Bug Summary

File:clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 1359, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeNVPTX.h"
23#include "CodeGenFunction.h"
24#include "CodeGenPGO.h"
25#include "ConstantEmitter.h"
26#include "CoverageMappingGen.h"
27#include "TargetInfo.h"
28#include "clang/AST/ASTContext.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/AST/DeclCXX.h"
31#include "clang/AST/DeclObjC.h"
32#include "clang/AST/DeclTemplate.h"
33#include "clang/AST/Mangle.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/RecursiveASTVisitor.h"
36#include "clang/AST/StmtVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/CodeGenOptions.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/Module.h"
42#include "clang/Basic/SourceManager.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/Version.h"
45#include "clang/CodeGen/ConstantInitBuilder.h"
46#include "clang/Frontend/FrontendDiagnostic.h"
47#include "llvm/ADT/StringSwitch.h"
48#include "llvm/ADT/Triple.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51#include "llvm/IR/CallingConv.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ProfileSummary.h"
57#include "llvm/ProfileData/InstrProfReader.h"
58#include "llvm/Support/CodeGen.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/ConvertUTF.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/MD5.h"
63#include "llvm/Support/TimeProfiler.h"
64
65using namespace clang;
66using namespace CodeGen;
67
68static llvm::cl::opt<bool> LimitedCoverage(
69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71 llvm::cl::init(false));
72
73static const char AnnotationSection[] = "llvm.metadata";
74
75static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76 switch (CGM.getTarget().getCXXABI().getKind()) {
77 case TargetCXXABI::Fuchsia:
78 case TargetCXXABI::GenericAArch64:
79 case TargetCXXABI::GenericARM:
80 case TargetCXXABI::iOS:
81 case TargetCXXABI::iOS64:
82 case TargetCXXABI::WatchOS:
83 case TargetCXXABI::GenericMIPS:
84 case TargetCXXABI::GenericItanium:
85 case TargetCXXABI::WebAssembly:
86 return CreateItaniumCXXABI(CGM);
87 case TargetCXXABI::Microsoft:
88 return CreateMicrosoftCXXABI(CGM);
89 }
90
91 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 91)
;
92}
93
94CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
95 const PreprocessorOptions &PPO,
96 const CodeGenOptions &CGO, llvm::Module &M,
97 DiagnosticsEngine &diags,
98 CoverageSourceInfo *CoverageInfo)
99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
102 VMContext(M.getContext()), Types(*this), VTables(*this),
103 SanitizerMD(new SanitizerMetadata(*this)) {
104
105 // Initialize the type cache.
106 llvm::LLVMContext &LLVMContext = M.getContext();
107 VoidTy = llvm::Type::getVoidTy(LLVMContext);
108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
112 HalfTy = llvm::Type::getHalfTy(LLVMContext);
113 FloatTy = llvm::Type::getFloatTy(LLVMContext);
114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
116 PointerAlignInBytes =
117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
118 SizeSizeInBytes =
119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
120 IntAlignInBytes =
121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
123 IntPtrTy = llvm::IntegerType::get(LLVMContext,
124 C.getTargetInfo().getMaxPointerWidth());
125 Int8PtrTy = Int8Ty->getPointerTo(0);
126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
127 AllocaInt8PtrTy = Int8Ty->getPointerTo(
128 M.getDataLayout().getAllocaAddrSpace());
129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
130
131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
132
133 if (LangOpts.ObjC)
134 createObjCRuntime();
135 if (LangOpts.OpenCL)
136 createOpenCLRuntime();
137 if (LangOpts.OpenMP)
138 createOpenMPRuntime();
139 if (LangOpts.CUDA)
140 createCUDARuntime();
141
142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
146 getCXXABI().getMangleContext()));
147
148 // If debug info or coverage generation is enabled, create the CGDebugInfo
149 // object.
150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
152 DebugInfo.reset(new CGDebugInfo(*this));
153
154 Block.GlobalUniqueCount = 0;
155
156 if (C.getLangOpts().ObjC)
157 ObjCData.reset(new ObjCEntrypoints());
158
159 if (CodeGenOpts.hasProfileClangUse()) {
160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
162 if (auto E = ReaderOrErr.takeError()) {
163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
164 "Could not read profile %0: %1");
165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
167 << EI.message();
168 });
169 } else
170 PGOReader = std::move(ReaderOrErr.get());
171 }
172
173 // If coverage mapping generation is enabled, create the
174 // CoverageMappingModuleGen object.
175 if (CodeGenOpts.CoverageMapping)
176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
177}
178
179CodeGenModule::~CodeGenModule() {}
180
181void CodeGenModule::createObjCRuntime() {
182 // This is just isGNUFamily(), but we want to force implementors of
183 // new ABIs to decide how best to do this.
184 switch (LangOpts.ObjCRuntime.getKind()) {
185 case ObjCRuntime::GNUstep:
186 case ObjCRuntime::GCC:
187 case ObjCRuntime::ObjFW:
188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
189 return;
190
191 case ObjCRuntime::FragileMacOSX:
192 case ObjCRuntime::MacOSX:
193 case ObjCRuntime::iOS:
194 case ObjCRuntime::WatchOS:
195 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
196 return;
197 }
198 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 198)
;
199}
200
201void CodeGenModule::createOpenCLRuntime() {
202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
203}
204
205void CodeGenModule::createOpenMPRuntime() {
206 // Select a specialized code generation class based on the target, if any.
207 // If it does not exist use the default implementation.
208 switch (getTriple().getArch()) {
209 case llvm::Triple::nvptx:
210 case llvm::Triple::nvptx64:
211 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 212, __PRETTY_FUNCTION__))
212 "OpenMP NVPTX is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 212, __PRETTY_FUNCTION__))
;
213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
214 break;
215 default:
216 if (LangOpts.OpenMPSimd)
217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
218 else
219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
220 break;
221 }
222
223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens
224 // but we are not there yet so they both reside in CGModule for now and the
225 // OpenMP-IR-Builder is opt-in only.
226 if (LangOpts.OpenMPIRBuilder) {
227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
228 OMPBuilder->initialize();
229 }
230}
231
232void CodeGenModule::createCUDARuntime() {
233 CUDARuntime.reset(CreateNVCUDARuntime(*this));
234}
235
236void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
237 Replacements[Name] = C;
238}
239
240void CodeGenModule::applyReplacements() {
241 for (auto &I : Replacements) {
242 StringRef MangledName = I.first();
243 llvm::Constant *Replacement = I.second;
244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
245 if (!Entry)
246 continue;
247 auto *OldF = cast<llvm::Function>(Entry);
248 auto *NewF = dyn_cast<llvm::Function>(Replacement);
249 if (!NewF) {
250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
252 } else {
253 auto *CE = cast<llvm::ConstantExpr>(Replacement);
254 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 255, __PRETTY_FUNCTION__))
255 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 255, __PRETTY_FUNCTION__))
;
256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
257 }
258 }
259
260 // Replace old with new, but keep the old order.
261 OldF->replaceAllUsesWith(Replacement);
262 if (NewF) {
263 NewF->removeFromParent();
264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
265 NewF);
266 }
267 OldF->eraseFromParent();
268 }
269}
270
271void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
272 GlobalValReplacements.push_back(std::make_pair(GV, C));
273}
274
275void CodeGenModule::applyGlobalValReplacements() {
276 for (auto &I : GlobalValReplacements) {
277 llvm::GlobalValue *GV = I.first;
278 llvm::Constant *C = I.second;
279
280 GV->replaceAllUsesWith(C);
281 GV->eraseFromParent();
282 }
283}
284
285// This is only used in aliases that we created and we know they have a
286// linear structure.
287static const llvm::GlobalObject *getAliasedGlobal(
288 const llvm::GlobalIndirectSymbol &GIS) {
289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
290 const llvm::Constant *C = &GIS;
291 for (;;) {
292 C = C->stripPointerCasts();
293 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
294 return GO;
295 // stripPointerCasts will not walk over weak aliases.
296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
297 if (!GIS2)
298 return nullptr;
299 if (!Visited.insert(GIS2).second)
300 return nullptr;
301 C = GIS2->getIndirectSymbol();
302 }
303}
304
305void CodeGenModule::checkAliases() {
306 // Check if the constructed aliases are well formed. It is really unfortunate
307 // that we have to do this in CodeGen, but we only construct mangled names
308 // and aliases during codegen.
309 bool Error = false;
310 DiagnosticsEngine &Diags = getDiags();
311 for (const GlobalDecl &GD : Aliases) {
312 const auto *D = cast<ValueDecl>(GD.getDecl());
313 SourceLocation Location;
314 bool IsIFunc = D->hasAttr<IFuncAttr>();
315 if (const Attr *A = D->getDefiningAttr())
316 Location = A->getLocation();
317 else
318 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 318)
;
319 StringRef MangledName = getMangledName(GD);
320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
323 if (!GV) {
324 Error = true;
325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
326 } else if (GV->isDeclaration()) {
327 Error = true;
328 Diags.Report(Location, diag::err_alias_to_undefined)
329 << IsIFunc << IsIFunc;
330 } else if (IsIFunc) {
331 // Check resolver function type.
332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
333 GV->getType()->getPointerElementType());
334 assert(FTy)((FTy) ? static_cast<void> (0) : __assert_fail ("FTy", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 334, __PRETTY_FUNCTION__))
;
335 if (!FTy->getReturnType()->isPointerTy())
336 Diags.Report(Location, diag::err_ifunc_resolver_return);
337 }
338
339 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
340 llvm::GlobalValue *AliaseeGV;
341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
343 else
344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
345
346 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
347 StringRef AliasSection = SA->getName();
348 if (AliasSection != AliaseeGV->getSection())
349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
350 << AliasSection << IsIFunc << IsIFunc;
351 }
352
353 // We have to handle alias to weak aliases in here. LLVM itself disallows
354 // this since the object semantics would not match the IL one. For
355 // compatibility with gcc we implement it by just pointing the alias
356 // to its aliasee's aliasee. We also warn, since the user is probably
357 // expecting the link to be weak.
358 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
359 if (GA->isInterposable()) {
360 Diags.Report(Location, diag::warn_alias_to_weak_alias)
361 << GV->getName() << GA->getName() << IsIFunc;
362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
363 GA->getIndirectSymbol(), Alias->getType());
364 Alias->setIndirectSymbol(Aliasee);
365 }
366 }
367 }
368 if (!Error)
369 return;
370
371 for (const GlobalDecl &GD : Aliases) {
372 StringRef MangledName = getMangledName(GD);
373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
376 Alias->eraseFromParent();
377 }
378}
379
380void CodeGenModule::clear() {
381 DeferredDeclsToEmit.clear();
382 if (OpenMPRuntime)
383 OpenMPRuntime->clear();
384}
385
386void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
387 StringRef MainFile) {
388 if (!hasDiagnostics())
389 return;
390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
391 if (MainFile.empty())
392 MainFile = "<stdin>";
393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
394 } else {
395 if (Mismatched > 0)
396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
397
398 if (Missing > 0)
399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
400 }
401}
402
403void CodeGenModule::Release() {
404 EmitDeferred();
405 EmitVTablesOpportunistically();
406 applyGlobalValReplacements();
407 applyReplacements();
408 checkAliases();
409 emitMultiVersionFunctions();
410 EmitCXXGlobalInitFunc();
411 EmitCXXGlobalDtorFunc();
412 registerGlobalDtorsWithAtExit();
413 EmitCXXThreadLocalInitFunc();
414 if (ObjCRuntime)
415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
416 AddGlobalCtor(ObjCInitFunction);
417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
418 CUDARuntime) {
419 if (llvm::Function *CudaCtorFunction =
420 CUDARuntime->makeModuleCtorFunction())
421 AddGlobalCtor(CudaCtorFunction);
422 }
423 if (OpenMPRuntime) {
424 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
425 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
427 }
428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
429 OpenMPRuntime->clear();
430 }
431 if (PGOReader) {
432 getModule().setProfileSummary(
433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
434 llvm::ProfileSummary::PSK_Instr);
435 if (PGOStats.hasDiagnostics())
436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
437 }
438 EmitCtorList(GlobalCtors, "llvm.global_ctors");
439 EmitCtorList(GlobalDtors, "llvm.global_dtors");
440 EmitGlobalAnnotations();
441 EmitStaticExternCAliases();
442 EmitDeferredUnusedCoverageMappings();
443 if (CoverageMapping)
444 CoverageMapping->emit();
445 if (CodeGenOpts.SanitizeCfiCrossDso) {
446 CodeGenFunction(*this).EmitCfiCheckFail();
447 CodeGenFunction(*this).EmitCfiCheckStub();
448 }
449 emitAtAvailableLinkGuard();
450 emitLLVMUsed();
451 if (SanStats)
452 SanStats->finish();
453
454 if (CodeGenOpts.Autolink &&
455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
456 EmitModuleLinkOptions();
457 }
458
459 // On ELF we pass the dependent library specifiers directly to the linker
460 // without manipulating them. This is in contrast to other platforms where
461 // they are mapped to a specific linker option by the compiler. This
462 // difference is a result of the greater variety of ELF linkers and the fact
463 // that ELF linkers tend to handle libraries in a more complicated fashion
464 // than on other platforms. This forces us to defer handling the dependent
465 // libs to the linker.
466 //
467 // CUDA/HIP device and host libraries are different. Currently there is no
468 // way to differentiate dependent libraries for host or device. Existing
469 // usage of #pragma comment(lib, *) is intended for host libraries on
470 // Windows. Therefore emit llvm.dependent-libraries only for host.
471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
473 for (auto *MD : ELFDependentLibraries)
474 NMD->addOperand(MD);
475 }
476
477 // Record mregparm value now so it is visible through rest of codegen.
478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
480 CodeGenOpts.NumRegisterParameters);
481
482 if (CodeGenOpts.DwarfVersion) {
483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
484 CodeGenOpts.DwarfVersion);
485 }
486 if (CodeGenOpts.EmitCodeView) {
487 // Indicate that we want CodeView in the metadata.
488 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
489 }
490 if (CodeGenOpts.CodeViewGHash) {
491 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
492 }
493 if (CodeGenOpts.ControlFlowGuard) {
494 // Function ID tables and checks for Control Flow Guard (cfguard=2).
495 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
496 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
497 // Function ID tables for Control Flow Guard (cfguard=1).
498 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
499 }
500 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
501 // We don't support LTO with 2 with different StrictVTablePointers
502 // FIXME: we could support it by stripping all the information introduced
503 // by StrictVTablePointers.
504
505 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
506
507 llvm::Metadata *Ops[2] = {
508 llvm::MDString::get(VMContext, "StrictVTablePointers"),
509 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
510 llvm::Type::getInt32Ty(VMContext), 1))};
511
512 getModule().addModuleFlag(llvm::Module::Require,
513 "StrictVTablePointersRequirement",
514 llvm::MDNode::get(VMContext, Ops));
515 }
516 if (DebugInfo)
517 // We support a single version in the linked module. The LLVM
518 // parser will drop debug info with a different version number
519 // (and warn about it, too).
520 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
521 llvm::DEBUG_METADATA_VERSION);
522
523 // We need to record the widths of enums and wchar_t, so that we can generate
524 // the correct build attributes in the ARM backend. wchar_size is also used by
525 // TargetLibraryInfo.
526 uint64_t WCharWidth =
527 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
528 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
529
530 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
531 if ( Arch == llvm::Triple::arm
532 || Arch == llvm::Triple::armeb
533 || Arch == llvm::Triple::thumb
534 || Arch == llvm::Triple::thumbeb) {
535 // The minimum width of an enum in bytes
536 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
537 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
538 }
539
540 if (CodeGenOpts.SanitizeCfiCrossDso) {
541 // Indicate that we want cross-DSO control flow integrity checks.
542 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
543 }
544
545 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
546 getModule().addModuleFlag(llvm::Module::Override,
547 "CFI Canonical Jump Tables",
548 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
549 }
550
551 if (CodeGenOpts.CFProtectionReturn &&
552 Target.checkCFProtectionReturnSupported(getDiags())) {
553 // Indicate that we want to instrument return control flow protection.
554 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
555 1);
556 }
557
558 if (CodeGenOpts.CFProtectionBranch &&
559 Target.checkCFProtectionBranchSupported(getDiags())) {
560 // Indicate that we want to instrument branch control flow protection.
561 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
562 1);
563 }
564
565 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
566 // Indicate whether __nvvm_reflect should be configured to flush denormal
567 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
568 // property.)
569 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
570 CodeGenOpts.FlushDenorm ? 1 : 0);
571 }
572
573 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
574 if (LangOpts.OpenCL) {
575 EmitOpenCLMetadata();
576 // Emit SPIR version.
577 if (getTriple().isSPIR()) {
578 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
579 // opencl.spir.version named metadata.
580 // C++ is backwards compatible with OpenCL v2.0.
581 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
582 llvm::Metadata *SPIRVerElts[] = {
583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584 Int32Ty, Version / 100)),
585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
587 llvm::NamedMDNode *SPIRVerMD =
588 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
589 llvm::LLVMContext &Ctx = TheModule.getContext();
590 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
591 }
592 }
593
594 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
595 assert(PLevel < 3 && "Invalid PIC Level")((PLevel < 3 && "Invalid PIC Level") ? static_cast
<void> (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 595, __PRETTY_FUNCTION__))
;
596 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
597 if (Context.getLangOpts().PIE)
598 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
599 }
600
601 if (getCodeGenOpts().CodeModel.size() > 0) {
602 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
603 .Case("tiny", llvm::CodeModel::Tiny)
604 .Case("small", llvm::CodeModel::Small)
605 .Case("kernel", llvm::CodeModel::Kernel)
606 .Case("medium", llvm::CodeModel::Medium)
607 .Case("large", llvm::CodeModel::Large)
608 .Default(~0u);
609 if (CM != ~0u) {
610 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
611 getModule().setCodeModel(codeModel);
612 }
613 }
614
615 if (CodeGenOpts.NoPLT)
616 getModule().setRtLibUseGOT();
617
618 SimplifyPersonality();
619
620 if (getCodeGenOpts().EmitDeclMetadata)
621 EmitDeclMetadata();
622
623 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
624 EmitCoverageFile();
625
626 if (DebugInfo)
627 DebugInfo->finalize();
628
629 if (getCodeGenOpts().EmitVersionIdentMetadata)
630 EmitVersionIdentMetadata();
631
632 if (!getCodeGenOpts().RecordCommandLine.empty())
633 EmitCommandLineMetadata();
634
635 EmitTargetMetadata();
636}
637
638void CodeGenModule::EmitOpenCLMetadata() {
639 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
640 // opencl.ocl.version named metadata node.
641 // C++ is backwards compatible with OpenCL v2.0.
642 // FIXME: We might need to add CXX version at some point too?
643 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
644 llvm::Metadata *OCLVerElts[] = {
645 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
646 Int32Ty, Version / 100)),
647 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
648 Int32Ty, (Version % 100) / 10))};
649 llvm::NamedMDNode *OCLVerMD =
650 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
651 llvm::LLVMContext &Ctx = TheModule.getContext();
652 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
653}
654
655void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
656 // Make sure that this type is translated.
657 Types.UpdateCompletedType(TD);
658}
659
660void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
661 // Make sure that this type is translated.
662 Types.RefreshTypeCacheForClass(RD);
663}
664
665llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
666 if (!TBAA)
667 return nullptr;
668 return TBAA->getTypeInfo(QTy);
669}
670
671TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
672 if (!TBAA)
673 return TBAAAccessInfo();
674 return TBAA->getAccessInfo(AccessType);
675}
676
677TBAAAccessInfo
678CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
679 if (!TBAA)
680 return TBAAAccessInfo();
681 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
682}
683
684llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
685 if (!TBAA)
686 return nullptr;
687 return TBAA->getTBAAStructInfo(QTy);
688}
689
690llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
691 if (!TBAA)
692 return nullptr;
693 return TBAA->getBaseTypeInfo(QTy);
694}
695
696llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
697 if (!TBAA)
698 return nullptr;
699 return TBAA->getAccessTagInfo(Info);
700}
701
702TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
703 TBAAAccessInfo TargetInfo) {
704 if (!TBAA)
705 return TBAAAccessInfo();
706 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
707}
708
709TBAAAccessInfo
710CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
711 TBAAAccessInfo InfoB) {
712 if (!TBAA)
713 return TBAAAccessInfo();
714 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
715}
716
717TBAAAccessInfo
718CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
719 TBAAAccessInfo SrcInfo) {
720 if (!TBAA)
721 return TBAAAccessInfo();
722 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
723}
724
725void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
726 TBAAAccessInfo TBAAInfo) {
727 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
728 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
729}
730
731void CodeGenModule::DecorateInstructionWithInvariantGroup(
732 llvm::Instruction *I, const CXXRecordDecl *RD) {
733 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
734 llvm::MDNode::get(getLLVMContext(), {}));
735}
736
737void CodeGenModule::Error(SourceLocation loc, StringRef message) {
738 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
739 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
740}
741
742/// ErrorUnsupported - Print out an error that codegen doesn't support the
743/// specified stmt yet.
744void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
745 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
746 "cannot compile this %0 yet");
747 std::string Msg = Type;
748 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
749 << Msg << S->getSourceRange();
750}
751
752/// ErrorUnsupported - Print out an error that codegen doesn't support the
753/// specified decl yet.
754void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
755 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
756 "cannot compile this %0 yet");
757 std::string Msg = Type;
758 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
759}
760
761llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
762 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
763}
764
765void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
766 const NamedDecl *D) const {
767 if (GV->hasDLLImportStorageClass())
768 return;
769 // Internal definitions always have default visibility.
770 if (GV->hasLocalLinkage()) {
771 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
772 return;
773 }
774 if (!D)
775 return;
776 // Set visibility for definitions, and for declarations if requested globally
777 // or set explicitly.
778 LinkageInfo LV = D->getLinkageAndVisibility();
779 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
780 !GV->isDeclarationForLinker())
781 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
782}
783
784static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
785 llvm::GlobalValue *GV) {
786 if (GV->hasLocalLinkage())
787 return true;
788
789 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
790 return true;
791
792 // DLLImport explicitly marks the GV as external.
793 if (GV->hasDLLImportStorageClass())
794 return false;
795
796 const llvm::Triple &TT = CGM.getTriple();
797 if (TT.isWindowsGNUEnvironment()) {
798 // In MinGW, variables without DLLImport can still be automatically
799 // imported from a DLL by the linker; don't mark variables that
800 // potentially could come from another DLL as DSO local.
801 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
802 !GV->isThreadLocal())
803 return false;
804 }
805
806 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
807 // remain unresolved in the link, they can be resolved to zero, which is
808 // outside the current DSO.
809 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
810 return false;
811
812 // Every other GV is local on COFF.
813 // Make an exception for windows OS in the triple: Some firmware builds use
814 // *-win32-macho triples. This (accidentally?) produced windows relocations
815 // without GOT tables in older clang versions; Keep this behaviour.
816 // FIXME: even thread local variables?
817 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
818 return true;
819
820 // Only handle COFF and ELF for now.
821 if (!TT.isOSBinFormatELF())
822 return false;
823
824 // If this is not an executable, don't assume anything is local.
825 const auto &CGOpts = CGM.getCodeGenOpts();
826 llvm::Reloc::Model RM = CGOpts.RelocationModel;
827 const auto &LOpts = CGM.getLangOpts();
828 if (RM != llvm::Reloc::Static && !LOpts.PIE)
829 return false;
830
831 // A definition cannot be preempted from an executable.
832 if (!GV->isDeclarationForLinker())
833 return true;
834
835 // Most PIC code sequences that assume that a symbol is local cannot produce a
836 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
837 // depended, it seems worth it to handle it here.
838 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
839 return false;
840
841 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
842 llvm::Triple::ArchType Arch = TT.getArch();
843 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
844 Arch == llvm::Triple::ppc64le)
845 return false;
846
847 // If we can use copy relocations we can assume it is local.
848 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
849 if (!Var->isThreadLocal() &&
850 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
851 return true;
852
853 // If we can use a plt entry as the symbol address we can assume it
854 // is local.
855 // FIXME: This should work for PIE, but the gold linker doesn't support it.
856 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
857 return true;
858
859 // Otherwise don't assue it is local.
860 return false;
861}
862
863void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
864 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
865}
866
867void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
868 GlobalDecl GD) const {
869 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
870 // C++ destructors have a few C++ ABI specific special cases.
871 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
872 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
873 return;
874 }
875 setDLLImportDLLExport(GV, D);
876}
877
878void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
879 const NamedDecl *D) const {
880 if (D && D->isExternallyVisible()) {
881 if (D->hasAttr<DLLImportAttr>())
882 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
883 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
884 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
885 }
886}
887
888void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
889 GlobalDecl GD) const {
890 setDLLImportDLLExport(GV, GD);
891 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
892}
893
894void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
895 const NamedDecl *D) const {
896 setDLLImportDLLExport(GV, D);
897 setGVPropertiesAux(GV, D);
898}
899
900void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
901 const NamedDecl *D) const {
902 setGlobalVisibility(GV, D);
903 setDSOLocal(GV);
904 GV->setPartition(CodeGenOpts.SymbolPartition);
905}
906
907static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
908 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
909 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
910 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
911 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
912 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
913}
914
915static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
916 CodeGenOptions::TLSModel M) {
917 switch (M) {
918 case CodeGenOptions::GeneralDynamicTLSModel:
919 return llvm::GlobalVariable::GeneralDynamicTLSModel;
920 case CodeGenOptions::LocalDynamicTLSModel:
921 return llvm::GlobalVariable::LocalDynamicTLSModel;
922 case CodeGenOptions::InitialExecTLSModel:
923 return llvm::GlobalVariable::InitialExecTLSModel;
924 case CodeGenOptions::LocalExecTLSModel:
925 return llvm::GlobalVariable::LocalExecTLSModel;
926 }
927 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 927)
;
928}
929
930void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
931 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")((D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? static_cast<void> (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 931, __PRETTY_FUNCTION__))
;
932
933 llvm::GlobalValue::ThreadLocalMode TLM;
934 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
935
936 // Override the TLS model if it is explicitly specified.
937 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
938 TLM = GetLLVMTLSModel(Attr->getModel());
939 }
940
941 GV->setThreadLocalMode(TLM);
942}
943
944static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
945 StringRef Name) {
946 const TargetInfo &Target = CGM.getTarget();
947 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
948}
949
950static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
951 const CPUSpecificAttr *Attr,
952 unsigned CPUIndex,
953 raw_ostream &Out) {
954 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
955 // supported.
956 if (Attr)
957 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
958 else if (CGM.getTarget().supportsIFunc())
959 Out << ".resolver";
960}
961
962static void AppendTargetMangling(const CodeGenModule &CGM,
963 const TargetAttr *Attr, raw_ostream &Out) {
964 if (Attr->isDefaultVersion())
965 return;
966
967 Out << '.';
968 const TargetInfo &Target = CGM.getTarget();
969 ParsedTargetAttr Info =
970 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
971 // Multiversioning doesn't allow "no-${feature}", so we can
972 // only have "+" prefixes here.
973 assert(LHS.startswith("+") && RHS.startswith("+") &&((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 974, __PRETTY_FUNCTION__))
974 "Features should always have a prefix.")((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 974, __PRETTY_FUNCTION__))
;
975 return Target.multiVersionSortPriority(LHS.substr(1)) >
976 Target.multiVersionSortPriority(RHS.substr(1));
977 });
978
979 bool IsFirst = true;
980
981 if (!Info.Architecture.empty()) {
982 IsFirst = false;
983 Out << "arch_" << Info.Architecture;
984 }
985
986 for (StringRef Feat : Info.Features) {
987 if (!IsFirst)
988 Out << '_';
989 IsFirst = false;
990 Out << Feat.substr(1);
991 }
992}
993
994static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
995 const NamedDecl *ND,
996 bool OmitMultiVersionMangling = false) {
997 SmallString<256> Buffer;
998 llvm::raw_svector_ostream Out(Buffer);
999 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1000 if (MC.shouldMangleDeclName(ND)) {
1001 llvm::raw_svector_ostream Out(Buffer);
1002 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1003 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1004 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1005 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1006 else
1007 MC.mangleName(ND, Out);
1008 } else {
1009 IdentifierInfo *II = ND->getIdentifier();
1010 assert(II && "Attempt to mangle unnamed decl.")((II && "Attempt to mangle unnamed decl.") ? static_cast
<void> (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1010, __PRETTY_FUNCTION__))
;
1011 const auto *FD = dyn_cast<FunctionDecl>(ND);
1012
1013 if (FD &&
1014 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1015 llvm::raw_svector_ostream Out(Buffer);
1016 Out << "__regcall3__" << II->getName();
1017 } else {
1018 Out << II->getName();
1019 }
1020 }
1021
1022 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1023 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1024 switch (FD->getMultiVersionKind()) {
1025 case MultiVersionKind::CPUDispatch:
1026 case MultiVersionKind::CPUSpecific:
1027 AppendCPUSpecificCPUDispatchMangling(CGM,
1028 FD->getAttr<CPUSpecificAttr>(),
1029 GD.getMultiVersionIndex(), Out);
1030 break;
1031 case MultiVersionKind::Target:
1032 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1033 break;
1034 case MultiVersionKind::None:
1035 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1035)
;
1036 }
1037 }
1038
1039 return Out.str();
1040}
1041
1042void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1043 const FunctionDecl *FD) {
1044 if (!FD->isMultiVersion())
1045 return;
1046
1047 // Get the name of what this would be without the 'target' attribute. This
1048 // allows us to lookup the version that was emitted when this wasn't a
1049 // multiversion function.
1050 std::string NonTargetName =
1051 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1052 GlobalDecl OtherGD;
1053 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1054 assert(OtherGD.getCanonicalDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1055 .getDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1056 ->getAsFunction()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1057 ->isMultiVersion() &&((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1058 "Other GD should now be a multiversioned function")((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
;
1059 // OtherFD is the version of this function that was mangled BEFORE
1060 // becoming a MultiVersion function. It potentially needs to be updated.
1061 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1062 .getDecl()
1063 ->getAsFunction()
1064 ->getMostRecentDecl();
1065 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1066 // This is so that if the initial version was already the 'default'
1067 // version, we don't try to update it.
1068 if (OtherName != NonTargetName) {
1069 // Remove instead of erase, since others may have stored the StringRef
1070 // to this.
1071 const auto ExistingRecord = Manglings.find(NonTargetName);
1072 if (ExistingRecord != std::end(Manglings))
1073 Manglings.remove(&(*ExistingRecord));
1074 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1075 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1076 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1077 Entry->setName(OtherName);
1078 }
1079 }
1080}
1081
1082StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1083 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1084
1085 // Some ABIs don't have constructor variants. Make sure that base and
1086 // complete constructors get mangled the same.
1087 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1088 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1089 CXXCtorType OrigCtorType = GD.getCtorType();
1090 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)((OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)
? static_cast<void> (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1090, __PRETTY_FUNCTION__))
;
1091 if (OrigCtorType == Ctor_Base)
1092 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1093 }
1094 }
1095
1096 auto FoundName = MangledDeclNames.find(CanonicalGD);
1097 if (FoundName != MangledDeclNames.end())
1098 return FoundName->second;
1099
1100 // Keep the first result in the case of a mangling collision.
1101 const auto *ND = cast<NamedDecl>(GD.getDecl());
1102 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1103
1104 // Adjust kernel stub mangling as we may need to be able to differentiate
1105 // them from the kernel itself (e.g., for HIP).
1106 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1107 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1108 MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1109
1110 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1111 return MangledDeclNames[CanonicalGD] = Result.first->first();
1112}
1113
1114StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1115 const BlockDecl *BD) {
1116 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1117 const Decl *D = GD.getDecl();
1118
1119 SmallString<256> Buffer;
1120 llvm::raw_svector_ostream Out(Buffer);
1121 if (!D)
1122 MangleCtx.mangleGlobalBlock(BD,
1123 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1124 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1125 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1126 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1127 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1128 else
1129 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1130
1131 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1132 return Result.first->first();
1133}
1134
1135llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1136 return getModule().getNamedValue(Name);
1137}
1138
1139/// AddGlobalCtor - Add a function to the list that will be called before
1140/// main() runs.
1141void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1142 llvm::Constant *AssociatedData) {
1143 // FIXME: Type coercion of void()* types.
1144 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1145}
1146
1147/// AddGlobalDtor - Add a function to the list that will be called
1148/// when the module is unloaded.
1149void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1150 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1151 DtorsUsingAtExit[Priority].push_back(Dtor);
1152 return;
1153 }
1154
1155 // FIXME: Type coercion of void()* types.
1156 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1157}
1158
1159void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1160 if (Fns.empty()) return;
1161
1162 // Ctor function type is void()*.
1163 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1164 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1165 TheModule.getDataLayout().getProgramAddressSpace());
1166
1167 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1168 llvm::StructType *CtorStructTy = llvm::StructType::get(
1169 Int32Ty, CtorPFTy, VoidPtrTy);
1170
1171 // Construct the constructor and destructor arrays.
1172 ConstantInitBuilder builder(*this);
1173 auto ctors = builder.beginArray(CtorStructTy);
1174 for (const auto &I : Fns) {
1175 auto ctor = ctors.beginStruct(CtorStructTy);
1176 ctor.addInt(Int32Ty, I.Priority);
1177 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1178 if (I.AssociatedData)
1179 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1180 else
1181 ctor.addNullPointer(VoidPtrTy);
1182 ctor.finishAndAddTo(ctors);
1183 }
1184
1185 auto list =
1186 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1187 /*constant*/ false,
1188 llvm::GlobalValue::AppendingLinkage);
1189
1190 // The LTO linker doesn't seem to like it when we set an alignment
1191 // on appending variables. Take it off as a workaround.
1192 list->setAlignment(llvm::None);
1193
1194 Fns.clear();
1195}
1196
1197llvm::GlobalValue::LinkageTypes
1198CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1199 const auto *D = cast<FunctionDecl>(GD.getDecl());
1200
1201 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1202
1203 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1204 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1205
1206 if (isa<CXXConstructorDecl>(D) &&
1207 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1208 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1209 // Our approach to inheriting constructors is fundamentally different from
1210 // that used by the MS ABI, so keep our inheriting constructor thunks
1211 // internal rather than trying to pick an unambiguous mangling for them.
1212 return llvm::GlobalValue::InternalLinkage;
1213 }
1214
1215 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1216}
1217
1218llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1219 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1220 if (!MDS) return nullptr;
1221
1222 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1223}
1224
1225void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1226 const CGFunctionInfo &Info,
1227 llvm::Function *F) {
1228 unsigned CallingConv;
1229 llvm::AttributeList PAL;
1230 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1231 F->setAttributes(PAL);
1232 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1233}
1234
1235static void removeImageAccessQualifier(std::string& TyName) {
1236 std::string ReadOnlyQual("__read_only");
1237 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1238 if (ReadOnlyPos != std::string::npos)
1239 // "+ 1" for the space after access qualifier.
1240 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1241 else {
1242 std::string WriteOnlyQual("__write_only");
1243 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1244 if (WriteOnlyPos != std::string::npos)
1245 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1246 else {
1247 std::string ReadWriteQual("__read_write");
1248 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1249 if (ReadWritePos != std::string::npos)
1250 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1251 }
1252 }
1253}
1254
1255// Returns the address space id that should be produced to the
1256// kernel_arg_addr_space metadata. This is always fixed to the ids
1257// as specified in the SPIR 2.0 specification in order to differentiate
1258// for example in clGetKernelArgInfo() implementation between the address
1259// spaces with targets without unique mapping to the OpenCL address spaces
1260// (basically all single AS CPUs).
1261static unsigned ArgInfoAddressSpace(LangAS AS) {
1262 switch (AS) {
1263 case LangAS::opencl_global: return 1;
1264 case LangAS::opencl_constant: return 2;
1265 case LangAS::opencl_local: return 3;
1266 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs.
1267 default:
1268 return 0; // Assume private.
1269 }
1270}
1271
1272void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1273 const FunctionDecl *FD,
1274 CodeGenFunction *CGF) {
1275 assert(((FD && CGF) || (!FD && !CGF)) &&((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1276, __PRETTY_FUNCTION__))
1
Assuming 'FD' is non-null
2
Assuming 'CGF' is non-null
3
'?' condition is true
1276 "Incorrect use - FD and CGF should either be both null or not!")((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1276, __PRETTY_FUNCTION__))
;
1277 // Create MDNodes that represent the kernel arg metadata.
1278 // Each MDNode is a list in the form of "key", N number of values which is
1279 // the same number of values as their are kernel arguments.
1280
1281 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1282
1283 // MDNode for the kernel argument address space qualifiers.
1284 SmallVector<llvm::Metadata *, 8> addressQuals;
1285
1286 // MDNode for the kernel argument access qualifiers (images only).
1287 SmallVector<llvm::Metadata *, 8> accessQuals;
1288
1289 // MDNode for the kernel argument type names.
1290 SmallVector<llvm::Metadata *, 8> argTypeNames;
1291
1292 // MDNode for the kernel argument base type names.
1293 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1294
1295 // MDNode for the kernel argument type qualifiers.
1296 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1297
1298 // MDNode for the kernel argument names.
1299 SmallVector<llvm::Metadata *, 8> argNames;
1300
1301 if (FD
3.1
'FD' is non-null
3.1
'FD' is non-null
&& CGF
3.2
'CGF' is non-null
3.2
'CGF' is non-null
)
4
Taking true branch
1302 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
5
Assuming 'i' is not equal to 'e'
6
Loop condition is true. Entering loop body
1303 const ParmVarDecl *parm = FD->getParamDecl(i);
1304 QualType ty = parm->getType();
1305 std::string typeQuals;
1306
1307 if (ty->isPointerType()) {
7
Calling 'Type::isPointerType'
10
Returning from 'Type::isPointerType'
11
Taking false branch
1308 QualType pointeeTy = ty->getPointeeType();
1309
1310 // Get address qualifier.
1311 addressQuals.push_back(
1312 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1313 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1314
1315 // Get argument type name.
1316 std::string typeName =
1317 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1318
1319 // Turn "unsigned type" to "utype"
1320 std::string::size_type pos = typeName.find("unsigned");
1321 if (pointeeTy.isCanonical() && pos != std::string::npos)
1322 typeName.erase(pos + 1, 8);
1323
1324 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1325
1326 std::string baseTypeName =
1327 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1328 Policy) +
1329 "*";
1330
1331 // Turn "unsigned type" to "utype"
1332 pos = baseTypeName.find("unsigned");
1333 if (pos != std::string::npos)
1334 baseTypeName.erase(pos + 1, 8);
1335
1336 argBaseTypeNames.push_back(
1337 llvm::MDString::get(VMContext, baseTypeName));
1338
1339 // Get argument type qualifiers:
1340 if (ty.isRestrictQualified())
1341 typeQuals = "restrict";
1342 if (pointeeTy.isConstQualified() ||
1343 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1344 typeQuals += typeQuals.empty() ? "const" : " const";
1345 if (pointeeTy.isVolatileQualified())
1346 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1347 } else {
1348 uint32_t AddrSpc = 0;
1349 bool isPipe = ty->isPipeType();
12
Calling 'Type::isPipeType'
15
Returning from 'Type::isPipeType'
1350 if (ty->isImageType() || isPipe)
1351 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1352
1353 addressQuals.push_back(
1354 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1355
1356 // Get argument type name.
1357 std::string typeName;
1358 if (isPipe
15.1
'isPipe' is true
15.1
'isPipe' is true
)
16
Taking true branch
1359 typeName = ty.getCanonicalType()
17
Assuming the object is not a 'PipeType'
18
Called C++ object pointer is null
1360 ->getAs<PipeType>()
1361 ->getElementType()
1362 .getAsString(Policy);
1363 else
1364 typeName = ty.getUnqualifiedType().getAsString(Policy);
1365
1366 // Turn "unsigned type" to "utype"
1367 std::string::size_type pos = typeName.find("unsigned");
1368 if (ty.isCanonical() && pos != std::string::npos)
1369 typeName.erase(pos + 1, 8);
1370
1371 std::string baseTypeName;
1372 if (isPipe)
1373 baseTypeName = ty.getCanonicalType()
1374 ->getAs<PipeType>()
1375 ->getElementType()
1376 .getCanonicalType()
1377 .getAsString(Policy);
1378 else
1379 baseTypeName =
1380 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1381
1382 // Remove access qualifiers on images
1383 // (as they are inseparable from type in clang implementation,
1384 // but OpenCL spec provides a special query to get access qualifier
1385 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1386 if (ty->isImageType()) {
1387 removeImageAccessQualifier(typeName);
1388 removeImageAccessQualifier(baseTypeName);
1389 }
1390
1391 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1392
1393 // Turn "unsigned type" to "utype"
1394 pos = baseTypeName.find("unsigned");
1395 if (pos != std::string::npos)
1396 baseTypeName.erase(pos + 1, 8);
1397
1398 argBaseTypeNames.push_back(
1399 llvm::MDString::get(VMContext, baseTypeName));
1400
1401 if (isPipe)
1402 typeQuals = "pipe";
1403 }
1404
1405 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1406
1407 // Get image and pipe access qualifier:
1408 if (ty->isImageType() || ty->isPipeType()) {
1409 const Decl *PDecl = parm;
1410 if (auto *TD = dyn_cast<TypedefType>(ty))
1411 PDecl = TD->getDecl();
1412 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1413 if (A && A->isWriteOnly())
1414 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1415 else if (A && A->isReadWrite())
1416 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1417 else
1418 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1419 } else
1420 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1421
1422 // Get argument name.
