Bug Summary

File:llvm/utils/TableGen/CodeGenDAGPatterns.cpp
Warning:line 2873, column 38
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CodeGenDAGPatterns.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I utils/TableGen -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/utils/TableGen -I include -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-19-134126-35450-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/StringMap.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/TypeSize.h"
26#include "llvm/TableGen/Error.h"
27#include "llvm/TableGen/Record.h"
28#include <algorithm>
29#include <cstdio>
30#include <iterator>
31#include <set>
32using namespace llvm;
33
34#define DEBUG_TYPE"dag-patterns" "dag-patterns"
35
36static inline bool isIntegerOrPtr(MVT VT) {
37 return VT.isInteger() || VT == MVT::iPTR;
38}
39static inline bool isFloatingPoint(MVT VT) {
40 return VT.isFloatingPoint();
41}
42static inline bool isVector(MVT VT) {
43 return VT.isVector();
44}
45static inline bool isScalar(MVT VT) {
46 return !VT.isVector();
47}
48
49template <typename Predicate>
50static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51 bool Erased = false;
52 // It is ok to iterate over MachineValueTypeSet and remove elements from it
53 // at the same time.
54 for (MVT T : S) {
55 if (!P(T))
56 continue;
57 Erased = true;
58 S.erase(T);
59 }
60 return Erased;
61}
62
63// --- TypeSetByHwMode
64
65// This is a parameterized type-set class. For each mode there is a list
66// of types that are currently possible for a given tree node. Type
67// inference will apply to each mode separately.
68
69TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70 for (const ValueTypeByHwMode &VVT : VTList) {
71 insert(VVT);
72 AddrSpaces.push_back(VVT.PtrAddrSpace);
73 }
74}
75
76bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77 for (const auto &I : *this) {
78 if (I.second.size() > 1)
79 return false;
80 if (!AllowEmpty && I.second.empty())
81 return false;
82 }
83 return true;
84}
85
86ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87 assert(isValueTypeByHwMode(true) &&(static_cast <bool> (isValueTypeByHwMode(true) &&
"The type set has multiple types for at least one HW mode") ?
void (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 88, __extension__
__PRETTY_FUNCTION__))
88 "The type set has multiple types for at least one HW mode")(static_cast <bool> (isValueTypeByHwMode(true) &&
"The type set has multiple types for at least one HW mode") ?
void (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 88, __extension__
__PRETTY_FUNCTION__))
;
89 ValueTypeByHwMode VVT;
90 auto ASI = AddrSpaces.begin();
91
92 for (const auto &I : *this) {
93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94 VVT.getOrCreateTypeForMode(I.first, T);
95 if (ASI != AddrSpaces.end())
96 VVT.PtrAddrSpace = *ASI++;
97 }
98 return VVT;
99}
100
101bool TypeSetByHwMode::isPossible() const {
102 for (const auto &I : *this)
103 if (!I.second.empty())
104 return true;
105 return false;
106}
107
108bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109 bool Changed = false;
110 bool ContainsDefault = false;
111 MVT DT = MVT::Other;
112
113 for (const auto &P : VVT) {
114 unsigned M = P.first;
115 // Make sure there exists a set for each specific mode from VVT.
116 Changed |= getOrCreate(M).insert(P.second).second;
117 // Cache VVT's default mode.
118 if (DefaultMode == M) {
119 ContainsDefault = true;
120 DT = P.second;
121 }
122 }
123
124 // If VVT has a default mode, add the corresponding type to all
125 // modes in "this" that do not exist in VVT.
126 if (ContainsDefault)
127 for (auto &I : *this)
128 if (!VVT.hasMode(I.first))
129 Changed |= I.second.insert(DT).second;
130
131 return Changed;
132}
133
134// Constrain the type set to be the intersection with VTS.
135bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
136 bool Changed = false;
137 if (hasDefault()) {
138 for (const auto &I : VTS) {
139 unsigned M = I.first;
140 if (M == DefaultMode || hasMode(M))
141 continue;
142 Map.insert({M, Map.at(DefaultMode)});
143 Changed = true;
144 }
145 }
146
147 for (auto &I : *this) {
148 unsigned M = I.first;
149 SetType &S = I.second;
150 if (VTS.hasMode(M) || VTS.hasDefault()) {
151 Changed |= intersect(I.second, VTS.get(M));
152 } else if (!S.empty()) {
153 S.clear();
154 Changed = true;
155 }
156 }
157 return Changed;
158}
159
160template <typename Predicate>
161bool TypeSetByHwMode::constrain(Predicate P) {
162 bool Changed = false;
163 for (auto &I : *this)
164 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
165 return Changed;
166}
167
168template <typename Predicate>
169bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
170 assert(empty())(static_cast <bool> (empty()) ? void (0) : __assert_fail
("empty()", "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 170
, __extension__ __PRETTY_FUNCTION__))
;
171 for (const auto &I : VTS) {
172 SetType &S = getOrCreate(I.first);
173 for (auto J : I.second)
174 if (P(J))
175 S.insert(J);
176 }
177 return !empty();
178}
179
180void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
181 SmallVector<unsigned, 4> Modes;
182 Modes.reserve(Map.size());
183
184 for (const auto &I : *this)
185 Modes.push_back(I.first);
186 if (Modes.empty()) {
187 OS << "{}";
188 return;
189 }
190 array_pod_sort(Modes.begin(), Modes.end());
191
192 OS << '{';
193 for (unsigned M : Modes) {
194 OS << ' ' << getModeName(M) << ':';
195 writeToStream(get(M), OS);
196 }
197 OS << " }";
198}
199
200void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
201 SmallVector<MVT, 4> Types(S.begin(), S.end());
202 array_pod_sort(Types.begin(), Types.end());
203
204 OS << '[';
205 ListSeparator LS(" ");
206 for (const MVT &T : Types)
207 OS << LS << ValueTypeByHwMode::getMVTName(T);
208 OS << ']';
209}
210
211bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
212 // The isSimple call is much quicker than hasDefault - check this first.
213 bool IsSimple = isSimple();
214 bool VTSIsSimple = VTS.isSimple();
215 if (IsSimple && VTSIsSimple)
216 return *begin() == *VTS.begin();
217
218 // Speedup: We have a default if the set is simple.
219 bool HaveDefault = IsSimple || hasDefault();
220 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
221 if (HaveDefault != VTSHaveDefault)
222 return false;
223
224 SmallSet<unsigned, 4> Modes;
225 for (auto &I : *this)
226 Modes.insert(I.first);
227 for (const auto &I : VTS)
228 Modes.insert(I.first);
229
230 if (HaveDefault) {
231 // Both sets have default mode.
232 for (unsigned M : Modes) {
233 if (get(M) != VTS.get(M))
234 return false;
235 }
236 } else {
237 // Neither set has default mode.
238 for (unsigned M : Modes) {
239 // If there is no default mode, an empty set is equivalent to not having
240 // the corresponding mode.
241 bool NoModeThis = !hasMode(M) || get(M).empty();
242 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
243 if (NoModeThis != NoModeVTS)
244 return false;
245 if (!NoModeThis)
246 if (get(M) != VTS.get(M))
247 return false;
248 }
249 }
250
251 return true;
252}
253
254namespace llvm {
255 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
256 T.writeToStream(OS);
257 return OS;
258 }
259}
260
261LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
262void TypeSetByHwMode::dump() const {
263 dbgs() << *this << '\n';
264}
265
266bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
267 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
268 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
269
270 if (OutP == InP)
271 return berase_if(Out, Int);
272
273 // Compute the intersection of scalars separately to account for only
274 // one set containing iPTR.
275 // The intersection of iPTR with a set of integer scalar types that does not
276 // include iPTR will result in the most specific scalar type:
277 // - iPTR is more specific than any set with two elements or more
278 // - iPTR is less specific than any single integer scalar type.
279 // For example
280 // { iPTR } * { i32 } -> { i32 }
281 // { iPTR } * { i32 i64 } -> { iPTR }
282 // and
283 // { iPTR i32 } * { i32 } -> { i32 }
284 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
285 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
286
287 // Compute the difference between the two sets in such a way that the
288 // iPTR is in the set that is being subtracted. This is to see if there
289 // are any extra scalars in the set without iPTR that are not in the
290 // set containing iPTR. Then the iPTR could be considered a "wildcard"
291 // matching these scalars. If there is only one such scalar, it would
292 // replace the iPTR, if there are more, the iPTR would be retained.
293 SetType Diff;
294 if (InP) {
295 Diff = Out;
296 berase_if(Diff, [&In](MVT T) { return In.count(T); });
297 // Pre-remove these elements and rely only on InP/OutP to determine
298 // whether a change has been made.
299 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
300 } else {
301 Diff = In;
302 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
303 Out.erase(MVT::iPTR);
304 }
305
306 // The actual intersection.
307 bool Changed = berase_if(Out, Int);
308 unsigned NumD = Diff.size();
309 if (NumD == 0)
310 return Changed;
311
312 if (NumD == 1) {
313 Out.insert(*Diff.begin());
314 // This is a change only if Out was the one with iPTR (which is now
315 // being replaced).
316 Changed |= OutP;
317 } else {
318 // Multiple elements from Out are now replaced with iPTR.
319 Out.insert(MVT::iPTR);
320 Changed |= !OutP;
321 }
322 return Changed;
323}
324
325bool TypeSetByHwMode::validate() const {
326#ifndef NDEBUG
327 if (empty())
328 return true;
329 bool AllEmpty = true;
330 for (const auto &I : *this)
331 AllEmpty &= I.second.empty();
332 return !AllEmpty;
333#endif
334 return true;
335}
336
337// --- TypeInfer
338
339bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
340 const TypeSetByHwMode &In) {
341 ValidateOnExit _1(Out, *this);
342 In.validate();
343 if (In.empty() || Out == In || TP.hasError())
344 return false;
345 if (Out.empty()) {
346 Out = In;
347 return true;
348 }
349
350 bool Changed = Out.constrain(In);
351 if (Changed && Out.empty())
352 TP.error("Type contradiction");
353
354 return Changed;
355}
356
357bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
358 ValidateOnExit _1(Out, *this);
359 if (TP.hasError())
360 return false;
361 assert(!Out.empty() && "cannot pick from an empty set")(static_cast <bool> (!Out.empty() && "cannot pick from an empty set"
) ? void (0) : __assert_fail ("!Out.empty() && \"cannot pick from an empty set\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 361, __extension__
__PRETTY_FUNCTION__))
;
362
363 bool Changed = false;
364 for (auto &I : Out) {
365 TypeSetByHwMode::SetType &S = I.second;
366 if (S.size() <= 1)
367 continue;
368 MVT T = *S.begin(); // Pick the first element.
369 S.clear();
370 S.insert(T);
371 Changed = true;
372 }
373 return Changed;
374}
375
376bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
377 ValidateOnExit _1(Out, *this);
378 if (TP.hasError())
379 return false;
380 if (!Out.empty())
381 return Out.constrain(isIntegerOrPtr);
382
383 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
384}
385
386bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
387 ValidateOnExit _1(Out, *this);
388 if (TP.hasError())
389 return false;
390 if (!Out.empty())
391 return Out.constrain(isFloatingPoint);
392
393 return Out.assign_if(getLegalTypes(), isFloatingPoint);
394}
395
396bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
397 ValidateOnExit _1(Out, *this);
398 if (TP.hasError())
399 return false;
400 if (!Out.empty())
401 return Out.constrain(isScalar);
402
403 return Out.assign_if(getLegalTypes(), isScalar);
404}
405
406bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
407 ValidateOnExit _1(Out, *this);
408 if (TP.hasError())
409 return false;
410 if (!Out.empty())
411 return Out.constrain(isVector);
412
413 return Out.assign_if(getLegalTypes(), isVector);
414}
415
416bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
417 ValidateOnExit _1(Out, *this);
418 if (TP.hasError() || !Out.empty())
419 return false;
420
421 Out = getLegalTypes();
422 return true;
423}
424
425template <typename Iter, typename Pred, typename Less>
426static Iter min_if(Iter B, Iter E, Pred P, Less L) {
427 if (B == E)
428 return E;
429 Iter Min = E;
430 for (Iter I = B; I != E; ++I) {
431 if (!P(*I))
432 continue;
433 if (Min == E || L(*I, *Min))
434 Min = I;
435 }
436 return Min;
437}
438
439template <typename Iter, typename Pred, typename Less>
440static Iter max_if(Iter B, Iter E, Pred P, Less L) {
441 if (B == E)
442 return E;
443 Iter Max = E;
444 for (Iter I = B; I != E; ++I) {
445 if (!P(*I))
446 continue;
447 if (Max == E || L(*Max, *I))
448 Max = I;
449 }
450 return Max;
451}
452
453/// Make sure that for each type in Small, there exists a larger type in Big.
454bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
455 bool SmallIsVT) {
456 ValidateOnExit _1(Small, *this), _2(Big, *this);
457 if (TP.hasError())
458 return false;
459 bool Changed = false;
460
461 assert((!SmallIsVT || !Small.empty()) &&(static_cast <bool> ((!SmallIsVT || !Small.empty()) &&
"Small should not be empty for SDTCisVTSmallerThanOp") ? void
(0) : __assert_fail ("(!SmallIsVT || !Small.empty()) && \"Small should not be empty for SDTCisVTSmallerThanOp\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 462, __extension__
__PRETTY_FUNCTION__))
462 "Small should not be empty for SDTCisVTSmallerThanOp")(static_cast <bool> ((!SmallIsVT || !Small.empty()) &&
"Small should not be empty for SDTCisVTSmallerThanOp") ? void
(0) : __assert_fail ("(!SmallIsVT || !Small.empty()) && \"Small should not be empty for SDTCisVTSmallerThanOp\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 462, __extension__
__PRETTY_FUNCTION__))
;
463
464 if (Small.empty())
465 Changed |= EnforceAny(Small);
466 if (Big.empty())
467 Changed |= EnforceAny(Big);
468
469 assert(Small.hasDefault() && Big.hasDefault())(static_cast <bool> (Small.hasDefault() && Big.
hasDefault()) ? void (0) : __assert_fail ("Small.hasDefault() && Big.hasDefault()"
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 469, __extension__
__PRETTY_FUNCTION__))
;
470
471 SmallVector<unsigned, 4> Modes;
472 union_modes(Small, Big, Modes);
473
474 // 1. Only allow integer or floating point types and make sure that
475 // both sides are both integer or both floating point.
476 // 2. Make sure that either both sides have vector types, or neither
477 // of them does.
478 for (unsigned M : Modes) {
479 TypeSetByHwMode::SetType &S = Small.get(M);
480 TypeSetByHwMode::SetType &B = Big.get(M);
481
482 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type")(static_cast <bool> ((!SmallIsVT || !S.empty()) &&
"Expected non-empty type") ? void (0) : __assert_fail ("(!SmallIsVT || !S.empty()) && \"Expected non-empty type\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 482, __extension__
__PRETTY_FUNCTION__))
;
483
484 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
485 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
486 Changed |= berase_if(S, NotInt);
487 Changed |= berase_if(B, NotInt);
488 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
489 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
490 Changed |= berase_if(S, NotFP);
491 Changed |= berase_if(B, NotFP);
492 } else if (SmallIsVT && B.empty()) {
493 // B is empty and since S is a specific VT, it will never be empty. Don't
494 // report this as a change, just clear S and continue. This prevents an
495 // infinite loop.
496 S.clear();
497 } else if (S.empty() || B.empty()) {
498 Changed = !S.empty() || !B.empty();
499 S.clear();
500 B.clear();
501 } else {
502 TP.error("Incompatible types");
503 return Changed;
504 }
505
506 if (none_of(S, isVector) || none_of(B, isVector)) {
507 Changed |= berase_if(S, isVector);
508 Changed |= berase_if(B, isVector);
509 }
510 }
511
512 auto LT = [](MVT A, MVT B) -> bool {
513 // Always treat non-scalable MVTs as smaller than scalable MVTs for the
514 // purposes of ordering.
515 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
516 A.getSizeInBits().getKnownMinSize());
517 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
518 B.getSizeInBits().getKnownMinSize());
519 return ASize < BSize;
520 };
521 auto SameKindLE = [](MVT A, MVT B) -> bool {
522 // This function is used when removing elements: when a vector is compared
523 // to a non-vector or a scalable vector to any non-scalable MVT, it should
524 // return false (to avoid removal).
525 if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
526 std::make_tuple(B.isVector(), B.isScalableVector()))
527 return false;
528
529 return std::make_tuple(A.getScalarSizeInBits(),
530 A.getSizeInBits().getKnownMinSize()) <=
531 std::make_tuple(B.getScalarSizeInBits(),
532 B.getSizeInBits().getKnownMinSize());
533 };
534
535 for (unsigned M : Modes) {
536 TypeSetByHwMode::SetType &S = Small.get(M);
537 TypeSetByHwMode::SetType &B = Big.get(M);
538 // MinS = min scalar in Small, remove all scalars from Big that are
539 // smaller-or-equal than MinS.
540 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
541 if (MinS != S.end())
542 Changed |= berase_if(B, std::bind(SameKindLE,
543 std::placeholders::_1, *MinS));
544
545 // MaxS = max scalar in Big, remove all scalars from Small that are
546 // larger than MaxS.
547 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
548 if (MaxS != B.end())
549 Changed |= berase_if(S, std::bind(SameKindLE,
550 *MaxS, std::placeholders::_1));
551
552 // MinV = min vector in Small, remove all vectors from Big that are
553 // smaller-or-equal than MinV.
554 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
555 if (MinV != S.end())
556 Changed |= berase_if(B, std::bind(SameKindLE,
557 std::placeholders::_1, *MinV));
558
559 // MaxV = max vector in Big, remove all vectors from Small that are
560 // larger than MaxV.
561 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
562 if (MaxV != B.end())
563 Changed |= berase_if(S, std::bind(SameKindLE,
564 *MaxV, std::placeholders::_1));
565 }
566
567 return Changed;
568}
569
570/// 1. Ensure that for each type T in Vec, T is a vector type, and that
571/// for each type U in Elem, U is a scalar type.
572/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
573/// type T in Vec, such that U is the element type of T.
574bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
575 TypeSetByHwMode &Elem) {
576 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
577 if (TP.hasError())
578 return false;
579 bool Changed = false;
580
581 if (Vec.empty())
582 Changed |= EnforceVector(Vec);
583 if (Elem.empty())
584 Changed |= EnforceScalar(Elem);
585
586 SmallVector<unsigned, 4> Modes;
587 union_modes(Vec, Elem, Modes);
588 for (unsigned M : Modes) {
589 TypeSetByHwMode::SetType &V = Vec.get(M);
590 TypeSetByHwMode::SetType &E = Elem.get(M);
591
592 Changed |= berase_if(V, isScalar); // Scalar = !vector
593 Changed |= berase_if(E, isVector); // Vector = !scalar
594 assert(!V.empty() && !E.empty())(static_cast <bool> (!V.empty() && !E.empty()) ?
void (0) : __assert_fail ("!V.empty() && !E.empty()"
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 594, __extension__
__PRETTY_FUNCTION__))
;
595
596 MachineValueTypeSet VT, ST;
597 // Collect element types from the "vector" set.
598 for (MVT T : V)
599 VT.insert(T.getVectorElementType());
600 // Collect scalar types from the "element" set.
601 for (MVT T : E)
602 ST.insert(T);
603
604 // Remove from V all (vector) types whose element type is not in S.
605 Changed |= berase_if(V, [&ST](MVT T) -> bool {
606 return !ST.count(T.getVectorElementType());
607 });
608 // Remove from E all (scalar) types, for which there is no corresponding
609 // type in V.
610 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
611 }
612
613 return Changed;
614}
615
616bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
617 const ValueTypeByHwMode &VVT) {
618 TypeSetByHwMode Tmp(VVT);
619 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
620 return EnforceVectorEltTypeIs(Vec, Tmp);
621}
622
623/// Ensure that for each type T in Sub, T is a vector type, and there
624/// exists a type U in Vec such that U is a vector type with the same
625/// element type as T and at least as many elements as T.
626bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
627 TypeSetByHwMode &Sub) {
628 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
629 if (TP.hasError())
630 return false;
631
632 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
633 auto IsSubVec = [](MVT B, MVT P) -> bool {
634 if (!B.isVector() || !P.isVector())
635 return false;
636 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
637 // but until there are obvious use-cases for this, keep the
638 // types separate.
