Bug Summary

File:llvm/utils/TableGen/CodeGenDAGPatterns.cpp
Warning:line 2789, column 38
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenDAGPatterns.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/utils/TableGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TypeSize.h"
27#include "llvm/TableGen/Error.h"
28#include "llvm/TableGen/Record.h"
29#include <algorithm>
30#include <cstdio>
31#include <iterator>
32#include <set>
33using namespace llvm;
34
35#define DEBUG_TYPE"dag-patterns" "dag-patterns"
36
37static inline bool isIntegerOrPtr(MVT VT) {
38 return VT.isInteger() || VT == MVT::iPTR;
39}
40static inline bool isFloatingPoint(MVT VT) {
41 return VT.isFloatingPoint();
42}
43static inline bool isVector(MVT VT) {
44 return VT.isVector();
45}
46static inline bool isScalar(MVT VT) {
47 return !VT.isVector();
48}
49
50template <typename Predicate>
51static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52 bool Erased = false;
53 // It is ok to iterate over MachineValueTypeSet and remove elements from it
54 // at the same time.
55 for (MVT T : S) {
56 if (!P(T))
57 continue;
58 Erased = true;
59 S.erase(T);
60 }
61 return Erased;
62}
63
64// --- TypeSetByHwMode
65
66// This is a parameterized type-set class. For each mode there is a list
67// of types that are currently possible for a given tree node. Type
68// inference will apply to each mode separately.
69
70TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71 for (const ValueTypeByHwMode &VVT : VTList) {
72 insert(VVT);
73 AddrSpaces.push_back(VVT.PtrAddrSpace);
74 }
75}
76
77bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78 for (const auto &I : *this) {
79 if (I.second.size() > 1)
80 return false;
81 if (!AllowEmpty && I.second.empty())
82 return false;
83 }
84 return true;
85}
86
87ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88 assert(isValueTypeByHwMode(true) &&((isValueTypeByHwMode(true) && "The type set has multiple types for at least one HW mode"
) ? static_cast<void> (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 89, __PRETTY_FUNCTION__))
89 "The type set has multiple types for at least one HW mode")((isValueTypeByHwMode(true) && "The type set has multiple types for at least one HW mode"
) ? static_cast<void> (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 89, __PRETTY_FUNCTION__))
;
90 ValueTypeByHwMode VVT;
91 auto ASI = AddrSpaces.begin();
92
93 for (const auto &I : *this) {
94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95 VVT.getOrCreateTypeForMode(I.first, T);
96 if (ASI != AddrSpaces.end())
97 VVT.PtrAddrSpace = *ASI++;
98 }
99 return VVT;
100}
101
102bool TypeSetByHwMode::isPossible() const {
103 for (const auto &I : *this)
104 if (!I.second.empty())
105 return true;
106 return false;
107}
108
109bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110 bool Changed = false;
111 bool ContainsDefault = false;
112 MVT DT = MVT::Other;
113
114 SmallDenseSet<unsigned, 4> Modes;
115 for (const auto &P : VVT) {
116 unsigned M = P.first;
117 Modes.insert(M);
118 // Make sure there exists a set for each specific mode from VVT.
119 Changed |= getOrCreate(M).insert(P.second).second;
120 // Cache VVT's default mode.
121 if (DefaultMode == M) {
122 ContainsDefault = true;
123 DT = P.second;
124 }
125 }
126
127 // If VVT has a default mode, add the corresponding type to all
128 // modes in "this" that do not exist in VVT.
129 if (ContainsDefault)
130 for (auto &I : *this)
131 if (!Modes.count(I.first))
132 Changed |= I.second.insert(DT).second;
133
134 return Changed;
135}
136
137// Constrain the type set to be the intersection with VTS.
138bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
139 bool Changed = false;
140 if (hasDefault()) {
141 for (const auto &I : VTS) {
142 unsigned M = I.first;
143 if (M == DefaultMode || hasMode(M))
144 continue;
145 Map.insert({M, Map.at(DefaultMode)});
146 Changed = true;
147 }
148 }
149
150 for (auto &I : *this) {
151 unsigned M = I.first;
152 SetType &S = I.second;
153 if (VTS.hasMode(M) || VTS.hasDefault()) {
154 Changed |= intersect(I.second, VTS.get(M));
155 } else if (!S.empty()) {
156 S.clear();
157 Changed = true;
158 }
159 }
160 return Changed;
161}
162
163template <typename Predicate>
164bool TypeSetByHwMode::constrain(Predicate P) {
165 bool Changed = false;
166 for (auto &I : *this)
167 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
168 return Changed;
169}
170
171template <typename Predicate>
172bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
173 assert(empty())((empty()) ? static_cast<void> (0) : __assert_fail ("empty()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 173, __PRETTY_FUNCTION__))
;
174 for (const auto &I : VTS) {
175 SetType &S = getOrCreate(I.first);
176 for (auto J : I.second)
177 if (P(J))
178 S.insert(J);
179 }
180 return !empty();
181}
182
183void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
184 SmallVector<unsigned, 4> Modes;
185 Modes.reserve(Map.size());
186
187 for (const auto &I : *this)
188 Modes.push_back(I.first);
189 if (Modes.empty()) {
190 OS << "{}";
191 return;
192 }
193 array_pod_sort(Modes.begin(), Modes.end());
194
195 OS << '{';
196 for (unsigned M : Modes) {
197 OS << ' ' << getModeName(M) << ':';
198 writeToStream(get(M), OS);
199 }
200 OS << " }";
201}
202
203void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
204 SmallVector<MVT, 4> Types(S.begin(), S.end());
205 array_pod_sort(Types.begin(), Types.end());
206
207 OS << '[';
208 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
209 OS << ValueTypeByHwMode::getMVTName(Types[i]);
210 if (i != e-1)
211 OS << ' ';
212 }
213 OS << ']';
214}
215
216bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217 // The isSimple call is much quicker than hasDefault - check this first.
218 bool IsSimple = isSimple();
219 bool VTSIsSimple = VTS.isSimple();
220 if (IsSimple && VTSIsSimple)
221 return *begin() == *VTS.begin();
222
223 // Speedup: We have a default if the set is simple.
224 bool HaveDefault = IsSimple || hasDefault();
225 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226 if (HaveDefault != VTSHaveDefault)
227 return false;
228
229 SmallDenseSet<unsigned, 4> Modes;
230 for (auto &I : *this)
231 Modes.insert(I.first);
232 for (const auto &I : VTS)
233 Modes.insert(I.first);
234
235 if (HaveDefault) {
236 // Both sets have default mode.
237 for (unsigned M : Modes) {
238 if (get(M) != VTS.get(M))
239 return false;
240 }
241 } else {
242 // Neither set has default mode.
243 for (unsigned M : Modes) {
244 // If there is no default mode, an empty set is equivalent to not having
245 // the corresponding mode.
246 bool NoModeThis = !hasMode(M) || get(M).empty();
247 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248 if (NoModeThis != NoModeVTS)
249 return false;
250 if (!NoModeThis)
251 if (get(M) != VTS.get(M))
252 return false;
253 }
254 }
255
256 return true;
257}
258
259namespace llvm {
260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
261 T.writeToStream(OS);
262 return OS;
263 }
264}
265
266LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
267void TypeSetByHwMode::dump() const {
268 dbgs() << *this << '\n';
269}
270
271bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
272 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
273 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274
275 if (OutP == InP)
276 return berase_if(Out, Int);
277
278 // Compute the intersection of scalars separately to account for only
279 // one set containing iPTR.
280 // The itersection of iPTR with a set of integer scalar types that does not
281 // include iPTR will result in the most specific scalar type:
282 // - iPTR is more specific than any set with two elements or more
283 // - iPTR is less specific than any single integer scalar type.
284 // For example
285 // { iPTR } * { i32 } -> { i32 }
286 // { iPTR } * { i32 i64 } -> { iPTR }
287 // and
288 // { iPTR i32 } * { i32 } -> { i32 }
289 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
290 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291
292 // Compute the difference between the two sets in such a way that the
293 // iPTR is in the set that is being subtracted. This is to see if there
294 // are any extra scalars in the set without iPTR that are not in the
295 // set containing iPTR. Then the iPTR could be considered a "wildcard"
296 // matching these scalars. If there is only one such scalar, it would
297 // replace the iPTR, if there are more, the iPTR would be retained.
298 SetType Diff;
299 if (InP) {
300 Diff = Out;
301 berase_if(Diff, [&In](MVT T) { return In.count(T); });
302 // Pre-remove these elements and rely only on InP/OutP to determine
303 // whether a change has been made.
304 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
305 } else {
306 Diff = In;
307 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
308 Out.erase(MVT::iPTR);
309 }
310
311 // The actual intersection.
312 bool Changed = berase_if(Out, Int);
313 unsigned NumD = Diff.size();
314 if (NumD == 0)
315 return Changed;
316
317 if (NumD == 1) {
318 Out.insert(*Diff.begin());
319 // This is a change only if Out was the one with iPTR (which is now
320 // being replaced).
321 Changed |= OutP;
322 } else {
323 // Multiple elements from Out are now replaced with iPTR.
324 Out.insert(MVT::iPTR);
325 Changed |= !OutP;
326 }
327 return Changed;
328}
329
330bool TypeSetByHwMode::validate() const {
331#ifndef NDEBUG
332 if (empty())
333 return true;
334 bool AllEmpty = true;
335 for (const auto &I : *this)
336 AllEmpty &= I.second.empty();
337 return !AllEmpty;
338#endif
339 return true;
340}
341
342// --- TypeInfer
343
344bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
345 const TypeSetByHwMode &In) {
346 ValidateOnExit _1(Out, *this);
347 In.validate();
348 if (In.empty() || Out == In || TP.hasError())
349 return false;
350 if (Out.empty()) {
351 Out = In;
352 return true;
353 }
354
355 bool Changed = Out.constrain(In);
356 if (Changed && Out.empty())
357 TP.error("Type contradiction");
358
359 return Changed;
360}
361
362bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
363 ValidateOnExit _1(Out, *this);
364 if (TP.hasError())
365 return false;
366 assert(!Out.empty() && "cannot pick from an empty set")((!Out.empty() && "cannot pick from an empty set") ? static_cast
<void> (0) : __assert_fail ("!Out.empty() && \"cannot pick from an empty set\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 366, __PRETTY_FUNCTION__))
;
367
368 bool Changed = false;
369 for (auto &I : Out) {
370 TypeSetByHwMode::SetType &S = I.second;
371 if (S.size() <= 1)
372 continue;
373 MVT T = *S.begin(); // Pick the first element.
374 S.clear();
375 S.insert(T);
376 Changed = true;
377 }
378 return Changed;
379}
380
381bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
382 ValidateOnExit _1(Out, *this);
383 if (TP.hasError())
384 return false;
385 if (!Out.empty())
386 return Out.constrain(isIntegerOrPtr);
387
388 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
389}
390
391bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
392 ValidateOnExit _1(Out, *this);
393 if (TP.hasError())
394 return false;
395 if (!Out.empty())
396 return Out.constrain(isFloatingPoint);
397
398 return Out.assign_if(getLegalTypes(), isFloatingPoint);
399}
400
401bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
402 ValidateOnExit _1(Out, *this);
403 if (TP.hasError())
404 return false;
405 if (!Out.empty())
406 return Out.constrain(isScalar);
407
408 return Out.assign_if(getLegalTypes(), isScalar);
409}
410
411bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
412 ValidateOnExit _1(Out, *this);
413 if (TP.hasError())
414 return false;
415 if (!Out.empty())
416 return Out.constrain(isVector);
417
418 return Out.assign_if(getLegalTypes(), isVector);
419}
420
421bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
422 ValidateOnExit _1(Out, *this);
423 if (TP.hasError() || !Out.empty())
424 return false;
425
426 Out = getLegalTypes();
427 return true;
428}
429
430template <typename Iter, typename Pred, typename Less>
431static Iter min_if(Iter B, Iter E, Pred P, Less L) {
432 if (B == E)
433 return E;
434 Iter Min = E;
435 for (Iter I = B; I != E; ++I) {
436 if (!P(*I))
437 continue;
438 if (Min == E || L(*I, *Min))
439 Min = I;
440 }
441 return Min;
442}
443
444template <typename Iter, typename Pred, typename Less>
445static Iter max_if(Iter B, Iter E, Pred P, Less L) {
446 if (B == E)
447 return E;
448 Iter Max = E;
449 for (Iter I = B; I != E; ++I) {
450 if (!P(*I))
451 continue;
452 if (Max == E || L(*Max, *I))
453 Max = I;
454 }
455 return Max;
456}
457
458/// Make sure that for each type in Small, there exists a larger type in Big.
459bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
460 TypeSetByHwMode &Big) {
461 ValidateOnExit _1(Small, *this), _2(Big, *this);
462 if (TP.hasError())
463 return false;
464 bool Changed = false;
465
466 if (Small.empty())
467 Changed |= EnforceAny(Small);
468 if (Big.empty())
469 Changed |= EnforceAny(Big);
470
471 assert(Small.hasDefault() && Big.hasDefault())((Small.hasDefault() && Big.hasDefault()) ? static_cast
<void> (0) : __assert_fail ("Small.hasDefault() && Big.hasDefault()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 471, __PRETTY_FUNCTION__))
;
472
473 std::vector<unsigned> Modes = union_modes(Small, Big);
474
475 // 1. Only allow integer or floating point types and make sure that
476 // both sides are both integer or both floating point.
477 // 2. Make sure that either both sides have vector types, or neither
478 // of them does.
479 for (unsigned M : Modes) {
480 TypeSetByHwMode::SetType &S = Small.get(M);
481 TypeSetByHwMode::SetType &B = Big.get(M);
482
483 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
484 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
485 Changed |= berase_if(S, NotInt);
486 Changed |= berase_if(B, NotInt);
487 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
488 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
489 Changed |= berase_if(S, NotFP);
490 Changed |= berase_if(B, NotFP);
491 } else if (S.empty() || B.empty()) {
492 Changed = !S.empty() || !B.empty();
493 S.clear();
494 B.clear();
495 } else {
496 TP.error("Incompatible types");
497 return Changed;
498 }
499
500 if (none_of(S, isVector) || none_of(B, isVector)) {
501 Changed |= berase_if(S, isVector);
502 Changed |= berase_if(B, isVector);
503 }
504 }
505
506 auto LT = [](MVT A, MVT B) -> bool {
507 // Always treat non-scalable MVTs as smaller than scalable MVTs for the
508 // purposes of ordering.
509 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
510 A.getSizeInBits());
511 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
512 B.getSizeInBits());
513 return ASize < BSize;
514 };
515 auto SameKindLE = [](MVT A, MVT B) -> bool {
516 // This function is used when removing elements: when a vector is compared
517 // to a non-vector or a scalable vector to any non-scalable MVT, it should
518 // return false (to avoid removal).
519 if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
520 std::make_tuple(B.isVector(), B.isScalableVector()))
521 return false;
522
523 return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <=
524 std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits());
525 };
526
527 for (unsigned M : Modes) {
528 TypeSetByHwMode::SetType &S = Small.get(M);
529 TypeSetByHwMode::SetType &B = Big.get(M);
530 // MinS = min scalar in Small, remove all scalars from Big that are
531 // smaller-or-equal than MinS.
532 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
533 if (MinS != S.end())
534 Changed |= berase_if(B, std::bind(SameKindLE,
535 std::placeholders::_1, *MinS));
536
537 // MaxS = max scalar in Big, remove all scalars from Small that are
538 // larger than MaxS.
539 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
540 if (MaxS != B.end())
541 Changed |= berase_if(S, std::bind(SameKindLE,
542 *MaxS, std::placeholders::_1));
543
544 // MinV = min vector in Small, remove all vectors from Big that are
545 // smaller-or-equal than MinV.
546 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
547 if (MinV != S.end())
548 Changed |= berase_if(B, std::bind(SameKindLE,
549 std::placeholders::_1, *MinV));
550
551 // MaxV = max vector in Big, remove all vectors from Small that are
552 // larger than MaxV.
553 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
554 if (MaxV != B.end())
555 Changed |= berase_if(S, std::bind(SameKindLE,
556 *MaxV, std::placeholders::_1));
557 }
558
559 return Changed;
560}
561
562/// 1. Ensure that for each type T in Vec, T is a vector type, and that
563/// for each type U in Elem, U is a scalar type.
564/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
565/// type T in Vec, such that U is the element type of T.
566bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
567 TypeSetByHwMode &Elem) {
568 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
569 if (TP.hasError())
570 return false;
571 bool Changed = false;
572
573 if (Vec.empty())
574 Changed |= EnforceVector(Vec);
575 if (Elem.empty())
576 Changed |= EnforceScalar(Elem);
577
578 for (unsigned M : union_modes(Vec, Elem)) {
579 TypeSetByHwMode::SetType &V = Vec.get(M);
580 TypeSetByHwMode::SetType &E = Elem.get(M);
581
582 Changed |= berase_if(V, isScalar); // Scalar = !vector
583 Changed |= berase_if(E, isVector); // Vector = !scalar
584 assert(!V.empty() && !E.empty())((!V.empty() && !E.empty()) ? static_cast<void>
(0) : __assert_fail ("!V.empty() && !E.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 584, __PRETTY_FUNCTION__))
;
585
586 SmallSet<MVT,4> VT, ST;
587 // Collect element types from the "vector" set.
588 for (MVT T : V)
589 VT.insert(T.getVectorElementType());
590 // Collect scalar types from the "element" set.
591 for (MVT T : E)
592 ST.insert(T);
593
594 // Remove from V all (vector) types whose element type is not in S.
595 Changed |= berase_if(V, [&ST](MVT T) -> bool {
596 return !ST.count(T.getVectorElementType());
597 });
598 // Remove from E all (scalar) types, for which there is no corresponding
599 // type in V.
600 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
601 }
602
603 return Changed;
604}
605
606bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
607 const ValueTypeByHwMode &VVT) {
608 TypeSetByHwMode Tmp(VVT);
609 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
610 return EnforceVectorEltTypeIs(Vec, Tmp);
611}
612
613/// Ensure that for each type T in Sub, T is a vector type, and there
614/// exists a type U in Vec such that U is a vector type with the same
615/// element type as T and at least as many elements as T.
616bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
617 TypeSetByHwMode &Sub) {
618 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
619 if (TP.hasError())
620 return false;
621
622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623 auto IsSubVec = [](MVT B, MVT P) -> bool {
624 if (!B.isVector() || !P.isVector())
625 return false;
626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627 // but until there are obvious use-cases for this, keep the
628 // types separate.
629 if (B.isScalableVector() != P.isScalableVector())
630 return false;
631 if (B.getVectorElementType() != P.getVectorElementType())
632 return false;
633 return B.getVectorNumElements() < P.getVectorNumElements();
634 };
635
636 /// Return true if S has no element (vector type) that T is a sub-vector of,
637 /// i.e. has the same element type as T and more elements.
638 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639 for (auto I : S)
640 if (IsSubVec(T, I))
641 return false;
642 return true;
643 };
644
645 /// Return true if S has no element (vector type) that T is a super-vector
646 /// of, i.e. has the same element type as T and fewer elements.