1423 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1424 }
1425
1426 Fn->setMetadata("kernel_arg_addr_space",
1427 llvm::MDNode::get(VMContext, addressQuals));
1428 Fn->setMetadata("kernel_arg_access_qual",
1429 llvm::MDNode::get(VMContext, accessQuals));
1430 Fn->setMetadata("kernel_arg_type",
1431 llvm::MDNode::get(VMContext, argTypeNames));
1432 Fn->setMetadata("kernel_arg_base_type",
1433 llvm::MDNode::get(VMContext, argBaseTypeNames));
1434 Fn->setMetadata("kernel_arg_type_qual",
1435 llvm::MDNode::get(VMContext, argTypeQuals));
1436 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1437 Fn->setMetadata("kernel_arg_name",
1438 llvm::MDNode::get(VMContext, argNames));
1439}
1440
1441/// Determines whether the language options require us to model
1442/// unwind exceptions. We treat -fexceptions as mandating this
1443/// except under the fragile ObjC ABI with only ObjC exceptions
1444/// enabled. This means, for example, that C with -fexceptions
1445/// enables this.
1446static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1447 // If exceptions are completely disabled, obviously this is false.
1448 if (!LangOpts.Exceptions) return false;
1449
1450 // If C++ exceptions are enabled, this is true.
1451 if (LangOpts.CXXExceptions) return true;
1452
1453 // If ObjC exceptions are enabled, this depends on the ABI.
1454 if (LangOpts.ObjCExceptions) {
1455 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1456 }
1457
1458 return true;
1459}
1460
1461static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1462 const CXXMethodDecl *MD) {
1463 // Check that the type metadata can ever actually be used by a call.
1464 if (!CGM.getCodeGenOpts().LTOUnit ||
1465 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1466 return false;
1467
1468 // Only functions whose address can be taken with a member function pointer
1469 // need this sort of type metadata.
1470 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1471 !isa<CXXDestructorDecl>(MD);
1472}
1473
1474std::vector<const CXXRecordDecl *>
1475CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1476 llvm::SetVector<const CXXRecordDecl *> MostBases;
1477
1478 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1479 CollectMostBases = [&](const CXXRecordDecl *RD) {
1480 if (RD->getNumBases() == 0)
1481 MostBases.insert(RD);
1482 for (const CXXBaseSpecifier &B : RD->bases())
1483 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1484 };
1485 CollectMostBases(RD);
1486 return MostBases.takeVector();
1487}
1488
1489void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1490 llvm::Function *F) {
1491 llvm::AttrBuilder B;
1492
1493 if (CodeGenOpts.UnwindTables)
1494 B.addAttribute(llvm::Attribute::UWTable);
1495
1496 if (!hasUnwindExceptions(LangOpts))
1497 B.addAttribute(llvm::Attribute::NoUnwind);
1498
1499 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1500 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1501 B.addAttribute(llvm::Attribute::StackProtect);
1502 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1503 B.addAttribute(llvm::Attribute::StackProtectStrong);
1504 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1505 B.addAttribute(llvm::Attribute::StackProtectReq);
1506 }
1507
1508 if (!D) {
1509 // If we don't have a declaration to control inlining, the function isn't
1510 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1511 // disabled, mark the function as noinline.
1512 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1513 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1514 B.addAttribute(llvm::Attribute::NoInline);
1515
1516 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1517 return;
1518 }
1519
1520 // Track whether we need to add the optnone LLVM attribute,
1521 // starting with the default for this optimization level.
1522 bool ShouldAddOptNone =
1523 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1524 // We can't add optnone in the following cases, it won't pass the verifier.
1525 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1526 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1527
1528 // Add optnone, but do so only if the function isn't always_inline.
1529 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1530 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1531 B.addAttribute(llvm::Attribute::OptimizeNone);
1532
1533 // OptimizeNone implies noinline; we should not be inlining such functions.
1534 B.addAttribute(llvm::Attribute::NoInline);
1535
1536 // We still need to handle naked functions even though optnone subsumes
1537 // much of their semantics.
1538 if (D->hasAttr<NakedAttr>())
1539 B.addAttribute(llvm::Attribute::Naked);
1540
1541 // OptimizeNone wins over OptimizeForSize and MinSize.
1542 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1543 F->removeFnAttr(llvm::Attribute::MinSize);
1544 } else if (D->hasAttr<NakedAttr>()) {
1545 // Naked implies noinline: we should not be inlining such functions.
1546 B.addAttribute(llvm::Attribute::Naked);
1547 B.addAttribute(llvm::Attribute::NoInline);
1548 } else if (D->hasAttr<NoDuplicateAttr>()) {
1549 B.addAttribute(llvm::Attribute::NoDuplicate);
1550 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1551 // Add noinline if the function isn't always_inline.
1552 B.addAttribute(llvm::Attribute::NoInline);
1553 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1554 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1555 // (noinline wins over always_inline, and we can't specify both in IR)
1556 B.addAttribute(llvm::Attribute::AlwaysInline);
1557 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1558 // If we're not inlining, then force everything that isn't always_inline to
1559 // carry an explicit noinline attribute.
1560 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1561 B.addAttribute(llvm::Attribute::NoInline);
1562 } else {
1563 // Otherwise, propagate the inline hint attribute and potentially use its
1564 // absence to mark things as noinline.
1565 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1566 // Search function and template pattern redeclarations for inline.
1567 auto CheckForInline = [](const FunctionDecl *FD) {
1568 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1569 return Redecl->isInlineSpecified();
1570 };
1571 if (any_of(FD->redecls(), CheckRedeclForInline))
1572 return true;
1573 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1574 if (!Pattern)
1575 return false;
1576 return any_of(Pattern->redecls(), CheckRedeclForInline);
1577 };
1578 if (CheckForInline(FD)) {
1579 B.addAttribute(llvm::Attribute::InlineHint);
1580 } else if (CodeGenOpts.getInlining() ==
1581 CodeGenOptions::OnlyHintInlining &&
1582 !FD->isInlined() &&
1583 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1584 B.addAttribute(llvm::Attribute::NoInline);
1585 }
1586 }
1587 }
1588
1589 // Add other optimization related attributes if we are optimizing this
1590 // function.
1591 if (!D->hasAttr<OptimizeNoneAttr>()) {
1592 if (D->hasAttr<ColdAttr>()) {
1593 if (!ShouldAddOptNone)
1594 B.addAttribute(llvm::Attribute::OptimizeForSize);
1595 B.addAttribute(llvm::Attribute::Cold);
1596 }
1597
1598 if (D->hasAttr<MinSizeAttr>())
1599 B.addAttribute(llvm::Attribute::MinSize);
1600 }
1601
1602 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1603
1604 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1605 if (alignment)
1606 F->setAlignment(llvm::Align(alignment));
1607
1608 if (!D->hasAttr<AlignedAttr>())
1609 if (LangOpts.FunctionAlignment)
1610 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1611
1612 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1613 // reserve a bit for differentiating between virtual and non-virtual member
1614 // functions. If the current target's C++ ABI requires this and this is a
1615 // member function, set its alignment accordingly.
1616 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1617 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1618 F->setAlignment(llvm::Align(2));
1619 }
1620
1621 // In the cross-dso CFI mode with canonical jump tables, we want !type
1622 // attributes on definitions only.
1623 if (CodeGenOpts.SanitizeCfiCrossDso &&
1624 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1625 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1626 // Skip available_externally functions. They won't be codegen'ed in the
1627 // current module anyway.
1628 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1629 CreateFunctionTypeMetadataForIcall(FD, F);
1630 }
1631 }
1632
1633 // Emit type metadata on member functions for member function pointer checks.
1634 // These are only ever necessary on definitions; we're guaranteed that the
1635 // definition will be present in the LTO unit as a result of LTO visibility.
1636 auto *MD = dyn_cast<CXXMethodDecl>(D);
1637 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1638 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1639 llvm::Metadata *Id =
1640 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1641 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1642 F->addTypeMetadata(0, Id);
1643 }
1644 }
1645}
1646
1647void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1648 const Decl *D = GD.getDecl();
1649 if (dyn_cast_or_null<NamedDecl>(D))
1650 setGVProperties(GV, GD);
1651 else
1652 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1653
1654 if (D && D->hasAttr<UsedAttr>())
1655 addUsedGlobal(GV);
1656
1657 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1658 const auto *VD = cast<VarDecl>(D);
1659 if (VD->getType().isConstQualified() &&
1660 VD->getStorageDuration() == SD_Static)
1661 addUsedGlobal(GV);
1662 }
1663}
1664
1665bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1666 llvm::AttrBuilder &Attrs) {
1667 // Add target-cpu and target-features attributes to functions. If
1668 // we have a decl for the function and it has a target attribute then
1669 // parse that and add it to the feature set.
1670 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1671 std::vector<std::string> Features;
1672 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1673 FD = FD ? FD->getMostRecentDecl() : FD;
1674 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1675 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1676 bool AddedAttr = false;
1677 if (TD || SD) {
1678 llvm::StringMap<bool> FeatureMap;
1679 getContext().getFunctionFeatureMap(FeatureMap, GD);
1680
1681 // Produce the canonical string for this set of features.
1682 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1683 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1684
1685 // Now add the target-cpu and target-features to the function.
1686 // While we populated the feature map above, we still need to
1687 // get and parse the target attribute so we can get the cpu for
1688 // the function.
1689 if (TD) {
1690 ParsedTargetAttr ParsedAttr = TD->parse();
1691 if (ParsedAttr.Architecture != "" &&
1692 getTarget().isValidCPUName(ParsedAttr.Architecture))
1693 TargetCPU = ParsedAttr.Architecture;
1694 }
1695 } else {
1696 // Otherwise just add the existing target cpu and target features to the
1697 // function.
1698 Features = getTarget().getTargetOpts().Features;
1699 }
1700
1701 if (TargetCPU != "") {
1702 Attrs.addAttribute("target-cpu", TargetCPU);
1703 AddedAttr = true;
1704 }
1705 if (!Features.empty()) {
1706 llvm::sort(Features);
1707 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1708 AddedAttr = true;
1709 }
1710
1711 return AddedAttr;
1712}
1713
1714void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1715 llvm::GlobalObject *GO) {
1716 const Decl *D = GD.getDecl();
1717 SetCommonAttributes(GD, GO);
1718
1719 if (D) {
1720 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1721 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1722 GV->addAttribute("bss-section", SA->getName());
1723 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1724 GV->addAttribute("data-section", SA->getName());
1725 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1726 GV->addAttribute("rodata-section", SA->getName());
1727 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1728 GV->addAttribute("relro-section", SA->getName());
1729 }
1730
1731 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1732 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1733 if (!D->getAttr<SectionAttr>())
1734 F->addFnAttr("implicit-section-name", SA->getName());
1735
1736 llvm::AttrBuilder Attrs;
1737 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1738 // We know that GetCPUAndFeaturesAttributes will always have the
1739 // newest set, since it has the newest possible FunctionDecl, so the
1740 // new ones should replace the old.
1741 F->removeFnAttr("target-cpu");
1742 F->removeFnAttr("target-features");
1743 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1744 }
1745 }
1746
1747 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1748 GO->setSection(CSA->getName());
1749 else if (const auto *SA = D->getAttr<SectionAttr>())
1750 GO->setSection(SA->getName());
1751 }
1752
1753 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1754}
1755
1756void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1757 llvm::Function *F,
1758 const CGFunctionInfo &FI) {
1759 const Decl *D = GD.getDecl();
1760 SetLLVMFunctionAttributes(GD, FI, F);
1761 SetLLVMFunctionAttributesForDefinition(D, F);
1762
1763 F->setLinkage(llvm::Function::InternalLinkage);
1764
1765 setNonAliasAttributes(GD, F);
1766}
1767
1768static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1769 // Set linkage and visibility in case we never see a definition.
1770 LinkageInfo LV = ND->getLinkageAndVisibility();
1771 // Don't set internal linkage on declarations.
1772 // "extern_weak" is overloaded in LLVM; we probably should have
1773 // separate linkage types for this.
1774 if (isExternallyVisible(LV.getLinkage()) &&
1775 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1776 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1777}
1778
1779void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1780 llvm::Function *F) {
1781 // Only if we are checking indirect calls.
1782 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1783 return;
1784
1785 // Non-static class methods are handled via vtable or member function pointer
1786 // checks elsewhere.
1787 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1788 return;
1789
1790 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1791 F->addTypeMetadata(0, MD);
1792 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1793
1794 // Emit a hash-based bit set entry for cross-DSO calls.
1795 if (CodeGenOpts.SanitizeCfiCrossDso)
1796 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1797 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1798}
1799
1800void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1801 bool IsIncompleteFunction,
1802 bool IsThunk) {
1803
1804 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1805 // If this is an intrinsic function, set the function's attributes
1806 // to the intrinsic's attributes.
1807 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1808 return;
1809 }
1810
1811 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1812
1813 if (!IsIncompleteFunction)
1814 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1815
1816 // Add the Returned attribute for "this", except for iOS 5 and earlier
1817 // where substantial code, including the libstdc++ dylib, was compiled with
1818 // GCC and does not actually return "this".
1819 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1820 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1821 assert(!F->arg_empty() &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
1822 F->arg_begin()->getType()((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
1823 ->canLosslesslyBitCastTo(F->getReturnType()) &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
1824 "unexpected this return")((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
;
1825 F->addAttribute(1, llvm::Attribute::Returned);
1826 }
1827
1828 // Only a few attributes are set on declarations; these may later be
1829 // overridden by a definition.
1830
1831 setLinkageForGV(F, FD);
1832 setGVProperties(F, FD);
1833
1834 // Setup target-specific attributes.
1835 if (!IsIncompleteFunction && F->isDeclaration())
1836 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1837
1838 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1839 F->setSection(CSA->getName());
1840 else if (const auto *SA = FD->getAttr<SectionAttr>())
1841 F->setSection(SA->getName());
1842
1843 if (FD->isInlineBuiltinDeclaration()) {
1844 F->addAttribute(llvm::AttributeList::FunctionIndex,
1845 llvm::Attribute::NoBuiltin);
1846 }
1847
1848 if (FD->isReplaceableGlobalAllocationFunction()) {
1849 // A replaceable global allocation function does not act like a builtin by
1850 // default, only if it is invoked by a new-expression or delete-expression.
1851 F->addAttribute(llvm::AttributeList::FunctionIndex,
1852 llvm::Attribute::NoBuiltin);
1853
1854 // A sane operator new returns a non-aliasing pointer.
1855 // FIXME: Also add NonNull attribute to the return value
1856 // for the non-nothrow forms?
1857 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1858 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1859 (Kind == OO_New || Kind == OO_Array_New))
1860 F->addAttribute(llvm::AttributeList::ReturnIndex,
1861 llvm::Attribute::NoAlias);
1862 }
1863
1864 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1865 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1866 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1867 if (MD->isVirtual())
1868 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1869
1870 // Don't emit entries for function declarations in the cross-DSO mode. This
1871 // is handled with better precision by the receiving DSO. But if jump tables
1872 // are non-canonical then we need type metadata in order to produce the local
1873 // jump table.
1874 if (!CodeGenOpts.SanitizeCfiCrossDso ||
1875 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1876 CreateFunctionTypeMetadataForIcall(FD, F);
1877
1878 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1879 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1880
1881 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1882 // Annotate the callback behavior as metadata:
1883 // - The callback callee (as argument number).
1884 // - The callback payloads (as argument numbers).
1885 llvm::LLVMContext &Ctx = F->getContext();
1886 llvm::MDBuilder MDB(Ctx);
1887
1888 // The payload indices are all but the first one in the encoding. The first
1889 // identifies the callback callee.
1890 int CalleeIdx = *CB->encoding_begin();
1891 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1892 F->addMetadata(llvm::LLVMContext::MD_callback,
1893 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1894 CalleeIdx, PayloadIndices,
1895 /* VarArgsArePassed */ false)}));
1896 }
1897}
1898
1899void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1900 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1901, __PRETTY_FUNCTION__))
1901 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1901, __PRETTY_FUNCTION__))
;
1902 LLVMUsed.emplace_back(GV);
1903}
1904
1905void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1906 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1907, __PRETTY_FUNCTION__))
1907 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1907, __PRETTY_FUNCTION__))
;
1908 LLVMCompilerUsed.emplace_back(GV);
1909}
1910
1911static void emitUsed(CodeGenModule &CGM, StringRef Name,
1912 std::vector<llvm::WeakTrackingVH> &List) {
1913 // Don't create llvm.used if there is no need.
1914 if (List.empty())
1915 return;
1916
1917 // Convert List to what ConstantArray needs.
1918 SmallVector<llvm::Constant*, 8> UsedArray;
1919 UsedArray.resize(List.size());
1920 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1921 UsedArray[i] =
1922 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1923 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1924 }
1925
1926 if (UsedArray.empty())
1927 return;
1928 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1929
1930 auto *GV = new llvm::GlobalVariable(
1931 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1932 llvm::ConstantArray::get(ATy, UsedArray), Name);
1933
1934 GV->setSection("llvm.metadata");
1935}
1936
1937void CodeGenModule::emitLLVMUsed() {
1938 emitUsed(*this, "llvm.used", LLVMUsed);
1939 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1940}
1941
1942void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1943 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1944 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1945}
1946
1947void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1948 llvm::SmallString<32> Opt;
1949 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1950 if (Opt.empty())
1951 return;
1952 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1953 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1954}
1955
1956void CodeGenModule::AddDependentLib(StringRef Lib) {
1957 auto &C = getLLVMContext();
1958 if (getTarget().getTriple().isOSBinFormatELF()) {
1959 ELFDependentLibraries.push_back(
1960 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1961 return;
1962 }
1963
1964 llvm::SmallString<24> Opt;
1965 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1968}
1969
1970/// Add link options implied by the given module, including modules
1971/// it depends on, using a postorder walk.
1972static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1973 SmallVectorImpl<llvm::MDNode *> &Metadata,
1974 llvm::SmallPtrSet<Module *, 16> &Visited) {
1975 // Import this module's parent.
1976 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1977 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1978 }
1979
1980 // Import this module's dependencies.
1981 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1982 if (Visited.insert(Mod->Imports[I - 1]).second)
1983 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1984 }
1985
1986 // Add linker options to link against the libraries/frameworks
1987 // described by this module.
1988 llvm::LLVMContext &Context = CGM.getLLVMContext();
1989 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1990
1991 // For modules that use export_as for linking, use that module
1992 // name instead.
1993 if (Mod->UseExportAsModuleLinkName)
1994 return;
1995
1996 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1997 // Link against a framework. Frameworks are currently Darwin only, so we
1998 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1999 if (Mod->LinkLibraries[I-1].IsFramework) {
2000 llvm::Metadata *Args[2] = {
2001 llvm::MDString::get(Context, "-framework"),
2002 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2003
2004 Metadata.push_back(llvm::MDNode::get(Context, Args));
2005 continue;
2006 }
2007
2008 // Link against a library.
2009 if (IsELF) {
2010 llvm::Metadata *Args[2] = {
2011 llvm::MDString::get(Context, "lib"),
2012 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2013 };
2014 Metadata.push_back(llvm::MDNode::get(Context, Args));
2015 } else {
2016 llvm::SmallString<24> Opt;
2017 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2018 Mod->LinkLibraries[I - 1].Library, Opt);
2019 auto *OptString = llvm::MDString::get(Context, Opt);
2020 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2021 }
2022 }
2023}
2024
2025void CodeGenModule::EmitModuleLinkOptions() {
2026 // Collect the set of all of the modules we want to visit to emit link
2027 // options, which is essentially the imported modules and all of their
2028 // non-explicit child modules.
2029 llvm::SetVector<clang::Module *> LinkModules;
2030 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2031 SmallVector<clang::Module *, 16> Stack;
2032
2033 // Seed the stack with imported modules.
2034 for (Module *M : ImportedModules) {
2035 // Do not add any link flags when an implementation TU of a module imports
2036 // a header of that same module.
2037 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2038 !getLangOpts().isCompilingModule())
2039 continue;
2040 if (Visited.insert(M).second)
2041 Stack.push_back(M);
2042 }
2043
2044 // Find all of the modules to import, making a little effort to prune
2045 // non-leaf modules.
2046 while (!Stack.empty()) {
2047 clang::Module *Mod = Stack.pop_back_val();
2048
2049 bool AnyChildren = false;
2050
2051 // Visit the submodules of this module.
2052 for (const auto &SM : Mod->submodules()) {
2053 // Skip explicit children; they need to be explicitly imported to be
2054 // linked against.
2055 if (SM->IsExplicit)
2056 continue;
2057
2058 if (Visited.insert(SM).second) {
2059 Stack.push_back(SM);
2060 AnyChildren = true;
2061 }
2062 }
2063
2064 // We didn't find any children, so add this module to the list of
2065 // modules to link against.
2066 if (!AnyChildren) {
2067 LinkModules.insert(Mod);
2068 }
2069 }
2070
2071 // Add link options for all of the imported modules in reverse topological
2072 // order. We don't do anything to try to order import link flags with respect
2073 // to linker options inserted by things like #pragma comment().
2074 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2075 Visited.clear();
2076 for (Module *M : LinkModules)
2077 if (Visited.insert(M).second)
2078 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2079 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2080 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2081
2082 // Add the linker options metadata flag.
2083 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2084 for (auto *MD : LinkerOptionsMetadata)
2085 NMD->addOperand(MD);
2086}
2087
2088void CodeGenModule::EmitDeferred() {
2089 // Emit deferred declare target declarations.
2090 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2091 getOpenMPRuntime().emitDeferredTargetDecls();
2092
2093 // Emit code for any potentially referenced deferred decls. Since a
2094 // previously unused static decl may become used during the generation of code
2095 // for a static function, iterate until no changes are made.
2096
2097 if (!DeferredVTables.empty()) {
2098 EmitDeferredVTables();
2099
2100 // Emitting a vtable doesn't directly cause more vtables to
2101 // become deferred, although it can cause functions to be
2102 // emitted that then need those vtables.
2103 assert(DeferredVTables.empty())((DeferredVTables.empty()) ? static_cast<void> (0) : __assert_fail
("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2103, __PRETTY_FUNCTION__))
;
2104 }
2105
2106 // Stop if we're out of both deferred vtables and deferred declarations.
2107 if (DeferredDeclsToEmit.empty())
2108 return;
2109
2110 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2111 // work, it will not interfere with this.
2112 std::vector<GlobalDecl> CurDeclsToEmit;
2113 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2114
2115 for (GlobalDecl &D : CurDeclsToEmit) {
2116 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2117 // to get GlobalValue with exactly the type we need, not something that
2118 // might had been created for another decl with the same mangled name but
2119 // different type.
2120 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2121 GetAddrOfGlobal(D, ForDefinition));
2122
2123 // In case of different address spaces, we may still get a cast, even with
2124 // IsForDefinition equal to true. Query mangled names table to get
2125 // GlobalValue.
2126 if (!GV)
2127 GV = GetGlobalValue(getMangledName(D));
2128
2129 // Make sure GetGlobalValue returned non-null.
2130 assert(GV)((GV) ? static_cast<void> (0) : __assert_fail ("GV", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2130, __PRETTY_FUNCTION__))
;
2131
2132 // Check to see if we've already emitted this. This is necessary
2133 // for a couple of reasons: first, decls can end up in the
2134 // deferred-decls queue multiple times, and second, decls can end
2135 // up with definitions in unusual ways (e.g. by an extern inline
2136 // function acquiring a strong function redefinition). Just
2137 // ignore these cases.
2138 if (!GV->isDeclaration())
2139 continue;
2140
2141 // If this is OpenMP, check if it is legal to emit this global normally.
2142 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2143 continue;
2144
2145 // Otherwise, emit the definition and move on to the next one.
2146 EmitGlobalDefinition(D, GV);
2147
2148 // If we found out that we need to emit more decls, do that recursively.
2149 // This has the advantage that the decls are emitted in a DFS and related
2150 // ones are close together, which is convenient for testing.
2151 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2152 EmitDeferred();
2153 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())((DeferredVTables.empty() && DeferredDeclsToEmit.empty
()) ? static_cast<void> (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2153, __PRETTY_FUNCTION__))
;
2154 }
2155 }
2156}
2157
2158void CodeGenModule::EmitVTablesOpportunistically() {
2159 // Try to emit external vtables as available_externally if they have emitted
2160 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2161 // is not allowed to create new references to things that need to be emitted
2162 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2163
2164 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2165, __PRETTY_FUNCTION__))
2165 && "Only emit opportunistic vtables with optimizations")(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2165, __PRETTY_FUNCTION__))
;
2166
2167 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2168 assert(getVTables().isVTableExternal(RD) &&((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2169, __PRETTY_FUNCTION__))
2169 "This queue should only contain external vtables")((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2169, __PRETTY_FUNCTION__))
;
2170 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2171 VTables.GenerateClassData(RD);
2172 }
2173 OpportunisticVTables.clear();
2174}
2175
2176void CodeGenModule::EmitGlobalAnnotations() {
2177 if (Annotations.empty())
2178 return;
2179
2180 // Create a new global variable for the ConstantStruct in the Module.
2181 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2182 Annotations[0]->getType(), Annotations.size()), Annotations);
2183 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2184 llvm::GlobalValue::AppendingLinkage,
2185 Array, "llvm.global.annotations");
2186 gv->setSection(AnnotationSection);
2187}
2188
2189llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2190 llvm::Constant *&AStr = AnnotationStrings[Str];
2191 if (AStr)
2192 return AStr;
2193
2194 // Not found yet, create a new global.
2195 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2196 auto *gv =
2197 new llvm::GlobalVariable(getModule(), s->getType(), true,
2198 llvm::GlobalValue::PrivateLinkage, s, ".str");
2199 gv->setSection(AnnotationSection);
2200 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2201 AStr = gv;
2202 return gv;
2203}
2204
2205llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2206 SourceManager &SM = getContext().getSourceManager();
2207 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2208 if (PLoc.isValid())
2209 return EmitAnnotationString(PLoc.getFilename());
2210 return EmitAnnotationString(SM.getBufferName(Loc));
2211}
2212
2213llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2214 SourceManager &SM = getContext().getSourceManager();
2215 PresumedLoc PLoc = SM.getPresumedLoc(L);
2216 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2217 SM.getExpansionLineNumber(L);
2218 return llvm::ConstantInt::get(Int32Ty, LineNo);
2219}
2220
2221llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2222 const AnnotateAttr *AA,
2223 SourceLocation L) {
2224 // Get the globals for file name, annotation, and the line number.
2225 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2226 *UnitGV = EmitAnnotationUnit(L),
2227 *LineNoCst = EmitAnnotationLineNo(L);
2228
2229 llvm::Constant *ASZeroGV = GV;
2230 if (GV->getAddressSpace() != 0) {
2231 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2232 GV, GV->getValueType()->getPointerTo(0));
2233 }
2234
2235 // Create the ConstantStruct for the global annotation.
2236 llvm::Constant *Fields[4] = {
2237 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2238 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2239 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2240 LineNoCst
2241 };
2242 return llvm::ConstantStruct::getAnon(Fields);
2243}
2244
2245void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2246 llvm::GlobalValue *GV) {
2247 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")((D->hasAttr<AnnotateAttr>() && "no annotate attribute"
) ? static_cast<void> (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 // Get the struct elements for these annotations.
2249 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2250 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2251}
2252
2253bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2254 llvm::Function *Fn,
2255 SourceLocation Loc) const {
2256 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2257 // Blacklist by function name.
2258 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2259 return true;
2260 // Blacklist by location.
2261 if (Loc.isValid())
2262 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2263 // If location is unknown, this may be a compiler-generated function. Assume
2264 // it's located in the main file.
2265 auto &SM = Context.getSourceManager();
2266 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2267 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2268 }
2269 return false;
2270}
2271
2272bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2273 SourceLocation Loc, QualType Ty,
2274 StringRef Category) const {
2275 // For now globals can be blacklisted only in ASan and KASan.
2276 const SanitizerMask EnabledAsanMask =
2277 LangOpts.Sanitize.Mask &
2278 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2279 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2280 SanitizerKind::MemTag);
2281 if (!EnabledAsanMask)
2282 return false;
2283 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2284 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2285 return true;
2286 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2287 return true;
2288 // Check global type.
2289 if (!Ty.isNull()) {
2290 // Drill down the array types: if global variable of a fixed type is
2291 // blacklisted, we also don't instrument arrays of them.
2292 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2293 Ty = AT->getElementType();
2294 Ty = Ty.getCanonicalType().getUnqualifiedType();
2295 // We allow to blacklist only record types (classes, structs etc.)
2296 if (Ty->isRecordType()) {
2297 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2298 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2299 return true;
2300 }
2301 }
2302 return false;
2303}
2304
2305bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2306 StringRef Category) const {
2307 const auto &XRayFilter = getContext().getXRayFilter();
2308 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2309 auto Attr = ImbueAttr::NONE;
2310 if (Loc.isValid())
2311 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2312 if (Attr == ImbueAttr::NONE)
2313 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2314 switch (Attr) {
2315 case ImbueAttr::NONE:
2316 return false;
2317 case ImbueAttr::ALWAYS:
2318 Fn->addFnAttr("function-instrument", "xray-always");
2319 break;
2320 case ImbueAttr::ALWAYS_ARG1:
2321 Fn->addFnAttr("function-instrument", "xray-always");
2322 Fn->addFnAttr("xray-log-args", "1");
2323 break;
2324 case ImbueAttr::NEVER:
2325 Fn->addFnAttr("function-instrument", "xray-never");
2326 break;
2327 }
2328 return true;
2329}
2330
2331bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2332 // Never defer when EmitAllDecls is specified.
2333 if (LangOpts.EmitAllDecls)
2334 return true;
2335
2336 if (CodeGenOpts.KeepStaticConsts) {
2337 const auto *VD = dyn_cast<VarDecl>(Global);
2338 if (VD && VD->getType().isConstQualified() &&
2339 VD->getStorageDuration() == SD_Static)
2340 return true;
2341 }
2342
2343 return getContext().DeclMustBeEmitted(Global);
2344}
2345
2346bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2347 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2348 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2349 // Implicit template instantiations may change linkage if they are later
2350 // explicitly instantiated, so they should not be emitted eagerly.
2351 return false;
2352 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2353 // not emit them eagerly unless we sure that the function must be emitted on
2354 // the host.
2355 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2356 !LangOpts.OpenMPIsDevice &&
2357 !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2358 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2359 return false;
2360 }
2361 if (const auto *VD = dyn_cast<VarDecl>(Global))
2362 if (Context.getInlineVariableDefinitionKind(VD) ==
2363 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2364 // A definition of an inline constexpr static data member may change
2365 // linkage later if it's redeclared outside the class.
2366 return false;
2367 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2368 // codegen for global variables, because they may be marked as threadprivate.
2369 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2370 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2371 !isTypeConstant(Global->getType(), false) &&
2372 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2373 return false;
2374
2375 return true;
2376}
2377
2378ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2379 const CXXUuidofExpr* E) {
2380 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2381 // well-formed.
2382 StringRef Uuid = E->getUuidStr();
2383 std::string Name = "_GUID_" + Uuid.lower();
2384 std::replace(Name.begin(), Name.end(), '-', '_');
2385
2386 // The UUID descriptor should be pointer aligned.
2387 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2388
2389 // Look for an existing global.
2390 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2391 return ConstantAddress(GV, Alignment);
2392
2393 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2394 assert(Init && "failed to initialize as constant")((Init && "failed to initialize as constant") ? static_cast
<void> (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2394, __PRETTY_FUNCTION__))
;
2395
2396 auto *GV = new llvm::GlobalVariable(
2397 getModule(), Init->getType(),
2398 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2399 if (supportsCOMDAT())
2400 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2401 setDSOLocal(GV);
2402 return ConstantAddress(GV, Alignment);
2403}
2404
2405ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2406 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2407 assert(AA && "No alias?")((AA && "No alias?") ? static_cast<void> (0) : __assert_fail
("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2407, __PRETTY_FUNCTION__))
;
2408
2409 CharUnits Alignment = getContext().getDeclAlign(VD);
2410 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2411
2412 // See if there is already something with the target's name in the module.
2413 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2414 if (Entry) {
2415 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2416 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2417 return ConstantAddress(Ptr, Alignment);
2418 }
2419
2420 llvm::Constant *Aliasee;
2421 if (isa<llvm::FunctionType>(DeclTy))
2422 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2423 GlobalDecl(cast<FunctionDecl>(VD)),
2424 /*ForVTable=*/false);
2425 else
2426 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2427 llvm::PointerType::getUnqual(DeclTy),
2428 nullptr);
2429
2430 auto *F = cast<llvm::GlobalValue>(Aliasee);
2431 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2432 WeakRefReferences.insert(F);
2433
2434 return ConstantAddress(Aliasee, Alignment);
2435}
2436
2437void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2438 const auto *Global = cast<ValueDecl>(GD.getDecl());
2439
2440 // Weak references don't produce any output by themselves.
2441 if (Global->hasAttr<WeakRefAttr>())
2442 return;
2443
2444 // If this is an alias definition (which otherwise looks like a declaration)
2445 // emit it now.
2446 if (Global->hasAttr<AliasAttr>())
2447 return EmitAliasDefinition(GD);
2448
2449 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2450 if (Global->hasAttr<IFuncAttr>())
2451 return emitIFuncDefinition(GD);
2452
2453 // If this is a cpu_dispatch multiversion function, emit the resolver.
2454 if (Global->hasAttr<CPUDispatchAttr>())
2455 return emitCPUDispatchDefinition(GD);
2456
2457 // If this is CUDA, be selective about which declarations we emit.
2458 if (LangOpts.CUDA) {
2459 if (LangOpts.CUDAIsDevice) {
2460 if (!Global->hasAttr<CUDADeviceAttr>() &&
2461 !Global->hasAttr<CUDAGlobalAttr>() &&
2462 !Global->hasAttr<CUDAConstantAttr>() &&
2463 !Global->hasAttr<CUDASharedAttr>() &&
2464 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2465 return;
2466 } else {
2467 // We need to emit host-side 'shadows' for all global
2468 // device-side variables because the CUDA runtime needs their
2469 // size and host-side address in order to provide access to
2470 // their device-side incarnations.
2471
2472 // So device-only functions are the only things we skip.
2473 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2474 Global->hasAttr<CUDADeviceAttr>())
2475 return;
2476
2477 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2478, __PRETTY_FUNCTION__))
2478 "Expected Variable or Function")(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2478, __PRETTY_FUNCTION__))
;
2479 }
2480 }
2481
2482 if (LangOpts.OpenMP) {
2483 // If this is OpenMP, check if it is legal to emit this global normally.
2484 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2485 return;
2486 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2487 if (MustBeEmitted(Global))
2488 EmitOMPDeclareReduction(DRD);
2489 return;
2490 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2491 if (MustBeEmitted(Global))
2492 EmitOMPDeclareMapper(DMD);
2493 return;
2494 }
2495 }
2496
2497 // Ignore declarations, they will be emitted on their first use.
2498 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2499 // Forward declarations are emitted lazily on first use.
2500 if (!FD->doesThisDeclarationHaveABody()) {
2501 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2502 return;
2503
2504 StringRef MangledName = getMangledName(GD);
2505
2506 // Compute the function info and LLVM type.
2507 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2508 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2509
2510 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2511 /*DontDefer=*/false);
2512 return;
2513 }
2514 } else {
2515 const auto *VD = cast<VarDecl>(Global);
2516 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")((VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2516, __PRETTY_FUNCTION__))
;
2517 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2518 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2519 if (LangOpts.OpenMP) {
2520 // Emit declaration of the must-be-emitted declare target variable.
2521 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2522 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2523 bool UnifiedMemoryEnabled =
2524 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2525 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2526 !UnifiedMemoryEnabled) {
2527 (void)GetAddrOfGlobalVar(VD);
2528 } else {
2529 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
2530 (*Res == OMPDeclareTargetDeclAttr::MT_To &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
2531 UnifiedMemoryEnabled)) &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
2532 "Link clause or to clause with unified memory expected.")((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
;
2533 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2534 }
2535
2536 return;
2537 }
2538 }
2539 // If this declaration may have caused an inline variable definition to
2540 // change linkage, make sure that it's emitted.
2541 if (Context.getInlineVariableDefinitionKind(VD) ==
2542 ASTContext::InlineVariableDefinitionKind::Strong)
2543 GetAddrOfGlobalVar(VD);
2544 return;
2545 }
2546 }
2547
2548 // Defer code generation to first use when possible, e.g. if this is an inline
2549 // function. If the global must always be emitted, do it eagerly if possible
2550 // to benefit from cache locality.
2551 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2552 // Emit the definition if it can't be deferred.
2553 EmitGlobalDefinition(GD);
2554 return;
2555 }
2556
2557 // Check if this must be emitted as declare variant.
2558 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2559 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2560 return;
2561
2562 // If we're deferring emission of a C++ variable with an
2563 // initializer, remember the order in which it appeared in the file.
2564 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2565 cast<VarDecl>(Global)->hasInit()) {
2566 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2567 CXXGlobalInits.push_back(nullptr);
2568 }
2569
2570 StringRef MangledName = getMangledName(GD);
2571 if (GetGlobalValue(MangledName) != nullptr) {
2572 // The value has already been used and should therefore be emitted.
2573 addDeferredDeclToEmit(GD);
2574 } else if (MustBeEmitted(Global)) {
2575 // The value must be emitted, but cannot be emitted eagerly.
2576 assert(!MayBeEmittedEagerly(Global))((!MayBeEmittedEagerly(Global)) ? static_cast<void> (0)
: __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2576, __PRETTY_FUNCTION__))
;
2577 addDeferredDeclToEmit(GD);
2578 } else {
2579 // Otherwise, remember that we saw a deferred decl with this name. The
2580 // first use of the mangled name will cause it to move into
2581 // DeferredDeclsToEmit.
2582 DeferredDecls[MangledName] = GD;
2583 }
2584}
2585
2586// Check if T is a class type with a destructor that's not dllimport.
2587static bool HasNonDllImportDtor(QualType T) {
2588 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2589 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2590 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2591 return true;
2592
2593 return false;
2594}
2595
2596namespace {
2597 struct FunctionIsDirectlyRecursive
2598 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2599 const StringRef Name;
2600 const Builtin::Context &BI;
2601 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2602 : Name(N), BI(C) {}
2603
2604 bool VisitCallExpr(const CallExpr *E) {
2605 const FunctionDecl *FD = E->getDirectCallee();
2606 if (!FD)
2607 return false;
2608 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2609 if (Attr && Name == Attr->getLabel())
2610 return true;
2611 unsigned BuiltinID = FD->getBuiltinID();
2612 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2613 return false;
2614 StringRef BuiltinName = BI.getName(BuiltinID);
2615 if (BuiltinName.startswith("__builtin_") &&
2616 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2617 return true;
2618 }
2619 return false;
2620 }
2621
2622 bool VisitStmt(const Stmt *S) {
2623 for (const Stmt *Child : S->children())
2624 if (Child && this->Visit(Child))
2625 return true;
2626 return false;
2627 }
2628 };
2629
2630 // Make sure we're not referencing non-imported vars or functions.
2631 struct DLLImportFunctionVisitor
2632 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2633 bool SafeToInline = true;
2634
2635 bool shouldVisitImplicitCode() const { return true; }
2636
2637 bool VisitVarDecl(VarDecl *VD) {
2638 if (VD->getTLSKind()) {
2639 // A thread-local variable cannot be imported.
2640 SafeToInline = false;
2641 return SafeToInline;
2642 }
2643
2644 // A variable definition might imply a destructor call.
2645 if (VD->isThisDeclarationADefinition())
2646 SafeToInline = !HasNonDllImportDtor(VD->getType());
2647
2648 return SafeToInline;
2649 }
2650
2651 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2652 if (const auto *D = E->getTemporary()->getDestructor())
2653 SafeToInline = D->hasAttr<DLLImportAttr>();
2654 return SafeToInline;
2655 }
2656
2657 bool VisitDeclRefExpr(DeclRefExpr *E) {
2658 ValueDecl *VD = E->getDecl();
2659 if (isa<FunctionDecl>(VD))
2660 SafeToInline = VD->hasAttr<DLLImportAttr>();
2661 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2662 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2663 return SafeToInline;
2664 }
2665
2666 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2667 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2668 return SafeToInline;
2669 }
2670
2671 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2672 CXXMethodDecl *M = E->getMethodDecl();
2673 if (!M) {
2674 // Call through a pointer to member function. This is safe to inline.
2675 SafeToInline = true;
2676 } else {
2677 SafeToInline = M->hasAttr<DLLImportAttr>();
2678 }
2679 return SafeToInline;
2680 }
2681
2682 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2683 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2684 return SafeToInline;
2685 }
2686
2687 bool VisitCXXNewExpr(CXXNewExpr *E) {
2688 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2689 return SafeToInline;
2690 }
2691 };
2692}
2693
2694// isTriviallyRecursive - Check if this function calls another
2695// decl that, because of the asm attribute or the other decl being a builtin,
2696// ends up pointing to itself.
