ConstraintType = SDTCisVTSmallerThanOp;
1387 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1388 R->getValueAsInt("OtherOperandNum");
1389 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1390 ConstraintType = SDTCisOpSmallerThanOp;
1391 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1392 R->getValueAsInt("BigOperandNum");
1393 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1394 ConstraintType = SDTCisEltOfVec;
1395 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1396 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1397 ConstraintType = SDTCisSubVecOfVec;
1398 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1399 R->getValueAsInt("OtherOpNum");
1400 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1401 ConstraintType = SDTCVecEltisVT;
1402 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1403 for (const auto &P : VVT) {
1404 MVT T = P.second;
1405 if (T.isVector())
1406 PrintFatalError(R->getLoc(),
1407 "Cannot use vector type as SDTCVecEltisVT");
1408 if (!T.isInteger() && !T.isFloatingPoint())
1409 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1410 "as SDTCVecEltisVT");
1411 }
1412 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1413 ConstraintType = SDTCisSameNumEltsAs;
1414 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1415 R->getValueAsInt("OtherOperandNum");
1416 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1417 ConstraintType = SDTCisSameSizeAs;
1418 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1419 R->getValueAsInt("OtherOperandNum");
1420 } else {
1421 PrintFatalError(R->getLoc(),
1422 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1423 }
1424}
1425
1426/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1427/// N, and the result number in ResNo.
1428static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1429 const SDNodeInfo &NodeInfo,
1430 unsigned &ResNo) {
1431 unsigned NumResults = NodeInfo.getNumResults();
1432 if (OpNo < NumResults) {
1433 ResNo = OpNo;
1434 return N;
1435 }
1436
1437 OpNo -= NumResults;
1438
1439 if (OpNo >= N->getNumChildren()) {
1440 std::string S;
1441 raw_string_ostream OS(S);
1442 OS << "Invalid operand number in type constraint "
1443 << (OpNo+NumResults) << " ";
1444 N->print(OS);
1445 PrintFatalError(OS.str());
1446 }
1447
1448 return N->getChild(OpNo);
1449}
1450
1451/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1452/// constraint to the nodes operands. This returns true if it makes a
1453/// change, false otherwise. If a type contradiction is found, flag an error.
1454bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1455 const SDNodeInfo &NodeInfo,
1456 TreePattern &TP) const {
1457 if (TP.hasError())
1458 return false;
1459
1460 unsigned ResNo = 0; // The result number being referenced.
1461 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1462 TypeInfer &TI = TP.getInfer();
1463
1464 switch (ConstraintType) {
1465 case SDTCisVT:
1466 // Operand must be a particular type.
1467 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1468 case SDTCisPtrTy:
1469 // Operand must be same as target pointer type.
1470 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1471 case SDTCisInt:
1472 // Require it to be one of the legal integer VTs.
1473 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1474 case SDTCisFP:
1475 // Require it to be one of the legal fp VTs.
1476 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1477 case SDTCisVec:
1478 // Require it to be one of the legal vector VTs.
1479 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1480 case SDTCisSameAs: {
1481 unsigned OResNo = 0;
1482 TreePatternNode *OtherNode =
1483 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1484 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1485 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1486 }
1487 case SDTCisVTSmallerThanOp: {
1488 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1489 // have an integer type that is smaller than the VT.
1490 if (!NodeToApply->isLeaf() ||
1491 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1492 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1493 ->isSubClassOf("ValueType")) {
1494 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1495 return false;
1496 }
1497 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1498 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1499 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1500 TypeSetByHwMode TypeListTmp(VVT);
1501
1502 unsigned OResNo = 0;
1503 TreePatternNode *OtherNode =
1504 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1505 OResNo);
1506
1507 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1508 }
1509 case SDTCisOpSmallerThanOp: {
1510 unsigned BResNo = 0;
1511 TreePatternNode *BigOperand =
1512 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1513 BResNo);
1514 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1515 BigOperand->getExtType(BResNo));
1516 }
1517 case SDTCisEltOfVec: {
1518 unsigned VResNo = 0;
1519 TreePatternNode *VecOperand =
1520 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1521 VResNo);
1522 // Filter vector types out of VecOperand that don't have the right element
1523 // type.
1524 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1525 NodeToApply->getExtType(ResNo));
1526 }
1527 case SDTCisSubVecOfVec: {
1528 unsigned VResNo = 0;
1529 TreePatternNode *BigVecOperand =
1530 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1531 VResNo);
1532
1533 // Filter vector types out of BigVecOperand that don't have the
1534 // right subvector type.
1535 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1536 NodeToApply->getExtType(ResNo));
1537 }
1538 case SDTCVecEltisVT: {
1539 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1540 }
1541 case SDTCisSameNumEltsAs: {
1542 unsigned OResNo = 0;
1543 TreePatternNode *OtherNode =
1544 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1545 N, NodeInfo, OResNo);
1546 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1547 NodeToApply->getExtType(ResNo));
1548 }
1549 case SDTCisSameSizeAs: {
1550 unsigned OResNo = 0;
1551 TreePatternNode *OtherNode =
1552 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1553 N, NodeInfo, OResNo);
1554 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1555 NodeToApply->getExtType(ResNo));
1556 }
1557 }
1558 llvm_unreachable("Invalid ConstraintType!")::llvm::llvm_unreachable_internal("Invalid ConstraintType!", "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1558)
;
1559}
1560
1561// Update the node type to match an instruction operand or result as specified
1562// in the ins or outs lists on the instruction definition. Return true if the
1563// type was actually changed.
1564bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1565 Record *Operand,
1566 TreePattern &TP) {
1567 // The 'unknown' operand indicates that types should be inferred from the
1568 // context.
1569 if (Operand->isSubClassOf("unknown_class"))
1570 return false;
1571
1572 // The Operand class specifies a type directly.
1573 if (Operand->isSubClassOf("Operand")) {
1574 Record *R = Operand->getValueAsDef("Type");
1575 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1576 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1577 }
1578
1579 // PointerLikeRegClass has a type that is determined at runtime.
1580 if (Operand->isSubClassOf("PointerLikeRegClass"))
1581 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1582
1583 // Both RegisterClass and RegisterOperand operands derive their types from a
1584 // register class def.
1585 Record *RC = nullptr;
1586 if (Operand->isSubClassOf("RegisterClass"))
1587 RC = Operand;
1588 else if (Operand->isSubClassOf("RegisterOperand"))
1589 RC = Operand->getValueAsDef("RegClass");
1590
1591 assert(RC && "Unknown operand type")((RC && "Unknown operand type") ? static_cast<void
> (0) : __assert_fail ("RC && \"Unknown operand type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1591, __PRETTY_FUNCTION__))
;
1592 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1593 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1594}
1595
1596bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1597 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1598 if (!TP.getInfer().isConcrete(Types[i], true))
1599 return true;
1600 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1601 if (getChild(i)->ContainsUnresolvedType(TP))
1602 return true;
1603 return false;
1604}
1605
1606bool TreePatternNode::hasProperTypeByHwMode() const {
1607 for (const TypeSetByHwMode &S : Types)
1608 if (!S.isDefaultOnly())
1609 return true;
1610 for (const TreePatternNodePtr &C : Children)
1611 if (C->hasProperTypeByHwMode())
1612 return true;
1613 return false;
1614}
1615
1616bool TreePatternNode::hasPossibleType() const {
1617 for (const TypeSetByHwMode &S : Types)
1618 if (!S.isPossible())
1619 return false;
1620 for (const TreePatternNodePtr &C : Children)
1621 if (!C->hasPossibleType())
1622 return false;
1623 return true;
1624}
1625
1626bool TreePatternNode::setDefaultMode(unsigned Mode) {
1627 for (TypeSetByHwMode &S : Types) {
1628 S.makeSimple(Mode);
1629 // Check if the selected mode had a type conflict.
1630 if (S.get(DefaultMode).empty())
1631 return false;
1632 }
1633 for (const TreePatternNodePtr &C : Children)
1634 if (!C->setDefaultMode(Mode))
1635 return false;
1636 return true;
1637}
1638
1639//===----------------------------------------------------------------------===//
1640// SDNodeInfo implementation
1641//
1642SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1643 EnumName = R->getValueAsString("Opcode");
1644 SDClassName = R->getValueAsString("SDClass");
1645 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1646 NumResults = TypeProfile->getValueAsInt("NumResults");
1647 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1648
1649 // Parse the properties.
1650 Properties = parseSDPatternOperatorProperties(R);
1651
1652 // Parse the type constraints.
1653 std::vector<Record*> ConstraintList =
1654 TypeProfile->getValueAsListOfDefs("Constraints");
1655 for (Record *R : ConstraintList)
1656 TypeConstraints.emplace_back(R, CGH);
1657}
1658
1659/// getKnownType - If the type constraints on this node imply a fixed type
1660/// (e.g. all stores return void, etc), then return it as an
1661/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1662MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1663 unsigned NumResults = getNumResults();
1664 assert(NumResults <= 1 &&((NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? static_cast<void> (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1665, __PRETTY_FUNCTION__))
1665 "We only work with nodes with zero or one result so far!")((NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? static_cast<void> (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1665, __PRETTY_FUNCTION__))
;
1666 assert(ResNo == 0 && "Only handles single result nodes so far")((ResNo == 0 && "Only handles single result nodes so far"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Only handles single result nodes so far\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1666, __PRETTY_FUNCTION__))
;
1667
1668 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1669 // Make sure that this applies to the correct node result.
1670 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1671 continue;
1672
1673 switch (Constraint.ConstraintType) {
1674 default: break;
1675 case SDTypeConstraint::SDTCisVT:
1676 if (Constraint.VVT.isSimple())
1677 return Constraint.VVT.getSimple().SimpleTy;
1678 break;
1679 case SDTypeConstraint::SDTCisPtrTy:
1680 return MVT::iPTR;
1681 }
1682 }
1683 return MVT::Other;
1684}
1685
1686//===----------------------------------------------------------------------===//
1687// TreePatternNode implementation
1688//
1689
1690static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1691 if (Operator->getName() == "set" ||
1692 Operator->getName() == "implicit")
1693 return 0; // All return nothing.
1694
1695 if (Operator->isSubClassOf("Intrinsic"))
1696 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1697
1698 if (Operator->isSubClassOf("SDNode"))
1699 return CDP.getSDNodeInfo(Operator).getNumResults();
1700
1701 if (Operator->isSubClassOf("PatFrags")) {
1702 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1703 // the forward reference case where one pattern fragment references another
1704 // before it is processed.
1705 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1706 // The number of results of a fragment with alternative records is the
1707 // maximum number of results across all alternatives.
1708 unsigned NumResults = 0;
1709 for (auto T : PFRec->getTrees())
1710 NumResults = std::max(NumResults, T->getNumTypes());
1711 return NumResults;
1712 }
1713
1714 ListInit *LI = Operator->getValueAsListInit("Fragments");
1715 assert(LI && "Invalid Fragment")((LI && "Invalid Fragment") ? static_cast<void>
(0) : __assert_fail ("LI && \"Invalid Fragment\"", "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1715, __PRETTY_FUNCTION__))
;
1716 unsigned NumResults = 0;
1717 for (Init *I : LI->getValues()) {
1718 Record *Op = nullptr;
1719 if (DagInit *Dag = dyn_cast<DagInit>(I))
1720 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1721 Op = DI->getDef();
1722 assert(Op && "Invalid Fragment")((Op && "Invalid Fragment") ? static_cast<void>
(0) : __assert_fail ("Op && \"Invalid Fragment\"", "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1722, __PRETTY_FUNCTION__))
;
1723 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1724 }
1725 return NumResults;
1726 }
1727
1728 if (Operator->isSubClassOf("Instruction")) {
1729 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1730
1731 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1732
1733 // Subtract any defaulted outputs.
1734 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1735 Record *OperandNode = InstInfo.Operands[i].Rec;
1736
1737 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1738 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1739 --NumDefsToAdd;
1740 }
1741
1742 // Add on one implicit def if it has a resolvable type.
1743 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1744 ++NumDefsToAdd;
1745 return NumDefsToAdd;
1746 }
1747
1748 if (Operator->isSubClassOf("SDNodeXForm"))
1749 return 1; // FIXME: Generalize SDNodeXForm
1750
1751 if (Operator->isSubClassOf("ValueType"))
1752 return 1; // A type-cast of one result.
1753
1754 if (Operator->isSubClassOf("ComplexPattern"))
1755 return 1;
1756
1757 errs() << *Operator;
1758 PrintFatalError("Unhandled node in GetNumNodeResults");
1759}
1760
1761void TreePatternNode::print(raw_ostream &OS) const {
1762 if (isLeaf())
1763 OS << *getLeafValue();
1764 else
1765 OS << '(' << getOperator()->getName();
1766
1767 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1768 OS << ':';
1769 getExtType(i).writeToStream(OS);
1770 }
1771
1772 if (!isLeaf()) {
1773 if (getNumChildren() != 0) {
1774 OS << " ";
1775 getChild(0)->print(OS);
1776 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1777 OS << ", ";
1778 getChild(i)->print(OS);
1779 }
1780 }
1781 OS << ")";
1782 }
1783
1784 for (const TreePredicateCall &Pred : PredicateCalls) {
1785 OS << "<<P:";
1786 if (Pred.Scope)
1787 OS << Pred.Scope << ":";
1788 OS << Pred.Fn.getFnName() << ">>";
1789 }
1790 if (TransformFn)
1791 OS << "<<X:" << TransformFn->getName() << ">>";
1792 if (!getName().empty())
1793 OS << ":$" << getName();
1794
1795 for (const ScopedName &Name : NamesAsPredicateArg)
1796 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1797}
1798void TreePatternNode::dump() const {
1799 print(errs());
1800}
1801
1802/// isIsomorphicTo - Return true if this node is recursively
1803/// isomorphic to the specified node. For this comparison, the node's
1804/// entire state is considered. The assigned name is ignored, since
1805/// nodes with differing names are considered isomorphic. However, if
1806/// the assigned name is present in the dependent variable set, then
1807/// the assigned name is considered significant and the node is
1808/// isomorphic if the names match.