647 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
648 for (auto I : S)
649 if (IsSubVec(I, T))
650 return false;
651 return true;
652 };
653
654 bool Changed = false;
655
656 if (Vec.empty())
657 Changed |= EnforceVector(Vec);
658 if (Sub.empty())
659 Changed |= EnforceVector(Sub);
660
661 for (unsigned M : union_modes(Vec, Sub)) {
662 TypeSetByHwMode::SetType &S = Sub.get(M);
663 TypeSetByHwMode::SetType &V = Vec.get(M);
664
665 Changed |= berase_if(S, isScalar);
666
667 // Erase all types from S that are not sub-vectors of a type in V.
668 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
669
670 // Erase all types from V that are not super-vectors of a type in S.
671 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
672 }
673
674 return Changed;
675}
676
677/// 1. Ensure that V has a scalar type iff W has a scalar type.
678/// 2. Ensure that for each vector type T in V, there exists a vector
679/// type U in W, such that T and U have the same number of elements.
680/// 3. Ensure that for each vector type U in W, there exists a vector
681/// type T in V, such that T and U have the same number of elements
682/// (reverse of 2).
683bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
684 ValidateOnExit _1(V, *this), _2(W, *this);
685 if (TP.hasError())
686 return false;
687
688 bool Changed = false;
689 if (V.empty())
690 Changed |= EnforceAny(V);
691 if (W.empty())
692 Changed |= EnforceAny(W);
693
694 // An actual vector type cannot have 0 elements, so we can treat scalars
695 // as zero-length vectors. This way both vectors and scalars can be
696 // processed identically.
697 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
698 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
699 };
700
701 for (unsigned M : union_modes(V, W)) {
702 TypeSetByHwMode::SetType &VS = V.get(M);
703 TypeSetByHwMode::SetType &WS = W.get(M);
704
705 SmallSet<unsigned,2> VN, WN;
706 for (MVT T : VS)
707 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
708 for (MVT T : WS)
709 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
710
711 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
712 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
713 }
714 return Changed;
715}
716
717/// 1. Ensure that for each type T in A, there exists a type U in B,
718/// such that T and U have equal size in bits.
719/// 2. Ensure that for each type U in B, there exists a type T in A
720/// such that T and U have equal size in bits (reverse of 1).
721bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
722 ValidateOnExit _1(A, *this), _2(B, *this);
723 if (TP.hasError())
724 return false;
725 bool Changed = false;
726 if (A.empty())
727 Changed |= EnforceAny(A);
728 if (B.empty())
729 Changed |= EnforceAny(B);
730
731 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
732 return !Sizes.count(T.getSizeInBits());
733 };
734
735 for (unsigned M : union_modes(A, B)) {
736 TypeSetByHwMode::SetType &AS = A.get(M);
737 TypeSetByHwMode::SetType &BS = B.get(M);
738 SmallSet<unsigned,2> AN, BN;
739
740 for (MVT T : AS)
741 AN.insert(T.getSizeInBits());
742 for (MVT T : BS)
743 BN.insert(T.getSizeInBits());
744
745 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
746 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
747 }
748
749 return Changed;
750}
751
752void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
753 ValidateOnExit _1(VTS, *this);
754 const TypeSetByHwMode &Legal = getLegalTypes();
755 assert(Legal.isDefaultOnly() && "Default-mode only expected")((Legal.isDefaultOnly() && "Default-mode only expected"
) ? static_cast<void> (0) : __assert_fail ("Legal.isDefaultOnly() && \"Default-mode only expected\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 755, __PRETTY_FUNCTION__))
;
756 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
757
758 for (auto &I : VTS)
759 expandOverloads(I.second, LegalTypes);
760}
761
762void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
763 const TypeSetByHwMode::SetType &Legal) {
764 std::set<MVT> Ovs;
765 for (MVT T : Out) {
766 if (!T.isOverloaded())
767 continue;
768
769 Ovs.insert(T);
770 // MachineValueTypeSet allows iteration and erasing.
771 Out.erase(T);
772 }
773
774 for (MVT Ov : Ovs) {
775 switch (Ov.SimpleTy) {
776 case MVT::iPTRAny:
777 Out.insert(MVT::iPTR);
778 return;
779 case MVT::iAny:
780 for (MVT T : MVT::integer_valuetypes())
781 if (Legal.count(T))
782 Out.insert(T);
783 for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
784 if (Legal.count(T))
785 Out.insert(T);
786 for (MVT T : MVT::integer_scalable_vector_valuetypes())
787 if (Legal.count(T))
788 Out.insert(T);
789 return;
790 case MVT::fAny:
791 for (MVT T : MVT::fp_valuetypes())
792 if (Legal.count(T))
793 Out.insert(T);
794 for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
795 if (Legal.count(T))
796 Out.insert(T);
797 for (MVT T : MVT::fp_scalable_vector_valuetypes())
798 if (Legal.count(T))
799 Out.insert(T);
800 return;
801 case MVT::vAny:
802 for (MVT T : MVT::vector_valuetypes())
803 if (Legal.count(T))
804 Out.insert(T);
805 return;
806 case MVT::Any:
807 for (MVT T : MVT::all_valuetypes())
808 if (Legal.count(T))
809 Out.insert(T);
810 return;
811 default:
812 break;
813 }
814 }
815}
816
817const TypeSetByHwMode &TypeInfer::getLegalTypes() {
818 if (!LegalTypesCached) {
819 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
820 // Stuff all types from all modes into the default mode.
821 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
822 for (const auto &I : LTS)
823 LegalTypes.insert(I.second);
824 LegalTypesCached = true;
825 }
826 assert(LegalCache.isDefaultOnly() && "Default-mode only expected")((LegalCache.isDefaultOnly() && "Default-mode only expected"
) ? static_cast<void> (0) : __assert_fail ("LegalCache.isDefaultOnly() && \"Default-mode only expected\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 826, __PRETTY_FUNCTION__))
;
827 return LegalCache;
828}
829
830#ifndef NDEBUG
831TypeInfer::ValidateOnExit::~ValidateOnExit() {
832 if (Infer.Validate && !VTS.validate()) {
833 dbgs() << "Type set is empty for each HW mode:\n"
834 "possible type contradiction in the pattern below "
835 "(use -print-records with llvm-tblgen to see all "
836 "expanded records).\n";
837 Infer.TP.dump();
838 llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 838)
;
839 }
840}
841#endif
842
843
844//===----------------------------------------------------------------------===//
845// ScopedName Implementation
846//===----------------------------------------------------------------------===//
847
848bool ScopedName::operator==(const ScopedName &o) const {
849 return Scope == o.Scope && Identifier == o.Identifier;
850}
851
852bool ScopedName::operator!=(const ScopedName &o) const {
853 return !(*this == o);
854}
855
856
857//===----------------------------------------------------------------------===//
858// TreePredicateFn Implementation
859//===----------------------------------------------------------------------===//
860
861/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
862TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
863 assert((((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 865, __PRETTY_FUNCTION__))
864 (!hasPredCode() || !hasImmCode()) &&(((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 865, __PRETTY_FUNCTION__))
865 ".td file corrupt: can't have a node predicate *and* an imm predicate")(((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 865, __PRETTY_FUNCTION__))
;
866}
867
868bool TreePredicateFn::hasPredCode() const {
869 return isLoad() || isStore() || isAtomic() ||
870 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
871}
872
873std::string TreePredicateFn::getPredCode() const {
874 std::string Code = "";
875
876 if (!isLoad() && !isStore() && !isAtomic()) {
877 Record *MemoryVT = getMemoryVT();
878
879 if (MemoryVT)
880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881 "MemoryVT requires IsLoad or IsStore");
882 }
883
884 if (!isLoad() && !isStore()) {
885 if (isUnindexed())
886 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887 "IsUnindexed requires IsLoad or IsStore");
888
889 Record *ScalarMemoryVT = getScalarMemoryVT();
890
891 if (ScalarMemoryVT)
892 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893 "ScalarMemoryVT requires IsLoad or IsStore");
894 }
895
896 if (isLoad() + isStore() + isAtomic() > 1)
897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
899
900 if (isLoad()) {
901 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
902 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
903 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
904 getMinAlignment() < 1)
905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906 "IsLoad cannot be used by itself");
907 } else {
908 if (isNonExtLoad())
909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910 "IsNonExtLoad requires IsLoad");
911 if (isAnyExtLoad())
912 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
913 "IsAnyExtLoad requires IsLoad");
914 if (isSignExtLoad())
915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916 "IsSignExtLoad requires IsLoad");
917 if (isZeroExtLoad())
918 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
919 "IsZeroExtLoad requires IsLoad");
920 }
921
922 if (isStore()) {
923 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
924 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
925 getAddressSpaces() == nullptr && getMinAlignment() < 1)
926 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
927 "IsStore cannot be used by itself");
928 } else {
929 if (isNonTruncStore())
930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931 "IsNonTruncStore requires IsStore");
932 if (isTruncStore())
933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934 "IsTruncStore requires IsStore");
935 }
936
937 if (isAtomic()) {
938 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
939 getAddressSpaces() == nullptr &&
940 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
941 !isAtomicOrderingAcquireRelease() &&
942 !isAtomicOrderingSequentiallyConsistent() &&
943 !isAtomicOrderingAcquireOrStronger() &&
944 !isAtomicOrderingReleaseOrStronger() &&
945 !isAtomicOrderingWeakerThanAcquire() &&
946 !isAtomicOrderingWeakerThanRelease())
947 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
948 "IsAtomic cannot be used by itself");
949 } else {
950 if (isAtomicOrderingMonotonic())
951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952 "IsAtomicOrderingMonotonic requires IsAtomic");
953 if (isAtomicOrderingAcquire())
954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955 "IsAtomicOrderingAcquire requires IsAtomic");
956 if (isAtomicOrderingRelease())
957 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958 "IsAtomicOrderingRelease requires IsAtomic");
959 if (isAtomicOrderingAcquireRelease())
960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961 "IsAtomicOrderingAcquireRelease requires IsAtomic");
962 if (isAtomicOrderingSequentiallyConsistent())
963 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
964 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
965 if (isAtomicOrderingAcquireOrStronger())
966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
968 if (isAtomicOrderingReleaseOrStronger())
969 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
971 if (isAtomicOrderingWeakerThanAcquire())
972 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
974 }
975
976 if (isLoad() || isStore() || isAtomic()) {
977 if (ListInit *AddressSpaces = getAddressSpaces()) {
978 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
979 " if (";
980
981 bool First = true;
982 for (Init *Val : AddressSpaces->getValues()) {
983 if (First)
984 First = false;
985 else
986 Code += " && ";
987
988 IntInit *IntVal = dyn_cast<IntInit>(Val);
989 if (!IntVal) {
990 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
991 "AddressSpaces element must be integer");
992 }
993
994 Code += "AddrSpace != " + utostr(IntVal->getValue());
995 }
996
997 Code += ")\nreturn false;\n";
998 }
999
1000 int64_t MinAlign = getMinAlignment();
1001 if (MinAlign > 0) {
1002 Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
1003 Code += utostr(MinAlign);
1004 Code += ")\nreturn false;\n";
1005 }
1006
1007 Record *MemoryVT = getMemoryVT();
1008
1009 if (MemoryVT)
1010 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1011 MemoryVT->getName() + ") return false;\n")
1012 .str();
1013 }
1014
1015 if (isAtomic() && isAtomicOrderingMonotonic())
1016 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1017 "AtomicOrdering::Monotonic) return false;\n";
1018 if (isAtomic() && isAtomicOrderingAcquire())
1019 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1020 "AtomicOrdering::Acquire) return false;\n";
1021 if (isAtomic() && isAtomicOrderingRelease())
1022 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1023 "AtomicOrdering::Release) return false;\n";
1024 if (isAtomic() && isAtomicOrderingAcquireRelease())
1025 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1026 "AtomicOrdering::AcquireRelease) return false;\n";
1027 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1028 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1029 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1030
1031 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1032 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1033 "return false;\n";
1034 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1035 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1036 "return false;\n";
1037
1038 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1039 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1040 "return false;\n";
1041 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1042 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1043 "return false;\n";
1044
1045 if (isLoad() || isStore()) {
1046 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1047
1048 if (isUnindexed())
1049 Code += ("if (cast<" + SDNodeName +
1050 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1051 "return false;\n")
1052 .str();
1053
1054 if (isLoad()) {
1055 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1056 isZeroExtLoad()) > 1)
1057 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1058 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1059 "IsZeroExtLoad are mutually exclusive");
1060 if (isNonExtLoad())
1061 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1062 "ISD::NON_EXTLOAD) return false;\n";
1063 if (isAnyExtLoad())
1064 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1065 "return false;\n";
1066 if (isSignExtLoad())
1067 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1068 "return false;\n";
1069 if (isZeroExtLoad())
1070 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1071 "return false;\n";
1072 } else {
1073 if ((isNonTruncStore() + isTruncStore()) > 1)
1074 PrintFatalError(
1075 getOrigPatFragRecord()->getRecord()->getLoc(),
1076 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1077 if (isNonTruncStore())
1078 Code +=
1079 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1080 if (isTruncStore())
1081 Code +=
1082 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1083 }
1084
1085 Record *ScalarMemoryVT = getScalarMemoryVT();
1086
1087 if (ScalarMemoryVT)
1088 Code += ("if (cast<" + SDNodeName +
1089 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1090 ScalarMemoryVT->getName() + ") return false;\n")
1091 .str();
1092 }
1093
1094 std::string PredicateCode =
1095 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1096
1097 Code += PredicateCode;
1098
1099 if (PredicateCode.empty() && !Code.empty())
1100 Code += "return true;\n";
1101
1102 return Code;
1103}
1104
1105bool TreePredicateFn::hasImmCode() const {
1106 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1107}
1108
1109std::string TreePredicateFn::getImmCode() const {
1110 return std::string(
1111 PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1112}
1113
1114bool TreePredicateFn::immCodeUsesAPInt() const {
1115 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1116}
1117
1118bool TreePredicateFn::immCodeUsesAPFloat() const {
1119 bool Unset;
1120 // The return value will be false when IsAPFloat is unset.
1121 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1122 Unset);
1123}
1124
1125bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1126 bool Value) const {
1127 bool Unset;
1128 bool Result =
1129 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1130 if (Unset)
1131 return false;
1132 return Result == Value;
1133}
1134bool TreePredicateFn::usesOperands() const {
1135 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1136}
1137bool TreePredicateFn::isLoad() const {
1138 return isPredefinedPredicateEqualTo("IsLoad", true);
1139}
1140bool TreePredicateFn::isStore() const {
1141 return isPredefinedPredicateEqualTo("IsStore", true);
1142}
1143bool TreePredicateFn::isAtomic() const {
1144 return isPredefinedPredicateEqualTo("IsAtomic", true);
1145}
1146bool TreePredicateFn::isUnindexed() const {
1147 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1148}
1149bool TreePredicateFn::isNonExtLoad() const {
1150 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1151}
1152bool TreePredicateFn::isAnyExtLoad() const {
1153 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1154}
1155bool TreePredicateFn::isSignExtLoad() const {
1156 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1157}
1158bool TreePredicateFn::isZeroExtLoad() const {
1159 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1160}
1161bool TreePredicateFn::isNonTruncStore() const {
1162 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1163}
1164bool TreePredicateFn::isTruncStore() const {
1165 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1166}
1167bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1168 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1169}
1170bool TreePredicateFn::isAtomicOrderingAcquire() const {
1171 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1172}
1173bool TreePredicateFn::isAtomicOrderingRelease() const {
1174 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1175}
1176bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1177 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1178}
1179bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1180 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1181 true);
1182}
1183bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1184 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1185}
1186bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1187 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1188}
1189bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1190 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1191}
1192bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1193 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1194}
1195Record *TreePredicateFn::getMemoryVT() const {
1196 Record *R = getOrigPatFragRecord()->getRecord();
1197 if (R->isValueUnset("MemoryVT"))
1198 return nullptr;
1199 return R->getValueAsDef("MemoryVT");
1200}
1201
1202ListInit *TreePredicateFn::getAddressSpaces() const {
1203 Record *R = getOrigPatFragRecord()->getRecord();
1204 if (R->isValueUnset("AddressSpaces"))
1205 return nullptr;
1206 return R->getValueAsListInit("AddressSpaces");
1207}
1208
1209int64_t TreePredicateFn::getMinAlignment() const {
1210 Record *R = getOrigPatFragRecord()->getRecord();
1211 if (R->isValueUnset("MinAlignment"))
1212 return 0;
1213 return R->getValueAsInt("MinAlignment");
1214}
1215
1216Record *TreePredicateFn::getScalarMemoryVT() const {
1217 Record *R = getOrigPatFragRecord()->getRecord();
1218 if (R->isValueUnset("ScalarMemoryVT"))
1219 return nullptr;
1220 return R->getValueAsDef("ScalarMemoryVT");
1221}
1222bool TreePredicateFn::hasGISelPredicateCode() const {
1223 return !PatFragRec->getRecord()
1224 ->getValueAsString("GISelPredicateCode")
1225 .empty();
1226}
1227std::string TreePredicateFn::getGISelPredicateCode() const {
1228 return std::string(
1229 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1230}
1231
1232StringRef TreePredicateFn::getImmType() const {
1233 if (immCodeUsesAPInt())
1234 return "const APInt &";
1235 if (immCodeUsesAPFloat())
1236 return "const APFloat &";
1237 return "int64_t";
1238}
1239
1240StringRef TreePredicateFn::getImmTypeIdentifier() const {
1241 if (immCodeUsesAPInt())
1242 return "APInt";
1243 else if (immCodeUsesAPFloat())
1244 return "APFloat";
1245 return "I64";
1246}
1247
1248/// isAlwaysTrue - Return true if this is a noop predicate.
1249bool TreePredicateFn::isAlwaysTrue() const {
1250 return !hasPredCode() && !hasImmCode();
1251}
1252
1253/// Return the name to use in the generated code to reference this, this is
1254/// "Predicate_foo" if from a pattern fragment "foo".
1255std::string TreePredicateFn::getFnName() const {
1256 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1257}
1258
1259/// getCodeToRunOnSDNode - Return the code for the function body that
1260/// evaluates this predicate. The argument is expected to be in "Node",
1261/// not N. This handles casting and conversion to a concrete node type as
1262/// appropriate.
1263std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1264 // Handle immediate predicates first.
1265 std::string ImmCode = getImmCode();
1266 if (!ImmCode.empty()) {
1267 if (isLoad())
1268 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1269 "IsLoad cannot be used with ImmLeaf or its subclasses");
1270 if (isStore())
1271 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1272 "IsStore cannot be used with ImmLeaf or its subclasses");
1273 if (isUnindexed())
1274 PrintFatalError(
1275 getOrigPatFragRecord()->getRecord()->getLoc(),
1276 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1277 if (isNonExtLoad())
1278 PrintFatalError(
1279 getOrigPatFragRecord()->getRecord()->getLoc(),
1280 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1281 if (isAnyExtLoad())
1282 PrintFatalError(
1283 getOrigPatFragRecord()->getRecord()->getLoc(),
1284 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1285 if (isSignExtLoad())
1286 PrintFatalError(
1287 getOrigPatFragRecord()->getRecord()->getLoc(),
1288 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1289 if (isZeroExtLoad())
1290 PrintFatalError(
1291 getOrigPatFragRecord()->getRecord()->getLoc(),
1292 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1293 if (isNonTruncStore())
1294 PrintFatalError(
1295 getOrigPatFragRecord()->getRecord()->getLoc(),
1296 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1297 if (isTruncStore())
1298 PrintFatalError(
1299 getOrigPatFragRecord()->getRecord()->getLoc(),
1300 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1301 if (getMemoryVT())
1302 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1303 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1304 if (getScalarMemoryVT())
1305 PrintFatalError(
1306 getOrigPatFragRecord()->getRecord()->getLoc(),
1307 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1308
1309 std::string Result = (" " + getImmType() + " Imm = ").str();
1310 if (immCodeUsesAPFloat())
1311 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1312 else if (immCodeUsesAPInt())
1313 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1314 else
1315 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1316 return Result + ImmCode;
1317 }
1318
1319 // Handle arbitrary node predicates.