2697bool
2698CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2699 StringRef Name;
2700 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2701 // asm labels are a special kind of mangling we have to support.
2702 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2703 if (!Attr)
2704 return false;
2705 Name = Attr->getLabel();
2706 } else {
2707 Name = FD->getName();
2708 }
2709
2710 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2711 const Stmt *Body = FD->getBody();
2712 return Body ? Walker.Visit(Body) : false;
2713}
2714
2715bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2716 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2717 return true;
2718 const auto *F = cast<FunctionDecl>(GD.getDecl());
2719 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2720 return false;
2721
2722 if (F->hasAttr<DLLImportAttr>()) {
2723 // Check whether it would be safe to inline this dllimport function.
2724 DLLImportFunctionVisitor Visitor;
2725 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2726 if (!Visitor.SafeToInline)
2727 return false;
2728
2729 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2730 // Implicit destructor invocations aren't captured in the AST, so the
2731 // check above can't see them. Check for them manually here.
2732 for (const Decl *Member : Dtor->getParent()->decls())
2733 if (isa<FieldDecl>(Member))
2734 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2735 return false;
2736 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2737 if (HasNonDllImportDtor(B.getType()))
2738 return false;
2739 }
2740 }
2741
2742 // PR9614. Avoid cases where the source code is lying to us. An available
2743 // externally function should have an equivalent function somewhere else,
2744 // but a function that calls itself is clearly not equivalent to the real
2745 // implementation.
2746 // This happens in glibc's btowc and in some configure checks.
2747 return !isTriviallyRecursive(F);
2748}
2749
2750bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2751 return CodeGenOpts.OptimizationLevel > 0;
2752}
2753
2754void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2755 llvm::GlobalValue *GV) {
2756 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2757
2758 if (FD->isCPUSpecificMultiVersion()) {
2759 auto *Spec = FD->getAttr<CPUSpecificAttr>();
2760 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2761 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2762 // Requires multiple emits.
2763 } else
2764 EmitGlobalFunctionDefinition(GD, GV);
2765}
2766
2767void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2768 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2769 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice
&& OpenMPRuntime && "Expected OpenMP device mode."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && OpenMPRuntime && \"Expected OpenMP device mode.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2770, __PRETTY_FUNCTION__))
2770 OpenMPRuntime && "Expected OpenMP device mode.")((getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice
&& OpenMPRuntime && "Expected OpenMP device mode."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && OpenMPRuntime && \"Expected OpenMP device mode.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2770, __PRETTY_FUNCTION__))
;
2771 const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2772
2773 // Compute the function info and LLVM type.
2774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2775 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2776
2777 // Get or create the prototype for the function.
2778 if (!GV || (GV->getType()->getElementType() != Ty)) {
2779 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2780 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2781 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2782 ForDefinition));
2783 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2784 /*IsIncompleteFunction=*/false,
2785 /*IsThunk=*/false);
2786 }
2787 // We need to set linkage and visibility on the function before
2788 // generating code for it because various parts of IR generation
2789 // want to propagate this information down (e.g. to local static
2790 // declarations).
2791 auto *Fn = cast<llvm::Function>(GV);
2792 setFunctionLinkage(OldGD, Fn);
2793
2794 // FIXME: this is redundant with part of
2795 // setFunctionDefinitionAttributes
2796 setGVProperties(Fn, OldGD);
2797
2798 MaybeHandleStaticInExternC(D, Fn);
2799
2800 maybeSetTrivialComdat(*D, *Fn);
2801
2802 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2803
2804 setNonAliasAttributes(OldGD, Fn);
2805 SetLLVMFunctionAttributesForDefinition(D, Fn);
2806
2807 if (D->hasAttr<AnnotateAttr>())
2808 AddGlobalAnnotations(D, Fn);
2809}
2810
2811void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2812 const auto *D = cast<ValueDecl>(GD.getDecl());
2813
2814 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2815 Context.getSourceManager(),
2816 "Generating code for declaration");
2817
2818 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2819 // At -O0, don't generate IR for functions with available_externally
2820 // linkage.
2821 if (!shouldEmitFunction(GD))
2822 return;
2823
2824 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2825 std::string Name;
2826 llvm::raw_string_ostream OS(Name);
2827 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2828 /*Qualified=*/true);
2829 return Name;
2830 });
2831
2832 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2833 // Make sure to emit the definition(s) before we emit the thunks.
2834 // This is necessary for the generation of certain thunks.
2835 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2836 ABI->emitCXXStructor(GD);
2837 else if (FD->isMultiVersion())
2838 EmitMultiVersionFunctionDefinition(GD, GV);
2839 else
2840 EmitGlobalFunctionDefinition(GD, GV);
2841
2842 if (Method->isVirtual())
2843 getVTables().EmitThunks(GD);
2844
2845 return;
2846 }
2847
2848 if (FD->isMultiVersion())
2849 return EmitMultiVersionFunctionDefinition(GD, GV);
2850 return EmitGlobalFunctionDefinition(GD, GV);
2851 }
2852
2853 if (const auto *VD = dyn_cast<VarDecl>(D))
2854 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2855
2856 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2856)
;
2857}
2858
2859static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2860 llvm::Function *NewFn);
2861
2862static unsigned
2863TargetMVPriority(const TargetInfo &TI,
2864 const CodeGenFunction::MultiVersionResolverOption &RO) {
2865 unsigned Priority = 0;
2866 for (StringRef Feat : RO.Conditions.Features)
2867 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2868
2869 if (!RO.Conditions.Architecture.empty())
2870 Priority = std::max(
2871 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2872 return Priority;
2873}
2874
2875void CodeGenModule::emitMultiVersionFunctions() {
2876 for (GlobalDecl GD : MultiVersionFuncs) {
2877 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2878 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2879 getContext().forEachMultiversionedFunctionVersion(
2880 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2881 GlobalDecl CurGD{
2882 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2883 StringRef MangledName = getMangledName(CurGD);
2884 llvm::Constant *Func = GetGlobalValue(MangledName);
2885 if (!Func) {
2886 if (CurFD->isDefined()) {
2887 EmitGlobalFunctionDefinition(CurGD, nullptr);
2888 Func = GetGlobalValue(MangledName);
2889 } else {
2890 const CGFunctionInfo &FI =
2891 getTypes().arrangeGlobalDeclaration(GD);
2892 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2893 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2894 /*DontDefer=*/false, ForDefinition);
2895 }
2896 assert(Func && "This should have just been created")((Func && "This should have just been created") ? static_cast
<void> (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2896, __PRETTY_FUNCTION__))
;
2897 }
2898
2899 const auto *TA = CurFD->getAttr<TargetAttr>();
2900 llvm::SmallVector<StringRef, 8> Feats;
2901 TA->getAddedFeatures(Feats);
2902
2903 Options.emplace_back(cast<llvm::Function>(Func),
2904 TA->getArchitecture(), Feats);
2905 });
2906
2907 llvm::Function *ResolverFunc;
2908 const TargetInfo &TI = getTarget();
2909
2910 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2911 ResolverFunc = cast<llvm::Function>(
2912 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2913 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2914 } else {
2915 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2916 }
2917
2918 if (supportsCOMDAT())
2919 ResolverFunc->setComdat(
2920 getModule().getOrInsertComdat(ResolverFunc->getName()));
2921
2922 llvm::stable_sort(
2923 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2924 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2925 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2926 });
2927 CodeGenFunction CGF(*this);
2928 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2929 }
2930}
2931
2932void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2933 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2934 assert(FD && "Not a FunctionDecl?")((FD && "Not a FunctionDecl?") ? static_cast<void>
(0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2934, __PRETTY_FUNCTION__))
;
2935 const auto *DD = FD->getAttr<CPUDispatchAttr>();
2936 assert(DD && "Not a cpu_dispatch Function?")((DD && "Not a cpu_dispatch Function?") ? static_cast
<void> (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2936, __PRETTY_FUNCTION__))
;
2937 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2938
2939 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2940 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2941 DeclTy = getTypes().GetFunctionType(FInfo);
2942 }
2943
2944 StringRef ResolverName = getMangledName(GD);
2945
2946 llvm::Type *ResolverType;
2947 GlobalDecl ResolverGD;
2948 if (getTarget().supportsIFunc())
2949 ResolverType = llvm::FunctionType::get(
2950 llvm::PointerType::get(DeclTy,
2951 Context.getTargetAddressSpace(FD->getType())),
2952 false);
2953 else {
2954 ResolverType = DeclTy;
2955 ResolverGD = GD;
2956 }
2957
2958 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2959 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2960 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2961 if (supportsCOMDAT())
2962 ResolverFunc->setComdat(
2963 getModule().getOrInsertComdat(ResolverFunc->getName()));
2964
2965 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2966 const TargetInfo &Target = getTarget();
2967 unsigned Index = 0;
2968 for (const IdentifierInfo *II : DD->cpus()) {
2969 // Get the name of the target function so we can look it up/create it.
2970 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2971 getCPUSpecificMangling(*this, II->getName());
2972
2973 llvm::Constant *Func = GetGlobalValue(MangledName);
2974
2975 if (!Func) {
2976 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2977 if (ExistingDecl.getDecl() &&
2978 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2979 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2980 Func = GetGlobalValue(MangledName);
2981 } else {
2982 if (!ExistingDecl.getDecl())
2983 ExistingDecl = GD.getWithMultiVersionIndex(Index);
2984
2985 Func = GetOrCreateLLVMFunction(
2986 MangledName, DeclTy, ExistingDecl,
2987 /*ForVTable=*/false, /*DontDefer=*/true,
2988 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2989 }
2990 }
2991
2992 llvm::SmallVector<StringRef, 32> Features;
2993 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2994 llvm::transform(Features, Features.begin(),
2995 [](StringRef Str) { return Str.substr(1); });
2996 Features.erase(std::remove_if(
2997 Features.begin(), Features.end(), [&Target](StringRef Feat) {
2998 return !Target.validateCpuSupports(Feat);
2999 }), Features.end());
3000 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3001 ++Index;
3002 }
3003
3004 llvm::sort(
3005 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3006 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3007 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3008 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3009 });
3010
3011 // If the list contains multiple 'default' versions, such as when it contains
3012 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3013 // always run on at least a 'pentium'). We do this by deleting the 'least
3014 // advanced' (read, lowest mangling letter).
3015 while (Options.size() > 1 &&
3016 CodeGenFunction::GetX86CpuSupportsMask(
3017 (Options.end() - 2)->Conditions.Features) == 0) {
3018 StringRef LHSName = (Options.end() - 2)->Function->getName();
3019 StringRef RHSName = (Options.end() - 1)->Function->getName();
3020 if (LHSName.compare(RHSName) < 0)
3021 Options.erase(Options.end() - 2);
3022 else
3023 Options.erase(Options.end() - 1);
3024 }
3025
3026 CodeGenFunction CGF(*this);
3027 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3028
3029 if (getTarget().supportsIFunc()) {
3030 std::string AliasName = getMangledNameImpl(
3031 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3032 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3033 if (!AliasFunc) {
3034 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3035 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3036 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3037 auto *GA = llvm::GlobalAlias::create(
3038 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3039 GA->setLinkage(llvm::Function::WeakODRLinkage);
3040 SetCommonAttributes(GD, GA);
3041 }
3042 }
3043}
3044
3045/// If a dispatcher for the specified mangled name is not in the module, create
3046/// and return an llvm Function with the specified type.
3047llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3048 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3049 std::string MangledName =
3050 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3051
3052 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3053 // a separate resolver).
3054 std::string ResolverName = MangledName;
3055 if (getTarget().supportsIFunc())
3056 ResolverName += ".ifunc";
3057 else if (FD->isTargetMultiVersion())
3058 ResolverName += ".resolver";
3059
3060 // If this already exists, just return that one.
3061 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3062 return ResolverGV;
3063
3064 // Since this is the first time we've created this IFunc, make sure
3065 // that we put this multiversioned function into the list to be
3066 // replaced later if necessary (target multiversioning only).
3067 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3068 MultiVersionFuncs.push_back(GD);
3069
3070 if (getTarget().supportsIFunc()) {
3071 llvm::Type *ResolverType = llvm::FunctionType::get(
3072 llvm::PointerType::get(
3073 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3074 false);
3075 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3076 MangledName + ".resolver", ResolverType, GlobalDecl{},
3077 /*ForVTable=*/false);
3078 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3079 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3080 GIF->setName(ResolverName);
3081 SetCommonAttributes(FD, GIF);
3082
3083 return GIF;
3084 }
3085
3086 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3087 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3088 assert(isa<llvm::GlobalValue>(Resolver) &&((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3089, __PRETTY_FUNCTION__))
3089 "Resolver should be created for the first time")((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3089, __PRETTY_FUNCTION__))
;
3090 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3091 return Resolver;
3092}
3093
3094/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3095/// module, create and return an llvm Function with the specified type. If there
3096/// is something in the module with the specified name, return it potentially
3097/// bitcasted to the right type.
3098///
3099/// If D is non-null, it specifies a decl that correspond to this. This is used
3100/// to set the attributes on the function when it is first created.
3101llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3102 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3103 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3104 ForDefinition_t IsForDefinition) {
3105 const Decl *D = GD.getDecl();
3106
3107 // Any attempts to use a MultiVersion function should result in retrieving
3108 // the iFunc instead. Name Mangling will handle the rest of the changes.
3109 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3110 // For the device mark the function as one that should be emitted.
3111 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3112 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3113 !DontDefer && !IsForDefinition) {
3114 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3115 GlobalDecl GDDef;
3116 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3117 GDDef = GlobalDecl(CD, GD.getCtorType());
3118 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3119 GDDef = GlobalDecl(DD, GD.getDtorType());
3120 else
3121 GDDef = GlobalDecl(FDDef);
3122 EmitGlobal(GDDef);
3123 }
3124 }
3125 // Check if this must be emitted as declare variant and emit reference to
3126 // the the declare variant function.
3127 if (LangOpts.OpenMP && OpenMPRuntime)
3128 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3129
3130 if (FD->isMultiVersion()) {
3131 const auto *TA = FD->getAttr<TargetAttr>();
3132 if (TA && TA->isDefaultVersion())
3133 UpdateMultiVersionNames(GD, FD);
3134 if (!IsForDefinition)
3135 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3136 }
3137 }
3138
3139 // Lookup the entry, lazily creating it if necessary.
3140 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3141 if (Entry) {
3142 if (WeakRefReferences.erase(Entry)) {
3143 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3144 if (FD && !FD->hasAttr<WeakAttr>())
3145 Entry->setLinkage(llvm::Function::ExternalLinkage);
3146 }
3147
3148 // Handle dropped DLL attributes.
3149 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3150 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3151 setDSOLocal(Entry);
3152 }
3153
3154 // If there are two attempts to define the same mangled name, issue an
3155 // error.
3156 if (IsForDefinition && !Entry->isDeclaration()) {
3157 GlobalDecl OtherGD;
3158 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3159 // to make sure that we issue an error only once.
3160 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3161 (GD.getCanonicalDecl().getDecl() !=
3162 OtherGD.getCanonicalDecl().getDecl()) &&
3163 DiagnosedConflictingDefinitions.insert(GD).second) {
3164 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3165 << MangledName;
3166 getDiags().Report(OtherGD.getDecl()->getLocation(),
3167 diag::note_previous_definition);
3168 }
3169 }
3170
3171 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3172 (Entry->getType()->getElementType() == Ty)) {
3173 return Entry;
3174 }
3175
3176 // Make sure the result is of the correct type.
3177 // (If function is requested for a definition, we always need to create a new
3178 // function, not just return a bitcast.)
3179 if (!IsForDefinition)
3180 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3181 }
3182
3183 // This function doesn't have a complete type (for example, the return
3184 // type is an incomplete struct). Use a fake type instead, and make
3185 // sure not to try to set attributes.
3186 bool IsIncompleteFunction = false;
3187
3188 llvm::FunctionType *FTy;
3189 if (isa<llvm::FunctionType>(Ty)) {
3190 FTy = cast<llvm::FunctionType>(Ty);
3191 } else {
3192 FTy = llvm::FunctionType::get(VoidTy, false);
3193 IsIncompleteFunction = true;
3194 }
3195
3196 llvm::Function *F =
3197 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3198 Entry ? StringRef() : MangledName, &getModule());
3199
3200 // If we already created a function with the same mangled name (but different
3201 // type) before, take its name and add it to the list of functions to be
3202 // replaced with F at the end of CodeGen.
3203 //
3204 // This happens if there is a prototype for a function (e.g. "int f()") and
3205 // then a definition of a different type (e.g. "int f(int x)").
3206 if (Entry) {
3207 F->takeName(Entry);
3208
3209 // This might be an implementation of a function without a prototype, in
3210 // which case, try to do special replacement of calls which match the new
3211 // prototype. The really key thing here is that we also potentially drop
3212 // arguments from the call site so as to make a direct call, which makes the
3213 // inliner happier and suppresses a number of optimizer warnings (!) about
3214 // dropping arguments.
3215 if (!Entry->use_empty()) {
3216 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3217 Entry->removeDeadConstantUsers();
3218 }
3219
3220 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3221 F, Entry->getType()->getElementType()->getPointerTo());
3222 addGlobalValReplacement(Entry, BC);
3223 }
3224
3225 assert(F->getName() == MangledName && "name was uniqued!")((F->getName() == MangledName && "name was uniqued!"
) ? static_cast<void> (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3225, __PRETTY_FUNCTION__))
;
3226 if (D)
3227 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3228 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3229 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3230 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3231 }
3232
3233 if (!DontDefer) {
3234 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3235 // each other bottoming out with the base dtor. Therefore we emit non-base
3236 // dtors on usage, even if there is no dtor definition in the TU.
3237 if (D && isa<CXXDestructorDecl>(D) &&
3238 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3239 GD.getDtorType()))
3240 addDeferredDeclToEmit(GD);
3241
3242 // This is the first use or definition of a mangled name. If there is a
3243 // deferred decl with this name, remember that we need to emit it at the end
3244 // of the file.
3245 auto DDI = DeferredDecls.find(MangledName);
3246 if (DDI != DeferredDecls.end()) {
3247 // Move the potentially referenced deferred decl to the
3248 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3249 // don't need it anymore).
3250 addDeferredDeclToEmit(DDI->second);
3251 DeferredDecls.erase(DDI);
3252
3253 // Otherwise, there are cases we have to worry about where we're
3254 // using a declaration for which we must emit a definition but where
3255 // we might not find a top-level definition:
3256 // - member functions defined inline in their classes
3257 // - friend functions defined inline in some class
3258 // - special member functions with implicit definitions
3259 // If we ever change our AST traversal to walk into class methods,
3260 // this will be unnecessary.
3261 //
3262 // We also don't emit a definition for a function if it's going to be an
3263 // entry in a vtable, unless it's already marked as used.
3264 } else if (getLangOpts().CPlusPlus && D) {
3265 // Look for a declaration that's lexically in a record.
3266 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3267 FD = FD->getPreviousDecl()) {
3268 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3269 if (FD->doesThisDeclarationHaveABody()) {
3270 addDeferredDeclToEmit(GD.getWithDecl(FD));
3271 break;
3272 }
3273 }
3274 }
3275 }
3276 }
3277
3278 // Make sure the result is of the requested type.
3279 if (!IsIncompleteFunction) {
3280 assert(F->getType()->getElementType() == Ty)((F->getType()->getElementType() == Ty) ? static_cast<
void> (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3280, __PRETTY_FUNCTION__))
;
3281 return F;
3282 }
3283
3284 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3285 return llvm::ConstantExpr::getBitCast(F, PTy);
3286}
3287
3288/// GetAddrOfFunction - Return the address of the given function. If Ty is
3289/// non-null, then this function will use the specified type if it has to
3290/// create it (this occurs when we see a definition of the function).
3291llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3292 llvm::Type *Ty,
3293 bool ForVTable,
3294 bool DontDefer,
3295 ForDefinition_t IsForDefinition) {
3296 // If there was no specific requested type, just convert it now.
3297 if (!Ty) {
3298 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3299 Ty = getTypes().ConvertType(FD->getType());
3300 }
3301
3302 // Devirtualized destructor calls may come through here instead of via
3303 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3304 // of the complete destructor when necessary.
3305 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3306 if (getTarget().getCXXABI().isMicrosoft() &&
3307 GD.getDtorType() == Dtor_Complete &&
3308 DD->getParent()->getNumVBases() == 0)
3309 GD = GlobalDecl(DD, Dtor_Base);
3310 }
3311
3312 StringRef MangledName = getMangledName(GD);
3313 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3314 /*IsThunk=*/false, llvm::AttributeList(),
3315 IsForDefinition);
3316}
3317
3318static const FunctionDecl *
3319GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3320 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3321 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3322
3323 IdentifierInfo &CII = C.Idents.get(Name);
3324 for (const auto &Result : DC->lookup(&CII))
3325 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3326 return FD;
3327
3328 if (!C.getLangOpts().CPlusPlus)
3329 return nullptr;
3330
3331 // Demangle the premangled name from getTerminateFn()
3332 IdentifierInfo &CXXII =
3333 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3334 ? C.Idents.get("terminate")
3335 : C.Idents.get(Name);
3336
3337 for (const auto &N : {"__cxxabiv1", "std"}) {
3338 IdentifierInfo &NS = C.Idents.get(N);
3339 for (const auto &Result : DC->lookup(&NS)) {
3340 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3341 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3342 for (const auto &Result : LSD->lookup(&NS))
3343 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3344 break;
3345
3346 if (ND)
3347 for (const auto &Result : ND->lookup(&CXXII))
3348 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3349 return FD;
3350 }
3351 }
3352
3353 return nullptr;
3354}
3355
3356/// CreateRuntimeFunction - Create a new runtime function with the specified
3357/// type and name.
3358llvm::FunctionCallee
3359CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3360 llvm::AttributeList ExtraAttrs, bool Local,
3361 bool AssumeConvergent) {
3362 if (AssumeConvergent) {
3363 ExtraAttrs =
3364 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3365 llvm::Attribute::Convergent);
3366 }
3367
3368 llvm::Constant *C =
3369 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3370 /*DontDefer=*/false, /*IsThunk=*/false,
3371 ExtraAttrs);
3372
3373 if (auto *F = dyn_cast<llvm::Function>(C)) {
3374 if (F->empty()) {
3375 F->setCallingConv(getRuntimeCC());
3376
3377 // In Windows Itanium environments, try to mark runtime functions
3378 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3379 // will link their standard library statically or dynamically. Marking
3380 // functions imported when they are not imported can cause linker errors
3381 // and warnings.
3382 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3383 !getCodeGenOpts().LTOVisibilityPublicStd) {
3384 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3385 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3386 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3387 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3388 }
3389 }
3390 setDSOLocal(F);
3391 }
3392 }
3393
3394 return {FTy, C};
3395}
3396
3397/// isTypeConstant - Determine whether an object of this type can be emitted
3398/// as a constant.
3399///
3400/// If ExcludeCtor is true, the duration when the object's constructor runs
3401/// will not be considered. The caller will need to verify that the object is
3402/// not written to during its construction.
3403bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3404 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3405 return false;
3406
3407 if (Context.getLangOpts().CPlusPlus) {
3408 if (const CXXRecordDecl *Record
3409 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3410 return ExcludeCtor && !Record->hasMutableFields() &&
3411 Record->hasTrivialDestructor();
3412 }
3413
3414 return true;
3415}
3416
3417/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3418/// create and return an llvm GlobalVariable with the specified type. If there
3419/// is something in the module with the specified name, return it potentially
3420/// bitcasted to the right type.
3421///
3422/// If D is non-null, it specifies a decl that correspond to this. This is used
3423/// to set the attributes on the global when it is first created.
3424///
3425/// If IsForDefinition is true, it is guaranteed that an actual global with
3426/// type Ty will be returned, not conversion of a variable with the same
3427/// mangled name but some other type.
3428llvm::Constant *
3429CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3430 llvm::PointerType *Ty,
3431 const VarDecl *D,
3432 ForDefinition_t IsForDefinition) {
3433 // Lookup the entry, lazily creating it if necessary.
3434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3435 if (Entry) {
3436 if (WeakRefReferences.erase(Entry)) {
3437 if (D && !D->hasAttr<WeakAttr>())
3438 Entry->setLinkage(llvm::Function::ExternalLinkage);
3439 }
3440
3441 // Handle dropped DLL attributes.
3442 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3443 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3444
3445 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3446 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3447
3448 if (Entry->getType() == Ty)
3449 return Entry;
3450
3451 // If there are two attempts to define the same mangled name, issue an
3452 // error.
3453 if (IsForDefinition && !Entry->isDeclaration()) {
3454 GlobalDecl OtherGD;
3455 const VarDecl *OtherD;
3456
3457 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3458 // to make sure that we issue an error only once.
3459 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3460 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3461 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3462 OtherD->hasInit() &&
3463 DiagnosedConflictingDefinitions.insert(D).second) {
3464 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3465 << MangledName;
3466 getDiags().Report(OtherGD.getDecl()->getLocation(),
3467 diag::note_previous_definition);
3468 }
3469 }
3470
3471 // Make sure the result is of the correct type.
3472 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3473 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3474
3475 // (If global is requested for a definition, we always need to create a new
3476 // global, not just return a bitcast.)
3477 if (!IsForDefinition)
3478 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3479 }
3480
3481 auto AddrSpace = GetGlobalVarAddressSpace(D);
3482 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3483
3484 auto *GV = new llvm::GlobalVariable(
3485 getModule(), Ty->getElementType(), false,
3486 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3487 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3488
3489 // If we already created a global with the same mangled name (but different
3490 // type) before, take its name and remove it from its parent.
3491 if (Entry) {
3492 GV->takeName(Entry);
3493
3494 if (!Entry->use_empty()) {
3495 llvm::Constant *NewPtrForOldDecl =
3496 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3497 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3498 }
3499
3500 Entry->eraseFromParent();
3501 }
3502
3503 // This is the first use or definition of a mangled name. If there is a
3504 // deferred decl with this name, remember that we need to emit it at the end
3505 // of the file.
3506 auto DDI = DeferredDecls.find(MangledName);
3507 if (DDI != DeferredDecls.end()) {
3508 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3509 // list, and remove it from DeferredDecls (since we don't need it anymore).
3510 addDeferredDeclToEmit(DDI->second);
3511 DeferredDecls.erase(DDI);
3512 }
3513
3514 // Handle things which are present even on external declarations.
3515 if (D) {
3516 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3517 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3518
3519 // FIXME: This code is overly simple and should be merged with other global
3520 // handling.
3521 GV->setConstant(isTypeConstant(D->getType(), false));
3522
3523 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3524
3525 setLinkageForGV(GV, D);
3526
3527 if (D->getTLSKind()) {
3528 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3529 CXXThreadLocals.push_back(D);
3530 setTLSMode(GV, *D);
3531 }
3532
3533 setGVProperties(GV, D);
3534
3535 // If required by the ABI, treat declarations of static data members with
3536 // inline initializers as definitions.
3537 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3538 EmitGlobalVarDefinition(D);
3539 }
3540
3541 // Emit section information for extern variables.
3542 if (D->hasExternalStorage()) {
3543 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3544 GV->setSection(SA->getName());
3545 }
3546
3547 // Handle XCore specific ABI requirements.
3548 if (getTriple().getArch() == llvm::Triple::xcore &&
3549 D->getLanguageLinkage() == CLanguageLinkage &&
3550 D->getType().isConstant(Context) &&
3551 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3552 GV->setSection(".cp.rodata");
3553
3554 // Check if we a have a const declaration with an initializer, we may be
3555 // able to emit it as available_externally to expose it's value to the
3556 // optimizer.
3557 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3558 D->getType().isConstQualified() && !GV->hasInitializer() &&
3559 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3560 const auto *Record =
3561 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3562 bool HasMutableFields = Record && Record->hasMutableFields();
3563 if (!HasMutableFields) {
3564 const VarDecl *InitDecl;
3565 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3566 if (InitExpr) {
3567 ConstantEmitter emitter(*this);
3568 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3569 if (Init) {
3570 auto *InitType = Init->getType();
3571 if (GV->getType()->getElementType() != InitType) {
3572 // The type of the initializer does not match the definition.
3573 // This happens when an initializer has a different type from
3574 // the type of the global (because of padding at the end of a
3575 // structure for instance).
3576 GV->setName(StringRef());
3577 // Make a new global with the correct type, this is now guaranteed
3578 // to work.
3579 auto *NewGV = cast<llvm::GlobalVariable>(
3580 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3581 ->stripPointerCasts());
3582
3583 // Erase the old global, since it is no longer used.
3584 GV->eraseFromParent();
3585 GV = NewGV;
3586 } else {
3587 GV->setInitializer(Init);
3588 GV->setConstant(true);
3589 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3590 }
3591 emitter.finalize(GV);
3592 }
3593 }
3594 }
3595 }
3596 }
3597
3598 if (GV->isDeclaration())
3599 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3600
3601 LangAS ExpectedAS =
3602 D ? D->getType().getAddressSpace()
3603 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3604 assert(getContext().getTargetAddressSpace(ExpectedAS) ==((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3605, __PRETTY_FUNCTION__))
3605 Ty->getPointerAddressSpace())((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3605, __PRETTY_FUNCTION__))
;
3606 if (AddrSpace != ExpectedAS)
3607 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3608 ExpectedAS, Ty);
3609
3610 return GV;
3611}
3612
3613llvm::Constant *
3614CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3615 ForDefinition_t IsForDefinition) {
3616 const Decl *D = GD.getDecl();
3617 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3618 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3619 /*DontDefer=*/false, IsForDefinition);
3620 else if (isa<CXXMethodDecl>(D)) {
3621 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3622 cast<CXXMethodDecl>(D));
3623 auto Ty = getTypes().GetFunctionType(*FInfo);
3624 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3625 IsForDefinition);
3626 } else if (isa<FunctionDecl>(D)) {
3627 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3628 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3629 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3630 IsForDefinition);
3631 } else
3632 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3633 IsForDefinition);
3634}
3635
3636llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3637 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3638 unsigned Alignment) {
3639 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3640 llvm::GlobalVariable *OldGV = nullptr;
3641
3642 if (GV) {
3643 // Check if the variable has the right type.
3644 if (GV->getType()->getElementType() == Ty)
3645 return GV;
3646
3647 // Because C++ name mangling, the only way we can end up with an already
3648 // existing global with the same name is if it has been declared extern "C".
3649 assert(GV->isDeclaration() && "Declaration has wrong type!")((GV->isDeclaration() && "Declaration has wrong type!"
) ? static_cast<void> (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3649, __PRETTY_FUNCTION__))
;
3650 OldGV = GV;
3651 }
3652
3653 // Create a new variable.
3654 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3655 Linkage, nullptr, Name);
3656
3657 if (OldGV) {
3658 // Replace occurrences of the old variable if needed.
3659 GV->takeName(OldGV);
3660
3661 if (!OldGV->use_empty()) {
3662 llvm::Constant *NewPtrForOldDecl =
3663 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3664 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3665 }
3666
3667 OldGV->eraseFromParent();
3668 }
3669
3670 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3671 !GV->hasAvailableExternallyLinkage())
3672 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3673
3674 GV->setAlignment(llvm::MaybeAlign(Alignment));
3675
3676 return GV;
3677}
3678
3679/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3680/// given global variable. If Ty is non-null and if the global doesn't exist,
3681/// then it will be created with the specified type instead of whatever the
3682/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3683/// that an actual global with type Ty will be returned, not conversion of a
3684/// variable with the same mangled name but some other type.
3685llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3686 llvm::Type *Ty,
3687 ForDefinition_t IsForDefinition) {
3688 assert(D->hasGlobalStorage() && "Not a global variable")((D->hasGlobalStorage() && "Not a global variable"
) ? static_cast<void> (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3688, __PRETTY_FUNCTION__))
;
3689 QualType ASTTy = D->getType();
3690 if (!Ty)
3691 Ty = getTypes().ConvertTypeForMem(ASTTy);
3692
3693 llvm::PointerType *PTy =
3694 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3695
3696 StringRef MangledName = getMangledName(D);
3697 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3698}
3699
3700/// CreateRuntimeVariable - Create a new runtime global variable with the
3701/// specified type and name.
3702llvm::Constant *
3703CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3704 StringRef Name) {
3705 auto PtrTy =
3706 getContext().getLangOpts().OpenCL
3707 ? llvm::PointerType::get(
3708 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3709 : llvm::PointerType::getUnqual(Ty);
3710 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3711 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3712 return Ret;
3713}
3714
3715void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3716 assert(!D->getInit() && "Cannot emit definite definitions here!")((!D->getInit() && "Cannot emit definite definitions here!"
) ? static_cast<void> (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3716, __PRETTY_FUNCTION__))
;
3717
3718 StringRef MangledName = getMangledName(D);
3719 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3720
3721 // We already have a definition, not declaration, with the same mangled name.
3722 // Emitting of declaration is not required (and actually overwrites emitted
3723 // definition).
3724 if (GV && !GV->isDeclaration())
3725 return;
3726
3727 // If we have not seen a reference to this variable yet, place it into the
3728 // deferred declarations table to be emitted if needed later.
3729 if (!MustBeEmitted(D) && !GV) {
3730 DeferredDecls[MangledName] = D;
3731 return;
3732 }
3733
3734 // The tentative definition is the only definition.
3735 EmitGlobalVarDefinition(D);
3736}
3737
3738void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3739 EmitExternalVarDeclaration(D);
3740}
3741
3742CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3743 return Context.toCharUnitsFromBits(
3744 getDataLayout().getTypeStoreSizeInBits(Ty));
3745}
3746
3747LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3748 LangAS AddrSpace = LangAS::Default;
3749 if (LangOpts.OpenCL) {
3750 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3751 assert(AddrSpace == LangAS::opencl_global ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
3752 AddrSpace == LangAS::opencl_constant ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
3753 AddrSpace == LangAS::opencl_local ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
3754 AddrSpace >= LangAS::FirstTargetAddressSpace)((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
;
3755 return AddrSpace;
3756 }
3757
3758 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3759 if (D && D->hasAttr<CUDAConstantAttr>())
3760 return LangAS::cuda_constant;
3761 else if (D && D->hasAttr<CUDASharedAttr>())
3762 return LangAS::cuda_shared;
3763 else if (D && D->hasAttr<CUDADeviceAttr>())
3764 return LangAS::cuda_device;
3765 else if (D && D->getType().isConstQualified())
3766 return LangAS::cuda_constant;
3767 else
3768 return LangAS::cuda_device;
3769 }
3770
3771 if (LangOpts.OpenMP) {
3772 LangAS AS;
3773 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3774 return AS;
3775 }
3776 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3777}
3778
3779LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3780 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3781 if (LangOpts.OpenCL)
3782 return LangAS::opencl_constant;
3783 if (auto AS = getTarget().getConstantAddressSpace())
3784 return AS.getValue();
3785 return LangAS::Default;
3786}
3787
3788// In address space agnostic languages, string literals are in default address
3789// space in AST. However, certain targets (e.g. amdgcn) request them to be
3790// emitted in constant address space in LLVM IR. To be consistent with other
3791// parts of AST, string literal global variables in constant address space
3792// need to be casted to default address space before being put into address
3793// map and referenced by other part of CodeGen.
3794// In OpenCL, string literals are in constant address space in AST, therefore
3795// they should not be casted to default address space.
3796static llvm::Constant *
3797castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3798 llvm::GlobalVariable *GV) {
3799 llvm::Constant *Cast = GV;
3800 if (!CGM.getLangOpts().OpenCL) {
3801 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3802 if (AS != LangAS::Default)
3803 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3804 CGM, GV, AS.getValue(), LangAS::Default,
3805 GV->getValueType()->getPointerTo(
3806 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3807 }
3808 }
3809 return Cast;
3810}
3811
3812template<typename SomeDecl>
3813void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3814 llvm::GlobalValue *GV) {
3815 if (!getLangOpts().CPlusPlus)
3816 return;
3817
3818 // Must have 'used' attribute, or else inline assembly can't rely on
3819 // the name existing.
3820 if (!D->template hasAttr<UsedAttr>())
3821 return;
3822
3823 // Must have internal linkage and an ordinary name.
3824 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3825 return;
3826
3827 // Must be in an extern "C" context. Entities declared directly within
3828 // a record are not extern "C" even if the record is in such a context.
3829 const SomeDecl *First = D->getFirstDecl();
3830 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3831 return;
3832
3833 // OK, this is an internal linkage entity inside an extern "C" linkage
3834 // specification. Make a note of that so we can give it the "expected"
3835 // mangled name if nothing else is using that name.
3836 std::pair<StaticExternCMap::iterator, bool> R =
3837 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3838
3839 // If we have multiple internal linkage entities with the same name
3840 // in extern "C" regions, none of them gets that name.
3841 if (!R.second)
3842 R.first->second = nullptr;
3843}
3844
3845static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3846 if (!CGM.supportsCOMDAT())
3847 return false;
3848
3849 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3850 // them being "merged" by the COMDAT Folding linker optimization.
3851 if (D.hasAttr<CUDAGlobalAttr>())
3852 return false;
3853
3854 if (D.hasAttr<SelectAnyAttr>())
3855 return true;
3856
3857 GVALinkage Linkage;
3858 if (auto *VD = dyn_cast<VarDecl>(&D))
3859 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3860 else
3861 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3862
3863 switch (Linkage) {
3864 case GVA_Internal:
3865 case GVA_AvailableExternally:
3866 case GVA_StrongExternal:
3867 return false;
3868 case GVA_DiscardableODR:
3869 case GVA_StrongODR:
3870 return true;
3871 }
3872 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3872)
;
3873}
3874
3875void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3876 llvm::GlobalObject &GO) {
3877 if (!shouldBeInCOMDAT(*this, D))
3878 return;
3879 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3880}
3881
3882/// Pass IsTentative as true if you want to create a tentative definition.
3883void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3884 bool IsTentative) {
3885 // OpenCL global variables of sampler type are translated to function calls,
3886 // therefore no need to be translated.
3887 QualType ASTTy = D->getType();
3888 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3889 return;
3890
3891 // If this is OpenMP device, check if it is legal to emit this global
3892 // normally.
3893 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3894 OpenMPRuntime->emitTargetGlobalVariable(D))
3895 return;
3896
3897 llvm::Constant *Init = nullptr;
3898 bool NeedsGlobalCtor = false;
3899 bool NeedsGlobalDtor =
3900 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3901
3902 const VarDecl *InitDecl;
3903 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3904
3905 Optional<ConstantEmitter> emitter;
3906
3907 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3908 // as part of their declaration." Sema has already checked for
3909 // error cases, so we just need to set Init to UndefValue.
3910 bool IsCUDASharedVar =
3911 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3912 // Shadows of initialized device-side global variables are also left
3913 // undefined.
3914 bool IsCUDAShadowVar =
3915 !getLangOpts().CUDAIsDevice &&
3916 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3917 D->hasAttr<CUDASharedAttr>());
3918 // HIP pinned shadow of initialized host-side global variables are also
3919 // left undefined.
3920 bool IsHIPPinnedShadowVar =
3921 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3922 if (getLangOpts().CUDA &&
3923 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3924 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3925 else if (!InitExpr) {
3926 // This is a tentative definition; tentative definitions are
3927 // implicitly initialized with { 0 }.
3928 //
3929 // Note that tentative definitions are only emitted at the end of
3930 // a translation unit, so they should never have incomplete
3931 // type. In addition, EmitTentativeDefinition makes sure that we
3932 // never attempt to emit a tentative definition if a real one
3933 // exists. A use may still exists, however, so we still may need
3934 // to do a RAUW.
3935 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")((!ASTTy->isIncompleteType() && "Unexpected incomplete type"
) ? static_cast<void> (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3935, __PRETTY_FUNCTION__))
;
3936 Init = EmitNullConstant(D->getType());
3937 } else {
3938 initializedGlobalDecl = GlobalDecl(D);
3939 emitter.emplace(*this);
3940 Init = emitter->tryEmitForInitializer(*InitDecl);
3941
3942 if (!Init) {
3943 QualType T = InitExpr->getType();
3944 if (D->getType()->isReferenceType())
3945 T = D->getType();
3946
3947 if (getLangOpts().CPlusPlus) {
3948 Init = EmitNullConstant(T);
3949 NeedsGlobalCtor = true;
3950 } else {
3951 ErrorUnsupported(D, "static initializer");
3952 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3953 }
3954 } else {
3955 // We don't need an initializer, so remove the entry for the delayed
3956 // initializer position (just in case this entry was delayed) if we
3957 // also don't need to register a destructor.
3958 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3959 DelayedCXXInitPosition.erase(D);
3960 }
3961 }
3962
3963 llvm::Type* InitType = Init->getType();
3964 llvm::Constant *Entry =
3965 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3966
3967 // Strip off pointer casts if we got them.
3968 Entry = Entry->stripPointerCasts();
3969
3970 // Entry is now either a Function or GlobalVariable.
3971 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3972
3973 // We have a definition after a declaration with the wrong type.
3974 // We must make a new GlobalVariable* and update everything that used OldGV
3975 // (a declaration or tentative definition) with the new GlobalVariable*
3976 // (which will be a definition).
3977 //
3978 // This happens if there is a prototype for a global (e.g.
3979 // "extern int x[];") and then a definition of a different type (e.g.
3980 // "int x[10];"). This also happens when an initializer has a different type
3981 // from the type of the global (this happens with unions).