1809bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1810 const MultipleUseVarSet &DepVars) const {
1811 if (N == this) return true;
1812 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1813 getPredicateCalls() != N->getPredicateCalls() ||
1814 getTransformFn() != N->getTransformFn())
1815 return false;
1816
1817 if (isLeaf()) {
1818 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1819 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1820 return ((DI->getDef() == NDI->getDef())
1821 && (DepVars.find(getName()) == DepVars.end()
1822 || getName() == N->getName()));
1823 }
1824 }
1825 return getLeafValue() == N->getLeafValue();
1826 }
1827
1828 if (N->getOperator() != getOperator() ||
1829 N->getNumChildren() != getNumChildren()) return false;
1830 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1831 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1832 return false;
1833 return true;
1834}
1835
1836/// clone - Make a copy of this tree and all of its children.
1837///
1838TreePatternNodePtr TreePatternNode::clone() const {
1839 TreePatternNodePtr New;
1840 if (isLeaf()) {
1841 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1842 } else {
1843 std::vector<TreePatternNodePtr> CChildren;
1844 CChildren.reserve(Children.size());
1845 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1846 CChildren.push_back(getChild(i)->clone());
1847 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1848 getNumTypes());
1849 }
1850 New->setName(getName());
1851 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1852 New->Types = Types;
1853 New->setPredicateCalls(getPredicateCalls());
1854 New->setTransformFn(getTransformFn());
1855 return New;
1856}
1857
1858/// RemoveAllTypes - Recursively strip all the types of this tree.
1859void TreePatternNode::RemoveAllTypes() {
1860 // Reset to unknown type.
1861 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1862 if (isLeaf()) return;
1863 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1864 getChild(i)->RemoveAllTypes();
1865}
1866
1867
1868/// SubstituteFormalArguments - Replace the formal arguments in this tree
1869/// with actual values specified by ArgMap.
1870void TreePatternNode::SubstituteFormalArguments(
1871 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1872 if (isLeaf()) return;
1873
1874 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1875 TreePatternNode *Child = getChild(i);
1876 if (Child->isLeaf()) {
1877 Init *Val = Child->getLeafValue();
1878 // Note that, when substituting into an output pattern, Val might be an
1879 // UnsetInit.
1880 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1881 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1882 // We found a use of a formal argument, replace it with its value.
1883 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1884 assert(NewChild && "Couldn't find formal argument!")((NewChild && "Couldn't find formal argument!") ? static_cast
<void> (0) : __assert_fail ("NewChild && \"Couldn't find formal argument!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1884, __PRETTY_FUNCTION__))
;
1885 assert((Child->getPredicateCalls().empty() ||(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1887, __PRETTY_FUNCTION__))
1886 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1887, __PRETTY_FUNCTION__))
1887 "Non-empty child predicate clobbered!")(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1887, __PRETTY_FUNCTION__))
;
1888 setChild(i, std::move(NewChild));
1889 }
1890 } else {
1891 getChild(i)->SubstituteFormalArguments(ArgMap);
1892 }
1893 }
1894}
1895
1896
1897/// InlinePatternFragments - If this pattern refers to any pattern
1898/// fragments, return the set of inlined versions (this can be more than
1899/// one if a PatFrags record has multiple alternatives).
1900void TreePatternNode::InlinePatternFragments(
1901 TreePatternNodePtr T, TreePattern &TP,
1902 std::vector<TreePatternNodePtr> &OutAlternatives) {
1903
1904 if (TP.hasError())
1905 return;
1906
1907 if (isLeaf()) {
1908 OutAlternatives.push_back(T); // nothing to do.
1909 return;
1910 }
1911
1912 Record *Op = getOperator();
1913
1914 if (!Op->isSubClassOf("PatFrags")) {
1915 if (getNumChildren() == 0) {
1916 OutAlternatives.push_back(T);
1917 return;
1918 }
1919
1920 // Recursively inline children nodes.
1921 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1922 ChildAlternatives.resize(getNumChildren());
1923 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1924 TreePatternNodePtr Child = getChildShared(i);
1925 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1926 // If there are no alternatives for any child, there are no
1927 // alternatives for this expression as whole.
1928 if (ChildAlternatives[i].empty())
1929 return;
1930
1931 for (auto NewChild : ChildAlternatives[i])
1932 assert((Child->getPredicateCalls().empty() ||(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1934, __PRETTY_FUNCTION__))
1933 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1934, __PRETTY_FUNCTION__))
1934 "Non-empty child predicate clobbered!")(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1934, __PRETTY_FUNCTION__))
;
1935 }
1936
1937 // The end result is an all-pairs construction of the resultant pattern.
1938 std::vector<unsigned> Idxs;
1939 Idxs.resize(ChildAlternatives.size());
1940 bool NotDone;
1941 do {
1942 // Create the variant and add it to the output list.
1943 std::vector<TreePatternNodePtr> NewChildren;
1944 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1945 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1946 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1947 getOperator(), std::move(NewChildren), getNumTypes());
1948
1949 // Copy over properties.
1950 R->setName(getName());
1951 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1952 R->setPredicateCalls(getPredicateCalls());
1953 R->setTransformFn(getTransformFn());
1954 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1955 R->setType(i, getExtType(i));
1956 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
1957 R->setResultIndex(i, getResultIndex(i));
1958
1959 // Register alternative.
1960 OutAlternatives.push_back(R);
1961
1962 // Increment indices to the next permutation by incrementing the
1963 // indices from last index backward, e.g., generate the sequence
1964 // [0, 0], [0, 1], [1, 0], [1, 1].
1965 int IdxsIdx;
1966 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1967 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1968 Idxs[IdxsIdx] = 0;
1969 else
1970 break;
1971 }
1972 NotDone = (IdxsIdx >= 0);
1973 } while (NotDone);
1974
1975 return;
1976 }
1977
1978 // Otherwise, we found a reference to a fragment. First, look up its
1979 // TreePattern record.
1980 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1981
1982 // Verify that we are passing the right number of operands.
1983 if (Frag->getNumArgs() != Children.size()) {
1984 TP.error("'" + Op->getName() + "' fragment requires " +
1985 Twine(Frag->getNumArgs()) + " operands!");
1986 return;
1987 }
1988
1989 TreePredicateFn PredFn(Frag);
1990 unsigned Scope = 0;
1991 if (TreePredicateFn(Frag).usesOperands())
1992 Scope = TP.getDAGPatterns().allocateScope();
1993
1994 // Compute the map of formal to actual arguments.
1995 std::map<std::string, TreePatternNodePtr> ArgMap;
1996 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1997 TreePatternNodePtr Child = getChildShared(i);
1998 if (Scope != 0) {
1999 Child = Child->clone();
2000 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2001 }
2002 ArgMap[Frag->getArgName(i)] = Child;
2003 }
2004
2005 // Loop over all fragment alternatives.
2006 for (auto Alternative : Frag->getTrees()) {
2007 TreePatternNodePtr FragTree = Alternative->clone();
2008
2009 if (!PredFn.isAlwaysTrue())
2010 FragTree->addPredicateCall(PredFn, Scope);
2011
2012 // Resolve formal arguments to their actual value.
2013 if (Frag->getNumArgs())
2014 FragTree->SubstituteFormalArguments(ArgMap);
2015
2016 // Transfer types. Note that the resolved alternative may have fewer
2017 // (but not more) results than the PatFrags node.
2018 FragTree->setName(getName());
2019 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2020 FragTree->UpdateNodeType(i, getExtType(i), TP);
2021
2022 // Transfer in the old predicates.
2023 for (const TreePredicateCall &Pred : getPredicateCalls())
2024 FragTree->addPredicateCall(Pred);
2025
2026 // The fragment we inlined could have recursive inlining that is needed. See
2027 // if there are any pattern fragments in it and inline them as needed.
2028 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2029 }
2030}
2031
2032/// getImplicitType - Check to see if the specified record has an implicit
2033/// type which should be applied to it. This will infer the type of register
2034/// references from the register file information, for example.
2035///
2036/// When Unnamed is set, return the type of a DAG operand with no name, such as
2037/// the F8RC register class argument in:
2038///
2039/// (COPY_TO_REGCLASS GPR:$src, F8RC)
2040///
2041/// When Unnamed is false, return the type of a named DAG operand such as the
2042/// GPR:$src operand above.
2043///
2044static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2045 bool NotRegisters,
2046 bool Unnamed,
2047 TreePattern &TP) {
2048 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2049
2050 // Check to see if this is a register operand.
2051 if (R->isSubClassOf("RegisterOperand")) {
2052 assert(ResNo == 0 && "Regoperand ref only has one result!")((ResNo == 0 && "Regoperand ref only has one result!"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regoperand ref only has one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2052, __PRETTY_FUNCTION__))
;
2053 if (NotRegisters)
2054 return TypeSetByHwMode(); // Unknown.
2055 Record *RegClass = R->getValueAsDef("RegClass");
2056 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2057 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2058 }
2059
2060 // Check to see if this is a register or a register class.
2061 if (R->isSubClassOf("RegisterClass")) {
2062 assert(ResNo == 0 && "Regclass ref only has one result!")((ResNo == 0 && "Regclass ref only has one result!") ?
static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regclass ref only has one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2062, __PRETTY_FUNCTION__))
;
2063 // An unnamed register class represents itself as an i32 immediate, for
2064 // example on a COPY_TO_REGCLASS instruction.
2065 if (Unnamed)
2066 return TypeSetByHwMode(MVT::i32);
2067
2068 // In a named operand, the register class provides the possible set of
2069 // types.
2070 if (NotRegisters)
2071 return TypeSetByHwMode(); // Unknown.
2072 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2073 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2074 }
2075
2076 if (R->isSubClassOf("PatFrags")) {
2077 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?")((ResNo == 0 && "FIXME: PatFrag with multiple results?"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"FIXME: PatFrag with multiple results?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2077, __PRETTY_FUNCTION__))
;
2078 // Pattern fragment types will be resolved when they are inlined.
2079 return TypeSetByHwMode(); // Unknown.
2080 }
2081
2082 if (R->isSubClassOf("Register")) {
2083 assert(ResNo == 0 && "Registers only produce one result!")((ResNo == 0 && "Registers only produce one result!")
? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Registers only produce one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2083, __PRETTY_FUNCTION__))
;
2084 if (NotRegisters)
2085 return TypeSetByHwMode(); // Unknown.
2086 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2087 return TypeSetByHwMode(T.getRegisterVTs(R));
2088 }
2089
2090 if (R->isSubClassOf("SubRegIndex")) {
2091 assert(ResNo == 0 && "SubRegisterIndices only produce one result!")((ResNo == 0 && "SubRegisterIndices only produce one result!"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"SubRegisterIndices only produce one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2091, __PRETTY_FUNCTION__))
;
2092 return TypeSetByHwMode(MVT::i32);
2093 }
2094
2095 if (R->isSubClassOf("ValueType")) {
2096 assert(ResNo == 0 && "This node only has one result!")((ResNo == 0 && "This node only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2096, __PRETTY_FUNCTION__))
;
2097 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2098 //
2099 // (sext_inreg GPR:$src, i16)
2100 // ~~~
2101 if (Unnamed)
2102 return TypeSetByHwMode(MVT::Other);
2103 // With a name, the ValueType simply provides the type of the named
2104 // variable.
2105 //
2106 // (sext_inreg i32:$src, i16)
2107 // ~~~~~~~~
2108 if (NotRegisters)
2109 return TypeSetByHwMode(); // Unknown.
2110 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2111 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2112 }
2113
2114 if (R->isSubClassOf("CondCode")) {
2115 assert(ResNo == 0 && "This node only has one result!")((ResNo == 0 && "This node only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2115, __PRETTY_FUNCTION__))
;
2116 // Using a CondCodeSDNode.
2117 return TypeSetByHwMode(MVT::Other);
2118 }
2119
2120 if (R->isSubClassOf("ComplexPattern")) {
2121 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?")((ResNo == 0 && "FIXME: ComplexPattern with multiple results?"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"FIXME: ComplexPattern with multiple results?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2121, __PRETTY_FUNCTION__))
;
2122 if (NotRegisters)
2123 return TypeSetByHwMode(); // Unknown.
2124 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2125 }
2126 if (R->isSubClassOf("PointerLikeRegClass")) {
2127 assert(ResNo == 0 && "Regclass can only have one result!")((ResNo == 0 && "Regclass can only have one result!")
? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regclass can only have one result!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2127, __PRETTY_FUNCTION__))
;
2128 TypeSetByHwMode VTS(MVT::iPTR);
2129 TP.getInfer().expandOverloads(VTS);
2130 return VTS;
2131 }
2132
2133 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2134 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2135 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2136 // Placeholder.
2137 return TypeSetByHwMode(); // Unknown.
2138 }
2139
2140 if (R->isSubClassOf("Operand")) {
2141 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2142 Record *T = R->getValueAsDef("Type");
2143 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2144 }
2145
2146 TP.error("Unknown node flavor used in pattern: " + R->getName());
2147 return TypeSetByHwMode(MVT::Other);
2148}
2149
2150
2151/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2152/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2153const CodeGenIntrinsic *TreePatternNode::
2154getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2155 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2156 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2157 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2158 return nullptr;
2159
2160 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2161 return &CDP.getIntrinsicInfo(IID);
2162}
2163
2164/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2165/// return the ComplexPattern information, otherwise return null.