639 if (B.isScalableVector() != P.isScalableVector())
640 return false;
641 if (B.getVectorElementType() != P.getVectorElementType())
642 return false;
643 return B.getVectorMinNumElements() < P.getVectorMinNumElements();
644 };
645
646 /// Return true if S has no element (vector type) that T is a sub-vector of,
647 /// i.e. has the same element type as T and more elements.
648 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
649 for (auto I : S)
650 if (IsSubVec(T, I))
651 return false;
652 return true;
653 };
654
655 /// Return true if S has no element (vector type) that T is a super-vector
656 /// of, i.e. has the same element type as T and fewer elements.
657 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
658 for (auto I : S)
659 if (IsSubVec(I, T))
660 return false;
661 return true;
662 };
663
664 bool Changed = false;
665
666 if (Vec.empty())
667 Changed |= EnforceVector(Vec);
668 if (Sub.empty())
669 Changed |= EnforceVector(Sub);
670
671 SmallVector<unsigned, 4> Modes;
672 union_modes(Vec, Sub, Modes);
673 for (unsigned M : Modes) {
674 TypeSetByHwMode::SetType &S = Sub.get(M);
675 TypeSetByHwMode::SetType &V = Vec.get(M);
676
677 Changed |= berase_if(S, isScalar);
678
679 // Erase all types from S that are not sub-vectors of a type in V.
680 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
681
682 // Erase all types from V that are not super-vectors of a type in S.
683 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
684 }
685
686 return Changed;
687}
688
689/// 1. Ensure that V has a scalar type iff W has a scalar type.
690/// 2. Ensure that for each vector type T in V, there exists a vector
691/// type U in W, such that T and U have the same number of elements.
692/// 3. Ensure that for each vector type U in W, there exists a vector
693/// type T in V, such that T and U have the same number of elements
694/// (reverse of 2).
695bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
696 ValidateOnExit _1(V, *this), _2(W, *this);
697 if (TP.hasError())
698 return false;
699
700 bool Changed = false;
701 if (V.empty())
702 Changed |= EnforceAny(V);
703 if (W.empty())
704 Changed |= EnforceAny(W);
705
706 // An actual vector type cannot have 0 elements, so we can treat scalars
707 // as zero-length vectors. This way both vectors and scalars can be
708 // processed identically.
709 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
710 MVT T) -> bool {
711 return !Lengths.count(T.isVector() ? T.getVectorElementCount()
712 : ElementCount::getNull());
713 };
714
715 SmallVector<unsigned, 4> Modes;
716 union_modes(V, W, Modes);
717 for (unsigned M : Modes) {
718 TypeSetByHwMode::SetType &VS = V.get(M);
719 TypeSetByHwMode::SetType &WS = W.get(M);
720
721 SmallDenseSet<ElementCount> VN, WN;
722 for (MVT T : VS)
723 VN.insert(T.isVector() ? T.getVectorElementCount()
724 : ElementCount::getNull());
725 for (MVT T : WS)
726 WN.insert(T.isVector() ? T.getVectorElementCount()
727 : ElementCount::getNull());
728
729 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
730 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
731 }
732 return Changed;
733}
734
735namespace {
736struct TypeSizeComparator {
737 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
738 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
739 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
740 }
741};
742} // end anonymous namespace
743
744/// 1. Ensure that for each type T in A, there exists a type U in B,
745/// such that T and U have equal size in bits.
746/// 2. Ensure that for each type U in B, there exists a type T in A
747/// such that T and U have equal size in bits (reverse of 1).
748bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
749 ValidateOnExit _1(A, *this), _2(B, *this);
750 if (TP.hasError())
751 return false;
752 bool Changed = false;
753 if (A.empty())
754 Changed |= EnforceAny(A);
755 if (B.empty())
756 Changed |= EnforceAny(B);
757
758 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
759
760 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
761 return !Sizes.count(T.getSizeInBits());
762 };
763
764 SmallVector<unsigned, 4> Modes;
765 union_modes(A, B, Modes);
766 for (unsigned M : Modes) {
767 TypeSetByHwMode::SetType &AS = A.get(M);
768 TypeSetByHwMode::SetType &BS = B.get(M);
769 TypeSizeSet AN, BN;
770
771 for (MVT T : AS)
772 AN.insert(T.getSizeInBits());
773 for (MVT T : BS)
774 BN.insert(T.getSizeInBits());
775
776 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
777 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
778 }
779
780 return Changed;
781}
782
783void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
784 ValidateOnExit _1(VTS, *this);
785 const TypeSetByHwMode &Legal = getLegalTypes();
786 assert(Legal.isDefaultOnly() && "Default-mode only expected")(static_cast <bool> (Legal.isDefaultOnly() && "Default-mode only expected"
) ? void (0) : __assert_fail ("Legal.isDefaultOnly() && \"Default-mode only expected\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 786, __extension__
__PRETTY_FUNCTION__))
;
787 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
788
789 for (auto &I : VTS)
790 expandOverloads(I.second, LegalTypes);
791}
792
793void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
794 const TypeSetByHwMode::SetType &Legal) {
795 std::set<MVT> Ovs;
796 for (MVT T : Out) {
797 if (!T.isOverloaded())
798 continue;
799
800 Ovs.insert(T);
801 // MachineValueTypeSet allows iteration and erasing.
802 Out.erase(T);
803 }
804
805 for (MVT Ov : Ovs) {
806 switch (Ov.SimpleTy) {
807 case MVT::iPTRAny:
808 Out.insert(MVT::iPTR);
809 return;
810 case MVT::iAny:
811 for (MVT T : MVT::integer_valuetypes())
812 if (Legal.count(T))
813 Out.insert(T);
814 for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
815 if (Legal.count(T))
816 Out.insert(T);
817 for (MVT T : MVT::integer_scalable_vector_valuetypes())
818 if (Legal.count(T))
819 Out.insert(T);
820 return;
821 case MVT::fAny:
822 for (MVT T : MVT::fp_valuetypes())
823 if (Legal.count(T))
824 Out.insert(T);
825 for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
826 if (Legal.count(T))
827 Out.insert(T);
828 for (MVT T : MVT::fp_scalable_vector_valuetypes())
829 if (Legal.count(T))
830 Out.insert(T);
831 return;
832 case MVT::vAny:
833 for (MVT T : MVT::vector_valuetypes())
834 if (Legal.count(T))
835 Out.insert(T);
836 return;
837 case MVT::Any:
838 for (MVT T : MVT::all_valuetypes())
839 if (Legal.count(T))
840 Out.insert(T);
841 return;
842 default:
843 break;
844 }
845 }
846}
847
848const TypeSetByHwMode &TypeInfer::getLegalTypes() {
849 if (!LegalTypesCached) {
850 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
851 // Stuff all types from all modes into the default mode.
852 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
853 for (const auto &I : LTS)
854 LegalTypes.insert(I.second);
855 LegalTypesCached = true;
856 }
857 assert(LegalCache.isDefaultOnly() && "Default-mode only expected")(static_cast <bool> (LegalCache.isDefaultOnly() &&
"Default-mode only expected") ? void (0) : __assert_fail ("LegalCache.isDefaultOnly() && \"Default-mode only expected\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 857, __extension__
__PRETTY_FUNCTION__))
;
858 return LegalCache;
859}
860
861#ifndef NDEBUG
862TypeInfer::ValidateOnExit::~ValidateOnExit() {
863 if (Infer.Validate && !VTS.validate()) {
864 dbgs() << "Type set is empty for each HW mode:\n"
865 "possible type contradiction in the pattern below "
866 "(use -print-records with llvm-tblgen to see all "
867 "expanded records).\n";
868 Infer.TP.dump();
869 dbgs() << "Generated from record:\n";
870 Infer.TP.getRecord()->dump();
871 PrintFatalError(Infer.TP.getRecord()->getLoc(),
872 "Type set is empty for each HW mode in '" +
873 Infer.TP.getRecord()->getName() + "'");
874 }
875}
876#endif
877
878
879//===----------------------------------------------------------------------===//
880// ScopedName Implementation
881//===----------------------------------------------------------------------===//
882
883bool ScopedName::operator==(const ScopedName &o) const {
884 return Scope == o.Scope && Identifier == o.Identifier;
885}
886
887bool ScopedName::operator!=(const ScopedName &o) const {
888 return !(*this == o);
889}
890
891
892//===----------------------------------------------------------------------===//
893// TreePredicateFn Implementation
894//===----------------------------------------------------------------------===//
895
896/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
897TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
898 assert((static_cast <bool> ((!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? void (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 900, __extension__
__PRETTY_FUNCTION__))
899 (!hasPredCode() || !hasImmCode()) &&(static_cast <bool> ((!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? void (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 900, __extension__
__PRETTY_FUNCTION__))
900 ".td file corrupt: can't have a node predicate *and* an imm predicate")(static_cast <bool> ((!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? void (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 900, __extension__
__PRETTY_FUNCTION__))
;
901}
902
903bool TreePredicateFn::hasPredCode() const {
904 return isLoad() || isStore() || isAtomic() ||
905 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
906}
907
908std::string TreePredicateFn::getPredCode() const {
909 std::string Code;
910
911 if (!isLoad() && !isStore() && !isAtomic()) {
912 Record *MemoryVT = getMemoryVT();
913
914 if (MemoryVT)
915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916 "MemoryVT requires IsLoad or IsStore");
917 }
918
919 if (!isLoad() && !isStore()) {
920 if (isUnindexed())
921 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
922 "IsUnindexed requires IsLoad or IsStore");
923
924 Record *ScalarMemoryVT = getScalarMemoryVT();
925
926 if (ScalarMemoryVT)
927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928 "ScalarMemoryVT requires IsLoad or IsStore");
929 }
930
931 if (isLoad() + isStore() + isAtomic() > 1)
932 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
933 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
934
935 if (isLoad()) {
936 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
937 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
938 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
939 getMinAlignment() < 1)
940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941 "IsLoad cannot be used by itself");
942 } else {
943 if (isNonExtLoad())
944 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
945 "IsNonExtLoad requires IsLoad");
946 if (isAnyExtLoad())
947 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
948 "IsAnyExtLoad requires IsLoad");
949 if (isSignExtLoad())
950 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
951 "IsSignExtLoad requires IsLoad");
952 if (isZeroExtLoad())
953 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
954 "IsZeroExtLoad requires IsLoad");
955 }
956
957 if (isStore()) {
958 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
959 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
960 getAddressSpaces() == nullptr && getMinAlignment() < 1)
961 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
962 "IsStore cannot be used by itself");
963 } else {
964 if (isNonTruncStore())
965 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
966 "IsNonTruncStore requires IsStore");
967 if (isTruncStore())
968 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
969 "IsTruncStore requires IsStore");
970 }
971
972 if (isAtomic()) {
973 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
974 getAddressSpaces() == nullptr &&
975 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
976 !isAtomicOrderingAcquireRelease() &&
977 !isAtomicOrderingSequentiallyConsistent() &&
978 !isAtomicOrderingAcquireOrStronger() &&
979 !isAtomicOrderingReleaseOrStronger() &&
980 !isAtomicOrderingWeakerThanAcquire() &&
981 !isAtomicOrderingWeakerThanRelease())
982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
983 "IsAtomic cannot be used by itself");
984 } else {
985 if (isAtomicOrderingMonotonic())
986 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
987 "IsAtomicOrderingMonotonic requires IsAtomic");
988 if (isAtomicOrderingAcquire())
989 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
990 "IsAtomicOrderingAcquire requires IsAtomic");
991 if (isAtomicOrderingRelease())
992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993 "IsAtomicOrderingRelease requires IsAtomic");
994 if (isAtomicOrderingAcquireRelease())
995 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996 "IsAtomicOrderingAcquireRelease requires IsAtomic");
997 if (isAtomicOrderingSequentiallyConsistent())
998 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1000 if (isAtomicOrderingAcquireOrStronger())
1001 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1002 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1003 if (isAtomicOrderingReleaseOrStronger())
1004 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1005 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1006 if (isAtomicOrderingWeakerThanAcquire())
1007 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1008 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1009 }
1010
1011 if (isLoad() || isStore() || isAtomic()) {
1012 if (ListInit *AddressSpaces = getAddressSpaces()) {
1013 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1014 " if (";
1015
1016 ListSeparator LS(" && ");
1017 for (Init *Val : AddressSpaces->getValues()) {
1018 Code += LS;
1019
1020 IntInit *IntVal = dyn_cast<IntInit>(Val);
1021 if (!IntVal) {
1022 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1023 "AddressSpaces element must be integer");
1024 }
1025
1026 Code += "AddrSpace != " + utostr(IntVal->getValue());
1027 }
1028
1029 Code += ")\nreturn false;\n";
1030 }
1031
1032 int64_t MinAlign = getMinAlignment();
1033 if (MinAlign > 0) {
1034 Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1035 Code += utostr(MinAlign);
1036 Code += "))\nreturn false;\n";
1037 }
1038
1039 Record *MemoryVT = getMemoryVT();
1040
1041 if (MemoryVT)
1042 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1043 MemoryVT->getName() + ") return false;\n")
1044 .str();
1045 }
1046
1047 if (isAtomic() && isAtomicOrderingMonotonic())
1048 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1049 "AtomicOrdering::Monotonic) return false;\n";
1050 if (isAtomic() && isAtomicOrderingAcquire())
1051 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1052 "AtomicOrdering::Acquire) return false;\n";
1053 if (isAtomic() && isAtomicOrderingRelease())
1054 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1055 "AtomicOrdering::Release) return false;\n";
1056 if (isAtomic() && isAtomicOrderingAcquireRelease())
1057 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1058 "AtomicOrdering::AcquireRelease) return false;\n";
1059 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1060 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1061 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1062
1063 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1064 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1065 "return false;\n";
1066 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1067 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1068 "return false;\n";
1069
1070 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1071 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1072 "return false;\n";
1073 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1074 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1075 "return false;\n";
1076
1077 if (isLoad() || isStore()) {
1078 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1079
1080 if (isUnindexed())
1081 Code += ("if (cast<" + SDNodeName +
1082 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1083 "return false;\n")
1084 .str();
1085
1086 if (isLoad()) {
1087 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1088 isZeroExtLoad()) > 1)
1089 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1090 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1091 "IsZeroExtLoad are mutually exclusive");
1092 if (isNonExtLoad())
1093 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1094 "ISD::NON_EXTLOAD) return false;\n";
1095 if (isAnyExtLoad())
1096 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1097 "return false;\n";
1098 if (isSignExtLoad())
1099 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1100 "return false;\n";
1101 if (isZeroExtLoad())
1102 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1103 "return false;\n";
1104 } else {
1105 if ((isNonTruncStore() + isTruncStore()) > 1)
1106 PrintFatalError(
1107 getOrigPatFragRecord()->getRecord()->getLoc(),
1108 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1109 if (isNonTruncStore())
1110 Code +=
1111 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1112 if (isTruncStore())
1113 Code +=
1114 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1115 }
1116
1117 Record *ScalarMemoryVT = getScalarMemoryVT();
1118
1119 if (ScalarMemoryVT)
1120 Code += ("if (cast<" + SDNodeName +
1121 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1122 ScalarMemoryVT->getName() + ") return false;\n")
1123 .str();
1124 }
1125
1126 std::string PredicateCode =
1127 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1128
1129 Code += PredicateCode;
1130
1131 if (PredicateCode.empty() && !Code.empty())
1132 Code += "return true;\n";
1133
1134 return Code;
1135}
1136
1137bool TreePredicateFn::hasImmCode() const {
1138 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1139}
1140
1141std::string TreePredicateFn::getImmCode() const {
1142 return std::string(
1143 PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1144}
1145
1146bool TreePredicateFn::immCodeUsesAPInt() const {
1147 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1148}
1149
1150bool TreePredicateFn::immCodeUsesAPFloat() const {
1151 bool Unset;
1152 // The return value will be false when IsAPFloat is unset.
1153 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1154 Unset);
1155}
1156
1157bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1158 bool Value) const {
1159 bool Unset;
1160 bool Result =
1161 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1162 if (Unset)
1163 return false;
1164 return Result == Value;
1165}
1166bool TreePredicateFn::usesOperands() const {
1167 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1168}
1169bool TreePredicateFn::isLoad() const {
1170 return isPredefinedPredicateEqualTo("IsLoad", true);
1171}
1172bool TreePredicateFn::isStore() const {
1173 return isPredefinedPredicateEqualTo("IsStore", true);
1174}
1175bool TreePredicateFn::isAtomic() const {
1176 return isPredefinedPredicateEqualTo("IsAtomic", true);
1177}
1178bool TreePredicateFn::isUnindexed() const {
1179 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1180}
1181bool TreePredicateFn::isNonExtLoad() const {
1182 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1183}
1184bool TreePredicateFn::isAnyExtLoad() const {
1185 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1186}
1187bool TreePredicateFn::isSignExtLoad() const {
1188 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1189}
1190bool TreePredicateFn::isZeroExtLoad() const {
1191 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1192}
1193bool TreePredicateFn::isNonTruncStore() const {
1194 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1195}
1196bool TreePredicateFn::isTruncStore() const {
1197 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1198}
1199bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1200 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1201}
1202bool TreePredicateFn::isAtomicOrderingAcquire() const {
1203 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1204}
1205bool TreePredicateFn::isAtomicOrderingRelease() const {
1206 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1207}
1208bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1209 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1210}
1211bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1212 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1213 true);
1214}
1215bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1216 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1217}
1218bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1219 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1220}
1221bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1222 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1223}
1224bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1225 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1226}
1227Record *TreePredicateFn::getMemoryVT() const {
1228 Record *R = getOrigPatFragRecord()->getRecord();
1229 if (R->isValueUnset("MemoryVT"))
1230 return nullptr;
1231 return R->getValueAsDef("MemoryVT");
1232}
1233
1234ListInit *TreePredicateFn::getAddressSpaces() const {
1235 Record *R = getOrigPatFragRecord()->getRecord();
1236 if (R->isValueUnset("AddressSpaces"))
1237 return nullptr;
1238 return R->getValueAsListInit("AddressSpaces");
1239}
1240
1241int64_t TreePredicateFn::getMinAlignment() const {
1242 Record *R = getOrigPatFragRecord()->getRecord();
1243 if (R->isValueUnset("MinAlignment"))
1244 return 0;
1245 return R->getValueAsInt("MinAlignment");
1246}
1247
1248Record *TreePredicateFn::getScalarMemoryVT() const {
1249 Record *R = getOrigPatFragRecord()->getRecord();
1250 if (R->isValueUnset("ScalarMemoryVT"))
1251 return nullptr;
1252 return R->getValueAsDef("ScalarMemoryVT");
1253}
1254bool TreePredicateFn::hasGISelPredicateCode() const {
1255 return !PatFragRec->getRecord()
1256 ->getValueAsString("GISelPredicateCode")
1257 .empty();
1258}
1259std::string TreePredicateFn::getGISelPredicateCode() const {
1260 return std::string(
1261 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1262}
1263
1264StringRef TreePredicateFn::getImmType() const {
1265 if (immCodeUsesAPInt())
1266 return "const APInt &";
1267 if (immCodeUsesAPFloat())
1268 return "const APFloat &";
1269 return "int64_t";
1270}
1271
1272StringRef TreePredicateFn::getImmTypeIdentifier() const {
1273 if (immCodeUsesAPInt())
1274 return "APInt";
1275 if (immCodeUsesAPFloat())
1276 return "APFloat";
1277 return "I64";
1278}
1279
1280/// isAlwaysTrue - Return true if this is a noop predicate.
1281bool TreePredicateFn::isAlwaysTrue() const {
1282 return !hasPredCode() && !hasImmCode();
1283}
1284
1285/// Return the name to use in the generated code to reference this, this is
1286/// "Predicate_foo" if from a pattern fragment "foo".
1287std::string TreePredicateFn::getFnName() const {
1288 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1289}
1290
1291/// getCodeToRunOnSDNode - Return the code for the function body that
1292/// evaluates this predicate. The argument is expected to be in "Node",
1293/// not N. This handles casting and conversion to a concrete node type as
1294/// appropriate.
1295std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1296 // Handle immediate predicates first.