3982 if (!GV || GV->getType()->getElementType() != InitType ||
3983 GV->getType()->getAddressSpace() !=
3984 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3985
3986 // Move the old entry aside so that we'll create a new one.
3987 Entry->setName(StringRef());
3988
3989 // Make a new global with the correct type, this is now guaranteed to work.
3990 GV = cast<llvm::GlobalVariable>(
3991 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3992 ->stripPointerCasts());
3993
3994 // Replace all uses of the old global with the new global
3995 llvm::Constant *NewPtrForOldDecl =
3996 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3997 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3998
3999 // Erase the old global, since it is no longer used.
4000 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4001 }
4002
4003 MaybeHandleStaticInExternC(D, GV);
4004
4005 if (D->hasAttr<AnnotateAttr>())
4006 AddGlobalAnnotations(D, GV);
4007
4008 // Set the llvm linkage type as appropriate.
4009 llvm::GlobalValue::LinkageTypes Linkage =
4010 getLLVMLinkageVarDefinition(D, GV->isConstant());
4011
4012 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4013 // the device. [...]"
4014 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4015 // __device__, declares a variable that: [...]
4016 // Is accessible from all the threads within the grid and from the host
4017 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4018 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4019 if (GV && LangOpts.CUDA) {
4020 if (LangOpts.CUDAIsDevice) {
4021 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4022 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4023 GV->setExternallyInitialized(true);
4024 } else {
4025 // Host-side shadows of external declarations of device-side
4026 // global variables become internal definitions. These have to
4027 // be internal in order to prevent name conflicts with global
4028 // host variables with the same name in a different TUs.
4029 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4030 D->hasAttr<HIPPinnedShadowAttr>()) {
4031 Linkage = llvm::GlobalValue::InternalLinkage;
4032
4033 // Shadow variables and their properties must be registered
4034 // with CUDA runtime.
4035 unsigned Flags = 0;
4036 if (!D->hasDefinition())
4037 Flags |= CGCUDARuntime::ExternDeviceVar;
4038 if (D->hasAttr<CUDAConstantAttr>())
4039 Flags |= CGCUDARuntime::ConstantDeviceVar;
4040 // Extern global variables will be registered in the TU where they are
4041 // defined.
4042 if (!D->hasExternalStorage())
4043 getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4044 } else if (D->hasAttr<CUDASharedAttr>())
4045 // __shared__ variables are odd. Shadows do get created, but
4046 // they are not registered with the CUDA runtime, so they
4047 // can't really be used to access their device-side
4048 // counterparts. It's not clear yet whether it's nvcc's bug or
4049 // a feature, but we've got to do the same for compatibility.
4050 Linkage = llvm::GlobalValue::InternalLinkage;
4051 }
4052 }
4053
4054 if (!IsHIPPinnedShadowVar)
4055 GV->setInitializer(Init);
4056 if (emitter) emitter->finalize(GV);
4057
4058 // If it is safe to mark the global 'constant', do so now.
4059 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4060 isTypeConstant(D->getType(), true));
4061
4062 // If it is in a read-only section, mark it 'constant'.
4063 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4064 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4065 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4066 GV->setConstant(true);
4067 }
4068
4069 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4070
4071 // On Darwin, if the normal linkage of a C++ thread_local variable is
4072 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4073 // copies within a linkage unit; otherwise, the backing variable has
4074 // internal linkage and all accesses should just be calls to the
4075 // Itanium-specified entry point, which has the normal linkage of the
4076 // variable. This is to preserve the ability to change the implementation
4077 // behind the scenes.
4078 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4079 Context.getTargetInfo().getTriple().isOSDarwin() &&
4080 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4081 !llvm::GlobalVariable::isWeakLinkage(Linkage))
4082 Linkage = llvm::GlobalValue::InternalLinkage;
4083
4084 GV->setLinkage(Linkage);
4085 if (D->hasAttr<DLLImportAttr>())
4086 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4087 else if (D->hasAttr<DLLExportAttr>())
4088 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4089 else
4090 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4091
4092 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4093 // common vars aren't constant even if declared const.
4094 GV->setConstant(false);
4095 // Tentative definition of global variables may be initialized with
4096 // non-zero null pointers. In this case they should have weak linkage
4097 // since common linkage must have zero initializer and must not have
4098 // explicit section therefore cannot have non-zero initial value.
4099 if (!GV->getInitializer()->isNullValue())
4100 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4101 }
4102
4103 setNonAliasAttributes(D, GV);
4104
4105 if (D->getTLSKind() && !GV->isThreadLocal()) {
4106 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4107 CXXThreadLocals.push_back(D);
4108 setTLSMode(GV, *D);
4109 }
4110
4111 maybeSetTrivialComdat(*D, *GV);
4112
4113 // Emit the initializer function if necessary.
4114 if (NeedsGlobalCtor || NeedsGlobalDtor)
4115 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4116
4117 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4118
4119 // Emit global variable debug information.
4120 if (CGDebugInfo *DI = getModuleDebugInfo())
4121 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4122 DI->EmitGlobalVariable(GV, D);
4123}
4124
4125void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4126 if (CGDebugInfo *DI = getModuleDebugInfo())
4127 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
4128 QualType ASTTy = D->getType();
4129 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4130 llvm::PointerType *PTy =
4131 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4132 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4133 DI->EmitExternalVariable(
4134 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4135 }
4136}
4137
4138static bool isVarDeclStrongDefinition(const ASTContext &Context,
4139 CodeGenModule &CGM, const VarDecl *D,
4140 bool NoCommon) {
4141 // Don't give variables common linkage if -fno-common was specified unless it
4142 // was overridden by a NoCommon attribute.
4143 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4144 return true;
4145
4146 // C11 6.9.2/2:
4147 // A declaration of an identifier for an object that has file scope without
4148 // an initializer, and without a storage-class specifier or with the
4149 // storage-class specifier static, constitutes a tentative definition.
4150 if (D->getInit() || D->hasExternalStorage())
4151 return true;
4152
4153 // A variable cannot be both common and exist in a section.
4154 if (D->hasAttr<SectionAttr>())
4155 return true;
4156
4157 // A variable cannot be both common and exist in a section.
4158 // We don't try to determine which is the right section in the front-end.
4159 // If no specialized section name is applicable, it will resort to default.
4160 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4161 D->hasAttr<PragmaClangDataSectionAttr>() ||
4162 D->hasAttr<PragmaClangRelroSectionAttr>() ||
4163 D->hasAttr<PragmaClangRodataSectionAttr>())
4164 return true;
4165
4166 // Thread local vars aren't considered common linkage.
4167 if (D->getTLSKind())
4168 return true;
4169
4170 // Tentative definitions marked with WeakImportAttr are true definitions.
4171 if (D->hasAttr<WeakImportAttr>())
4172 return true;
4173
4174 // A variable cannot be both common and exist in a comdat.
4175 if (shouldBeInCOMDAT(CGM, *D))
4176 return true;
4177
4178 // Declarations with a required alignment do not have common linkage in MSVC
4179 // mode.
4180 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4181 if (D->hasAttr<AlignedAttr>())
4182 return true;
4183 QualType VarType = D->getType();
4184 if (Context.isAlignmentRequired(VarType))
4185 return true;
4186
4187 if (const auto *RT = VarType->getAs<RecordType>()) {
4188 const RecordDecl *RD = RT->getDecl();
4189 for (const FieldDecl *FD : RD->fields()) {
4190 if (FD->isBitField())
4191 continue;
4192 if (FD->hasAttr<AlignedAttr>())
4193 return true;
4194 if (Context.isAlignmentRequired(FD->getType()))
4195 return true;
4196 }
4197 }
4198 }
4199
4200 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4201 // common symbols, so symbols with greater alignment requirements cannot be
4202 // common.
4203 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4204 // alignments for common symbols via the aligncomm directive, so this
4205 // restriction only applies to MSVC environments.
4206 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4207 Context.getTypeAlignIfKnown(D->getType()) >
4208 Context.toBits(CharUnits::fromQuantity(32)))
4209 return true;
4210
4211 return false;
4212}
4213
4214llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4215 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4216 if (Linkage == GVA_Internal)
4217 return llvm::Function::InternalLinkage;
4218
4219 if (D->hasAttr<WeakAttr>()) {
4220 if (IsConstantVariable)
4221 return llvm::GlobalVariable::WeakODRLinkage;
4222 else
4223 return llvm::GlobalVariable::WeakAnyLinkage;
4224 }
4225
4226 if (const auto *FD = D->getAsFunction())
4227 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4228 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4229
4230 // We are guaranteed to have a strong definition somewhere else,
4231 // so we can use available_externally linkage.
4232 if (Linkage == GVA_AvailableExternally)
4233 return llvm::GlobalValue::AvailableExternallyLinkage;
4234
4235 // Note that Apple's kernel linker doesn't support symbol
4236 // coalescing, so we need to avoid linkonce and weak linkages there.
4237 // Normally, this means we just map to internal, but for explicit
4238 // instantiations we'll map to external.
4239
4240 // In C++, the compiler has to emit a definition in every translation unit
4241 // that references the function. We should use linkonce_odr because
4242 // a) if all references in this translation unit are optimized away, we
4243 // don't need to codegen it. b) if the function persists, it needs to be
4244 // merged with other definitions. c) C++ has the ODR, so we know the
4245 // definition is dependable.
4246 if (Linkage == GVA_DiscardableODR)
4247 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4248 : llvm::Function::InternalLinkage;
4249
4250 // An explicit instantiation of a template has weak linkage, since
4251 // explicit instantiations can occur in multiple translation units
4252 // and must all be equivalent. However, we are not allowed to
4253 // throw away these explicit instantiations.
4254 //
4255 // We don't currently support CUDA device code spread out across multiple TUs,
4256 // so say that CUDA templates are either external (for kernels) or internal.
4257 // This lets llvm perform aggressive inter-procedural optimizations.
4258 if (Linkage == GVA_StrongODR) {
4259 if (Context.getLangOpts().AppleKext)
4260 return llvm::Function::ExternalLinkage;
4261 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4262 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4263 : llvm::Function::InternalLinkage;
4264 return llvm::Function::WeakODRLinkage;
4265 }
4266
4267 // C++ doesn't have tentative definitions and thus cannot have common
4268 // linkage.
4269 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4270 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4271 CodeGenOpts.NoCommon))
4272 return llvm::GlobalVariable::CommonLinkage;
4273
4274 // selectany symbols are externally visible, so use weak instead of
4275 // linkonce. MSVC optimizes away references to const selectany globals, so
4276 // all definitions should be the same and ODR linkage should be used.
4277 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4278 if (D->hasAttr<SelectAnyAttr>())
4279 return llvm::GlobalVariable::WeakODRLinkage;
4280
4281 // Otherwise, we have strong external linkage.
4282 assert(Linkage == GVA_StrongExternal)((Linkage == GVA_StrongExternal) ? static_cast<void> (0
) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4282, __PRETTY_FUNCTION__))
;
4283 return llvm::GlobalVariable::ExternalLinkage;
4284}
4285
4286llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4287 const VarDecl *VD, bool IsConstant) {
4288 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4289 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4290}
4291
4292/// Replace the uses of a function that was declared with a non-proto type.
4293/// We want to silently drop extra arguments from call sites
4294static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4295 llvm::Function *newFn) {
4296 // Fast path.
4297 if (old->use_empty()) return;
4298
4299 llvm::Type *newRetTy = newFn->getReturnType();
4300 SmallVector<llvm::Value*, 4> newArgs;
4301 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4302
4303 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4304 ui != ue; ) {
4305 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4306 llvm::User *user = use->getUser();
4307
4308 // Recognize and replace uses of bitcasts. Most calls to
4309 // unprototyped functions will use bitcasts.
4310 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4311 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4312 replaceUsesOfNonProtoConstant(bitcast, newFn);
4313 continue;
4314 }
4315
4316 // Recognize calls to the function.
4317 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4318 if (!callSite) continue;
4319 if (!callSite->isCallee(&*use))
4320 continue;
4321
4322 // If the return types don't match exactly, then we can't
4323 // transform this call unless it's dead.
4324 if (callSite->getType() != newRetTy && !callSite->use_empty())
4325 continue;
4326
4327 // Get the call site's attribute list.
4328 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4329 llvm::AttributeList oldAttrs = callSite->getAttributes();
4330
4331 // If the function was passed too few arguments, don't transform.
4332 unsigned newNumArgs = newFn->arg_size();
4333 if (callSite->arg_size() < newNumArgs)
4334 continue;
4335
4336 // If extra arguments were passed, we silently drop them.
4337 // If any of the types mismatch, we don't transform.
4338 unsigned argNo = 0;
4339 bool dontTransform = false;
4340 for (llvm::Argument &A : newFn->args()) {
4341 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4342 dontTransform = true;
4343 break;
4344 }
4345
4346 // Add any parameter attributes.
4347 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4348 argNo++;
4349 }
4350 if (dontTransform)
4351 continue;
4352
4353 // Okay, we can transform this. Create the new call instruction and copy
4354 // over the required information.
4355 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4356
4357 // Copy over any operand bundles.
4358 callSite->getOperandBundlesAsDefs(newBundles);
4359
4360 llvm::CallBase *newCall;
4361 if (dyn_cast<llvm::CallInst>(callSite)) {
4362 newCall =
4363 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4364 } else {
4365 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4366 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4367 oldInvoke->getUnwindDest(), newArgs,
4368 newBundles, "", callSite);
4369 }
4370 newArgs.clear(); // for the next iteration
4371
4372 if (!newCall->getType()->isVoidTy())
4373 newCall->takeName(callSite);
4374 newCall->setAttributes(llvm::AttributeList::get(
4375 newFn->getContext(), oldAttrs.getFnAttributes(),
4376 oldAttrs.getRetAttributes(), newArgAttrs));
4377 newCall->setCallingConv(callSite->getCallingConv());
4378
4379 // Finally, remove the old call, replacing any uses with the new one.
4380 if (!callSite->use_empty())
4381 callSite->replaceAllUsesWith(newCall);
4382
4383 // Copy debug location attached to CI.
4384 if (callSite->getDebugLoc())
4385 newCall->setDebugLoc(callSite->getDebugLoc());
4386
4387 callSite->eraseFromParent();
4388 }
4389}
4390
4391/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4392/// implement a function with no prototype, e.g. "int foo() {}". If there are
4393/// existing call uses of the old function in the module, this adjusts them to
4394/// call the new function directly.
4395///
4396/// This is not just a cleanup: the always_inline pass requires direct calls to
4397/// functions to be able to inline them. If there is a bitcast in the way, it
4398/// won't inline them. Instcombine normally deletes these calls, but it isn't
4399/// run at -O0.
4400static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4401 llvm::Function *NewFn) {
4402 // If we're redefining a global as a function, don't transform it.
4403 if (!isa<llvm::Function>(Old)) return;
4404
4405 replaceUsesOfNonProtoConstant(Old, NewFn);
4406}
4407
4408void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4409 auto DK = VD->isThisDeclarationADefinition();
4410 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4411 return;
4412
4413 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4414 // If we have a definition, this might be a deferred decl. If the
4415 // instantiation is explicit, make sure we emit it at the end.
4416 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4417 GetAddrOfGlobalVar(VD);
4418
4419 EmitTopLevelDecl(VD);
4420}
4421
4422void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4423 llvm::GlobalValue *GV) {
4424 // Check if this must be emitted as declare variant.
4425 if (LangOpts.OpenMP && OpenMPRuntime &&
4426 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4427 return;
4428
4429 const auto *D = cast<FunctionDecl>(GD.getDecl());
4430
4431 // Compute the function info and LLVM type.
4432 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4433 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4434
4435 // Get or create the prototype for the function.
4436 if (!GV || (GV->getType()->getElementType() != Ty))
4437 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4438 /*DontDefer=*/true,
4439 ForDefinition));
4440
4441 // Already emitted.
4442 if (!GV->isDeclaration())
4443 return;
4444
4445 // We need to set linkage and visibility on the function before
4446 // generating code for it because various parts of IR generation
4447 // want to propagate this information down (e.g. to local static
4448 // declarations).
4449 auto *Fn = cast<llvm::Function>(GV);
4450 setFunctionLinkage(GD, Fn);
4451
4452 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4453 setGVProperties(Fn, GD);
4454
4455 MaybeHandleStaticInExternC(D, Fn);
4456
4457
4458 maybeSetTrivialComdat(*D, *Fn);
4459
4460 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4461
4462 setNonAliasAttributes(GD, Fn);
4463 SetLLVMFunctionAttributesForDefinition(D, Fn);
4464
4465 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4466 AddGlobalCtor(Fn, CA->getPriority());
4467 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4468 AddGlobalDtor(Fn, DA->getPriority());
4469 if (D->hasAttr<AnnotateAttr>())
4470 AddGlobalAnnotations(D, Fn);
4471}
4472
4473void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4474 const auto *D = cast<ValueDecl>(GD.getDecl());
4475 const AliasAttr *AA = D->getAttr<AliasAttr>();
4476 assert(AA && "Not an alias?")((AA && "Not an alias?") ? static_cast<void> (0
) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4476, __PRETTY_FUNCTION__))
;
4477
4478 StringRef MangledName = getMangledName(GD);
4479
4480 if (AA->getAliasee() == MangledName) {
4481 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4482 return;
4483 }
4484
4485 // If there is a definition in the module, then it wins over the alias.
4486 // This is dubious, but allow it to be safe. Just ignore the alias.
4487 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4488 if (Entry && !Entry->isDeclaration())
4489 return;
4490
4491 Aliases.push_back(GD);
4492
4493 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4494
4495 // Create a reference to the named value. This ensures that it is emitted
4496 // if a deferred decl.
4497 llvm::Constant *Aliasee;
4498 llvm::GlobalValue::LinkageTypes LT;
4499 if (isa<llvm::FunctionType>(DeclTy)) {
4500 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4501 /*ForVTable=*/false);
4502 LT = getFunctionLinkage(GD);
4503 } else {
4504 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4505 llvm::PointerType::getUnqual(DeclTy),
4506 /*D=*/nullptr);
4507 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4508 D->getType().isConstQualified());
4509 }
4510
4511 // Create the new alias itself, but don't set a name yet.
4512 auto *GA =
4513 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4514
4515 if (Entry) {
4516 if (GA->getAliasee() == Entry) {
4517 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4518 return;
4519 }
4520
4521 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4521, __PRETTY_FUNCTION__))
;
4522
4523 // If there is a declaration in the module, then we had an extern followed
4524 // by the alias, as in:
4525 // extern int test6();
4526 // ...
4527 // int test6() __attribute__((alias("test7")));
4528 //
4529 // Remove it and replace uses of it with the alias.
4530 GA->takeName(Entry);
4531
4532 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4533 Entry->getType()));
4534 Entry->eraseFromParent();
4535 } else {
4536 GA->setName(MangledName);
4537 }
4538
4539 // Set attributes which are particular to an alias; this is a
4540 // specialization of the attributes which may be set on a global
4541 // variable/function.
4542 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4543 D->isWeakImported()) {
4544 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4545 }
4546
4547 if (const auto *VD = dyn_cast<VarDecl>(D))
4548 if (VD->getTLSKind())
4549 setTLSMode(GA, *VD);
4550
4551 SetCommonAttributes(GD, GA);
4552}
4553
4554void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4555 const auto *D = cast<ValueDecl>(GD.getDecl());
4556 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4557 assert(IFA && "Not an ifunc?")((IFA && "Not an ifunc?") ? static_cast<void> (
0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4557, __PRETTY_FUNCTION__))
;
4558
4559 StringRef MangledName = getMangledName(GD);
4560
4561 if (IFA->getResolver() == MangledName) {
4562 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4563 return;
4564 }
4565
4566 // Report an error if some definition overrides ifunc.
4567 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4568 if (Entry && !Entry->isDeclaration()) {
4569 GlobalDecl OtherGD;
4570 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4571 DiagnosedConflictingDefinitions.insert(GD).second) {
4572 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4573 << MangledName;
4574 Diags.Report(OtherGD.getDecl()->getLocation(),
4575 diag::note_previous_definition);
4576 }
4577 return;
4578 }
4579
4580 Aliases.push_back(GD);
4581
4582 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4583 llvm::Constant *Resolver =
4584 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4585 /*ForVTable=*/false);
4586 llvm::GlobalIFunc *GIF =
4587 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4588 "", Resolver, &getModule());
4589 if (Entry) {
4590 if (GIF->getResolver() == Entry) {
4591 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4592 return;
4593 }
4594 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4594, __PRETTY_FUNCTION__))
;
4595
4596 // If there is a declaration in the module, then we had an extern followed
4597 // by the ifunc, as in:
4598 // extern int test();
4599 // ...
4600 // int test() __attribute__((ifunc("resolver")));
4601 //
4602 // Remove it and replace uses of it with the ifunc.
4603 GIF->takeName(Entry);
4604
4605 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4606 Entry->getType()));
4607 Entry->eraseFromParent();
4608 } else
4609 GIF->setName(MangledName);
4610
4611 SetCommonAttributes(GD, GIF);
4612}
4613
4614llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4615 ArrayRef<llvm::Type*> Tys) {
4616 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4617 Tys);
4618}
4619
4620static llvm::StringMapEntry<llvm::GlobalVariable *> &
4621GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4622 const StringLiteral *Literal, bool TargetIsLSB,
4623 bool &IsUTF16, unsigned &StringLength) {
4624 StringRef String = Literal->getString();
4625 unsigned NumBytes = String.size();
4626
4627 // Check for simple case.
4628 if (!Literal->containsNonAsciiOrNull()) {
4629 StringLength = NumBytes;
4630 return *Map.insert(std::make_pair(String, nullptr)).first;
4631 }
4632
4633 // Otherwise, convert the UTF8 literals into a string of shorts.
4634 IsUTF16 = true;
4635
4636 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4637 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4638 llvm::UTF16 *ToPtr = &ToBuf[0];
4639
4640 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4641 ToPtr + NumBytes, llvm::strictConversion);
4642
4643 // ConvertUTF8toUTF16 returns the length in ToPtr.
4644 StringLength = ToPtr - &ToBuf[0];
4645
4646 // Add an explicit null.
4647 *ToPtr = 0;
4648 return *Map.insert(std::make_pair(
4649 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4650 (StringLength + 1) * 2),
4651 nullptr)).first;
4652}
4653
4654ConstantAddress
4655CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4656 unsigned StringLength = 0;
4657 bool isUTF16 = false;
4658 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4659 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4660 getDataLayout().isLittleEndian(), isUTF16,
4661 StringLength);
4662
4663 if (auto *C = Entry.second)
4664 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4665
4666 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4667 llvm::Constant *Zeros[] = { Zero, Zero };
4668
4669 const ASTContext &Context = getContext();
4670 const llvm::Triple &Triple = getTriple();
4671
4672 const auto CFRuntime = getLangOpts().CFRuntime;
4673 const bool IsSwiftABI =
4674 static_cast<unsigned>(CFRuntime) >=
4675 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4676 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4677
4678 // If we don't already have it, get __CFConstantStringClassReference.
4679 if (!CFConstantStringClassRef) {
4680 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4681 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4682 Ty = llvm::ArrayType::get(Ty, 0);
4683
4684 switch (CFRuntime) {
4685 default: break;
4686 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH[[gnu::fallthrough]];
4687 case LangOptions::CoreFoundationABI::Swift5_0:
4688 CFConstantStringClassName =
4689 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4690 : "$s10Foundation19_NSCFConstantStringCN";
4691 Ty = IntPtrTy;
4692 break;
4693 case LangOptions::CoreFoundationABI::Swift4_2:
4694 CFConstantStringClassName =
4695 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4696 : "$S10Foundation19_NSCFConstantStringCN";
4697 Ty = IntPtrTy;
4698 break;
4699 case LangOptions::CoreFoundationABI::Swift4_1:
4700 CFConstantStringClassName =
4701 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4702 : "__T010Foundation19_NSCFConstantStringCN";
4703 Ty = IntPtrTy;
4704 break;
4705 }
4706
4707 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4708
4709 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4710 llvm::GlobalValue *GV = nullptr;
4711
4712 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4713 IdentifierInfo &II = Context.Idents.get(GV->getName());
4714 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4715 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4716
4717 const VarDecl *VD = nullptr;
4718 for (const auto &Result : DC->lookup(&II))
4719 if ((VD = dyn_cast<VarDecl>(Result)))
4720 break;
4721
4722 if (Triple.isOSBinFormatELF()) {
4723 if (!VD)
4724 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4725 } else {
4726 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4727 if (!VD || !VD->hasAttr<DLLExportAttr>())
4728 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4729 else
4730 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4731 }
4732
4733 setDSOLocal(GV);
4734 }
4735 }
4736
4737 // Decay array -> ptr
4738 CFConstantStringClassRef =
4739 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4740 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4741 }
4742
4743 QualType CFTy = Context.getCFConstantStringType();
4744
4745 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4746
4747 ConstantInitBuilder Builder(*this);
4748 auto Fields = Builder.beginStruct(STy);
4749
4750 // Class pointer.
4751 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4752
4753 // Flags.
4754 if (IsSwiftABI) {
4755 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4756 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4757 } else {
4758 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4759 }
4760
4761 // String pointer.
4762 llvm::Constant *C = nullptr;
4763 if (isUTF16) {
4764 auto Arr = llvm::makeArrayRef(
4765 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4766 Entry.first().size() / 2);
4767 C = llvm::ConstantDataArray::get(VMContext, Arr);
4768 } else {
4769 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4770 }
4771
4772 // Note: -fwritable-strings doesn't make the backing store strings of
4773 // CFStrings writable. (See <rdar://problem/10657500>)
4774 auto *GV =
4775 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4776 llvm::GlobalValue::PrivateLinkage, C, ".str");
4777 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4778 // Don't enforce the target's minimum global alignment, since the only use
4779 // of the string is via this class initializer.
4780 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4781 : Context.getTypeAlignInChars(Context.CharTy);
4782 GV->setAlignment(Align.getAsAlign());
4783
4784 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4785 // Without it LLVM can merge the string with a non unnamed_addr one during
4786 // LTO. Doing that changes the section it ends in, which surprises ld64.
4787 if (Triple.isOSBinFormatMachO())
4788 GV->setSection(isUTF16 ? "__TEXT,__ustring"
4789 : "__TEXT,__cstring,cstring_literals");
4790 // Make sure the literal ends up in .rodata to allow for safe ICF and for
4791 // the static linker to adjust permissions to read-only later on.
4792 else if (Triple.isOSBinFormatELF())
4793 GV->setSection(".rodata");
4794
4795 // String.
4796 llvm::Constant *Str =
4797 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4798
4799 if (isUTF16)
4800 // Cast the UTF16 string to the correct type.
4801 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4802 Fields.add(Str);
4803
4804 // String length.
4805 llvm::IntegerType *LengthTy =
4806 llvm::IntegerType::get(getModule().getContext(),
4807 Context.getTargetInfo().getLongWidth());
4808 if (IsSwiftABI) {
4809 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4810 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4811 LengthTy = Int32Ty;
4812 else
4813 LengthTy = IntPtrTy;
4814 }
4815 Fields.addInt(LengthTy, StringLength);
4816
4817 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4818 // properly aligned on 32-bit platforms.
4819 CharUnits Alignment =
4820 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4821
4822 // The struct.
4823 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4824 /*isConstant=*/false,
4825 llvm::GlobalVariable::PrivateLinkage);
4826 GV->addAttribute("objc_arc_inert");
4827 switch (Triple.getObjectFormat()) {
4828 case llvm::Triple::UnknownObjectFormat:
4829 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4829)
;
4830 case llvm::Triple::XCOFF:
4831 llvm_unreachable("XCOFF is not yet implemented")::llvm::llvm_unreachable_internal("XCOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4831)
;
4832 case llvm::Triple::COFF:
4833 case llvm::Triple::ELF:
4834 case llvm::Triple::Wasm:
4835 GV->setSection("cfstring");
4836 break;
4837 case llvm::Triple::MachO:
4838 GV->setSection("__DATA,__cfstring");
4839 break;
4840 }
4841 Entry.second = GV;
4842
4843 return ConstantAddress(GV, Alignment);
4844}
4845
4846bool CodeGenModule::getExpressionLocationsEnabled() const {
4847 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4848}
4849
4850QualType CodeGenModule::getObjCFastEnumerationStateType() {
4851 if (ObjCFastEnumerationStateType.isNull()) {
4852 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4853 D->startDefinition();
4854
4855 QualType FieldTypes[] = {
4856 Context.UnsignedLongTy,
4857 Context.getPointerType(Context.getObjCIdType()),
4858 Context.getPointerType(Context.UnsignedLongTy),
4859 Context.getConstantArrayType(Context.UnsignedLongTy,
4860 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4861 };
4862
4863 for (size_t i = 0; i < 4; ++i) {
4864 FieldDecl *Field = FieldDecl::Create(Context,
4865 D,
4866 SourceLocation(),
4867 SourceLocation(), nullptr,
4868 FieldTypes[i], /*TInfo=*/nullptr,
4869 /*BitWidth=*/nullptr,
4870 /*Mutable=*/false,
4871 ICIS_NoInit);
4872 Field->setAccess(AS_public);
4873 D->addDecl(Field);
4874 }
4875
4876 D->completeDefinition();
4877 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4878 }
4879
4880 return ObjCFastEnumerationStateType;
4881}
4882
4883llvm::Constant *
4884CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4885 assert(!E->getType()->isPointerType() && "Strings are always arrays")((!E->getType()->isPointerType() && "Strings are always arrays"
) ? static_cast<void> (0) : __assert_fail ("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4885, __PRETTY_FUNCTION__))
;
4886
4887 // Don't emit it as the address of the string, emit the string data itself
4888 // as an inline array.
4889 if (E->getCharByteWidth() == 1) {
4890 SmallString<64> Str(E->getString());
4891
4892 // Resize the string to the right size, which is indicated by its type.
4893 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4894 Str.resize(CAT->getSize().getZExtValue());
4895 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4896 }
4897
4898 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4899 llvm::Type *ElemTy = AType->getElementType();
4900 unsigned NumElements = AType->getNumElements();
4901
4902 // Wide strings have either 2-byte or 4-byte elements.
4903 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4904 SmallVector<uint16_t, 32> Elements;
4905 Elements.reserve(NumElements);
4906
4907 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4908 Elements.push_back(E->getCodeUnit(i));
4909 Elements.resize(NumElements);
4910 return llvm::ConstantDataArray::get(VMContext, Elements);
4911 }
4912
4913 assert(ElemTy->getPrimitiveSizeInBits() == 32)((ElemTy->getPrimitiveSizeInBits() == 32) ? static_cast<
void> (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4913, __PRETTY_FUNCTION__))
;
4914 SmallVector<uint32_t, 32> Elements;
4915 Elements.reserve(NumElements);
4916
4917 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4918 Elements.push_back(E->getCodeUnit(i));
4919 Elements.resize(NumElements);
4920 return llvm::ConstantDataArray::get(VMContext, Elements);
4921}
4922
4923static llvm::GlobalVariable *
4924GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4925 CodeGenModule &CGM, StringRef GlobalName,
4926 CharUnits Alignment) {
4927 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4928 CGM.getStringLiteralAddressSpace());
4929
4930 llvm::Module &M = CGM.getModule();
4931 // Create a global variable for this string
4932 auto *GV = new llvm::GlobalVariable(
4933 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4934 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4935 GV->setAlignment(Alignment.getAsAlign());
4936 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4937 if (GV->isWeakForLinker()) {
4938 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")((CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? static_cast<void> (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4938, __PRETTY_FUNCTION__))
;
4939 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4940 }
4941 CGM.setDSOLocal(GV);
4942
4943 return GV;
4944}
4945
4946/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4947/// constant array for the given string literal.
4948ConstantAddress
4949CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4950 StringRef Name) {
4951 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4952
4953 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4954 llvm::GlobalVariable **Entry = nullptr;
4955 if (!LangOpts.WritableStrings) {
4956 Entry = &ConstantStringMap[C];
4957 if (auto GV = *Entry) {
4958 if (Alignment.getQuantity() > GV->getAlignment())
4959 GV->setAlignment(Alignment.getAsAlign());
4960 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4961 Alignment);
4962 }
4963 }
4964
4965 SmallString<256> MangledNameBuffer;
4966 StringRef GlobalVariableName;
4967 llvm::GlobalValue::LinkageTypes LT;
4968
4969 // Mangle the string literal if that's how the ABI merges duplicate strings.
4970 // Don't do it if they are writable, since we don't want writes in one TU to
4971 // affect strings in another.
4972 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4973 !LangOpts.WritableStrings) {
4974 llvm::raw_svector_ostream Out(MangledNameBuffer);
4975 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4976 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4977 GlobalVariableName = MangledNameBuffer;
4978 } else {
4979 LT = llvm::GlobalValue::PrivateLinkage;
4980 GlobalVariableName = Name;
4981 }
4982
4983 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4984 if (Entry)
4985 *Entry = GV;
4986
4987 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4988 QualType());
4989
4990 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4991 Alignment);
4992}
4993
4994/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4995/// array for the given ObjCEncodeExpr node.
4996ConstantAddress
4997CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4998 std::string Str;
4999 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5000
5001 return GetAddrOfConstantCString(Str);
5002}
5003
5004/// GetAddrOfConstantCString - Returns a pointer to a character array containing
5005/// the literal and a terminating '\0' character.
5006/// The result has pointer to array type.
5007ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5008 const std::string &Str, const char *GlobalName) {
5009 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5010 CharUnits Alignment =
5011 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5012
5013 llvm::Constant *C =
5014 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5015
5016 // Don't share any string literals if strings aren't constant.
5017 llvm::GlobalVariable **Entry = nullptr;
5018 if (!LangOpts.WritableStrings) {
5019 Entry = &ConstantStringMap[C];
5020 if (auto GV = *Entry) {
5021 if (Alignment.getQuantity() > GV->getAlignment())
5022 GV->setAlignment(Alignment.getAsAlign());
5023 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5024 Alignment);
5025 }
5026 }
5027
5028 // Get the default prefix if a name wasn't specified.
5029 if (!GlobalName)
5030 GlobalName = ".str";
5031 // Create a global variable for this.
5032 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5033 GlobalName, Alignment);
5034 if (Entry)
5035 *Entry = GV;
5036
5037 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5038 Alignment);
5039}
5040
5041ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5042 const MaterializeTemporaryExpr *E, const Expr *Init) {
5043 assert((E->getStorageDuration() == SD_Static ||(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5044, __PRETTY_FUNCTION__))
5044 E->getStorageDuration() == SD_Thread) && "not a global temporary")(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5044, __PRETTY_FUNCTION__))
;
5045 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5046
5047 // If we're not materializing a subobject of the temporary, keep the
5048 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5049 QualType MaterializedType = Init->getType();
5050 if (Init == E->getSubExpr())
5051 MaterializedType = E->getType();
5052
5053 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5054
5055 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5056 return ConstantAddress(Slot, Align);
5057
5058 // FIXME: If an externally-visible declaration extends multiple temporaries,
5059 // we need to give each temporary the same name in every translation unit (and
5060 // we also need to make the temporaries externally-visible).
5061 SmallString<256> Name;
5062 llvm::raw_svector_ostream Out(Name);
5063 getCXXABI().getMangleContext().mangleReferenceTemporary(
5064 VD, E->getManglingNumber(), Out);
5065
5066 APValue *Value = nullptr;
5067 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5068 // If the initializer of the extending declaration is a constant
5069 // initializer, we should have a cached constant initializer for this
5070 // temporary. Note that this might have a different value from the value
5071 // computed by evaluating the initializer if the surrounding constant
5072 // expression modifies the temporary.
5073 Value = E->getOrCreateValue(false);
5074 }
5075
5076 // Try evaluating it now, it might have a constant initializer.
5077 Expr::EvalResult EvalResult;
5078 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5079 !EvalResult.hasSideEffects())
5080 Value = &EvalResult.Val;
5081
5082 LangAS AddrSpace =
5083 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5084
5085 Optional<ConstantEmitter> emitter;
5086 llvm::Constant *InitialValue = nullptr;
5087 bool Constant = false;
5088 llvm::Type *Type;
5089 if (Value) {
5090 // The temporary has a constant initializer, use it.
5091 emitter.emplace(*this);
5092 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5093 MaterializedType);
5094 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5095 Type = InitialValue->getType();
5096 } else {
5097 // No initializer, the initialization will be provided when we
5098 // initialize the declaration which performed lifetime extension.
5099 Type = getTypes().ConvertTypeForMem(MaterializedType);
5100 }
5101
5102 // Create a global variable for this lifetime-extended temporary.
5103 llvm::GlobalValue::LinkageTypes Linkage =
5104 getLLVMLinkageVarDefinition(VD, Constant);
5105 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5106 const VarDecl *InitVD;
5107 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5108 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5109 // Temporaries defined inside a class get linkonce_odr linkage because the
5110 // class can be defined in multiple translation units.
5111 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5112 } else {
5113 // There is no need for this temporary to have external linkage if the
5114 // VarDecl has external linkage.
5115 Linkage = llvm::GlobalVariable::InternalLinkage;
5116 }
5117 }
5118 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5119 auto *GV = new llvm::GlobalVariable(
5120 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5121 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5122 if (emitter) emitter->finalize(GV);
5123 setGVProperties(GV, VD);
5124 GV->setAlignment(Align.getAsAlign());
5125 if (supportsCOMDAT() && GV->isWeakForLinker())
5126 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5127 if (VD->getTLSKind())
5128 setTLSMode(GV, *VD);
5129 llvm::Constant *CV = GV;
5130 if (AddrSpace != LangAS::Default)
5131 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5132 *this, GV, AddrSpace, LangAS::Default,
5133 Type->getPointerTo(
5134 getContext().getTargetAddressSpace(LangAS::Default)));
5135 MaterializedGlobalTemporaryMap[E] = CV;
5136 return ConstantAddress(CV, Align);
5137}
5138
5139/// EmitObjCPropertyImplementations - Emit information for synthesized
5140/// properties for an implementation.
5141void CodeGenModule::EmitObjCPropertyImplementations(const
5142 ObjCImplementationDecl *D) {
5143 for (const auto *PID : D->property_impls()) {
5144 // Dynamic is just for type-checking.
5145 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5146 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5147
5148 // Determine which methods need to be implemented, some may have
5149 // been overridden. Note that ::isPropertyAccessor is not the method
5150 // we want, that just indicates if the decl came from a
5151 // property. What we want to know is if the method is defined in
5152 // this implementation.
5153 auto *Getter = PID->getGetterMethodDecl();
5154 if (!Getter || Getter->isSynthesizedAccessorStub())
5155 CodeGenFunction(*this).GenerateObjCGetter(
5156 const_cast<ObjCImplementationDecl *>(D), PID);
5157 auto *Setter = PID->getSetterMethodDecl();
5158 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5159 CodeGenFunction(*this).GenerateObjCSetter(
5160 const_cast<ObjCImplementationDecl *>(D), PID);
5161 }
5162 }
5163}
5164
5165static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5166 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5167 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5168 ivar; ivar = ivar->getNextIvar())
5169 if (ivar->getType().isDestructedType())
5170 return true;
5171
5172 return false;
5173}
5174
5175static bool AllTrivialInitializers(CodeGenModule &CGM,
5176 ObjCImplementationDecl *D) {
5177 CodeGenFunction CGF(CGM);
5178 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5179 E = D->init_end(); B != E; ++B) {
5180 CXXCtorInitializer *CtorInitExp = *B;
5181 Expr *Init = CtorInitExp->getInit();
5182 if (!CGF.isTrivialInitializer(Init))
5183 return false;
5184 }
5185 return true;
5186}
5187
5188/// EmitObjCIvarInitializations - Emit information for ivar initialization
5189/// for an implementation.
5190void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5191 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5192 if (needsDestructMethod(D)) {
5193 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5194 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5195 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5196 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5197 getContext().VoidTy, nullptr, D,
5198 /*isInstance=*/true, /*isVariadic=*/false,
5199 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5200 /*isImplicitlyDeclared=*/true,
5201 /*isDefined=*/false, ObjCMethodDecl::Required);
5202 D->addInstanceMethod(DTORMethod);
5203 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5204 D->setHasDestructors(true);
5205 }
5206
5207 // If the implementation doesn't have any ivar initializers, we don't need
5208 // a .cxx_construct.
5209 if (D->getNumIvarInitializers() == 0 ||
5210 AllTrivialInitializers(*this, D))
5211 return;
5212
5213 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5214 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5215 // The constructor returns 'self'.
5216 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5217 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5218 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5219 /*isVariadic=*/false,
5220 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5221 /*isImplicitlyDeclared=*/true,
5222 /*isDefined=*/false, ObjCMethodDecl::Required);
5223 D->addInstanceMethod(CTORMethod);
5224 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5225 D->setHasNonZeroConstructors(true);
5226}
5227
5228// EmitLinkageSpec - Emit all declarations in a linkage spec.
5229void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5230 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5231 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5232 ErrorUnsupported(LSD, "linkage spec");
5233 return;
5234 }
5235
5236 EmitDeclContext(LSD);
5237}
5238
5239void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5240 for (auto *I : DC->decls()) {
5241 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5242 // are themselves considered "top-level", so EmitTopLevelDecl on an
5243 // ObjCImplDecl does not recursively visit them. We need to do that in
5244 // case they're nested inside another construct (LinkageSpecDecl /
5245 // ExportDecl) that does stop them from being considered "top-level".