2166const ComplexPattern *
2167TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2168 Record *Rec;
2169 if (isLeaf()) {
2170 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2171 if (!DI)
2172 return nullptr;
2173 Rec = DI->getDef();
2174 } else
2175 Rec = getOperator();
2176
2177 if (!Rec->isSubClassOf("ComplexPattern"))
2178 return nullptr;
2179 return &CGP.getComplexPattern(Rec);
2180}
2181
2182unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2183 // A ComplexPattern specifically declares how many results it fills in.
2184 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2185 return CP->getNumOperands();
2186
2187 // If MIOperandInfo is specified, that gives the count.
2188 if (isLeaf()) {
2189 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2190 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2191 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2192 if (MIOps->getNumArgs())
2193 return MIOps->getNumArgs();
2194 }
2195 }
2196
2197 // Otherwise there is just one result.
2198 return 1;
2199}
2200
2201/// NodeHasProperty - Return true if this node has the specified property.
2202bool TreePatternNode::NodeHasProperty(SDNP Property,
2203 const CodeGenDAGPatterns &CGP) const {
2204 if (isLeaf()) {
2205 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2206 return CP->hasProperty(Property);
2207
2208 return false;
2209 }
2210
2211 if (Property != SDNPHasChain) {
2212 // The chain proprety is already present on the different intrinsic node
2213 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2214 // on the intrinsic. Anything else is specific to the individual intrinsic.
2215 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2216 return Int->hasProperty(Property);
2217 }
2218
2219 if (!Operator->isSubClassOf("SDPatternOperator"))
2220 return false;
2221
2222 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2223}
2224
2225
2226
2227
2228/// TreeHasProperty - Return true if any node in this tree has the specified
2229/// property.
2230bool TreePatternNode::TreeHasProperty(SDNP Property,
2231 const CodeGenDAGPatterns &CGP) const {
2232 if (NodeHasProperty(Property, CGP))
2233 return true;
2234 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2235 if (getChild(i)->TreeHasProperty(Property, CGP))
2236 return true;
2237 return false;
2238}
2239
2240/// isCommutativeIntrinsic - Return true if the node corresponds to a
2241/// commutative intrinsic.
2242bool
2243TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2244 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2245 return Int->isCommutative;
2246 return false;
2247}
2248
2249static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2250 if (!N->isLeaf())
2251 return N->getOperator()->isSubClassOf(Class);
2252
2253 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2254 if (DI && DI->getDef()->isSubClassOf(Class))
2255 return true;
2256
2257 return false;
2258}
2259
2260static void emitTooManyOperandsError(TreePattern &TP,
2261 StringRef InstName,
2262 unsigned Expected,
2263 unsigned Actual) {
2264 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2265 " operands but expected only " + Twine(Expected) + "!");
2266}
2267
2268static void emitTooFewOperandsError(TreePattern &TP,
2269 StringRef InstName,
2270 unsigned Actual) {
2271 TP.error("Instruction '" + InstName +
2272 "' expects more than the provided " + Twine(Actual) + " operands!");
2273}
2274
2275/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2276/// this node and its children in the tree. This returns true if it makes a
2277/// change, false otherwise. If a type contradiction is found, flag an error.
2278bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2279 if (TP.hasError())
2280 return false;
2281
2282 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2283 if (isLeaf()) {
2284 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2285 // If it's a regclass or something else known, include the type.
2286 bool MadeChange = false;
2287 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2288 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2289 NotRegisters,
2290 !hasName(), TP), TP);
2291 return MadeChange;
2292 }
2293
2294 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2295 assert(Types.size() == 1 && "Invalid IntInit")((Types.size() == 1 && "Invalid IntInit") ? static_cast
<void> (0) : __assert_fail ("Types.size() == 1 && \"Invalid IntInit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2295, __PRETTY_FUNCTION__))
;
2296
2297 // Int inits are always integers. :)
2298 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2299
2300 if (!TP.getInfer().isConcrete(Types[0], false))
2301 return MadeChange;
2302
2303 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2304 for (auto &P : VVT) {
2305 MVT::SimpleValueType VT = P.second.SimpleTy;
2306 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2307 continue;
2308 unsigned Size = MVT(VT).getSizeInBits();
2309 // Make sure that the value is representable for this type.
2310 if (Size >= 32)
2311 continue;
2312 // Check that the value doesn't use more bits than we have. It must
2313 // either be a sign- or zero-extended equivalent of the original.
2314 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2315 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2316 SignBitAndAbove == 1)
2317 continue;
2318
2319 TP.error("Integer value '" + Twine(II->getValue()) +
2320 "' is out of range for type '" + getEnumName(VT) + "'!");
2321 break;
2322 }
2323 return MadeChange;
2324 }
2325
2326 return false;
2327 }
2328
2329 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2330 bool MadeChange = false;
2331
2332 // Apply the result type to the node.
2333 unsigned NumRetVTs = Int->IS.RetVTs.size();
2334 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2335
2336 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2337 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2338
2339 if (getNumChildren() != NumParamVTs + 1) {
2340 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2341 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2342 return false;
2343 }
2344
2345 // Apply type info to the intrinsic ID.
2346 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2347
2348 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2349 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2350
2351 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2352 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case")((getChild(i+1)->getNumTypes() == 1 && "Unhandled case"
) ? static_cast<void> (0) : __assert_fail ("getChild(i+1)->getNumTypes() == 1 && \"Unhandled case\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2352, __PRETTY_FUNCTION__))
;
2353 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2354 }
2355 return MadeChange;
2356 }
2357
2358 if (getOperator()->isSubClassOf("SDNode")) {
2359 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2360
2361 // Check that the number of operands is sane. Negative operands -> varargs.
2362 if (NI.getNumOperands() >= 0 &&
2363 getNumChildren() != (unsigned)NI.getNumOperands()) {
2364 TP.error(getOperator()->getName() + " node requires exactly " +
2365 Twine(NI.getNumOperands()) + " operands!");
2366 return false;
2367 }
2368
2369 bool MadeChange = false;
2370 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2371 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2372 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2373 return MadeChange;
2374 }
2375
2376 if (getOperator()->isSubClassOf("Instruction")) {
2377 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2378 CodeGenInstruction &InstInfo =
2379 CDP.getTargetInfo().getInstruction(getOperator());
2380
2381 bool MadeChange = false;
2382
2383 // Apply the result types to the node, these come from the things in the
2384 // (outs) list of the instruction.
2385 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2386 Inst.getNumResults());
2387 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2388 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2389
2390 // If the instruction has implicit defs, we apply the first one as a result.
2391 // FIXME: This sucks, it should apply all implicit defs.
2392 if (!InstInfo.ImplicitDefs.empty()) {
2393 unsigned ResNo = NumResultsToAdd;
2394
2395 // FIXME: Generalize to multiple possible types and multiple possible
2396 // ImplicitDefs.
2397 MVT::SimpleValueType VT =
2398 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2399
2400 if (VT != MVT::Other)
2401 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2402 }
2403
2404 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2405 // be the same.
2406 if (getOperator()->getName() == "INSERT_SUBREG") {
2407 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled")((getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"
) ? static_cast<void> (0) : __assert_fail ("getChild(0)->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2407, __PRETTY_FUNCTION__))
;
2408 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2409 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2410 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2411 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2412 // variadic.
2413
2414 unsigned NChild = getNumChildren();
2415 if (NChild < 3) {
2416 TP.error("REG_SEQUENCE requires at least 3 operands!");
2417 return false;
2418 }
2419
2420 if (NChild % 2 == 0) {
2421 TP.error("REG_SEQUENCE requires an odd number of operands!");
2422 return false;
2423 }
2424
2425 if (!isOperandClass(getChild(0), "RegisterClass")) {
2426 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2427 return false;
2428 }
2429
2430 for (unsigned I = 1; I < NChild; I += 2) {
2431 TreePatternNode *SubIdxChild = getChild(I + 1);
2432 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2433 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2434 Twine(I + 1) + "!");
2435 return false;
2436 }
2437 }
2438 }
2439
2440 unsigned ChildNo = 0;
2441 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2442 Record *OperandNode = Inst.getOperand(i);
2443
2444 // If the instruction expects a predicate or optional def operand, we
2445 // codegen this by setting the operand to it's default value if it has a
2446 // non-empty DefaultOps field.
2447 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2448 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2449 continue;
2450
2451 // Verify that we didn't run out of provided operands.
2452 if (ChildNo >= getNumChildren()) {
2453 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2454 return false;
2455 }
2456
2457 TreePatternNode *Child = getChild(ChildNo++);
2458 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2459
2460 // If the operand has sub-operands, they may be provided by distinct
2461 // child patterns, so attempt to match each sub-operand separately.
2462 if (OperandNode->isSubClassOf("Operand")) {
2463 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2464 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2465 // But don't do that if the whole operand is being provided by
2466 // a single ComplexPattern-related Operand.
2467
2468 if (Child->getNumMIResults(CDP) < NumArgs) {
2469 // Match first sub-operand against the child we already have.
2470 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2471 MadeChange |=
2472 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2473
2474 // And the remaining sub-operands against subsequent children.
2475 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2476 if (ChildNo >= getNumChildren()) {
2477 emitTooFewOperandsError(TP, getOperator()->getName(),
2478 getNumChildren());
2479 return false;
2480 }
2481 Child = getChild(ChildNo++);
2482
2483 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2484 MadeChange |=
2485 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2486 }
2487 continue;
2488 }
2489 }
2490 }
2491
2492 // If we didn't match by pieces above, attempt to match the whole
2493 // operand now.
2494 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2495 }
2496
2497 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2498 emitTooManyOperandsError(TP, getOperator()->getName(),
2499 ChildNo, getNumChildren());
2500 return false;
2501 }
2502
2503 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2504 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2505 return MadeChange;
2506 }
2507
2508 if (getOperator()->isSubClassOf("ComplexPattern")) {
2509 bool MadeChange = false;
2510
2511 for (unsigned i = 0; i < getNumChildren(); ++i)
2512 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2513
2514 return MadeChange;
2515 }
2516
2517 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!")((getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"
) ? static_cast<void> (0) : __assert_fail ("getOperator()->isSubClassOf(\"SDNodeXForm\") && \"Unknown node type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2517, __PRETTY_FUNCTION__))
;
2518
2519 // Node transforms always take one operand.
2520 if (getNumChildren() != 1) {
2521 TP.error("Node transform '" + getOperator()->getName() +
2522 "' requires one operand!");
2523 return false;
2524 }
2525
2526 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2527 return MadeChange;
2528}
2529
2530/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2531/// RHS of a commutative operation, not the on LHS.
2532static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2533 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2534 return true;
2535 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2536 return true;
2537 return false;
2538}
2539
2540
2541/// canPatternMatch - If it is impossible for this pattern to match on this
2542/// target, fill in Reason and return false. Otherwise, return true. This is
2543/// used as a sanity check for .td files (to prevent people from writing stuff
2544/// that can never possibly work), and to prevent the pattern permuter from
2545/// generating stuff that is useless.
2546bool TreePatternNode::canPatternMatch(std::string &Reason,
2547 const CodeGenDAGPatterns &CDP) {
2548 if (isLeaf()) return true;
2549
2550 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2551 if (!getChild(i)->canPatternMatch(Reason, CDP))
2552 return false;
2553
2554 // If this is an intrinsic, handle cases that would make it not match. For
2555 // example, if an operand is required to be an immediate.
2556 if (getOperator()->isSubClassOf("Intrinsic")) {
2557 // TODO:
2558 return true;
2559 }
2560
2561 if (getOperator()->isSubClassOf("ComplexPattern"))
2562 return true;
2563
2564 // If this node is a commutative operator, check that the LHS isn't an
2565 // immediate.
2566 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2567 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2568 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2569 // Scan all of the operands of the node and make sure that only the last one
2570 // is a constant node, unless the RHS also is.
2571 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2572 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2573 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2574 if (OnlyOnRHSOfCommutative(getChild(i))) {
2575 Reason="Immediate value must be on the RHS of commutative operators!";
2576 return false;
2577 }
2578 }
2579 }
2580
2581 return true;
2582}
2583
2584//===----------------------------------------------------------------------===//
2585// TreePattern implementation
2586//
2587
2588TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2589 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2590 isInputPattern(isInput), HasError(false),
2591 Infer(*this) {
2592 for (Init *I : RawPat->getValues())
2593 Trees.push_back(ParseTreePattern(I, ""));
2594}
2595
2596TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2597 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2598 isInputPattern(isInput), HasError(false),
2599 Infer(*this) {
2600 Trees.push_back(ParseTreePattern(Pat, ""));
2601}
2602
2603TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2604 CodeGenDAGPatterns &cdp)
2605 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2606 Infer(*this) {
2607 Trees.push_back(Pat);
2608}
2609
2610void TreePattern::error(const Twine &Msg) {
2611 if (HasError)
2612 return;
2613 dump();
2614 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2615 HasError = true;
2616}
2617
2618void TreePattern::ComputeNamedNodes() {
2619 for (TreePatternNodePtr &Tree : Trees)
2620 ComputeNamedNodes(Tree.get());
2621}
2622
2623void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2624 if (!N->getName().empty())
2625 NamedNodes[N->getName()].push_back(N);
2626
2627 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2628 ComputeNamedNodes(N->getChild(i));
2629}
2630
2631TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2632 StringRef OpName) {
2633 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2634 Record *R = DI->getDef();
2635
2636 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2637 // TreePatternNode of its own. For example:
2638 /// (foo GPR, imm) -> (foo GPR, (imm))
2639 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2640 return ParseTreePattern(
2641 DagInit::get(DI, nullptr,
2642 std::vector<std::pair<Init*, StringInit*> >()),
2643 OpName);
2644
2645 // Input argument?