1297 std::string ImmCode = getImmCode();
1298 if (!ImmCode.empty()) {
1299 if (isLoad())
1300 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1301 "IsLoad cannot be used with ImmLeaf or its subclasses");
1302 if (isStore())
1303 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1304 "IsStore cannot be used with ImmLeaf or its subclasses");
1305 if (isUnindexed())
1306 PrintFatalError(
1307 getOrigPatFragRecord()->getRecord()->getLoc(),
1308 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1309 if (isNonExtLoad())
1310 PrintFatalError(
1311 getOrigPatFragRecord()->getRecord()->getLoc(),
1312 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1313 if (isAnyExtLoad())
1314 PrintFatalError(
1315 getOrigPatFragRecord()->getRecord()->getLoc(),
1316 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1317 if (isSignExtLoad())
1318 PrintFatalError(
1319 getOrigPatFragRecord()->getRecord()->getLoc(),
1320 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1321 if (isZeroExtLoad())
1322 PrintFatalError(
1323 getOrigPatFragRecord()->getRecord()->getLoc(),
1324 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1325 if (isNonTruncStore())
1326 PrintFatalError(
1327 getOrigPatFragRecord()->getRecord()->getLoc(),
1328 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1329 if (isTruncStore())
1330 PrintFatalError(
1331 getOrigPatFragRecord()->getRecord()->getLoc(),
1332 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1333 if (getMemoryVT())
1334 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1335 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1336 if (getScalarMemoryVT())
1337 PrintFatalError(
1338 getOrigPatFragRecord()->getRecord()->getLoc(),
1339 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1340
1341 std::string Result = (" " + getImmType() + " Imm = ").str();
1342 if (immCodeUsesAPFloat())
1343 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1344 else if (immCodeUsesAPInt())
1345 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1346 else
1347 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1348 return Result + ImmCode;
1349 }
1350
1351 // Handle arbitrary node predicates.
1352 assert(hasPredCode() && "Don't have any predicate code!")(static_cast <bool> (hasPredCode() && "Don't have any predicate code!"
) ? void (0) : __assert_fail ("hasPredCode() && \"Don't have any predicate code!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1352, __extension__
__PRETTY_FUNCTION__))
;
1353
1354 // If this is using PatFrags, there are multiple trees to search. They should
1355 // all have the same class. FIXME: Is there a way to find a common
1356 // superclass?
1357 StringRef ClassName;
1358 for (const auto &Tree : PatFragRec->getTrees()) {
1359 StringRef TreeClassName;
1360 if (Tree->isLeaf())
1361 TreeClassName = "SDNode";
1362 else {
1363 Record *Op = Tree->getOperator();
1364 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1365 TreeClassName = Info.getSDClassName();
1366 }
1367
1368 if (ClassName.empty())
1369 ClassName = TreeClassName;
1370 else if (ClassName != TreeClassName) {
1371 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1372 "PatFrags trees do not have consistent class");
1373 }
1374 }
1375
1376 std::string Result;
1377 if (ClassName == "SDNode")
1378 Result = " SDNode *N = Node;\n";
1379 else
1380 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1381
1382 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1383}
1384
1385//===----------------------------------------------------------------------===//
1386// PatternToMatch implementation
1387//
1388
1389static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1390 if (!P->isLeaf())
1391 return false;
1392 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1393 if (!DI)
1394 return false;
1395
1396 Record *R = DI->getDef();
1397 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1398}
1399
1400/// getPatternSize - Return the 'size' of this pattern. We want to match large
1401/// patterns before small ones. This is used to determine the size of a
1402/// pattern.
1403static unsigned getPatternSize(const TreePatternNode *P,
1404 const CodeGenDAGPatterns &CGP) {
1405 unsigned Size = 3; // The node itself.
1406 // If the root node is a ConstantSDNode, increases its size.
1407 // e.g. (set R32:$dst, 0).
1408 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1409 Size += 2;
1410
1411 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1412 Size += AM->getComplexity();
1413 // We don't want to count any children twice, so return early.
1414 return Size;
1415 }
1416
1417 // If this node has some predicate function that must match, it adds to the
1418 // complexity of this node.
1419 if (!P->getPredicateCalls().empty())
1420 ++Size;
1421
1422 // Count children in the count if they are also nodes.
1423 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1424 const TreePatternNode *Child = P->getChild(i);
1425 if (!Child->isLeaf() && Child->getNumTypes()) {
1426 const TypeSetByHwMode &T0 = Child->getExtType(0);
1427 // At this point, all variable type sets should be simple, i.e. only
1428 // have a default mode.
1429 if (T0.getMachineValueType() != MVT::Other) {
1430 Size += getPatternSize(Child, CGP);
1431 continue;
1432 }
1433 }
1434 if (Child->isLeaf()) {
1435 if (isa<IntInit>(Child->getLeafValue()))
1436 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1437 else if (Child->getComplexPatternInfo(CGP))
1438 Size += getPatternSize(Child, CGP);
1439 else if (isImmAllOnesAllZerosMatch(Child))
1440 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1441 else if (!Child->getPredicateCalls().empty())
1442 ++Size;
1443 }
1444 }
1445
1446 return Size;
1447}
1448
1449/// Compute the complexity metric for the input pattern. This roughly
1450/// corresponds to the number of nodes that are covered.
1451int PatternToMatch::
1452getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1453 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1454}
1455
1456void PatternToMatch::getPredicateRecords(
1457 SmallVectorImpl<Record *> &PredicateRecs) const {
1458 for (Init *I : Predicates->getValues()) {
1459 if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1460 Record *Def = Pred->getDef();
1461 if (!Def->isSubClassOf("Predicate")) {
1462#ifndef NDEBUG
1463 Def->dump();
1464#endif
1465 llvm_unreachable("Unknown predicate type!")::llvm::llvm_unreachable_internal("Unknown predicate type!", "llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1465)
;
1466 }
1467 PredicateRecs.push_back(Def);
1468 }
1469 }
1470 // Sort so that different orders get canonicalized to the same string.
1471 llvm::sort(PredicateRecs, LessRecord());
1472}
1473
1474/// getPredicateCheck - Return a single string containing all of this
1475/// pattern's predicates concatenated with "&&" operators.
1476///
1477std::string PatternToMatch::getPredicateCheck() const {
1478 SmallVector<Record *, 4> PredicateRecs;
1479 getPredicateRecords(PredicateRecs);
1480
1481 SmallString<128> PredicateCheck;
1482 for (Record *Pred : PredicateRecs) {
1483 StringRef CondString = Pred->getValueAsString("CondString");
1484 if (CondString.empty())
1485 continue;
1486 if (!PredicateCheck.empty())
1487 PredicateCheck += " && ";
1488 PredicateCheck += "(";
1489 PredicateCheck += CondString;
1490 PredicateCheck += ")";
1491 }
1492
1493 if (!HwModeFeatures.empty()) {
1494 if (!PredicateCheck.empty())
1495 PredicateCheck += " && ";
1496 PredicateCheck += HwModeFeatures;
1497 }
1498
1499 return std::string(PredicateCheck);
1500}
1501
1502//===----------------------------------------------------------------------===//
1503// SDTypeConstraint implementation
1504//
1505
1506SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1507 OperandNo = R->getValueAsInt("OperandNum");
1508
1509 if (R->isSubClassOf("SDTCisVT")) {
1510 ConstraintType = SDTCisVT;
1511 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1512 for (const auto &P : VVT)
1513 if (P.second == MVT::isVoid)
1514 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1515 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1516 ConstraintType = SDTCisPtrTy;
1517 } else if (R->isSubClassOf("SDTCisInt")) {
1518 ConstraintType = SDTCisInt;
1519 } else if (R->isSubClassOf("SDTCisFP")) {
1520 ConstraintType = SDTCisFP;
1521 } else if (R->isSubClassOf("SDTCisVec")) {
1522 ConstraintType = SDTCisVec;
1523 } else if (R->isSubClassOf("SDTCisSameAs")) {
1524 ConstraintType = SDTCisSameAs;
1525 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1526 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1527 ConstraintType = SDTCisVTSmallerThanOp;
1528 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1529 R->getValueAsInt("OtherOperandNum");
1530 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1531 ConstraintType = SDTCisOpSmallerThanOp;
1532 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1533 R->getValueAsInt("BigOperandNum");
1534 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1535 ConstraintType = SDTCisEltOfVec;
1536 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1537 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1538 ConstraintType = SDTCisSubVecOfVec;
1539 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1540 R->getValueAsInt("OtherOpNum");
1541 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1542 ConstraintType = SDTCVecEltisVT;
1543 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1544 for (const auto &P : VVT) {
1545 MVT T = P.second;
1546 if (T.isVector())
1547 PrintFatalError(R->getLoc(),
1548 "Cannot use vector type as SDTCVecEltisVT");
1549 if (!T.isInteger() && !T.isFloatingPoint())
1550 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1551 "as SDTCVecEltisVT");
1552 }
1553 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1554 ConstraintType = SDTCisSameNumEltsAs;
1555 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1556 R->getValueAsInt("OtherOperandNum");
1557 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1558 ConstraintType = SDTCisSameSizeAs;
1559 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1560 R->getValueAsInt("OtherOperandNum");
1561 } else {
1562 PrintFatalError(R->getLoc(),
1563 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1564 }
1565}
1566
1567/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1568/// N, and the result number in ResNo.
1569static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1570 const SDNodeInfo &NodeInfo,
1571 unsigned &ResNo) {
1572 unsigned NumResults = NodeInfo.getNumResults();
1573 if (OpNo < NumResults) {
1574 ResNo = OpNo;
1575 return N;
1576 }
1577
1578 OpNo -= NumResults;
1579
1580 if (OpNo >= N->getNumChildren()) {
1581 std::string S;
1582 raw_string_ostream OS(S);
1583 OS << "Invalid operand number in type constraint "
1584 << (OpNo+NumResults) << " ";
1585 N->print(OS);
1586 PrintFatalError(S);
1587 }
1588
1589 return N->getChild(OpNo);
1590}
1591
1592/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1593/// constraint to the nodes operands. This returns true if it makes a
1594/// change, false otherwise. If a type contradiction is found, flag an error.
1595bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1596 const SDNodeInfo &NodeInfo,
1597 TreePattern &TP) const {
1598 if (TP.hasError())
1599 return false;
1600
1601 unsigned ResNo = 0; // The result number being referenced.
1602 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1603 TypeInfer &TI = TP.getInfer();
1604
1605 switch (ConstraintType) {
1606 case SDTCisVT:
1607 // Operand must be a particular type.
1608 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1609 case SDTCisPtrTy:
1610 // Operand must be same as target pointer type.
1611 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1612 case SDTCisInt:
1613 // Require it to be one of the legal integer VTs.
1614 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1615 case SDTCisFP:
1616 // Require it to be one of the legal fp VTs.
1617 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1618 case SDTCisVec:
1619 // Require it to be one of the legal vector VTs.
1620 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1621 case SDTCisSameAs: {
1622 unsigned OResNo = 0;
1623 TreePatternNode *OtherNode =
1624 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1625 return (int)NodeToApply->UpdateNodeType(ResNo,
1626 OtherNode->getExtType(OResNo), TP) |
1627 (int)OtherNode->UpdateNodeType(OResNo,
1628 NodeToApply->getExtType(ResNo), TP);
1629 }
1630 case SDTCisVTSmallerThanOp: {
1631 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1632 // have an integer type that is smaller than the VT.
1633 if (!NodeToApply->isLeaf() ||
1634 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1635 !cast<DefInit>(NodeToApply->getLeafValue())->getDef()
1636 ->isSubClassOf("ValueType")) {
1637 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1638 return false;
1639 }
1640 DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue());
1641 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1642 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1643 TypeSetByHwMode TypeListTmp(VVT);
1644
1645 unsigned OResNo = 0;
1646 TreePatternNode *OtherNode =
1647 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1648 OResNo);
1649
1650 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo),
1651 /*SmallIsVT*/ true);
1652 }
1653 case SDTCisOpSmallerThanOp: {
1654 unsigned BResNo = 0;
1655 TreePatternNode *BigOperand =
1656 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1657 BResNo);
1658 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1659 BigOperand->getExtType(BResNo));
1660 }
1661 case SDTCisEltOfVec: {
1662 unsigned VResNo = 0;
1663 TreePatternNode *VecOperand =
1664 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1665 VResNo);
1666 // Filter vector types out of VecOperand that don't have the right element
1667 // type.
1668 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1669 NodeToApply->getExtType(ResNo));
1670 }
1671 case SDTCisSubVecOfVec: {
1672 unsigned VResNo = 0;
1673 TreePatternNode *BigVecOperand =
1674 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1675 VResNo);
1676
1677 // Filter vector types out of BigVecOperand that don't have the
1678 // right subvector type.
1679 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1680 NodeToApply->getExtType(ResNo));
1681 }
1682 case SDTCVecEltisVT: {
1683 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1684 }
1685 case SDTCisSameNumEltsAs: {
1686 unsigned OResNo = 0;
1687 TreePatternNode *OtherNode =
1688 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1689 N, NodeInfo, OResNo);
1690 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1691 NodeToApply->getExtType(ResNo));
1692 }
1693 case SDTCisSameSizeAs: {
1694 unsigned OResNo = 0;
1695 TreePatternNode *OtherNode =
1696 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1697 N, NodeInfo, OResNo);
1698 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1699 NodeToApply->getExtType(ResNo));
1700 }
1701 }
1702 llvm_unreachable("Invalid ConstraintType!")::llvm::llvm_unreachable_internal("Invalid ConstraintType!", "llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1702)
;
1703}
1704
1705// Update the node type to match an instruction operand or result as specified
1706// in the ins or outs lists on the instruction definition. Return true if the
1707// type was actually changed.
1708bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1709 Record *Operand,
1710 TreePattern &TP) {
1711 // The 'unknown' operand indicates that types should be inferred from the
1712 // context.
1713 if (Operand->isSubClassOf("unknown_class"))
1714 return false;
1715
1716 // The Operand class specifies a type directly.
1717 if (Operand->isSubClassOf("Operand")) {
1718 Record *R = Operand->getValueAsDef("Type");
1719 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1720 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1721 }
1722
1723 // PointerLikeRegClass has a type that is determined at runtime.
1724 if (Operand->isSubClassOf("PointerLikeRegClass"))
1725 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1726
1727 // Both RegisterClass and RegisterOperand operands derive their types from a
1728 // register class def.
1729 Record *RC = nullptr;
1730 if (Operand->isSubClassOf("RegisterClass"))
1731 RC = Operand;
1732 else if (Operand->isSubClassOf("RegisterOperand"))
1733 RC = Operand->getValueAsDef("RegClass");
1734
1735 assert(RC && "Unknown operand type")(static_cast <bool> (RC && "Unknown operand type"
) ? void (0) : __assert_fail ("RC && \"Unknown operand type\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1735, __extension__
__PRETTY_FUNCTION__))
;
1736 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1737 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1738}
1739
1740bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1741 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1742 if (!TP.getInfer().isConcrete(Types[i], true))
1743 return true;
1744 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1745 if (getChild(i)->ContainsUnresolvedType(TP))
1746 return true;
1747 return false;
1748}
1749
1750bool TreePatternNode::hasProperTypeByHwMode() const {
1751 for (const TypeSetByHwMode &S : Types)
1752 if (!S.isDefaultOnly())
1753 return true;
1754 for (const TreePatternNodePtr &C : Children)
1755 if (C->hasProperTypeByHwMode())
1756 return true;
1757 return false;
1758}
1759
1760bool TreePatternNode::hasPossibleType() const {
1761 for (const TypeSetByHwMode &S : Types)
1762 if (!S.isPossible())
1763 return false;
1764 for (const TreePatternNodePtr &C : Children)
1765 if (!C->hasPossibleType())
1766 return false;
1767 return true;
1768}
1769
1770bool TreePatternNode::setDefaultMode(unsigned Mode) {
1771 for (TypeSetByHwMode &S : Types) {
1772 S.makeSimple(Mode);
1773 // Check if the selected mode had a type conflict.
1774 if (S.get(DefaultMode).empty())
1775 return false;
1776 }
1777 for (const TreePatternNodePtr &C : Children)
1778 if (!C->setDefaultMode(Mode))
1779 return false;
1780 return true;
1781}
1782
1783//===----------------------------------------------------------------------===//
1784// SDNodeInfo implementation
1785//
1786SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1787 EnumName = R->getValueAsString("Opcode");
1788 SDClassName = R->getValueAsString("SDClass");
1789 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1790 NumResults = TypeProfile->getValueAsInt("NumResults");
1791 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1792
1793 // Parse the properties.
1794 Properties = parseSDPatternOperatorProperties(R);
1795
1796 // Parse the type constraints.
1797 std::vector<Record*> ConstraintList =
1798 TypeProfile->getValueAsListOfDefs("Constraints");
1799 for (Record *R : ConstraintList)
1800 TypeConstraints.emplace_back(R, CGH);
1801}
1802
1803/// getKnownType - If the type constraints on this node imply a fixed type
1804/// (e.g. all stores return void, etc), then return it as an
1805/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1806MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1807 unsigned NumResults = getNumResults();
1808 assert(NumResults <= 1 &&(static_cast <bool> (NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? void (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1809, __extension__
__PRETTY_FUNCTION__))
1809 "We only work with nodes with zero or one result so far!")(static_cast <bool> (NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? void (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1809, __extension__
__PRETTY_FUNCTION__))
;
1810 assert(ResNo == 0 && "Only handles single result nodes so far")(static_cast <bool> (ResNo == 0 && "Only handles single result nodes so far"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Only handles single result nodes so far\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1810, __extension__
__PRETTY_FUNCTION__))
;
1811
1812 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1813 // Make sure that this applies to the correct node result.
1814 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1815 continue;
1816
1817 switch (Constraint.ConstraintType) {
1818 default: break;
1819 case SDTypeConstraint::SDTCisVT:
1820 if (Constraint.VVT.isSimple())
1821 return Constraint.VVT.getSimple().SimpleTy;
1822 break;
1823 case SDTypeConstraint::SDTCisPtrTy:
1824 return MVT::iPTR;
1825 }
1826 }
1827 return MVT::Other;
1828}
1829
1830//===----------------------------------------------------------------------===//
1831// TreePatternNode implementation
1832//
1833
1834static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1835 if (Operator->getName() == "set" ||
1836 Operator->getName() == "implicit")
1837 return 0; // All return nothing.
1838
1839 if (Operator->isSubClassOf("Intrinsic"))
1840 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1841
1842 if (Operator->isSubClassOf("SDNode"))
1843 return CDP.getSDNodeInfo(Operator).getNumResults();
1844
1845 if (Operator->isSubClassOf("PatFrags")) {
1846 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1847 // the forward reference case where one pattern fragment references another
1848 // before it is processed.
1849 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1850 // The number of results of a fragment with alternative records is the
1851 // maximum number of results across all alternatives.
1852 unsigned NumResults = 0;
1853 for (const auto &T : PFRec->getTrees())
1854 NumResults = std::max(NumResults, T->getNumTypes());
1855 return NumResults;
1856 }
1857
1858 ListInit *LI = Operator->getValueAsListInit("Fragments");
1859 assert(LI && "Invalid Fragment")(static_cast <bool> (LI && "Invalid Fragment") ?
void (0) : __assert_fail ("LI && \"Invalid Fragment\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1859, __extension__
__PRETTY_FUNCTION__))
;
1860 unsigned NumResults = 0;
1861 for (Init *I : LI->getValues()) {
1862 Record *Op = nullptr;
1863 if (DagInit *Dag = dyn_cast<DagInit>(I))
1864 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1865 Op = DI->getDef();
1866 assert(Op && "Invalid Fragment")(static_cast <bool> (Op && "Invalid Fragment") ?
void (0) : __assert_fail ("Op && \"Invalid Fragment\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 1866, __extension__
__PRETTY_FUNCTION__))
;
1867 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1868 }
1869 return NumResults;
1870 }
1871
1872 if (Operator->isSubClassOf("Instruction")) {
1873 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1874
1875 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1876
1877 // Subtract any defaulted outputs.
1878 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1879 Record *OperandNode = InstInfo.Operands[i].Rec;
1880
1881 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1882 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1883 --NumDefsToAdd;
1884 }
1885
1886 // Add on one implicit def if it has a resolvable type.