5246 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5247 for (auto *M : OID->methods())
5248 EmitTopLevelDecl(M);
5249 }
5250
5251 EmitTopLevelDecl(I);
5252 }
5253}
5254
5255/// EmitTopLevelDecl - Emit code for a single top level declaration.
5256void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5257 // Ignore dependent declarations.
5258 if (D->isTemplated())
5259 return;
5260
5261 switch (D->getKind()) {
5262 case Decl::CXXConversion:
5263 case Decl::CXXMethod:
5264 case Decl::Function:
5265 EmitGlobal(cast<FunctionDecl>(D));
5266 // Always provide some coverage mapping
5267 // even for the functions that aren't emitted.
5268 AddDeferredUnusedCoverageMapping(D);
5269 break;
5270
5271 case Decl::CXXDeductionGuide:
5272 // Function-like, but does not result in code emission.
5273 break;
5274
5275 case Decl::Var:
5276 case Decl::Decomposition:
5277 case Decl::VarTemplateSpecialization:
5278 EmitGlobal(cast<VarDecl>(D));
5279 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5280 for (auto *B : DD->bindings())
5281 if (auto *HD = B->getHoldingVar())
5282 EmitGlobal(HD);
5283 break;
5284
5285 // Indirect fields from global anonymous structs and unions can be
5286 // ignored; only the actual variable requires IR gen support.
5287 case Decl::IndirectField:
5288 break;
5289
5290 // C++ Decls
5291 case Decl::Namespace:
5292 EmitDeclContext(cast<NamespaceDecl>(D));
5293 break;
5294 case Decl::ClassTemplateSpecialization: {
5295 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5296 if (DebugInfo &&
5297 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5298 Spec->hasDefinition())
5299 DebugInfo->completeTemplateDefinition(*Spec);
5300 } LLVM_FALLTHROUGH[[gnu::fallthrough]];
5301 case Decl::CXXRecord:
5302 if (DebugInfo) {
5303 if (auto *ES = D->getASTContext().getExternalSource())
5304 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5305 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5306 }
5307 // Emit any static data members, they may be definitions.
5308 for (auto *I : cast<CXXRecordDecl>(D)->decls())
5309 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5310 EmitTopLevelDecl(I);
5311 break;
5312 // No code generation needed.
5313 case Decl::UsingShadow:
5314 case Decl::ClassTemplate:
5315 case Decl::VarTemplate:
5316 case Decl::Concept:
5317 case Decl::VarTemplatePartialSpecialization:
5318 case Decl::FunctionTemplate:
5319 case Decl::TypeAliasTemplate:
5320 case Decl::Block:
5321 case Decl::Empty:
5322 case Decl::Binding:
5323 break;
5324 case Decl::Using: // using X; [C++]
5325 if (CGDebugInfo *DI = getModuleDebugInfo())
5326 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5327 return;
5328 case Decl::NamespaceAlias:
5329 if (CGDebugInfo *DI = getModuleDebugInfo())
5330 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5331 return;
5332 case Decl::UsingDirective: // using namespace X; [C++]
5333 if (CGDebugInfo *DI = getModuleDebugInfo())
5334 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5335 return;
5336 case Decl::CXXConstructor:
5337 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5338 break;
5339 case Decl::CXXDestructor:
5340 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5341 break;
5342
5343 case Decl::StaticAssert:
5344 // Nothing to do.
5345 break;
5346
5347 // Objective-C Decls
5348
5349 // Forward declarations, no (immediate) code generation.
5350 case Decl::ObjCInterface:
5351 case Decl::ObjCCategory:
5352 break;
5353
5354 case Decl::ObjCProtocol: {
5355 auto *Proto = cast<ObjCProtocolDecl>(D);
5356 if (Proto->isThisDeclarationADefinition())
5357 ObjCRuntime->GenerateProtocol(Proto);
5358 break;
5359 }
5360
5361 case Decl::ObjCCategoryImpl:
5362 // Categories have properties but don't support synthesize so we
5363 // can ignore them here.
5364 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5365 break;
5366
5367 case Decl::ObjCImplementation: {
5368 auto *OMD = cast<ObjCImplementationDecl>(D);
5369 EmitObjCPropertyImplementations(OMD);
5370 EmitObjCIvarInitializations(OMD);
5371 ObjCRuntime->GenerateClass(OMD);
5372 // Emit global variable debug information.
5373 if (CGDebugInfo *DI = getModuleDebugInfo())
5374 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5375 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5376 OMD->getClassInterface()), OMD->getLocation());
5377 break;
5378 }
5379 case Decl::ObjCMethod: {
5380 auto *OMD = cast<ObjCMethodDecl>(D);
5381 // If this is not a prototype, emit the body.
5382 if (OMD->getBody())
5383 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5384 break;
5385 }
5386 case Decl::ObjCCompatibleAlias:
5387 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5388 break;
5389
5390 case Decl::PragmaComment: {
5391 const auto *PCD = cast<PragmaCommentDecl>(D);
5392 switch (PCD->getCommentKind()) {
5393 case PCK_Unknown:
5394 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5394)
;
5395 case PCK_Linker:
5396 AppendLinkerOptions(PCD->getArg());
5397 break;
5398 case PCK_Lib:
5399 AddDependentLib(PCD->getArg());
5400 break;
5401 case PCK_Compiler:
5402 case PCK_ExeStr:
5403 case PCK_User:
5404 break; // We ignore all of these.
5405 }
5406 break;
5407 }
5408
5409 case Decl::PragmaDetectMismatch: {
5410 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5411 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5412 break;
5413 }
5414
5415 case Decl::LinkageSpec:
5416 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5417 break;
5418
5419 case Decl::FileScopeAsm: {
5420 // File-scope asm is ignored during device-side CUDA compilation.
5421 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5422 break;
5423 // File-scope asm is ignored during device-side OpenMP compilation.
5424 if (LangOpts.OpenMPIsDevice)
5425 break;
5426 auto *AD = cast<FileScopeAsmDecl>(D);
5427 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5428 break;
5429 }
5430
5431 case Decl::Import: {
5432 auto *Import = cast<ImportDecl>(D);
5433
5434 // If we've already imported this module, we're done.
5435 if (!ImportedModules.insert(Import->getImportedModule()))
5436 break;
5437
5438 // Emit debug information for direct imports.
5439 if (!Import->getImportedOwningModule()) {
5440 if (CGDebugInfo *DI = getModuleDebugInfo())
5441 DI->EmitImportDecl(*Import);
5442 }
5443
5444 // Find all of the submodules and emit the module initializers.
5445 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5446 SmallVector<clang::Module *, 16> Stack;
5447 Visited.insert(Import->getImportedModule());
5448 Stack.push_back(Import->getImportedModule());
5449
5450 while (!Stack.empty()) {
5451 clang::Module *Mod = Stack.pop_back_val();
5452 if (!EmittedModuleInitializers.insert(Mod).second)
5453 continue;
5454
5455 for (auto *D : Context.getModuleInitializers(Mod))
5456 EmitTopLevelDecl(D);
5457
5458 // Visit the submodules of this module.
5459 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5460 SubEnd = Mod->submodule_end();
5461 Sub != SubEnd; ++Sub) {
5462 // Skip explicit children; they need to be explicitly imported to emit
5463 // the initializers.
5464 if ((*Sub)->IsExplicit)
5465 continue;
5466
5467 if (Visited.insert(*Sub).second)
5468 Stack.push_back(*Sub);
5469 }
5470 }
5471 break;
5472 }
5473
5474 case Decl::Export:
5475 EmitDeclContext(cast<ExportDecl>(D));
5476 break;
5477
5478 case Decl::OMPThreadPrivate:
5479 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5480 break;
5481
5482 case Decl::OMPAllocate:
5483 break;
5484
5485 case Decl::OMPDeclareReduction:
5486 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5487 break;
5488
5489 case Decl::OMPDeclareMapper:
5490 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5491 break;
5492
5493 case Decl::OMPRequires:
5494 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5495 break;
5496
5497 default:
5498 // Make sure we handled everything we should, every other kind is a
5499 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5500 // function. Need to recode Decl::Kind to do that easily.
5501 assert(isa<TypeDecl>(D) && "Unsupported decl kind")((isa<TypeDecl>(D) && "Unsupported decl kind") ?
static_cast<void> (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5501, __PRETTY_FUNCTION__))
;
5502 break;
5503 }
5504}
5505
5506void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5507 // Do we need to generate coverage mapping?
5508 if (!CodeGenOpts.CoverageMapping)
5509 return;
5510 switch (D->getKind()) {
5511 case Decl::CXXConversion:
5512 case Decl::CXXMethod:
5513 case Decl::Function:
5514 case Decl::ObjCMethod:
5515 case Decl::CXXConstructor:
5516 case Decl::CXXDestructor: {
5517 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5518 return;
5519 SourceManager &SM = getContext().getSourceManager();
5520 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5521 return;
5522 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5523 if (I == DeferredEmptyCoverageMappingDecls.end())
5524 DeferredEmptyCoverageMappingDecls[D] = true;
5525 break;
5526 }
5527 default:
5528 break;
5529 };
5530}
5531
5532void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5533 // Do we need to generate coverage mapping?
5534 if (!CodeGenOpts.CoverageMapping)
5535 return;
5536 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5537 if (Fn->isTemplateInstantiation())
5538 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5539 }
5540 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5541 if (I == DeferredEmptyCoverageMappingDecls.end())
5542 DeferredEmptyCoverageMappingDecls[D] = false;
5543 else
5544 I->second = false;
5545}
5546
5547void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5548 // We call takeVector() here to avoid use-after-free.
5549 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5550 // we deserialize function bodies to emit coverage info for them, and that
5551 // deserializes more declarations. How should we handle that case?
5552 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5553 if (!Entry.second)
5554 continue;
5555 const Decl *D = Entry.first;
5556 switch (D->getKind()) {
5557 case Decl::CXXConversion:
5558 case Decl::CXXMethod:
5559 case Decl::Function:
5560 case Decl::ObjCMethod: {
5561 CodeGenPGO PGO(*this);
5562 GlobalDecl GD(cast<FunctionDecl>(D));
5563 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5564 getFunctionLinkage(GD));
5565 break;
5566 }
5567 case Decl::CXXConstructor: {
5568 CodeGenPGO PGO(*this);
5569 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5570 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5571 getFunctionLinkage(GD));
5572 break;
5573 }
5574 case Decl::CXXDestructor: {
5575 CodeGenPGO PGO(*this);
5576 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5577 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5578 getFunctionLinkage(GD));
5579 break;
5580 }
5581 default:
5582 break;
5583 };
5584 }
5585}
5586
5587/// Turns the given pointer into a constant.
5588static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5589 const void *Ptr) {
5590 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5591 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5592 return llvm::ConstantInt::get(i64, PtrInt);
5593}
5594
5595static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5596 llvm::NamedMDNode *&GlobalMetadata,
5597 GlobalDecl D,
5598 llvm::GlobalValue *Addr) {
5599 if (!GlobalMetadata)
5600 GlobalMetadata =
5601 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5602
5603 // TODO: should we report variant information for ctors/dtors?
5604 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5605 llvm::ConstantAsMetadata::get(GetPointerConstant(
5606 CGM.getLLVMContext(), D.getDecl()))};
5607 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5608}
5609
5610/// For each function which is declared within an extern "C" region and marked
5611/// as 'used', but has internal linkage, create an alias from the unmangled
5612/// name to the mangled name if possible. People expect to be able to refer
5613/// to such functions with an unmangled name from inline assembly within the
5614/// same translation unit.
5615void CodeGenModule::EmitStaticExternCAliases() {
5616 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5617 return;
5618 for (auto &I : StaticExternCValues) {
5619 IdentifierInfo *Name = I.first;
5620 llvm::GlobalValue *Val = I.second;
5621 if (Val && !getModule().getNamedValue(Name->getName()))
5622 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5623 }
5624}
5625
5626bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5627 GlobalDecl &Result) const {
5628 auto Res = Manglings.find(MangledName);
5629 if (Res == Manglings.end())
5630 return false;
5631 Result = Res->getValue();
5632 return true;
5633}
5634
5635/// Emits metadata nodes associating all the global values in the
5636/// current module with the Decls they came from. This is useful for
5637/// projects using IR gen as a subroutine.
5638///
5639/// Since there's currently no way to associate an MDNode directly
5640/// with an llvm::GlobalValue, we create a global named metadata
5641/// with the name 'clang.global.decl.ptrs'.
5642void CodeGenModule::EmitDeclMetadata() {
5643 llvm::NamedMDNode *GlobalMetadata = nullptr;
5644
5645 for (auto &I : MangledDeclNames) {
5646 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5647 // Some mangled names don't necessarily have an associated GlobalValue
5648 // in this module, e.g. if we mangled it for DebugInfo.
5649 if (Addr)
5650 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5651 }
5652}
5653
5654/// Emits metadata nodes for all the local variables in the current
5655/// function.
5656void CodeGenFunction::EmitDeclMetadata() {
5657 if (LocalDeclMap.empty()) return;
5658
5659 llvm::LLVMContext &Context = getLLVMContext();
5660
5661 // Find the unique metadata ID for this name.
5662 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5663
5664 llvm::NamedMDNode *GlobalMetadata = nullptr;
5665
5666 for (auto &I : LocalDeclMap) {
5667 const Decl *D = I.first;
5668 llvm::Value *Addr = I.second.getPointer();
5669 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5670 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5671 Alloca->setMetadata(
5672 DeclPtrKind, llvm::MDNode::get(
5673 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5674 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5675 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5676 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5677 }
5678 }
5679}
5680
5681void CodeGenModule::EmitVersionIdentMetadata() {
5682 llvm::NamedMDNode *IdentMetadata =
5683 TheModule.getOrInsertNamedMetadata("llvm.ident");
5684 std::string Version = getClangFullVersion();
5685 llvm::LLVMContext &Ctx = TheModule.getContext();
5686
5687 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5688 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5689}
5690
5691void CodeGenModule::EmitCommandLineMetadata() {
5692 llvm::NamedMDNode *CommandLineMetadata =
5693 TheModule.getOrInsertNamedMetadata("llvm.commandline");
5694 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5695 llvm::LLVMContext &Ctx = TheModule.getContext();
5696
5697 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5698 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5699}
5700
5701void CodeGenModule::EmitTargetMetadata() {
5702 // Warning, new MangledDeclNames may be appended within this loop.
5703 // We rely on MapVector insertions adding new elements to the end
5704 // of the container.
5705 // FIXME: Move this loop into the one target that needs it, and only
5706 // loop over those declarations for which we couldn't emit the target
5707 // metadata when we emitted the declaration.
5708 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5709 auto Val = *(MangledDeclNames.begin() + I);
5710 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5711 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5712 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5713 }
5714}
5715
5716void CodeGenModule::EmitCoverageFile() {
5717 if (getCodeGenOpts().CoverageDataFile.empty() &&
5718 getCodeGenOpts().CoverageNotesFile.empty())
5719 return;
5720
5721 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5722 if (!CUNode)
5723 return;
5724
5725 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5726 llvm::LLVMContext &Ctx = TheModule.getContext();
5727 auto *CoverageDataFile =
5728 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5729 auto *CoverageNotesFile =
5730 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5731 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5732 llvm::MDNode *CU = CUNode->getOperand(i);
5733 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5734 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5735 }
5736}
5737
5738llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5739 // Sema has checked that all uuid strings are of the form
5740 // "12345678-1234-1234-1234-1234567890ab".
5741 assert(Uuid.size() == 36)((Uuid.size() == 36) ? static_cast<void> (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5741, __PRETTY_FUNCTION__))
;
5742 for (unsigned i = 0; i < 36; ++i) {
5743 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')((Uuid[i] == '-') ? static_cast<void> (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5743, __PRETTY_FUNCTION__))
;
5744 else assert(isHexDigit(Uuid[i]))((isHexDigit(Uuid[i])) ? static_cast<void> (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5744, __PRETTY_FUNCTION__))
;
5745 }
5746
5747 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5748 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5749
5750 llvm::Constant *Field3[8];
5751 for (unsigned Idx = 0; Idx < 8; ++Idx)
5752 Field3[Idx] = llvm::ConstantInt::get(
5753 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5754
5755 llvm::Constant *Fields[4] = {
5756 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
5757 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
5758 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5759 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5760 };
5761
5762 return llvm::ConstantStruct::getAnon(Fields);
5763}
5764
5765llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5766 bool ForEH) {
5767 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5768 // FIXME: should we even be calling this method if RTTI is disabled
5769 // and it's not for EH?
5770 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5771 return llvm::Constant::getNullValue(Int8PtrTy);
5772
5773 if (ForEH && Ty->isObjCObjectPointerType() &&
5774 LangOpts.ObjCRuntime.isGNUFamily())
5775 return ObjCRuntime->GetEHType(Ty);
5776
5777 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5778}
5779
5780void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5781 // Do not emit threadprivates in simd-only mode.
5782 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5783 return;
5784 for (auto RefExpr : D->varlists()) {
5785 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5786 bool PerformInit =
5787 VD->getAnyInitializer() &&
5788 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5789 /*ForRef=*/false);
5790
5791 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5792 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5793 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5794 CXXGlobalInits.push_back(InitFunction);
5795 }
5796}
5797
5798llvm::Metadata *
5799CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5800 StringRef Suffix) {
5801 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5802 if (InternalId)
5803 return InternalId;
5804
5805 if (isExternallyVisible(T->getLinkage())) {
5806 std::string OutName;
5807 llvm::raw_string_ostream Out(OutName);
5808 getCXXABI().getMangleContext().mangleTypeName(T, Out);
5809 Out << Suffix;
5810
5811 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5812 } else {
5813 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5814 llvm::ArrayRef<llvm::Metadata *>());
5815 }
5816
5817 return InternalId;
5818}
5819
5820llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5821 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5822}
5823
5824llvm::Metadata *
5825CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5826 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5827}
5828
5829// Generalize pointer types to a void pointer with the qualifiers of the
5830// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5831// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5832// 'void *'.
5833static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5834 if (!Ty->isPointerType())
5835 return Ty;
5836
5837 return Ctx.getPointerType(
5838 QualType(Ctx.VoidTy).withCVRQualifiers(
5839 Ty->getPointeeType().getCVRQualifiers()));
5840}
5841
5842// Apply type generalization to a FunctionType's return and argument types
5843static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5844 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5845 SmallVector<QualType, 8> GeneralizedParams;
5846 for (auto &Param : FnType->param_types())
5847 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5848
5849 return Ctx.getFunctionType(
5850 GeneralizeType(Ctx, FnType->getReturnType()),
5851 GeneralizedParams, FnType->getExtProtoInfo());
5852 }
5853
5854 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5855 return Ctx.getFunctionNoProtoType(
5856 GeneralizeType(Ctx, FnType->getReturnType()));
5857
5858 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5858)
;
5859}
5860
5861llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5862 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5863 GeneralizedMetadataIdMap, ".generalized");
5864}
5865
5866/// Returns whether this module needs the "all-vtables" type identifier.
5867bool CodeGenModule::NeedAllVtablesTypeId() const {
5868 // Returns true if at least one of vtable-based CFI checkers is enabled and
5869 // is not in the trapping mode.
5870 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5871 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5872 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5873 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5874 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5875 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5876 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5877 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5878}
5879
5880void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5881 CharUnits Offset,
5882 const CXXRecordDecl *RD) {
5883 llvm::Metadata *MD =
5884 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5885 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5886
5887 if (CodeGenOpts.SanitizeCfiCrossDso)
5888 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5889 VTable->addTypeMetadata(Offset.getQuantity(),
5890 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5891
5892 if (NeedAllVtablesTypeId()) {
5893 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5894 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5895 }
5896}
5897
5898llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5899 if (!SanStats)
5900 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5901
5902 return *SanStats;
5903}
5904llvm::Value *
5905CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5906 CodeGenFunction &CGF) {
5907 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5908 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5909 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5910 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5911 "__translate_sampler_initializer"),
5912 {C});
5913}

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69namespace serialization {
70 template <class T> class AbstractTypeReader;
71 template <class T> class AbstractTypeWriter;
72}
73
74} // namespace clang
75
76namespace llvm {
77
78 template <typename T>
79 struct PointerLikeTypeTraits;
80 template<>
81 struct PointerLikeTypeTraits< ::clang::Type*> {
82 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
83
84 static inline ::clang::Type *getFromVoidPointer(void *P) {
85 return static_cast< ::clang::Type*>(P);
86 }
87
88 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
89 };
90
91 template<>
92 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
93 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
94
95 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
96 return static_cast< ::clang::ExtQuals*>(P);
97 }
98
99 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
100 };
101
102} // namespace llvm
103
104namespace clang {
105
106class ASTContext;
107template <typename> class CanQual;
108class CXXRecordDecl;
109class DeclContext;
110class EnumDecl;
111class Expr;
112class ExtQualsTypeCommonBase;
113class FunctionDecl;
114class IdentifierInfo;
115class NamedDecl;
116class ObjCInterfaceDecl;
117class ObjCProtocolDecl;
118class ObjCTypeParamDecl;
119struct PrintingPolicy;
120class RecordDecl;
121class Stmt;
122class TagDecl;
123class TemplateArgument;
124class TemplateArgumentListInfo;
125class TemplateArgumentLoc;
126class TemplateTypeParmDecl;
127class TypedefNameDecl;
128class UnresolvedUsingTypenameDecl;
129
130using CanQualType = CanQual<Type>;
131
132// Provide forward declarations for all of the *Type classes.
133#define TYPE(Class, Base) class Class##Type;
134#include "clang/AST/TypeNodes.inc"
135
136/// The collection of all-type qualifiers we support.
137/// Clang supports five independent qualifiers:
138/// * C99: const, volatile, and restrict
139/// * MS: __unaligned
140/// * Embedded C (TR18037): address spaces
141/// * Objective C: the GC attributes (none, weak, or strong)
142class Qualifiers {
143public:
144 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
145 Const = 0x1,
146 Restrict = 0x2,
147 Volatile = 0x4,
148 CVRMask = Const | Volatile | Restrict
149 };
150
151 enum GC {
152 GCNone = 0,
153 Weak,
154 Strong
155 };
156
157 enum ObjCLifetime {
158 /// There is no lifetime qualification on this type.
159 OCL_None,
160
161 /// This object can be modified without requiring retains or
162 /// releases.
163 OCL_ExplicitNone,
164
165 /// Assigning into this object requires the old value to be
166 /// released and the new value to be retained. The timing of the
167 /// release of the old value is inexact: it may be moved to
168 /// immediately after the last known point where the value is
169 /// live.
170 OCL_Strong,
171
172 /// Reading or writing from this object requires a barrier call.
173 OCL_Weak,
174
175 /// Assigning into this object requires a lifetime extension.
176 OCL_Autoreleasing
177 };
178
179 enum {
180 /// The maximum supported address space number.
181 /// 23 bits should be enough for anyone.
182 MaxAddressSpace = 0x7fffffu,
183
184 /// The width of the "fast" qualifier mask.
185 FastWidth = 3,
186
187 /// The fast qualifier mask.
188 FastMask = (1 << FastWidth) - 1
189 };
190
191 /// Returns the common set of qualifiers while removing them from
192 /// the given sets.
193 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
194 // If both are only CVR-qualified, bit operations are sufficient.
195 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
196 Qualifiers Q;
197 Q.Mask = L.Mask & R.Mask;
198 L.Mask &= ~Q.Mask;
199 R.Mask &= ~Q.Mask;
200 return Q;
201 }
202
203 Qualifiers Q;
204 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
205 Q.addCVRQualifiers(CommonCRV);
206 L.removeCVRQualifiers(CommonCRV);
207 R.removeCVRQualifiers(CommonCRV);
208
209 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
210 Q.setObjCGCAttr(L.getObjCGCAttr());
211 L.removeObjCGCAttr();
212 R.removeObjCGCAttr();
213 }
214
215 if (L.getObjCLifetime() == R.getObjCLifetime()) {
216 Q.setObjCLifetime(L.getObjCLifetime());
217 L.removeObjCLifetime();
218 R.removeObjCLifetime();
219 }
220
221 if (L.getAddressSpace() == R.getAddressSpace()) {
222 Q.setAddressSpace(L.getAddressSpace());
223 L.removeAddressSpace();
224 R.removeAddressSpace();
225 }
226 return Q;
227 }
228
229 static Qualifiers fromFastMask(unsigned Mask) {
230 Qualifiers Qs;
231 Qs.addFastQualifiers(Mask);
232 return Qs;
233 }
234
235 static Qualifiers fromCVRMask(unsigned CVR) {
236 Qualifiers Qs;
237 Qs.addCVRQualifiers(CVR);
238 return Qs;
239 }
240
241 static Qualifiers fromCVRUMask(unsigned CVRU) {
242 Qualifiers Qs;
243 Qs.addCVRUQualifiers(CVRU);
244 return Qs;
245 }
246
247 // Deserialize qualifiers from an opaque representation.
248 static Qualifiers fromOpaqueValue(unsigned opaque) {
249 Qualifiers Qs;
250 Qs.Mask = opaque;
251 return Qs;
252 }
253
254 // Serialize these qualifiers into an opaque representation.
255 unsigned getAsOpaqueValue() const {
256 return Mask;
257 }
258
259 bool hasConst() const { return Mask & Const; }
260 bool hasOnlyConst() const { return Mask == Const; }
261 void removeConst() { Mask &= ~Const; }
262 void addConst() { Mask |= Const; }
263
264 bool hasVolatile() const { return Mask & Volatile; }
265 bool hasOnlyVolatile() const { return Mask == Volatile; }
266 void removeVolatile() { Mask &= ~Volatile; }
267 void addVolatile() { Mask |= Volatile; }
268
269 bool hasRestrict() const { return Mask & Restrict; }
270 bool hasOnlyRestrict() const { return Mask == Restrict; }
271 void removeRestrict() { Mask &= ~Restrict; }
272 void addRestrict() { Mask |= Restrict; }
273
274 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
275 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
276 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
277
278 void setCVRQualifiers(unsigned mask) {
279 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 279, __PRETTY_FUNCTION__))
;
280 Mask = (Mask & ~CVRMask) | mask;
281 }
282 void removeCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 283, __PRETTY_FUNCTION__))
;
284 Mask &= ~mask;
285 }
286 void removeCVRQualifiers() {
287 removeCVRQualifiers(CVRMask);
288 }
289 void addCVRQualifiers(unsigned mask) {
290 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 290, __PRETTY_FUNCTION__))
;
291 Mask |= mask;
292 }
293 void addCVRUQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 294, __PRETTY_FUNCTION__))
;
295 Mask |= mask;
296 }
297
298 bool hasUnaligned() const { return Mask & UMask; }
299 void setUnaligned(bool flag) {
300 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
301 }
302 void removeUnaligned() { Mask &= ~UMask; }
303 void addUnaligned() { Mask |= UMask; }
304
305 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
306 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
307 void setObjCGCAttr(GC type) {
308 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
309 }
310 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
311 void addObjCGCAttr(GC type) {
312 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 312, __PRETTY_FUNCTION__))
;
313 setObjCGCAttr(type);
314 }
315 Qualifiers withoutObjCGCAttr() const {
316 Qualifiers qs = *this;
317 qs.removeObjCGCAttr();
318 return qs;
319 }
320 Qualifiers withoutObjCLifetime() const {
321 Qualifiers qs = *this;
322 qs.removeObjCLifetime();
323 return qs;
324 }
325 Qualifiers withoutAddressSpace() const {
326 Qualifiers qs = *this;
327 qs.removeAddressSpace();
328 return qs;
329 }
330
331 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
332 ObjCLifetime getObjCLifetime() const {
333 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
334 }
335 void setObjCLifetime(ObjCLifetime type) {
336 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
337 }
338 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
339 void addObjCLifetime(ObjCLifetime type) {
340 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 340, __PRETTY_FUNCTION__))
;
341 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 341, __PRETTY_FUNCTION__))
;
342 Mask |= (type << LifetimeShift);
343 }
344
345 /// True if the lifetime is neither None or ExplicitNone.
346 bool hasNonTrivialObjCLifetime() const {
347 ObjCLifetime lifetime = getObjCLifetime();
348 return (lifetime > OCL_ExplicitNone);
349 }
350
351 /// True if the lifetime is either strong or weak.
352 bool hasStrongOrWeakObjCLifetime() const {
353 ObjCLifetime lifetime = getObjCLifetime();
354 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
355 }
356
357 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
358 LangAS getAddressSpace() const {
359 return static_cast<LangAS>(Mask >> AddressSpaceShift);
360 }
361 bool hasTargetSpecificAddressSpace() const {
362 return isTargetAddressSpace(getAddressSpace());
363 }
364 /// Get the address space attribute value to be printed by diagnostics.
365 unsigned getAddressSpaceAttributePrintValue() const {
366 auto Addr = getAddressSpace();
367 // This function is not supposed to be used with language specific
368 // address spaces. If that happens, the diagnostic message should consider
369 // printing the QualType instead of the address space value.
370 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 370, __PRETTY_FUNCTION__))
;
371 if (Addr != LangAS::Default)
372 return toTargetAddressSpace(Addr);
373 // TODO: The diagnostic messages where Addr may be 0 should be fixed
374 // since it cannot differentiate the situation where 0 denotes the default
375 // address space or user specified __attribute__((address_space(0))).
376 return 0;
377 }
378 void setAddressSpace(LangAS space) {
379 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 379, __PRETTY_FUNCTION__))
;
380 Mask = (Mask & ~AddressSpaceMask)
381 | (((uint32_t) space) << AddressSpaceShift);
382 }
383 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
384 void addAddressSpace(LangAS space) {
385 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 385, __PRETTY_FUNCTION__))
;
386 setAddressSpace(space);
387 }
388
389 // Fast qualifiers are those that can be allocated directly
390 // on a QualType object.
391 bool hasFastQualifiers() const { return getFastQualifiers(); }
392 unsigned getFastQualifiers() const { return Mask & FastMask; }
393 void setFastQualifiers(unsigned mask) {
394 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 394, __PRETTY_FUNCTION__))
;
395 Mask = (Mask & ~FastMask) | mask;
396 }
397 void removeFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 398, __PRETTY_FUNCTION__))
;
399 Mask &= ~mask;
400 }
401 void removeFastQualifiers() {
402 removeFastQualifiers(FastMask);
403 }
404 void addFastQualifiers(unsigned mask) {
405 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 405, __PRETTY_FUNCTION__))
;
406 Mask |= mask;
407 }
408
409 /// Return true if the set contains any qualifiers which require an ExtQuals
410 /// node to be allocated.
411 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
412 Qualifiers getNonFastQualifiers() const {
413 Qualifiers Quals = *this;
414 Quals.setFastQualifiers(0);
415 return Quals;
416 }
417
418 /// Return true if the set contains any qualifiers.
419 bool hasQualifiers() const { return Mask; }
420 bool empty() const { return !Mask; }
421
422 /// Add the qualifiers from the given set to this set.
423 void addQualifiers(Qualifiers Q) {
424 // If the other set doesn't have any non-boolean qualifiers, just
425 // bit-or it in.
426 if (!(Q.Mask & ~CVRMask))
427 Mask |= Q.Mask;
428 else {
429 Mask |= (Q.Mask & CVRMask);
430 if (Q.hasAddressSpace())
431 addAddressSpace(Q.getAddressSpace());
432 if (Q.hasObjCGCAttr())
433 addObjCGCAttr(Q.getObjCGCAttr());
434 if (Q.hasObjCLifetime())
435 addObjCLifetime(Q.getObjCLifetime());
436 }
437 }
438
439 /// Remove the qualifiers from the given set from this set.
440 void removeQualifiers(Qualifiers Q) {
441 // If the other set doesn't have any non-boolean qualifiers, just
442 // bit-and the inverse in.
443 if (!(Q.Mask & ~CVRMask))
444 Mask &= ~Q.Mask;
445 else {
446 Mask &= ~(Q.Mask & CVRMask);
447 if (getObjCGCAttr() == Q.getObjCGCAttr())
448 removeObjCGCAttr();
449 if (getObjCLifetime() == Q.getObjCLifetime())
450 removeObjCLifetime();
451 if (getAddressSpace() == Q.getAddressSpace())
452 removeAddressSpace();
453 }
454 }
455
456 /// Add the qualifiers from the given set to this set, given that
457 /// they don't conflict.
458 void addConsistentQualifiers(Qualifiers qs) {
459 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
460 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
;
461 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
462 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
;
463 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
464 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
;
465 Mask |= qs.Mask;
466 }
467
468 /// Returns true if address space A is equal to or a superset of B.
469 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
470 /// overlapping address spaces.
471 /// CL1.1 or CL1.2:
472 /// every address space is a superset of itself.
473 /// CL2.0 adds:
474 /// __generic is a superset of any address space except for __constant.
475 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
476 // Address spaces must match exactly.
477 return A == B ||
478 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
479 // for __constant can be used as __generic.
480 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
481 // Consider pointer size address spaces to be equivalent to default.
482 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
483 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
484 }
485
486 /// Returns true if the address space in these qualifiers is equal to or
487 /// a superset of the address space in the argument qualifiers.
488 bool isAddressSpaceSupersetOf(Qualifiers other) const {
489 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
490 }
491
492 /// Determines if these qualifiers compatibly include another set.
493 /// Generally this answers the question of whether an object with the other
494 /// qualifiers can be safely used as an object with these qualifiers.
495 bool compatiblyIncludes(Qualifiers other) const {
496 return isAddressSpaceSupersetOf(other) &&
497 // ObjC GC qualifiers can match, be added, or be removed, but can't
498 // be changed.
499 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
500 !other.hasObjCGCAttr()) &&
501 // ObjC lifetime qualifiers must match exactly.
502 getObjCLifetime() == other.getObjCLifetime() &&
503 // CVR qualifiers may subset.
504 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
505 // U qualifier may superset.
506 (!other.hasUnaligned() || hasUnaligned());
507 }
508
509 /// Determines if these qualifiers compatibly include another set of
510 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
511 ///
512 /// One set of Objective-C lifetime qualifiers compatibly includes the other
513 /// if the lifetime qualifiers match, or if both are non-__weak and the
514 /// including set also contains the 'const' qualifier, or both are non-__weak
515 /// and one is None (which can only happen in non-ARC modes).
516 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
517 if (getObjCLifetime() == other.getObjCLifetime())
518 return true;
519
520 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
521 return false;
522
523 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
524 return true;
525
526 return hasConst();
527 }
528
529 /// Determine whether this set of qualifiers is a strict superset of
530 /// another set of qualifiers, not considering qualifier compatibility.
531 bool isStrictSupersetOf(Qualifiers Other) const;
532
533 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
534 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
535
536 explicit operator bool() const { return hasQualifiers(); }
537
538 Qualifiers &operator+=(Qualifiers R) {
539 addQualifiers(R);
540 return *this;
541 }
542
543 // Union two qualifier sets. If an enumerated qualifier appears
544 // in both sets, use the one from the right.
545 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
546 L += R;
547 return L;
548 }
549
550 Qualifiers &operator-=(Qualifiers R) {
551 removeQualifiers(R);
552 return *this;
553 }
554
555 /// Compute the difference between two qualifier sets.
556 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
557 L -= R;
558 return L;
559 }
560
561 std::string getAsString() const;
562 std::string getAsString(const PrintingPolicy &Policy) const;
563
564 static std::string getAddrSpaceAsString(LangAS AS);
565
566 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
567 void print(raw_ostream &OS, const PrintingPolicy &Policy,
568 bool appendSpaceIfNonEmpty = false) const;
569
570 void Profile(llvm::FoldingSetNodeID &ID) const {
571 ID.AddInteger(Mask);
572 }
573
574private:
575 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
576 // |C R V|U|GCAttr|Lifetime|AddressSpace|
577 uint32_t Mask = 0;
578
579 static const uint32_t UMask = 0x8;
580 static const uint32_t UShift = 3;
581 static const uint32_t GCAttrMask = 0x30;
582 static const uint32_t GCAttrShift = 4;
583 static const uint32_t LifetimeMask = 0x1C0;
584 static const uint32_t LifetimeShift = 6;
585 static const uint32_t AddressSpaceMask =
586 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
587 static const uint32_t AddressSpaceShift = 9;
588};
589
590/// A std::pair-like structure for storing a qualified type split
591/// into its local qualifiers and its locally-unqualified type.
592struct SplitQualType {
593 /// The locally-unqualified type.
594 const Type *Ty = nullptr;
595
596 /// The local qualifiers.
597 Qualifiers Quals;
598
599 SplitQualType() = default;
600 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
601
602 SplitQualType getSingleStepDesugaredType() const; // end of this file
603
604 // Make std::tie work.
605 std::pair<const Type *,Qualifiers> asPair() const {
606 return std::pair<const Type *, Qualifiers>(Ty, Quals);
607 }
608
609 friend bool operator==(SplitQualType a, SplitQualType b) {
610 return a.Ty == b.Ty && a.Quals == b.Quals;
611 }
612 friend bool operator!=(SplitQualType a, SplitQualType b) {
613 return a.Ty != b.Ty || a.Quals != b.Quals;
614 }
615};
616
617/// The kind of type we are substituting Objective-C type arguments into.
618///
619/// The kind of substitution affects the replacement of type parameters when
620/// no concrete type information is provided, e.g., when dealing with an
621/// unspecialized type.
622enum class ObjCSubstitutionContext {
623 /// An ordinary type.
624 Ordinary,
625
626 /// The result type of a method or function.
627 Result,
628
629 /// The parameter type of a method or function.
630 Parameter,
631
632 /// The type of a property.
633 Property,
634
635 /// The superclass of a type.
636 Superclass,
637};
638
639/// A (possibly-)qualified type.
640///
641/// For efficiency, we don't store CV-qualified types as nodes on their
642/// own: instead each reference to a type stores the qualifiers. This
643/// greatly reduces the number of nodes we need to allocate for types (for
644/// example we only need one for 'int', 'const int', 'volatile int',
645/// 'const volatile int', etc).
646///
647/// As an added efficiency bonus, instead of making this a pair, we
648/// just store the two bits we care about in the low bits of the
649/// pointer. To handle the packing/unpacking, we make QualType be a
650/// simple wrapper class that acts like a smart pointer. A third bit
651/// indicates whether there are extended qualifiers present, in which
652/// case the pointer points to a special structure.
653class QualType {
654 friend class QualifierCollector;
655
656 // Thankfully, these are efficiently composable.
657 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
658 Qualifiers::FastWidth> Value;
659
660 const ExtQuals *getExtQualsUnsafe() const {
661 return Value.getPointer().get<const ExtQuals*>();
662 }
663
664 const Type *getTypePtrUnsafe() const {
665 return Value.getPointer().get<const Type*>();
666 }
667
668 const ExtQualsTypeCommonBase *getCommonPtr() const {
669 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 669, __PRETTY_FUNCTION__))
;
670 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
671 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
672 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
673 }
674
675public:
676 QualType() = default;
677 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
678 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
679
680 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
681 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
682
683 /// Retrieves a pointer to the underlying (unqualified) type.
684 ///
685 /// This function requires that the type not be NULL. If the type might be
686 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
687 const Type *getTypePtr() const;
688
689 const Type *getTypePtrOrNull() const;
690
691 /// Retrieves a pointer to the name of the base type.
692 const IdentifierInfo *getBaseTypeIdentifier() const;
693
694 /// Divides a QualType into its unqualified type and a set of local
695 /// qualifiers.
696 SplitQualType split() const;
697
698 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
699
700 static QualType getFromOpaquePtr(const void *Ptr) {
701 QualType T;
702 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
703 return T;
704 }
705
706 const Type &operator*() const {
707 return *getTypePtr();
708 }
709
710 const Type *operator->() const {
711 return getTypePtr();
712 }
713
714 bool isCanonical() const;
715 bool isCanonicalAsParam() const;
716
717 /// Return true if this QualType doesn't point to a type yet.
718 bool isNull() const {
719 return Value.getPointer().isNull();
720 }
721
722 /// Determine whether this particular QualType instance has the
723 /// "const" qualifier set, without looking through typedefs that may have
724 /// added "const" at a different level.
725 bool isLocalConstQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Const);
727 }
728
729 /// Determine whether this type is const-qualified.
730 bool isConstQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "restrict" qualifier set, without looking through typedefs that may have
734 /// added "restrict" at a different level.
735 bool isLocalRestrictQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Restrict);
737 }
738
739 /// Determine whether this type is restrict-qualified.
740 bool isRestrictQualified() const;
741
742 /// Determine whether this particular QualType instance has the
743 /// "volatile" qualifier set, without looking through typedefs that may have
744 /// added "volatile" at a different level.
745 bool isLocalVolatileQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Volatile);
747 }
748
749 /// Determine whether this type is volatile-qualified.
750 bool isVolatileQualified() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// qualifiers, without looking through any typedefs that might add
754 /// qualifiers at a different level.
755 bool hasLocalQualifiers() const {
756 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
757 }
758
759 /// Determine whether this type has any qualifiers.
760 bool hasQualifiers() const;
761
762 /// Determine whether this particular QualType instance has any
763 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
764 /// instance.