2646 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2647 if (R->getName() == "node" && !OpName.empty()) {
2648 if (OpName.empty())
2649 error("'node' argument requires a name to match with operand list");
2650 Args.push_back(OpName);
2651 }
2652
2653 Res->setName(OpName);
2654 return Res;
2655 }
2656
2657 // ?:$name or just $name.
2658 if (isa<UnsetInit>(TheInit)) {
2659 if (OpName.empty())
2660 error("'?' argument requires a name to match with operand list");
2661 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2662 Args.push_back(OpName);
2663 Res->setName(OpName);
2664 return Res;
2665 }
2666
2667 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2668 if (!OpName.empty())
2669 error("Constant int or bit argument should not have a name!");
2670 if (isa<BitInit>(TheInit))
2671 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2672 return std::make_shared<TreePatternNode>(TheInit, 1);
2673 }
2674
2675 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2676 // Turn this into an IntInit.
2677 Init *II = BI->convertInitializerTo(IntRecTy::get());
2678 if (!II || !isa<IntInit>(II))
2679 error("Bits value must be constants!");
2680 return ParseTreePattern(II, OpName);
2681 }
2682
2683 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2684 if (!Dag) {
2685 TheInit->print(errs());
2686 error("Pattern has unexpected init kind!");
2687 }
2688 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2689 if (!OpDef) error("Pattern has unexpected operator type!");
2690 Record *Operator = OpDef->getDef();
2691
2692 if (Operator->isSubClassOf("ValueType")) {
2693 // If the operator is a ValueType, then this must be "type cast" of a leaf
2694 // node.
2695 if (Dag->getNumArgs() != 1)
2696 error("Type cast only takes one operand!");
2697
2698 TreePatternNodePtr New =
2699 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2700
2701 // Apply the type cast.
2702 assert(New->getNumTypes() == 1 && "FIXME: Unhandled")((New->getNumTypes() == 1 && "FIXME: Unhandled") ?
static_cast<void> (0) : __assert_fail ("New->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2702, __PRETTY_FUNCTION__))
;
2703 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2704 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2705
2706 if (!OpName.empty())
2707 error("ValueType cast should not have a name!");
2708 return New;
2709 }
2710
2711 // Verify that this is something that makes sense for an operator.
2712 if (!Operator->isSubClassOf("PatFrags") &&
2713 !Operator->isSubClassOf("SDNode") &&
2714 !Operator->isSubClassOf("Instruction") &&
2715 !Operator->isSubClassOf("SDNodeXForm") &&
2716 !Operator->isSubClassOf("Intrinsic") &&
2717 !Operator->isSubClassOf("ComplexPattern") &&
2718 Operator->getName() != "set" &&
2719 Operator->getName() != "implicit")
2720 error("Unrecognized node '" + Operator->getName() + "'!");
2721
2722 // Check to see if this is something that is illegal in an input pattern.
2723 if (isInputPattern) {
2724 if (Operator->isSubClassOf("Instruction") ||
2725 Operator->isSubClassOf("SDNodeXForm"))
2726 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2727 } else {
2728 if (Operator->isSubClassOf("Intrinsic"))
2729 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2730
2731 if (Operator->isSubClassOf("SDNode") &&
2732 Operator->getName() != "imm" &&
2733 Operator->getName() != "fpimm" &&
2734 Operator->getName() != "tglobaltlsaddr" &&
2735 Operator->getName() != "tconstpool" &&
2736 Operator->getName() != "tjumptable" &&
2737 Operator->getName() != "tframeindex" &&
2738 Operator->getName() != "texternalsym" &&
2739 Operator->getName() != "tblockaddress" &&
2740 Operator->getName() != "tglobaladdr" &&
2741 Operator->getName() != "bb" &&
2742 Operator->getName() != "vt" &&
2743 Operator->getName() != "mcsym")
2744 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2745 }
2746
2747 std::vector<TreePatternNodePtr> Children;
2748
2749 // Parse all the operands.
2750 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2751 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2752
2753 // Get the actual number of results before Operator is converted to an intrinsic
2754 // node (which is hard-coded to have either zero or one result).
2755 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2756
2757 // If the operator is an intrinsic, then this is just syntactic sugar for
2758 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2759 // convert the intrinsic name to a number.
2760 if (Operator->isSubClassOf("Intrinsic")) {
2761 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2762 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2763
2764 // If this intrinsic returns void, it must have side-effects and thus a
2765 // chain.
2766 if (Int.IS.RetVTs.empty())
2767 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2768 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2769 // Has side-effects, requires chain.
2770 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2771 else // Otherwise, no chain.
2772 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2773
2774 Children.insert(Children.begin(),
2775 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2776 }
2777
2778 if (Operator->isSubClassOf("ComplexPattern")) {
2779 for (unsigned i = 0; i < Children.size(); ++i) {
2780 TreePatternNodePtr Child = Children[i];
2781
2782 if (Child->getName().empty())
2783 error("All arguments to a ComplexPattern must be named");
2784
2785 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2786 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2787 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2788 auto OperandId = std::make_pair(Operator, i);
2789 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2790 if (PrevOp != ComplexPatternOperands.end()) {
2791 if (PrevOp->getValue() != OperandId)
2792 error("All ComplexPattern operands must appear consistently: "
2793 "in the same order in just one ComplexPattern instance.");
2794 } else
2795 ComplexPatternOperands[Child->getName()] = OperandId;
2796 }
2797 }
2798
2799 TreePatternNodePtr Result =
2800 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2801 NumResults);
2802 Result->setName(OpName);
2803
2804 if (Dag->getName()) {
2805 assert(Result->getName().empty())((Result->getName().empty()) ? static_cast<void> (0)
: __assert_fail ("Result->getName().empty()", "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2805, __PRETTY_FUNCTION__))
;
2806 Result->setName(Dag->getNameStr());
2807 }
2808 return Result;
2809}
2810
2811/// SimplifyTree - See if we can simplify this tree to eliminate something that
2812/// will never match in favor of something obvious that will. This is here
2813/// strictly as a convenience to target authors because it allows them to write
2814/// more type generic things and have useless type casts fold away.
2815///
2816/// This returns true if any change is made.
2817static bool SimplifyTree(TreePatternNodePtr &N) {
2818 if (N->isLeaf())
2819 return false;
2820
2821 // If we have a bitconvert with a resolved type and if the source and
2822 // destination types are the same, then the bitconvert is useless, remove it.
2823 if (N->getOperator()->getName() == "bitconvert" &&
2824 N->getExtType(0).isValueTypeByHwMode(false) &&
2825 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2826 N->getName().empty()) {
2827 N = N->getChildShared(0);
2828 SimplifyTree(N);
2829 return true;
2830 }
2831
2832 // Walk all children.
2833 bool MadeChange = false;
2834 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2835 TreePatternNodePtr Child = N->getChildShared(i);
2836 MadeChange |= SimplifyTree(Child);
2837 N->setChild(i, std::move(Child));
2838 }
2839 return MadeChange;
2840}
2841
2842
2843
2844/// InferAllTypes - Infer/propagate as many types throughout the expression
2845/// patterns as possible. Return true if all types are inferred, false
2846/// otherwise. Flags an error if a type contradiction is found.
2847bool TreePattern::
2848InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2849 if (NamedNodes.empty())
2850 ComputeNamedNodes();
2851
2852 bool MadeChange = true;
2853 while (MadeChange) {
2854 MadeChange = false;
2855 for (TreePatternNodePtr &Tree : Trees) {
2856 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2857 MadeChange |= SimplifyTree(Tree);
2858 }
2859
2860 // If there are constraints on our named nodes, apply them.
2861 for (auto &Entry : NamedNodes) {
2862 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2863
2864 // If we have input named node types, propagate their types to the named
2865 // values here.
2866 if (InNamedTypes) {
2867 if (!InNamedTypes->count(Entry.getKey())) {
2868 error("Node '" + std::string(Entry.getKey()) +
2869 "' in output pattern but not input pattern");
2870 return true;
2871 }
2872
2873 const SmallVectorImpl<TreePatternNode*> &InNodes =
2874 InNamedTypes->find(Entry.getKey())->second;
2875
2876 // The input types should be fully resolved by now.
2877 for (TreePatternNode *Node : Nodes) {
2878 // If this node is a register class, and it is the root of the pattern
2879 // then we're mapping something onto an input register. We allow
2880 // changing the type of the input register in this case. This allows
2881 // us to match things like:
2882 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2883 if (Node == Trees[0].get() && Node->isLeaf()) {
2884 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2885 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2886 DI->getDef()->isSubClassOf("RegisterOperand")))
2887 continue;
2888 }
2889
2890 assert(Node->getNumTypes() == 1 &&((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2892, __PRETTY_FUNCTION__))
2891 InNodes[0]->getNumTypes() == 1 &&((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2892, __PRETTY_FUNCTION__))
2892 "FIXME: cannot name multiple result nodes yet")((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2892, __PRETTY_FUNCTION__))
;
2893 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2894 *this);
2895 }
2896 }
2897
2898 // If there are multiple nodes with the same name, they must all have the
2899 // same type.
2900 if (Entry.second.size() > 1) {
2901 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2902 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2903 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&((N1->getNumTypes() == 1 && N2->getNumTypes() ==
1 && "FIXME: cannot name multiple result nodes yet")
? static_cast<void> (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2904, __PRETTY_FUNCTION__))
2904 "FIXME: cannot name multiple result nodes yet")((N1->getNumTypes() == 1 && N2->getNumTypes() ==
1 && "FIXME: cannot name multiple result nodes yet")
? static_cast<void> (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2904, __PRETTY_FUNCTION__))
;
2905
2906 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2907 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2908 }
2909 }
2910 }
2911 }
2912
2913 bool HasUnresolvedTypes = false;
2914 for (const TreePatternNodePtr &Tree : Trees)
2915 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2916 return !HasUnresolvedTypes;
2917}
2918
2919void TreePattern::print(raw_ostream &OS) const {
2920 OS << getRecord()->getName();
2921 if (!Args.empty()) {
2922 OS << "(" << Args[0];
2923 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2924 OS << ", " << Args[i];
2925 OS << ")";
2926 }
2927 OS << ": ";
2928
2929 if (Trees.size() > 1)
2930 OS << "[\n";
2931 for (const TreePatternNodePtr &Tree : Trees) {
2932 OS << "\t";
2933 Tree->print(OS);
2934 OS << "\n";
2935 }
2936
2937 if (Trees.size() > 1)
2938 OS << "]\n";
2939}
2940
2941void TreePattern::dump() const { print(errs()); }
2942
2943//===----------------------------------------------------------------------===//
2944// CodeGenDAGPatterns implementation
2945//
2946
2947CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2948 PatternRewriterFn PatternRewriter)
2949 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2950 PatternRewriter(PatternRewriter) {
2951
2952 Intrinsics = CodeGenIntrinsicTable(Records, false);
2953 TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2954 ParseNodeInfo();
2955 ParseNodeTransforms();
2956 ParseComplexPatterns();
2957 ParsePatternFragments();
2958 ParseDefaultOperands();
2959 ParseInstructions();
2960 ParsePatternFragments(/*OutFrags*/true);
2961 ParsePatterns();
2962
2963 // Break patterns with parameterized types into a series of patterns,
2964 // where each one has a fixed type and is predicated on the conditions
2965 // of the associated HW mode.
2966 ExpandHwModeBasedTypes();
2967
2968 // Generate variants. For example, commutative patterns can match
2969 // multiple ways. Add them to PatternsToMatch as well.
2970 GenerateVariants();
2971
2972 // Infer instruction flags. For example, we can detect loads,
2973 // stores, and side effects in many cases by examining an
2974 // instruction's pattern.
2975 InferInstructionFlags();
2976
2977 // Verify that instruction flags match the patterns.
2978 VerifyInstructionFlags();
2979}
2980
2981Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2982 Record *N = Records.getDef(Name);
2983 if (!N || !N->isSubClassOf("SDNode"))
2984 PrintFatalError("Error getting SDNode '" + Name + "'!");
2985
2986 return N;
2987}
2988
2989// Parse all of the SDNode definitions for the target, populating SDNodes.
2990void CodeGenDAGPatterns::ParseNodeInfo() {
2991 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2992 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2993
2994 while (!Nodes.empty()) {
2995 Record *R = Nodes.back();
2996 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2997 Nodes.pop_back();
2998 }
2999
3000 // Get the builtin intrinsic nodes.
3001 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3002 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3003 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3004}
3005
3006/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3007/// map, and emit them to the file as functions.
3008void CodeGenDAGPatterns::ParseNodeTransforms() {
3009 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3010 while (!Xforms.empty()) {
3011 Record *XFormNode = Xforms.back();
3012 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3013 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3014 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3015
3016 Xforms.pop_back();
3017 }
3018}
3019
3020void CodeGenDAGPatterns::ParseComplexPatterns() {
3021 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3022 while (!AMs.empty()) {
3023 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3024 AMs.pop_back();
3025 }
3026}
3027
3028
3029/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3030/// file, building up the PatternFragments map. After we've collected them all,
3031/// inline fragments together as necessary, so that there are no references left
3032/// inside a pattern fragment to a pattern fragment.
3033///
3034void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3035 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3036
3037 // First step, parse all of the fragments.
3038 for (Record *Frag : Fragments) {
3039 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3040 continue;
3041
3042 ListInit *LI = Frag->getValueAsListInit("Fragments");
3043 TreePattern *P =
3044 (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
3045 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3046 *this)).get();
3047
3048 // Validate the argument list, converting it to set, to discard duplicates.
3049 std::vector<std::string> &Args = P->getArgList();
3050 // Copy the args so we can take StringRefs to them.
3051 auto ArgsCopy = Args;
3052 SmallDenseSet<StringRef, 4> OperandsSet;
3053 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3054
3055 if (OperandsSet.count(""))
3056 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3057
3058 // Parse the operands list.