1887 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1888 ++NumDefsToAdd;
1889 return NumDefsToAdd;
1890 }
1891
1892 if (Operator->isSubClassOf("SDNodeXForm"))
1893 return 1; // FIXME: Generalize SDNodeXForm
1894
1895 if (Operator->isSubClassOf("ValueType"))
1896 return 1; // A type-cast of one result.
1897
1898 if (Operator->isSubClassOf("ComplexPattern"))
1899 return 1;
1900
1901 errs() << *Operator;
1902 PrintFatalError("Unhandled node in GetNumNodeResults");
1903}
1904
1905void TreePatternNode::print(raw_ostream &OS) const {
1906 if (isLeaf())
1907 OS << *getLeafValue();
1908 else
1909 OS << '(' << getOperator()->getName();
1910
1911 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1912 OS << ':';
1913 getExtType(i).writeToStream(OS);
1914 }
1915
1916 if (!isLeaf()) {
1917 if (getNumChildren() != 0) {
1918 OS << " ";
1919 ListSeparator LS;
1920 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1921 OS << LS;
1922 getChild(i)->print(OS);
1923 }
1924 }
1925 OS << ")";
1926 }
1927
1928 for (const TreePredicateCall &Pred : PredicateCalls) {
1929 OS << "<<P:";
1930 if (Pred.Scope)
1931 OS << Pred.Scope << ":";
1932 OS << Pred.Fn.getFnName() << ">>";
1933 }
1934 if (TransformFn)
1935 OS << "<<X:" << TransformFn->getName() << ">>";
1936 if (!getName().empty())
1937 OS << ":$" << getName();
1938
1939 for (const ScopedName &Name : NamesAsPredicateArg)
1940 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1941}
1942void TreePatternNode::dump() const {
1943 print(errs());
1944}
1945
1946/// isIsomorphicTo - Return true if this node is recursively
1947/// isomorphic to the specified node. For this comparison, the node's
1948/// entire state is considered. The assigned name is ignored, since
1949/// nodes with differing names are considered isomorphic. However, if
1950/// the assigned name is present in the dependent variable set, then
1951/// the assigned name is considered significant and the node is
1952/// isomorphic if the names match.
1953bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1954 const MultipleUseVarSet &DepVars) const {
1955 if (N == this) return true;
1956 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1957 getPredicateCalls() != N->getPredicateCalls() ||
1958 getTransformFn() != N->getTransformFn())
1959 return false;
1960
1961 if (isLeaf()) {
1962 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1963 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1964 return ((DI->getDef() == NDI->getDef())
1965 && (DepVars.find(getName()) == DepVars.end()
1966 || getName() == N->getName()));
1967 }
1968 }
1969 return getLeafValue() == N->getLeafValue();
1970 }
1971
1972 if (N->getOperator() != getOperator() ||
1973 N->getNumChildren() != getNumChildren()) return false;
1974 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1975 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1976 return false;
1977 return true;
1978}
1979
1980/// clone - Make a copy of this tree and all of its children.
1981///
1982TreePatternNodePtr TreePatternNode::clone() const {
1983 TreePatternNodePtr New;
1984 if (isLeaf()) {
1985 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1986 } else {
1987 std::vector<TreePatternNodePtr> CChildren;
1988 CChildren.reserve(Children.size());
1989 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1990 CChildren.push_back(getChild(i)->clone());
1991 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1992 getNumTypes());
1993 }
1994 New->setName(getName());
1995 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1996 New->Types = Types;
1997 New->setPredicateCalls(getPredicateCalls());
1998 New->setTransformFn(getTransformFn());
1999 return New;
2000}
2001
2002/// RemoveAllTypes - Recursively strip all the types of this tree.
2003void TreePatternNode::RemoveAllTypes() {
2004 // Reset to unknown type.
2005 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2006 if (isLeaf()) return;
2007 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2008 getChild(i)->RemoveAllTypes();
2009}
2010
2011
2012/// SubstituteFormalArguments - Replace the formal arguments in this tree
2013/// with actual values specified by ArgMap.
2014void TreePatternNode::SubstituteFormalArguments(
2015 std::map<std::string, TreePatternNodePtr> &ArgMap) {
2016 if (isLeaf()) return;
2017
2018 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2019 TreePatternNode *Child = getChild(i);
2020 if (Child->isLeaf()) {
2021 Init *Val = Child->getLeafValue();
2022 // Note that, when substituting into an output pattern, Val might be an
2023 // UnsetInit.
2024 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2025 cast<DefInit>(Val)->getDef()->getName() == "node")) {
2026 // We found a use of a formal argument, replace it with its value.
2027 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2028 assert(NewChild && "Couldn't find formal argument!")(static_cast <bool> (NewChild && "Couldn't find formal argument!"
) ? void (0) : __assert_fail ("NewChild && \"Couldn't find formal argument!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2028, __extension__
__PRETTY_FUNCTION__))
;
2029 assert((Child->getPredicateCalls().empty() ||(static_cast <bool> ((Child->getPredicateCalls().empty
() || NewChild->getPredicateCalls() == Child->getPredicateCalls
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2031, __extension__
__PRETTY_FUNCTION__))
2030 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(static_cast <bool> ((Child->getPredicateCalls().empty
() || NewChild->getPredicateCalls() == Child->getPredicateCalls
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2031, __extension__
__PRETTY_FUNCTION__))
2031 "Non-empty child predicate clobbered!")(static_cast <bool> ((Child->getPredicateCalls().empty
() || NewChild->getPredicateCalls() == Child->getPredicateCalls
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2031, __extension__
__PRETTY_FUNCTION__))
;
2032 setChild(i, std::move(NewChild));
2033 }
2034 } else {
2035 getChild(i)->SubstituteFormalArguments(ArgMap);
2036 }
2037 }
2038}
2039
2040
2041/// InlinePatternFragments - If this pattern refers to any pattern
2042/// fragments, return the set of inlined versions (this can be more than
2043/// one if a PatFrags record has multiple alternatives).
2044void TreePatternNode::InlinePatternFragments(
2045 TreePatternNodePtr T, TreePattern &TP,
2046 std::vector<TreePatternNodePtr> &OutAlternatives) {
2047
2048 if (TP.hasError())
2049 return;
2050
2051 if (isLeaf()) {
2052 OutAlternatives.push_back(T); // nothing to do.
2053 return;
2054 }
2055
2056 Record *Op = getOperator();
2057
2058 if (!Op->isSubClassOf("PatFrags")) {
2059 if (getNumChildren() == 0) {
2060 OutAlternatives.push_back(T);
2061 return;
2062 }
2063
2064 // Recursively inline children nodes.
2065 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2066 ChildAlternatives.resize(getNumChildren());
2067 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2068 TreePatternNodePtr Child = getChildShared(i);
2069 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2070 // If there are no alternatives for any child, there are no
2071 // alternatives for this expression as whole.
2072 if (ChildAlternatives[i].empty())
2073 return;
2074
2075 assert((Child->getPredicateCalls().empty() ||(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
2076 llvm::all_of(ChildAlternatives[i],(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
2077 [&](const TreePatternNodePtr &NewChild) {(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
2078 return NewChild->getPredicateCalls() ==(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
2079 Child->getPredicateCalls();(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
2080 })) &&(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
2081 "Non-empty child predicate clobbered!")(static_cast <bool> ((Child->getPredicateCalls().empty
() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr
&NewChild) { return NewChild->getPredicateCalls() == Child
->getPredicateCalls(); })) && "Non-empty child predicate clobbered!"
) ? void (0) : __assert_fail ("(Child->getPredicateCalls().empty() || llvm::all_of(ChildAlternatives[i], [&](const TreePatternNodePtr &NewChild) { return NewChild->getPredicateCalls() == Child->getPredicateCalls(); })) && \"Non-empty child predicate clobbered!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2081, __extension__
__PRETTY_FUNCTION__))
;
2082 }
2083
2084 // The end result is an all-pairs construction of the resultant pattern.
2085 std::vector<unsigned> Idxs;
2086 Idxs.resize(ChildAlternatives.size());
2087 bool NotDone;
2088 do {
2089 // Create the variant and add it to the output list.
2090 std::vector<TreePatternNodePtr> NewChildren;
2091 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2092 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2093 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2094 getOperator(), std::move(NewChildren), getNumTypes());
2095
2096 // Copy over properties.
2097 R->setName(getName());
2098 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2099 R->setPredicateCalls(getPredicateCalls());
2100 R->setTransformFn(getTransformFn());
2101 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2102 R->setType(i, getExtType(i));
2103 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2104 R->setResultIndex(i, getResultIndex(i));
2105
2106 // Register alternative.
2107 OutAlternatives.push_back(R);
2108
2109 // Increment indices to the next permutation by incrementing the
2110 // indices from last index backward, e.g., generate the sequence
2111 // [0, 0], [0, 1], [1, 0], [1, 1].
2112 int IdxsIdx;
2113 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2114 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2115 Idxs[IdxsIdx] = 0;
2116 else
2117 break;
2118 }
2119 NotDone = (IdxsIdx >= 0);
2120 } while (NotDone);
2121
2122 return;
2123 }
2124
2125 // Otherwise, we found a reference to a fragment. First, look up its
2126 // TreePattern record.
2127 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2128
2129 // Verify that we are passing the right number of operands.
2130 if (Frag->getNumArgs() != Children.size()) {
2131 TP.error("'" + Op->getName() + "' fragment requires " +
2132 Twine(Frag->getNumArgs()) + " operands!");
2133 return;
2134 }
2135
2136 TreePredicateFn PredFn(Frag);
2137 unsigned Scope = 0;
2138 if (TreePredicateFn(Frag).usesOperands())
2139 Scope = TP.getDAGPatterns().allocateScope();
2140
2141 // Compute the map of formal to actual arguments.
2142 std::map<std::string, TreePatternNodePtr> ArgMap;
2143 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2144 TreePatternNodePtr Child = getChildShared(i);
2145 if (Scope != 0) {
2146 Child = Child->clone();
2147 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2148 }
2149 ArgMap[Frag->getArgName(i)] = Child;
2150 }
2151
2152 // Loop over all fragment alternatives.
2153 for (const auto &Alternative : Frag->getTrees()) {
2154 TreePatternNodePtr FragTree = Alternative->clone();
2155
2156 if (!PredFn.isAlwaysTrue())
2157 FragTree->addPredicateCall(PredFn, Scope);
2158
2159 // Resolve formal arguments to their actual value.
2160 if (Frag->getNumArgs())
2161 FragTree->SubstituteFormalArguments(ArgMap);
2162
2163 // Transfer types. Note that the resolved alternative may have fewer
2164 // (but not more) results than the PatFrags node.
2165 FragTree->setName(getName());
2166 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2167 FragTree->UpdateNodeType(i, getExtType(i), TP);
2168
2169 // Transfer in the old predicates.
2170 for (const TreePredicateCall &Pred : getPredicateCalls())
2171 FragTree->addPredicateCall(Pred);
2172
2173 // The fragment we inlined could have recursive inlining that is needed. See
2174 // if there are any pattern fragments in it and inline them as needed.
2175 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2176 }
2177}
2178
2179/// getImplicitType - Check to see if the specified record has an implicit
2180/// type which should be applied to it. This will infer the type of register
2181/// references from the register file information, for example.
2182///
2183/// When Unnamed is set, return the type of a DAG operand with no name, such as
2184/// the F8RC register class argument in:
2185///
2186/// (COPY_TO_REGCLASS GPR:$src, F8RC)
2187///
2188/// When Unnamed is false, return the type of a named DAG operand such as the
2189/// GPR:$src operand above.
2190///
2191static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2192 bool NotRegisters,
2193 bool Unnamed,
2194 TreePattern &TP) {
2195 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2196
2197 // Check to see if this is a register operand.
2198 if (R->isSubClassOf("RegisterOperand")) {
2199 assert(ResNo == 0 && "Regoperand ref only has one result!")(static_cast <bool> (ResNo == 0 && "Regoperand ref only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Regoperand ref only has one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2199, __extension__
__PRETTY_FUNCTION__))
;
2200 if (NotRegisters)
2201 return TypeSetByHwMode(); // Unknown.
2202 Record *RegClass = R->getValueAsDef("RegClass");
2203 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2204 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2205 }
2206
2207 // Check to see if this is a register or a register class.
2208 if (R->isSubClassOf("RegisterClass")) {
2209 assert(ResNo == 0 && "Regclass ref only has one result!")(static_cast <bool> (ResNo == 0 && "Regclass ref only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Regclass ref only has one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2209, __extension__
__PRETTY_FUNCTION__))
;
2210 // An unnamed register class represents itself as an i32 immediate, for
2211 // example on a COPY_TO_REGCLASS instruction.
2212 if (Unnamed)
2213 return TypeSetByHwMode(MVT::i32);
2214
2215 // In a named operand, the register class provides the possible set of
2216 // types.
2217 if (NotRegisters)
2218 return TypeSetByHwMode(); // Unknown.
2219 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2220 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2221 }
2222
2223 if (R->isSubClassOf("PatFrags")) {
2224 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?")(static_cast <bool> (ResNo == 0 && "FIXME: PatFrag with multiple results?"
) ? void (0) : __assert_fail ("ResNo == 0 && \"FIXME: PatFrag with multiple results?\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2224, __extension__
__PRETTY_FUNCTION__))
;
2225 // Pattern fragment types will be resolved when they are inlined.
2226 return TypeSetByHwMode(); // Unknown.
2227 }
2228
2229 if (R->isSubClassOf("Register")) {
2230 assert(ResNo == 0 && "Registers only produce one result!")(static_cast <bool> (ResNo == 0 && "Registers only produce one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Registers only produce one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2230, __extension__
__PRETTY_FUNCTION__))
;
2231 if (NotRegisters)
2232 return TypeSetByHwMode(); // Unknown.
2233 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2234 return TypeSetByHwMode(T.getRegisterVTs(R));
2235 }
2236
2237 if (R->isSubClassOf("SubRegIndex")) {
2238 assert(ResNo == 0 && "SubRegisterIndices only produce one result!")(static_cast <bool> (ResNo == 0 && "SubRegisterIndices only produce one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"SubRegisterIndices only produce one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2238, __extension__
__PRETTY_FUNCTION__))
;
2239 return TypeSetByHwMode(MVT::i32);
2240 }
2241
2242 if (R->isSubClassOf("ValueType")) {
2243 assert(ResNo == 0 && "This node only has one result!")(static_cast <bool> (ResNo == 0 && "This node only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2243, __extension__
__PRETTY_FUNCTION__))
;
2244 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2245 //
2246 // (sext_inreg GPR:$src, i16)
2247 // ~~~
2248 if (Unnamed)
2249 return TypeSetByHwMode(MVT::Other);
2250 // With a name, the ValueType simply provides the type of the named
2251 // variable.
2252 //
2253 // (sext_inreg i32:$src, i16)
2254 // ~~~~~~~~
2255 if (NotRegisters)
2256 return TypeSetByHwMode(); // Unknown.
2257 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2258 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2259 }
2260
2261 if (R->isSubClassOf("CondCode")) {
2262 assert(ResNo == 0 && "This node only has one result!")(static_cast <bool> (ResNo == 0 && "This node only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2262, __extension__
__PRETTY_FUNCTION__))
;
2263 // Using a CondCodeSDNode.
2264 return TypeSetByHwMode(MVT::Other);
2265 }
2266
2267 if (R->isSubClassOf("ComplexPattern")) {
2268 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?")(static_cast <bool> (ResNo == 0 && "FIXME: ComplexPattern with multiple results?"
) ? void (0) : __assert_fail ("ResNo == 0 && \"FIXME: ComplexPattern with multiple results?\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2268, __extension__
__PRETTY_FUNCTION__))
;
2269 if (NotRegisters)
2270 return TypeSetByHwMode(); // Unknown.
2271 Record *T = CDP.getComplexPattern(R).getValueType();
2272 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2273 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2274 }
2275 if (R->isSubClassOf("PointerLikeRegClass")) {
2276 assert(ResNo == 0 && "Regclass can only have one result!")(static_cast <bool> (ResNo == 0 && "Regclass can only have one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Regclass can only have one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2276, __extension__
__PRETTY_FUNCTION__))
;
2277 TypeSetByHwMode VTS(MVT::iPTR);
2278 TP.getInfer().expandOverloads(VTS);
2279 return VTS;
2280 }
2281
2282 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2283 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2284 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2285 // Placeholder.
2286 return TypeSetByHwMode(); // Unknown.
2287 }
2288
2289 if (R->isSubClassOf("Operand")) {
2290 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2291 Record *T = R->getValueAsDef("Type");
2292 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2293 }
2294
2295 TP.error("Unknown node flavor used in pattern: " + R->getName());
2296 return TypeSetByHwMode(MVT::Other);
2297}
2298
2299
2300/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2301/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2302const CodeGenIntrinsic *TreePatternNode::
2303getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2304 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2305 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2306 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2307 return nullptr;
2308
2309 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2310 return &CDP.getIntrinsicInfo(IID);
2311}
2312
2313/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2314/// return the ComplexPattern information, otherwise return null.
2315const ComplexPattern *
2316TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2317 Record *Rec;
2318 if (isLeaf()) {
2319 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2320 if (!DI)
2321 return nullptr;
2322 Rec = DI->getDef();
2323 } else
2324 Rec = getOperator();
2325
2326 if (!Rec->isSubClassOf("ComplexPattern"))
2327 return nullptr;
2328 return &CGP.getComplexPattern(Rec);
2329}
2330
2331unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2332 // A ComplexPattern specifically declares how many results it fills in.
2333 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2334 return CP->getNumOperands();
2335
2336 // If MIOperandInfo is specified, that gives the count.
2337 if (isLeaf()) {
2338 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2339 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2340 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2341 if (MIOps->getNumArgs())
2342 return MIOps->getNumArgs();
2343 }
2344 }
2345
2346 // Otherwise there is just one result.
2347 return 1;
2348}
2349
2350/// NodeHasProperty - Return true if this node has the specified property.
2351bool TreePatternNode::NodeHasProperty(SDNP Property,
2352 const CodeGenDAGPatterns &CGP) const {
2353 if (isLeaf()) {
2354 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2355 return CP->hasProperty(Property);
2356
2357 return false;
2358 }
2359
2360 if (Property != SDNPHasChain) {
2361 // The chain proprety is already present on the different intrinsic node
2362 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2363 // on the intrinsic. Anything else is specific to the individual intrinsic.
2364 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2365 return Int->hasProperty(Property);
2366 }
2367
2368 if (!Operator->isSubClassOf("SDPatternOperator"))
2369 return false;
2370
2371 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2372}
2373
2374
2375
2376
2377/// TreeHasProperty - Return true if any node in this tree has the specified
2378/// property.
2379bool TreePatternNode::TreeHasProperty(SDNP Property,
2380 const CodeGenDAGPatterns &CGP) const {
2381 if (NodeHasProperty(Property, CGP))
2382 return true;
2383 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2384 if (getChild(i)->TreeHasProperty(Property, CGP))
2385 return true;
2386 return false;
2387}
2388
2389/// isCommutativeIntrinsic - Return true if the node corresponds to a
2390/// commutative intrinsic.
2391bool
2392TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2393 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2394 return Int->isCommutative;
2395 return false;
2396}
2397
2398static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2399 if (!N->isLeaf())
2400 return N->getOperator()->isSubClassOf(Class);
2401
2402 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2403 if (DI && DI->getDef()->isSubClassOf(Class))
2404 return true;
2405
2406 return false;
2407}
2408
2409static void emitTooManyOperandsError(TreePattern &TP,
2410 StringRef InstName,
2411 unsigned Expected,
2412 unsigned Actual) {
2413 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2414 " operands but expected only " + Twine(Expected) + "!");
2415}
2416
2417static void emitTooFewOperandsError(TreePattern &TP,
2418 StringRef InstName,
2419 unsigned Actual) {
2420 TP.error("Instruction '" + InstName +
2421 "' expects more than the provided " + Twine(Actual) + " operands!");
2422}
2423
2424/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2425/// this node and its children in the tree. This returns true if it makes a
2426/// change, false otherwise. If a type contradiction is found, flag an error.
2427bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2428 if (TP.hasError())
2429 return false;
2430
2431 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2432 if (isLeaf()) {
2433 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2434 // If it's a regclass or something else known, include the type.