1320 assert(hasPredCode() && "Don't have any predicate code!")((hasPredCode() && "Don't have any predicate code!") ?
static_cast<void> (0) : __assert_fail ("hasPredCode() && \"Don't have any predicate code!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1320, __PRETTY_FUNCTION__))
;
1321
1322 // If this is using PatFrags, there are multiple trees to search. They should
1323 // all have the same class. FIXME: Is there a way to find a common
1324 // superclass?
1325 StringRef ClassName;
1326 for (const auto &Tree : PatFragRec->getTrees()) {
1327 StringRef TreeClassName;
1328 if (Tree->isLeaf())
1329 TreeClassName = "SDNode";
1330 else {
1331 Record *Op = Tree->getOperator();
1332 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1333 TreeClassName = Info.getSDClassName();
1334 }
1335
1336 if (ClassName.empty())
1337 ClassName = TreeClassName;
1338 else if (ClassName != TreeClassName) {
1339 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1340 "PatFrags trees do not have consistent class");
1341 }
1342 }
1343
1344 std::string Result;
1345 if (ClassName == "SDNode")
1346 Result = " SDNode *N = Node;\n";
1347 else
1348 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1349
1350 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1351}
1352
1353//===----------------------------------------------------------------------===//
1354// PatternToMatch implementation
1355//
1356
1357static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1358 if (!P->isLeaf())
1359 return false;
1360 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1361 if (!DI)
1362 return false;
1363
1364 Record *R = DI->getDef();
1365 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1366}
1367
1368/// getPatternSize - Return the 'size' of this pattern. We want to match large
1369/// patterns before small ones. This is used to determine the size of a
1370/// pattern.
1371static unsigned getPatternSize(const TreePatternNode *P,
1372 const CodeGenDAGPatterns &CGP) {
1373 unsigned Size = 3; // The node itself.
1374 // If the root node is a ConstantSDNode, increases its size.
1375 // e.g. (set R32:$dst, 0).
1376 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1377 Size += 2;
1378
1379 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1380 Size += AM->getComplexity();
1381 // We don't want to count any children twice, so return early.
1382 return Size;
1383 }
1384
1385 // If this node has some predicate function that must match, it adds to the
1386 // complexity of this node.
1387 if (!P->getPredicateCalls().empty())
1388 ++Size;
1389
1390 // Count children in the count if they are also nodes.
1391 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1392 const TreePatternNode *Child = P->getChild(i);
1393 if (!Child->isLeaf() && Child->getNumTypes()) {
1394 const TypeSetByHwMode &T0 = Child->getExtType(0);
1395 // At this point, all variable type sets should be simple, i.e. only
1396 // have a default mode.
1397 if (T0.getMachineValueType() != MVT::Other) {
1398 Size += getPatternSize(Child, CGP);
1399 continue;
1400 }
1401 }
1402 if (Child->isLeaf()) {
1403 if (isa<IntInit>(Child->getLeafValue()))
1404 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1405 else if (Child->getComplexPatternInfo(CGP))
1406 Size += getPatternSize(Child, CGP);
1407 else if (isImmAllOnesAllZerosMatch(Child))
1408 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1409 else if (!Child->getPredicateCalls().empty())
1410 ++Size;
1411 }
1412 }
1413
1414 return Size;
1415}
1416
1417/// Compute the complexity metric for the input pattern. This roughly
1418/// corresponds to the number of nodes that are covered.
1419int PatternToMatch::
1420getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1421 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1422}
1423
1424/// getPredicateCheck - Return a single string containing all of this
1425/// pattern's predicates concatenated with "&&" operators.
1426///
1427std::string PatternToMatch::getPredicateCheck() const {
1428 SmallVector<const Predicate*,4> PredList;
1429 for (const Predicate &P : Predicates) {
1430 if (!P.getCondString().empty())
1431 PredList.push_back(&P);
1432 }
1433 llvm::sort(PredList, deref<std::less<>>());
1434
1435 std::string Check;
1436 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1437 if (i != 0)
1438 Check += " && ";
1439 Check += '(' + PredList[i]->getCondString() + ')';
1440 }
1441 return Check;
1442}
1443
1444//===----------------------------------------------------------------------===//
1445// SDTypeConstraint implementation
1446//
1447
1448SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1449 OperandNo = R->getValueAsInt("OperandNum");
1450
1451 if (R->isSubClassOf("SDTCisVT")) {
1452 ConstraintType = SDTCisVT;
1453 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1454 for (const auto &P : VVT)
1455 if (P.second == MVT::isVoid)
1456 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1457 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1458 ConstraintType = SDTCisPtrTy;
1459 } else if (R->isSubClassOf("SDTCisInt")) {
1460 ConstraintType = SDTCisInt;
1461 } else if (R->isSubClassOf("SDTCisFP")) {
1462 ConstraintType = SDTCisFP;
1463 } else if (R->isSubClassOf("SDTCisVec")) {
1464 ConstraintType = SDTCisVec;
1465 } else if (R->isSubClassOf("SDTCisSameAs")) {
1466 ConstraintType = SDTCisSameAs;
1467 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1468 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1469 ConstraintType = SDTCisVTSmallerThanOp;
1470 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1471 R->getValueAsInt("OtherOperandNum");
1472 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1473 ConstraintType = SDTCisOpSmallerThanOp;
1474 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1475 R->getValueAsInt("BigOperandNum");
1476 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1477 ConstraintType = SDTCisEltOfVec;
1478 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1479 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1480 ConstraintType = SDTCisSubVecOfVec;
1481 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1482 R->getValueAsInt("OtherOpNum");
1483 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1484 ConstraintType = SDTCVecEltisVT;
1485 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1486 for (const auto &P : VVT) {
1487 MVT T = P.second;
1488 if (T.isVector())
1489 PrintFatalError(R->getLoc(),
1490 "Cannot use vector type as SDTCVecEltisVT");
1491 if (!T.isInteger() && !T.isFloatingPoint())
1492 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1493 "as SDTCVecEltisVT");
1494 }
1495 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1496 ConstraintType = SDTCisSameNumEltsAs;
1497 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1498 R->getValueAsInt("OtherOperandNum");
1499 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1500 ConstraintType = SDTCisSameSizeAs;
1501 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1502 R->getValueAsInt("OtherOperandNum");
1503 } else {
1504 PrintFatalError(R->getLoc(),
1505 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1506 }
1507}
1508
1509/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1510/// N, and the result number in ResNo.
1511static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1512 const SDNodeInfo &NodeInfo,
1513 unsigned &ResNo) {
1514 unsigned NumResults = NodeInfo.getNumResults();
1515 if (OpNo < NumResults) {
1516 ResNo = OpNo;
1517 return N;
1518 }
1519
1520 OpNo -= NumResults;
1521
1522 if (OpNo >= N->getNumChildren()) {
1523 std::string S;
1524 raw_string_ostream OS(S);
1525 OS << "Invalid operand number in type constraint "
1526 << (OpNo+NumResults) << " ";
1527 N->print(OS);
1528 PrintFatalError(OS.str());
1529 }
1530
1531 return N->getChild(OpNo);
1532}
1533
1534/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1535/// constraint to the nodes operands. This returns true if it makes a
1536/// change, false otherwise. If a type contradiction is found, flag an error.
1537bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1538 const SDNodeInfo &NodeInfo,
1539 TreePattern &TP) const {
1540 if (TP.hasError())
1541 return false;
1542
1543 unsigned ResNo = 0; // The result number being referenced.
1544 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1545 TypeInfer &TI = TP.getInfer();
1546
1547 switch (ConstraintType) {
1548 case SDTCisVT:
1549 // Operand must be a particular type.
1550 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1551 case SDTCisPtrTy:
1552 // Operand must be same as target pointer type.
1553 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1554 case SDTCisInt:
1555 // Require it to be one of the legal integer VTs.
1556 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1557 case SDTCisFP:
1558 // Require it to be one of the legal fp VTs.
1559 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1560 case SDTCisVec:
1561 // Require it to be one of the legal vector VTs.
1562 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1563 case SDTCisSameAs: {
1564 unsigned OResNo = 0;
1565 TreePatternNode *OtherNode =
1566 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1567 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1568 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1569 }
1570 case SDTCisVTSmallerThanOp: {
1571 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1572 // have an integer type that is smaller than the VT.
1573 if (!NodeToApply->isLeaf() ||
1574 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1575 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1576 ->isSubClassOf("ValueType")) {
1577 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1578 return false;
1579 }
1580 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1581 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1582 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1583 TypeSetByHwMode TypeListTmp(VVT);
1584
1585 unsigned OResNo = 0;
1586 TreePatternNode *OtherNode =
1587 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1588 OResNo);
1589
1590 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1591 }
1592 case SDTCisOpSmallerThanOp: {
1593 unsigned BResNo = 0;
1594 TreePatternNode *BigOperand =
1595 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1596 BResNo);
1597 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1598 BigOperand->getExtType(BResNo));
1599 }
1600 case SDTCisEltOfVec: {
1601 unsigned VResNo = 0;
1602 TreePatternNode *VecOperand =
1603 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1604 VResNo);
1605 // Filter vector types out of VecOperand that don't have the right element
1606 // type.
1607 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1608 NodeToApply->getExtType(ResNo));
1609 }
1610 case SDTCisSubVecOfVec: {
1611 unsigned VResNo = 0;
1612 TreePatternNode *BigVecOperand =
1613 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1614 VResNo);
1615
1616 // Filter vector types out of BigVecOperand that don't have the
1617 // right subvector type.
1618 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1619 NodeToApply->getExtType(ResNo));
1620 }
1621 case SDTCVecEltisVT: {
1622 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1623 }
1624 case SDTCisSameNumEltsAs: {
1625 unsigned OResNo = 0;
1626 TreePatternNode *OtherNode =
1627 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1628 N, NodeInfo, OResNo);
1629 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1630 NodeToApply->getExtType(ResNo));
1631 }
1632 case SDTCisSameSizeAs: {
1633 unsigned OResNo = 0;
1634 TreePatternNode *OtherNode =
1635 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1636 N, NodeInfo, OResNo);
1637 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1638 NodeToApply->getExtType(ResNo));
1639 }
1640 }
1641 llvm_unreachable("Invalid ConstraintType!")::llvm::llvm_unreachable_internal("Invalid ConstraintType!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1641)
;
1642}
1643
1644// Update the node type to match an instruction operand or result as specified
1645// in the ins or outs lists on the instruction definition. Return true if the
1646// type was actually changed.
1647bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1648 Record *Operand,
1649 TreePattern &TP) {
1650 // The 'unknown' operand indicates that types should be inferred from the
1651 // context.
1652 if (Operand->isSubClassOf("unknown_class"))
1653 return false;
1654
1655 // The Operand class specifies a type directly.
1656 if (Operand->isSubClassOf("Operand")) {
1657 Record *R = Operand->getValueAsDef("Type");
1658 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1659 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1660 }
1661
1662 // PointerLikeRegClass has a type that is determined at runtime.
1663 if (Operand->isSubClassOf("PointerLikeRegClass"))
1664 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1665
1666 // Both RegisterClass and RegisterOperand operands derive their types from a
1667 // register class def.
1668 Record *RC = nullptr;
1669 if (Operand->isSubClassOf("RegisterClass"))
1670 RC = Operand;
1671 else if (Operand->isSubClassOf("RegisterOperand"))
1672 RC = Operand->getValueAsDef("RegClass");
1673
1674 assert(RC && "Unknown operand type")((RC && "Unknown operand type") ? static_cast<void
> (0) : __assert_fail ("RC && \"Unknown operand type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1674, __PRETTY_FUNCTION__))
;
1675 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1676 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1677}
1678
1679bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1680 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1681 if (!TP.getInfer().isConcrete(Types[i], true))
1682 return true;
1683 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1684 if (getChild(i)->ContainsUnresolvedType(TP))
1685 return true;
1686 return false;
1687}
1688
1689bool TreePatternNode::hasProperTypeByHwMode() const {
1690 for (const TypeSetByHwMode &S : Types)
1691 if (!S.isDefaultOnly())
1692 return true;
1693 for (const TreePatternNodePtr &C : Children)
1694 if (C->hasProperTypeByHwMode())
1695 return true;
1696 return false;
1697}
1698
1699bool TreePatternNode::hasPossibleType() const {
1700 for (const TypeSetByHwMode &S : Types)
1701 if (!S.isPossible())
1702 return false;
1703 for (const TreePatternNodePtr &C : Children)
1704 if (!C->hasPossibleType())
1705 return false;
1706 return true;
1707}
1708
1709bool TreePatternNode::setDefaultMode(unsigned Mode) {
1710 for (TypeSetByHwMode &S : Types) {
1711 S.makeSimple(Mode);
1712 // Check if the selected mode had a type conflict.
1713 if (S.get(DefaultMode).empty())
1714 return false;
1715 }
1716 for (const TreePatternNodePtr &C : Children)
1717 if (!C->setDefaultMode(Mode))
1718 return false;
1719 return true;
1720}
1721
1722//===----------------------------------------------------------------------===//
1723// SDNodeInfo implementation
1724//
1725SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1726 EnumName = R->getValueAsString("Opcode");
1727 SDClassName = R->getValueAsString("SDClass");
1728 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1729 NumResults = TypeProfile->getValueAsInt("NumResults");
1730 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1731
1732 // Parse the properties.
1733 Properties = parseSDPatternOperatorProperties(R);
1734
1735 // Parse the type constraints.
1736 std::vector<Record*> ConstraintList =
1737 TypeProfile->getValueAsListOfDefs("Constraints");
1738 for (Record *R : ConstraintList)
1739 TypeConstraints.emplace_back(R, CGH);
1740}
1741
1742/// getKnownType - If the type constraints on this node imply a fixed type
1743/// (e.g. all stores return void, etc), then return it as an
1744/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1745MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1746 unsigned NumResults = getNumResults();
1747 assert(NumResults <= 1 &&((NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? static_cast<void> (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1748, __PRETTY_FUNCTION__))
1748 "We only work with nodes with zero or one result so far!")((NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? static_cast<void> (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1748, __PRETTY_FUNCTION__))
;
1749 assert(ResNo == 0 && "Only handles single result nodes so far")((ResNo == 0 && "Only handles single result nodes so far"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Only handles single result nodes so far\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1749, __PRETTY_FUNCTION__))
;
1750
1751 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1752 // Make sure that this applies to the correct node result.
1753 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1754 continue;
1755
1756 switch (Constraint.ConstraintType) {
1757 default: break;
1758 case SDTypeConstraint::SDTCisVT:
1759 if (Constraint.VVT.isSimple())
1760 return Constraint.VVT.getSimple().SimpleTy;
1761 break;
1762 case SDTypeConstraint::SDTCisPtrTy:
1763 return MVT::iPTR;
1764 }
1765 }
1766 return MVT::Other;
1767}
1768
1769//===----------------------------------------------------------------------===//
1770// TreePatternNode implementation
1771//
1772
1773static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1774 if (Operator->getName() == "set" ||
1775 Operator->getName() == "implicit")
1776 return 0; // All return nothing.
1777
1778 if (Operator->isSubClassOf("Intrinsic"))
1779 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1780
1781 if (Operator->isSubClassOf("SDNode"))
1782 return CDP.getSDNodeInfo(Operator).getNumResults();
1783
1784 if (Operator->isSubClassOf("PatFrags")) {
1785 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1786 // the forward reference case where one pattern fragment references another
1787 // before it is processed.
1788 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1789 // The number of results of a fragment with alternative records is the
1790 // maximum number of results across all alternatives.
1791 unsigned NumResults = 0;
1792 for (auto T : PFRec->getTrees())
1793 NumResults = std::max(NumResults, T->getNumTypes());
1794 return NumResults;
1795 }
1796
1797 ListInit *LI = Operator->getValueAsListInit("Fragments");
1798 assert(LI && "Invalid Fragment")((LI && "Invalid Fragment") ? static_cast<void>
(0) : __assert_fail ("LI && \"Invalid Fragment\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1798, __PRETTY_FUNCTION__))
;
1799 unsigned NumResults = 0;
1800 for (Init *I : LI->getValues()) {
1801 Record *Op = nullptr;
1802 if (DagInit *Dag = dyn_cast<DagInit>(I))
1803 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1804 Op = DI->getDef();
1805 assert(Op && "Invalid Fragment")((Op && "Invalid Fragment") ? static_cast<void>
(0) : __assert_fail ("Op && \"Invalid Fragment\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1805, __PRETTY_FUNCTION__))
;
1806 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1807 }
1808 return NumResults;
1809 }
1810
1811 if (Operator->isSubClassOf("Instruction")) {
1812 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1813
1814 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1815
1816 // Subtract any defaulted outputs.
1817 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1818 Record *OperandNode = InstInfo.Operands[i].Rec;
1819
1820 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1821 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1822 --NumDefsToAdd;
1823 }
1824
1825 // Add on one implicit def if it has a resolvable type.
1826 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1827 ++NumDefsToAdd;
1828 return NumDefsToAdd;
1829 }
1830
1831 if (Operator->isSubClassOf("SDNodeXForm"))
1832 return 1; // FIXME: Generalize SDNodeXForm
1833
1834 if (Operator->isSubClassOf("ValueType"))
1835 return 1; // A type-cast of one result.
1836
1837 if (Operator->isSubClassOf("ComplexPattern"))
1838 return 1;
1839
1840 errs() << *Operator;
1841 PrintFatalError("Unhandled node in GetNumNodeResults");
1842}
1843
1844void TreePatternNode::print(raw_ostream &OS) const {
1845 if (isLeaf())
1846 OS << *getLeafValue();
1847 else
1848 OS << '(' << getOperator()->getName();
1849
1850 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1851 OS << ':';
1852 getExtType(i).writeToStream(OS);
1853 }
1854
1855 if (!isLeaf()) {
1856 if (getNumChildren() != 0) {
1857 OS << " ";
1858 getChild(0)->print(OS);
1859 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1860 OS << ", ";
1861 getChild(i)->print(OS);
1862 }
1863 }
1864 OS << ")";
1865 }
1866
1867 for (const TreePredicateCall &Pred : PredicateCalls) {
1868 OS << "<<P:";
1869 if (Pred.Scope)
1870 OS << Pred.Scope << ":";
1871 OS << Pred.Fn.getFnName() << ">>";
1872 }
1873 if (TransformFn)
1874 OS << "<<X:" << TransformFn->getName() << ">>";
1875 if (!getName().empty())
1876 OS << ":$" << getName();
1877
1878 for (const ScopedName &Name : NamesAsPredicateArg)
1879 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1880}
1881void TreePatternNode::dump() const {
1882 print(errs());
1883}
1884
1885/// isIsomorphicTo - Return true if this node is recursively
1886/// isomorphic to the specified node. For this comparison, the node's
1887/// entire state is considered. The assigned name is ignored, since
1888/// nodes with differing names are considered isomorphic. However, if
1889/// the assigned name is present in the dependent variable set, then
1890/// the assigned name is considered significant and the node is
1891/// isomorphic if the names match.