3059 DagInit *OpsList = Frag->getValueAsDag("Operands");
3060 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3061 // Special cases: ops == outs == ins. Different names are used to
3062 // improve readability.
3063 if (!OpsOp ||
3064 (OpsOp->getDef()->getName() != "ops" &&
3065 OpsOp->getDef()->getName() != "outs" &&
3066 OpsOp->getDef()->getName() != "ins"))
3067 P->error("Operands list should start with '(ops ... '!");
3068
3069 // Copy over the arguments.
3070 Args.clear();
3071 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3072 if (!isa<DefInit>(OpsList->getArg(j)) ||
3073 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3074 P->error("Operands list should all be 'node' values.");
3075 if (!OpsList->getArgName(j))
3076 P->error("Operands list should have names for each operand!");
3077 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3078 if (!OperandsSet.count(ArgNameStr))
3079 P->error("'" + ArgNameStr +
3080 "' does not occur in pattern or was multiply specified!");
3081 OperandsSet.erase(ArgNameStr);
3082 Args.push_back(ArgNameStr);
3083 }
3084
3085 if (!OperandsSet.empty())
3086 P->error("Operands list does not contain an entry for operand '" +
3087 *OperandsSet.begin() + "'!");
3088
3089 // If there is a node transformation corresponding to this, keep track of
3090 // it.
3091 Record *Transform = Frag->getValueAsDef("OperandTransform");
3092 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3093 for (auto T : P->getTrees())
3094 T->setTransformFn(Transform);
3095 }
3096
3097 // Now that we've parsed all of the tree fragments, do a closure on them so
3098 // that there are not references to PatFrags left inside of them.
3099 for (Record *Frag : Fragments) {
3100 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3101 continue;
3102
3103 TreePattern &ThePat = *PatternFragments[Frag];
3104 ThePat.InlinePatternFragments();
3105
3106 // Infer as many types as possible. Don't worry about it if we don't infer
3107 // all of them, some may depend on the inputs of the pattern. Also, don't
3108 // validate type sets; validation may cause spurious failures e.g. if a
3109 // fragment needs floating-point types but the current target does not have
3110 // any (this is only an error if that fragment is ever used!).
3111 {
3112 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3113 ThePat.InferAllTypes();
3114 ThePat.resetError();
3115 }
3116
3117 // If debugging, print out the pattern fragment result.
3118 LLVM_DEBUG(ThePat.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { ThePat.dump(); } } while (false)
;
3119 }
3120}
3121
3122void CodeGenDAGPatterns::ParseDefaultOperands() {
3123 std::vector<Record*> DefaultOps;
3124 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3125
3126 // Find some SDNode.
3127 assert(!SDNodes.empty() && "No SDNodes parsed?")((!SDNodes.empty() && "No SDNodes parsed?") ? static_cast
<void> (0) : __assert_fail ("!SDNodes.empty() && \"No SDNodes parsed?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3127, __PRETTY_FUNCTION__))
;
3128 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3129
3130 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3131 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3132
3133 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3134 // SomeSDnode so that we can parse this.
3135 std::vector<std::pair<Init*, StringInit*> > Ops;
3136 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3137 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3138 DefaultInfo->getArgName(op)));
3139 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3140
3141 // Create a TreePattern to parse this.
3142 TreePattern P(DefaultOps[i], DI, false, *this);
3143 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!")((P.getNumTrees() == 1 && "This ctor can only produce one tree!"
) ? static_cast<void> (0) : __assert_fail ("P.getNumTrees() == 1 && \"This ctor can only produce one tree!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3143, __PRETTY_FUNCTION__))
;
3144
3145 // Copy the operands over into a DAGDefaultOperand.
3146 DAGDefaultOperand DefaultOpInfo;
3147
3148 const TreePatternNodePtr &T = P.getTree(0);
3149 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3150 TreePatternNodePtr TPN = T->getChildShared(op);
3151 while (TPN->ApplyTypeConstraints(P, false))
3152 /* Resolve all types */;
3153
3154 if (TPN->ContainsUnresolvedType(P)) {
3155 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3156 DefaultOps[i]->getName() +
3157 "' doesn't have a concrete type!");
3158 }
3159 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3160 }
3161
3162 // Insert it into the DefaultOperands map so we can find it later.
3163 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3164 }
3165}
3166
3167/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3168/// instruction input. Return true if this is a real use.
3169static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3170 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3171 // No name -> not interesting.
3172 if (Pat->getName().empty()) {
36
Assuming the condition is false
37
Taking false branch
3173 if (Pat->isLeaf()) {
3174 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3175 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3176 DI->getDef()->isSubClassOf("RegisterOperand")))
3177 I.error("Input " + DI->getDef()->getName() + " must be named!");
3178 }
3179 return false;
3180 }
3181
3182 Record *Rec;
3183 if (Pat->isLeaf()) {
38
Taking true branch
3184 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
39
'DI' initialized here
3185 if (!DI)
40
Assuming 'DI' is null
41
Taking true branch
3186 I.error("Input $" + Pat->getName() + " must be an identifier!");
3187 Rec = DI->getDef();
42
Called C++ object pointer is null
3188 } else {
3189 Rec = Pat->getOperator();
3190 }
3191
3192 // SRCVALUE nodes are ignored.
3193 if (Rec->getName() == "srcvalue")
3194 return false;
3195
3196 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3197 if (!Slot) {
3198 Slot = Pat;
3199 return true;
3200 }
3201 Record *SlotRec;
3202 if (Slot->isLeaf()) {
3203 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3204 } else {
3205 assert(Slot->getNumChildren() == 0 && "can't be a use with children!")((Slot->getNumChildren() == 0 && "can't be a use with children!"
) ? static_cast<void> (0) : __assert_fail ("Slot->getNumChildren() == 0 && \"can't be a use with children!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3205, __PRETTY_FUNCTION__))
;
3206 SlotRec = Slot->getOperator();
3207 }
3208
3209 // Ensure that the inputs agree if we've already seen this input.
3210 if (Rec != SlotRec)
3211 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3212 // Ensure that the types can agree as well.
3213 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3214 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3215 if (Slot->getExtTypes() != Pat->getExtTypes())
3216 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3217 return true;
3218}
3219
3220/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3221/// part of "I", the instruction), computing the set of inputs and outputs of
3222/// the pattern. Report errors if we see anything naughty.
3223void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3224 TreePattern &I, TreePatternNodePtr Pat,
3225 std::map<std::string, TreePatternNodePtr> &InstInputs,
3226 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3227 &InstResults,
3228 std::vector<Record *> &InstImpResults) {
3229
3230 // The instruction pattern still has unresolved fragments. For *named*
3231 // nodes we must resolve those here. This may not result in multiple
3232 // alternatives.
3233 if (!Pat->getName().empty()) {
8
Assuming the condition is false
9
Taking false branch
21
Assuming the condition is false
22
Taking false branch
32
Assuming the condition is false
33
Taking false branch
3234 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3235 SrcPattern.InlinePatternFragments();
3236 SrcPattern.InferAllTypes();
3237 Pat = SrcPattern.getOnlyTree();
3238 }
3239
3240 if (Pat->isLeaf()) {
10
Taking false branch
23
Taking false branch
34
Taking true branch
3241 bool isUse = HandleUse(I, Pat, InstInputs);
35
Calling 'HandleUse'
3242 if (!isUse && Pat->getTransformFn())
3243 I.error("Cannot specify a transform function for a non-input value!");
3244 return;
3245 }
3246
3247 if (Pat->getOperator()->getName() == "implicit") {
11
Assuming the condition is false
12
Taking false branch
24
Assuming the condition is false
25
Taking false branch
3248 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3249 TreePatternNode *Dest = Pat->getChild(i);
3250 if (!Dest->isLeaf())
3251 I.error("implicitly defined value should be a register!");
3252
3253 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3254 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3255 I.error("implicitly defined value should be a register!");
3256 InstImpResults.push_back(Val->getDef());
3257 }
3258 return;
3259 }
3260
3261 if (Pat->getOperator()->getName() != "set") {
13
Taking false branch
26
Taking true branch
3262 // If this is not a set, verify that the children nodes are not void typed,
3263 // and recurse.
3264 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
27
Assuming 'i' is not equal to 'e'
28
Loop condition is true. Entering loop body
3265 if (Pat->getChild(i)->getNumTypes() == 0)
29
Assuming the condition is false
30
Taking false branch
3266 I.error("Cannot have void nodes inside of patterns!");
3267 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
31
Calling 'CodeGenDAGPatterns::FindPatternInputsAndOutputs'
3268 InstResults, InstImpResults);
3269 }
3270
3271 // If this is a non-leaf node with no children, treat it basically as if
3272 // it were a leaf. This handles nodes like (imm).
3273 bool isUse = HandleUse(I, Pat, InstInputs);
3274
3275 if (!isUse && Pat->getTransformFn())
3276 I.error("Cannot specify a transform function for a non-input value!");
3277 return;
3278 }
3279
3280 // Otherwise, this is a set, validate and collect instruction results.
3281 if (Pat->getNumChildren() == 0)
14
Assuming the condition is false
15
Taking false branch
3282 I.error("set requires operands!");
3283
3284 if (Pat->getTransformFn())
16
Assuming the condition is false
17
Taking false branch
3285 I.error("Cannot specify a transform function on a set node!");
3286
3287 // Check the set destinations.
3288 unsigned NumDests = Pat->getNumChildren()-1;
3289 for (unsigned i = 0; i != NumDests; ++i) {
18
Assuming 'i' is equal to 'NumDests'
19
Loop condition is false. Execution continues on line 3323
3290 TreePatternNodePtr Dest = Pat->getChildShared(i);
3291 // For set destinations we also must resolve fragments here.
3292 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3293 DestPattern.InlinePatternFragments();
3294 DestPattern.InferAllTypes();
3295 Dest = DestPattern.getOnlyTree();
3296
3297 if (!Dest->isLeaf())
3298 I.error("set destination should be a register!");
3299
3300 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3301 if (!Val) {
3302 I.error("set destination should be a register!");
3303 continue;
3304 }
3305
3306 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3307 Val->getDef()->isSubClassOf("ValueType") ||
3308 Val->getDef()->isSubClassOf("RegisterOperand") ||
3309 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3310 if (Dest->getName().empty())
3311 I.error("set destination must have a name!");
3312 if (InstResults.count(Dest->getName()))
3313 I.error("cannot set '" + Dest->getName() + "' multiple times");
3314 InstResults[Dest->getName()] = Dest;
3315 } else if (Val->getDef()->isSubClassOf("Register")) {
3316 InstImpResults.push_back(Val->getDef());
3317 } else {
3318 I.error("set destination should be a register!");
3319 }
3320 }
3321
3322 // Verify and collect info from the computation.
3323 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
20
Calling 'CodeGenDAGPatterns::FindPatternInputsAndOutputs'
3324 InstResults, InstImpResults);
3325}
3326
3327//===----------------------------------------------------------------------===//
3328// Instruction Analysis
3329//===----------------------------------------------------------------------===//
3330
3331class InstAnalyzer {
3332 const CodeGenDAGPatterns &CDP;
3333public:
3334 bool hasSideEffects;
3335 bool mayStore;
3336 bool mayLoad;
3337 bool isBitcast;
3338 bool isVariadic;
3339 bool hasChain;
3340
3341 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3342 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3343 isBitcast(false), isVariadic(false), hasChain(false) {}
3344
3345 void Analyze(const PatternToMatch &Pat) {
3346 const TreePatternNode *N = Pat.getSrcPattern();
3347 AnalyzeNode(N);
3348 // These properties are detected only on the root node.
3349 isBitcast = IsNodeBitcast(N);
3350 }
3351
3352private:
3353 bool IsNodeBitcast(const TreePatternNode *N) const {
3354 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3355 return false;
3356
3357 if (N->isLeaf())
3358 return false;
3359 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3360 return false;
3361
3362 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3363 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3364 return false;
3365 return OpInfo.getEnumName() == "ISD::BITCAST";
3366 }
3367
3368public:
3369 void AnalyzeNode(const TreePatternNode *N) {
3370 if (N->isLeaf()) {
3371 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3372 Record *LeafRec = DI->getDef();
3373 // Handle ComplexPattern leaves.
3374 if (LeafRec->isSubClassOf("ComplexPattern")) {
3375 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3376 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3377 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3378 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3379 }
3380 }
3381 return;
3382 }
3383
3384 // Analyze children.
3385 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3386 AnalyzeNode(N->getChild(i));
3387
3388 // Notice properties of the node.
3389 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3390 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3391 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3392 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3393 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3394
3395 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3396 // If this is an intrinsic, analyze it.
3397 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3398 mayLoad = true;// These may load memory.
3399
3400 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3401 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3402
3403 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3404 IntInfo->hasSideEffects)
3405 // ReadWriteMem intrinsics can have other strange effects.
3406 hasSideEffects = true;
3407 }
3408 }
3409
3410};
3411
3412static bool InferFromPattern(CodeGenInstruction &InstInfo,
3413 const InstAnalyzer &PatInfo,
3414 Record *PatDef) {
3415 bool Error = false;
3416
3417 // Remember where InstInfo got its flags.
3418 if (InstInfo.hasUndefFlags())
3419 InstInfo.InferredFrom = PatDef;
3420
3421 // Check explicitly set flags for consistency.
3422 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3423 !InstInfo.hasSideEffects_Unset) {
3424 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3425 // the pattern has no side effects. That could be useful for div/rem
3426 // instructions that may trap.
3427 if (!InstInfo.hasSideEffects) {
3428 Error = true;
3429 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3430 Twine(InstInfo.hasSideEffects));
3431 }
3432 }
3433
3434 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3435 Error = true;
3436 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3437 Twine(InstInfo.mayStore));
3438 }
3439
3440 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3441 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3442 // Some targets translate immediates to loads.