2435 bool MadeChange = false;
2436 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2437 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2438 NotRegisters,
2439 !hasName(), TP), TP);
2440 return MadeChange;
2441 }
2442
2443 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2444 assert(Types.size() == 1 && "Invalid IntInit")(static_cast <bool> (Types.size() == 1 && "Invalid IntInit"
) ? void (0) : __assert_fail ("Types.size() == 1 && \"Invalid IntInit\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2444, __extension__
__PRETTY_FUNCTION__))
;
2445
2446 // Int inits are always integers. :)
2447 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2448
2449 if (!TP.getInfer().isConcrete(Types[0], false))
2450 return MadeChange;
2451
2452 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2453 for (auto &P : VVT) {
2454 MVT::SimpleValueType VT = P.second.SimpleTy;
2455 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2456 continue;
2457 unsigned Size = MVT(VT).getFixedSizeInBits();
2458 // Make sure that the value is representable for this type.
2459 if (Size >= 32)
2460 continue;
2461 // Check that the value doesn't use more bits than we have. It must
2462 // either be a sign- or zero-extended equivalent of the original.
2463 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2464 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2465 SignBitAndAbove == 1)
2466 continue;
2467
2468 TP.error("Integer value '" + Twine(II->getValue()) +
2469 "' is out of range for type '" + getEnumName(VT) + "'!");
2470 break;
2471 }
2472 return MadeChange;
2473 }
2474
2475 return false;
2476 }
2477
2478 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2479 bool MadeChange = false;
2480
2481 // Apply the result type to the node.
2482 unsigned NumRetVTs = Int->IS.RetVTs.size();
2483 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2484
2485 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2486 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2487
2488 if (getNumChildren() != NumParamVTs + 1) {
2489 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2490 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2491 return false;
2492 }
2493
2494 // Apply type info to the intrinsic ID.
2495 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2496
2497 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2498 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2499
2500 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2501 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case")(static_cast <bool> (getChild(i+1)->getNumTypes() ==
1 && "Unhandled case") ? void (0) : __assert_fail ("getChild(i+1)->getNumTypes() == 1 && \"Unhandled case\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2501, __extension__
__PRETTY_FUNCTION__))
;
2502 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2503 }
2504 return MadeChange;
2505 }
2506
2507 if (getOperator()->isSubClassOf("SDNode")) {
2508 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2509
2510 // Check that the number of operands is sane. Negative operands -> varargs.
2511 if (NI.getNumOperands() >= 0 &&
2512 getNumChildren() != (unsigned)NI.getNumOperands()) {
2513 TP.error(getOperator()->getName() + " node requires exactly " +
2514 Twine(NI.getNumOperands()) + " operands!");
2515 return false;
2516 }
2517
2518 bool MadeChange = false;
2519 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2520 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2521 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2522 return MadeChange;
2523 }
2524
2525 if (getOperator()->isSubClassOf("Instruction")) {
2526 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2527 CodeGenInstruction &InstInfo =
2528 CDP.getTargetInfo().getInstruction(getOperator());
2529
2530 bool MadeChange = false;
2531
2532 // Apply the result types to the node, these come from the things in the
2533 // (outs) list of the instruction.
2534 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2535 Inst.getNumResults());
2536 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2537 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2538
2539 // If the instruction has implicit defs, we apply the first one as a result.
2540 // FIXME: This sucks, it should apply all implicit defs.
2541 if (!InstInfo.ImplicitDefs.empty()) {
2542 unsigned ResNo = NumResultsToAdd;
2543
2544 // FIXME: Generalize to multiple possible types and multiple possible
2545 // ImplicitDefs.
2546 MVT::SimpleValueType VT =
2547 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2548
2549 if (VT != MVT::Other)
2550 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2551 }
2552
2553 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2554 // be the same.
2555 if (getOperator()->getName() == "INSERT_SUBREG") {
2556 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled")(static_cast <bool> (getChild(0)->getNumTypes() == 1
&& "FIXME: Unhandled") ? void (0) : __assert_fail ("getChild(0)->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2556, __extension__
__PRETTY_FUNCTION__))
;
2557 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2558 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2559 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2560 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2561 // variadic.
2562
2563 unsigned NChild = getNumChildren();
2564 if (NChild < 3) {
2565 TP.error("REG_SEQUENCE requires at least 3 operands!");
2566 return false;
2567 }
2568
2569 if (NChild % 2 == 0) {
2570 TP.error("REG_SEQUENCE requires an odd number of operands!");
2571 return false;
2572 }
2573
2574 if (!isOperandClass(getChild(0), "RegisterClass")) {
2575 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2576 return false;
2577 }
2578
2579 for (unsigned I = 1; I < NChild; I += 2) {
2580 TreePatternNode *SubIdxChild = getChild(I + 1);
2581 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2582 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2583 Twine(I + 1) + "!");
2584 return false;
2585 }
2586 }
2587 }
2588
2589 unsigned NumResults = Inst.getNumResults();
2590 unsigned NumFixedOperands = InstInfo.Operands.size();
2591
2592 // If one or more operands with a default value appear at the end of the
2593 // formal operand list for an instruction, we allow them to be overridden
2594 // by optional operands provided in the pattern.
2595 //
2596 // But if an operand B without a default appears at any point after an
2597 // operand A with a default, then we don't allow A to be overridden,
2598 // because there would be no way to specify whether the next operand in
2599 // the pattern was intended to override A or skip it.
2600 unsigned NonOverridableOperands = NumFixedOperands;
2601 while (NonOverridableOperands > NumResults &&
2602 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2603 --NonOverridableOperands;
2604
2605 unsigned ChildNo = 0;
2606 assert(NumResults <= NumFixedOperands)(static_cast <bool> (NumResults <= NumFixedOperands)
? void (0) : __assert_fail ("NumResults <= NumFixedOperands"
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2606, __extension__
__PRETTY_FUNCTION__))
;
2607 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2608 Record *OperandNode = InstInfo.Operands[i].Rec;
2609
2610 // If the operand has a default value, do we use it? We must use the
2611 // default if we've run out of children of the pattern DAG to consume,
2612 // or if the operand is followed by a non-defaulted one.
2613 if (CDP.operandHasDefault(OperandNode) &&
2614 (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2615 continue;
2616
2617 // If we have run out of child nodes and there _isn't_ a default
2618 // value we can use for the next operand, give an error.
2619 if (ChildNo >= getNumChildren()) {
2620 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2621 return false;
2622 }
2623
2624 TreePatternNode *Child = getChild(ChildNo++);
2625 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2626
2627 // If the operand has sub-operands, they may be provided by distinct
2628 // child patterns, so attempt to match each sub-operand separately.
2629 if (OperandNode->isSubClassOf("Operand")) {
2630 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2631 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2632 // But don't do that if the whole operand is being provided by
2633 // a single ComplexPattern-related Operand.
2634
2635 if (Child->getNumMIResults(CDP) < NumArgs) {
2636 // Match first sub-operand against the child we already have.
2637 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2638 MadeChange |=
2639 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2640
2641 // And the remaining sub-operands against subsequent children.
2642 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2643 if (ChildNo >= getNumChildren()) {
2644 emitTooFewOperandsError(TP, getOperator()->getName(),
2645 getNumChildren());
2646 return false;
2647 }
2648 Child = getChild(ChildNo++);
2649
2650 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2651 MadeChange |=
2652 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2653 }
2654 continue;
2655 }
2656 }
2657 }
2658
2659 // If we didn't match by pieces above, attempt to match the whole
2660 // operand now.
2661 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2662 }
2663
2664 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2665 emitTooManyOperandsError(TP, getOperator()->getName(),
2666 ChildNo, getNumChildren());
2667 return false;
2668 }
2669
2670 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2671 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2672 return MadeChange;
2673 }
2674
2675 if (getOperator()->isSubClassOf("ComplexPattern")) {
2676 bool MadeChange = false;
2677
2678 if (!NotRegisters) {
2679 assert(Types.size() == 1 && "ComplexPatterns only produce one result!")(static_cast <bool> (Types.size() == 1 && "ComplexPatterns only produce one result!"
) ? void (0) : __assert_fail ("Types.size() == 1 && \"ComplexPatterns only produce one result!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2679, __extension__
__PRETTY_FUNCTION__))
;
2680 Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2681 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2682 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2683 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2684 // exclusively use those as non-leaf nodes with explicit type casts, so
2685 // for backwards compatibility we do no inference in that case. This is
2686 // not supported when the ComplexPattern is used as a leaf value,
2687 // however; this inconsistency should be resolved, either by adding this
2688 // case there or by altering the backends to not do this (e.g. using Any
2689 // instead may work).
2690 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2691 MadeChange |= UpdateNodeType(0, VVT, TP);
2692 }
2693
2694 for (unsigned i = 0; i < getNumChildren(); ++i)
2695 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2696
2697 return MadeChange;
2698 }
2699
2700 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!")(static_cast <bool> (getOperator()->isSubClassOf("SDNodeXForm"
) && "Unknown node type!") ? void (0) : __assert_fail
("getOperator()->isSubClassOf(\"SDNodeXForm\") && \"Unknown node type!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 2700, __extension__
__PRETTY_FUNCTION__))
;
2701
2702 // Node transforms always take one operand.
2703 if (getNumChildren() != 1) {
2704 TP.error("Node transform '" + getOperator()->getName() +
2705 "' requires one operand!");
2706 return false;
2707 }
2708
2709 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2710 return MadeChange;
2711}
2712
2713/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2714/// RHS of a commutative operation, not the on LHS.
2715static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2716 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2717 return true;
2718 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2719 return true;
2720 if (isImmAllOnesAllZerosMatch(N))
2721 return true;
2722 return false;
2723}
2724
2725
2726/// canPatternMatch - If it is impossible for this pattern to match on this
2727/// target, fill in Reason and return false. Otherwise, return true. This is
2728/// used as a sanity check for .td files (to prevent people from writing stuff
2729/// that can never possibly work), and to prevent the pattern permuter from
2730/// generating stuff that is useless.
2731bool TreePatternNode::canPatternMatch(std::string &Reason,
2732 const CodeGenDAGPatterns &CDP) {
2733 if (isLeaf()) return true;
2734
2735 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2736 if (!getChild(i)->canPatternMatch(Reason, CDP))
2737 return false;
2738
2739 // If this is an intrinsic, handle cases that would make it not match. For
2740 // example, if an operand is required to be an immediate.
2741 if (getOperator()->isSubClassOf("Intrinsic")) {
2742 // TODO:
2743 return true;
2744 }
2745
2746 if (getOperator()->isSubClassOf("ComplexPattern"))
2747 return true;
2748
2749 // If this node is a commutative operator, check that the LHS isn't an
2750 // immediate.
2751 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2752 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2753 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2754 // Scan all of the operands of the node and make sure that only the last one
2755 // is a constant node, unless the RHS also is.
2756 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2757 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2758 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2759 if (OnlyOnRHSOfCommutative(getChild(i))) {
2760 Reason="Immediate value must be on the RHS of commutative operators!";
2761 return false;
2762 }
2763 }
2764 }
2765
2766 return true;
2767}
2768
2769//===----------------------------------------------------------------------===//
2770// TreePattern implementation
2771//
2772
2773TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2774 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2775 isInputPattern(isInput), HasError(false),
2776 Infer(*this) {
2777 for (Init *I : RawPat->getValues())
2778 Trees.push_back(ParseTreePattern(I, ""));
2779}
2780
2781TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2782 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2783 isInputPattern(isInput), HasError(false),
2784 Infer(*this) {
2785 Trees.push_back(ParseTreePattern(Pat, ""));
2786}
2787
2788TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2789 CodeGenDAGPatterns &cdp)
2790 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2791 Infer(*this) {
2792 Trees.push_back(Pat);
2793}
2794
2795void TreePattern::error(const Twine &Msg) {
2796 if (HasError)
2797 return;
2798 dump();
2799 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2800 HasError = true;
2801}
2802
2803void TreePattern::ComputeNamedNodes() {
2804 for (TreePatternNodePtr &Tree : Trees)
2805 ComputeNamedNodes(Tree.get());
2806}
2807
2808void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2809 if (!N->getName().empty())
2810 NamedNodes[N->getName()].push_back(N);
2811
2812 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2813 ComputeNamedNodes(N->getChild(i));
2814}
2815
2816TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2817 StringRef OpName) {
2818 if (DefInit *DI
1.1
'DI' is null
= dyn_cast<DefInit>(TheInit)) {
1
Assuming 'TheInit' is not a 'DefInit'
2
Taking false branch
2819 Record *R = DI->getDef();
2820
2821 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2822 // TreePatternNode of its own. For example:
2823 /// (foo GPR, imm) -> (foo GPR, (imm))
2824 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2825 return ParseTreePattern(
2826 DagInit::get(DI, nullptr,
2827 std::vector<std::pair<Init*, StringInit*> >()),
2828 OpName);
2829
2830 // Input argument?
2831 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2832 if (R->getName() == "node" && !OpName.empty()) {
2833 if (OpName.empty())
2834 error("'node' argument requires a name to match with operand list");
2835 Args.push_back(std::string(OpName));
2836 }
2837
2838 Res->setName(OpName);
2839 return Res;
2840 }
2841
2842 // ?:$name or just $name.
2843 if (isa<UnsetInit>(TheInit)) {
3
Assuming 'TheInit' is not a 'UnsetInit'
2844 if (OpName.empty())
2845 error("'?' argument requires a name to match with operand list");
2846 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2847 Args.push_back(std::string(OpName));
2848 Res->setName(OpName);
2849 return Res;
2850 }
2851
2852 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
4
Assuming 'TheInit' is not a 'IntInit'
5
Assuming 'TheInit' is not a 'BitInit'
6
Taking false branch
2853 if (!OpName.empty())
2854 error("Constant int or bit argument should not have a name!");
2855 if (isa<BitInit>(TheInit))
2856 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2857 return std::make_shared<TreePatternNode>(TheInit, 1);
2858 }
2859
2860 if (BitsInit *BI
7.1
'BI' is null
= dyn_cast<BitsInit>(TheInit)) {
7
Assuming 'TheInit' is not a 'BitsInit'
8
Taking false branch
2861 // Turn this into an IntInit.
2862 Init *II = BI->convertInitializerTo(IntRecTy::get());
2863 if (!II || !isa<IntInit>(II))
2864 error("Bits value must be constants!");
2865 return ParseTreePattern(II, OpName);
2866 }
2867
2868 DagInit *Dag = dyn_cast<DagInit>(TheInit);
9
Assuming 'TheInit' is not a 'DagInit'
10
'Dag' initialized to a null pointer value
2869 if (!Dag
10.1
'Dag' is null
) {
11
Taking true branch
2870 TheInit->print(errs());
2871 error("Pattern has unexpected init kind!");
2872 }
2873 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
12
Called C++ object pointer is null
2874 if (!OpDef) error("Pattern has unexpected operator type!");
2875 Record *Operator = OpDef->getDef();
2876
2877 if (Operator->isSubClassOf("ValueType")) {
2878 // If the operator is a ValueType, then this must be "type cast" of a leaf
2879 // node.
2880 if (Dag->getNumArgs() != 1)
2881 error("Type cast only takes one operand!");
2882
2883 TreePatternNodePtr New =
2884 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2885
2886 // Apply the type cast.
2887 if (New->getNumTypes() != 1)
2888 error("Type cast can only have one type!");
2889 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2890 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2891
2892 if (!OpName.empty())
2893 error("ValueType cast should not have a name!");
2894 return New;
2895 }
2896
2897 // Verify that this is something that makes sense for an operator.
2898 if (!Operator->isSubClassOf("PatFrags") &&
2899 !Operator->isSubClassOf("SDNode") &&
2900 !Operator->isSubClassOf("Instruction") &&
2901 !Operator->isSubClassOf("SDNodeXForm") &&
2902 !Operator->isSubClassOf("Intrinsic") &&
2903 !Operator->isSubClassOf("ComplexPattern") &&
2904 Operator->getName() != "set" &&
2905 Operator->getName() != "implicit")
2906 error("Unrecognized node '" + Operator->getName() + "'!");
2907
2908 // Check to see if this is something that is illegal in an input pattern.
2909 if (isInputPattern) {
2910 if (Operator->isSubClassOf("Instruction") ||
2911 Operator->isSubClassOf("SDNodeXForm"))
2912 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2913 } else {
2914 if (Operator->isSubClassOf("Intrinsic"))
2915 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2916
2917 if (Operator->isSubClassOf("SDNode") &&
2918 Operator->getName() != "imm" &&
2919 Operator->getName() != "timm" &&
2920 Operator->getName() != "fpimm" &&
2921 Operator->getName() != "tglobaltlsaddr" &&
2922 Operator->getName() != "tconstpool" &&
2923 Operator->getName() != "tjumptable" &&
2924 Operator->getName() != "tframeindex" &&
2925 Operator->getName() != "texternalsym" &&
2926 Operator->getName() != "tblockaddress" &&
2927 Operator->getName() != "tglobaladdr" &&
2928 Operator->getName() != "bb" &&
2929 Operator->getName() != "vt" &&
2930 Operator->getName() != "mcsym")
2931 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2932 }
2933
2934 std::vector<TreePatternNodePtr> Children;
2935
2936 // Parse all the operands.
2937 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2938 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2939
2940 // Get the actual number of results before Operator is converted to an intrinsic
2941 // node (which is hard-coded to have either zero or one result).
2942 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2943
2944 // If the operator is an intrinsic, then this is just syntactic sugar for
2945 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2946 // convert the intrinsic name to a number.
2947 if (Operator->isSubClassOf("Intrinsic")) {
2948 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2949 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2950
2951 // If this intrinsic returns void, it must have side-effects and thus a
2952 // chain.
2953 if (Int.IS.RetVTs.empty())
2954 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2955 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2956 // Has side-effects, requires chain.
2957 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2958 else // Otherwise, no chain.
2959 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2960
2961 Children.insert(Children.begin(),
2962 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2963 }
2964
2965 if (Operator->isSubClassOf("ComplexPattern")) {
2966 for (unsigned i = 0; i < Children.size(); ++i) {
2967 TreePatternNodePtr Child = Children[i];
2968
2969 if (Child->getName().empty())
2970 error("All arguments to a ComplexPattern must be named");
2971
2972 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2973 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2974 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2975 auto OperandId = std::make_pair(Operator, i);
2976 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2977 if (PrevOp != ComplexPatternOperands.end()) {
2978 if (PrevOp->getValue() != OperandId)
2979 error("All ComplexPattern operands must appear consistently: "
2980 "in the same order in just one ComplexPattern instance.");
2981 } else
2982 ComplexPatternOperands[Child->getName()] = OperandId;
2983 }
2984 }
2985
2986 TreePatternNodePtr Result =
2987 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2988 NumResults);
2989 Result->setName(OpName);
2990
2991 if (Dag->getName()) {
2992 assert(Result->getName().empty())(static_cast <bool> (Result->getName().empty()) ? void
(0) : __assert_fail ("Result->getName().empty()", "llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2992, __extension__ __PRETTY_FUNCTION__))
;
2993 Result->setName(Dag->getNameStr());
2994 }
2995 return Result;
2996}
2997
2998/// SimplifyTree - See if we can simplify this tree to eliminate something that
2999/// will never match in favor of something obvious that will. This is here
3000/// strictly as a convenience to target authors because it allows them to write
3001/// more type generic things and have useless type casts fold away.
3002///
3003/// This returns true if any change is made.
3004static bool SimplifyTree(TreePatternNodePtr &N) {
3005 if (N->isLeaf())
3006 return false;
3007
3008 // If we have a bitconvert with a resolved type and if the source and
3009 // destination types are the same, then the bitconvert is useless, remove it.
3010 //
3011 // We make an exception if the types are completely empty. This can come up
3012 // when the pattern being simplified is in the Fragments list of a PatFrags,
3013 // so that the operand is just an untyped "node". In that situation we leave
3014 // bitconverts unsimplified, and simplify them later once the fragment is
3015 // expanded into its true context.
3016 if (N->getOperator()->getName() == "bitconvert" &&
3017 N->getExtType(0).isValueTypeByHwMode(false) &&
3018 !N->getExtType(0).empty() &&
3019 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
3020 N->getName().empty()) {
3021 N = N->getChildShared(0);
3022 SimplifyTree(N);
3023 return true;
3024 }
3025
3026 // Walk all children.