1892bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1893 const MultipleUseVarSet &DepVars) const {
1894 if (N == this) return true;
1895 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1896 getPredicateCalls() != N->getPredicateCalls() ||
1897 getTransformFn() != N->getTransformFn())
1898 return false;
1899
1900 if (isLeaf()) {
1901 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1902 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1903 return ((DI->getDef() == NDI->getDef())
1904 && (DepVars.find(getName()) == DepVars.end()
1905 || getName() == N->getName()));
1906 }
1907 }
1908 return getLeafValue() == N->getLeafValue();
1909 }
1910
1911 if (N->getOperator() != getOperator() ||
1912 N->getNumChildren() != getNumChildren()) return false;
1913 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1914 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1915 return false;
1916 return true;
1917}
1918
1919/// clone - Make a copy of this tree and all of its children.
1920///
1921TreePatternNodePtr TreePatternNode::clone() const {
1922 TreePatternNodePtr New;
1923 if (isLeaf()) {
1924 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1925 } else {
1926 std::vector<TreePatternNodePtr> CChildren;
1927 CChildren.reserve(Children.size());
1928 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1929 CChildren.push_back(getChild(i)->clone());
1930 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1931 getNumTypes());
1932 }
1933 New->setName(getName());
1934 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1935 New->Types = Types;
1936 New->setPredicateCalls(getPredicateCalls());
1937 New->setTransformFn(getTransformFn());
1938 return New;
1939}
1940
1941/// RemoveAllTypes - Recursively strip all the types of this tree.
1942void TreePatternNode::RemoveAllTypes() {
1943 // Reset to unknown type.
1944 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1945 if (isLeaf()) return;
1946 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1947 getChild(i)->RemoveAllTypes();
1948}
1949
1950
1951/// SubstituteFormalArguments - Replace the formal arguments in this tree
1952/// with actual values specified by ArgMap.
1953void TreePatternNode::SubstituteFormalArguments(
1954 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1955 if (isLeaf()) return;
1956
1957 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1958 TreePatternNode *Child = getChild(i);
1959 if (Child->isLeaf()) {
1960 Init *Val = Child->getLeafValue();
1961 // Note that, when substituting into an output pattern, Val might be an
1962 // UnsetInit.
1963 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1964 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1965 // We found a use of a formal argument, replace it with its value.
1966 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1967 assert(NewChild && "Couldn't find formal argument!")((NewChild && "Couldn't find formal argument!") ? static_cast
<void> (0) : __assert_fail ("NewChild && \"Couldn't find formal argument!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1967, __PRETTY_FUNCTION__))
;
1968 assert((Child->getPredicateCalls().empty() ||(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1970, __PRETTY_FUNCTION__))
1969 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1970, __PRETTY_FUNCTION__))
1970 "Non-empty child predicate clobbered!")(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1970, __PRETTY_FUNCTION__))
;
1971 setChild(i, std::move(NewChild));
1972 }
1973 } else {
1974 getChild(i)->SubstituteFormalArguments(ArgMap);
1975 }
1976 }
1977}
1978
1979
1980/// InlinePatternFragments - If this pattern refers to any pattern
1981/// fragments, return the set of inlined versions (this can be more than
1982/// one if a PatFrags record has multiple alternatives).
1983void TreePatternNode::InlinePatternFragments(
1984 TreePatternNodePtr T, TreePattern &TP,
1985 std::vector<TreePatternNodePtr> &OutAlternatives) {
1986
1987 if (TP.hasError())
1988 return;
1989
1990 if (isLeaf()) {
1991 OutAlternatives.push_back(T); // nothing to do.
1992 return;
1993 }
1994
1995 Record *Op = getOperator();
1996
1997 if (!Op->isSubClassOf("PatFrags")) {
1998 if (getNumChildren() == 0) {
1999 OutAlternatives.push_back(T);
2000 return;
2001 }
2002
2003 // Recursively inline children nodes.
2004 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2005 ChildAlternatives.resize(getNumChildren());
2006 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2007 TreePatternNodePtr Child = getChildShared(i);
2008 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2009 // If there are no alternatives for any child, there are no
2010 // alternatives for this expression as whole.
2011 if (ChildAlternatives[i].empty())
2012 return;
2013
2014 for (auto NewChild : ChildAlternatives[i])
2015 assert((Child->getPredicateCalls().empty() ||(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2017, __PRETTY_FUNCTION__))
2016 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2017, __PRETTY_FUNCTION__))
2017 "Non-empty child predicate clobbered!")(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2017, __PRETTY_FUNCTION__))
;
2018 }
2019
2020 // The end result is an all-pairs construction of the resultant pattern.
2021 std::vector<unsigned> Idxs;
2022 Idxs.resize(ChildAlternatives.size());
2023 bool NotDone;
2024 do {
2025 // Create the variant and add it to the output list.
2026 std::vector<TreePatternNodePtr> NewChildren;
2027 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2028 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2029 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2030 getOperator(), std::move(NewChildren), getNumTypes());
2031
2032 // Copy over properties.
2033 R->setName(getName());
2034 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2035 R->setPredicateCalls(getPredicateCalls());
2036 R->setTransformFn(getTransformFn());
2037 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2038 R->setType(i, getExtType(i));
2039 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2040 R->setResultIndex(i, getResultIndex(i));
2041
2042 // Register alternative.
2043 OutAlternatives.push_back(R);
2044
2045 // Increment indices to the next permutation by incrementing the
2046 // indices from last index backward, e.g., generate the sequence
2047 // [0, 0], [0, 1], [1, 0], [1, 1].
2048 int IdxsIdx;
2049 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2050 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2051 Idxs[IdxsIdx] = 0;
2052 else
2053 break;
2054 }
2055 NotDone = (IdxsIdx >= 0);
2056 } while (NotDone);
2057
2058 return;
2059 }
2060
2061 // Otherwise, we found a reference to a fragment. First, look up its
2062 // TreePattern record.
2063 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2064
2065 // Verify that we are passing the right number of operands.
2066 if (Frag->getNumArgs() != Children.size()) {
2067 TP.error("'" + Op->getName() + "' fragment requires " +
2068 Twine(Frag->getNumArgs()) + " operands!");
2069 return;
2070 }
2071
2072 TreePredicateFn PredFn(Frag);
2073 unsigned Scope = 0;
2074 if (TreePredicateFn(Frag).usesOperands())
2075 Scope = TP.getDAGPatterns().allocateScope();
2076
2077 // Compute the map of formal to actual arguments.
2078 std::map<std::string, TreePatternNodePtr> ArgMap;
2079 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2080 TreePatternNodePtr Child = getChildShared(i);
2081 if (Scope != 0) {
2082 Child = Child->clone();
2083 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2084 }
2085 ArgMap[Frag->getArgName(i)] = Child;
2086 }
2087
2088 // Loop over all fragment alternatives.
2089 for (auto Alternative : Frag->getTrees()) {
2090 TreePatternNodePtr FragTree = Alternative->clone();
2091
2092 if (!PredFn.isAlwaysTrue())
2093 FragTree->addPredicateCall(PredFn, Scope);
2094
2095 // Resolve formal arguments to their actual value.
2096 if (Frag->getNumArgs())
2097 FragTree->SubstituteFormalArguments(ArgMap);
2098
2099 // Transfer types. Note that the resolved alternative may have fewer
2100 // (but not more) results than the PatFrags node.
2101 FragTree->setName(getName());
2102 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2103 FragTree->UpdateNodeType(i, getExtType(i), TP);
2104
2105 // Transfer in the old predicates.
2106 for (const TreePredicateCall &Pred : getPredicateCalls())
2107 FragTree->addPredicateCall(Pred);
2108
2109 // The fragment we inlined could have recursive inlining that is needed. See
2110 // if there are any pattern fragments in it and inline them as needed.
2111 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2112 }
2113}
2114
2115/// getImplicitType - Check to see if the specified record has an implicit
2116/// type which should be applied to it. This will infer the type of register
2117/// references from the register file information, for example.
2118///
2119/// When Unnamed is set, return the type of a DAG operand with no name, such as
2120/// the F8RC register class argument in:
2121///
2122/// (COPY_TO_REGCLASS GPR:$src, F8RC)
2123///
2124/// When Unnamed is false, return the type of a named DAG operand such as the
2125/// GPR:$src operand above.
2126///
2127static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2128 bool NotRegisters,
2129 bool Unnamed,
2130 TreePattern &TP) {
2131 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2132
2133 // Check to see if this is a register operand.
2134 if (R->isSubClassOf("RegisterOperand")) {
2135 assert(ResNo == 0 && "Regoperand ref only has one result!")((ResNo == 0 && "Regoperand ref only has one result!"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regoperand ref only has one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2135, __PRETTY_FUNCTION__))
;
2136 if (NotRegisters)
2137 return TypeSetByHwMode(); // Unknown.
2138 Record *RegClass = R->getValueAsDef("RegClass");
2139 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2140 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2141 }
2142
2143 // Check to see if this is a register or a register class.
2144 if (R->isSubClassOf("RegisterClass")) {
2145 assert(ResNo == 0 && "Regclass ref only has one result!")((ResNo == 0 && "Regclass ref only has one result!") ?
static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regclass ref only has one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2145, __PRETTY_FUNCTION__))
;
2146 // An unnamed register class represents itself as an i32 immediate, for
2147 // example on a COPY_TO_REGCLASS instruction.
2148 if (Unnamed)
2149 return TypeSetByHwMode(MVT::i32);
2150
2151 // In a named operand, the register class provides the possible set of
2152 // types.
2153 if (NotRegisters)
2154 return TypeSetByHwMode(); // Unknown.
2155 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2156 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2157 }
2158
2159 if (R->isSubClassOf("PatFrags")) {
2160 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?")((ResNo == 0 && "FIXME: PatFrag with multiple results?"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"FIXME: PatFrag with multiple results?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2160, __PRETTY_FUNCTION__))
;
2161 // Pattern fragment types will be resolved when they are inlined.
2162 return TypeSetByHwMode(); // Unknown.
2163 }
2164
2165 if (R->isSubClassOf("Register")) {
2166 assert(ResNo == 0 && "Registers only produce one result!")((ResNo == 0 && "Registers only produce one result!")
? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Registers only produce one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2166, __PRETTY_FUNCTION__))
;
2167 if (NotRegisters)
2168 return TypeSetByHwMode(); // Unknown.
2169 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2170 return TypeSetByHwMode(T.getRegisterVTs(R));
2171 }
2172
2173 if (R->isSubClassOf("SubRegIndex")) {
2174 assert(ResNo == 0 && "SubRegisterIndices only produce one result!")((ResNo == 0 && "SubRegisterIndices only produce one result!"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"SubRegisterIndices only produce one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2174, __PRETTY_FUNCTION__))
;
2175 return TypeSetByHwMode(MVT::i32);
2176 }
2177
2178 if (R->isSubClassOf("ValueType")) {
2179 assert(ResNo == 0 && "This node only has one result!")((ResNo == 0 && "This node only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2179, __PRETTY_FUNCTION__))
;
2180 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2181 //
2182 // (sext_inreg GPR:$src, i16)
2183 // ~~~
2184 if (Unnamed)
2185 return TypeSetByHwMode(MVT::Other);
2186 // With a name, the ValueType simply provides the type of the named
2187 // variable.
2188 //
2189 // (sext_inreg i32:$src, i16)
2190 // ~~~~~~~~
2191 if (NotRegisters)
2192 return TypeSetByHwMode(); // Unknown.
2193 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2194 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2195 }
2196
2197 if (R->isSubClassOf("CondCode")) {
2198 assert(ResNo == 0 && "This node only has one result!")((ResNo == 0 && "This node only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2198, __PRETTY_FUNCTION__))
;
2199 // Using a CondCodeSDNode.
2200 return TypeSetByHwMode(MVT::Other);
2201 }
2202
2203 if (R->isSubClassOf("ComplexPattern")) {
2204 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?")((ResNo == 0 && "FIXME: ComplexPattern with multiple results?"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"FIXME: ComplexPattern with multiple results?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2204, __PRETTY_FUNCTION__))
;
2205 if (NotRegisters)
2206 return TypeSetByHwMode(); // Unknown.
2207 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2208 }
2209 if (R->isSubClassOf("PointerLikeRegClass")) {
2210 assert(ResNo == 0 && "Regclass can only have one result!")((ResNo == 0 && "Regclass can only have one result!")
? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regclass can only have one result!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2210, __PRETTY_FUNCTION__))
;
2211 TypeSetByHwMode VTS(MVT::iPTR);
2212 TP.getInfer().expandOverloads(VTS);
2213 return VTS;
2214 }
2215
2216 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2217 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2218 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2219 // Placeholder.
2220 return TypeSetByHwMode(); // Unknown.
2221 }
2222
2223 if (R->isSubClassOf("Operand")) {
2224 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2225 Record *T = R->getValueAsDef("Type");
2226 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2227 }
2228
2229 TP.error("Unknown node flavor used in pattern: " + R->getName());
2230 return TypeSetByHwMode(MVT::Other);
2231}
2232
2233
2234/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2235/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2236const CodeGenIntrinsic *TreePatternNode::
2237getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2238 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2239 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2240 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2241 return nullptr;
2242
2243 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2244 return &CDP.getIntrinsicInfo(IID);
2245}
2246
2247/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2248/// return the ComplexPattern information, otherwise return null.
2249const ComplexPattern *
2250TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2251 Record *Rec;
2252 if (isLeaf()) {
2253 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2254 if (!DI)
2255 return nullptr;
2256 Rec = DI->getDef();
2257 } else
2258 Rec = getOperator();
2259
2260 if (!Rec->isSubClassOf("ComplexPattern"))
2261 return nullptr;
2262 return &CGP.getComplexPattern(Rec);
2263}
2264
2265unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2266 // A ComplexPattern specifically declares how many results it fills in.
2267 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2268 return CP->getNumOperands();
2269
2270 // If MIOperandInfo is specified, that gives the count.
2271 if (isLeaf()) {
2272 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2273 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2274 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2275 if (MIOps->getNumArgs())
2276 return MIOps->getNumArgs();
2277 }
2278 }
2279
2280 // Otherwise there is just one result.
2281 return 1;
2282}
2283
2284/// NodeHasProperty - Return true if this node has the specified property.
2285bool TreePatternNode::NodeHasProperty(SDNP Property,
2286 const CodeGenDAGPatterns &CGP) const {
2287 if (isLeaf()) {
2288 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2289 return CP->hasProperty(Property);
2290
2291 return false;
2292 }
2293
2294 if (Property != SDNPHasChain) {
2295 // The chain proprety is already present on the different intrinsic node
2296 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2297 // on the intrinsic. Anything else is specific to the individual intrinsic.
2298 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2299 return Int->hasProperty(Property);
2300 }
2301
2302 if (!Operator->isSubClassOf("SDPatternOperator"))
2303 return false;
2304
2305 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2306}
2307
2308
2309
2310
2311/// TreeHasProperty - Return true if any node in this tree has the specified
2312/// property.
2313bool TreePatternNode::TreeHasProperty(SDNP Property,
2314 const CodeGenDAGPatterns &CGP) const {
2315 if (NodeHasProperty(Property, CGP))
2316 return true;
2317 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2318 if (getChild(i)->TreeHasProperty(Property, CGP))
2319 return true;
2320 return false;
2321}
2322
2323/// isCommutativeIntrinsic - Return true if the node corresponds to a
2324/// commutative intrinsic.
2325bool
2326TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2327 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2328 return Int->isCommutative;
2329 return false;
2330}
2331
2332static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2333 if (!N->isLeaf())
2334 return N->getOperator()->isSubClassOf(Class);
2335
2336 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2337 if (DI && DI->getDef()->isSubClassOf(Class))
2338 return true;
2339
2340 return false;
2341}
2342
2343static void emitTooManyOperandsError(TreePattern &TP,
2344 StringRef InstName,
2345 unsigned Expected,
2346 unsigned Actual) {
2347 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2348 " operands but expected only " + Twine(Expected) + "!");
2349}
2350
2351static void emitTooFewOperandsError(TreePattern &TP,
2352 StringRef InstName,
2353 unsigned Actual) {
2354 TP.error("Instruction '" + InstName +
2355 "' expects more than the provided " + Twine(Actual) + " operands!");
2356}
2357
2358/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2359/// this node and its children in the tree. This returns true if it makes a
2360/// change, false otherwise. If a type contradiction is found, flag an error.
2361bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2362 if (TP.hasError())
2363 return false;
2364
2365 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2366 if (isLeaf()) {
2367 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2368 // If it's a regclass or something else known, include the type.
2369 bool MadeChange = false;
2370 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2371 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2372 NotRegisters,
2373 !hasName(), TP), TP);
2374 return MadeChange;
2375 }
2376
2377 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2378 assert(Types.size() == 1 && "Invalid IntInit")((Types.size() == 1 && "Invalid IntInit") ? static_cast
<void> (0) : __assert_fail ("Types.size() == 1 && \"Invalid IntInit\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2378, __PRETTY_FUNCTION__))
;
2379
2380 // Int inits are always integers. :)
2381 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2382
2383 if (!TP.getInfer().isConcrete(Types[0], false))
2384 return MadeChange;
2385
2386 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2387 for (auto &P : VVT) {
2388 MVT::SimpleValueType VT = P.second.SimpleTy;
2389 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2390 continue;
2391 unsigned Size = MVT(VT).getSizeInBits();
2392 // Make sure that the value is representable for this type.
2393 if (Size >= 32)
2394 continue;
2395 // Check that the value doesn't use more bits than we have. It must
2396 // either be a sign- or zero-extended equivalent of the original.
2397 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2398 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2399 SignBitAndAbove == 1)
2400 continue;
2401
2402 TP.error("Integer value '" + Twine(II->getValue()) +
2403 "' is out of range for type '" + getEnumName(VT) + "'!");
2404 break;
2405 }
2406 return MadeChange;
2407 }
2408
2409 return false;
2410 }
2411
2412 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2413 bool MadeChange = false;
2414
2415 // Apply the result type to the node.
2416 unsigned NumRetVTs = Int->IS.RetVTs.size();
2417 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2418
2419 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2420 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2421
2422 if (getNumChildren() != NumParamVTs + 1) {
2423 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2424 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2425 return false;
2426 }
2427
2428 // Apply type info to the intrinsic ID.
2429 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2430
2431 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2432 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2433
2434 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2435 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case")((getChild(i+1)->getNumTypes() == 1 && "Unhandled case"
) ? static_cast<void> (0) : __assert_fail ("getChild(i+1)->getNumTypes() == 1 && \"Unhandled case\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2435, __PRETTY_FUNCTION__))
;
2436 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2437 }
2438 return MadeChange;
2439 }
2440
2441 if (getOperator()->isSubClassOf("SDNode")) {
2442 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2443
2444 // Check that the number of operands is sane. Negative operands -> varargs.
2445 if (NI.getNumOperands() >= 0 &&
2446 getNumChildren() != (unsigned)NI.getNumOperands()) {
2447 TP.error(getOperator()->getName() + " node requires exactly " +
2448 Twine(NI.getNumOperands()) + " operands!");
2449 return false;
2450 }
2451
2452 bool MadeChange = false;
2453 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2454 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2455 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2456 return MadeChange;
2457 }
2458
2459 if (getOperator()->isSubClassOf("Instruction")) {
2460 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2461 CodeGenInstruction &InstInfo =
2462 CDP.getTargetInfo().getInstruction(getOperator());
2463
2464 bool MadeChange = false;
2465
2466 // Apply the result types to the node, these come from the things in the
2467 // (outs) list of the instruction.