3443 if (!InstInfo.mayLoad) {
3444 Error = true;
3445 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3446 Twine(InstInfo.mayLoad));
3447 }
3448 }
3449
3450 // Transfer inferred flags.
3451 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3452 InstInfo.mayStore |= PatInfo.mayStore;
3453 InstInfo.mayLoad |= PatInfo.mayLoad;
3454
3455 // These flags are silently added without any verification.
3456 // FIXME: To match historical behavior of TableGen, for now add those flags
3457 // only when we're inferring from the primary instruction pattern.
3458 if (PatDef->isSubClassOf("Instruction")) {
3459 InstInfo.isBitcast |= PatInfo.isBitcast;
3460 InstInfo.hasChain |= PatInfo.hasChain;
3461 InstInfo.hasChain_Inferred = true;
3462 }
3463
3464 // Don't infer isVariadic. This flag means something different on SDNodes and
3465 // instructions. For example, a CALL SDNode is variadic because it has the
3466 // call arguments as operands, but a CALL instruction is not variadic - it
3467 // has argument registers as implicit, not explicit uses.
3468
3469 return Error;
3470}
3471
3472/// hasNullFragReference - Return true if the DAG has any reference to the
3473/// null_frag operator.
3474static bool hasNullFragReference(DagInit *DI) {
3475 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3476 if (!OpDef) return false;
3477 Record *Operator = OpDef->getDef();
3478
3479 // If this is the null fragment, return true.
3480 if (Operator->getName() == "null_frag") return true;
3481 // If any of the arguments reference the null fragment, return true.
3482 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3483 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3484 if (Arg && hasNullFragReference(Arg))
3485 return true;
3486 }
3487
3488 return false;
3489}
3490
3491/// hasNullFragReference - Return true if any DAG in the list references
3492/// the null_frag operator.
3493static bool hasNullFragReference(ListInit *LI) {
3494 for (Init *I : LI->getValues()) {
3495 DagInit *DI = dyn_cast<DagInit>(I);
3496 assert(DI && "non-dag in an instruction Pattern list?!")((DI && "non-dag in an instruction Pattern list?!") ?
static_cast<void> (0) : __assert_fail ("DI && \"non-dag in an instruction Pattern list?!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3496, __PRETTY_FUNCTION__))
;
3497 if (hasNullFragReference(DI))
3498 return true;
3499 }
3500 return false;
3501}
3502
3503/// Get all the instructions in a tree.
3504static void
3505getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3506 if (Tree->isLeaf())
3507 return;
3508 if (Tree->getOperator()->isSubClassOf("Instruction"))
3509 Instrs.push_back(Tree->getOperator());
3510 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3511 getInstructionsInTree(Tree->getChild(i), Instrs);
3512}
3513
3514/// Check the class of a pattern leaf node against the instruction operand it
3515/// represents.
3516static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3517 Record *Leaf) {
3518 if (OI.Rec == Leaf)
3519 return true;
3520
3521 // Allow direct value types to be used in instruction set patterns.
3522 // The type will be checked later.
3523 if (Leaf->isSubClassOf("ValueType"))
3524 return true;
3525
3526 // Patterns can also be ComplexPattern instances.
3527 if (Leaf->isSubClassOf("ComplexPattern"))
3528 return true;
3529
3530 return false;
3531}
3532
3533void CodeGenDAGPatterns::parseInstructionPattern(
3534 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3535
3536 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!")((!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"
) ? static_cast<void> (0) : __assert_fail ("!DAGInsts.count(CGI.TheDef) && \"Instruction already parsed!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3536, __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
'?' condition is true
3537
3538 // Parse the instruction.
3539 TreePattern I(CGI.TheDef, Pat, true, *this);
3540
3541 // InstInputs - Keep track of all of the inputs of the instruction, along
3542 // with the record they are declared as.
3543 std::map<std::string, TreePatternNodePtr> InstInputs;
3544
3545 // InstResults - Keep track of all the virtual registers that are 'set'
3546 // in the instruction, including what reg class they are.
3547 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3548 InstResults;
3549
3550 std::vector<Record*> InstImpResults;
3551
3552 // Verify that the top-level forms in the instruction are of void type, and
3553 // fill in the InstResults map.
3554 SmallString<32> TypesString;
3555 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3
Assuming 'j' is not equal to 'e'
4
Loop condition is true. Entering loop body
3556 TypesString.clear();
3557 TreePatternNodePtr Pat = I.getTree(j);
3558 if (Pat->getNumTypes() != 0) {
5
Assuming the condition is false
6
Taking false branch
3559 raw_svector_ostream OS(TypesString);
3560 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3561 if (k > 0)
3562 OS << ", ";
3563 Pat->getExtType(k).writeToStream(OS);
3564 }
3565 I.error("Top-level forms in instruction pattern should have"
3566 " void types, has types " +
3567 OS.str());
3568 }
3569
3570 // Find inputs and outputs, and verify the structure of the uses/defs.
3571 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
7
Calling 'CodeGenDAGPatterns::FindPatternInputsAndOutputs'
3572 InstImpResults);
3573 }
3574
3575 // Now that we have inputs and outputs of the pattern, inspect the operands
3576 // list for the instruction. This determines the order that operands are
3577 // added to the machine instruction the node corresponds to.
3578 unsigned NumResults = InstResults.size();
3579
3580 // Parse the operands list from the (ops) list, validating it.
3581 assert(I.getArgList().empty() && "Args list should still be empty here!")((I.getArgList().empty() && "Args list should still be empty here!"
) ? static_cast<void> (0) : __assert_fail ("I.getArgList().empty() && \"Args list should still be empty here!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3581, __PRETTY_FUNCTION__))
;
3582
3583 // Check that all of the results occur first in the list.
3584 std::vector<Record*> Results;
3585 std::vector<unsigned> ResultIndices;
3586 SmallVector<TreePatternNodePtr, 2> ResNodes;
3587 for (unsigned i = 0; i != NumResults; ++i) {
3588 if (i == CGI.Operands.size()) {
3589 const std::string &OpName =
3590 std::find_if(InstResults.begin(), InstResults.end(),
3591 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3592 return P.second;
3593 })
3594 ->first;
3595
3596 I.error("'" + OpName + "' set but does not appear in operand list!");
3597 }
3598
3599 const std::string &OpName = CGI.Operands[i].Name;
3600
3601 // Check that it exists in InstResults.
3602 auto InstResultIter = InstResults.find(OpName);
3603 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3604 I.error("Operand $" + OpName + " does not exist in operand list!");
3605
3606 TreePatternNodePtr RNode = InstResultIter->second;
3607 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3608 ResNodes.push_back(std::move(RNode));
3609 if (!R)
3610 I.error("Operand $" + OpName + " should be a set destination: all "
3611 "outputs must occur before inputs in operand list!");
3612
3613 if (!checkOperandClass(CGI.Operands[i], R))
3614 I.error("Operand $" + OpName + " class mismatch!");
3615
3616 // Remember the return type.
3617 Results.push_back(CGI.Operands[i].Rec);
3618
3619 // Remember the result index.
3620 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3621
3622 // Okay, this one checks out.
3623 InstResultIter->second = nullptr;
3624 }
3625
3626 // Loop over the inputs next.
3627 std::vector<TreePatternNodePtr> ResultNodeOperands;
3628 std::vector<Record*> Operands;
3629 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3630 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3631 const std::string &OpName = Op.Name;
3632 if (OpName.empty())
3633 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3634
3635 if (!InstInputs.count(OpName)) {
3636 // If this is an operand with a DefaultOps set filled in, we can ignore
3637 // this. When we codegen it, we will do so as always executed.
3638 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3639 // Does it have a non-empty DefaultOps field? If so, ignore this
3640 // operand.
3641 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3642 continue;
3643 }
3644 I.error("Operand $" + OpName +
3645 " does not appear in the instruction pattern");
3646 }
3647 TreePatternNodePtr InVal = InstInputs[OpName];
3648 InstInputs.erase(OpName); // It occurred, remove from map.
3649
3650 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3651 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3652 if (!checkOperandClass(Op, InRec))
3653 I.error("Operand $" + OpName + "'s register class disagrees"
3654 " between the operand and pattern");
3655 }
3656 Operands.push_back(Op.Rec);
3657
3658 // Construct the result for the dest-pattern operand list.
3659 TreePatternNodePtr OpNode = InVal->clone();
3660
3661 // No predicate is useful on the result.
3662 OpNode->clearPredicateCalls();
3663
3664 // Promote the xform function to be an explicit node if set.
3665 if (Record *Xform = OpNode->getTransformFn()) {
3666 OpNode->setTransformFn(nullptr);
3667 std::vector<TreePatternNodePtr> Children;
3668 Children.push_back(OpNode);
3669 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3670 OpNode->getNumTypes());
3671 }
3672
3673 ResultNodeOperands.push_back(std::move(OpNode));
3674 }
3675
3676 if (!InstInputs.empty())
3677 I.error("Input operand $" + InstInputs.begin()->first +
3678 " occurs in pattern but not in operands list!");
3679
3680 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3681 I.getRecord(), std::move(ResultNodeOperands),
3682 GetNumNodeResults(I.getRecord(), *this));
3683 // Copy fully inferred output node types to instruction result pattern.
3684 for (unsigned i = 0; i != NumResults; ++i) {
3685 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled")((ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"
) ? static_cast<void> (0) : __assert_fail ("ResNodes[i]->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3685, __PRETTY_FUNCTION__))
;
3686 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3687 ResultPattern->setResultIndex(i, ResultIndices[i]);
3688 }
3689
3690 // FIXME: Assume only the first tree is the pattern. The others are clobber
3691 // nodes.
3692 TreePatternNodePtr Pattern = I.getTree(0);
3693 TreePatternNodePtr SrcPattern;
3694 if (Pattern->getOperator()->getName() == "set") {
3695 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3696 } else{
3697 // Not a set (store or something?)
3698 SrcPattern = Pattern;
3699 }
3700
3701 // Create and insert the instruction.
3702 // FIXME: InstImpResults should not be part of DAGInstruction.
3703 Record *R = I.getRecord();
3704 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3705 std::forward_as_tuple(Results, Operands, InstImpResults,
3706 SrcPattern, ResultPattern));
3707
3708 LLVM_DEBUG(I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { I.dump(); } } while (false)
;
3709}
3710
3711/// ParseInstructions - Parse all of the instructions, inlining and resolving
3712/// any fragments involved. This populates the Instructions list with fully
3713/// resolved instructions.
3714void CodeGenDAGPatterns::ParseInstructions() {
3715 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3716
3717 for (Record *Instr : Instrs) {
3718 ListInit *LI = nullptr;
3719
3720 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3721 LI = Instr->getValueAsListInit("Pattern");
3722
3723 // If there is no pattern, only collect minimal information about the
3724 // instruction for its operand list. We have to assume that there is one
3725 // result, as we have no detailed info. A pattern which references the
3726 // null_frag operator is as-if no pattern were specified. Normally this
3727 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3728 // null_frag.
3729 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3730 std::vector<Record*> Results;
3731 std::vector<Record*> Operands;
3732
3733 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3734
3735 if (InstInfo.Operands.size() != 0) {
3736 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3737 Results.push_back(InstInfo.Operands[j].Rec);
3738
3739 // The rest are inputs.
3740 for (unsigned j = InstInfo.Operands.NumDefs,
3741 e = InstInfo.Operands.size(); j < e; ++j)
3742 Operands.push_back(InstInfo.Operands[j].Rec);
3743 }
3744
3745 // Create and insert the instruction.
3746 std::vector<Record*> ImpResults;
3747 Instructions.insert(std::make_pair(Instr,
3748 DAGInstruction(Results, Operands, ImpResults)));
3749 continue; // no pattern.
3750 }
3751
3752 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3753 parseInstructionPattern(CGI, LI, Instructions);
3754 }
3755
3756 // If we can, convert the instructions to be patterns that are matched!
3757 for (auto &Entry : Instructions) {
3758 Record *Instr = Entry.first;
3759 DAGInstruction &TheInst = Entry.second;
3760 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3761 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3762
3763 if (SrcPattern && ResultPattern) {
3764 TreePattern Pattern(Instr, SrcPattern, true, *this);
3765 TreePattern Result(Instr, ResultPattern, false, *this);
3766 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3767 }
3768 }
3769}
3770
3771typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3772
3773static void FindNames(TreePatternNode *P,
3774 std::map<std::string, NameRecord> &Names,
3775 TreePattern *PatternTop) {
3776 if (!P->getName().empty()) {
3777 NameRecord &Rec = Names[P->getName()];
3778 // If this is the first instance of the name, remember the node.
3779 if (Rec.second++ == 0)
3780 Rec.first = P;
3781 else if (Rec.first->getExtTypes() != P->getExtTypes())
3782 PatternTop->error("repetition of value: $" + P->getName() +
3783 " where different uses have different types!");
3784 }
3785
3786 if (!P->isLeaf()) {
3787 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3788 FindNames(P->getChild(i), Names, PatternTop);
3789 }
3790}
3791
3792std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3793 std::vector<Predicate> Preds;
3794 for (Init *I : L->getValues()) {
3795 if (DefInit *Pred = dyn_cast<DefInit>(I))
3796 Preds.push_back(Pred->getDef());
3797 else
3798 llvm_unreachable("Non-def on the list")::llvm::llvm_unreachable_internal("Non-def on the list", "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3798)
;
3799 }
3800
3801 // Sort so that different orders get canonicalized to the same string.
3802 llvm::sort(Preds);
3803 return Preds;
3804}
3805
3806void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3807 PatternToMatch &&PTM) {
3808 // Do some sanity checking on the pattern we're about to match.