765 bool hasLocalNonFastQualifiers() const {
766 return Value.getPointer().is<const ExtQuals*>();
767 }
768
769 /// Retrieve the set of qualifiers local to this particular QualType
770 /// instance, not including any qualifiers acquired through typedefs or
771 /// other sugar.
772 Qualifiers getLocalQualifiers() const;
773
774 /// Retrieve the set of qualifiers applied to this type.
775 Qualifiers getQualifiers() const;
776
777 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
778 /// local to this particular QualType instance, not including any qualifiers
779 /// acquired through typedefs or other sugar.
780 unsigned getLocalCVRQualifiers() const {
781 return getLocalFastQualifiers();
782 }
783
784 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
785 /// applied to this type.
786 unsigned getCVRQualifiers() const;
787
788 bool isConstant(const ASTContext& Ctx) const {
789 return QualType::isConstant(*this, Ctx);
790 }
791
792 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
793 bool isPODType(const ASTContext &Context) const;
794
795 /// Return true if this is a POD type according to the rules of the C++98
796 /// standard, regardless of the current compilation's language.
797 bool isCXX98PODType(const ASTContext &Context) const;
798
799 /// Return true if this is a POD type according to the more relaxed rules
800 /// of the C++11 standard, regardless of the current compilation's language.
801 /// (C++0x [basic.types]p9). Note that, unlike
802 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
803 bool isCXX11PODType(const ASTContext &Context) const;
804
805 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
806 bool isTrivialType(const ASTContext &Context) const;
807
808 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
809 bool isTriviallyCopyableType(const ASTContext &Context) const;
810
811
812 /// Returns true if it is a class and it might be dynamic.
813 bool mayBeDynamicClass() const;
814
815 /// Returns true if it is not a class or if the class might not be dynamic.
816 bool mayBeNotDynamicClass() const;
817
818 // Don't promise in the API that anything besides 'const' can be
819 // easily added.
820
821 /// Add the `const` type qualifier to this QualType.
822 void addConst() {
823 addFastQualifiers(Qualifiers::Const);
824 }
825 QualType withConst() const {
826 return withFastQualifiers(Qualifiers::Const);
827 }
828
829 /// Add the `volatile` type qualifier to this QualType.
830 void addVolatile() {
831 addFastQualifiers(Qualifiers::Volatile);
832 }
833 QualType withVolatile() const {
834 return withFastQualifiers(Qualifiers::Volatile);
835 }
836
837 /// Add the `restrict` qualifier to this QualType.
838 void addRestrict() {
839 addFastQualifiers(Qualifiers::Restrict);
840 }
841 QualType withRestrict() const {
842 return withFastQualifiers(Qualifiers::Restrict);
843 }
844
845 QualType withCVRQualifiers(unsigned CVR) const {
846 return withFastQualifiers(CVR);
847 }
848
849 void addFastQualifiers(unsigned TQs) {
850 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
851 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
;
852 Value.setInt(Value.getInt() | TQs);
853 }
854
855 void removeLocalConst();
856 void removeLocalVolatile();
857 void removeLocalRestrict();
858 void removeLocalCVRQualifiers(unsigned Mask);
859
860 void removeLocalFastQualifiers() { Value.setInt(0); }
861 void removeLocalFastQualifiers(unsigned Mask) {
862 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 862, __PRETTY_FUNCTION__))
;
863 Value.setInt(Value.getInt() & ~Mask);
864 }
865
866 // Creates a type with the given qualifiers in addition to any
867 // qualifiers already on this type.
868 QualType withFastQualifiers(unsigned TQs) const {
869 QualType T = *this;
870 T.addFastQualifiers(TQs);
871 return T;
872 }
873
874 // Creates a type with exactly the given fast qualifiers, removing
875 // any existing fast qualifiers.
876 QualType withExactLocalFastQualifiers(unsigned TQs) const {
877 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
878 }
879
880 // Removes fast qualifiers, but leaves any extended qualifiers in place.
881 QualType withoutLocalFastQualifiers() const {
882 QualType T = *this;
883 T.removeLocalFastQualifiers();
884 return T;
885 }
886
887 QualType getCanonicalType() const;
888
889 /// Return this type with all of the instance-specific qualifiers
890 /// removed, but without removing any qualifiers that may have been applied
891 /// through typedefs.
892 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
893
894 /// Retrieve the unqualified variant of the given type,
895 /// removing as little sugar as possible.
896 ///
897 /// This routine looks through various kinds of sugar to find the
898 /// least-desugared type that is unqualified. For example, given:
899 ///
900 /// \code
901 /// typedef int Integer;
902 /// typedef const Integer CInteger;
903 /// typedef CInteger DifferenceType;
904 /// \endcode
905 ///
906 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
907 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
908 ///
909 /// The resulting type might still be qualified if it's sugar for an array
910 /// type. To strip qualifiers even from within a sugared array type, use
911 /// ASTContext::getUnqualifiedArrayType.
912 inline QualType getUnqualifiedType() const;
913
914 /// Retrieve the unqualified variant of the given type, removing as little
915 /// sugar as possible.
916 ///
917 /// Like getUnqualifiedType(), but also returns the set of
918 /// qualifiers that were built up.
919 ///
920 /// The resulting type might still be qualified if it's sugar for an array
921 /// type. To strip qualifiers even from within a sugared array type, use
922 /// ASTContext::getUnqualifiedArrayType.
923 inline SplitQualType getSplitUnqualifiedType() const;
924
925 /// Determine whether this type is more qualified than the other
926 /// given type, requiring exact equality for non-CVR qualifiers.
927 bool isMoreQualifiedThan(QualType Other) const;
928
929 /// Determine whether this type is at least as qualified as the other
930 /// given type, requiring exact equality for non-CVR qualifiers.
931 bool isAtLeastAsQualifiedAs(QualType Other) const;
932
933 QualType getNonReferenceType() const;
934
935 /// Determine the type of a (typically non-lvalue) expression with the
936 /// specified result type.
937 ///
938 /// This routine should be used for expressions for which the return type is
939 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
940 /// an lvalue. It removes a top-level reference (since there are no
941 /// expressions of reference type) and deletes top-level cvr-qualifiers
942 /// from non-class types (in C++) or all types (in C).
943 QualType getNonLValueExprType(const ASTContext &Context) const;
944
945 /// Return the specified type with any "sugar" removed from
946 /// the type. This takes off typedefs, typeof's etc. If the outer level of
947 /// the type is already concrete, it returns it unmodified. This is similar
948 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
949 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
950 /// concrete.
951 ///
952 /// Qualifiers are left in place.
953 QualType getDesugaredType(const ASTContext &Context) const {
954 return getDesugaredType(*this, Context);
955 }
956
957 SplitQualType getSplitDesugaredType() const {
958 return getSplitDesugaredType(*this);
959 }
960
961 /// Return the specified type with one level of "sugar" removed from
962 /// the type.
963 ///
964 /// This routine takes off the first typedef, typeof, etc. If the outer level
965 /// of the type is already concrete, it returns it unmodified.
966 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
967 return getSingleStepDesugaredTypeImpl(*this, Context);
968 }
969
970 /// Returns the specified type after dropping any
971 /// outer-level parentheses.
972 QualType IgnoreParens() const {
973 if (isa<ParenType>(*this))
974 return QualType::IgnoreParens(*this);
975 return *this;
976 }
977
978 /// Indicate whether the specified types and qualifiers are identical.
979 friend bool operator==(const QualType &LHS, const QualType &RHS) {
980 return LHS.Value == RHS.Value;
981 }
982 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
983 return LHS.Value != RHS.Value;
984 }
985 friend bool operator<(const QualType &LHS, const QualType &RHS) {
986 return LHS.Value < RHS.Value;
987 }
988
989 static std::string getAsString(SplitQualType split,
990 const PrintingPolicy &Policy) {
991 return getAsString(split.Ty, split.Quals, Policy);
992 }
993 static std::string getAsString(const Type *ty, Qualifiers qs,
994 const PrintingPolicy &Policy);
995
996 std::string getAsString() const;
997 std::string getAsString(const PrintingPolicy &Policy) const;
998
999 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1000 const Twine &PlaceHolder = Twine(),
1001 unsigned Indentation = 0) const;
1002
1003 static void print(SplitQualType split, raw_ostream &OS,
1004 const PrintingPolicy &policy, const Twine &PlaceHolder,
1005 unsigned Indentation = 0) {
1006 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1007 }
1008
1009 static void print(const Type *ty, Qualifiers qs,
1010 raw_ostream &OS, const PrintingPolicy &policy,
1011 const Twine &PlaceHolder,
1012 unsigned Indentation = 0);
1013
1014 void getAsStringInternal(std::string &Str,
1015 const PrintingPolicy &Policy) const;
1016
1017 static void getAsStringInternal(SplitQualType split, std::string &out,
1018 const PrintingPolicy &policy) {
1019 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1020 }
1021
1022 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1023 std::string &out,
1024 const PrintingPolicy &policy);
1025
1026 class StreamedQualTypeHelper {
1027 const QualType &T;
1028 const PrintingPolicy &Policy;
1029 const Twine &PlaceHolder;
1030 unsigned Indentation;
1031
1032 public:
1033 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1034 const Twine &PlaceHolder, unsigned Indentation)
1035 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1036 Indentation(Indentation) {}
1037
1038 friend raw_ostream &operator<<(raw_ostream &OS,
1039 const StreamedQualTypeHelper &SQT) {
1040 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1041 return OS;
1042 }
1043 };
1044
1045 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1046 const Twine &PlaceHolder = Twine(),
1047 unsigned Indentation = 0) const {
1048 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1049 }
1050
1051 void dump(const char *s) const;
1052 void dump() const;
1053 void dump(llvm::raw_ostream &OS) const;
1054
1055 void Profile(llvm::FoldingSetNodeID &ID) const {
1056 ID.AddPointer(getAsOpaquePtr());
1057 }
1058
1059 /// Check if this type has any address space qualifier.
1060 inline bool hasAddressSpace() const;
1061
1062 /// Return the address space of this type.
1063 inline LangAS getAddressSpace() const;
1064
1065 /// Returns gc attribute of this type.
1066 inline Qualifiers::GC getObjCGCAttr() const;
1067
1068 /// true when Type is objc's weak.
1069 bool isObjCGCWeak() const {
1070 return getObjCGCAttr() == Qualifiers::Weak;
1071 }
1072
1073 /// true when Type is objc's strong.
1074 bool isObjCGCStrong() const {
1075 return getObjCGCAttr() == Qualifiers::Strong;
1076 }
1077
1078 /// Returns lifetime attribute of this type.
1079 Qualifiers::ObjCLifetime getObjCLifetime() const {
1080 return getQualifiers().getObjCLifetime();
1081 }
1082
1083 bool hasNonTrivialObjCLifetime() const {
1084 return getQualifiers().hasNonTrivialObjCLifetime();
1085 }
1086
1087 bool hasStrongOrWeakObjCLifetime() const {
1088 return getQualifiers().hasStrongOrWeakObjCLifetime();
1089 }
1090
1091 // true when Type is objc's weak and weak is enabled but ARC isn't.
1092 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1093
1094 enum PrimitiveDefaultInitializeKind {
1095 /// The type does not fall into any of the following categories. Note that
1096 /// this case is zero-valued so that values of this enum can be used as a
1097 /// boolean condition for non-triviality.
1098 PDIK_Trivial,
1099
1100 /// The type is an Objective-C retainable pointer type that is qualified
1101 /// with the ARC __strong qualifier.
1102 PDIK_ARCStrong,
1103
1104 /// The type is an Objective-C retainable pointer type that is qualified
1105 /// with the ARC __weak qualifier.
1106 PDIK_ARCWeak,
1107
1108 /// The type is a struct containing a field whose type is not PCK_Trivial.
1109 PDIK_Struct
1110 };
1111
1112 /// Functions to query basic properties of non-trivial C struct types.
1113
1114 /// Check if this is a non-trivial type that would cause a C struct
1115 /// transitively containing this type to be non-trivial to default initialize
1116 /// and return the kind.
1117 PrimitiveDefaultInitializeKind
1118 isNonTrivialToPrimitiveDefaultInitialize() const;
1119
1120 enum PrimitiveCopyKind {
1121 /// The type does not fall into any of the following categories. Note that
1122 /// this case is zero-valued so that values of this enum can be used as a
1123 /// boolean condition for non-triviality.
1124 PCK_Trivial,
1125
1126 /// The type would be trivial except that it is volatile-qualified. Types
1127 /// that fall into one of the other non-trivial cases may additionally be
1128 /// volatile-qualified.
1129 PCK_VolatileTrivial,
1130
1131 /// The type is an Objective-C retainable pointer type that is qualified
1132 /// with the ARC __strong qualifier.
1133 PCK_ARCStrong,
1134
1135 /// The type is an Objective-C retainable pointer type that is qualified
1136 /// with the ARC __weak qualifier.
1137 PCK_ARCWeak,
1138
1139 /// The type is a struct containing a field whose type is neither
1140 /// PCK_Trivial nor PCK_VolatileTrivial.
1141 /// Note that a C++ struct type does not necessarily match this; C++ copying
1142 /// semantics are too complex to express here, in part because they depend
1143 /// on the exact constructor or assignment operator that is chosen by
1144 /// overload resolution to do the copy.
1145 PCK_Struct
1146 };
1147
1148 /// Check if this is a non-trivial type that would cause a C struct
1149 /// transitively containing this type to be non-trivial to copy and return the
1150 /// kind.
1151 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1152
1153 /// Check if this is a non-trivial type that would cause a C struct
1154 /// transitively containing this type to be non-trivial to destructively
1155 /// move and return the kind. Destructive move in this context is a C++-style
1156 /// move in which the source object is placed in a valid but unspecified state
1157 /// after it is moved, as opposed to a truly destructive move in which the
1158 /// source object is placed in an uninitialized state.
1159 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1160
1161 enum DestructionKind {
1162 DK_none,
1163 DK_cxx_destructor,
1164 DK_objc_strong_lifetime,
1165 DK_objc_weak_lifetime,
1166 DK_nontrivial_c_struct
1167 };
1168
1169 /// Returns a nonzero value if objects of this type require
1170 /// non-trivial work to clean up after. Non-zero because it's
1171 /// conceivable that qualifiers (objc_gc(weak)?) could make
1172 /// something require destruction.
1173 DestructionKind isDestructedType() const {
1174 return isDestructedTypeImpl(*this);
1175 }
1176
1177 /// Check if this is or contains a C union that is non-trivial to
1178 /// default-initialize, which is a union that has a member that is non-trivial
1179 /// to default-initialize. If this returns true,
1180 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1181 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1182
1183 /// Check if this is or contains a C union that is non-trivial to destruct,
1184 /// which is a union that has a member that is non-trivial to destruct. If
1185 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1186 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1187
1188 /// Check if this is or contains a C union that is non-trivial to copy, which
1189 /// is a union that has a member that is non-trivial to copy. If this returns
1190 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1191 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1192
1193 /// Determine whether expressions of the given type are forbidden
1194 /// from being lvalues in C.
1195 ///
1196 /// The expression types that are forbidden to be lvalues are:
1197 /// - 'void', but not qualified void
1198 /// - function types
1199 ///
1200 /// The exact rule here is C99 6.3.2.1:
1201 /// An lvalue is an expression with an object type or an incomplete
1202 /// type other than void.
1203 bool isCForbiddenLValueType() const;
1204
1205 /// Substitute type arguments for the Objective-C type parameters used in the
1206 /// subject type.
1207 ///
1208 /// \param ctx ASTContext in which the type exists.
1209 ///
1210 /// \param typeArgs The type arguments that will be substituted for the
1211 /// Objective-C type parameters in the subject type, which are generally
1212 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1213 /// parameters will be replaced with their bounds or id/Class, as appropriate
1214 /// for the context.
1215 ///
1216 /// \param context The context in which the subject type was written.
1217 ///
1218 /// \returns the resulting type.
1219 QualType substObjCTypeArgs(ASTContext &ctx,
1220 ArrayRef<QualType> typeArgs,
1221 ObjCSubstitutionContext context) const;
1222
1223 /// Substitute type arguments from an object type for the Objective-C type
1224 /// parameters used in the subject type.
1225 ///
1226 /// This operation combines the computation of type arguments for
1227 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1228 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1229 /// callers that need to perform a single substitution in isolation.
1230 ///
1231 /// \param objectType The type of the object whose member type we're
1232 /// substituting into. For example, this might be the receiver of a message
1233 /// or the base of a property access.
1234 ///
1235 /// \param dc The declaration context from which the subject type was
1236 /// retrieved, which indicates (for example) which type parameters should
1237 /// be substituted.
1238 ///
1239 /// \param context The context in which the subject type was written.
1240 ///
1241 /// \returns the subject type after replacing all of the Objective-C type
1242 /// parameters with their corresponding arguments.
1243 QualType substObjCMemberType(QualType objectType,
1244 const DeclContext *dc,
1245 ObjCSubstitutionContext context) const;
1246
1247 /// Strip Objective-C "__kindof" types from the given type.
1248 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1249
1250 /// Remove all qualifiers including _Atomic.
1251 QualType getAtomicUnqualifiedType() const;
1252
1253private:
1254 // These methods are implemented in a separate translation unit;
1255 // "static"-ize them to avoid creating temporary QualTypes in the
1256 // caller.
1257 static bool isConstant(QualType T, const ASTContext& Ctx);
1258 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1259 static SplitQualType getSplitDesugaredType(QualType T);
1260 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1261 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1262 const ASTContext &C);
1263 static QualType IgnoreParens(QualType T);
1264 static DestructionKind isDestructedTypeImpl(QualType type);
1265
1266 /// Check if \param RD is or contains a non-trivial C union.
1267 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1268 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1269 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1270};
1271
1272} // namespace clang
1273
1274namespace llvm {
1275
1276/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1277/// to a specific Type class.
1278template<> struct simplify_type< ::clang::QualType> {
1279 using SimpleType = const ::clang::Type *;
1280
1281 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1282 return Val.getTypePtr();
1283 }
1284};
1285
1286// Teach SmallPtrSet that QualType is "basically a pointer".
1287template<>
1288struct PointerLikeTypeTraits<clang::QualType> {
1289 static inline void *getAsVoidPointer(clang::QualType P) {
1290 return P.getAsOpaquePtr();
1291 }
1292
1293 static inline clang::QualType getFromVoidPointer(void *P) {
1294 return clang::QualType::getFromOpaquePtr(P);
1295 }
1296
1297 // Various qualifiers go in low bits.
1298 enum { NumLowBitsAvailable = 0 };
1299};
1300
1301} // namespace llvm
1302
1303namespace clang {
1304
1305/// Base class that is common to both the \c ExtQuals and \c Type
1306/// classes, which allows \c QualType to access the common fields between the
1307/// two.
1308class ExtQualsTypeCommonBase {
1309 friend class ExtQuals;
1310 friend class QualType;
1311 friend class Type;
1312
1313 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1314 /// a self-referential pointer (for \c Type).
1315 ///
1316 /// This pointer allows an efficient mapping from a QualType to its
1317 /// underlying type pointer.
1318 const Type *const BaseType;
1319
1320 /// The canonical type of this type. A QualType.
1321 QualType CanonicalType;
1322
1323 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1324 : BaseType(baseType), CanonicalType(canon) {}
1325};
1326
1327/// We can encode up to four bits in the low bits of a
1328/// type pointer, but there are many more type qualifiers that we want
1329/// to be able to apply to an arbitrary type. Therefore we have this
1330/// struct, intended to be heap-allocated and used by QualType to
1331/// store qualifiers.
1332///
1333/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1334/// in three low bits on the QualType pointer; a fourth bit records whether
1335/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1336/// Objective-C GC attributes) are much more rare.
1337class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1338 // NOTE: changing the fast qualifiers should be straightforward as
1339 // long as you don't make 'const' non-fast.
1340 // 1. Qualifiers:
1341 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1342 // Fast qualifiers must occupy the low-order bits.
1343 // b) Update Qualifiers::FastWidth and FastMask.
1344 // 2. QualType:
1345 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1346 // b) Update remove{Volatile,Restrict}, defined near the end of
1347 // this header.
1348 // 3. ASTContext:
1349 // a) Update get{Volatile,Restrict}Type.
1350
1351 /// The immutable set of qualifiers applied by this node. Always contains
1352 /// extended qualifiers.
1353 Qualifiers Quals;
1354
1355 ExtQuals *this_() { return this; }
1356
1357public:
1358 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1359 : ExtQualsTypeCommonBase(baseType,
1360 canon.isNull() ? QualType(this_(), 0) : canon),
1361 Quals(quals) {
1362 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
1363 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
;
1364 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
1365 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
;
1366 }
1367
1368 Qualifiers getQualifiers() const { return Quals; }
1369
1370 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1371 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1372
1373 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1374 Qualifiers::ObjCLifetime getObjCLifetime() const {
1375 return Quals.getObjCLifetime();
1376 }
1377
1378 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1379 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1380
1381 const Type *getBaseType() const { return BaseType; }
1382
1383public:
1384 void Profile(llvm::FoldingSetNodeID &ID) const {
1385 Profile(ID, getBaseType(), Quals);
1386 }
1387
1388 static void Profile(llvm::FoldingSetNodeID &ID,
1389 const Type *BaseType,
1390 Qualifiers Quals) {
1391 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1391, __PRETTY_FUNCTION__))
;
1392 ID.AddPointer(BaseType);
1393 Quals.Profile(ID);
1394 }
1395};
1396
1397/// The kind of C++11 ref-qualifier associated with a function type.
1398/// This determines whether a member function's "this" object can be an
1399/// lvalue, rvalue, or neither.
1400enum RefQualifierKind {
1401 /// No ref-qualifier was provided.
1402 RQ_None = 0,
1403
1404 /// An lvalue ref-qualifier was provided (\c &).
1405 RQ_LValue,
1406
1407 /// An rvalue ref-qualifier was provided (\c &&).
1408 RQ_RValue
1409};
1410
1411/// Which keyword(s) were used to create an AutoType.
1412enum class AutoTypeKeyword {
1413 /// auto
1414 Auto,
1415
1416 /// decltype(auto)
1417 DecltypeAuto,
1418
1419 /// __auto_type (GNU extension)
1420 GNUAutoType
1421};
1422
1423/// The base class of the type hierarchy.
1424///
1425/// A central concept with types is that each type always has a canonical
1426/// type. A canonical type is the type with any typedef names stripped out
1427/// of it or the types it references. For example, consider:
1428///
1429/// typedef int foo;
1430/// typedef foo* bar;
1431/// 'int *' 'foo *' 'bar'
1432///
1433/// There will be a Type object created for 'int'. Since int is canonical, its
1434/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1435/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1436/// there is a PointerType that represents 'int*', which, like 'int', is
1437/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1438/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1439/// is also 'int*'.
1440///
1441/// Non-canonical types are useful for emitting diagnostics, without losing
1442/// information about typedefs being used. Canonical types are useful for type
1443/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1444/// about whether something has a particular form (e.g. is a function type),
1445/// because they implicitly, recursively, strip all typedefs out of a type.
1446///
1447/// Types, once created, are immutable.
1448///
1449class alignas(8) Type : public ExtQualsTypeCommonBase {
1450public:
1451 enum TypeClass {
1452#define TYPE(Class, Base) Class,
1453#define LAST_TYPE(Class) TypeLast = Class
1454#define ABSTRACT_TYPE(Class, Base)
1455#include "clang/AST/TypeNodes.inc"
1456 };
1457
1458private:
1459 /// Bitfields required by the Type class.
1460 class TypeBitfields {
1461 friend class Type;
1462 template <class T> friend class TypePropertyCache;
1463
1464 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1465 unsigned TC : 8;
1466
1467 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1468 unsigned Dependent : 1;
1469
1470 /// Whether this type somehow involves a template parameter, even
1471 /// if the resolution of the type does not depend on a template parameter.
1472 unsigned InstantiationDependent : 1;
1473
1474 /// Whether this type is a variably-modified type (C99 6.7.5).
1475 unsigned VariablyModified : 1;
1476
1477 /// Whether this type contains an unexpanded parameter pack
1478 /// (for C++11 variadic templates).
1479 unsigned ContainsUnexpandedParameterPack : 1;
1480
1481 /// True if the cache (i.e. the bitfields here starting with
1482 /// 'Cache') is valid.
1483 mutable unsigned CacheValid : 1;
1484
1485 /// Linkage of this type.
1486 mutable unsigned CachedLinkage : 3;
1487
1488 /// Whether this type involves and local or unnamed types.
1489 mutable unsigned CachedLocalOrUnnamed : 1;
1490
1491 /// Whether this type comes from an AST file.
1492 mutable unsigned FromAST : 1;
1493
1494 bool isCacheValid() const {
1495 return CacheValid;
1496 }
1497
1498 Linkage getLinkage() const {
1499 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1499, __PRETTY_FUNCTION__))
;
1500 return static_cast<Linkage>(CachedLinkage);
1501 }
1502
1503 bool hasLocalOrUnnamedType() const {
1504 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 1504, __PRETTY_FUNCTION__))
;
1505 return CachedLocalOrUnnamed;
1506 }
1507 };
1508 enum { NumTypeBits = 18 };
1509
1510protected:
1511 // These classes allow subclasses to somewhat cleanly pack bitfields
1512 // into Type.
1513
1514 class ArrayTypeBitfields {
1515 friend class ArrayType;
1516
1517 unsigned : NumTypeBits;
1518
1519 /// CVR qualifiers from declarations like
1520 /// 'int X[static restrict 4]'. For function parameters only.
1521 unsigned IndexTypeQuals : 3;
1522
1523 /// Storage class qualifiers from declarations like
1524 /// 'int X[static restrict 4]'. For function parameters only.
1525 /// Actually an ArrayType::ArraySizeModifier.
1526 unsigned SizeModifier : 3;
1527 };
1528
1529 class ConstantArrayTypeBitfields {
1530 friend class ConstantArrayType;
1531
1532 unsigned : NumTypeBits + 3 + 3;
1533
1534 /// Whether we have a stored size expression.
1535 unsigned HasStoredSizeExpr : 1;
1536 };
1537
1538 class BuiltinTypeBitfields {
1539 friend class BuiltinType;
1540
1541 unsigned : NumTypeBits;
1542
1543 /// The kind (BuiltinType::Kind) of builtin type this is.
1544 unsigned Kind : 8;
1545 };
1546
1547 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1548 /// Only common bits are stored here. Additional uncommon bits are stored
1549 /// in a trailing object after FunctionProtoType.
1550 class FunctionTypeBitfields {
1551 friend class FunctionProtoType;
1552 friend class FunctionType;
1553
1554 unsigned : NumTypeBits;
1555
1556 /// Extra information which affects how the function is called, like
1557 /// regparm and the calling convention.
1558 unsigned ExtInfo : 12;
1559
1560 /// The ref-qualifier associated with a \c FunctionProtoType.
1561 ///
1562 /// This is a value of type \c RefQualifierKind.
1563 unsigned RefQualifier : 2;
1564
1565 /// Used only by FunctionProtoType, put here to pack with the
1566 /// other bitfields.
1567 /// The qualifiers are part of FunctionProtoType because...
1568 ///
1569 /// C++ 8.3.5p4: The return type, the parameter type list and the
1570 /// cv-qualifier-seq, [...], are part of the function type.
1571 unsigned FastTypeQuals : Qualifiers::FastWidth;
1572 /// Whether this function has extended Qualifiers.
1573 unsigned HasExtQuals : 1;
1574
1575 /// The number of parameters this function has, not counting '...'.
1576 /// According to [implimits] 8 bits should be enough here but this is
1577 /// somewhat easy to exceed with metaprogramming and so we would like to
1578 /// keep NumParams as wide as reasonably possible.
1579 unsigned NumParams : 16;
1580
1581 /// The type of exception specification this function has.
1582 unsigned ExceptionSpecType : 4;
1583
1584 /// Whether this function has extended parameter information.
1585 unsigned HasExtParameterInfos : 1;
1586
1587 /// Whether the function is variadic.
1588 unsigned Variadic : 1;
1589
1590 /// Whether this function has a trailing return type.
1591 unsigned HasTrailingReturn : 1;
1592 };
1593
1594 class ObjCObjectTypeBitfields {
1595 friend class ObjCObjectType;
1596
1597 unsigned : NumTypeBits;
1598
1599 /// The number of type arguments stored directly on this object type.
1600 unsigned NumTypeArgs : 7;
1601
1602 /// The number of protocols stored directly on this object type.
1603 unsigned NumProtocols : 6;
1604
1605 /// Whether this is a "kindof" type.
1606 unsigned IsKindOf : 1;
1607 };
1608
1609 class ReferenceTypeBitfields {
1610 friend class ReferenceType;
1611
1612 unsigned : NumTypeBits;
1613
1614 /// True if the type was originally spelled with an lvalue sigil.
1615 /// This is never true of rvalue references but can also be false
1616 /// on lvalue references because of C++0x [dcl.typedef]p9,
1617 /// as follows:
1618 ///
1619 /// typedef int &ref; // lvalue, spelled lvalue
1620 /// typedef int &&rvref; // rvalue
1621 /// ref &a; // lvalue, inner ref, spelled lvalue
1622 /// ref &&a; // lvalue, inner ref
1623 /// rvref &a; // lvalue, inner ref, spelled lvalue
1624 /// rvref &&a; // rvalue, inner ref
1625 unsigned SpelledAsLValue : 1;
1626
1627 /// True if the inner type is a reference type. This only happens
1628 /// in non-canonical forms.
1629 unsigned InnerRef : 1;
1630 };
1631
1632 class TypeWithKeywordBitfields {
1633 friend class TypeWithKeyword;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1638 unsigned Keyword : 8;
1639 };
1640
1641 enum { NumTypeWithKeywordBits = 8 };
1642
1643 class ElaboratedTypeBitfields {
1644 friend class ElaboratedType;
1645
1646 unsigned : NumTypeBits;
1647 unsigned : NumTypeWithKeywordBits;
1648
1649 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1650 unsigned HasOwnedTagDecl : 1;
1651 };
1652
1653 class VectorTypeBitfields {
1654 friend class VectorType;
1655 friend class DependentVectorType;
1656
1657 unsigned : NumTypeBits;
1658
1659 /// The kind of vector, either a generic vector type or some
1660 /// target-specific vector type such as for AltiVec or Neon.
1661 unsigned VecKind : 3;
1662
1663 /// The number of elements in the vector.
1664 unsigned NumElements : 29 - NumTypeBits;
1665
1666 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1667 };
1668
1669 class AttributedTypeBitfields {
1670 friend class AttributedType;
1671
1672 unsigned : NumTypeBits;
1673
1674 /// An AttributedType::Kind
1675 unsigned AttrKind : 32 - NumTypeBits;
1676 };
1677
1678 class AutoTypeBitfields {
1679 friend class AutoType;
1680
1681 unsigned : NumTypeBits;
1682
1683 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1684 /// or '__auto_type'? AutoTypeKeyword value.
1685 unsigned Keyword : 2;
1686 };
1687
1688 class SubstTemplateTypeParmPackTypeBitfields {
1689 friend class SubstTemplateTypeParmPackType;
1690
1691 unsigned : NumTypeBits;
1692
1693 /// The number of template arguments in \c Arguments, which is
1694 /// expected to be able to hold at least 1024 according to [implimits].
1695 /// However as this limit is somewhat easy to hit with template
1696 /// metaprogramming we'd prefer to keep it as large as possible.
1697 /// At the moment it has been left as a non-bitfield since this type
1698 /// safely fits in 64 bits as an unsigned, so there is no reason to
1699 /// introduce the performance impact of a bitfield.
1700 unsigned NumArgs;
1701 };
1702
1703 class TemplateSpecializationTypeBitfields {
1704 friend class TemplateSpecializationType;
1705
1706 unsigned : NumTypeBits;
1707
1708 /// Whether this template specialization type is a substituted type alias.
1709 unsigned TypeAlias : 1;
1710
1711 /// The number of template arguments named in this class template
1712 /// specialization, which is expected to be able to hold at least 1024
1713 /// according to [implimits]. However, as this limit is somewhat easy to
1714 /// hit with template metaprogramming we'd prefer to keep it as large
1715 /// as possible. At the moment it has been left as a non-bitfield since
1716 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1717 /// to introduce the performance impact of a bitfield.
1718 unsigned NumArgs;
1719 };
1720
1721 class DependentTemplateSpecializationTypeBitfields {
1722 friend class DependentTemplateSpecializationType;
1723
1724 unsigned : NumTypeBits;
1725 unsigned : NumTypeWithKeywordBits;
1726
1727 /// The number of template arguments named in this class template
1728 /// specialization, which is expected to be able to hold at least 1024
1729 /// according to [implimits]. However, as this limit is somewhat easy to
1730 /// hit with template metaprogramming we'd prefer to keep it as large
1731 /// as possible. At the moment it has been left as a non-bitfield since
1732 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1733 /// to introduce the performance impact of a bitfield.
1734 unsigned NumArgs;
1735 };
1736
1737 class PackExpansionTypeBitfields {
1738 friend class PackExpansionType;
1739
1740 unsigned : NumTypeBits;
1741
1742 /// The number of expansions that this pack expansion will
1743 /// generate when substituted (+1), which is expected to be able to
1744 /// hold at least 1024 according to [implimits]. However, as this limit
1745 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1746 /// keep it as large as possible. At the moment it has been left as a
1747 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1748 /// there is no reason to introduce the performance impact of a bitfield.
1749 ///
1750 /// This field will only have a non-zero value when some of the parameter
1751 /// packs that occur within the pattern have been substituted but others
1752 /// have not.
1753 unsigned NumExpansions;
1754 };
1755
1756 union {
1757 TypeBitfields TypeBits;
1758 ArrayTypeBitfields ArrayTypeBits;
1759 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1760 AttributedTypeBitfields AttributedTypeBits;
1761 AutoTypeBitfields AutoTypeBits;
1762 BuiltinTypeBitfields BuiltinTypeBits;
1763 FunctionTypeBitfields FunctionTypeBits;
1764 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1765 ReferenceTypeBitfields ReferenceTypeBits;
1766 TypeWithKeywordBitfields TypeWithKeywordBits;
1767 ElaboratedTypeBitfields ElaboratedTypeBits;
1768 VectorTypeBitfields VectorTypeBits;
1769 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1770 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1771 DependentTemplateSpecializationTypeBitfields
1772 DependentTemplateSpecializationTypeBits;
1773 PackExpansionTypeBitfields PackExpansionTypeBits;
1774
1775 static_assert(sizeof(TypeBitfields) <= 8,
1776 "TypeBitfields is larger than 8 bytes!");
1777 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1778 "ArrayTypeBitfields is larger than 8 bytes!");
1779 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1780 "AttributedTypeBitfields is larger than 8 bytes!");
1781 static_assert(sizeof(AutoTypeBitfields) <= 8,
1782 "AutoTypeBitfields is larger than 8 bytes!");
1783 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1784 "BuiltinTypeBitfields is larger than 8 bytes!");
1785 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1786 "FunctionTypeBitfields is larger than 8 bytes!");
1787 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1788 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1789 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1790 "ReferenceTypeBitfields is larger than 8 bytes!");
1791 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1792 "TypeWithKeywordBitfields is larger than 8 bytes!");
1793 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1794 "ElaboratedTypeBitfields is larger than 8 bytes!");
1795 static_assert(sizeof(VectorTypeBitfields) <= 8,
1796 "VectorTypeBitfields is larger than 8 bytes!");
1797 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1798 "SubstTemplateTypeParmPackTypeBitfields is larger"
1799 " than 8 bytes!");
1800 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1801 "TemplateSpecializationTypeBitfields is larger"
1802 " than 8 bytes!");
1803 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1804 "DependentTemplateSpecializationTypeBitfields is larger"
1805 " than 8 bytes!");
1806 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1807 "PackExpansionTypeBitfields is larger than 8 bytes");
1808 };
1809
1810private:
1811 template <class T> friend class TypePropertyCache;
1812
1813 /// Set whether this type comes from an AST file.
1814 void setFromAST(bool V = true) const {
1815 TypeBits.FromAST = V;
1816 }
1817
1818protected:
1819 friend class ASTContext;
1820
1821 Type(TypeClass tc, QualType canon, bool Dependent,
1822 bool InstantiationDependent, bool VariablyModified,
1823 bool ContainsUnexpandedParameterPack)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 TypeBits.TC = tc;
1827 TypeBits.Dependent = Dependent;
1828 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1829 TypeBits.VariablyModified = VariablyModified;
1830 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1831 TypeBits.CacheValid = false;
1832 TypeBits.CachedLocalOrUnnamed = false;
1833 TypeBits.CachedLinkage = NoLinkage;
1834 TypeBits.FromAST = false;
1835 }
1836
1837 // silence VC++ warning C4355: 'this' : used in base member initializer list
1838 Type *this_() { return this; }
1839
1840 void setDependent(bool D = true) {
1841 TypeBits.Dependent = D;
1842 if (D)
1843 TypeBits.InstantiationDependent = true;
1844 }
1845
1846 void setInstantiationDependent(bool D = true) {
1847 TypeBits.InstantiationDependent = D; }
1848
1849 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1850
1851 void setContainsUnexpandedParameterPack(bool PP = true) {
1852 TypeBits.ContainsUnexpandedParameterPack = PP;
1853 }
1854
1855public:
1856 friend class ASTReader;
1857 friend class ASTWriter;
1858 template <class T> friend class serialization::AbstractTypeReader;
1859 template <class T> friend class serialization::AbstractTypeWriter;
1860
1861 Type(const Type &) = delete;
1862 Type(Type &&) = delete;
1863 Type &operator=(const Type &) = delete;
1864 Type &operator=(Type &&) = delete;
1865
1866 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1867
1868 /// Whether this type comes from an AST file.
1869 bool isFromAST() const { return TypeBits.FromAST; }
1870
1871 /// Whether this type is or contains an unexpanded parameter
1872 /// pack, used to support C++0x variadic templates.
1873 ///
1874 /// A type that contains a parameter pack shall be expanded by the
1875 /// ellipsis operator at some point. For example, the typedef in the
1876 /// following example contains an unexpanded parameter pack 'T':
1877 ///
1878 /// \code
1879 /// template<typename ...T>
1880 /// struct X {
1881 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1882 /// };
1883 /// \endcode
1884 ///
1885 /// Note that this routine does not specify which
1886 bool containsUnexpandedParameterPack() const {
1887 return TypeBits.ContainsUnexpandedParameterPack;
1888 }
1889
1890 /// Determines if this type would be canonical if it had no further
1891 /// qualification.
1892 bool isCanonicalUnqualified() const {
1893 return CanonicalType == QualType(this, 0);
1894 }
1895
1896 /// Pull a single level of sugar off of this locally-unqualified type.
1897 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1898 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1899 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1900
1901 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1902 /// object types, function types, and incomplete types.
1903
1904 /// Return true if this is an incomplete type.
1905 /// A type that can describe objects, but which lacks information needed to
1906 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1907 /// routine will need to determine if the size is actually required.
1908 ///
1909 /// Def If non-null, and the type refers to some kind of declaration
1910 /// that can be completed (such as a C struct, C++ class, or Objective-C
1911 /// class), will be set to the declaration.
1912 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1913
1914 /// Return true if this is an incomplete or object
1915 /// type, in other words, not a function type.
1916 bool isIncompleteOrObjectType() const {
1917 return !isFunctionType();
1918 }
1919
1920 /// Determine whether this type is an object type.
1921 bool isObjectType() const {
1922 // C++ [basic.types]p8:
1923 // An object type is a (possibly cv-qualified) type that is not a
1924 // function type, not a reference type, and not a void type.
1925 return !isReferenceType() && !isFunctionType() && !isVoidType();
1926 }
1927
1928 /// Return true if this is a literal type
1929 /// (C++11 [basic.types]p10)
1930 bool isLiteralType(const ASTContext &Ctx) const;
1931
1932 /// Test if this type is a standard-layout type.
1933 /// (C++0x [basic.type]p9)
1934 bool isStandardLayoutType() const;
1935
1936 /// Helper methods to distinguish type categories. All type predicates
1937 /// operate on the canonical type, ignoring typedefs and qualifiers.
1938
1939 /// Returns true if the type is a builtin type.
1940 bool isBuiltinType() const;
1941
1942 /// Test for a particular builtin type.
1943 bool isSpecificBuiltinType(unsigned K) const;
1944
1945 /// Test for a type which does not represent an actual type-system type but
1946 /// is instead used as a placeholder for various convenient purposes within
1947 /// Clang. All such types are BuiltinTypes.
1948 bool isPlaceholderType() const;
1949 const BuiltinType *getAsPlaceholderType() const;
1950
1951 /// Test for a specific placeholder type.
1952 bool isSpecificPlaceholderType(unsigned K) const;
1953
1954 /// Test for a placeholder type other than Overload; see
1955 /// BuiltinType::isNonOverloadPlaceholderType.
1956 bool isNonOverloadPlaceholderType() const;
1957
1958 /// isIntegerType() does *not* include complex integers (a GCC extension).
1959 /// isComplexIntegerType() can be used to test for complex integers.
1960 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1961 bool isEnumeralType() const;
1962
1963 /// Determine whether this type is a scoped enumeration type.
1964 bool isScopedEnumeralType() const;
1965 bool isBooleanType() const;
1966 bool isCharType() const;
1967 bool isWideCharType() const;
1968 bool isChar8Type() const;
1969 bool isChar16Type() const;
1970 bool isChar32Type() const;
1971 bool isAnyCharacterType() const;
1972 bool isIntegralType(const ASTContext &Ctx) const;
1973
1974 /// Determine whether this type is an integral or enumeration type.