2468 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2469 Inst.getNumResults());
2470 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2471 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2472
2473 // If the instruction has implicit defs, we apply the first one as a result.
2474 // FIXME: This sucks, it should apply all implicit defs.
2475 if (!InstInfo.ImplicitDefs.empty()) {
2476 unsigned ResNo = NumResultsToAdd;
2477
2478 // FIXME: Generalize to multiple possible types and multiple possible
2479 // ImplicitDefs.
2480 MVT::SimpleValueType VT =
2481 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2482
2483 if (VT != MVT::Other)
2484 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2485 }
2486
2487 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2488 // be the same.
2489 if (getOperator()->getName() == "INSERT_SUBREG") {
2490 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled")((getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"
) ? static_cast<void> (0) : __assert_fail ("getChild(0)->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2490, __PRETTY_FUNCTION__))
;
2491 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2492 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2493 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2494 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2495 // variadic.
2496
2497 unsigned NChild = getNumChildren();
2498 if (NChild < 3) {
2499 TP.error("REG_SEQUENCE requires at least 3 operands!");
2500 return false;
2501 }
2502
2503 if (NChild % 2 == 0) {
2504 TP.error("REG_SEQUENCE requires an odd number of operands!");
2505 return false;
2506 }
2507
2508 if (!isOperandClass(getChild(0), "RegisterClass")) {
2509 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2510 return false;
2511 }
2512
2513 for (unsigned I = 1; I < NChild; I += 2) {
2514 TreePatternNode *SubIdxChild = getChild(I + 1);
2515 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2516 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2517 Twine(I + 1) + "!");
2518 return false;
2519 }
2520 }
2521 }
2522
2523 unsigned NumResults = Inst.getNumResults();
2524 unsigned NumFixedOperands = InstInfo.Operands.size();
2525
2526 // If one or more operands with a default value appear at the end of the
2527 // formal operand list for an instruction, we allow them to be overridden
2528 // by optional operands provided in the pattern.
2529 //
2530 // But if an operand B without a default appears at any point after an
2531 // operand A with a default, then we don't allow A to be overridden,
2532 // because there would be no way to specify whether the next operand in
2533 // the pattern was intended to override A or skip it.
2534 unsigned NonOverridableOperands = NumFixedOperands;
2535 while (NonOverridableOperands > NumResults &&
2536 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2537 --NonOverridableOperands;
2538
2539 unsigned ChildNo = 0;
2540 assert(NumResults <= NumFixedOperands)((NumResults <= NumFixedOperands) ? static_cast<void>
(0) : __assert_fail ("NumResults <= NumFixedOperands", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2540, __PRETTY_FUNCTION__))
;
2541 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2542 Record *OperandNode = InstInfo.Operands[i].Rec;
2543
2544 // If the operand has a default value, do we use it? We must use the
2545 // default if we've run out of children of the pattern DAG to consume,
2546 // or if the operand is followed by a non-defaulted one.
2547 if (CDP.operandHasDefault(OperandNode) &&
2548 (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2549 continue;
2550
2551 // If we have run out of child nodes and there _isn't_ a default
2552 // value we can use for the next operand, give an error.
2553 if (ChildNo >= getNumChildren()) {
2554 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2555 return false;
2556 }
2557
2558 TreePatternNode *Child = getChild(ChildNo++);
2559 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2560
2561 // If the operand has sub-operands, they may be provided by distinct
2562 // child patterns, so attempt to match each sub-operand separately.
2563 if (OperandNode->isSubClassOf("Operand")) {
2564 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2565 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2566 // But don't do that if the whole operand is being provided by
2567 // a single ComplexPattern-related Operand.
2568
2569 if (Child->getNumMIResults(CDP) < NumArgs) {
2570 // Match first sub-operand against the child we already have.
2571 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2572 MadeChange |=
2573 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2574
2575 // And the remaining sub-operands against subsequent children.
2576 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2577 if (ChildNo >= getNumChildren()) {
2578 emitTooFewOperandsError(TP, getOperator()->getName(),
2579 getNumChildren());
2580 return false;
2581 }
2582 Child = getChild(ChildNo++);
2583
2584 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2585 MadeChange |=
2586 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2587 }
2588 continue;
2589 }
2590 }
2591 }
2592
2593 // If we didn't match by pieces above, attempt to match the whole
2594 // operand now.
2595 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2596 }
2597
2598 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2599 emitTooManyOperandsError(TP, getOperator()->getName(),
2600 ChildNo, getNumChildren());
2601 return false;
2602 }
2603
2604 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2605 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2606 return MadeChange;
2607 }
2608
2609 if (getOperator()->isSubClassOf("ComplexPattern")) {
2610 bool MadeChange = false;
2611
2612 for (unsigned i = 0; i < getNumChildren(); ++i)
2613 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2614
2615 return MadeChange;
2616 }
2617
2618 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!")((getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"
) ? static_cast<void> (0) : __assert_fail ("getOperator()->isSubClassOf(\"SDNodeXForm\") && \"Unknown node type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2618, __PRETTY_FUNCTION__))
;
2619
2620 // Node transforms always take one operand.
2621 if (getNumChildren() != 1) {
2622 TP.error("Node transform '" + getOperator()->getName() +
2623 "' requires one operand!");
2624 return false;
2625 }
2626
2627 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2628 return MadeChange;
2629}
2630
2631/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2632/// RHS of a commutative operation, not the on LHS.
2633static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2634 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2635 return true;
2636 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2637 return true;
2638 return false;
2639}
2640
2641
2642/// canPatternMatch - If it is impossible for this pattern to match on this
2643/// target, fill in Reason and return false. Otherwise, return true. This is
2644/// used as a sanity check for .td files (to prevent people from writing stuff
2645/// that can never possibly work), and to prevent the pattern permuter from
2646/// generating stuff that is useless.
2647bool TreePatternNode::canPatternMatch(std::string &Reason,
2648 const CodeGenDAGPatterns &CDP) {
2649 if (isLeaf()) return true;
2650
2651 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2652 if (!getChild(i)->canPatternMatch(Reason, CDP))
2653 return false;
2654
2655 // If this is an intrinsic, handle cases that would make it not match. For
2656 // example, if an operand is required to be an immediate.
2657 if (getOperator()->isSubClassOf("Intrinsic")) {
2658 // TODO:
2659 return true;
2660 }
2661
2662 if (getOperator()->isSubClassOf("ComplexPattern"))
2663 return true;
2664
2665 // If this node is a commutative operator, check that the LHS isn't an
2666 // immediate.
2667 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2668 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2669 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2670 // Scan all of the operands of the node and make sure that only the last one
2671 // is a constant node, unless the RHS also is.
2672 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2673 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2674 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2675 if (OnlyOnRHSOfCommutative(getChild(i))) {
2676 Reason="Immediate value must be on the RHS of commutative operators!";
2677 return false;
2678 }
2679 }
2680 }
2681
2682 return true;
2683}
2684
2685//===----------------------------------------------------------------------===//
2686// TreePattern implementation
2687//
2688
2689TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2690 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2691 isInputPattern(isInput), HasError(false),
2692 Infer(*this) {
2693 for (Init *I : RawPat->getValues())
2694 Trees.push_back(ParseTreePattern(I, ""));
2695}
2696
2697TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2698 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2699 isInputPattern(isInput), HasError(false),
2700 Infer(*this) {
2701 Trees.push_back(ParseTreePattern(Pat, ""));
2702}
2703
2704TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2705 CodeGenDAGPatterns &cdp)
2706 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2707 Infer(*this) {
2708 Trees.push_back(Pat);
2709}
2710
2711void TreePattern::error(const Twine &Msg) {
2712 if (HasError)
2713 return;
2714 dump();
2715 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2716 HasError = true;
2717}
2718
2719void TreePattern::ComputeNamedNodes() {
2720 for (TreePatternNodePtr &Tree : Trees)
2721 ComputeNamedNodes(Tree.get());
2722}
2723
2724void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2725 if (!N->getName().empty())
2726 NamedNodes[N->getName()].push_back(N);
2727
2728 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2729 ComputeNamedNodes(N->getChild(i));
2730}
2731
2732TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2733 StringRef OpName) {
2734 if (DefInit *DI
1.1
'DI' is null
= dyn_cast<DefInit>(TheInit)) {
1
Assuming 'TheInit' is not a 'DefInit'
2
Taking false branch
2735 Record *R = DI->getDef();
2736
2737 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2738 // TreePatternNode of its own. For example:
2739 /// (foo GPR, imm) -> (foo GPR, (imm))
2740 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2741 return ParseTreePattern(
2742 DagInit::get(DI, nullptr,
2743 std::vector<std::pair<Init*, StringInit*> >()),
2744 OpName);
2745
2746 // Input argument?
2747 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2748 if (R->getName() == "node" && !OpName.empty()) {
2749 if (OpName.empty())
2750 error("'node' argument requires a name to match with operand list");
2751 Args.push_back(std::string(OpName));
2752 }
2753
2754 Res->setName(OpName);
2755 return Res;
2756 }
2757
2758 // ?:$name or just $name.
2759 if (isa<UnsetInit>(TheInit)) {
3
Assuming 'TheInit' is not a 'UnsetInit'
4
Taking false branch
2760 if (OpName.empty())
2761 error("'?' argument requires a name to match with operand list");
2762 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2763 Args.push_back(std::string(OpName));
2764 Res->setName(OpName);
2765 return Res;
2766 }
2767
2768 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
5
Assuming 'TheInit' is not a 'IntInit'
6
Assuming 'TheInit' is not a 'BitInit'
7
Taking false branch
2769 if (!OpName.empty())
2770 error("Constant int or bit argument should not have a name!");
2771 if (isa<BitInit>(TheInit))
2772 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2773 return std::make_shared<TreePatternNode>(TheInit, 1);
2774 }
2775
2776 if (BitsInit *BI
8.1
'BI' is null
= dyn_cast<BitsInit>(TheInit)) {
8
Assuming 'TheInit' is not a 'BitsInit'
9
Taking false branch
2777 // Turn this into an IntInit.
2778 Init *II = BI->convertInitializerTo(IntRecTy::get());
2779 if (!II || !isa<IntInit>(II))
2780 error("Bits value must be constants!");
2781 return ParseTreePattern(II, OpName);
2782 }
2783
2784 DagInit *Dag = dyn_cast<DagInit>(TheInit);
10
Assuming 'TheInit' is not a 'DagInit'
11
'Dag' initialized to a null pointer value
2785 if (!Dag
11.1
'Dag' is null
) {
12
Taking true branch
2786 TheInit->print(errs());
2787 error("Pattern has unexpected init kind!");
2788 }
2789 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
13
Called C++ object pointer is null
2790 if (!OpDef) error("Pattern has unexpected operator type!");
2791 Record *Operator = OpDef->getDef();
2792
2793 if (Operator->isSubClassOf("ValueType")) {
2794 // If the operator is a ValueType, then this must be "type cast" of a leaf
2795 // node.
2796 if (Dag->getNumArgs() != 1)
2797 error("Type cast only takes one operand!");
2798
2799 TreePatternNodePtr New =
2800 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2801
2802 // Apply the type cast.
2803 assert(New->getNumTypes() == 1 && "FIXME: Unhandled")((New->getNumTypes() == 1 && "FIXME: Unhandled") ?
static_cast<void> (0) : __assert_fail ("New->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2803, __PRETTY_FUNCTION__))
;
2804 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2805 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2806
2807 if (!OpName.empty())
2808 error("ValueType cast should not have a name!");
2809 return New;
2810 }
2811
2812 // Verify that this is something that makes sense for an operator.
2813 if (!Operator->isSubClassOf("PatFrags") &&
2814 !Operator->isSubClassOf("SDNode") &&
2815 !Operator->isSubClassOf("Instruction") &&
2816 !Operator->isSubClassOf("SDNodeXForm") &&
2817 !Operator->isSubClassOf("Intrinsic") &&
2818 !Operator->isSubClassOf("ComplexPattern") &&
2819 Operator->getName() != "set" &&
2820 Operator->getName() != "implicit")
2821 error("Unrecognized node '" + Operator->getName() + "'!");
2822
2823 // Check to see if this is something that is illegal in an input pattern.
2824 if (isInputPattern) {
2825 if (Operator->isSubClassOf("Instruction") ||
2826 Operator->isSubClassOf("SDNodeXForm"))
2827 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2828 } else {
2829 if (Operator->isSubClassOf("Intrinsic"))
2830 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2831
2832 if (Operator->isSubClassOf("SDNode") &&
2833 Operator->getName() != "imm" &&
2834 Operator->getName() != "timm" &&
2835 Operator->getName() != "fpimm" &&
2836 Operator->getName() != "tglobaltlsaddr" &&
2837 Operator->getName() != "tconstpool" &&
2838 Operator->getName() != "tjumptable" &&
2839 Operator->getName() != "tframeindex" &&
2840 Operator->getName() != "texternalsym" &&
2841 Operator->getName() != "tblockaddress" &&
2842 Operator->getName() != "tglobaladdr" &&
2843 Operator->getName() != "bb" &&
2844 Operator->getName() != "vt" &&
2845 Operator->getName() != "mcsym")
2846 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2847 }
2848
2849 std::vector<TreePatternNodePtr> Children;
2850
2851 // Parse all the operands.
2852 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2853 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2854
2855 // Get the actual number of results before Operator is converted to an intrinsic
2856 // node (which is hard-coded to have either zero or one result).
2857 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2858
2859 // If the operator is an intrinsic, then this is just syntactic sugar for
2860 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2861 // convert the intrinsic name to a number.
2862 if (Operator->isSubClassOf("Intrinsic")) {
2863 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2864 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2865
2866 // If this intrinsic returns void, it must have side-effects and thus a
2867 // chain.
2868 if (Int.IS.RetVTs.empty())
2869 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2870 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2871 // Has side-effects, requires chain.
2872 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2873 else // Otherwise, no chain.
2874 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2875
2876 Children.insert(Children.begin(),
2877 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2878 }
2879
2880 if (Operator->isSubClassOf("ComplexPattern")) {
2881 for (unsigned i = 0; i < Children.size(); ++i) {
2882 TreePatternNodePtr Child = Children[i];
2883
2884 if (Child->getName().empty())
2885 error("All arguments to a ComplexPattern must be named");
2886
2887 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2888 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2889 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2890 auto OperandId = std::make_pair(Operator, i);
2891 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2892 if (PrevOp != ComplexPatternOperands.end()) {
2893 if (PrevOp->getValue() != OperandId)
2894 error("All ComplexPattern operands must appear consistently: "
2895 "in the same order in just one ComplexPattern instance.");
2896 } else
2897 ComplexPatternOperands[Child->getName()] = OperandId;
2898 }
2899 }
2900
2901 TreePatternNodePtr Result =
2902 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2903 NumResults);
2904 Result->setName(OpName);
2905
2906 if (Dag->getName()) {
2907 assert(Result->getName().empty())((Result->getName().empty()) ? static_cast<void> (0)
: __assert_fail ("Result->getName().empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2907, __PRETTY_FUNCTION__))
;
2908 Result->setName(Dag->getNameStr());
2909 }
2910 return Result;
2911}
2912
2913/// SimplifyTree - See if we can simplify this tree to eliminate something that
2914/// will never match in favor of something obvious that will. This is here
2915/// strictly as a convenience to target authors because it allows them to write
2916/// more type generic things and have useless type casts fold away.
2917///
2918/// This returns true if any change is made.
2919static bool SimplifyTree(TreePatternNodePtr &N) {
2920 if (N->isLeaf())
2921 return false;
2922
2923 // If we have a bitconvert with a resolved type and if the source and
2924 // destination types are the same, then the bitconvert is useless, remove it.
2925 //
2926 // We make an exception if the types are completely empty. This can come up
2927 // when the pattern being simplified is in the Fragments list of a PatFrags,
2928 // so that the operand is just an untyped "node". In that situation we leave
2929 // bitconverts unsimplified, and simplify them later once the fragment is
2930 // expanded into its true context.
2931 if (N->getOperator()->getName() == "bitconvert" &&
2932 N->getExtType(0).isValueTypeByHwMode(false) &&
2933 !N->getExtType(0).empty() &&
2934 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2935 N->getName().empty()) {
2936 N = N->getChildShared(0);
2937 SimplifyTree(N);
2938 return true;
2939 }
2940
2941 // Walk all children.
2942 bool MadeChange = false;
2943 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2944 TreePatternNodePtr Child = N->getChildShared(i);
2945 MadeChange |= SimplifyTree(Child);
2946 N->setChild(i, std::move(Child));
2947 }
2948 return MadeChange;
2949}
2950
2951
2952
2953/// InferAllTypes - Infer/propagate as many types throughout the expression
2954/// patterns as possible. Return true if all types are inferred, false
2955/// otherwise. Flags an error if a type contradiction is found.
2956bool TreePattern::
2957InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2958 if (NamedNodes.empty())
2959 ComputeNamedNodes();
2960
2961 bool MadeChange = true;
2962 while (MadeChange) {
2963 MadeChange = false;
2964 for (TreePatternNodePtr &Tree : Trees) {
2965 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2966 MadeChange |= SimplifyTree(Tree);
2967 }
2968
2969 // If there are constraints on our named nodes, apply them.
2970 for (auto &Entry : NamedNodes) {
2971 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2972
2973 // If we have input named node types, propagate their types to the named
2974 // values here.
2975 if (InNamedTypes) {
2976 if (!InNamedTypes->count(Entry.getKey())) {
2977 error("Node '" + std::string(Entry.getKey()) +
2978 "' in output pattern but not input pattern");
2979 return true;
2980 }
2981
2982 const SmallVectorImpl<TreePatternNode*> &InNodes =
2983 InNamedTypes->find(Entry.getKey())->second;
2984
2985 // The input types should be fully resolved by now.
2986 for (TreePatternNode *Node : Nodes) {
2987 // If this node is a register class, and it is the root of the pattern
2988 // then we're mapping something onto an input register. We allow
2989 // changing the type of the input register in this case. This allows
2990 // us to match things like:
2991 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2992 if (Node == Trees[0].get() && Node->isLeaf()) {
2993 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2994 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2995 DI->getDef()->isSubClassOf("RegisterOperand")))
2996 continue;
2997 }
2998
2999 assert(Node->getNumTypes() == 1 &&((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3001, __PRETTY_FUNCTION__))
3000 InNodes[0]->getNumTypes() == 1 &&((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3001, __PRETTY_FUNCTION__))
3001 "FIXME: cannot name multiple result nodes yet")((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3001, __PRETTY_FUNCTION__))
;
3002 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3003 *this);
3004 }
3005 }
3006
3007 // If there are multiple nodes with the same name, they must all have the
3008 // same type.