3809 std::string Reason;
3810 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3811 PrintWarning(Pattern->getRecord()->getLoc(),
3812 Twine("Pattern can never match: ") + Reason);
3813 return;
3814 }
3815
3816 // If the source pattern's root is a complex pattern, that complex pattern
3817 // must specify the nodes it can potentially match.
3818 if (const ComplexPattern *CP =
3819 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3820 if (CP->getRootNodes().empty())
3821 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3822 " could match");
3823
3824
3825 // Find all of the named values in the input and output, ensure they have the
3826 // same type.
3827 std::map<std::string, NameRecord> SrcNames, DstNames;
3828 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3829 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3830
3831 // Scan all of the named values in the destination pattern, rejecting them if
3832 // they don't exist in the input pattern.
3833 for (const auto &Entry : DstNames) {
3834 if (SrcNames[Entry.first].first == nullptr)
3835 Pattern->error("Pattern has input without matching name in output: $" +
3836 Entry.first);
3837 }
3838
3839 // Scan all of the named values in the source pattern, rejecting them if the
3840 // name isn't used in the dest, and isn't used to tie two values together.
3841 for (const auto &Entry : SrcNames)
3842 if (DstNames[Entry.first].first == nullptr &&
3843 SrcNames[Entry.first].second == 1)
3844 Pattern->error("Pattern has dead named input: $" + Entry.first);
3845
3846 PatternsToMatch.push_back(PTM);
3847}
3848
3849void CodeGenDAGPatterns::InferInstructionFlags() {
3850 ArrayRef<const CodeGenInstruction*> Instructions =
3851 Target.getInstructionsByEnumValue();
3852
3853 unsigned Errors = 0;
3854
3855 // Try to infer flags from all patterns in PatternToMatch. These include
3856 // both the primary instruction patterns (which always come first) and
3857 // patterns defined outside the instruction.
3858 for (const PatternToMatch &PTM : ptms()) {
3859 // We can only infer from single-instruction patterns, otherwise we won't
3860 // know which instruction should get the flags.
3861 SmallVector<Record*, 8> PatInstrs;
3862 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3863 if (PatInstrs.size() != 1)
3864 continue;
3865
3866 // Get the single instruction.
3867 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3868
3869 // Only infer properties from the first pattern. We'll verify the others.
3870 if (InstInfo.InferredFrom)
3871 continue;
3872
3873 InstAnalyzer PatInfo(*this);
3874 PatInfo.Analyze(PTM);
3875 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3876 }
3877
3878 if (Errors)
3879 PrintFatalError("pattern conflicts");
3880
3881 // If requested by the target, guess any undefined properties.
3882 if (Target.guessInstructionProperties()) {
3883 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3884 CodeGenInstruction *InstInfo =
3885 const_cast<CodeGenInstruction *>(Instructions[i]);
3886 if (InstInfo->InferredFrom)
3887 continue;
3888 // The mayLoad and mayStore flags default to false.
3889 // Conservatively assume hasSideEffects if it wasn't explicit.
3890 if (InstInfo->hasSideEffects_Unset)
3891 InstInfo->hasSideEffects = true;
3892 }
3893 return;
3894 }
3895
3896 // Complain about any flags that are still undefined.
3897 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3898 CodeGenInstruction *InstInfo =
3899 const_cast<CodeGenInstruction *>(Instructions[i]);
3900 if (InstInfo->InferredFrom)
3901 continue;
3902 if (InstInfo->hasSideEffects_Unset)
3903 PrintError(InstInfo->TheDef->getLoc(),
3904 "Can't infer hasSideEffects from patterns");
3905 if (InstInfo->mayStore_Unset)
3906 PrintError(InstInfo->TheDef->getLoc(),
3907 "Can't infer mayStore from patterns");
3908 if (InstInfo->mayLoad_Unset)
3909 PrintError(InstInfo->TheDef->getLoc(),
3910 "Can't infer mayLoad from patterns");
3911 }
3912}
3913
3914
3915/// Verify instruction flags against pattern node properties.
3916void CodeGenDAGPatterns::VerifyInstructionFlags() {
3917 unsigned Errors = 0;
3918 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3919 const PatternToMatch &PTM = *I;
3920 SmallVector<Record*, 8> Instrs;
3921 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3922 if (Instrs.empty())
3923 continue;
3924
3925 // Count the number of instructions with each flag set.
3926 unsigned NumSideEffects = 0;
3927 unsigned NumStores = 0;
3928 unsigned NumLoads = 0;
3929 for (const Record *Instr : Instrs) {
3930 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3931 NumSideEffects += InstInfo.hasSideEffects;
3932 NumStores += InstInfo.mayStore;
3933 NumLoads += InstInfo.mayLoad;
3934 }
3935
3936 // Analyze the source pattern.
3937 InstAnalyzer PatInfo(*this);
3938 PatInfo.Analyze(PTM);
3939
3940 // Collect error messages.
3941 SmallVector<std::string, 4> Msgs;
3942
3943 // Check for missing flags in the output.
3944 // Permit extra flags for now at least.
3945 if (PatInfo.hasSideEffects && !NumSideEffects)
3946 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3947
3948 // Don't verify store flags on instructions with side effects. At least for
3949 // intrinsics, side effects implies mayStore.
3950 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3951 Msgs.push_back("pattern may store, but mayStore isn't set");
3952
3953 // Similarly, mayStore implies mayLoad on intrinsics.
3954 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3955 Msgs.push_back("pattern may load, but mayLoad isn't set");
3956
3957 // Print error messages.
3958 if (Msgs.empty())
3959 continue;
3960 ++Errors;
3961
3962 for (const std::string &Msg : Msgs)
3963 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3964 (Instrs.size() == 1 ?
3965 "instruction" : "output instructions"));
3966 // Provide the location of the relevant instruction definitions.
3967 for (const Record *Instr : Instrs) {
3968 if (Instr != PTM.getSrcRecord())
3969 PrintError(Instr->getLoc(), "defined here");
3970 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3971 if (InstInfo.InferredFrom &&
3972 InstInfo.InferredFrom != InstInfo.TheDef &&
3973 InstInfo.InferredFrom != PTM.getSrcRecord())
3974 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3975 }
3976 }
3977 if (Errors)
3978 PrintFatalError("Errors in DAG patterns");
3979}
3980
3981/// Given a pattern result with an unresolved type, see if we can find one
3982/// instruction with an unresolved result type. Force this result type to an
3983/// arbitrary element if it's possible types to converge results.
3984static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3985 if (N->isLeaf())
3986 return false;
3987
3988 // Analyze children.
3989 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3990 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3991 return true;
3992
3993 if (!N->getOperator()->isSubClassOf("Instruction"))
3994 return false;
3995
3996 // If this type is already concrete or completely unknown we can't do
3997 // anything.
3998 TypeInfer &TI = TP.getInfer();
3999 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4000 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4001 continue;
4002
4003 // Otherwise, force its type to an arbitrary choice.
4004 if (TI.forceArbitrary(N->getExtType(i)))
4005 return true;
4006 }
4007
4008 return false;
4009}
4010
4011// Promote xform function to be an explicit node wherever set.
4012static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4013 if (Record *Xform = N->getTransformFn()) {
4014 N->setTransformFn(nullptr);
4015 std::vector<TreePatternNodePtr> Children;
4016 Children.push_back(PromoteXForms(N));
4017 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4018 N->getNumTypes());
4019 }
4020
4021 if (!N->isLeaf())
4022 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4023 TreePatternNodePtr Child = N->getChildShared(i);
4024 N->setChild(i, PromoteXForms(Child));
4025 }
4026 return N;
4027}
4028
4029void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4030 TreePattern &Pattern, TreePattern &Result,
4031 const std::vector<Record *> &InstImpResults) {
4032
4033 // Inline pattern fragments and expand multiple alternatives.
4034 Pattern.InlinePatternFragments();
4035 Result.InlinePatternFragments();
4036
4037 if (Result.getNumTrees() != 1)
4038 Result.error("Cannot use multi-alternative fragments in result pattern!");
4039
4040 // Infer types.
4041 bool IterateInference;
4042 bool InferredAllPatternTypes, InferredAllResultTypes;
4043 do {
4044 // Infer as many types as possible. If we cannot infer all of them, we
4045 // can never do anything with this pattern: report it to the user.
4046 InferredAllPatternTypes =
4047 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4048
4049 // Infer as many types as possible. If we cannot infer all of them, we
4050 // can never do anything with this pattern: report it to the user.
4051 InferredAllResultTypes =
4052 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4053
4054 IterateInference = false;
4055
4056 // Apply the type of the result to the source pattern. This helps us
4057 // resolve cases where the input type is known to be a pointer type (which
4058 // is considered resolved), but the result knows it needs to be 32- or
4059 // 64-bits. Infer the other way for good measure.
4060 for (auto T : Pattern.getTrees())
4061 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4062 T->getNumTypes());
4063 i != e; ++i) {
4064 IterateInference |= T->UpdateNodeType(
4065 i, Result.getOnlyTree()->getExtType(i), Result);
4066 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4067 i, T->getExtType(i), Result);
4068 }
4069
4070 // If our iteration has converged and the input pattern's types are fully
4071 // resolved but the result pattern is not fully resolved, we may have a
4072 // situation where we have two instructions in the result pattern and
4073 // the instructions require a common register class, but don't care about
4074 // what actual MVT is used. This is actually a bug in our modelling:
4075 // output patterns should have register classes, not MVTs.
4076 //
4077 // In any case, to handle this, we just go through and disambiguate some
4078 // arbitrary types to the result pattern's nodes.
4079 if (!IterateInference && InferredAllPatternTypes &&
4080 !InferredAllResultTypes)
4081 IterateInference =
4082 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4083 } while (IterateInference);
4084
4085 // Verify that we inferred enough types that we can do something with the
4086 // pattern and result. If these fire the user has to add type casts.
4087 if (!InferredAllPatternTypes)
4088 Pattern.error("Could not infer all types in pattern!");
4089 if (!InferredAllResultTypes) {
4090 Pattern.dump();
4091 Result.error("Could not infer all types in pattern result!");
4092 }
4093
4094 // Promote xform function to be an explicit node wherever set.
4095 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4096
4097 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4098 Temp.InferAllTypes();
4099
4100 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4101 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4102
4103 if (PatternRewriter)
4104 PatternRewriter(&Pattern);
4105
4106 // A pattern may end up with an "impossible" type, i.e. a situation
4107 // where all types have been eliminated for some node in this pattern.
4108 // This could occur for intrinsics that only make sense for a specific
4109 // value type, and use a specific register class. If, for some mode,
4110 // that register class does not accept that type, the type inference
4111 // will lead to a contradiction, which is not an error however, but
4112 // a sign that this pattern will simply never match.
4113 if (Temp.getOnlyTree()->hasPossibleType())
4114 for (auto T : Pattern.getTrees())
4115 if (T->hasPossibleType())
4116 AddPatternToMatch(&Pattern,
4117 PatternToMatch(TheDef, makePredList(Preds),
4118 T, Temp.getOnlyTree(),
4119 InstImpResults, Complexity,
4120 TheDef->getID()));
4121}
4122
4123void CodeGenDAGPatterns::ParsePatterns() {
4124 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4125
4126 for (Record *CurPattern : Patterns) {
4127 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4128
4129 // If the pattern references the null_frag, there's nothing to do.
4130 if (hasNullFragReference(Tree))
4131 continue;
4132
4133 TreePattern Pattern(CurPattern, Tree, true, *this);
4134
4135 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4136 if (LI->empty()) continue; // no pattern.
4137
4138 // Parse the instruction.
4139 TreePattern Result(CurPattern, LI, false, *this);
4140
4141 if (Result.getNumTrees() != 1)
4142 Result.error("Cannot handle instructions producing instructions "
4143 "with temporaries yet!");
4144
4145 // Validate that the input pattern is correct.
4146 std::map<std::string, TreePatternNodePtr> InstInputs;
4147 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4148 InstResults;
4149 std::vector<Record*> InstImpResults;
4150 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4151 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4152 InstResults, InstImpResults);
4153
4154 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4155 }
4156}
4157
4158static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4159 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4160 for (const auto &I : VTS)
4161 Modes.insert(I.first);
4162
4163 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4164 collectModes(Modes, N->getChild(i));
4165}
4166
4167void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4168 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4169 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4170 std::vector<PatternToMatch> Copy = PatternsToMatch;
4171 PatternsToMatch.clear();
4172
4173 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4174 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4175 TreePatternNodePtr NewDst = P.DstPattern->clone();
4176 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4177 return;
4178 }
4179
4180 std::vector<Predicate> Preds = P.Predicates;
4181 const std::vector<Predicate> &MC = ModeChecks[Mode];
4182 Preds.insert(Preds.end(), MC.begin(), MC.end());
4183 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4184 std::move(NewDst), P.getDstRegs(),
4185 P.getAddedComplexity(), Record::getNewUID(),
4186 Mode);
4187 };
4188
4189 for (PatternToMatch &P : Copy) {
4190 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4191 if (P.SrcPattern->hasProperTypeByHwMode())
4192 SrcP = P.SrcPattern;
4193 if (P.DstPattern->hasProperTypeByHwMode())
4194 DstP = P.DstPattern;
4195 if (!SrcP && !DstP) {
4196 PatternsToMatch.push_back(P);
4197 continue;
4198 }
4199
4200 std::set<unsigned> Modes;
4201 if (SrcP)
4202 collectModes(Modes, SrcP.get());
4203 if (DstP)
4204 collectModes(Modes, DstP.get());
4205
4206 // The predicate for the default mode needs to be constructed for each
4207 // pattern separately.
4208 // Since not all modes must be present in each pattern, if a mode m is
4209 // absent, then there is no point in constructing a check for m. If such
4210 // a check was created, it would be equivalent to checking the default
4211 // mode, except not all modes' predicates would be a part of the checking
4212 // code. The subsequently generated check for the default mode would then
4213 // have the exact same patterns, but a different predicate code. To avoid
4214 // duplicated patterns with different predicate checks, construct the
4215 // default check as a negation of all predicates that are actually present
4216 // in the source/destination patterns.