1975 bool isIntegralOrEnumerationType() const;
1976
1977 /// Determine whether this type is an integral or unscoped enumeration type.
1978 bool isIntegralOrUnscopedEnumerationType() const;
1979 bool isUnscopedEnumerationType() const;
1980
1981 /// Floating point categories.
1982 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1983 /// isComplexType() does *not* include complex integers (a GCC extension).
1984 /// isComplexIntegerType() can be used to test for complex integers.
1985 bool isComplexType() const; // C99 6.2.5p11 (complex)
1986 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1987 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1988 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1989 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1990 bool isFloat128Type() const;
1991 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1992 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1993 bool isVoidType() const; // C99 6.2.5p19
1994 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1995 bool isAggregateType() const;
1996 bool isFundamentalType() const;
1997 bool isCompoundType() const;
1998
1999 // Type Predicates: Check to see if this type is structurally the specified
2000 // type, ignoring typedefs and qualifiers.
2001 bool isFunctionType() const;
2002 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2003 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2004 bool isPointerType() const;
2005 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2006 bool isBlockPointerType() const;
2007 bool isVoidPointerType() const;
2008 bool isReferenceType() const;
2009 bool isLValueReferenceType() const;
2010 bool isRValueReferenceType() const;
2011 bool isObjectPointerType() const;
2012 bool isFunctionPointerType() const;
2013 bool isFunctionReferenceType() const;
2014 bool isMemberPointerType() const;
2015 bool isMemberFunctionPointerType() const;
2016 bool isMemberDataPointerType() const;
2017 bool isArrayType() const;
2018 bool isConstantArrayType() const;
2019 bool isIncompleteArrayType() const;
2020 bool isVariableArrayType() const;
2021 bool isDependentSizedArrayType() const;
2022 bool isRecordType() const;
2023 bool isClassType() const;
2024 bool isStructureType() const;
2025 bool isObjCBoxableRecordType() const;
2026 bool isInterfaceType() const;
2027 bool isStructureOrClassType() const;
2028 bool isUnionType() const;
2029 bool isComplexIntegerType() const; // GCC _Complex integer type.
2030 bool isVectorType() const; // GCC vector type.
2031 bool isExtVectorType() const; // Extended vector type.
2032 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2033 bool isObjCObjectPointerType() const; // pointer to ObjC object
2034 bool isObjCRetainableType() const; // ObjC object or block pointer
2035 bool isObjCLifetimeType() const; // (array of)* retainable type
2036 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2037 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2038 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2039 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2040 // for the common case.
2041 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2042 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2043 bool isObjCQualifiedIdType() const; // id<foo>
2044 bool isObjCQualifiedClassType() const; // Class<foo>
2045 bool isObjCObjectOrInterfaceType() const;
2046 bool isObjCIdType() const; // id
2047 bool isDecltypeType() const;
2048 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2049 /// qualifier?
2050 ///
2051 /// This approximates the answer to the following question: if this
2052 /// translation unit were compiled in ARC, would this type be qualified
2053 /// with __unsafe_unretained?
2054 bool isObjCInertUnsafeUnretainedType() const {
2055 return hasAttr(attr::ObjCInertUnsafeUnretained);
2056 }
2057
2058 /// Whether the type is Objective-C 'id' or a __kindof type of an
2059 /// object type, e.g., __kindof NSView * or __kindof id
2060 /// <NSCopying>.
2061 ///
2062 /// \param bound Will be set to the bound on non-id subtype types,
2063 /// which will be (possibly specialized) Objective-C class type, or
2064 /// null for 'id.
2065 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2066 const ObjCObjectType *&bound) const;
2067
2068 bool isObjCClassType() const; // Class
2069
2070 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2071 /// Class type, e.g., __kindof Class <NSCopying>.
2072 ///
2073 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2074 /// here because Objective-C's type system cannot express "a class
2075 /// object for a subclass of NSFoo".
2076 bool isObjCClassOrClassKindOfType() const;
2077
2078 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2079 bool isObjCSelType() const; // Class
2080 bool isObjCBuiltinType() const; // 'id' or 'Class'
2081 bool isObjCARCBridgableType() const;
2082 bool isCARCBridgableType() const;
2083 bool isTemplateTypeParmType() const; // C++ template type parameter
2084 bool isNullPtrType() const; // C++11 std::nullptr_t
2085 bool isNothrowT() const; // C++ std::nothrow_t
2086 bool isAlignValT() const; // C++17 std::align_val_t
2087 bool isStdByteType() const; // C++17 std::byte
2088 bool isAtomicType() const; // C11 _Atomic()
2089 bool isUndeducedAutoType() const; // C++11 auto or
2090 // C++14 decltype(auto)
2091
2092#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2093 bool is##Id##Type() const;
2094#include "clang/Basic/OpenCLImageTypes.def"
2095
2096 bool isImageType() const; // Any OpenCL image type
2097
2098 bool isSamplerT() const; // OpenCL sampler_t
2099 bool isEventT() const; // OpenCL event_t
2100 bool isClkEventT() const; // OpenCL clk_event_t
2101 bool isQueueT() const; // OpenCL queue_t
2102 bool isReserveIDT() const; // OpenCL reserve_id_t
2103
2104#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2105 bool is##Id##Type() const;
2106#include "clang/Basic/OpenCLExtensionTypes.def"
2107 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2108 bool isOCLIntelSubgroupAVCType() const;
2109 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2110
2111 bool isPipeType() const; // OpenCL pipe type
2112 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2113
2114 /// Determines if this type, which must satisfy
2115 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2116 /// than implicitly __strong.
2117 bool isObjCARCImplicitlyUnretainedType() const;
2118
2119 /// Return the implicit lifetime for this type, which must not be dependent.
2120 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2121
2122 enum ScalarTypeKind {
2123 STK_CPointer,
2124 STK_BlockPointer,
2125 STK_ObjCObjectPointer,
2126 STK_MemberPointer,
2127 STK_Bool,
2128 STK_Integral,
2129 STK_Floating,
2130 STK_IntegralComplex,
2131 STK_FloatingComplex,
2132 STK_FixedPoint
2133 };
2134
2135 /// Given that this is a scalar type, classify it.
2136 ScalarTypeKind getScalarTypeKind() const;
2137
2138 /// Whether this type is a dependent type, meaning that its definition
2139 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2140 bool isDependentType() const { return TypeBits.Dependent; }
2141
2142 /// Determine whether this type is an instantiation-dependent type,
2143 /// meaning that the type involves a template parameter (even if the
2144 /// definition does not actually depend on the type substituted for that
2145 /// template parameter).
2146 bool isInstantiationDependentType() const {
2147 return TypeBits.InstantiationDependent;
2148 }
2149
2150 /// Determine whether this type is an undeduced type, meaning that
2151 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2152 /// deduced.
2153 bool isUndeducedType() const;
2154
2155 /// Whether this type is a variably-modified type (C99 6.7.5).
2156 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2157
2158 /// Whether this type involves a variable-length array type
2159 /// with a definite size.
2160 bool hasSizedVLAType() const;
2161
2162 /// Whether this type is or contains a local or unnamed type.
2163 bool hasUnnamedOrLocalType() const;
2164
2165 bool isOverloadableType() const;
2166
2167 /// Determine wither this type is a C++ elaborated-type-specifier.
2168 bool isElaboratedTypeSpecifier() const;
2169
2170 bool canDecayToPointerType() const;
2171
2172 /// Whether this type is represented natively as a pointer. This includes
2173 /// pointers, references, block pointers, and Objective-C interface,
2174 /// qualified id, and qualified interface types, as well as nullptr_t.
2175 bool hasPointerRepresentation() const;
2176
2177 /// Whether this type can represent an objective pointer type for the
2178 /// purpose of GC'ability
2179 bool hasObjCPointerRepresentation() const;
2180
2181 /// Determine whether this type has an integer representation
2182 /// of some sort, e.g., it is an integer type or a vector.
2183 bool hasIntegerRepresentation() const;
2184
2185 /// Determine whether this type has an signed integer representation
2186 /// of some sort, e.g., it is an signed integer type or a vector.
2187 bool hasSignedIntegerRepresentation() const;
2188
2189 /// Determine whether this type has an unsigned integer representation
2190 /// of some sort, e.g., it is an unsigned integer type or a vector.
2191 bool hasUnsignedIntegerRepresentation() const;
2192
2193 /// Determine whether this type has a floating-point representation
2194 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2195 bool hasFloatingRepresentation() const;
2196
2197 // Type Checking Functions: Check to see if this type is structurally the
2198 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2199 // the best type we can.
2200 const RecordType *getAsStructureType() const;
2201 /// NOTE: getAs*ArrayType are methods on ASTContext.
2202 const RecordType *getAsUnionType() const;
2203 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2204 const ObjCObjectType *getAsObjCInterfaceType() const;
2205
2206 // The following is a convenience method that returns an ObjCObjectPointerType
2207 // for object declared using an interface.
2208 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2209 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2210 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2211 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2212
2213 /// Retrieves the CXXRecordDecl that this type refers to, either
2214 /// because the type is a RecordType or because it is the injected-class-name
2215 /// type of a class template or class template partial specialization.
2216 CXXRecordDecl *getAsCXXRecordDecl() const;
2217
2218 /// Retrieves the RecordDecl this type refers to.
2219 RecordDecl *getAsRecordDecl() const;
2220
2221 /// Retrieves the TagDecl that this type refers to, either
2222 /// because the type is a TagType or because it is the injected-class-name
2223 /// type of a class template or class template partial specialization.
2224 TagDecl *getAsTagDecl() const;
2225
2226 /// If this is a pointer or reference to a RecordType, return the
2227 /// CXXRecordDecl that the type refers to.
2228 ///
2229 /// If this is not a pointer or reference, or the type being pointed to does
2230 /// not refer to a CXXRecordDecl, returns NULL.
2231 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2232
2233 /// Get the DeducedType whose type will be deduced for a variable with
2234 /// an initializer of this type. This looks through declarators like pointer
2235 /// types, but not through decltype or typedefs.
2236 DeducedType *getContainedDeducedType() const;
2237
2238 /// Get the AutoType whose type will be deduced for a variable with
2239 /// an initializer of this type. This looks through declarators like pointer
2240 /// types, but not through decltype or typedefs.
2241 AutoType *getContainedAutoType() const {
2242 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2243 }
2244
2245 /// Determine whether this type was written with a leading 'auto'
2246 /// corresponding to a trailing return type (possibly for a nested
2247 /// function type within a pointer to function type or similar).
2248 bool hasAutoForTrailingReturnType() const;
2249
2250 /// Member-template getAs<specific type>'. Look through sugar for
2251 /// an instance of \<specific type>. This scheme will eventually
2252 /// replace the specific getAsXXXX methods above.
2253 ///
2254 /// There are some specializations of this member template listed
2255 /// immediately following this class.
2256 template <typename T> const T *getAs() const;
2257
2258 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2259 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2260 /// This is used when you need to walk over sugar nodes that represent some
2261 /// kind of type adjustment from a type that was written as a \<specific type>
2262 /// to another type that is still canonically a \<specific type>.
2263 template <typename T> const T *getAsAdjusted() const;
2264
2265 /// A variant of getAs<> for array types which silently discards
2266 /// qualifiers from the outermost type.
2267 const ArrayType *getAsArrayTypeUnsafe() const;
2268
2269 /// Member-template castAs<specific type>. Look through sugar for
2270 /// the underlying instance of \<specific type>.
2271 ///
2272 /// This method has the same relationship to getAs<T> as cast<T> has
2273 /// to dyn_cast<T>; which is to say, the underlying type *must*
2274 /// have the intended type, and this method will never return null.
2275 template <typename T> const T *castAs() const;
2276
2277 /// A variant of castAs<> for array type which silently discards
2278 /// qualifiers from the outermost type.
2279 const ArrayType *castAsArrayTypeUnsafe() const;
2280
2281 /// Determine whether this type had the specified attribute applied to it
2282 /// (looking through top-level type sugar).
2283 bool hasAttr(attr::Kind AK) const;
2284
2285 /// Get the base element type of this type, potentially discarding type
2286 /// qualifiers. This should never be used when type qualifiers
2287 /// are meaningful.
2288 const Type *getBaseElementTypeUnsafe() const;
2289
2290 /// If this is an array type, return the element type of the array,
2291 /// potentially with type qualifiers missing.
2292 /// This should never be used when type qualifiers are meaningful.
2293 const Type *getArrayElementTypeNoTypeQual() const;
2294
2295 /// If this is a pointer type, return the pointee type.
2296 /// If this is an array type, return the array element type.
2297 /// This should never be used when type qualifiers are meaningful.
2298 const Type *getPointeeOrArrayElementType() const;
2299
2300 /// If this is a pointer, ObjC object pointer, or block
2301 /// pointer, this returns the respective pointee.
2302 QualType getPointeeType() const;
2303
2304 /// Return the specified type with any "sugar" removed from the type,
2305 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2306 const Type *getUnqualifiedDesugaredType() const;
2307
2308 /// More type predicates useful for type checking/promotion
2309 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2310
2311 /// Return true if this is an integer type that is
2312 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2313 /// or an enum decl which has a signed representation.
2314 bool isSignedIntegerType() const;
2315
2316 /// Return true if this is an integer type that is
2317 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2318 /// or an enum decl which has an unsigned representation.
2319 bool isUnsignedIntegerType() const;
2320
2321 /// Determines whether this is an integer type that is signed or an
2322 /// enumeration types whose underlying type is a signed integer type.
2323 bool isSignedIntegerOrEnumerationType() const;
2324
2325 /// Determines whether this is an integer type that is unsigned or an
2326 /// enumeration types whose underlying type is a unsigned integer type.
2327 bool isUnsignedIntegerOrEnumerationType() const;
2328
2329 /// Return true if this is a fixed point type according to
2330 /// ISO/IEC JTC1 SC22 WG14 N1169.
2331 bool isFixedPointType() const;
2332
2333 /// Return true if this is a fixed point or integer type.
2334 bool isFixedPointOrIntegerType() const;
2335
2336 /// Return true if this is a saturated fixed point type according to
2337 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2338 bool isSaturatedFixedPointType() const;
2339
2340 /// Return true if this is a saturated fixed point type according to
2341 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2342 bool isUnsaturatedFixedPointType() const;
2343
2344 /// Return true if this is a fixed point type that is signed according
2345 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2346 bool isSignedFixedPointType() const;
2347
2348 /// Return true if this is a fixed point type that is unsigned according
2349 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2350 bool isUnsignedFixedPointType() const;
2351
2352 /// Return true if this is not a variable sized type,
2353 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2354 /// incomplete types.
2355 bool isConstantSizeType() const;
2356
2357 /// Returns true if this type can be represented by some
2358 /// set of type specifiers.
2359 bool isSpecifierType() const;
2360
2361 /// Determine the linkage of this type.
2362 Linkage getLinkage() const;
2363
2364 /// Determine the visibility of this type.
2365 Visibility getVisibility() const {
2366 return getLinkageAndVisibility().getVisibility();
2367 }
2368
2369 /// Return true if the visibility was explicitly set is the code.
2370 bool isVisibilityExplicit() const {
2371 return getLinkageAndVisibility().isVisibilityExplicit();
2372 }
2373
2374 /// Determine the linkage and visibility of this type.
2375 LinkageInfo getLinkageAndVisibility() const;
2376
2377 /// True if the computed linkage is valid. Used for consistency
2378 /// checking. Should always return true.
2379 bool isLinkageValid() const;
2380
2381 /// Determine the nullability of the given type.
2382 ///
2383 /// Note that nullability is only captured as sugar within the type
2384 /// system, not as part of the canonical type, so nullability will
2385 /// be lost by canonicalization and desugaring.
2386 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2387
2388 /// Determine whether the given type can have a nullability
2389 /// specifier applied to it, i.e., if it is any kind of pointer type.
2390 ///
2391 /// \param ResultIfUnknown The value to return if we don't yet know whether
2392 /// this type can have nullability because it is dependent.
2393 bool canHaveNullability(bool ResultIfUnknown = true) const;
2394
2395 /// Retrieve the set of substitutions required when accessing a member
2396 /// of the Objective-C receiver type that is declared in the given context.
2397 ///
2398 /// \c *this is the type of the object we're operating on, e.g., the
2399 /// receiver for a message send or the base of a property access, and is
2400 /// expected to be of some object or object pointer type.
2401 ///
2402 /// \param dc The declaration context for which we are building up a
2403 /// substitution mapping, which should be an Objective-C class, extension,
2404 /// category, or method within.
2405 ///
2406 /// \returns an array of type arguments that can be substituted for
2407 /// the type parameters of the given declaration context in any type described
2408 /// within that context, or an empty optional to indicate that no
2409 /// substitution is required.
2410 Optional<ArrayRef<QualType>>
2411 getObjCSubstitutions(const DeclContext *dc) const;
2412
2413 /// Determines if this is an ObjC interface type that may accept type
2414 /// parameters.
2415 bool acceptsObjCTypeParams() const;
2416
2417 const char *getTypeClassName() const;
2418
2419 QualType getCanonicalTypeInternal() const {
2420 return CanonicalType;
2421 }
2422
2423 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2424 void dump() const;
2425 void dump(llvm::raw_ostream &OS) const;
2426};
2427
2428/// This will check for a TypedefType by removing any existing sugar
2429/// until it reaches a TypedefType or a non-sugared type.
2430template <> const TypedefType *Type::getAs() const;
2431
2432/// This will check for a TemplateSpecializationType by removing any
2433/// existing sugar until it reaches a TemplateSpecializationType or a
2434/// non-sugared type.
2435template <> const TemplateSpecializationType *Type::getAs() const;
2436
2437/// This will check for an AttributedType by removing any existing sugar
2438/// until it reaches an AttributedType or a non-sugared type.
2439template <> const AttributedType *Type::getAs() const;
2440
2441// We can do canonical leaf types faster, because we don't have to
2442// worry about preserving child type decoration.
2443#define TYPE(Class, Base)
2444#define LEAF_TYPE(Class) \
2445template <> inline const Class##Type *Type::getAs() const { \
2446 return dyn_cast<Class##Type>(CanonicalType); \
2447} \
2448template <> inline const Class##Type *Type::castAs() const { \
2449 return cast<Class##Type>(CanonicalType); \
2450}
2451#include "clang/AST/TypeNodes.inc"
2452
2453/// This class is used for builtin types like 'int'. Builtin
2454/// types are always canonical and have a literal name field.
2455class BuiltinType : public Type {
2456public:
2457 enum Kind {
2458// OpenCL image types
2459#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2460#include "clang/Basic/OpenCLImageTypes.def"
2461// OpenCL extension types
2462#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2463#include "clang/Basic/OpenCLExtensionTypes.def"
2464// SVE Types
2465#define SVE_TYPE(Name, Id, SingletonId) Id,
2466#include "clang/Basic/AArch64SVEACLETypes.def"
2467// All other builtin types
2468#define BUILTIN_TYPE(Id, SingletonId) Id,
2469#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2470#include "clang/AST/BuiltinTypes.def"
2471 };
2472
2473private:
2474 friend class ASTContext; // ASTContext creates these.
2475
2476 BuiltinType(Kind K)
2477 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2478 /*InstantiationDependent=*/(K == Dependent),
2479 /*VariablyModified=*/false,
2480 /*Unexpanded parameter pack=*/false) {
2481 BuiltinTypeBits.Kind = K;
2482 }
2483
2484public:
2485 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2486 StringRef getName(const PrintingPolicy &Policy) const;
2487
2488 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2489 // The StringRef is null-terminated.
2490 StringRef str = getName(Policy);
2491 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 2491, __PRETTY_FUNCTION__))
;
2492 return str.data();
2493 }
2494
2495 bool isSugared() const { return false; }
2496 QualType desugar() const { return QualType(this, 0); }
2497
2498 bool isInteger() const {
2499 return getKind() >= Bool && getKind() <= Int128;
2500 }
2501
2502 bool isSignedInteger() const {
2503 return getKind() >= Char_S && getKind() <= Int128;
2504 }
2505
2506 bool isUnsignedInteger() const {
2507 return getKind() >= Bool && getKind() <= UInt128;
2508 }
2509
2510 bool isFloatingPoint() const {
2511 return getKind() >= Half && getKind() <= Float128;
2512 }
2513
2514 /// Determines whether the given kind corresponds to a placeholder type.
2515 static bool isPlaceholderTypeKind(Kind K) {
2516 return K >= Overload;
2517 }
2518
2519 /// Determines whether this type is a placeholder type, i.e. a type
2520 /// which cannot appear in arbitrary positions in a fully-formed
2521 /// expression.
2522 bool isPlaceholderType() const {
2523 return isPlaceholderTypeKind(getKind());
2524 }
2525
2526 /// Determines whether this type is a placeholder type other than
2527 /// Overload. Most placeholder types require only syntactic
2528 /// information about their context in order to be resolved (e.g.
2529 /// whether it is a call expression), which means they can (and
2530 /// should) be resolved in an earlier "phase" of analysis.
2531 /// Overload expressions sometimes pick up further information
2532 /// from their context, like whether the context expects a
2533 /// specific function-pointer type, and so frequently need
2534 /// special treatment.
2535 bool isNonOverloadPlaceholderType() const {
2536 return getKind() > Overload;
2537 }
2538
2539 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2540};
2541
2542/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2543/// types (_Complex float etc) as well as the GCC integer complex extensions.
2544class ComplexType : public Type, public llvm::FoldingSetNode {
2545 friend class ASTContext; // ASTContext creates these.
2546
2547 QualType ElementType;
2548
2549 ComplexType(QualType Element, QualType CanonicalPtr)
2550 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2551 Element->isInstantiationDependentType(),
2552 Element->isVariablyModifiedType(),
2553 Element->containsUnexpandedParameterPack()),
2554 ElementType(Element) {}
2555
2556public:
2557 QualType getElementType() const { return ElementType; }
2558
2559 bool isSugared() const { return false; }
2560 QualType desugar() const { return QualType(this, 0); }
2561
2562 void Profile(llvm::FoldingSetNodeID &ID) {
2563 Profile(ID, getElementType());
2564 }
2565
2566 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2567 ID.AddPointer(Element.getAsOpaquePtr());
2568 }
2569
2570 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2571};
2572
2573/// Sugar for parentheses used when specifying types.
2574class ParenType : public Type, public llvm::FoldingSetNode {
2575 friend class ASTContext; // ASTContext creates these.
2576
2577 QualType Inner;
2578
2579 ParenType(QualType InnerType, QualType CanonType)
2580 : Type(Paren, CanonType, InnerType->isDependentType(),
2581 InnerType->isInstantiationDependentType(),
2582 InnerType->isVariablyModifiedType(),
2583 InnerType->containsUnexpandedParameterPack()),
2584 Inner(InnerType) {}
2585
2586public:
2587 QualType getInnerType() const { return Inner; }
2588
2589 bool isSugared() const { return true; }
2590 QualType desugar() const { return getInnerType(); }
2591
2592 void Profile(llvm::FoldingSetNodeID &ID) {
2593 Profile(ID, getInnerType());
2594 }
2595
2596 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2597 Inner.Profile(ID);
2598 }
2599
2600 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2601};
2602
2603/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2604class PointerType : public Type, public llvm::FoldingSetNode {
2605 friend class ASTContext; // ASTContext creates these.
2606
2607 QualType PointeeType;
2608
2609 PointerType(QualType Pointee, QualType CanonicalPtr)
2610 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2611 Pointee->isInstantiationDependentType(),
2612 Pointee->isVariablyModifiedType(),
2613 Pointee->containsUnexpandedParameterPack()),
2614 PointeeType(Pointee) {}
2615
2616public:
2617 QualType getPointeeType() const { return PointeeType; }
2618
2619 /// Returns true if address spaces of pointers overlap.
2620 /// OpenCL v2.0 defines conversion rules for pointers to different
2621 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2622 /// address spaces.
2623 /// CL1.1 or CL1.2:
2624 /// address spaces overlap iff they are they same.
2625 /// CL2.0 adds:
2626 /// __generic overlaps with any address space except for __constant.
2627 bool isAddressSpaceOverlapping(const PointerType &other) const {
2628 Qualifiers thisQuals = PointeeType.getQualifiers();
2629 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2630 // Address spaces overlap if at least one of them is a superset of another
2631 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2632 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2633 }
2634
2635 bool isSugared() const { return false; }
2636 QualType desugar() const { return QualType(this, 0); }
2637
2638 void Profile(llvm::FoldingSetNodeID &ID) {
2639 Profile(ID, getPointeeType());
2640 }
2641
2642 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2643 ID.AddPointer(Pointee.getAsOpaquePtr());
2644 }
2645
2646 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2647};
2648
2649/// Represents a type which was implicitly adjusted by the semantic
2650/// engine for arbitrary reasons. For example, array and function types can
2651/// decay, and function types can have their calling conventions adjusted.
2652class AdjustedType : public Type, public llvm::FoldingSetNode {
2653 QualType OriginalTy;
2654 QualType AdjustedTy;
2655
2656protected:
2657 friend class ASTContext; // ASTContext creates these.
2658
2659 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2660 QualType CanonicalPtr)
2661 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2662 OriginalTy->isInstantiationDependentType(),
2663 OriginalTy->isVariablyModifiedType(),
2664 OriginalTy->containsUnexpandedParameterPack()),
2665 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2666
2667public:
2668 QualType getOriginalType() const { return OriginalTy; }
2669 QualType getAdjustedType() const { return AdjustedTy; }
2670
2671 bool isSugared() const { return true; }
2672 QualType desugar() const { return AdjustedTy; }
2673
2674 void Profile(llvm::FoldingSetNodeID &ID) {
2675 Profile(ID, OriginalTy, AdjustedTy);
2676 }
2677
2678 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2679 ID.AddPointer(Orig.getAsOpaquePtr());
2680 ID.AddPointer(New.getAsOpaquePtr());
2681 }
2682
2683 static bool classof(const Type *T) {
2684 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2685 }
2686};
2687
2688/// Represents a pointer type decayed from an array or function type.
2689class DecayedType : public AdjustedType {
2690 friend class ASTContext; // ASTContext creates these.
2691
2692 inline
2693 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2694
2695public:
2696 QualType getDecayedType() const { return getAdjustedType(); }
2697
2698 inline QualType getPointeeType() const;
2699
2700 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2701};
2702
2703/// Pointer to a block type.
2704/// This type is to represent types syntactically represented as
2705/// "void (^)(int)", etc. Pointee is required to always be a function type.
2706class BlockPointerType : public Type, public llvm::FoldingSetNode {
2707 friend class ASTContext; // ASTContext creates these.
2708
2709 // Block is some kind of pointer type
2710 QualType PointeeType;
2711
2712 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2713 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2714 Pointee->isInstantiationDependentType(),
2715 Pointee->isVariablyModifiedType(),
2716 Pointee->containsUnexpandedParameterPack()),
2717 PointeeType(Pointee) {}
2718
2719public:
2720 // Get the pointee type. Pointee is required to always be a function type.
2721 QualType getPointeeType() const { return PointeeType; }
2722
2723 bool isSugared() const { return false; }
2724 QualType desugar() const { return QualType(this, 0); }
2725
2726 void Profile(llvm::FoldingSetNodeID &ID) {
2727 Profile(ID, getPointeeType());
2728 }
2729
2730 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2731 ID.AddPointer(Pointee.getAsOpaquePtr());
2732 }
2733
2734 static bool classof(const Type *T) {
2735 return T->getTypeClass() == BlockPointer;
2736 }
2737};
2738
2739/// Base for LValueReferenceType and RValueReferenceType
2740class ReferenceType : public Type, public llvm::FoldingSetNode {
2741 QualType PointeeType;
2742
2743protected:
2744 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2745 bool SpelledAsLValue)
2746 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2747 Referencee->isInstantiationDependentType(),
2748 Referencee->isVariablyModifiedType(),
2749 Referencee->containsUnexpandedParameterPack()),
2750 PointeeType(Referencee) {
2751 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2752 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2753 }
2754
2755public:
2756 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2757 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2758
2759 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2760
2761 QualType getPointeeType() const {
2762 // FIXME: this might strip inner qualifiers; okay?
2763 const ReferenceType *T = this;
2764 while (T->isInnerRef())
2765 T = T->PointeeType->castAs<ReferenceType>();
2766 return T->PointeeType;
2767 }
2768
2769 void Profile(llvm::FoldingSetNodeID &ID) {
2770 Profile(ID, PointeeType, isSpelledAsLValue());
2771 }
2772
2773 static void Profile(llvm::FoldingSetNodeID &ID,
2774 QualType Referencee,
2775 bool SpelledAsLValue) {
2776 ID.AddPointer(Referencee.getAsOpaquePtr());
2777 ID.AddBoolean(SpelledAsLValue);
2778 }
2779
2780 static bool classof(const Type *T) {
2781 return T->getTypeClass() == LValueReference ||
2782 T->getTypeClass() == RValueReference;
2783 }
2784};
2785
2786/// An lvalue reference type, per C++11 [dcl.ref].
2787class LValueReferenceType : public ReferenceType {
2788 friend class ASTContext; // ASTContext creates these
2789
2790 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2791 bool SpelledAsLValue)
2792 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2793 SpelledAsLValue) {}
2794
2795public:
2796 bool isSugared() const { return false; }
2797 QualType desugar() const { return QualType(this, 0); }
2798
2799 static bool classof(const Type *T) {
2800 return T->getTypeClass() == LValueReference;
2801 }
2802};
2803
2804/// An rvalue reference type, per C++11 [dcl.ref].
2805class RValueReferenceType : public ReferenceType {
2806 friend class ASTContext; // ASTContext creates these
2807
2808 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2809 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2810
2811public:
2812 bool isSugared() const { return false; }
2813 QualType desugar() const { return QualType(this, 0); }
2814
2815 static bool classof(const Type *T) {
2816 return T->getTypeClass() == RValueReference;
2817 }
2818};
2819
2820/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2821///
2822/// This includes both pointers to data members and pointer to member functions.
2823class MemberPointerType : public Type, public llvm::FoldingSetNode {
2824 friend class ASTContext; // ASTContext creates these.
2825
2826 QualType PointeeType;
2827
2828 /// The class of which the pointee is a member. Must ultimately be a
2829 /// RecordType, but could be a typedef or a template parameter too.
2830 const Type *Class;
2831
2832 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2833 : Type(MemberPointer, CanonicalPtr,
2834 Cls->isDependentType() || Pointee->isDependentType(),
2835 (Cls->isInstantiationDependentType() ||
2836 Pointee->isInstantiationDependentType()),
2837 Pointee->isVariablyModifiedType(),
2838 (Cls->containsUnexpandedParameterPack() ||
2839 Pointee->containsUnexpandedParameterPack())),
2840 PointeeType(Pointee), Class(Cls) {}
2841
2842public:
2843 QualType getPointeeType() const { return PointeeType; }
2844
2845 /// Returns true if the member type (i.e. the pointee type) is a
2846 /// function type rather than a data-member type.
2847 bool isMemberFunctionPointer() const {
2848 return PointeeType->isFunctionProtoType();
2849 }
2850
2851 /// Returns true if the member type (i.e. the pointee type) is a
2852 /// data type rather than a function type.
2853 bool isMemberDataPointer() const {
2854 return !PointeeType->isFunctionProtoType();
2855 }
2856
2857 const Type *getClass() const { return Class; }
2858 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2859
2860 bool isSugared() const { return false; }
2861 QualType desugar() const { return QualType(this, 0); }
2862
2863 void Profile(llvm::FoldingSetNodeID &ID) {
2864 Profile(ID, getPointeeType(), getClass());
2865 }
2866
2867 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2868 const Type *Class) {
2869 ID.AddPointer(Pointee.getAsOpaquePtr());
2870 ID.AddPointer(Class);
2871 }
2872
2873 static bool classof(const Type *T) {
2874 return T->getTypeClass() == MemberPointer;
2875 }
2876};
2877
2878/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2879class ArrayType : public Type, public llvm::FoldingSetNode {
2880public:
2881 /// Capture whether this is a normal array (e.g. int X[4])
2882 /// an array with a static size (e.g. int X[static 4]), or an array
2883 /// with a star size (e.g. int X[*]).
2884 /// 'static' is only allowed on function parameters.
2885 enum ArraySizeModifier {
2886 Normal, Static, Star
2887 };
2888
2889private:
2890 /// The element type of the array.
2891 QualType ElementType;
2892
2893protected:
2894 friend class ASTContext; // ASTContext creates these.
2895
2896 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2897 unsigned tq, const Expr *sz = nullptr);
2898
2899public:
2900 QualType getElementType() const { return ElementType; }
2901
2902 ArraySizeModifier getSizeModifier() const {
2903 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2904 }
2905
2906 Qualifiers getIndexTypeQualifiers() const {
2907 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2908 }
2909
2910 unsigned getIndexTypeCVRQualifiers() const {
2911 return ArrayTypeBits.IndexTypeQuals;
2912 }
2913
2914 static bool classof(const Type *T) {
2915 return T->getTypeClass() == ConstantArray ||
2916 T->getTypeClass() == VariableArray ||
2917 T->getTypeClass() == IncompleteArray ||
2918 T->getTypeClass() == DependentSizedArray;
2919 }
2920};
2921
2922/// Represents the canonical version of C arrays with a specified constant size.
2923/// For example, the canonical type for 'int A[4 + 4*100]' is a
2924/// ConstantArrayType where the element type is 'int' and the size is 404.
2925class ConstantArrayType final
2926 : public ArrayType,
2927 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2928 friend class ASTContext; // ASTContext creates these.
2929 friend TrailingObjects;
2930
2931 llvm::APInt Size; // Allows us to unique the type.
2932
2933 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2934 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2935 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2936 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2937 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2938 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 2938, __PRETTY_FUNCTION__))
;
2939 *getTrailingObjects<const Expr*>() = sz;
2940 }
2941 }
2942
2943 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2944 return ConstantArrayTypeBits.HasStoredSizeExpr;
2945 }
2946
2947public:
2948 const llvm::APInt &getSize() const { return Size; }
2949 const Expr *getSizeExpr() const {
2950 return ConstantArrayTypeBits.HasStoredSizeExpr
2951 ? *getTrailingObjects<const Expr *>()
2952 : nullptr;
2953 }
2954 bool isSugared() const { return false; }
2955 QualType desugar() const { return QualType(this, 0); }
2956
2957 /// Determine the number of bits required to address a member of
2958 // an array with the given element type and number of elements.
2959 static unsigned getNumAddressingBits(const ASTContext &Context,
2960 QualType ElementType,
2961 const llvm::APInt &NumElements);
2962
2963 /// Determine the maximum number of active bits that an array's size
2964 /// can require, which limits the maximum size of the array.
2965 static unsigned getMaxSizeBits(const ASTContext &Context);
2966
2967 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2968 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2969 getSizeModifier(), getIndexTypeCVRQualifiers());
2970 }
2971
2972 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2973 QualType ET, const llvm::APInt &ArraySize,
2974 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2975 unsigned TypeQuals);
2976
2977 static bool classof(const Type *T) {
2978 return T->getTypeClass() == ConstantArray;
2979 }
2980};
2981
2982/// Represents a C array with an unspecified size. For example 'int A[]' has
2983/// an IncompleteArrayType where the element type is 'int' and the size is
2984/// unspecified.
2985class IncompleteArrayType : public ArrayType {
2986 friend class ASTContext; // ASTContext creates these.
2987
2988 IncompleteArrayType(QualType et, QualType can,
2989 ArraySizeModifier sm, unsigned tq)
2990 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2991
2992public:
2993 friend class StmtIteratorBase;
2994
2995 bool isSugared() const { return false; }
2996 QualType desugar() const { return QualType(this, 0); }
2997
2998 static bool classof(const Type *T) {
2999 return T->getTypeClass() == IncompleteArray;
3000 }
3001
3002 void Profile(llvm::FoldingSetNodeID &ID) {
3003 Profile(ID, getElementType(), getSizeModifier(),
3004 getIndexTypeCVRQualifiers());
3005 }
3006
3007 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3008 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3009 ID.AddPointer(ET.getAsOpaquePtr());
3010 ID.AddInteger(SizeMod);
3011 ID.AddInteger(TypeQuals);
3012 }
3013};
3014
3015/// Represents a C array with a specified size that is not an
3016/// integer-constant-expression. For example, 'int s[x+foo()]'.
3017/// Since the size expression is an arbitrary expression, we store it as such.
3018///
3019/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3020/// should not be: two lexically equivalent variable array types could mean
3021/// different things, for example, these variables do not have the same type
3022/// dynamically:
3023///
3024/// void foo(int x) {
3025/// int Y[x];
3026/// ++x;
3027/// int Z[x];
3028/// }
3029class VariableArrayType : public ArrayType {
3030 friend class ASTContext; // ASTContext creates these.
3031
3032 /// An assignment-expression. VLA's are only permitted within
3033 /// a function block.
3034 Stmt *SizeExpr;
3035
3036 /// The range spanned by the left and right array brackets.
3037 SourceRange Brackets;
3038
3039 VariableArrayType(QualType et, QualType can, Expr *e,
3040 ArraySizeModifier sm, unsigned tq,
3041 SourceRange brackets)
3042 : ArrayType(VariableArray, et, can, sm, tq, e),
3043 SizeExpr((Stmt*) e), Brackets(brackets) {}
3044
3045public:
3046 friend class StmtIteratorBase;
3047
3048 Expr *getSizeExpr() const {
3049 // We use C-style casts instead of cast<> here because we do not wish
3050 // to have a dependency of Type.h on Stmt.h/Expr.h.
3051 return (Expr*) SizeExpr;
3052 }
3053
3054 SourceRange getBracketsRange() const { return Brackets; }
3055 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3056 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3057
3058 bool isSugared() const { return false; }
3059 QualType desugar() const { return QualType(this, 0); }
3060
3061 static bool classof(const Type *T) {
3062 return T->getTypeClass() == VariableArray;
3063 }
3064
3065 void Profile(llvm::FoldingSetNodeID &ID) {
3066 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3066)
;
3067 }
3068};
3069
3070/// Represents an array type in C++ whose size is a value-dependent expression.
3071///
3072/// For example:
3073/// \code
3074/// template<typename T, int Size>
3075/// class array {
3076/// T data[Size];
3077/// };
3078/// \endcode
3079///
3080/// For these types, we won't actually know what the array bound is
3081/// until template instantiation occurs, at which point this will
3082/// become either a ConstantArrayType or a VariableArrayType.
3083class DependentSizedArrayType : public ArrayType {
3084 friend class ASTContext; // ASTContext creates these.
3085
3086 const ASTContext &Context;
3087
3088 /// An assignment expression that will instantiate to the
3089 /// size of the array.
3090 ///
3091 /// The expression itself might be null, in which case the array
3092 /// type will have its size deduced from an initializer.
3093 Stmt *SizeExpr;
3094
3095 /// The range spanned by the left and right array brackets.
3096 SourceRange Brackets;
3097
3098 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3099 Expr *e, ArraySizeModifier sm, unsigned tq,
3100 SourceRange brackets);
3101
3102public:
3103 friend class StmtIteratorBase;
3104
3105 Expr *getSizeExpr() const {
3106 // We use C-style casts instead of cast<> here because we do not wish
3107 // to have a dependency of Type.h on Stmt.h/Expr.h.
3108 return (Expr*) SizeExpr;
3109 }
3110
3111 SourceRange getBracketsRange() const { return Brackets; }
3112 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3113 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3114
3115 bool isSugared() const { return false; }
3116 QualType desugar() const { return QualType(this, 0); }
3117
3118 static bool classof(const Type *T) {
3119 return T->getTypeClass() == DependentSizedArray;
3120 }
3121
3122 void Profile(llvm::FoldingSetNodeID &ID) {
3123 Profile(ID, Context, getElementType(),
3124 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3125 }
3126
3127 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3128 QualType ET, ArraySizeModifier SizeMod,
3129 unsigned TypeQuals, Expr *E);
3130};
3131
3132/// Represents an extended address space qualifier where the input address space
3133/// value is dependent. Non-dependent address spaces are not represented with a
3134/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3135///
3136/// For example:
3137/// \code
3138/// template<typename T, int AddrSpace>
3139/// class AddressSpace {
3140/// typedef T __attribute__((address_space(AddrSpace))) type;
3141/// }
3142/// \endcode
3143class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3144 friend class ASTContext;
3145
3146 const ASTContext &Context;
3147 Expr *AddrSpaceExpr;
3148 QualType PointeeType;
3149 SourceLocation loc;
3150
3151 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3152 QualType can, Expr *AddrSpaceExpr,
3153 SourceLocation loc);
3154
3155public:
3156 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3157 QualType getPointeeType() const { return PointeeType; }
3158 SourceLocation getAttributeLoc() const { return loc; }
3159
3160 bool isSugared() const { return false; }
3161 QualType desugar() const { return QualType(this, 0); }
3162
3163 static bool classof(const Type *T) {
3164 return T->getTypeClass() == DependentAddressSpace;
3165 }
3166
3167 void Profile(llvm::FoldingSetNodeID &ID) {
3168 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3169 }
3170
3171 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3172 QualType PointeeType, Expr *AddrSpaceExpr);
3173};
3174
3175/// Represents an extended vector type where either the type or size is
3176/// dependent.