3009 if (Entry.second.size() > 1) {
3010 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3011 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3012 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&((N1->getNumTypes() == 1 && N2->getNumTypes() ==
1 && "FIXME: cannot name multiple result nodes yet")
? static_cast<void> (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3013, __PRETTY_FUNCTION__))
3013 "FIXME: cannot name multiple result nodes yet")((N1->getNumTypes() == 1 && N2->getNumTypes() ==
1 && "FIXME: cannot name multiple result nodes yet")
? static_cast<void> (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3013, __PRETTY_FUNCTION__))
;
3014
3015 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3016 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3017 }
3018 }
3019 }
3020 }
3021
3022 bool HasUnresolvedTypes = false;
3023 for (const TreePatternNodePtr &Tree : Trees)
3024 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3025 return !HasUnresolvedTypes;
3026}
3027
3028void TreePattern::print(raw_ostream &OS) const {
3029 OS << getRecord()->getName();
3030 if (!Args.empty()) {
3031 OS << "(" << Args[0];
3032 for (unsigned i = 1, e = Args.size(); i != e; ++i)
3033 OS << ", " << Args[i];
3034 OS << ")";
3035 }
3036 OS << ": ";
3037
3038 if (Trees.size() > 1)
3039 OS << "[\n";
3040 for (const TreePatternNodePtr &Tree : Trees) {
3041 OS << "\t";
3042 Tree->print(OS);
3043 OS << "\n";
3044 }
3045
3046 if (Trees.size() > 1)
3047 OS << "]\n";
3048}
3049
3050void TreePattern::dump() const { print(errs()); }
3051
3052//===----------------------------------------------------------------------===//
3053// CodeGenDAGPatterns implementation
3054//
3055
3056CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3057 PatternRewriterFn PatternRewriter)
3058 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3059 PatternRewriter(PatternRewriter) {
3060
3061 Intrinsics = CodeGenIntrinsicTable(Records);
3062 ParseNodeInfo();
3063 ParseNodeTransforms();
3064 ParseComplexPatterns();
3065 ParsePatternFragments();
3066 ParseDefaultOperands();
3067 ParseInstructions();
3068 ParsePatternFragments(/*OutFrags*/true);
3069 ParsePatterns();
3070
3071 // Break patterns with parameterized types into a series of patterns,
3072 // where each one has a fixed type and is predicated on the conditions
3073 // of the associated HW mode.
3074 ExpandHwModeBasedTypes();
3075
3076 // Generate variants. For example, commutative patterns can match
3077 // multiple ways. Add them to PatternsToMatch as well.
3078 GenerateVariants();
3079
3080 // Infer instruction flags. For example, we can detect loads,
3081 // stores, and side effects in many cases by examining an
3082 // instruction's pattern.
3083 InferInstructionFlags();
3084
3085 // Verify that instruction flags match the patterns.
3086 VerifyInstructionFlags();
3087}
3088
3089Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3090 Record *N = Records.getDef(Name);
3091 if (!N || !N->isSubClassOf("SDNode"))
3092 PrintFatalError("Error getting SDNode '" + Name + "'!");
3093
3094 return N;
3095}
3096
3097// Parse all of the SDNode definitions for the target, populating SDNodes.
3098void CodeGenDAGPatterns::ParseNodeInfo() {
3099 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3100 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3101
3102 while (!Nodes.empty()) {
3103 Record *R = Nodes.back();
3104 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3105 Nodes.pop_back();
3106 }
3107
3108 // Get the builtin intrinsic nodes.
3109 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3110 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3111 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3112}
3113
3114/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3115/// map, and emit them to the file as functions.
3116void CodeGenDAGPatterns::ParseNodeTransforms() {
3117 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3118 while (!Xforms.empty()) {
3119 Record *XFormNode = Xforms.back();
3120 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3121 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3122 SDNodeXForms.insert(
3123 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3124
3125 Xforms.pop_back();
3126 }
3127}
3128
3129void CodeGenDAGPatterns::ParseComplexPatterns() {
3130 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3131 while (!AMs.empty()) {
3132 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3133 AMs.pop_back();
3134 }
3135}
3136
3137
3138/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3139/// file, building up the PatternFragments map. After we've collected them all,
3140/// inline fragments together as necessary, so that there are no references left
3141/// inside a pattern fragment to a pattern fragment.
3142///
3143void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3144 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3145
3146 // First step, parse all of the fragments.
3147 for (Record *Frag : Fragments) {
3148 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3149 continue;
3150
3151 ListInit *LI = Frag->getValueAsListInit("Fragments");
3152 TreePattern *P =
3153 (PatternFragments[Frag] = std::make_unique<TreePattern>(
3154 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3155 *this)).get();
3156
3157 // Validate the argument list, converting it to set, to discard duplicates.
3158 std::vector<std::string> &Args = P->getArgList();
3159 // Copy the args so we can take StringRefs to them.
3160 auto ArgsCopy = Args;
3161 SmallDenseSet<StringRef, 4> OperandsSet;
3162 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3163
3164 if (OperandsSet.count(""))
3165 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3166
3167 // Parse the operands list.
3168 DagInit *OpsList = Frag->getValueAsDag("Operands");
3169 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3170 // Special cases: ops == outs == ins. Different names are used to
3171 // improve readability.
3172 if (!OpsOp ||
3173 (OpsOp->getDef()->getName() != "ops" &&
3174 OpsOp->getDef()->getName() != "outs" &&
3175 OpsOp->getDef()->getName() != "ins"))
3176 P->error("Operands list should start with '(ops ... '!");
3177
3178 // Copy over the arguments.
3179 Args.clear();
3180 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3181 if (!isa<DefInit>(OpsList->getArg(j)) ||
3182 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3183 P->error("Operands list should all be 'node' values.");
3184 if (!OpsList->getArgName(j))
3185 P->error("Operands list should have names for each operand!");
3186 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3187 if (!OperandsSet.count(ArgNameStr))
3188 P->error("'" + ArgNameStr +
3189 "' does not occur in pattern or was multiply specified!");
3190 OperandsSet.erase(ArgNameStr);
3191 Args.push_back(std::string(ArgNameStr));
3192 }
3193
3194 if (!OperandsSet.empty())
3195 P->error("Operands list does not contain an entry for operand '" +
3196 *OperandsSet.begin() + "'!");
3197
3198 // If there is a node transformation corresponding to this, keep track of
3199 // it.
3200 Record *Transform = Frag->getValueAsDef("OperandTransform");
3201 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3202 for (auto T : P->getTrees())
3203 T->setTransformFn(Transform);
3204 }
3205
3206 // Now that we've parsed all of the tree fragments, do a closure on them so
3207 // that there are not references to PatFrags left inside of them.
3208 for (Record *Frag : Fragments) {
3209 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3210 continue;
3211
3212 TreePattern &ThePat = *PatternFragments[Frag];
3213 ThePat.InlinePatternFragments();
3214
3215 // Infer as many types as possible. Don't worry about it if we don't infer
3216 // all of them, some may depend on the inputs of the pattern. Also, don't
3217 // validate type sets; validation may cause spurious failures e.g. if a
3218 // fragment needs floating-point types but the current target does not have
3219 // any (this is only an error if that fragment is ever used!).
3220 {
3221 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3222 ThePat.InferAllTypes();
3223 ThePat.resetError();
3224 }
3225
3226 // If debugging, print out the pattern fragment result.
3227 LLVM_DEBUG(ThePat.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { ThePat.dump(); } } while (false)
;
3228 }
3229}
3230
3231void CodeGenDAGPatterns::ParseDefaultOperands() {
3232 std::vector<Record*> DefaultOps;
3233 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3234
3235 // Find some SDNode.
3236 assert(!SDNodes.empty() && "No SDNodes parsed?")((!SDNodes.empty() && "No SDNodes parsed?") ? static_cast
<void> (0) : __assert_fail ("!SDNodes.empty() && \"No SDNodes parsed?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3236, __PRETTY_FUNCTION__))
;
3237 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3238
3239 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3240 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3241
3242 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3243 // SomeSDnode so that we can parse this.
3244 std::vector<std::pair<Init*, StringInit*> > Ops;
3245 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3246 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3247 DefaultInfo->getArgName(op)));
3248 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3249
3250 // Create a TreePattern to parse this.
3251 TreePattern P(DefaultOps[i], DI, false, *this);
3252 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!")((P.getNumTrees() == 1 && "This ctor can only produce one tree!"
) ? static_cast<void> (0) : __assert_fail ("P.getNumTrees() == 1 && \"This ctor can only produce one tree!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3252, __PRETTY_FUNCTION__))
;
3253
3254 // Copy the operands over into a DAGDefaultOperand.
3255 DAGDefaultOperand DefaultOpInfo;
3256
3257 const TreePatternNodePtr &T = P.getTree(0);
3258 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3259 TreePatternNodePtr TPN = T->getChildShared(op);
3260 while (TPN->ApplyTypeConstraints(P, false))
3261 /* Resolve all types */;
3262
3263 if (TPN->ContainsUnresolvedType(P)) {
3264 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3265 DefaultOps[i]->getName() +
3266 "' doesn't have a concrete type!");
3267 }
3268 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3269 }
3270
3271 // Insert it into the DefaultOperands map so we can find it later.
3272 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3273 }
3274}
3275
3276/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3277/// instruction input. Return true if this is a real use.
3278static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3279 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3280 // No name -> not interesting.
3281 if (Pat->getName().empty()) {
3282 if (Pat->isLeaf()) {
3283 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3284 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3285 DI->getDef()->isSubClassOf("RegisterOperand")))
3286 I.error("Input " + DI->getDef()->getName() + " must be named!");
3287 }
3288 return false;
3289 }
3290
3291 Record *Rec;
3292 if (Pat->isLeaf()) {
3293 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3294 if (!DI)
3295 I.error("Input $" + Pat->getName() + " must be an identifier!");
3296 Rec = DI->getDef();
3297 } else {
3298 Rec = Pat->getOperator();
3299 }
3300
3301 // SRCVALUE nodes are ignored.
3302 if (Rec->getName() == "srcvalue")
3303 return false;
3304
3305 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3306 if (!Slot) {
3307 Slot = Pat;
3308 return true;
3309 }
3310 Record *SlotRec;
3311 if (Slot->isLeaf()) {
3312 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3313 } else {
3314 assert(Slot->getNumChildren() == 0 && "can't be a use with children!")((Slot->getNumChildren() == 0 && "can't be a use with children!"
) ? static_cast<void> (0) : __assert_fail ("Slot->getNumChildren() == 0 && \"can't be a use with children!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3314, __PRETTY_FUNCTION__))
;
3315 SlotRec = Slot->getOperator();
3316 }
3317
3318 // Ensure that the inputs agree if we've already seen this input.
3319 if (Rec != SlotRec)
3320 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3321 // Ensure that the types can agree as well.
3322 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3323 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3324 if (Slot->getExtTypes() != Pat->getExtTypes())
3325 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3326 return true;
3327}
3328
3329/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3330/// part of "I", the instruction), computing the set of inputs and outputs of
3331/// the pattern. Report errors if we see anything naughty.
3332void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3333 TreePattern &I, TreePatternNodePtr Pat,
3334 std::map<std::string, TreePatternNodePtr> &InstInputs,
3335 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3336 &InstResults,
3337 std::vector<Record *> &InstImpResults) {
3338
3339 // The instruction pattern still has unresolved fragments. For *named*
3340 // nodes we must resolve those here. This may not result in multiple
3341 // alternatives.
3342 if (!Pat->getName().empty()) {
3343 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3344 SrcPattern.InlinePatternFragments();
3345 SrcPattern.InferAllTypes();
3346 Pat = SrcPattern.getOnlyTree();
3347 }
3348
3349 if (Pat->isLeaf()) {
3350 bool isUse = HandleUse(I, Pat, InstInputs);
3351 if (!isUse && Pat->getTransformFn())
3352 I.error("Cannot specify a transform function for a non-input value!");
3353 return;
3354 }
3355
3356 if (Pat->getOperator()->getName() == "implicit") {
3357 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3358 TreePatternNode *Dest = Pat->getChild(i);
3359 if (!Dest->isLeaf())
3360 I.error("implicitly defined value should be a register!");
3361
3362 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3363 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3364 I.error("implicitly defined value should be a register!");
3365 InstImpResults.push_back(Val->getDef());
3366 }
3367 return;
3368 }
3369
3370 if (Pat->getOperator()->getName() != "set") {
3371 // If this is not a set, verify that the children nodes are not void typed,
3372 // and recurse.
3373 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3374 if (Pat->getChild(i)->getNumTypes() == 0)
3375 I.error("Cannot have void nodes inside of patterns!");
3376 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3377 InstResults, InstImpResults);
3378 }
3379
3380 // If this is a non-leaf node with no children, treat it basically as if
3381 // it were a leaf. This handles nodes like (imm).
3382 bool isUse = HandleUse(I, Pat, InstInputs);
3383
3384 if (!isUse && Pat->getTransformFn())
3385 I.error("Cannot specify a transform function for a non-input value!");
3386 return;
3387 }
3388
3389 // Otherwise, this is a set, validate and collect instruction results.
3390 if (Pat->getNumChildren() == 0)
3391 I.error("set requires operands!");
3392
3393 if (Pat->getTransformFn())
3394 I.error("Cannot specify a transform function on a set node!");
3395
3396 // Check the set destinations.
3397 unsigned NumDests = Pat->getNumChildren()-1;
3398 for (unsigned i = 0; i != NumDests; ++i) {
3399 TreePatternNodePtr Dest = Pat->getChildShared(i);
3400 // For set destinations we also must resolve fragments here.
3401 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3402 DestPattern.InlinePatternFragments();
3403 DestPattern.InferAllTypes();
3404 Dest = DestPattern.getOnlyTree();
3405
3406 if (!Dest->isLeaf())
3407 I.error("set destination should be a register!");
3408
3409 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3410 if (!Val) {
3411 I.error("set destination should be a register!");
3412 continue;
3413 }
3414
3415 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3416 Val->getDef()->isSubClassOf("ValueType") ||
3417 Val->getDef()->isSubClassOf("RegisterOperand") ||
3418 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3419 if (Dest->getName().empty())
3420 I.error("set destination must have a name!");
3421 if (InstResults.count(Dest->getName()))
3422 I.error("cannot set '" + Dest->getName() + "' multiple times");
3423 InstResults[Dest->getName()] = Dest;
3424 } else if (Val->getDef()->isSubClassOf("Register")) {
3425 InstImpResults.push_back(Val->getDef());
3426 } else {
3427 I.error("set destination should be a register!");
3428 }
3429 }
3430
3431 // Verify and collect info from the computation.
3432 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3433 InstResults, InstImpResults);
3434}
3435
3436//===----------------------------------------------------------------------===//
3437// Instruction Analysis
3438//===----------------------------------------------------------------------===//
3439
3440class InstAnalyzer {
3441 const CodeGenDAGPatterns &CDP;
3442public:
3443 bool hasSideEffects;
3444 bool mayStore;
3445 bool mayLoad;
3446 bool isBitcast;
3447 bool isVariadic;
3448 bool hasChain;
3449
3450 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3451 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3452 isBitcast(false), isVariadic(false), hasChain(false) {}
3453
3454 void Analyze(const PatternToMatch &Pat) {
3455 const TreePatternNode *N = Pat.getSrcPattern();
3456 AnalyzeNode(N);
3457 // These properties are detected only on the root node.
3458 isBitcast = IsNodeBitcast(N);
3459 }
3460
3461private:
3462 bool IsNodeBitcast(const TreePatternNode *N) const {
3463 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3464 return false;
3465
3466 if (N->isLeaf())
3467 return false;
3468 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3469 return false;
3470
3471 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3472 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3473 return false;
3474 return OpInfo.getEnumName() == "ISD::BITCAST";
3475 }
3476
3477public:
3478 void AnalyzeNode(const TreePatternNode *N) {
3479 if (N->isLeaf()) {
3480 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3481 Record *LeafRec = DI->getDef();
3482 // Handle ComplexPattern leaves.
3483 if (LeafRec->isSubClassOf("ComplexPattern")) {
3484 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3485 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3486 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3487 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3488 }
3489 }
3490 return;
3491 }
3492
3493 // Analyze children.
3494 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3495 AnalyzeNode(N->getChild(i));
3496
3497 // Notice properties of the node.
3498 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3499 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3500 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3501 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3502 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3503
3504 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3505 // If this is an intrinsic, analyze it.
3506 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3507 mayLoad = true;// These may load memory.
3508
3509 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3510 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3511
3512 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3513 IntInfo->hasSideEffects)
3514 // ReadWriteMem intrinsics can have other strange effects.
3515 hasSideEffects = true;
3516 }
3517 }
3518
3519};
3520
3521static bool InferFromPattern(CodeGenInstruction &InstInfo,
3522 const InstAnalyzer &PatInfo,
3523 Record *PatDef) {
3524 bool Error = false;
3525
3526 // Remember where InstInfo got its flags.
3527 if (InstInfo.hasUndefFlags())
3528 InstInfo.InferredFrom = PatDef;
3529
3530 // Check explicitly set flags for consistency.
3531 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3532 !InstInfo.hasSideEffects_Unset) {
3533 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3534 // the pattern has no side effects. That could be useful for div/rem
3535 // instructions that may trap.
3536 if (!InstInfo.hasSideEffects) {
3537 Error = true;
3538 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3539 Twine(InstInfo.hasSideEffects));
3540 }
3541 }
3542
3543 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3544 Error = true;
3545 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3546 Twine(InstInfo.mayStore));
3547 }
3548
3549 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3550 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3551 // Some targets translate immediates to loads.
3552 if (!InstInfo.mayLoad) {
3553 Error = true;
3554 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3555 Twine(InstInfo.mayLoad));
3556 }
3557 }
3558
3559 // Transfer inferred flags.
3560 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3561 InstInfo.mayStore |= PatInfo.mayStore;
3562 InstInfo.mayLoad |= PatInfo.mayLoad;
3563
3564 // These flags are silently added without any verification.
3565 // FIXME: To match historical behavior of TableGen, for now add those flags
3566 // only when we're inferring from the primary instruction pattern.
3567 if (PatDef->isSubClassOf("Instruction")) {
3568 InstInfo.isBitcast |= PatInfo.isBitcast;
3569 InstInfo.hasChain |= PatInfo.hasChain;
3570 InstInfo.hasChain_Inferred = true;
3571 }
3572
3573 // Don't infer isVariadic. This flag means something different on SDNodes and
3574 // instructions. For example, a CALL SDNode is variadic because it has the
3575 // call arguments as operands, but a CALL instruction is not variadic - it
3576 // has argument registers as implicit, not explicit uses.
3577
3578 return Error;
3579}
3580
3581/// hasNullFragReference - Return true if the DAG has any reference to the
3582/// null_frag operator.
3583static bool hasNullFragReference(DagInit *DI) {
3584 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3585 if (!OpDef) return false;
3586 Record *Operator = OpDef->getDef();
3587
3588 // If this is the null fragment, return true.
3589 if (Operator->getName() == "null_frag") return true;
3590 // If any of the arguments reference the null fragment, return true.
3591 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3592 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3593 if (Arg && hasNullFragReference(Arg))
3594 return true;
3595 }
3596
3597 return false;
3598}
3599
3600/// hasNullFragReference - Return true if any DAG in the list references
3601/// the null_frag operator.
3602static bool hasNullFragReference(ListInit *LI) {
3603 for (Init *I : LI->getValues()) {
3604 DagInit *DI = dyn_cast<DagInit>(I);
3605 assert(DI && "non-dag in an instruction Pattern list?!")((DI && "non-dag in an instruction Pattern list?!") ?
static_cast<void> (0) : __assert_fail ("DI && \"non-dag in an instruction Pattern list?!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3605, __PRETTY_FUNCTION__))
;
3606 if (hasNullFragReference(DI))
3607 return true;
3608 }
3609 return false;
3610}
3611
3612/// Get all the instructions in a tree.