3027 bool MadeChange = false;
3028 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3029 TreePatternNodePtr Child = N->getChildShared(i);
3030 MadeChange |= SimplifyTree(Child);
3031 N->setChild(i, std::move(Child));
3032 }
3033 return MadeChange;
3034}
3035
3036
3037
3038/// InferAllTypes - Infer/propagate as many types throughout the expression
3039/// patterns as possible. Return true if all types are inferred, false
3040/// otherwise. Flags an error if a type contradiction is found.
3041bool TreePattern::
3042InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3043 if (NamedNodes.empty())
3044 ComputeNamedNodes();
3045
3046 bool MadeChange = true;
3047 while (MadeChange) {
3048 MadeChange = false;
3049 for (TreePatternNodePtr &Tree : Trees) {
3050 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3051 MadeChange |= SimplifyTree(Tree);
3052 }
3053
3054 // If there are constraints on our named nodes, apply them.
3055 for (auto &Entry : NamedNodes) {
3056 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3057
3058 // If we have input named node types, propagate their types to the named
3059 // values here.
3060 if (InNamedTypes) {
3061 if (!InNamedTypes->count(Entry.getKey())) {
3062 error("Node '" + std::string(Entry.getKey()) +
3063 "' in output pattern but not input pattern");
3064 return true;
3065 }
3066
3067 const SmallVectorImpl<TreePatternNode*> &InNodes =
3068 InNamedTypes->find(Entry.getKey())->second;
3069
3070 // The input types should be fully resolved by now.
3071 for (TreePatternNode *Node : Nodes) {
3072 // If this node is a register class, and it is the root of the pattern
3073 // then we're mapping something onto an input register. We allow
3074 // changing the type of the input register in this case. This allows
3075 // us to match things like:
3076 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3077 if (Node == Trees[0].get() && Node->isLeaf()) {
3078 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3079 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3080 DI->getDef()->isSubClassOf("RegisterOperand")))
3081 continue;
3082 }
3083
3084 assert(Node->getNumTypes() == 1 &&(static_cast <bool> (Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3086, __extension__
__PRETTY_FUNCTION__))
3085 InNodes[0]->getNumTypes() == 1 &&(static_cast <bool> (Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3086, __extension__
__PRETTY_FUNCTION__))
3086 "FIXME: cannot name multiple result nodes yet")(static_cast <bool> (Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3086, __extension__
__PRETTY_FUNCTION__))
;
3087 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3088 *this);
3089 }
3090 }
3091
3092 // If there are multiple nodes with the same name, they must all have the
3093 // same type.
3094 if (Entry.second.size() > 1) {
3095 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3096 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3097 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&(static_cast <bool> (N1->getNumTypes() == 1 &&
N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3098, __extension__
__PRETTY_FUNCTION__))
3098 "FIXME: cannot name multiple result nodes yet")(static_cast <bool> (N1->getNumTypes() == 1 &&
N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3098, __extension__
__PRETTY_FUNCTION__))
;
3099
3100 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3101 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3102 }
3103 }
3104 }
3105 }
3106
3107 bool HasUnresolvedTypes = false;
3108 for (const TreePatternNodePtr &Tree : Trees)
3109 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3110 return !HasUnresolvedTypes;
3111}
3112
3113void TreePattern::print(raw_ostream &OS) const {
3114 OS << getRecord()->getName();
3115 if (!Args.empty()) {
3116 OS << "(";
3117 ListSeparator LS;
3118 for (const std::string &Arg : Args)
3119 OS << LS << Arg;
3120 OS << ")";
3121 }
3122 OS << ": ";
3123
3124 if (Trees.size() > 1)
3125 OS << "[\n";
3126 for (const TreePatternNodePtr &Tree : Trees) {
3127 OS << "\t";
3128 Tree->print(OS);
3129 OS << "\n";
3130 }
3131
3132 if (Trees.size() > 1)
3133 OS << "]\n";
3134}
3135
3136void TreePattern::dump() const { print(errs()); }
3137
3138//===----------------------------------------------------------------------===//
3139// CodeGenDAGPatterns implementation
3140//
3141
3142CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3143 PatternRewriterFn PatternRewriter)
3144 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3145 PatternRewriter(PatternRewriter) {
3146
3147 Intrinsics = CodeGenIntrinsicTable(Records);
3148 ParseNodeInfo();
3149 ParseNodeTransforms();
3150 ParseComplexPatterns();
3151 ParsePatternFragments();
3152 ParseDefaultOperands();
3153 ParseInstructions();
3154 ParsePatternFragments(/*OutFrags*/true);
3155 ParsePatterns();
3156
3157 // Generate variants. For example, commutative patterns can match
3158 // multiple ways. Add them to PatternsToMatch as well.
3159 GenerateVariants();
3160
3161 // Break patterns with parameterized types into a series of patterns,
3162 // where each one has a fixed type and is predicated on the conditions
3163 // of the associated HW mode.
3164 ExpandHwModeBasedTypes();
3165
3166 // Infer instruction flags. For example, we can detect loads,
3167 // stores, and side effects in many cases by examining an
3168 // instruction's pattern.
3169 InferInstructionFlags();
3170
3171 // Verify that instruction flags match the patterns.
3172 VerifyInstructionFlags();
3173}
3174
3175Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3176 Record *N = Records.getDef(Name);
3177 if (!N || !N->isSubClassOf("SDNode"))
3178 PrintFatalError("Error getting SDNode '" + Name + "'!");
3179
3180 return N;
3181}
3182
3183// Parse all of the SDNode definitions for the target, populating SDNodes.
3184void CodeGenDAGPatterns::ParseNodeInfo() {
3185 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3186 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3187
3188 while (!Nodes.empty()) {
3189 Record *R = Nodes.back();
3190 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3191 Nodes.pop_back();
3192 }
3193
3194 // Get the builtin intrinsic nodes.
3195 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3196 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3197 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3198}
3199
3200/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3201/// map, and emit them to the file as functions.
3202void CodeGenDAGPatterns::ParseNodeTransforms() {
3203 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3204 while (!Xforms.empty()) {
3205 Record *XFormNode = Xforms.back();
3206 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3207 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3208 SDNodeXForms.insert(
3209 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3210
3211 Xforms.pop_back();
3212 }
3213}
3214
3215void CodeGenDAGPatterns::ParseComplexPatterns() {
3216 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3217 while (!AMs.empty()) {
3218 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3219 AMs.pop_back();
3220 }
3221}
3222
3223
3224/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3225/// file, building up the PatternFragments map. After we've collected them all,
3226/// inline fragments together as necessary, so that there are no references left
3227/// inside a pattern fragment to a pattern fragment.
3228///
3229void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3230 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3231
3232 // First step, parse all of the fragments.
3233 for (Record *Frag : Fragments) {
3234 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3235 continue;
3236
3237 ListInit *LI = Frag->getValueAsListInit("Fragments");
3238 TreePattern *P =
3239 (PatternFragments[Frag] = std::make_unique<TreePattern>(
3240 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3241 *this)).get();
3242
3243 // Validate the argument list, converting it to set, to discard duplicates.
3244 std::vector<std::string> &Args = P->getArgList();
3245 // Copy the args so we can take StringRefs to them.
3246 auto ArgsCopy = Args;
3247 SmallDenseSet<StringRef, 4> OperandsSet;
3248 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3249
3250 if (OperandsSet.count(""))
3251 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3252
3253 // Parse the operands list.
3254 DagInit *OpsList = Frag->getValueAsDag("Operands");
3255 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3256 // Special cases: ops == outs == ins. Different names are used to
3257 // improve readability.
3258 if (!OpsOp ||
3259 (OpsOp->getDef()->getName() != "ops" &&
3260 OpsOp->getDef()->getName() != "outs" &&
3261 OpsOp->getDef()->getName() != "ins"))
3262 P->error("Operands list should start with '(ops ... '!");
3263
3264 // Copy over the arguments.
3265 Args.clear();
3266 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3267 if (!isa<DefInit>(OpsList->getArg(j)) ||
3268 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3269 P->error("Operands list should all be 'node' values.");
3270 if (!OpsList->getArgName(j))
3271 P->error("Operands list should have names for each operand!");
3272 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3273 if (!OperandsSet.count(ArgNameStr))
3274 P->error("'" + ArgNameStr +
3275 "' does not occur in pattern or was multiply specified!");
3276 OperandsSet.erase(ArgNameStr);
3277 Args.push_back(std::string(ArgNameStr));
3278 }
3279
3280 if (!OperandsSet.empty())
3281 P->error("Operands list does not contain an entry for operand '" +
3282 *OperandsSet.begin() + "'!");
3283
3284 // If there is a node transformation corresponding to this, keep track of
3285 // it.
3286 Record *Transform = Frag->getValueAsDef("OperandTransform");
3287 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3288 for (const auto &T : P->getTrees())
3289 T->setTransformFn(Transform);
3290 }
3291
3292 // Now that we've parsed all of the tree fragments, do a closure on them so
3293 // that there are not references to PatFrags left inside of them.
3294 for (Record *Frag : Fragments) {
3295 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3296 continue;
3297
3298 TreePattern &ThePat = *PatternFragments[Frag];
3299 ThePat.InlinePatternFragments();
3300
3301 // Infer as many types as possible. Don't worry about it if we don't infer
3302 // all of them, some may depend on the inputs of the pattern. Also, don't
3303 // validate type sets; validation may cause spurious failures e.g. if a
3304 // fragment needs floating-point types but the current target does not have
3305 // any (this is only an error if that fragment is ever used!).
3306 {
3307 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3308 ThePat.InferAllTypes();
3309 ThePat.resetError();
3310 }
3311
3312 // If debugging, print out the pattern fragment result.
3313 LLVM_DEBUG(ThePat.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { ThePat.dump(); } } while (false)
;
3314 }
3315}
3316
3317void CodeGenDAGPatterns::ParseDefaultOperands() {
3318 std::vector<Record*> DefaultOps;
3319 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3320
3321 // Find some SDNode.
3322 assert(!SDNodes.empty() && "No SDNodes parsed?")(static_cast <bool> (!SDNodes.empty() && "No SDNodes parsed?"
) ? void (0) : __assert_fail ("!SDNodes.empty() && \"No SDNodes parsed?\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3322, __extension__
__PRETTY_FUNCTION__))
;
3323 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3324
3325 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3326 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3327
3328 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3329 // SomeSDnode so that we can parse this.
3330 std::vector<std::pair<Init*, StringInit*> > Ops;
3331 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3332 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3333 DefaultInfo->getArgName(op)));
3334 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3335
3336 // Create a TreePattern to parse this.
3337 TreePattern P(DefaultOps[i], DI, false, *this);
3338 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!")(static_cast <bool> (P.getNumTrees() == 1 && "This ctor can only produce one tree!"
) ? void (0) : __assert_fail ("P.getNumTrees() == 1 && \"This ctor can only produce one tree!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3338, __extension__
__PRETTY_FUNCTION__))
;
3339
3340 // Copy the operands over into a DAGDefaultOperand.
3341 DAGDefaultOperand DefaultOpInfo;
3342
3343 const TreePatternNodePtr &T = P.getTree(0);
3344 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3345 TreePatternNodePtr TPN = T->getChildShared(op);
3346 while (TPN->ApplyTypeConstraints(P, false))
3347 /* Resolve all types */;
3348
3349 if (TPN->ContainsUnresolvedType(P)) {
3350 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3351 DefaultOps[i]->getName() +
3352 "' doesn't have a concrete type!");
3353 }
3354 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3355 }
3356
3357 // Insert it into the DefaultOperands map so we can find it later.
3358 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3359 }
3360}
3361
3362/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3363/// instruction input. Return true if this is a real use.
3364static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3365 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3366 // No name -> not interesting.
3367 if (Pat->getName().empty()) {
3368 if (Pat->isLeaf()) {
3369 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3370 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3371 DI->getDef()->isSubClassOf("RegisterOperand")))
3372 I.error("Input " + DI->getDef()->getName() + " must be named!");
3373 }
3374 return false;
3375 }
3376
3377 Record *Rec;
3378 if (Pat->isLeaf()) {
3379 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3380 if (!DI)
3381 I.error("Input $" + Pat->getName() + " must be an identifier!");
3382 Rec = DI->getDef();
3383 } else {
3384 Rec = Pat->getOperator();
3385 }
3386
3387 // SRCVALUE nodes are ignored.
3388 if (Rec->getName() == "srcvalue")
3389 return false;
3390
3391 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3392 if (!Slot) {
3393 Slot = Pat;
3394 return true;
3395 }
3396 Record *SlotRec;
3397 if (Slot->isLeaf()) {
3398 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3399 } else {
3400 assert(Slot->getNumChildren() == 0 && "can't be a use with children!")(static_cast <bool> (Slot->getNumChildren() == 0 &&
"can't be a use with children!") ? void (0) : __assert_fail (
"Slot->getNumChildren() == 0 && \"can't be a use with children!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3400, __extension__
__PRETTY_FUNCTION__))
;
3401 SlotRec = Slot->getOperator();
3402 }
3403
3404 // Ensure that the inputs agree if we've already seen this input.
3405 if (Rec != SlotRec)
3406 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3407 // Ensure that the types can agree as well.
3408 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3409 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3410 if (Slot->getExtTypes() != Pat->getExtTypes())
3411 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3412 return true;
3413}
3414
3415/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3416/// part of "I", the instruction), computing the set of inputs and outputs of
3417/// the pattern. Report errors if we see anything naughty.
3418void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3419 TreePattern &I, TreePatternNodePtr Pat,
3420 std::map<std::string, TreePatternNodePtr> &InstInputs,
3421 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3422 &InstResults,
3423 std::vector<Record *> &InstImpResults) {
3424
3425 // The instruction pattern still has unresolved fragments. For *named*
3426 // nodes we must resolve those here. This may not result in multiple
3427 // alternatives.
3428 if (!Pat->getName().empty()) {
3429 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3430 SrcPattern.InlinePatternFragments();
3431 SrcPattern.InferAllTypes();
3432 Pat = SrcPattern.getOnlyTree();
3433 }
3434
3435 if (Pat->isLeaf()) {
3436 bool isUse = HandleUse(I, Pat, InstInputs);
3437 if (!isUse && Pat->getTransformFn())
3438 I.error("Cannot specify a transform function for a non-input value!");
3439 return;
3440 }
3441
3442 if (Pat->getOperator()->getName() == "implicit") {
3443 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3444 TreePatternNode *Dest = Pat->getChild(i);
3445 if (!Dest->isLeaf())
3446 I.error("implicitly defined value should be a register!");
3447
3448 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3449 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3450 I.error("implicitly defined value should be a register!");
3451 InstImpResults.push_back(Val->getDef());
3452 }
3453 return;
3454 }
3455
3456 if (Pat->getOperator()->getName() != "set") {
3457 // If this is not a set, verify that the children nodes are not void typed,
3458 // and recurse.
3459 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3460 if (Pat->getChild(i)->getNumTypes() == 0)
3461 I.error("Cannot have void nodes inside of patterns!");
3462 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3463 InstResults, InstImpResults);
3464 }
3465
3466 // If this is a non-leaf node with no children, treat it basically as if
3467 // it were a leaf. This handles nodes like (imm).
3468 bool isUse = HandleUse(I, Pat, InstInputs);
3469
3470 if (!isUse && Pat->getTransformFn())
3471 I.error("Cannot specify a transform function for a non-input value!");
3472 return;
3473 }
3474
3475 // Otherwise, this is a set, validate and collect instruction results.
3476 if (Pat->getNumChildren() == 0)
3477 I.error("set requires operands!");
3478
3479 if (Pat->getTransformFn())
3480 I.error("Cannot specify a transform function on a set node!");
3481
3482 // Check the set destinations.
3483 unsigned NumDests = Pat->getNumChildren()-1;
3484 for (unsigned i = 0; i != NumDests; ++i) {
3485 TreePatternNodePtr Dest = Pat->getChildShared(i);
3486 // For set destinations we also must resolve fragments here.
3487 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3488 DestPattern.InlinePatternFragments();
3489 DestPattern.InferAllTypes();
3490 Dest = DestPattern.getOnlyTree();
3491
3492 if (!Dest->isLeaf())
3493 I.error("set destination should be a register!");
3494
3495 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3496 if (!Val) {
3497 I.error("set destination should be a register!");
3498 continue;
3499 }
3500
3501 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3502 Val->getDef()->isSubClassOf("ValueType") ||
3503 Val->getDef()->isSubClassOf("RegisterOperand") ||
3504 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3505 if (Dest->getName().empty())
3506 I.error("set destination must have a name!");
3507 if (InstResults.count(Dest->getName()))
3508 I.error("cannot set '" + Dest->getName() + "' multiple times");
3509 InstResults[Dest->getName()] = Dest;
3510 } else if (Val->getDef()->isSubClassOf("Register")) {
3511 InstImpResults.push_back(Val->getDef());
3512 } else {
3513 I.error("set destination should be a register!");
3514 }
3515 }
3516
3517 // Verify and collect info from the computation.
3518 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3519 InstResults, InstImpResults);
3520}
3521
3522//===----------------------------------------------------------------------===//
3523// Instruction Analysis
3524//===----------------------------------------------------------------------===//
3525
3526class InstAnalyzer {
3527 const CodeGenDAGPatterns &CDP;
3528public:
3529 bool hasSideEffects;
3530 bool mayStore;
3531 bool mayLoad;
3532 bool isBitcast;
3533 bool isVariadic;
3534 bool hasChain;
3535
3536 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3537 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3538 isBitcast(false), isVariadic(false), hasChain(false) {}
3539
3540 void Analyze(const PatternToMatch &Pat) {
3541 const TreePatternNode *N = Pat.getSrcPattern();
3542 AnalyzeNode(N);
3543 // These properties are detected only on the root node.
3544 isBitcast = IsNodeBitcast(N);
3545 }
3546
3547private:
3548 bool IsNodeBitcast(const TreePatternNode *N) const {
3549 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3550 return false;
3551
3552 if (N->isLeaf())
3553 return false;
3554 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3555 return false;
3556
3557 if (N->getOperator()->isSubClassOf("ComplexPattern"))
3558 return false;
3559
3560 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3561 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3562 return false;
3563 return OpInfo.getEnumName() == "ISD::BITCAST";
3564 }
3565
3566public:
3567 void AnalyzeNode(const TreePatternNode *N) {
3568 if (N->isLeaf()) {
3569 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3570 Record *LeafRec = DI->getDef();
3571 // Handle ComplexPattern leaves.
3572 if (LeafRec->isSubClassOf("ComplexPattern")) {
3573 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3574 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3575 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3576 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3577 }
3578 }
3579 return;
3580 }
3581
3582 // Analyze children.
3583 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3584 AnalyzeNode(N->getChild(i));
3585
3586 // Notice properties of the node.
3587 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3588 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3589 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3590 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3591 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3592
3593 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3594 // If this is an intrinsic, analyze it.
3595 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3596 mayLoad = true;// These may load memory.
3597
3598 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3599 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3600
3601 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3602 IntInfo->hasSideEffects)
3603 // ReadWriteMem intrinsics can have other strange effects.
3604 hasSideEffects = true;
3605 }
3606 }
3607
3608};
3609
3610static bool InferFromPattern(CodeGenInstruction &InstInfo,
3611 const InstAnalyzer &PatInfo,
3612 Record *PatDef) {
3613 bool Error = false;
3614
3615 // Remember where InstInfo got its flags.
3616 if (InstInfo.hasUndefFlags())
3617 InstInfo.InferredFrom = PatDef;
3618
3619 // Check explicitly set flags for consistency.
3620 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3621 !InstInfo.hasSideEffects_Unset) {
3622 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3623 // the pattern has no side effects. That could be useful for div/rem
3624 // instructions that may trap.
3625 if (!InstInfo.hasSideEffects) {
3626 Error = true;
3627 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3628 Twine(InstInfo.hasSideEffects));
3629 }
3630 }
3631
3632 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3633 Error = true;
3634 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3635 Twine(InstInfo.mayStore));
3636 }
3637
3638 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3639 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3640 // Some targets translate immediates to loads.