4217 std::vector<Predicate> DefaultPred;
4218
4219 for (unsigned M : Modes) {
4220 if (M == DefaultMode)
4221 continue;
4222 if (ModeChecks.find(M) != ModeChecks.end())
4223 continue;
4224
4225 // Fill the map entry for this mode.
4226 const HwMode &HM = CGH.getMode(M);
4227 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4228
4229 // Add negations of the HM's predicates to the default predicate.
4230 DefaultPred.emplace_back(Predicate(HM.Features, false));
4231 }
4232
4233 for (unsigned M : Modes) {
4234 if (M == DefaultMode)
4235 continue;
4236 AppendPattern(P, M);
4237 }
4238
4239 bool HasDefault = Modes.count(DefaultMode);
4240 if (HasDefault)
4241 AppendPattern(P, DefaultMode);
4242 }
4243}
4244
4245/// Dependent variable map for CodeGenDAGPattern variant generation
4246typedef StringMap<int> DepVarMap;
4247
4248static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4249 if (N->isLeaf()) {
4250 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4251 DepMap[N->getName()]++;
4252 } else {
4253 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4254 FindDepVarsOf(N->getChild(i), DepMap);
4255 }
4256}
4257
4258/// Find dependent variables within child patterns
4259static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4260 DepVarMap depcounts;
4261 FindDepVarsOf(N, depcounts);
4262 for (const auto &Pair : depcounts) {
4263 if (Pair.getValue() > 1)
4264 DepVars.insert(Pair.getKey());
4265 }
4266}
4267
4268#ifndef NDEBUG
4269/// Dump the dependent variable set:
4270static void DumpDepVars(MultipleUseVarSet &DepVars) {
4271 if (DepVars.empty()) {
4272 LLVM_DEBUG(errs() << "<empty set>")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "<empty set>"; } } while
(false)
;
4273 } else {
4274 LLVM_DEBUG(errs() << "[ ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "[ "; } } while (false)
;
4275 for (const auto &DepVar : DepVars) {
4276 LLVM_DEBUG(errs() << DepVar.getKey() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << DepVar.getKey() << " "
; } } while (false)
;
4277 }
4278 LLVM_DEBUG(errs() << "]")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "]"; } } while (false)
;
4279 }
4280}
4281#endif
4282
4283
4284/// CombineChildVariants - Given a bunch of permutations of each child of the
4285/// 'operator' node, put them together in all possible ways.
4286static void CombineChildVariants(
4287 TreePatternNodePtr Orig,
4288 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4289 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4290 const MultipleUseVarSet &DepVars) {
4291 // Make sure that each operand has at least one variant to choose from.
4292 for (const auto &Variants : ChildVariants)
4293 if (Variants.empty())
4294 return;
4295
4296 // The end result is an all-pairs construction of the resultant pattern.
4297 std::vector<unsigned> Idxs;
4298 Idxs.resize(ChildVariants.size());
4299 bool NotDone;
4300 do {
4301#ifndef NDEBUG
4302 LLVM_DEBUG(if (!Idxs.empty()) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4303 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4304 for (unsigned Idx : Idxs) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4305 errs() << Idx << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4306 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4307 errs() << "]\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4308 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
;
4309#endif
4310 // Create the variant and add it to the output list.
4311 std::vector<TreePatternNodePtr> NewChildren;
4312 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4313 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4314 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4315 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4316
4317 // Copy over properties.
4318 R->setName(Orig->getName());
4319 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4320 R->setPredicateCalls(Orig->getPredicateCalls());
4321 R->setTransformFn(Orig->getTransformFn());
4322 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4323 R->setType(i, Orig->getExtType(i));
4324
4325 // If this pattern cannot match, do not include it as a variant.
4326 std::string ErrString;
4327 // Scan to see if this pattern has already been emitted. We can get
4328 // duplication due to things like commuting:
4329 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4330 // which are the same pattern. Ignore the dups.
4331 if (R->canPatternMatch(ErrString, CDP) &&
4332 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4333 return R->isIsomorphicTo(Variant.get(), DepVars);
4334 }))
4335 OutVariants.push_back(R);
4336
4337 // Increment indices to the next permutation by incrementing the
4338 // indices from last index backward, e.g., generate the sequence
4339 // [0, 0], [0, 1], [1, 0], [1, 1].
4340 int IdxsIdx;
4341 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4342 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4343 Idxs[IdxsIdx] = 0;
4344 else
4345 break;
4346 }
4347 NotDone = (IdxsIdx >= 0);
4348 } while (NotDone);
4349}
4350
4351/// CombineChildVariants - A helper function for binary operators.
4352///
4353static void CombineChildVariants(TreePatternNodePtr Orig,
4354 const std::vector<TreePatternNodePtr> &LHS,
4355 const std::vector<TreePatternNodePtr> &RHS,
4356 std::vector<TreePatternNodePtr> &OutVariants,
4357 CodeGenDAGPatterns &CDP,
4358 const MultipleUseVarSet &DepVars) {
4359 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4360 ChildVariants.push_back(LHS);
4361 ChildVariants.push_back(RHS);
4362 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4363}
4364
4365static void
4366GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4367 std::vector<TreePatternNodePtr> &Children) {
4368 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!")((N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"
) ? static_cast<void> (0) : __assert_fail ("N->getNumChildren()==2 &&\"Associative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4368, __PRETTY_FUNCTION__))
;
4369 Record *Operator = N->getOperator();
4370
4371 // Only permit raw nodes.
4372 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4373 N->getTransformFn()) {
4374 Children.push_back(N);
4375 return;
4376 }
4377
4378 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4379 Children.push_back(N->getChildShared(0));
4380 else
4381 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4382
4383 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4384 Children.push_back(N->getChildShared(1));
4385 else
4386 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4387}
4388
4389/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4390/// the (potentially recursive) pattern by using algebraic laws.
4391///
4392static void GenerateVariantsOf(TreePatternNodePtr N,
4393 std::vector<TreePatternNodePtr> &OutVariants,
4394 CodeGenDAGPatterns &CDP,
4395 const MultipleUseVarSet &DepVars) {
4396 // We cannot permute leaves or ComplexPattern uses.
4397 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4398 OutVariants.push_back(N);
4399 return;
4400 }
4401
4402 // Look up interesting info about the node.
4403 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4404
4405 // If this node is associative, re-associate.
4406 if (NodeInfo.hasProperty(SDNPAssociative)) {
4407 // Re-associate by pulling together all of the linked operators
4408 std::vector<TreePatternNodePtr> MaximalChildren;
4409 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4410
4411 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4412 // permutations.
4413 if (MaximalChildren.size() == 3) {
4414 // Find the variants of all of our maximal children.
4415 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4416 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4417 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4418 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4419
4420 // There are only two ways we can permute the tree:
4421 // (A op B) op C and A op (B op C)
4422 // Within these forms, we can also permute A/B/C.
4423
4424 // Generate legal pair permutations of A/B/C.
4425 std::vector<TreePatternNodePtr> ABVariants;
4426 std::vector<TreePatternNodePtr> BAVariants;
4427 std::vector<TreePatternNodePtr> ACVariants;
4428 std::vector<TreePatternNodePtr> CAVariants;
4429 std::vector<TreePatternNodePtr> BCVariants;
4430 std::vector<TreePatternNodePtr> CBVariants;
4431 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4432 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4433 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4434 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4435 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4436 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4437
4438 // Combine those into the result: (x op x) op x
4439 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4440 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4441 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4442 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4443 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4444 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4445
4446 // Combine those into the result: x op (x op x)
4447 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4448 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4449 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4450 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4451 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4452 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4453 return;
4454 }
4455 }
4456
4457 // Compute permutations of all children.
4458 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4459 ChildVariants.resize(N->getNumChildren());
4460 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4461 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4462
4463 // Build all permutations based on how the children were formed.
4464 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4465
4466 // If this node is commutative, consider the commuted order.
4467 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4468 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4469 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&(((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!") ? static_cast<
void> (0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4470, __PRETTY_FUNCTION__))
4470 "Commutative but doesn't have 2 children!")(((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!") ? static_cast<
void> (0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4470, __PRETTY_FUNCTION__))
;
4471 // Don't count children which are actually register references.
4472 unsigned NC = 0;
4473 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4474 TreePatternNode *Child = N->getChild(i);
4475 if (Child->isLeaf())
4476 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4477 Record *RR = DI->getDef();
4478 if (RR->isSubClassOf("Register"))
4479 continue;
4480 }
4481 NC++;
4482 }
4483 // Consider the commuted order.
4484 if (isCommIntrinsic) {
4485 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4486 // operands are the commutative operands, and there might be more operands
4487 // after those.
4488 assert(NC >= 3 &&((NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? static_cast<void> (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4489, __PRETTY_FUNCTION__))
4489 "Commutative intrinsic should have at least 3 children!")((NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? static_cast<void> (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4489, __PRETTY_FUNCTION__))
;
4490 std::vector<std::vector<TreePatternNodePtr>> Variants;
4491 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4492 Variants.push_back(std::move(ChildVariants[2]));
4493 Variants.push_back(std::move(ChildVariants[1]));
4494 for (unsigned i = 3; i != NC; ++i)
4495 Variants.push_back(std::move(ChildVariants[i]));
4496 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4497 } else if (NC == N->getNumChildren()) {
4498 std::vector<std::vector<TreePatternNodePtr>> Variants;
4499 Variants.push_back(std::move(ChildVariants[1]));
4500 Variants.push_back(std::move(ChildVariants[0]));
4501 for (unsigned i = 2; i != NC; ++i)
4502 Variants.push_back(std::move(ChildVariants[i]));
4503 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4504 }
4505 }
4506}
4507
4508
4509// GenerateVariants - Generate variants. For example, commutative patterns can
4510// match multiple ways. Add them to PatternsToMatch as well.
4511void CodeGenDAGPatterns::GenerateVariants() {
4512 LLVM_DEBUG(errs() << "Generating instruction variants.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Generating instruction variants.\n"
; } } while (false)
;
4513
4514 // Loop over all of the patterns we've collected, checking to see if we can
4515 // generate variants of the instruction, through the exploitation of
4516 // identities. This permits the target to provide aggressive matching without
4517 // the .td file having to contain tons of variants of instructions.
4518 //
4519 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4520 // intentionally do not reconsider these. Any variants of added patterns have
4521 // already been added.
4522 //
4523 const unsigned NumOriginalPatterns = PatternsToMatch.size();
4524 BitVector MatchedPatterns(NumOriginalPatterns);
4525 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4526 BitVector(NumOriginalPatterns));
4527
4528 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4529 DepsAndVariants;
4530 std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4531
4532 // Collect patterns with more than one variant.
4533 for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4534 MultipleUseVarSet DepVars;
4535 std::vector<TreePatternNodePtr> Variants;
4536 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4537 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Dependent/multiply used variables: "
; } } while (false)
;
4538 LLVM_DEBUG(DumpDepVars(DepVars))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { DumpDepVars(DepVars); } } while (false)
;
4539 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4540 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4541 *this, DepVars);
4542
4543 assert(!Variants.empty() && "Must create at least original variant!")((!Variants.empty() && "Must create at least original variant!"
) ? static_cast<void> (0) : __assert_fail ("!Variants.empty() && \"Must create at least original variant!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4543, __PRETTY_FUNCTION__))
;
4544 if (Variants.size() == 1) // No additional variants for this pattern.
4545 continue;
4546
4547 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
4548 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
;
4549
4550 PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4551
4552 // Cache matching predicates.
4553 if (MatchedPatterns[i])
4554 continue;
4555
4556 const std::vector<Predicate> &Predicates =
4557 PatternsToMatch[i].getPredicates();
4558
4559 BitVector &Matches = MatchedPredicates[i];
4560 MatchedPatterns.set(i);
4561 Matches.set(i);
4562
4563 // Don't test patterns that have already been cached - it won't match.
4564 for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4565 if (!MatchedPatterns[p])
4566 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4567
4568 // Copy this to all the matching patterns.
4569 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4570 if (p != (int)i) {
4571 MatchedPatterns.set(p);
4572 MatchedPredicates[p] = Matches;
4573 }
4574 }
4575
4576 for (auto it : PatternsWithVariants) {
4577 unsigned i = it.first;
4578 const MultipleUseVarSet &DepVars = it.second.first;
4579 const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4580
4581 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4582 TreePatternNodePtr Variant = Variants[v];
4583 BitVector &Matches = MatchedPredicates[i];
4584
4585 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
4586 errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
;
4587
4588 // Scan to see if an instruction or explicit pattern already matches this.
4589 bool AlreadyExists = false;
4590 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4591 // Skip if the top level predicates do not match.
4592 if (!Matches[p])
4593 continue;
4594 // Check to see if this variant already exists.
4595 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4596 DepVars)) {
4597 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " *** ALREADY EXISTS, ignoring variant.\n"
; } } while (false)
;
4598 AlreadyExists = true;
4599 break;
4600 }
4601 }
4602 // If we already have it, ignore the variant.
4603 if (AlreadyExists) continue;
4604
4605 // Otherwise, add it to the list of patterns we have.
4606 PatternsToMatch.push_back(PatternToMatch(
4607 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4608 Variant, PatternsToMatch[i].getDstPatternShared(),
4609 PatternsToMatch[i].getDstRegs(),
4610 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4611 MatchedPredicates.push_back(Matches);
4612
4613 // Add a new match the same as this pattern.
4614 for (auto &P : MatchedPredicates)
4615 P.push_back(P[i]);
4616 }
4617
4618 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4619 }
4620}