3613static void
3614getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3615 if (Tree->isLeaf())
3616 return;
3617 if (Tree->getOperator()->isSubClassOf("Instruction"))
3618 Instrs.push_back(Tree->getOperator());
3619 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3620 getInstructionsInTree(Tree->getChild(i), Instrs);
3621}
3622
3623/// Check the class of a pattern leaf node against the instruction operand it
3624/// represents.
3625static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3626 Record *Leaf) {
3627 if (OI.Rec == Leaf)
3628 return true;
3629
3630 // Allow direct value types to be used in instruction set patterns.
3631 // The type will be checked later.
3632 if (Leaf->isSubClassOf("ValueType"))
3633 return true;
3634
3635 // Patterns can also be ComplexPattern instances.
3636 if (Leaf->isSubClassOf("ComplexPattern"))
3637 return true;
3638
3639 return false;
3640}
3641
3642void CodeGenDAGPatterns::parseInstructionPattern(
3643 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3644
3645 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!")((!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"
) ? static_cast<void> (0) : __assert_fail ("!DAGInsts.count(CGI.TheDef) && \"Instruction already parsed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3645, __PRETTY_FUNCTION__))
;
3646
3647 // Parse the instruction.
3648 TreePattern I(CGI.TheDef, Pat, true, *this);
3649
3650 // InstInputs - Keep track of all of the inputs of the instruction, along
3651 // with the record they are declared as.
3652 std::map<std::string, TreePatternNodePtr> InstInputs;
3653
3654 // InstResults - Keep track of all the virtual registers that are 'set'
3655 // in the instruction, including what reg class they are.
3656 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3657 InstResults;
3658
3659 std::vector<Record*> InstImpResults;
3660
3661 // Verify that the top-level forms in the instruction are of void type, and
3662 // fill in the InstResults map.
3663 SmallString<32> TypesString;
3664 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3665 TypesString.clear();
3666 TreePatternNodePtr Pat = I.getTree(j);
3667 if (Pat->getNumTypes() != 0) {
3668 raw_svector_ostream OS(TypesString);
3669 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3670 if (k > 0)
3671 OS << ", ";
3672 Pat->getExtType(k).writeToStream(OS);
3673 }
3674 I.error("Top-level forms in instruction pattern should have"
3675 " void types, has types " +
3676 OS.str());
3677 }
3678
3679 // Find inputs and outputs, and verify the structure of the uses/defs.
3680 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3681 InstImpResults);
3682 }
3683
3684 // Now that we have inputs and outputs of the pattern, inspect the operands
3685 // list for the instruction. This determines the order that operands are
3686 // added to the machine instruction the node corresponds to.
3687 unsigned NumResults = InstResults.size();
3688
3689 // Parse the operands list from the (ops) list, validating it.
3690 assert(I.getArgList().empty() && "Args list should still be empty here!")((I.getArgList().empty() && "Args list should still be empty here!"
) ? static_cast<void> (0) : __assert_fail ("I.getArgList().empty() && \"Args list should still be empty here!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3690, __PRETTY_FUNCTION__))
;
3691
3692 // Check that all of the results occur first in the list.
3693 std::vector<Record*> Results;
3694 std::vector<unsigned> ResultIndices;
3695 SmallVector<TreePatternNodePtr, 2> ResNodes;
3696 for (unsigned i = 0; i != NumResults; ++i) {
3697 if (i == CGI.Operands.size()) {
3698 const std::string &OpName =
3699 std::find_if(InstResults.begin(), InstResults.end(),
3700 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3701 return P.second;
3702 })
3703 ->first;
3704
3705 I.error("'" + OpName + "' set but does not appear in operand list!");
3706 }
3707
3708 const std::string &OpName = CGI.Operands[i].Name;
3709
3710 // Check that it exists in InstResults.
3711 auto InstResultIter = InstResults.find(OpName);
3712 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3713 I.error("Operand $" + OpName + " does not exist in operand list!");
3714
3715 TreePatternNodePtr RNode = InstResultIter->second;
3716 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3717 ResNodes.push_back(std::move(RNode));
3718 if (!R)
3719 I.error("Operand $" + OpName + " should be a set destination: all "
3720 "outputs must occur before inputs in operand list!");
3721
3722 if (!checkOperandClass(CGI.Operands[i], R))
3723 I.error("Operand $" + OpName + " class mismatch!");
3724
3725 // Remember the return type.
3726 Results.push_back(CGI.Operands[i].Rec);
3727
3728 // Remember the result index.
3729 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3730
3731 // Okay, this one checks out.
3732 InstResultIter->second = nullptr;
3733 }
3734
3735 // Loop over the inputs next.
3736 std::vector<TreePatternNodePtr> ResultNodeOperands;
3737 std::vector<Record*> Operands;
3738 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3739 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3740 const std::string &OpName = Op.Name;
3741 if (OpName.empty())
3742 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3743
3744 if (!InstInputs.count(OpName)) {
3745 // If this is an operand with a DefaultOps set filled in, we can ignore
3746 // this. When we codegen it, we will do so as always executed.
3747 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3748 // Does it have a non-empty DefaultOps field? If so, ignore this
3749 // operand.
3750 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3751 continue;
3752 }
3753 I.error("Operand $" + OpName +
3754 " does not appear in the instruction pattern");
3755 }
3756 TreePatternNodePtr InVal = InstInputs[OpName];
3757 InstInputs.erase(OpName); // It occurred, remove from map.
3758
3759 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3760 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3761 if (!checkOperandClass(Op, InRec))
3762 I.error("Operand $" + OpName + "'s register class disagrees"
3763 " between the operand and pattern");
3764 }
3765 Operands.push_back(Op.Rec);
3766
3767 // Construct the result for the dest-pattern operand list.
3768 TreePatternNodePtr OpNode = InVal->clone();
3769
3770 // No predicate is useful on the result.
3771 OpNode->clearPredicateCalls();
3772
3773 // Promote the xform function to be an explicit node if set.
3774 if (Record *Xform = OpNode->getTransformFn()) {
3775 OpNode->setTransformFn(nullptr);
3776 std::vector<TreePatternNodePtr> Children;
3777 Children.push_back(OpNode);
3778 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3779 OpNode->getNumTypes());
3780 }
3781
3782 ResultNodeOperands.push_back(std::move(OpNode));
3783 }
3784
3785 if (!InstInputs.empty())
3786 I.error("Input operand $" + InstInputs.begin()->first +
3787 " occurs in pattern but not in operands list!");
3788
3789 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3790 I.getRecord(), std::move(ResultNodeOperands),
3791 GetNumNodeResults(I.getRecord(), *this));
3792 // Copy fully inferred output node types to instruction result pattern.
3793 for (unsigned i = 0; i != NumResults; ++i) {
3794 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled")((ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"
) ? static_cast<void> (0) : __assert_fail ("ResNodes[i]->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3794, __PRETTY_FUNCTION__))
;
3795 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3796 ResultPattern->setResultIndex(i, ResultIndices[i]);
3797 }
3798
3799 // FIXME: Assume only the first tree is the pattern. The others are clobber
3800 // nodes.
3801 TreePatternNodePtr Pattern = I.getTree(0);
3802 TreePatternNodePtr SrcPattern;
3803 if (Pattern->getOperator()->getName() == "set") {
3804 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3805 } else{
3806 // Not a set (store or something?)
3807 SrcPattern = Pattern;
3808 }
3809
3810 // Create and insert the instruction.
3811 // FIXME: InstImpResults should not be part of DAGInstruction.
3812 Record *R = I.getRecord();
3813 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3814 std::forward_as_tuple(Results, Operands, InstImpResults,
3815 SrcPattern, ResultPattern));
3816
3817 LLVM_DEBUG(I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { I.dump(); } } while (false)
;
3818}
3819
3820/// ParseInstructions - Parse all of the instructions, inlining and resolving
3821/// any fragments involved. This populates the Instructions list with fully
3822/// resolved instructions.
3823void CodeGenDAGPatterns::ParseInstructions() {
3824 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3825
3826 for (Record *Instr : Instrs) {
3827 ListInit *LI = nullptr;
3828
3829 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3830 LI = Instr->getValueAsListInit("Pattern");
3831
3832 // If there is no pattern, only collect minimal information about the
3833 // instruction for its operand list. We have to assume that there is one
3834 // result, as we have no detailed info. A pattern which references the
3835 // null_frag operator is as-if no pattern were specified. Normally this
3836 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3837 // null_frag.
3838 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3839 std::vector<Record*> Results;
3840 std::vector<Record*> Operands;
3841
3842 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3843
3844 if (InstInfo.Operands.size() != 0) {
3845 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3846 Results.push_back(InstInfo.Operands[j].Rec);
3847
3848 // The rest are inputs.
3849 for (unsigned j = InstInfo.Operands.NumDefs,
3850 e = InstInfo.Operands.size(); j < e; ++j)
3851 Operands.push_back(InstInfo.Operands[j].Rec);
3852 }
3853
3854 // Create and insert the instruction.
3855 std::vector<Record*> ImpResults;
3856 Instructions.insert(std::make_pair(Instr,
3857 DAGInstruction(Results, Operands, ImpResults)));
3858 continue; // no pattern.
3859 }
3860
3861 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3862 parseInstructionPattern(CGI, LI, Instructions);
3863 }
3864
3865 // If we can, convert the instructions to be patterns that are matched!
3866 for (auto &Entry : Instructions) {
3867 Record *Instr = Entry.first;
3868 DAGInstruction &TheInst = Entry.second;
3869 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3870 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3871
3872 if (SrcPattern && ResultPattern) {
3873 TreePattern Pattern(Instr, SrcPattern, true, *this);
3874 TreePattern Result(Instr, ResultPattern, false, *this);
3875 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3876 }
3877 }
3878}
3879
3880typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3881
3882static void FindNames(TreePatternNode *P,
3883 std::map<std::string, NameRecord> &Names,
3884 TreePattern *PatternTop) {
3885 if (!P->getName().empty()) {
3886 NameRecord &Rec = Names[P->getName()];
3887 // If this is the first instance of the name, remember the node.
3888 if (Rec.second++ == 0)
3889 Rec.first = P;
3890 else if (Rec.first->getExtTypes() != P->getExtTypes())
3891 PatternTop->error("repetition of value: $" + P->getName() +
3892 " where different uses have different types!");
3893 }
3894
3895 if (!P->isLeaf()) {
3896 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3897 FindNames(P->getChild(i), Names, PatternTop);
3898 }
3899}
3900
3901std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3902 std::vector<Predicate> Preds;
3903 for (Init *I : L->getValues()) {
3904 if (DefInit *Pred = dyn_cast<DefInit>(I))
3905 Preds.push_back(Pred->getDef());
3906 else
3907 llvm_unreachable("Non-def on the list")::llvm::llvm_unreachable_internal("Non-def on the list", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3907)
;
3908 }
3909
3910 // Sort so that different orders get canonicalized to the same string.
3911 llvm::sort(Preds);
3912 return Preds;
3913}
3914
3915void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3916 PatternToMatch &&PTM) {
3917 // Do some sanity checking on the pattern we're about to match.
3918 std::string Reason;
3919 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3920 PrintWarning(Pattern->getRecord()->getLoc(),
3921 Twine("Pattern can never match: ") + Reason);
3922 return;
3923 }
3924
3925 // If the source pattern's root is a complex pattern, that complex pattern
3926 // must specify the nodes it can potentially match.
3927 if (const ComplexPattern *CP =
3928 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3929 if (CP->getRootNodes().empty())
3930 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3931 " could match");
3932
3933
3934 // Find all of the named values in the input and output, ensure they have the
3935 // same type.
3936 std::map<std::string, NameRecord> SrcNames, DstNames;
3937 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3938 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3939
3940 // Scan all of the named values in the destination pattern, rejecting them if
3941 // they don't exist in the input pattern.
3942 for (const auto &Entry : DstNames) {
3943 if (SrcNames[Entry.first].first == nullptr)
3944 Pattern->error("Pattern has input without matching name in output: $" +
3945 Entry.first);
3946 }
3947
3948 // Scan all of the named values in the source pattern, rejecting them if the
3949 // name isn't used in the dest, and isn't used to tie two values together.
3950 for (const auto &Entry : SrcNames)
3951 if (DstNames[Entry.first].first == nullptr &&
3952 SrcNames[Entry.first].second == 1)
3953 Pattern->error("Pattern has dead named input: $" + Entry.first);
3954
3955 PatternsToMatch.push_back(PTM);
3956}
3957
3958void CodeGenDAGPatterns::InferInstructionFlags() {
3959 ArrayRef<const CodeGenInstruction*> Instructions =
3960 Target.getInstructionsByEnumValue();
3961
3962 unsigned Errors = 0;
3963
3964 // Try to infer flags from all patterns in PatternToMatch. These include
3965 // both the primary instruction patterns (which always come first) and
3966 // patterns defined outside the instruction.
3967 for (const PatternToMatch &PTM : ptms()) {
3968 // We can only infer from single-instruction patterns, otherwise we won't
3969 // know which instruction should get the flags.
3970 SmallVector<Record*, 8> PatInstrs;
3971 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3972 if (PatInstrs.size() != 1)
3973 continue;
3974
3975 // Get the single instruction.
3976 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3977
3978 // Only infer properties from the first pattern. We'll verify the others.
3979 if (InstInfo.InferredFrom)
3980 continue;
3981
3982 InstAnalyzer PatInfo(*this);
3983 PatInfo.Analyze(PTM);
3984 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3985 }
3986
3987 if (Errors)
3988 PrintFatalError("pattern conflicts");
3989
3990 // If requested by the target, guess any undefined properties.
3991 if (Target.guessInstructionProperties()) {
3992 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3993 CodeGenInstruction *InstInfo =
3994 const_cast<CodeGenInstruction *>(Instructions[i]);
3995 if (InstInfo->InferredFrom)
3996 continue;
3997 // The mayLoad and mayStore flags default to false.
3998 // Conservatively assume hasSideEffects if it wasn't explicit.
3999 if (InstInfo->hasSideEffects_Unset)
4000 InstInfo->hasSideEffects = true;
4001 }
4002 return;
4003 }
4004
4005 // Complain about any flags that are still undefined.
4006 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4007 CodeGenInstruction *InstInfo =
4008 const_cast<CodeGenInstruction *>(Instructions[i]);
4009 if (InstInfo->InferredFrom)
4010 continue;
4011 if (InstInfo->hasSideEffects_Unset)
4012 PrintError(InstInfo->TheDef->getLoc(),
4013 "Can't infer hasSideEffects from patterns");
4014 if (InstInfo->mayStore_Unset)
4015 PrintError(InstInfo->TheDef->getLoc(),
4016 "Can't infer mayStore from patterns");
4017 if (InstInfo->mayLoad_Unset)
4018 PrintError(InstInfo->TheDef->getLoc(),
4019 "Can't infer mayLoad from patterns");
4020 }
4021}
4022
4023
4024/// Verify instruction flags against pattern node properties.
4025void CodeGenDAGPatterns::VerifyInstructionFlags() {
4026 unsigned Errors = 0;
4027 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
4028 const PatternToMatch &PTM = *I;
4029 SmallVector<Record*, 8> Instrs;
4030 getInstructionsInTree(PTM.getDstPattern(), Instrs);
4031 if (Instrs.empty())
4032 continue;
4033
4034 // Count the number of instructions with each flag set.
4035 unsigned NumSideEffects = 0;
4036 unsigned NumStores = 0;
4037 unsigned NumLoads = 0;
4038 for (const Record *Instr : Instrs) {
4039 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4040 NumSideEffects += InstInfo.hasSideEffects;
4041 NumStores += InstInfo.mayStore;
4042 NumLoads += InstInfo.mayLoad;
4043 }
4044
4045 // Analyze the source pattern.
4046 InstAnalyzer PatInfo(*this);
4047 PatInfo.Analyze(PTM);
4048
4049 // Collect error messages.
4050 SmallVector<std::string, 4> Msgs;
4051
4052 // Check for missing flags in the output.
4053 // Permit extra flags for now at least.
4054 if (PatInfo.hasSideEffects && !NumSideEffects)
4055 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4056
4057 // Don't verify store flags on instructions with side effects. At least for
4058 // intrinsics, side effects implies mayStore.
4059 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4060 Msgs.push_back("pattern may store, but mayStore isn't set");
4061
4062 // Similarly, mayStore implies mayLoad on intrinsics.
4063 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4064 Msgs.push_back("pattern may load, but mayLoad isn't set");
4065
4066 // Print error messages.
4067 if (Msgs.empty())
4068 continue;
4069 ++Errors;
4070
4071 for (const std::string &Msg : Msgs)
4072 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4073 (Instrs.size() == 1 ?
4074 "instruction" : "output instructions"));
4075 // Provide the location of the relevant instruction definitions.
4076 for (const Record *Instr : Instrs) {
4077 if (Instr != PTM.getSrcRecord())
4078 PrintError(Instr->getLoc(), "defined here");
4079 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4080 if (InstInfo.InferredFrom &&
4081 InstInfo.InferredFrom != InstInfo.TheDef &&
4082 InstInfo.InferredFrom != PTM.getSrcRecord())
4083 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4084 }
4085 }
4086 if (Errors)
4087 PrintFatalError("Errors in DAG patterns");
4088}
4089
4090/// Given a pattern result with an unresolved type, see if we can find one
4091/// instruction with an unresolved result type. Force this result type to an
4092/// arbitrary element if it's possible types to converge results.
4093static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4094 if (N->isLeaf())
4095 return false;
4096
4097 // Analyze children.
4098 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4099 if (ForceArbitraryInstResultType(N->getChild(i), TP))
4100 return true;
4101
4102 if (!N->getOperator()->isSubClassOf("Instruction"))
4103 return false;
4104
4105 // If this type is already concrete or completely unknown we can't do
4106 // anything.
4107 TypeInfer &TI = TP.getInfer();
4108 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4109 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4110 continue;
4111
4112 // Otherwise, force its type to an arbitrary choice.
4113 if (TI.forceArbitrary(N->getExtType(i)))
4114 return true;
4115 }
4116
4117 return false;
4118}
4119
4120// Promote xform function to be an explicit node wherever set.
4121static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4122 if (Record *Xform = N->getTransformFn()) {
4123 N->setTransformFn(nullptr);
4124 std::vector<TreePatternNodePtr> Children;
4125 Children.push_back(PromoteXForms(N));
4126 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4127 N->getNumTypes());
4128 }
4129
4130 if (!N->isLeaf())
4131 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4132 TreePatternNodePtr Child = N->getChildShared(i);
4133 N->setChild(i, PromoteXForms(Child));
4134 }
4135 return N;
4136}
4137
4138void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4139 TreePattern &Pattern, TreePattern &Result,
4140 const std::vector<Record *> &InstImpResults) {
4141
4142 // Inline pattern fragments and expand multiple alternatives.
4143 Pattern.InlinePatternFragments();
4144 Result.InlinePatternFragments();
4145
4146 if (Result.getNumTrees() != 1)
4147 Result.error("Cannot use multi-alternative fragments in result pattern!");
4148
4149 // Infer types.
4150 bool IterateInference;
4151 bool InferredAllPatternTypes, InferredAllResultTypes;
4152 do {
4153 // Infer as many types as possible. If we cannot infer all of them, we
4154 // can never do anything with this pattern: report it to the user.