3641 if (!InstInfo.mayLoad) {
3642 Error = true;
3643 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3644 Twine(InstInfo.mayLoad));
3645 }
3646 }
3647
3648 // Transfer inferred flags.
3649 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3650 InstInfo.mayStore |= PatInfo.mayStore;
3651 InstInfo.mayLoad |= PatInfo.mayLoad;
3652
3653 // These flags are silently added without any verification.
3654 // FIXME: To match historical behavior of TableGen, for now add those flags
3655 // only when we're inferring from the primary instruction pattern.
3656 if (PatDef->isSubClassOf("Instruction")) {
3657 InstInfo.isBitcast |= PatInfo.isBitcast;
3658 InstInfo.hasChain |= PatInfo.hasChain;
3659 InstInfo.hasChain_Inferred = true;
3660 }
3661
3662 // Don't infer isVariadic. This flag means something different on SDNodes and
3663 // instructions. For example, a CALL SDNode is variadic because it has the
3664 // call arguments as operands, but a CALL instruction is not variadic - it
3665 // has argument registers as implicit, not explicit uses.
3666
3667 return Error;
3668}
3669
3670/// hasNullFragReference - Return true if the DAG has any reference to the
3671/// null_frag operator.
3672static bool hasNullFragReference(DagInit *DI) {
3673 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3674 if (!OpDef) return false;
3675 Record *Operator = OpDef->getDef();
3676
3677 // If this is the null fragment, return true.
3678 if (Operator->getName() == "null_frag") return true;
3679 // If any of the arguments reference the null fragment, return true.
3680 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3681 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3682 if (Arg->getDef()->getName() == "null_frag")
3683 return true;
3684 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3685 if (Arg && hasNullFragReference(Arg))
3686 return true;
3687 }
3688
3689 return false;
3690}
3691
3692/// hasNullFragReference - Return true if any DAG in the list references
3693/// the null_frag operator.
3694static bool hasNullFragReference(ListInit *LI) {
3695 for (Init *I : LI->getValues()) {
3696 DagInit *DI = dyn_cast<DagInit>(I);
3697 assert(DI && "non-dag in an instruction Pattern list?!")(static_cast <bool> (DI && "non-dag in an instruction Pattern list?!"
) ? void (0) : __assert_fail ("DI && \"non-dag in an instruction Pattern list?!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3697, __extension__
__PRETTY_FUNCTION__))
;
3698 if (hasNullFragReference(DI))
3699 return true;
3700 }
3701 return false;
3702}
3703
3704/// Get all the instructions in a tree.
3705static void
3706getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3707 if (Tree->isLeaf())
3708 return;
3709 if (Tree->getOperator()->isSubClassOf("Instruction"))
3710 Instrs.push_back(Tree->getOperator());
3711 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3712 getInstructionsInTree(Tree->getChild(i), Instrs);
3713}
3714
3715/// Check the class of a pattern leaf node against the instruction operand it
3716/// represents.
3717static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3718 Record *Leaf) {
3719 if (OI.Rec == Leaf)
3720 return true;
3721
3722 // Allow direct value types to be used in instruction set patterns.
3723 // The type will be checked later.
3724 if (Leaf->isSubClassOf("ValueType"))
3725 return true;
3726
3727 // Patterns can also be ComplexPattern instances.
3728 if (Leaf->isSubClassOf("ComplexPattern"))
3729 return true;
3730
3731 return false;
3732}
3733
3734void CodeGenDAGPatterns::parseInstructionPattern(
3735 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3736
3737 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!")(static_cast <bool> (!DAGInsts.count(CGI.TheDef) &&
"Instruction already parsed!") ? void (0) : __assert_fail ("!DAGInsts.count(CGI.TheDef) && \"Instruction already parsed!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3737, __extension__
__PRETTY_FUNCTION__))
;
3738
3739 // Parse the instruction.
3740 TreePattern I(CGI.TheDef, Pat, true, *this);
3741
3742 // InstInputs - Keep track of all of the inputs of the instruction, along
3743 // with the record they are declared as.
3744 std::map<std::string, TreePatternNodePtr> InstInputs;
3745
3746 // InstResults - Keep track of all the virtual registers that are 'set'
3747 // in the instruction, including what reg class they are.
3748 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3749 InstResults;
3750
3751 std::vector<Record*> InstImpResults;
3752
3753 // Verify that the top-level forms in the instruction are of void type, and
3754 // fill in the InstResults map.
3755 SmallString<32> TypesString;
3756 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3757 TypesString.clear();
3758 TreePatternNodePtr Pat = I.getTree(j);
3759 if (Pat->getNumTypes() != 0) {
3760 raw_svector_ostream OS(TypesString);
3761 ListSeparator LS;
3762 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3763 OS << LS;
3764 Pat->getExtType(k).writeToStream(OS);
3765 }
3766 I.error("Top-level forms in instruction pattern should have"
3767 " void types, has types " +
3768 OS.str());
3769 }
3770
3771 // Find inputs and outputs, and verify the structure of the uses/defs.
3772 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3773 InstImpResults);
3774 }
3775
3776 // Now that we have inputs and outputs of the pattern, inspect the operands
3777 // list for the instruction. This determines the order that operands are
3778 // added to the machine instruction the node corresponds to.
3779 unsigned NumResults = InstResults.size();
3780
3781 // Parse the operands list from the (ops) list, validating it.
3782 assert(I.getArgList().empty() && "Args list should still be empty here!")(static_cast <bool> (I.getArgList().empty() && "Args list should still be empty here!"
) ? void (0) : __assert_fail ("I.getArgList().empty() && \"Args list should still be empty here!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3782, __extension__
__PRETTY_FUNCTION__))
;
3783
3784 // Check that all of the results occur first in the list.
3785 std::vector<Record*> Results;
3786 std::vector<unsigned> ResultIndices;
3787 SmallVector<TreePatternNodePtr, 2> ResNodes;
3788 for (unsigned i = 0; i != NumResults; ++i) {
3789 if (i == CGI.Operands.size()) {
3790 const std::string &OpName =
3791 llvm::find_if(
3792 InstResults,
3793 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3794 return P.second;
3795 })
3796 ->first;
3797
3798 I.error("'" + OpName + "' set but does not appear in operand list!");
3799 }
3800
3801 const std::string &OpName = CGI.Operands[i].Name;
3802
3803 // Check that it exists in InstResults.
3804 auto InstResultIter = InstResults.find(OpName);
3805 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3806 I.error("Operand $" + OpName + " does not exist in operand list!");
3807
3808 TreePatternNodePtr RNode = InstResultIter->second;
3809 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3810 ResNodes.push_back(std::move(RNode));
3811 if (!R)
3812 I.error("Operand $" + OpName + " should be a set destination: all "
3813 "outputs must occur before inputs in operand list!");
3814
3815 if (!checkOperandClass(CGI.Operands[i], R))
3816 I.error("Operand $" + OpName + " class mismatch!");
3817
3818 // Remember the return type.
3819 Results.push_back(CGI.Operands[i].Rec);
3820
3821 // Remember the result index.
3822 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3823
3824 // Okay, this one checks out.
3825 InstResultIter->second = nullptr;
3826 }
3827
3828 // Loop over the inputs next.
3829 std::vector<TreePatternNodePtr> ResultNodeOperands;
3830 std::vector<Record*> Operands;
3831 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3832 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3833 const std::string &OpName = Op.Name;
3834 if (OpName.empty())
3835 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3836
3837 if (!InstInputs.count(OpName)) {
3838 // If this is an operand with a DefaultOps set filled in, we can ignore
3839 // this. When we codegen it, we will do so as always executed.
3840 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3841 // Does it have a non-empty DefaultOps field? If so, ignore this
3842 // operand.
3843 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3844 continue;
3845 }
3846 I.error("Operand $" + OpName +
3847 " does not appear in the instruction pattern");
3848 }
3849 TreePatternNodePtr InVal = InstInputs[OpName];
3850 InstInputs.erase(OpName); // It occurred, remove from map.
3851
3852 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3853 Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3854 if (!checkOperandClass(Op, InRec))
3855 I.error("Operand $" + OpName + "'s register class disagrees"
3856 " between the operand and pattern");
3857 }
3858 Operands.push_back(Op.Rec);
3859
3860 // Construct the result for the dest-pattern operand list.
3861 TreePatternNodePtr OpNode = InVal->clone();
3862
3863 // No predicate is useful on the result.
3864 OpNode->clearPredicateCalls();
3865
3866 // Promote the xform function to be an explicit node if set.
3867 if (Record *Xform = OpNode->getTransformFn()) {
3868 OpNode->setTransformFn(nullptr);
3869 std::vector<TreePatternNodePtr> Children;
3870 Children.push_back(OpNode);
3871 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3872 OpNode->getNumTypes());
3873 }
3874
3875 ResultNodeOperands.push_back(std::move(OpNode));
3876 }
3877
3878 if (!InstInputs.empty())
3879 I.error("Input operand $" + InstInputs.begin()->first +
3880 " occurs in pattern but not in operands list!");
3881
3882 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3883 I.getRecord(), std::move(ResultNodeOperands),
3884 GetNumNodeResults(I.getRecord(), *this));
3885 // Copy fully inferred output node types to instruction result pattern.
3886 for (unsigned i = 0; i != NumResults; ++i) {
3887 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled")(static_cast <bool> (ResNodes[i]->getNumTypes() == 1
&& "FIXME: Unhandled") ? void (0) : __assert_fail ("ResNodes[i]->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 3887, __extension__
__PRETTY_FUNCTION__))
;
3888 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3889 ResultPattern->setResultIndex(i, ResultIndices[i]);
3890 }
3891
3892 // FIXME: Assume only the first tree is the pattern. The others are clobber
3893 // nodes.
3894 TreePatternNodePtr Pattern = I.getTree(0);
3895 TreePatternNodePtr SrcPattern;
3896 if (Pattern->getOperator()->getName() == "set") {
3897 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3898 } else{
3899 // Not a set (store or something?)
3900 SrcPattern = Pattern;
3901 }
3902
3903 // Create and insert the instruction.
3904 // FIXME: InstImpResults should not be part of DAGInstruction.
3905 Record *R = I.getRecord();
3906 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3907 std::forward_as_tuple(Results, Operands, InstImpResults,
3908 SrcPattern, ResultPattern));
3909
3910 LLVM_DEBUG(I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { I.dump(); } } while (false)
;
3911}
3912
3913/// ParseInstructions - Parse all of the instructions, inlining and resolving
3914/// any fragments involved. This populates the Instructions list with fully
3915/// resolved instructions.
3916void CodeGenDAGPatterns::ParseInstructions() {
3917 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3918
3919 for (Record *Instr : Instrs) {
3920 ListInit *LI = nullptr;
3921
3922 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3923 LI = Instr->getValueAsListInit("Pattern");
3924
3925 // If there is no pattern, only collect minimal information about the
3926 // instruction for its operand list. We have to assume that there is one
3927 // result, as we have no detailed info. A pattern which references the
3928 // null_frag operator is as-if no pattern were specified. Normally this
3929 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3930 // null_frag.
3931 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3932 std::vector<Record*> Results;
3933 std::vector<Record*> Operands;
3934
3935 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3936
3937 if (InstInfo.Operands.size() != 0) {
3938 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3939 Results.push_back(InstInfo.Operands[j].Rec);
3940
3941 // The rest are inputs.
3942 for (unsigned j = InstInfo.Operands.NumDefs,
3943 e = InstInfo.Operands.size(); j < e; ++j)
3944 Operands.push_back(InstInfo.Operands[j].Rec);
3945 }
3946
3947 // Create and insert the instruction.
3948 std::vector<Record*> ImpResults;
3949 Instructions.insert(std::make_pair(Instr,
3950 DAGInstruction(Results, Operands, ImpResults)));
3951 continue; // no pattern.
3952 }
3953
3954 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3955 parseInstructionPattern(CGI, LI, Instructions);
3956 }
3957
3958 // If we can, convert the instructions to be patterns that are matched!
3959 for (auto &Entry : Instructions) {
3960 Record *Instr = Entry.first;
3961 DAGInstruction &TheInst = Entry.second;
3962 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3963 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3964
3965 if (SrcPattern && ResultPattern) {
3966 TreePattern Pattern(Instr, SrcPattern, true, *this);
3967 TreePattern Result(Instr, ResultPattern, false, *this);
3968 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3969 }
3970 }
3971}
3972
3973typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3974
3975static void FindNames(TreePatternNode *P,
3976 std::map<std::string, NameRecord> &Names,
3977 TreePattern *PatternTop) {
3978 if (!P->getName().empty()) {
3979 NameRecord &Rec = Names[P->getName()];
3980 // If this is the first instance of the name, remember the node.
3981 if (Rec.second++ == 0)
3982 Rec.first = P;
3983 else if (Rec.first->getExtTypes() != P->getExtTypes())
3984 PatternTop->error("repetition of value: $" + P->getName() +
3985 " where different uses have different types!");
3986 }
3987
3988 if (!P->isLeaf()) {
3989 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3990 FindNames(P->getChild(i), Names, PatternTop);
3991 }
3992}
3993
3994void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3995 PatternToMatch &&PTM) {
3996 // Do some sanity checking on the pattern we're about to match.
3997 std::string Reason;
3998 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3999 PrintWarning(Pattern->getRecord()->getLoc(),
4000 Twine("Pattern can never match: ") + Reason);
4001 return;
4002 }
4003
4004 // If the source pattern's root is a complex pattern, that complex pattern
4005 // must specify the nodes it can potentially match.
4006 if (const ComplexPattern *CP =
4007 PTM.getSrcPattern()->getComplexPatternInfo(*this))
4008 if (CP->getRootNodes().empty())
4009 Pattern->error("ComplexPattern at root must specify list of opcodes it"
4010 " could match");
4011
4012
4013 // Find all of the named values in the input and output, ensure they have the
4014 // same type.
4015 std::map<std::string, NameRecord> SrcNames, DstNames;
4016 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4017 FindNames(PTM.getDstPattern(), DstNames, Pattern);
4018
4019 // Scan all of the named values in the destination pattern, rejecting them if
4020 // they don't exist in the input pattern.
4021 for (const auto &Entry : DstNames) {
4022 if (SrcNames[Entry.first].first == nullptr)
4023 Pattern->error("Pattern has input without matching name in output: $" +
4024 Entry.first);
4025 }
4026
4027 // Scan all of the named values in the source pattern, rejecting them if the
4028 // name isn't used in the dest, and isn't used to tie two values together.
4029 for (const auto &Entry : SrcNames)
4030 if (DstNames[Entry.first].first == nullptr &&
4031 SrcNames[Entry.first].second == 1)
4032 Pattern->error("Pattern has dead named input: $" + Entry.first);
4033
4034 PatternsToMatch.push_back(std::move(PTM));
4035}
4036
4037void CodeGenDAGPatterns::InferInstructionFlags() {
4038 ArrayRef<const CodeGenInstruction*> Instructions =
4039 Target.getInstructionsByEnumValue();
4040
4041 unsigned Errors = 0;
4042
4043 // Try to infer flags from all patterns in PatternToMatch. These include
4044 // both the primary instruction patterns (which always come first) and
4045 // patterns defined outside the instruction.
4046 for (const PatternToMatch &PTM : ptms()) {
4047 // We can only infer from single-instruction patterns, otherwise we won't
4048 // know which instruction should get the flags.
4049 SmallVector<Record*, 8> PatInstrs;
4050 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4051 if (PatInstrs.size() != 1)
4052 continue;
4053
4054 // Get the single instruction.
4055 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4056
4057 // Only infer properties from the first pattern. We'll verify the others.
4058 if (InstInfo.InferredFrom)
4059 continue;
4060
4061 InstAnalyzer PatInfo(*this);
4062 PatInfo.Analyze(PTM);
4063 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4064 }
4065
4066 if (Errors)
4067 PrintFatalError("pattern conflicts");
4068
4069 // If requested by the target, guess any undefined properties.
4070 if (Target.guessInstructionProperties()) {
4071 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4072 CodeGenInstruction *InstInfo =
4073 const_cast<CodeGenInstruction *>(Instructions[i]);
4074 if (InstInfo->InferredFrom)
4075 continue;
4076 // The mayLoad and mayStore flags default to false.
4077 // Conservatively assume hasSideEffects if it wasn't explicit.
4078 if (InstInfo->hasSideEffects_Unset)
4079 InstInfo->hasSideEffects = true;
4080 }
4081 return;
4082 }
4083
4084 // Complain about any flags that are still undefined.
4085 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4086 CodeGenInstruction *InstInfo =
4087 const_cast<CodeGenInstruction *>(Instructions[i]);
4088 if (InstInfo->InferredFrom)
4089 continue;
4090 if (InstInfo->hasSideEffects_Unset)
4091 PrintError(InstInfo->TheDef->getLoc(),
4092 "Can't infer hasSideEffects from patterns");
4093 if (InstInfo->mayStore_Unset)
4094 PrintError(InstInfo->TheDef->getLoc(),
4095 "Can't infer mayStore from patterns");
4096 if (InstInfo->mayLoad_Unset)
4097 PrintError(InstInfo->TheDef->getLoc(),
4098 "Can't infer mayLoad from patterns");
4099 }
4100}
4101
4102
4103/// Verify instruction flags against pattern node properties.
4104void CodeGenDAGPatterns::VerifyInstructionFlags() {
4105 unsigned Errors = 0;
4106 for (const PatternToMatch &PTM : ptms()) {
4107 SmallVector<Record*, 8> Instrs;
4108 getInstructionsInTree(PTM.getDstPattern(), Instrs);
4109 if (Instrs.empty())
4110 continue;
4111
4112 // Count the number of instructions with each flag set.
4113 unsigned NumSideEffects = 0;
4114 unsigned NumStores = 0;
4115 unsigned NumLoads = 0;
4116 for (const Record *Instr : Instrs) {
4117 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4118 NumSideEffects += InstInfo.hasSideEffects;
4119 NumStores += InstInfo.mayStore;
4120 NumLoads += InstInfo.mayLoad;
4121 }
4122
4123 // Analyze the source pattern.
4124 InstAnalyzer PatInfo(*this);
4125 PatInfo.Analyze(PTM);
4126
4127 // Collect error messages.
4128 SmallVector<std::string, 4> Msgs;
4129
4130 // Check for missing flags in the output.
4131 // Permit extra flags for now at least.
4132 if (PatInfo.hasSideEffects && !NumSideEffects)
4133 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4134
4135 // Don't verify store flags on instructions with side effects. At least for
4136 // intrinsics, side effects implies mayStore.
4137 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4138 Msgs.push_back("pattern may store, but mayStore isn't set");
4139
4140 // Similarly, mayStore implies mayLoad on intrinsics.
4141 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4142 Msgs.push_back("pattern may load, but mayLoad isn't set");
4143
4144 // Print error messages.
4145 if (Msgs.empty())
4146 continue;
4147 ++Errors;
4148
4149 for (const std::string &Msg : Msgs)
4150 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4151 (Instrs.size() == 1 ?
4152 "instruction" : "output instructions"));
4153 // Provide the location of the relevant instruction definitions.
4154 for (const Record *Instr : Instrs) {
4155 if (Instr != PTM.getSrcRecord())
4156 PrintError(Instr->getLoc(), "defined here");
4157 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4158 if (InstInfo.InferredFrom &&
4159 InstInfo.InferredFrom != InstInfo.TheDef &&
4160 InstInfo.InferredFrom != PTM.getSrcRecord())
4161 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4162 }
4163 }
4164 if (Errors)
4165 PrintFatalError("Errors in DAG patterns");
4166}
4167
4168/// Given a pattern result with an unresolved type, see if we can find one
4169/// instruction with an unresolved result type. Force this result type to an
4170/// arbitrary element if it's possible types to converge results.
4171static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4172 if (N->isLeaf())
4173 return false;
4174
4175 // Analyze children.
4176 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4177 if (ForceArbitraryInstResultType(N->getChild(i), TP))
4178 return true;
4179
4180 if (!N->getOperator()->isSubClassOf("Instruction"))
4181 return false;
4182
4183 // If this type is already concrete or completely unknown we can't do
4184 // anything.
4185 TypeInfer &TI = TP.getInfer();
4186 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4187 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4188 continue;
4189
4190 // Otherwise, force its type to an arbitrary choice.