4155 InferredAllPatternTypes =
4156 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4157
4158 // Infer as many types as possible. If we cannot infer all of them, we
4159 // can never do anything with this pattern: report it to the user.
4160 InferredAllResultTypes =
4161 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4162
4163 IterateInference = false;
4164
4165 // Apply the type of the result to the source pattern. This helps us
4166 // resolve cases where the input type is known to be a pointer type (which
4167 // is considered resolved), but the result knows it needs to be 32- or
4168 // 64-bits. Infer the other way for good measure.
4169 for (auto T : Pattern.getTrees())
4170 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4171 T->getNumTypes());
4172 i != e; ++i) {
4173 IterateInference |= T->UpdateNodeType(
4174 i, Result.getOnlyTree()->getExtType(i), Result);
4175 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4176 i, T->getExtType(i), Result);
4177 }
4178
4179 // If our iteration has converged and the input pattern's types are fully
4180 // resolved but the result pattern is not fully resolved, we may have a
4181 // situation where we have two instructions in the result pattern and
4182 // the instructions require a common register class, but don't care about
4183 // what actual MVT is used. This is actually a bug in our modelling:
4184 // output patterns should have register classes, not MVTs.
4185 //
4186 // In any case, to handle this, we just go through and disambiguate some
4187 // arbitrary types to the result pattern's nodes.
4188 if (!IterateInference && InferredAllPatternTypes &&
4189 !InferredAllResultTypes)
4190 IterateInference =
4191 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4192 } while (IterateInference);
4193
4194 // Verify that we inferred enough types that we can do something with the
4195 // pattern and result. If these fire the user has to add type casts.
4196 if (!InferredAllPatternTypes)
4197 Pattern.error("Could not infer all types in pattern!");
4198 if (!InferredAllResultTypes) {
4199 Pattern.dump();
4200 Result.error("Could not infer all types in pattern result!");
4201 }
4202
4203 // Promote xform function to be an explicit node wherever set.
4204 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4205
4206 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4207 Temp.InferAllTypes();
4208
4209 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4210 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4211
4212 if (PatternRewriter)
4213 PatternRewriter(&Pattern);
4214
4215 // A pattern may end up with an "impossible" type, i.e. a situation
4216 // where all types have been eliminated for some node in this pattern.
4217 // This could occur for intrinsics that only make sense for a specific
4218 // value type, and use a specific register class. If, for some mode,
4219 // that register class does not accept that type, the type inference
4220 // will lead to a contradiction, which is not an error however, but
4221 // a sign that this pattern will simply never match.
4222 if (Temp.getOnlyTree()->hasPossibleType())
4223 for (auto T : Pattern.getTrees())
4224 if (T->hasPossibleType())
4225 AddPatternToMatch(&Pattern,
4226 PatternToMatch(TheDef, makePredList(Preds),
4227 T, Temp.getOnlyTree(),
4228 InstImpResults, Complexity,
4229 TheDef->getID()));
4230}
4231
4232void CodeGenDAGPatterns::ParsePatterns() {
4233 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4234
4235 for (Record *CurPattern : Patterns) {
4236 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4237
4238 // If the pattern references the null_frag, there's nothing to do.
4239 if (hasNullFragReference(Tree))
4240 continue;
4241
4242 TreePattern Pattern(CurPattern, Tree, true, *this);
4243
4244 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4245 if (LI->empty()) continue; // no pattern.
4246
4247 // Parse the instruction.
4248 TreePattern Result(CurPattern, LI, false, *this);
4249
4250 if (Result.getNumTrees() != 1)
4251 Result.error("Cannot handle instructions producing instructions "
4252 "with temporaries yet!");
4253
4254 // Validate that the input pattern is correct.
4255 std::map<std::string, TreePatternNodePtr> InstInputs;
4256 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4257 InstResults;
4258 std::vector<Record*> InstImpResults;
4259 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4260 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4261 InstResults, InstImpResults);
4262
4263 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4264 }
4265}
4266
4267static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4268 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4269 for (const auto &I : VTS)
4270 Modes.insert(I.first);
4271
4272 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4273 collectModes(Modes, N->getChild(i));
4274}
4275
4276void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4277 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4278 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4279 std::vector<PatternToMatch> Copy = PatternsToMatch;
4280 PatternsToMatch.clear();
4281
4282 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4283 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4284 TreePatternNodePtr NewDst = P.DstPattern->clone();
4285 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4286 return;
4287 }
4288
4289 std::vector<Predicate> Preds = P.Predicates;
4290 const std::vector<Predicate> &MC = ModeChecks[Mode];
4291 Preds.insert(Preds.end(), MC.begin(), MC.end());
4292 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4293 std::move(NewDst), P.getDstRegs(),
4294 P.getAddedComplexity(), Record::getNewUID(),
4295 Mode);
4296 };
4297
4298 for (PatternToMatch &P : Copy) {
4299 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4300 if (P.SrcPattern->hasProperTypeByHwMode())
4301 SrcP = P.SrcPattern;
4302 if (P.DstPattern->hasProperTypeByHwMode())
4303 DstP = P.DstPattern;
4304 if (!SrcP && !DstP) {
4305 PatternsToMatch.push_back(P);
4306 continue;
4307 }
4308
4309 std::set<unsigned> Modes;
4310 if (SrcP)
4311 collectModes(Modes, SrcP.get());
4312 if (DstP)
4313 collectModes(Modes, DstP.get());
4314
4315 // The predicate for the default mode needs to be constructed for each
4316 // pattern separately.
4317 // Since not all modes must be present in each pattern, if a mode m is
4318 // absent, then there is no point in constructing a check for m. If such
4319 // a check was created, it would be equivalent to checking the default
4320 // mode, except not all modes' predicates would be a part of the checking
4321 // code. The subsequently generated check for the default mode would then
4322 // have the exact same patterns, but a different predicate code. To avoid
4323 // duplicated patterns with different predicate checks, construct the
4324 // default check as a negation of all predicates that are actually present
4325 // in the source/destination patterns.
4326 std::vector<Predicate> DefaultPred;
4327
4328 for (unsigned M : Modes) {
4329 if (M == DefaultMode)
4330 continue;
4331 if (ModeChecks.find(M) != ModeChecks.end())
4332 continue;
4333
4334 // Fill the map entry for this mode.
4335 const HwMode &HM = CGH.getMode(M);
4336 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4337
4338 // Add negations of the HM's predicates to the default predicate.
4339 DefaultPred.emplace_back(Predicate(HM.Features, false));
4340 }
4341
4342 for (unsigned M : Modes) {
4343 if (M == DefaultMode)
4344 continue;
4345 AppendPattern(P, M);
4346 }
4347
4348 bool HasDefault = Modes.count(DefaultMode);
4349 if (HasDefault)
4350 AppendPattern(P, DefaultMode);
4351 }
4352}
4353
4354/// Dependent variable map for CodeGenDAGPattern variant generation
4355typedef StringMap<int> DepVarMap;
4356
4357static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4358 if (N->isLeaf()) {
4359 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4360 DepMap[N->getName()]++;
4361 } else {
4362 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4363 FindDepVarsOf(N->getChild(i), DepMap);
4364 }
4365}
4366
4367/// Find dependent variables within child patterns
4368static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4369 DepVarMap depcounts;
4370 FindDepVarsOf(N, depcounts);
4371 for (const auto &Pair : depcounts) {
4372 if (Pair.getValue() > 1)
4373 DepVars.insert(Pair.getKey());
4374 }
4375}
4376
4377#ifndef NDEBUG
4378/// Dump the dependent variable set:
4379static void DumpDepVars(MultipleUseVarSet &DepVars) {
4380 if (DepVars.empty()) {
4381 LLVM_DEBUG(errs() << "<empty set>")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "<empty set>"; } } while
(false)
;
4382 } else {
4383 LLVM_DEBUG(errs() << "[ ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "[ "; } } while (false)
;
4384 for (const auto &DepVar : DepVars) {
4385 LLVM_DEBUG(errs() << DepVar.getKey() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << DepVar.getKey() << " "
; } } while (false)
;
4386 }
4387 LLVM_DEBUG(errs() << "]")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "]"; } } while (false)
;
4388 }
4389}
4390#endif
4391
4392
4393/// CombineChildVariants - Given a bunch of permutations of each child of the
4394/// 'operator' node, put them together in all possible ways.
4395static void CombineChildVariants(
4396 TreePatternNodePtr Orig,
4397 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4398 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4399 const MultipleUseVarSet &DepVars) {
4400 // Make sure that each operand has at least one variant to choose from.
4401 for (const auto &Variants : ChildVariants)
4402 if (Variants.empty())
4403 return;
4404
4405 // The end result is an all-pairs construction of the resultant pattern.
4406 std::vector<unsigned> Idxs;
4407 Idxs.resize(ChildVariants.size());
4408 bool NotDone;
4409 do {
4410#ifndef NDEBUG
4411 LLVM_DEBUG(if (!Idxs.empty()) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4412 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4413 for (unsigned Idx : Idxs) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4414 errs() << Idx << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4415 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4416 errs() << "]\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4417 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
;
4418#endif
4419 // Create the variant and add it to the output list.
4420 std::vector<TreePatternNodePtr> NewChildren;
4421 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4422 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4423 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4424 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4425
4426 // Copy over properties.
4427 R->setName(Orig->getName());
4428 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4429 R->setPredicateCalls(Orig->getPredicateCalls());
4430 R->setTransformFn(Orig->getTransformFn());
4431 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4432 R->setType(i, Orig->getExtType(i));
4433
4434 // If this pattern cannot match, do not include it as a variant.
4435 std::string ErrString;
4436 // Scan to see if this pattern has already been emitted. We can get
4437 // duplication due to things like commuting:
4438 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4439 // which are the same pattern. Ignore the dups.
4440 if (R->canPatternMatch(ErrString, CDP) &&
4441 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4442 return R->isIsomorphicTo(Variant.get(), DepVars);
4443 }))
4444 OutVariants.push_back(R);
4445
4446 // Increment indices to the next permutation by incrementing the
4447 // indices from last index backward, e.g., generate the sequence
4448 // [0, 0], [0, 1], [1, 0], [1, 1].
4449 int IdxsIdx;
4450 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4451 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4452 Idxs[IdxsIdx] = 0;
4453 else
4454 break;
4455 }
4456 NotDone = (IdxsIdx >= 0);
4457 } while (NotDone);
4458}
4459
4460/// CombineChildVariants - A helper function for binary operators.
4461///
4462static void CombineChildVariants(TreePatternNodePtr Orig,
4463 const std::vector<TreePatternNodePtr> &LHS,
4464 const std::vector<TreePatternNodePtr> &RHS,
4465 std::vector<TreePatternNodePtr> &OutVariants,
4466 CodeGenDAGPatterns &CDP,
4467 const MultipleUseVarSet &DepVars) {
4468 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4469 ChildVariants.push_back(LHS);
4470 ChildVariants.push_back(RHS);
4471 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4472}
4473
4474static void
4475GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4476 std::vector<TreePatternNodePtr> &Children) {
4477 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!")((N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"
) ? static_cast<void> (0) : __assert_fail ("N->getNumChildren()==2 &&\"Associative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4477, __PRETTY_FUNCTION__))
;
4478 Record *Operator = N->getOperator();
4479
4480 // Only permit raw nodes.
4481 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4482 N->getTransformFn()) {
4483 Children.push_back(N);
4484 return;
4485 }
4486
4487 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4488 Children.push_back(N->getChildShared(0));
4489 else
4490 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4491
4492 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4493 Children.push_back(N->getChildShared(1));
4494 else
4495 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4496}
4497
4498/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4499/// the (potentially recursive) pattern by using algebraic laws.
4500///
4501static void GenerateVariantsOf(TreePatternNodePtr N,
4502 std::vector<TreePatternNodePtr> &OutVariants,
4503 CodeGenDAGPatterns &CDP,
4504 const MultipleUseVarSet &DepVars) {
4505 // We cannot permute leaves or ComplexPattern uses.
4506 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4507 OutVariants.push_back(N);
4508 return;
4509 }
4510
4511 // Look up interesting info about the node.
4512 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4513
4514 // If this node is associative, re-associate.
4515 if (NodeInfo.hasProperty(SDNPAssociative)) {
4516 // Re-associate by pulling together all of the linked operators
4517 std::vector<TreePatternNodePtr> MaximalChildren;
4518 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4519
4520 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4521 // permutations.
4522 if (MaximalChildren.size() == 3) {
4523 // Find the variants of all of our maximal children.
4524 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4525 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4526 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4527 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4528
4529 // There are only two ways we can permute the tree:
4530 // (A op B) op C and A op (B op C)
4531 // Within these forms, we can also permute A/B/C.
4532
4533 // Generate legal pair permutations of A/B/C.
4534 std::vector<TreePatternNodePtr> ABVariants;
4535 std::vector<TreePatternNodePtr> BAVariants;
4536 std::vector<TreePatternNodePtr> ACVariants;
4537 std::vector<TreePatternNodePtr> CAVariants;
4538 std::vector<TreePatternNodePtr> BCVariants;
4539 std::vector<TreePatternNodePtr> CBVariants;
4540 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4541 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4542 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4543 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4544 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4545 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4546
4547 // Combine those into the result: (x op x) op x
4548 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4549 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4550 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4551 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4552 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4553 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4554
4555 // Combine those into the result: x op (x op x)
4556 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4557 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4558 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4559 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4560 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4561 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4562 return;
4563 }
4564 }
4565
4566 // Compute permutations of all children.
4567 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4568 ChildVariants.resize(N->getNumChildren());
4569 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4570 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4571
4572 // Build all permutations based on how the children were formed.
4573 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4574
4575 // If this node is commutative, consider the commuted order.
4576 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4577 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4578 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&(((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!") ? static_cast<
void> (0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4579, __PRETTY_FUNCTION__))
4579 "Commutative but doesn't have 2 children!")(((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!") ? static_cast<
void> (0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4579, __PRETTY_FUNCTION__))
;
4580 // Don't count children which are actually register references.
4581 unsigned NC = 0;
4582 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4583 TreePatternNode *Child = N->getChild(i);
4584 if (Child->isLeaf())
4585 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4586 Record *RR = DI->getDef();
4587 if (RR->isSubClassOf("Register"))
4588 continue;
4589 }
4590 NC++;
4591 }
4592 // Consider the commuted order.
4593 if (isCommIntrinsic) {
4594 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4595 // operands are the commutative operands, and there might be more operands
4596 // after those.
4597 assert(NC >= 3 &&((NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? static_cast<void> (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4598, __PRETTY_FUNCTION__))
4598 "Commutative intrinsic should have at least 3 children!")((NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? static_cast<void> (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4598, __PRETTY_FUNCTION__))
;
4599 std::vector<std::vector<TreePatternNodePtr>> Variants;
4600 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4601 Variants.push_back(std::move(ChildVariants[2]));
4602 Variants.push_back(std::move(ChildVariants[1]));
4603 for (unsigned i = 3; i != NC; ++i)
4604 Variants.push_back(std::move(ChildVariants[i]));
4605 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4606 } else if (NC == N->getNumChildren()) {
4607 std::vector<std::vector<TreePatternNodePtr>> Variants;
4608 Variants.push_back(std::move(ChildVariants[1]));
4609 Variants.push_back(std::move(ChildVariants[0]));
4610 for (unsigned i = 2; i != NC; ++i)
4611 Variants.push_back(std::move(ChildVariants[i]));
4612 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4613 }
4614 }
4615}
4616
4617
4618// GenerateVariants - Generate variants. For example, commutative patterns can
4619// match multiple ways. Add them to PatternsToMatch as well.
4620void CodeGenDAGPatterns::GenerateVariants() {
4621 LLVM_DEBUG(errs() << "Generating instruction variants.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Generating instruction variants.\n"
; } } while (false)
;
4622
4623 // Loop over all of the patterns we've collected, checking to see if we can
4624 // generate variants of the instruction, through the exploitation of
4625 // identities. This permits the target to provide aggressive matching without
4626 // the .td file having to contain tons of variants of instructions.
4627 //
4628 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4629 // intentionally do not reconsider these. Any variants of added patterns have
4630 // already been added.
4631 //
4632 const unsigned NumOriginalPatterns = PatternsToMatch.size();
4633 BitVector MatchedPatterns(NumOriginalPatterns);
4634 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4635 BitVector(NumOriginalPatterns));
4636
4637 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4638 DepsAndVariants;
4639 std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4640
4641 // Collect patterns with more than one variant.
4642 for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4643 MultipleUseVarSet DepVars;
4644 std::vector<TreePatternNodePtr> Variants;
4645 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4646 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Dependent/multiply used variables: "
; } } while (false)
;
4647 LLVM_DEBUG(DumpDepVars(DepVars))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { DumpDepVars(DepVars); } } while (false)
;
4648 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4649 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4650 *this, DepVars);
4651
4652 assert(!Variants.empty() && "Must create at least original variant!")((!Variants.empty() && "Must create at least original variant!"
) ? static_cast<void> (0) : __assert_fail ("!Variants.empty() && \"Must create at least original variant!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4652, __PRETTY_FUNCTION__))
;
4653 if (Variants.size() == 1) // No additional variants for this pattern.
4654 continue;
4655
4656 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
4657 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
;
4658
4659 PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4660
4661 // Cache matching predicates.
4662 if (MatchedPatterns[i])
4663 continue;
4664
4665 const std::vector<Predicate> &Predicates =
4666 PatternsToMatch[i].getPredicates();
4667
4668 BitVector &Matches = MatchedPredicates[i];
4669 MatchedPatterns.set(i);
4670 Matches.set(i);
4671
4672 // Don't test patterns that have already been cached - it won't match.
4673 for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4674 if (!MatchedPatterns[p])
4675 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4676
4677 // Copy this to all the matching patterns.
4678 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4679 if (p != (int)i) {
4680 MatchedPatterns.set(p);
4681 MatchedPredicates[p] = Matches;
4682 }
4683 }
4684
4685 for (auto it : PatternsWithVariants) {
4686 unsigned i = it.first;
4687 const MultipleUseVarSet &DepVars = it.second.first;
4688 const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4689
4690 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4691 TreePatternNodePtr Variant = Variants[v];
4692 BitVector &Matches = MatchedPredicates[i];
4693
4694 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
4695 errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
;
4696
4697 // Scan to see if an instruction or explicit pattern already matches this.
4698 bool AlreadyExists = false;
4699 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4700 // Skip if the top level predicates do not match.
4701 if (!Matches[p])
4702 continue;
4703 // Check to see if this variant already exists.
4704 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4705 DepVars)) {
4706 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " *** ALREADY EXISTS, ignoring variant.\n"
; } } while (false)
;
4707 AlreadyExists = true;
4708 break;
4709 }
4710 }
4711 // If we already have it, ignore the variant.
4712 if (AlreadyExists) continue;
4713
4714 // Otherwise, add it to the list of patterns we have.
4715 PatternsToMatch.push_back(PatternToMatch(
4716 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4717 Variant, PatternsToMatch[i].getDstPatternShared(),
4718 PatternsToMatch[i].getDstRegs(),
4719 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4720 MatchedPredicates.push_back(Matches);
4721
4722 // Add a new match the same as this pattern.
4723 for (auto &P : MatchedPredicates)
4724 P.push_back(P[i]);
4725 }
4726
4727 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4728 }
4729}