4191 if (TI.forceArbitrary(N->getExtType(i)))
4192 return true;
4193 }
4194
4195 return false;
4196}
4197
4198// Promote xform function to be an explicit node wherever set.
4199static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4200 if (Record *Xform = N->getTransformFn()) {
4201 N->setTransformFn(nullptr);
4202 std::vector<TreePatternNodePtr> Children;
4203 Children.push_back(PromoteXForms(N));
4204 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4205 N->getNumTypes());
4206 }
4207
4208 if (!N->isLeaf())
4209 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4210 TreePatternNodePtr Child = N->getChildShared(i);
4211 N->setChild(i, PromoteXForms(Child));
4212 }
4213 return N;
4214}
4215
4216void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4217 TreePattern &Pattern, TreePattern &Result,
4218 const std::vector<Record *> &InstImpResults) {
4219
4220 // Inline pattern fragments and expand multiple alternatives.
4221 Pattern.InlinePatternFragments();
4222 Result.InlinePatternFragments();
4223
4224 if (Result.getNumTrees() != 1)
4225 Result.error("Cannot use multi-alternative fragments in result pattern!");
4226
4227 // Infer types.
4228 bool IterateInference;
4229 bool InferredAllPatternTypes, InferredAllResultTypes;
4230 do {
4231 // Infer as many types as possible. If we cannot infer all of them, we
4232 // can never do anything with this pattern: report it to the user.
4233 InferredAllPatternTypes =
4234 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4235
4236 // Infer as many types as possible. If we cannot infer all of them, we
4237 // can never do anything with this pattern: report it to the user.
4238 InferredAllResultTypes =
4239 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4240
4241 IterateInference = false;
4242
4243 // Apply the type of the result to the source pattern. This helps us
4244 // resolve cases where the input type is known to be a pointer type (which
4245 // is considered resolved), but the result knows it needs to be 32- or
4246 // 64-bits. Infer the other way for good measure.
4247 for (const auto &T : Pattern.getTrees())
4248 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4249 T->getNumTypes());
4250 i != e; ++i) {
4251 IterateInference |= T->UpdateNodeType(
4252 i, Result.getOnlyTree()->getExtType(i), Result);
4253 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4254 i, T->getExtType(i), Result);
4255 }
4256
4257 // If our iteration has converged and the input pattern's types are fully
4258 // resolved but the result pattern is not fully resolved, we may have a
4259 // situation where we have two instructions in the result pattern and
4260 // the instructions require a common register class, but don't care about
4261 // what actual MVT is used. This is actually a bug in our modelling:
4262 // output patterns should have register classes, not MVTs.
4263 //
4264 // In any case, to handle this, we just go through and disambiguate some
4265 // arbitrary types to the result pattern's nodes.
4266 if (!IterateInference && InferredAllPatternTypes &&
4267 !InferredAllResultTypes)
4268 IterateInference =
4269 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4270 } while (IterateInference);
4271
4272 // Verify that we inferred enough types that we can do something with the
4273 // pattern and result. If these fire the user has to add type casts.
4274 if (!InferredAllPatternTypes)
4275 Pattern.error("Could not infer all types in pattern!");
4276 if (!InferredAllResultTypes) {
4277 Pattern.dump();
4278 Result.error("Could not infer all types in pattern result!");
4279 }
4280
4281 // Promote xform function to be an explicit node wherever set.
4282 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4283
4284 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4285 Temp.InferAllTypes();
4286
4287 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4288 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4289
4290 if (PatternRewriter)
4291 PatternRewriter(&Pattern);
4292
4293 // A pattern may end up with an "impossible" type, i.e. a situation
4294 // where all types have been eliminated for some node in this pattern.
4295 // This could occur for intrinsics that only make sense for a specific
4296 // value type, and use a specific register class. If, for some mode,
4297 // that register class does not accept that type, the type inference
4298 // will lead to a contradiction, which is not an error however, but
4299 // a sign that this pattern will simply never match.
4300 if (Temp.getOnlyTree()->hasPossibleType())
4301 for (const auto &T : Pattern.getTrees())
4302 if (T->hasPossibleType())
4303 AddPatternToMatch(&Pattern,
4304 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4305 InstImpResults, Complexity,
4306 TheDef->getID()));
4307}
4308
4309void CodeGenDAGPatterns::ParsePatterns() {
4310 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4311
4312 for (Record *CurPattern : Patterns) {
4313 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4314
4315 // If the pattern references the null_frag, there's nothing to do.
4316 if (hasNullFragReference(Tree))
4317 continue;
4318
4319 TreePattern Pattern(CurPattern, Tree, true, *this);
4320
4321 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4322 if (LI->empty()) continue; // no pattern.
4323
4324 // Parse the instruction.
4325 TreePattern Result(CurPattern, LI, false, *this);
4326
4327 if (Result.getNumTrees() != 1)
4328 Result.error("Cannot handle instructions producing instructions "
4329 "with temporaries yet!");
4330
4331 // Validate that the input pattern is correct.
4332 std::map<std::string, TreePatternNodePtr> InstInputs;
4333 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4334 InstResults;
4335 std::vector<Record*> InstImpResults;
4336 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4337 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4338 InstResults, InstImpResults);
4339
4340 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4341 }
4342}
4343
4344static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4345 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4346 for (const auto &I : VTS)
4347 Modes.insert(I.first);
4348
4349 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4350 collectModes(Modes, N->getChild(i));
4351}
4352
4353void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4354 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4355 std::vector<PatternToMatch> Copy;
4356 PatternsToMatch.swap(Copy);
4357
4358 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4359 StringRef Check) {
4360 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4361 TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4362 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4363 return;
4364 }
4365
4366 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4367 std::move(NewSrc), std::move(NewDst),
4368 P.getDstRegs(), P.getAddedComplexity(),
4369 Record::getNewUID(), Mode, Check);
4370 };
4371
4372 for (PatternToMatch &P : Copy) {
4373 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4374 if (P.getSrcPattern()->hasProperTypeByHwMode())
4375 SrcP = P.getSrcPatternShared();
4376 if (P.getDstPattern()->hasProperTypeByHwMode())
4377 DstP = P.getDstPatternShared();
4378 if (!SrcP && !DstP) {
4379 PatternsToMatch.push_back(P);
4380 continue;
4381 }
4382
4383 std::set<unsigned> Modes;
4384 if (SrcP)
4385 collectModes(Modes, SrcP.get());
4386 if (DstP)
4387 collectModes(Modes, DstP.get());
4388
4389 // The predicate for the default mode needs to be constructed for each
4390 // pattern separately.
4391 // Since not all modes must be present in each pattern, if a mode m is
4392 // absent, then there is no point in constructing a check for m. If such
4393 // a check was created, it would be equivalent to checking the default
4394 // mode, except not all modes' predicates would be a part of the checking
4395 // code. The subsequently generated check for the default mode would then
4396 // have the exact same patterns, but a different predicate code. To avoid
4397 // duplicated patterns with different predicate checks, construct the
4398 // default check as a negation of all predicates that are actually present
4399 // in the source/destination patterns.
4400 SmallString<128> DefaultCheck;
4401
4402 for (unsigned M : Modes) {
4403 if (M == DefaultMode)
4404 continue;
4405
4406 // Fill the map entry for this mode.
4407 const HwMode &HM = CGH.getMode(M);
4408 AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))");
4409
4410 // Add negations of the HM's predicates to the default predicate.
4411 if (!DefaultCheck.empty())
4412 DefaultCheck += " && ";
4413 DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\"";
4414 DefaultCheck += HM.Features;
4415 DefaultCheck += "\")))";
4416 }
4417
4418 bool HasDefault = Modes.count(DefaultMode);
4419 if (HasDefault)
4420 AppendPattern(P, DefaultMode, DefaultCheck);
4421 }
4422}
4423
4424/// Dependent variable map for CodeGenDAGPattern variant generation
4425typedef StringMap<int> DepVarMap;
4426
4427static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4428 if (N->isLeaf()) {
4429 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4430 DepMap[N->getName()]++;
4431 } else {
4432 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4433 FindDepVarsOf(N->getChild(i), DepMap);
4434 }
4435}
4436
4437/// Find dependent variables within child patterns
4438static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4439 DepVarMap depcounts;
4440 FindDepVarsOf(N, depcounts);
4441 for (const auto &Pair : depcounts) {
4442 if (Pair.getValue() > 1)
4443 DepVars.insert(Pair.getKey());
4444 }
4445}
4446
4447#ifndef NDEBUG
4448/// Dump the dependent variable set:
4449static void DumpDepVars(MultipleUseVarSet &DepVars) {
4450 if (DepVars.empty()) {
4451 LLVM_DEBUG(errs() << "<empty set>")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "<empty set>"; } } while
(false)
;
4452 } else {
4453 LLVM_DEBUG(errs() << "[ ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "[ "; } } while (false)
;
4454 for (const auto &DepVar : DepVars) {
4455 LLVM_DEBUG(errs() << DepVar.getKey() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << DepVar.getKey() << " "
; } } while (false)
;
4456 }
4457 LLVM_DEBUG(errs() << "]")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "]"; } } while (false)
;
4458 }
4459}
4460#endif
4461
4462
4463/// CombineChildVariants - Given a bunch of permutations of each child of the
4464/// 'operator' node, put them together in all possible ways.
4465static void CombineChildVariants(
4466 TreePatternNodePtr Orig,
4467 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4468 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4469 const MultipleUseVarSet &DepVars) {
4470 // Make sure that each operand has at least one variant to choose from.
4471 for (const auto &Variants : ChildVariants)
4472 if (Variants.empty())
4473 return;
4474
4475 // The end result is an all-pairs construction of the resultant pattern.
4476 std::vector<unsigned> Idxs;
4477 Idxs.resize(ChildVariants.size());
4478 bool NotDone;
4479 do {
4480#ifndef NDEBUG
4481 LLVM_DEBUG(if (!Idxs.empty()) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4482 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4483 for (unsigned Idx : Idxs) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4484 errs() << Idx << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4485 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4486 errs() << "]\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4487 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
;
4488#endif
4489 // Create the variant and add it to the output list.
4490 std::vector<TreePatternNodePtr> NewChildren;
4491 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4492 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4493 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4494 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4495
4496 // Copy over properties.
4497 R->setName(Orig->getName());
4498 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4499 R->setPredicateCalls(Orig->getPredicateCalls());
4500 R->setTransformFn(Orig->getTransformFn());
4501 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4502 R->setType(i, Orig->getExtType(i));
4503
4504 // If this pattern cannot match, do not include it as a variant.
4505 std::string ErrString;
4506 // Scan to see if this pattern has already been emitted. We can get
4507 // duplication due to things like commuting:
4508 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4509 // which are the same pattern. Ignore the dups.
4510 if (R->canPatternMatch(ErrString, CDP) &&
4511 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4512 return R->isIsomorphicTo(Variant.get(), DepVars);
4513 }))
4514 OutVariants.push_back(R);
4515
4516 // Increment indices to the next permutation by incrementing the
4517 // indices from last index backward, e.g., generate the sequence
4518 // [0, 0], [0, 1], [1, 0], [1, 1].
4519 int IdxsIdx;
4520 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4521 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4522 Idxs[IdxsIdx] = 0;
4523 else
4524 break;
4525 }
4526 NotDone = (IdxsIdx >= 0);
4527 } while (NotDone);
4528}
4529
4530/// CombineChildVariants - A helper function for binary operators.
4531///
4532static void CombineChildVariants(TreePatternNodePtr Orig,
4533 const std::vector<TreePatternNodePtr> &LHS,
4534 const std::vector<TreePatternNodePtr> &RHS,
4535 std::vector<TreePatternNodePtr> &OutVariants,
4536 CodeGenDAGPatterns &CDP,
4537 const MultipleUseVarSet &DepVars) {
4538 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4539 ChildVariants.push_back(LHS);
4540 ChildVariants.push_back(RHS);
4541 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4542}
4543
4544static void
4545GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4546 std::vector<TreePatternNodePtr> &Children) {
4547 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!")(static_cast <bool> (N->getNumChildren()==2 &&
"Associative but doesn't have 2 children!") ? void (0) : __assert_fail
("N->getNumChildren()==2 &&\"Associative but doesn't have 2 children!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4547, __extension__
__PRETTY_FUNCTION__))
;
4548 Record *Operator = N->getOperator();
4549
4550 // Only permit raw nodes.
4551 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4552 N->getTransformFn()) {
4553 Children.push_back(N);
4554 return;
4555 }
4556
4557 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4558 Children.push_back(N->getChildShared(0));
4559 else
4560 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4561
4562 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4563 Children.push_back(N->getChildShared(1));
4564 else
4565 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4566}
4567
4568/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4569/// the (potentially recursive) pattern by using algebraic laws.
4570///
4571static void GenerateVariantsOf(TreePatternNodePtr N,
4572 std::vector<TreePatternNodePtr> &OutVariants,
4573 CodeGenDAGPatterns &CDP,
4574 const MultipleUseVarSet &DepVars) {
4575 // We cannot permute leaves or ComplexPattern uses.
4576 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4577 OutVariants.push_back(N);
4578 return;
4579 }
4580
4581 // Look up interesting info about the node.
4582 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4583
4584 // If this node is associative, re-associate.
4585 if (NodeInfo.hasProperty(SDNPAssociative)) {
4586 // Re-associate by pulling together all of the linked operators
4587 std::vector<TreePatternNodePtr> MaximalChildren;
4588 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4589
4590 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4591 // permutations.
4592 if (MaximalChildren.size() == 3) {
4593 // Find the variants of all of our maximal children.
4594 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4595 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4596 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4597 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4598
4599 // There are only two ways we can permute the tree:
4600 // (A op B) op C and A op (B op C)
4601 // Within these forms, we can also permute A/B/C.
4602
4603 // Generate legal pair permutations of A/B/C.
4604 std::vector<TreePatternNodePtr> ABVariants;
4605 std::vector<TreePatternNodePtr> BAVariants;
4606 std::vector<TreePatternNodePtr> ACVariants;
4607 std::vector<TreePatternNodePtr> CAVariants;
4608 std::vector<TreePatternNodePtr> BCVariants;
4609 std::vector<TreePatternNodePtr> CBVariants;
4610 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4611 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4612 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4613 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4614 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4615 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4616
4617 // Combine those into the result: (x op x) op x
4618 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4619 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4620 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4621 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4622 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4623 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4624
4625 // Combine those into the result: x op (x op x)
4626 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4627 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4628 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4629 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4630 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4631 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4632 return;
4633 }
4634 }
4635
4636 // Compute permutations of all children.
4637 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4638 ChildVariants.resize(N->getNumChildren());
4639 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4640 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4641
4642 // Build all permutations based on how the children were formed.
4643 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4644
4645 // If this node is commutative, consider the commuted order.
4646 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4647 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4648 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&(static_cast <bool> ((N->getNumChildren()>=2 || isCommIntrinsic
) && "Commutative but doesn't have 2 children!") ? void
(0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4649, __extension__
__PRETTY_FUNCTION__))
4649 "Commutative but doesn't have 2 children!")(static_cast <bool> ((N->getNumChildren()>=2 || isCommIntrinsic
) && "Commutative but doesn't have 2 children!") ? void
(0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4649, __extension__
__PRETTY_FUNCTION__))
;
4650 // Don't count children which are actually register references.
4651 unsigned NC = 0;
4652 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4653 TreePatternNode *Child = N->getChild(i);
4654 if (Child->isLeaf())
4655 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4656 Record *RR = DI->getDef();
4657 if (RR->isSubClassOf("Register"))
4658 continue;
4659 }
4660 NC++;
4661 }
4662 // Consider the commuted order.
4663 if (isCommIntrinsic) {
4664 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4665 // operands are the commutative operands, and there might be more operands
4666 // after those.
4667 assert(NC >= 3 &&(static_cast <bool> (NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? void (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4668, __extension__
__PRETTY_FUNCTION__))
4668 "Commutative intrinsic should have at least 3 children!")(static_cast <bool> (NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? void (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4668, __extension__
__PRETTY_FUNCTION__))
;
4669 std::vector<std::vector<TreePatternNodePtr>> Variants;
4670 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4671 Variants.push_back(std::move(ChildVariants[2]));
4672 Variants.push_back(std::move(ChildVariants[1]));
4673 for (unsigned i = 3; i != NC; ++i)
4674 Variants.push_back(std::move(ChildVariants[i]));
4675 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4676 } else if (NC == N->getNumChildren()) {
4677 std::vector<std::vector<TreePatternNodePtr>> Variants;
4678 Variants.push_back(std::move(ChildVariants[1]));
4679 Variants.push_back(std::move(ChildVariants[0]));
4680 for (unsigned i = 2; i != NC; ++i)
4681 Variants.push_back(std::move(ChildVariants[i]));
4682 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4683 }
4684 }
4685}
4686
4687
4688// GenerateVariants - Generate variants. For example, commutative patterns can
4689// match multiple ways. Add them to PatternsToMatch as well.
4690void CodeGenDAGPatterns::GenerateVariants() {
4691 LLVM_DEBUG(errs() << "Generating instruction variants.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Generating instruction variants.\n"
; } } while (false)
;
4692
4693 // Loop over all of the patterns we've collected, checking to see if we can
4694 // generate variants of the instruction, through the exploitation of
4695 // identities. This permits the target to provide aggressive matching without
4696 // the .td file having to contain tons of variants of instructions.
4697 //
4698 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4699 // intentionally do not reconsider these. Any variants of added patterns have
4700 // already been added.
4701 //
4702 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4703 MultipleUseVarSet DepVars;
4704 std::vector<TreePatternNodePtr> Variants;
4705 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4706 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Dependent/multiply used variables: "
; } } while (false)
;
4707 LLVM_DEBUG(DumpDepVars(DepVars))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { DumpDepVars(DepVars); } } while (false)
;
4708 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4709 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4710 *this, DepVars);
4711
4712 assert(PatternsToMatch[i].getHwModeFeatures().empty() &&(static_cast <bool> (PatternsToMatch[i].getHwModeFeatures
().empty() && "HwModes should not have been expanded yet!"
) ? void (0) : __assert_fail ("PatternsToMatch[i].getHwModeFeatures().empty() && \"HwModes should not have been expanded yet!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4713, __extension__
__PRETTY_FUNCTION__))
4713 "HwModes should not have been expanded yet!")(static_cast <bool> (PatternsToMatch[i].getHwModeFeatures
().empty() && "HwModes should not have been expanded yet!"
) ? void (0) : __assert_fail ("PatternsToMatch[i].getHwModeFeatures().empty() && \"HwModes should not have been expanded yet!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4713, __extension__
__PRETTY_FUNCTION__))
;
4714
4715 assert(!Variants.empty() && "Must create at least original variant!")(static_cast <bool> (!Variants.empty() && "Must create at least original variant!"
) ? void (0) : __assert_fail ("!Variants.empty() && \"Must create at least original variant!\""
, "llvm/utils/TableGen/CodeGenDAGPatterns.cpp", 4715, __extension__
__PRETTY_FUNCTION__))
;
4716 if (Variants.size() == 1) // No additional variants for this pattern.
4717 continue;
4718
4719 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
4720 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
;
4721
4722 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4723 TreePatternNodePtr Variant = Variants[v];
4724
4725 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
4726 errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
;
4727
4728 // Scan to see if an instruction or explicit pattern already matches this.
4729 bool AlreadyExists = false;
4730 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4731 // Skip if the top level predicates do not match.
4732 if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4733 PatternsToMatch[p].getPredicates()))
4734 continue;
4735 // Check to see if this variant already exists.
4736 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4737 DepVars)) {
4738 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " *** ALREADY EXISTS, ignoring variant.\n"
; } } while (false)
;
4739 AlreadyExists = true;
4740 break;
4741 }
4742 }
4743 // If we already have it, ignore the variant.
4744 if (AlreadyExists) continue;
4745
4746 // Otherwise, add it to the list of patterns we have.
4747 PatternsToMatch.emplace_back(
4748 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4749 Variant, PatternsToMatch[i].getDstPatternShared(),
4750 PatternsToMatch[i].getDstRegs(),
4751 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(),
4752 PatternsToMatch[i].getForceMode(),
4753 PatternsToMatch[i].getHwModeFeatures());
4754 }
4755
4756 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4757 }
4758}