3177///
3178/// For example:
3179/// \code
3180/// template<typename T, int Size>
3181/// class vector {
3182/// typedef T __attribute__((ext_vector_type(Size))) type;
3183/// }
3184/// \endcode
3185class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3186 friend class ASTContext;
3187
3188 const ASTContext &Context;
3189 Expr *SizeExpr;
3190
3191 /// The element type of the array.
3192 QualType ElementType;
3193
3194 SourceLocation loc;
3195
3196 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3197 QualType can, Expr *SizeExpr, SourceLocation loc);
3198
3199public:
3200 Expr *getSizeExpr() const { return SizeExpr; }
3201 QualType getElementType() const { return ElementType; }
3202 SourceLocation getAttributeLoc() const { return loc; }
3203
3204 bool isSugared() const { return false; }
3205 QualType desugar() const { return QualType(this, 0); }
3206
3207 static bool classof(const Type *T) {
3208 return T->getTypeClass() == DependentSizedExtVector;
3209 }
3210
3211 void Profile(llvm::FoldingSetNodeID &ID) {
3212 Profile(ID, Context, getElementType(), getSizeExpr());
3213 }
3214
3215 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3216 QualType ElementType, Expr *SizeExpr);
3217};
3218
3219
3220/// Represents a GCC generic vector type. This type is created using
3221/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3222/// bytes; or from an Altivec __vector or vector declaration.
3223/// Since the constructor takes the number of vector elements, the
3224/// client is responsible for converting the size into the number of elements.
3225class VectorType : public Type, public llvm::FoldingSetNode {
3226public:
3227 enum VectorKind {
3228 /// not a target-specific vector type
3229 GenericVector,
3230
3231 /// is AltiVec vector
3232 AltiVecVector,
3233
3234 /// is AltiVec 'vector Pixel'
3235 AltiVecPixel,
3236
3237 /// is AltiVec 'vector bool ...'
3238 AltiVecBool,
3239
3240 /// is ARM Neon vector
3241 NeonVector,
3242
3243 /// is ARM Neon polynomial vector
3244 NeonPolyVector
3245 };
3246
3247protected:
3248 friend class ASTContext; // ASTContext creates these.
3249
3250 /// The element type of the vector.
3251 QualType ElementType;
3252
3253 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3254 VectorKind vecKind);
3255
3256 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3257 QualType canonType, VectorKind vecKind);
3258
3259public:
3260 QualType getElementType() const { return ElementType; }
3261 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3262
3263 static bool isVectorSizeTooLarge(unsigned NumElements) {
3264 return NumElements > VectorTypeBitfields::MaxNumElements;
3265 }
3266
3267 bool isSugared() const { return false; }
3268 QualType desugar() const { return QualType(this, 0); }
3269
3270 VectorKind getVectorKind() const {
3271 return VectorKind(VectorTypeBits.VecKind);
3272 }
3273
3274 void Profile(llvm::FoldingSetNodeID &ID) {
3275 Profile(ID, getElementType(), getNumElements(),
3276 getTypeClass(), getVectorKind());
3277 }
3278
3279 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3280 unsigned NumElements, TypeClass TypeClass,
3281 VectorKind VecKind) {
3282 ID.AddPointer(ElementType.getAsOpaquePtr());
3283 ID.AddInteger(NumElements);
3284 ID.AddInteger(TypeClass);
3285 ID.AddInteger(VecKind);
3286 }
3287
3288 static bool classof(const Type *T) {
3289 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3290 }
3291};
3292
3293/// Represents a vector type where either the type or size is dependent.
3294////
3295/// For example:
3296/// \code
3297/// template<typename T, int Size>
3298/// class vector {
3299/// typedef T __attribute__((vector_size(Size))) type;
3300/// }
3301/// \endcode
3302class DependentVectorType : public Type, public llvm::FoldingSetNode {
3303 friend class ASTContext;
3304
3305 const ASTContext &Context;
3306 QualType ElementType;
3307 Expr *SizeExpr;
3308 SourceLocation Loc;
3309
3310 DependentVectorType(const ASTContext &Context, QualType ElementType,
3311 QualType CanonType, Expr *SizeExpr,
3312 SourceLocation Loc, VectorType::VectorKind vecKind);
3313
3314public:
3315 Expr *getSizeExpr() const { return SizeExpr; }
3316 QualType getElementType() const { return ElementType; }
3317 SourceLocation getAttributeLoc() const { return Loc; }
3318 VectorType::VectorKind getVectorKind() const {
3319 return VectorType::VectorKind(VectorTypeBits.VecKind);
3320 }
3321
3322 bool isSugared() const { return false; }
3323 QualType desugar() const { return QualType(this, 0); }
3324
3325 static bool classof(const Type *T) {
3326 return T->getTypeClass() == DependentVector;
3327 }
3328
3329 void Profile(llvm::FoldingSetNodeID &ID) {
3330 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3331 }
3332
3333 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3334 QualType ElementType, const Expr *SizeExpr,
3335 VectorType::VectorKind VecKind);
3336};
3337
3338/// ExtVectorType - Extended vector type. This type is created using
3339/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3340/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3341/// class enables syntactic extensions, like Vector Components for accessing
3342/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3343/// Shading Language).
3344class ExtVectorType : public VectorType {
3345 friend class ASTContext; // ASTContext creates these.
3346
3347 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3348 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3349
3350public:
3351 static int getPointAccessorIdx(char c) {
3352 switch (c) {
3353 default: return -1;
3354 case 'x': case 'r': return 0;
3355 case 'y': case 'g': return 1;
3356 case 'z': case 'b': return 2;
3357 case 'w': case 'a': return 3;
3358 }
3359 }
3360
3361 static int getNumericAccessorIdx(char c) {
3362 switch (c) {
3363 default: return -1;
3364 case '0': return 0;
3365 case '1': return 1;
3366 case '2': return 2;
3367 case '3': return 3;
3368 case '4': return 4;
3369 case '5': return 5;
3370 case '6': return 6;
3371 case '7': return 7;
3372 case '8': return 8;
3373 case '9': return 9;
3374 case 'A':
3375 case 'a': return 10;
3376 case 'B':
3377 case 'b': return 11;
3378 case 'C':
3379 case 'c': return 12;
3380 case 'D':
3381 case 'd': return 13;
3382 case 'E':
3383 case 'e': return 14;
3384 case 'F':
3385 case 'f': return 15;
3386 }
3387 }
3388
3389 static int getAccessorIdx(char c, bool isNumericAccessor) {
3390 if (isNumericAccessor)
3391 return getNumericAccessorIdx(c);
3392 else
3393 return getPointAccessorIdx(c);
3394 }
3395
3396 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3397 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3398 return unsigned(idx-1) < getNumElements();
3399 return false;
3400 }
3401
3402 bool isSugared() const { return false; }
3403 QualType desugar() const { return QualType(this, 0); }
3404
3405 static bool classof(const Type *T) {
3406 return T->getTypeClass() == ExtVector;
3407 }
3408};
3409
3410/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3411/// class of FunctionNoProtoType and FunctionProtoType.
3412class FunctionType : public Type {
3413 // The type returned by the function.
3414 QualType ResultType;
3415
3416public:
3417 /// Interesting information about a specific parameter that can't simply
3418 /// be reflected in parameter's type. This is only used by FunctionProtoType
3419 /// but is in FunctionType to make this class available during the
3420 /// specification of the bases of FunctionProtoType.
3421 ///
3422 /// It makes sense to model language features this way when there's some
3423 /// sort of parameter-specific override (such as an attribute) that
3424 /// affects how the function is called. For example, the ARC ns_consumed
3425 /// attribute changes whether a parameter is passed at +0 (the default)
3426 /// or +1 (ns_consumed). This must be reflected in the function type,
3427 /// but isn't really a change to the parameter type.
3428 ///
3429 /// One serious disadvantage of modelling language features this way is
3430 /// that they generally do not work with language features that attempt
3431 /// to destructure types. For example, template argument deduction will
3432 /// not be able to match a parameter declared as
3433 /// T (*)(U)
3434 /// against an argument of type
3435 /// void (*)(__attribute__((ns_consumed)) id)
3436 /// because the substitution of T=void, U=id into the former will
3437 /// not produce the latter.
3438 class ExtParameterInfo {
3439 enum {
3440 ABIMask = 0x0F,
3441 IsConsumed = 0x10,
3442 HasPassObjSize = 0x20,
3443 IsNoEscape = 0x40,
3444 };
3445 unsigned char Data = 0;
3446
3447 public:
3448 ExtParameterInfo() = default;
3449
3450 /// Return the ABI treatment of this parameter.
3451 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3452 ExtParameterInfo withABI(ParameterABI kind) const {
3453 ExtParameterInfo copy = *this;
3454 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3455 return copy;
3456 }
3457
3458 /// Is this parameter considered "consumed" by Objective-C ARC?
3459 /// Consumed parameters must have retainable object type.
3460 bool isConsumed() const { return (Data & IsConsumed); }
3461 ExtParameterInfo withIsConsumed(bool consumed) const {
3462 ExtParameterInfo copy = *this;
3463 if (consumed)
3464 copy.Data |= IsConsumed;
3465 else
3466 copy.Data &= ~IsConsumed;
3467 return copy;
3468 }
3469
3470 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3471 ExtParameterInfo withHasPassObjectSize() const {
3472 ExtParameterInfo Copy = *this;
3473 Copy.Data |= HasPassObjSize;
3474 return Copy;
3475 }
3476
3477 bool isNoEscape() const { return Data & IsNoEscape; }
3478 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3479 ExtParameterInfo Copy = *this;
3480 if (NoEscape)
3481 Copy.Data |= IsNoEscape;
3482 else
3483 Copy.Data &= ~IsNoEscape;
3484 return Copy;
3485 }
3486
3487 unsigned char getOpaqueValue() const { return Data; }
3488 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3489 ExtParameterInfo result;
3490 result.Data = data;
3491 return result;
3492 }
3493
3494 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3495 return lhs.Data == rhs.Data;
3496 }
3497
3498 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3499 return lhs.Data != rhs.Data;
3500 }
3501 };
3502
3503 /// A class which abstracts out some details necessary for
3504 /// making a call.
3505 ///
3506 /// It is not actually used directly for storing this information in
3507 /// a FunctionType, although FunctionType does currently use the
3508 /// same bit-pattern.
3509 ///
3510 // If you add a field (say Foo), other than the obvious places (both,
3511 // constructors, compile failures), what you need to update is
3512 // * Operator==
3513 // * getFoo
3514 // * withFoo
3515 // * functionType. Add Foo, getFoo.
3516 // * ASTContext::getFooType
3517 // * ASTContext::mergeFunctionTypes
3518 // * FunctionNoProtoType::Profile
3519 // * FunctionProtoType::Profile
3520 // * TypePrinter::PrintFunctionProto
3521 // * AST read and write
3522 // * Codegen
3523 class ExtInfo {
3524 friend class FunctionType;
3525
3526 // Feel free to rearrange or add bits, but if you go over 12,
3527 // you'll need to adjust both the Bits field below and
3528 // Type::FunctionTypeBitfields.
3529
3530 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3531 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3532 //
3533 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3534 enum { CallConvMask = 0x1F };
3535 enum { NoReturnMask = 0x20 };
3536 enum { ProducesResultMask = 0x40 };
3537 enum { NoCallerSavedRegsMask = 0x80 };
3538 enum { NoCfCheckMask = 0x800 };
3539 enum {
3540 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3541 NoCallerSavedRegsMask | NoCfCheckMask),
3542 RegParmOffset = 8
3543 }; // Assumed to be the last field
3544 uint16_t Bits = CC_C;
3545
3546 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3547
3548 public:
3549 // Constructor with no defaults. Use this when you know that you
3550 // have all the elements (when reading an AST file for example).
3551 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3552 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3553 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3553, __PRETTY_FUNCTION__))
;
3554 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3555 (producesResult ? ProducesResultMask : 0) |
3556 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3557 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3558 (NoCfCheck ? NoCfCheckMask : 0);
3559 }
3560
3561 // Constructor with all defaults. Use when for example creating a
3562 // function known to use defaults.
3563 ExtInfo() = default;
3564
3565 // Constructor with just the calling convention, which is an important part
3566 // of the canonical type.
3567 ExtInfo(CallingConv CC) : Bits(CC) {}
3568
3569 bool getNoReturn() const { return Bits & NoReturnMask; }
3570 bool getProducesResult() const { return Bits & ProducesResultMask; }
3571 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3572 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3573 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3574
3575 unsigned getRegParm() const {
3576 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3577 if (RegParm > 0)
3578 --RegParm;
3579 return RegParm;
3580 }
3581
3582 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3583
3584 bool operator==(ExtInfo Other) const {
3585 return Bits == Other.Bits;
3586 }
3587 bool operator!=(ExtInfo Other) const {
3588 return Bits != Other.Bits;
3589 }
3590
3591 // Note that we don't have setters. That is by design, use
3592 // the following with methods instead of mutating these objects.
3593
3594 ExtInfo withNoReturn(bool noReturn) const {
3595 if (noReturn)
3596 return ExtInfo(Bits | NoReturnMask);
3597 else
3598 return ExtInfo(Bits & ~NoReturnMask);
3599 }
3600
3601 ExtInfo withProducesResult(bool producesResult) const {
3602 if (producesResult)
3603 return ExtInfo(Bits | ProducesResultMask);
3604 else
3605 return ExtInfo(Bits & ~ProducesResultMask);
3606 }
3607
3608 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3609 if (noCallerSavedRegs)
3610 return ExtInfo(Bits | NoCallerSavedRegsMask);
3611 else
3612 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3613 }
3614
3615 ExtInfo withNoCfCheck(bool noCfCheck) const {
3616 if (noCfCheck)
3617 return ExtInfo(Bits | NoCfCheckMask);
3618 else
3619 return ExtInfo(Bits & ~NoCfCheckMask);
3620 }
3621
3622 ExtInfo withRegParm(unsigned RegParm) const {
3623 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3623, __PRETTY_FUNCTION__))
;
3624 return ExtInfo((Bits & ~RegParmMask) |
3625 ((RegParm + 1) << RegParmOffset));
3626 }
3627
3628 ExtInfo withCallingConv(CallingConv cc) const {
3629 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3630 }
3631
3632 void Profile(llvm::FoldingSetNodeID &ID) const {
3633 ID.AddInteger(Bits);
3634 }
3635 };
3636
3637 /// A simple holder for a QualType representing a type in an
3638 /// exception specification. Unfortunately needed by FunctionProtoType
3639 /// because TrailingObjects cannot handle repeated types.
3640 struct ExceptionType { QualType Type; };
3641
3642 /// A simple holder for various uncommon bits which do not fit in
3643 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3644 /// alignment of subsequent objects in TrailingObjects. You must update
3645 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3646 struct alignas(void *) FunctionTypeExtraBitfields {
3647 /// The number of types in the exception specification.
3648 /// A whole unsigned is not needed here and according to
3649 /// [implimits] 8 bits would be enough here.
3650 unsigned NumExceptionType;
3651 };
3652
3653protected:
3654 FunctionType(TypeClass tc, QualType res,
3655 QualType Canonical, bool Dependent,
3656 bool InstantiationDependent,
3657 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3658 ExtInfo Info)
3659 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3660 ContainsUnexpandedParameterPack),
3661 ResultType(res) {
3662 FunctionTypeBits.ExtInfo = Info.Bits;
3663 }
3664
3665 Qualifiers getFastTypeQuals() const {
3666 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3667 }
3668
3669public:
3670 QualType getReturnType() const { return ResultType; }
3671
3672 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3673 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3674
3675 /// Determine whether this function type includes the GNU noreturn
3676 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3677 /// type.
3678 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3679
3680 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3681 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3682
3683 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3684 "Const, volatile and restrict are assumed to be a subset of "
3685 "the fast qualifiers.");
3686
3687 bool isConst() const { return getFastTypeQuals().hasConst(); }
3688 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3689 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3690
3691 /// Determine the type of an expression that calls a function of
3692 /// this type.
3693 QualType getCallResultType(const ASTContext &Context) const {
3694 return getReturnType().getNonLValueExprType(Context);
3695 }
3696
3697 static StringRef getNameForCallConv(CallingConv CC);
3698
3699 static bool classof(const Type *T) {
3700 return T->getTypeClass() == FunctionNoProto ||
3701 T->getTypeClass() == FunctionProto;
3702 }
3703};
3704
3705/// Represents a K&R-style 'int foo()' function, which has
3706/// no information available about its arguments.
3707class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3708 friend class ASTContext; // ASTContext creates these.
3709
3710 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3711 : FunctionType(FunctionNoProto, Result, Canonical,
3712 /*Dependent=*/false, /*InstantiationDependent=*/false,
3713 Result->isVariablyModifiedType(),
3714 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3715
3716public:
3717 // No additional state past what FunctionType provides.
3718
3719 bool isSugared() const { return false; }
3720 QualType desugar() const { return QualType(this, 0); }
3721
3722 void Profile(llvm::FoldingSetNodeID &ID) {
3723 Profile(ID, getReturnType(), getExtInfo());
3724 }
3725
3726 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3727 ExtInfo Info) {
3728 Info.Profile(ID);
3729 ID.AddPointer(ResultType.getAsOpaquePtr());
3730 }
3731
3732 static bool classof(const Type *T) {
3733 return T->getTypeClass() == FunctionNoProto;
3734 }
3735};
3736
3737/// Represents a prototype with parameter type info, e.g.
3738/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3739/// parameters, not as having a single void parameter. Such a type can have
3740/// an exception specification, but this specification is not part of the
3741/// canonical type. FunctionProtoType has several trailing objects, some of
3742/// which optional. For more information about the trailing objects see
3743/// the first comment inside FunctionProtoType.
3744class FunctionProtoType final
3745 : public FunctionType,
3746 public llvm::FoldingSetNode,
3747 private llvm::TrailingObjects<
3748 FunctionProtoType, QualType, SourceLocation,
3749 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3750 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3751 friend class ASTContext; // ASTContext creates these.
3752 friend TrailingObjects;
3753
3754 // FunctionProtoType is followed by several trailing objects, some of
3755 // which optional. They are in order:
3756 //
3757 // * An array of getNumParams() QualType holding the parameter types.
3758 // Always present. Note that for the vast majority of FunctionProtoType,
3759 // these will be the only trailing objects.
3760 //
3761 // * Optionally if the function is variadic, the SourceLocation of the
3762 // ellipsis.
3763 //
3764 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3765 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3766 // a single FunctionTypeExtraBitfields. Present if and only if
3767 // hasExtraBitfields() is true.
3768 //
3769 // * Optionally exactly one of:
3770 // * an array of getNumExceptions() ExceptionType,
3771 // * a single Expr *,
3772 // * a pair of FunctionDecl *,
3773 // * a single FunctionDecl *
3774 // used to store information about the various types of exception
3775 // specification. See getExceptionSpecSize for the details.
3776 //
3777 // * Optionally an array of getNumParams() ExtParameterInfo holding
3778 // an ExtParameterInfo for each of the parameters. Present if and
3779 // only if hasExtParameterInfos() is true.
3780 //
3781 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3782 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3783 // if hasExtQualifiers() is true.
3784 //
3785 // The optional FunctionTypeExtraBitfields has to be before the data
3786 // related to the exception specification since it contains the number
3787 // of exception types.
3788 //
3789 // We put the ExtParameterInfos last. If all were equal, it would make
3790 // more sense to put these before the exception specification, because
3791 // it's much easier to skip past them compared to the elaborate switch
3792 // required to skip the exception specification. However, all is not
3793 // equal; ExtParameterInfos are used to model very uncommon features,
3794 // and it's better not to burden the more common paths.
3795
3796public:
3797 /// Holds information about the various types of exception specification.
3798 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3799 /// used to group together the various bits of information about the
3800 /// exception specification.
3801 struct ExceptionSpecInfo {
3802 /// The kind of exception specification this is.
3803 ExceptionSpecificationType Type = EST_None;
3804
3805 /// Explicitly-specified list of exception types.
3806 ArrayRef<QualType> Exceptions;
3807
3808 /// Noexcept expression, if this is a computed noexcept specification.
3809 Expr *NoexceptExpr = nullptr;
3810
3811 /// The function whose exception specification this is, for
3812 /// EST_Unevaluated and EST_Uninstantiated.
3813 FunctionDecl *SourceDecl = nullptr;
3814
3815 /// The function template whose exception specification this is instantiated
3816 /// from, for EST_Uninstantiated.
3817 FunctionDecl *SourceTemplate = nullptr;
3818
3819 ExceptionSpecInfo() = default;
3820
3821 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3822 };
3823
3824 /// Extra information about a function prototype. ExtProtoInfo is not
3825 /// stored as such in FunctionProtoType but is used to group together
3826 /// the various bits of extra information about a function prototype.
3827 struct ExtProtoInfo {
3828 FunctionType::ExtInfo ExtInfo;
3829 bool Variadic : 1;
3830 bool HasTrailingReturn : 1;
3831 Qualifiers TypeQuals;
3832 RefQualifierKind RefQualifier = RQ_None;
3833 ExceptionSpecInfo ExceptionSpec;
3834 const ExtParameterInfo *ExtParameterInfos = nullptr;
3835 SourceLocation EllipsisLoc;
3836
3837 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3838
3839 ExtProtoInfo(CallingConv CC)
3840 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3841
3842 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3843 ExtProtoInfo Result(*this);
3844 Result.ExceptionSpec = ESI;
3845 return Result;
3846 }
3847 };
3848
3849private:
3850 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3851 return getNumParams();
3852 }
3853
3854 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3855 return isVariadic();
3856 }
3857
3858 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3859 return hasExtraBitfields();
3860 }
3861
3862 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3863 return getExceptionSpecSize().NumExceptionType;
3864 }
3865
3866 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3867 return getExceptionSpecSize().NumExprPtr;
3868 }
3869
3870 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3871 return getExceptionSpecSize().NumFunctionDeclPtr;
3872 }
3873
3874 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3875 return hasExtParameterInfos() ? getNumParams() : 0;
3876 }
3877
3878 /// Determine whether there are any argument types that
3879 /// contain an unexpanded parameter pack.
3880 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3881 unsigned numArgs) {
3882 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3883 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3884 return true;
3885
3886 return false;
3887 }
3888
3889 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3890 QualType canonical, const ExtProtoInfo &epi);
3891
3892 /// This struct is returned by getExceptionSpecSize and is used to
3893 /// translate an ExceptionSpecificationType to the number and kind
3894 /// of trailing objects related to the exception specification.
3895 struct ExceptionSpecSizeHolder {
3896 unsigned NumExceptionType;
3897 unsigned NumExprPtr;
3898 unsigned NumFunctionDeclPtr;
3899 };
3900
3901 /// Return the number and kind of trailing objects
3902 /// related to the exception specification.
3903 static ExceptionSpecSizeHolder
3904 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3905 switch (EST) {
3906 case EST_None:
3907 case EST_DynamicNone:
3908 case EST_MSAny:
3909 case EST_BasicNoexcept:
3910 case EST_Unparsed:
3911 case EST_NoThrow:
3912 return {0, 0, 0};
3913
3914 case EST_Dynamic:
3915 return {NumExceptions, 0, 0};
3916
3917 case EST_DependentNoexcept:
3918 case EST_NoexceptFalse:
3919 case EST_NoexceptTrue:
3920 return {0, 1, 0};
3921
3922 case EST_Uninstantiated:
3923 return {0, 0, 2};
3924
3925 case EST_Unevaluated:
3926 return {0, 0, 1};
3927 }
3928 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3928)
;
3929 }
3930
3931 /// Return the number and kind of trailing objects
3932 /// related to the exception specification.
3933 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3934 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3935 }
3936
3937 /// Whether the trailing FunctionTypeExtraBitfields is present.
3938 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3939 // If the exception spec type is EST_Dynamic then we have > 0 exception
3940 // types and the exact number is stored in FunctionTypeExtraBitfields.
3941 return EST == EST_Dynamic;
3942 }
3943
3944 /// Whether the trailing FunctionTypeExtraBitfields is present.
3945 bool hasExtraBitfields() const {
3946 return hasExtraBitfields(getExceptionSpecType());
3947 }
3948
3949 bool hasExtQualifiers() const {
3950 return FunctionTypeBits.HasExtQuals;
3951 }
3952
3953public:
3954 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3955
3956 QualType getParamType(unsigned i) const {
3957 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 3957, __PRETTY_FUNCTION__))
;
3958 return param_type_begin()[i];
3959 }
3960
3961 ArrayRef<QualType> getParamTypes() const {
3962 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3963 }
3964
3965 ExtProtoInfo getExtProtoInfo() const {
3966 ExtProtoInfo EPI;
3967 EPI.ExtInfo = getExtInfo();
3968 EPI.Variadic = isVariadic();
3969 EPI.EllipsisLoc = getEllipsisLoc();
3970 EPI.HasTrailingReturn = hasTrailingReturn();
3971 EPI.ExceptionSpec = getExceptionSpecInfo();
3972 EPI.TypeQuals = getMethodQuals();
3973 EPI.RefQualifier = getRefQualifier();
3974 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3975 return EPI;
3976 }
3977
3978 /// Get the kind of exception specification on this function.
3979 ExceptionSpecificationType getExceptionSpecType() const {
3980 return static_cast<ExceptionSpecificationType>(
3981 FunctionTypeBits.ExceptionSpecType);
3982 }
3983
3984 /// Return whether this function has any kind of exception spec.
3985 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3986
3987 /// Return whether this function has a dynamic (throw) exception spec.
3988 bool hasDynamicExceptionSpec() const {
3989 return isDynamicExceptionSpec(getExceptionSpecType());
3990 }
3991
3992 /// Return whether this function has a noexcept exception spec.
3993 bool hasNoexceptExceptionSpec() const {
3994 return isNoexceptExceptionSpec(getExceptionSpecType());
3995 }
3996
3997 /// Return whether this function has a dependent exception spec.
3998 bool hasDependentExceptionSpec() const;
3999
4000 /// Return whether this function has an instantiation-dependent exception
4001 /// spec.
4002 bool hasInstantiationDependentExceptionSpec() const;
4003
4004 /// Return all the available information about this type's exception spec.
4005 ExceptionSpecInfo getExceptionSpecInfo() const {
4006 ExceptionSpecInfo Result;
4007 Result.Type = getExceptionSpecType();
4008 if (Result.Type == EST_Dynamic) {
4009 Result.Exceptions = exceptions();
4010 } else if (isComputedNoexcept(Result.Type)) {
4011 Result.NoexceptExpr = getNoexceptExpr();
4012 } else if (Result.Type == EST_Uninstantiated) {
4013 Result.SourceDecl = getExceptionSpecDecl();
4014 Result.SourceTemplate = getExceptionSpecTemplate();
4015 } else if (Result.Type == EST_Unevaluated) {
4016 Result.SourceDecl = getExceptionSpecDecl();
4017 }
4018 return Result;
4019 }
4020
4021 /// Return the number of types in the exception specification.
4022 unsigned getNumExceptions() const {
4023 return getExceptionSpecType() == EST_Dynamic
4024 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4025 ->NumExceptionType
4026 : 0;
4027 }
4028
4029 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4030 QualType getExceptionType(unsigned i) const {
4031 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4031, __PRETTY_FUNCTION__))
;
4032 return exception_begin()[i];
4033 }
4034
4035 /// Return the expression inside noexcept(expression), or a null pointer
4036 /// if there is none (because the exception spec is not of this form).
4037 Expr *getNoexceptExpr() const {
4038 if (!isComputedNoexcept(getExceptionSpecType()))
4039 return nullptr;
4040 return *getTrailingObjects<Expr *>();
4041 }
4042
4043 /// If this function type has an exception specification which hasn't
4044 /// been determined yet (either because it has not been evaluated or because
4045 /// it has not been instantiated), this is the function whose exception
4046 /// specification is represented by this type.
4047 FunctionDecl *getExceptionSpecDecl() const {
4048 if (getExceptionSpecType() != EST_Uninstantiated &&
4049 getExceptionSpecType() != EST_Unevaluated)
4050 return nullptr;
4051 return getTrailingObjects<FunctionDecl *>()[0];
4052 }
4053
4054 /// If this function type has an uninstantiated exception
4055 /// specification, this is the function whose exception specification
4056 /// should be instantiated to find the exception specification for
4057 /// this type.
4058 FunctionDecl *getExceptionSpecTemplate() const {
4059 if (getExceptionSpecType() != EST_Uninstantiated)
4060 return nullptr;
4061 return getTrailingObjects<FunctionDecl *>()[1];
4062 }
4063
4064 /// Determine whether this function type has a non-throwing exception
4065 /// specification.
4066 CanThrowResult canThrow() const;
4067
4068 /// Determine whether this function type has a non-throwing exception
4069 /// specification. If this depends on template arguments, returns
4070 /// \c ResultIfDependent.
4071 bool isNothrow(bool ResultIfDependent = false) const {
4072 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4073 }
4074
4075 /// Whether this function prototype is variadic.
4076 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4077
4078 SourceLocation getEllipsisLoc() const {
4079 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4080 : SourceLocation();
4081 }
4082
4083 /// Determines whether this function prototype contains a
4084 /// parameter pack at the end.
4085 ///
4086 /// A function template whose last parameter is a parameter pack can be
4087 /// called with an arbitrary number of arguments, much like a variadic
4088 /// function.
4089 bool isTemplateVariadic() const;
4090
4091 /// Whether this function prototype has a trailing return type.
4092 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4093
4094 Qualifiers getMethodQuals() const {
4095 if (hasExtQualifiers())
4096 return *getTrailingObjects<Qualifiers>();
4097 else
4098 return getFastTypeQuals();
4099 }
4100
4101 /// Retrieve the ref-qualifier associated with this function type.
4102 RefQualifierKind getRefQualifier() const {
4103 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4104 }
4105
4106 using param_type_iterator = const QualType *;
4107 using param_type_range = llvm::iterator_range<param_type_iterator>;
4108
4109 param_type_range param_types() const {
4110 return param_type_range(param_type_begin(), param_type_end());
4111 }
4112
4113 param_type_iterator param_type_begin() const {
4114 return getTrailingObjects<QualType>();
4115 }
4116
4117 param_type_iterator param_type_end() const {
4118 return param_type_begin() + getNumParams();
4119 }
4120
4121 using exception_iterator = const QualType *;
4122
4123 ArrayRef<QualType> exceptions() const {
4124 return llvm::makeArrayRef(exception_begin(), exception_end());
4125 }
4126
4127 exception_iterator exception_begin() const {
4128 return reinterpret_cast<exception_iterator>(
4129 getTrailingObjects<ExceptionType>());
4130 }
4131
4132 exception_iterator exception_end() const {
4133 return exception_begin() + getNumExceptions();
4134 }
4135
4136 /// Is there any interesting extra information for any of the parameters
4137 /// of this function type?
4138 bool hasExtParameterInfos() const {
4139 return FunctionTypeBits.HasExtParameterInfos;
4140 }
4141
4142 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4143 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4143, __PRETTY_FUNCTION__))
;
4144 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4145 getNumParams());
4146 }
4147
4148 /// Return a pointer to the beginning of the array of extra parameter
4149 /// information, if present, or else null if none of the parameters
4150 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4151 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4152 if (!hasExtParameterInfos())
4153 return nullptr;
4154 return getTrailingObjects<ExtParameterInfo>();
4155 }
4156
4157 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4158 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4158, __PRETTY_FUNCTION__))
;
4159 if (hasExtParameterInfos())
4160 return getTrailingObjects<ExtParameterInfo>()[I];
4161 return ExtParameterInfo();
4162 }
4163
4164 ParameterABI getParameterABI(unsigned I) const {
4165 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4165, __PRETTY_FUNCTION__))
;
4166 if (hasExtParameterInfos())
4167 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4168 return ParameterABI::Ordinary;
4169 }
4170
4171 bool isParamConsumed(unsigned I) const {
4172 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4172, __PRETTY_FUNCTION__))
;
4173 if (hasExtParameterInfos())
4174 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4175 return false;
4176 }
4177
4178 bool isSugared() const { return false; }
4179 QualType desugar() const { return QualType(this, 0); }
4180
4181 void printExceptionSpecification(raw_ostream &OS,
4182 const PrintingPolicy &Policy) const;
4183
4184 static bool classof(const Type *T) {
4185 return T->getTypeClass() == FunctionProto;
4186 }
4187
4188 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4189 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4190 param_type_iterator ArgTys, unsigned NumArgs,
4191 const ExtProtoInfo &EPI, const ASTContext &Context,
4192 bool Canonical);
4193};
4194
4195/// Represents the dependent type named by a dependently-scoped
4196/// typename using declaration, e.g.
4197/// using typename Base<T>::foo;
4198///
4199/// Template instantiation turns these into the underlying type.
4200class UnresolvedUsingType : public Type {
4201 friend class ASTContext; // ASTContext creates these.
4202
4203 UnresolvedUsingTypenameDecl *Decl;
4204
4205 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4206 : Type(UnresolvedUsing, QualType(), true, true, false,
4207 /*ContainsUnexpandedParameterPack=*/false),
4208 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4209
4210public:
4211 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4212
4213 bool isSugared() const { return false; }
4214 QualType desugar() const { return QualType(this, 0); }
4215
4216 static bool classof(const Type *T) {
4217 return T->getTypeClass() == UnresolvedUsing;
4218 }
4219
4220 void Profile(llvm::FoldingSetNodeID &ID) {
4221 return Profile(ID, Decl);
4222 }
4223
4224 static void Profile(llvm::FoldingSetNodeID &ID,
4225 UnresolvedUsingTypenameDecl *D) {
4226 ID.AddPointer(D);
4227 }
4228};
4229
4230class TypedefType : public Type {
4231 TypedefNameDecl *Decl;
4232
4233protected:
4234 friend class ASTContext; // ASTContext creates these.
4235
4236 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4237 : Type(tc, can, can->isDependentType(),
4238 can->isInstantiationDependentType(),
4239 can->isVariablyModifiedType(),
4240 /*ContainsUnexpandedParameterPack=*/false),
4241 Decl(const_cast<TypedefNameDecl*>(D)) {
4242 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4242, __PRETTY_FUNCTION__))
;
4243 }
4244
4245public:
4246 TypedefNameDecl *getDecl() const { return Decl; }
4247
4248 bool isSugared() const { return true; }
4249 QualType desugar() const;
4250
4251 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4252};
4253
4254/// Sugar type that represents a type that was qualified by a qualifier written
4255/// as a macro invocation.
4256class MacroQualifiedType : public Type {
4257 friend class ASTContext; // ASTContext creates these.
4258
4259 QualType UnderlyingTy;
4260 const IdentifierInfo *MacroII;
4261
4262 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4263 const IdentifierInfo *MacroII)
4264 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4265 UnderlyingTy->isInstantiationDependentType(),
4266 UnderlyingTy->isVariablyModifiedType(),
4267 UnderlyingTy->containsUnexpandedParameterPack()),
4268 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4269 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4270, __PRETTY_FUNCTION__))
4270 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4270, __PRETTY_FUNCTION__))
;
4271 }
4272
4273public:
4274 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4275 QualType getUnderlyingType() const { return UnderlyingTy; }
4276
4277 /// Return this attributed type's modified type with no qualifiers attached to
4278 /// it.
4279 QualType getModifiedType() const;
4280
4281 bool isSugared() const { return true; }
4282 QualType desugar() const;
4283
4284 static bool classof(const Type *T) {
4285 return T->getTypeClass() == MacroQualified;
4286 }
4287};
4288
4289/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4290class TypeOfExprType : public Type {
4291 Expr *TOExpr;
4292
4293protected:
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 TypeOfExprType(Expr *E, QualType can = QualType());
4297
4298public:
4299 Expr *getUnderlyingExpr() const { return TOExpr; }
4300
4301 /// Remove a single level of sugar.
4302 QualType desugar() const;
4303
4304 /// Returns whether this type directly provides sugar.
4305 bool isSugared() const;
4306
4307 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4308};
4309
4310/// Internal representation of canonical, dependent
4311/// `typeof(expr)` types.
4312///
4313/// This class is used internally by the ASTContext to manage
4314/// canonical, dependent types, only. Clients will only see instances
4315/// of this class via TypeOfExprType nodes.
4316class DependentTypeOfExprType
4317 : public TypeOfExprType, public llvm::FoldingSetNode {
4318 const ASTContext &Context;
4319
4320public:
4321 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4322 : TypeOfExprType(E), Context(Context) {}
4323
4324 void Profile(llvm::FoldingSetNodeID &ID) {
4325 Profile(ID, Context, getUnderlyingExpr());
4326 }
4327
4328 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4329 Expr *E);
4330};
4331
4332/// Represents `typeof(type)`, a GCC extension.
4333class TypeOfType : public Type {
4334 friend class ASTContext; // ASTContext creates these.
4335
4336 QualType TOType;
4337
4338 TypeOfType(QualType T, QualType can)
4339 : Type(TypeOf, can, T->isDependentType(),
4340 T->isInstantiationDependentType(),
4341 T->isVariablyModifiedType(),
4342 T->containsUnexpandedParameterPack()),
4343 TOType(T) {
4344 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4344, __PRETTY_FUNCTION__))
;
4345 }
4346
4347public:
4348 QualType getUnderlyingType() const { return TOType; }
4349
4350 /// Remove a single level of sugar.
4351 QualType desugar() const { return getUnderlyingType(); }
4352
4353 /// Returns whether this type directly provides sugar.
4354 bool isSugared() const { return true; }
4355
4356 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4357};
4358
4359/// Represents the type `decltype(expr)` (C++11).
4360class DecltypeType : public Type {
4361 Expr *E;
4362 QualType UnderlyingType;
4363
4364protected:
4365 friend class ASTContext; // ASTContext creates these.
4366
4367 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4368
4369public:
4370 Expr *getUnderlyingExpr() const { return E; }
4371 QualType getUnderlyingType() const { return UnderlyingType; }
4372
4373 /// Remove a single level of sugar.
4374 QualType desugar() const;
4375
4376 /// Returns whether this type directly provides sugar.
4377 bool isSugared() const;
4378
4379 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4380};
4381
4382/// Internal representation of canonical, dependent
4383/// decltype(expr) types.
4384///
4385/// This class is used internally by the ASTContext to manage
4386/// canonical, dependent types, only. Clients will only see instances
4387/// of this class via DecltypeType nodes.
4388class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4389 const ASTContext &Context;
4390
4391public:
4392 DependentDecltypeType(const ASTContext &Context, Expr *E);
4393
4394 void Profile(llvm::FoldingSetNodeID &ID) {
4395 Profile(ID, Context, getUnderlyingExpr());
4396 }
4397
4398 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4399 Expr *E);
4400};
4401
4402/// A unary type transform, which is a type constructed from another.
4403class UnaryTransformType : public Type {
4404public:
4405 enum UTTKind {
4406 EnumUnderlyingType
4407 };
4408
4409private:
4410 /// The untransformed type.
4411 QualType BaseType;
4412
4413 /// The transformed type if not dependent, otherwise the same as BaseType.
4414 QualType UnderlyingType;
4415
4416 UTTKind UKind;
4417
4418protected:
4419 friend class ASTContext;
4420
4421 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4422 QualType CanonicalTy);
4423
4424public:
4425 bool isSugared() const { return !isDependentType(); }
4426 QualType desugar() const { return UnderlyingType; }
4427
4428 QualType getUnderlyingType() const { return UnderlyingType; }
4429 QualType getBaseType() const { return BaseType; }
4430
4431 UTTKind getUTTKind() const { return UKind; }
4432
4433 static bool classof(const Type *T) {
4434 return T->getTypeClass() == UnaryTransform;
4435 }
4436};
4437
4438/// Internal representation of canonical, dependent
4439/// __underlying_type(type) types.
4440///
4441/// This class is used internally by the ASTContext to manage
4442/// canonical, dependent types, only. Clients will only see instances
4443/// of this class via UnaryTransformType nodes.
4444class DependentUnaryTransformType : public UnaryTransformType,
4445 public llvm::FoldingSetNode {
4446public:
4447 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4448 UTTKind UKind);
4449
4450 void Profile(llvm::FoldingSetNodeID &ID) {
4451 Profile(ID, getBaseType(), getUTTKind());
4452 }
4453
4454 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4455 UTTKind UKind) {
4456 ID.AddPointer(BaseType.getAsOpaquePtr());
4457 ID.AddInteger((unsigned)UKind);
4458 }
4459};
4460
4461class TagType : public Type {
4462 friend class ASTReader;
4463 template <class T> friend class serialization::AbstractTypeReader;
4464
4465 /// Stores the TagDecl associated with this type. The decl may point to any
4466 /// TagDecl that declares the entity.
4467 TagDecl *decl;
4468
4469protected:
4470 TagType(TypeClass TC, const TagDecl *D, QualType can);
4471
4472public:
4473 TagDecl *getDecl() const;
4474
4475 /// Determines whether this type is in the process of being defined.
4476 bool isBeingDefined() const;
4477
4478 static bool classof(const Type *T) {
4479 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4480 }
4481};
4482
4483/// A helper class that allows the use of isa/cast/dyncast
4484/// to detect TagType objects of structs/unions/classes.
4485class RecordType : public TagType {
4486protected:
4487 friend class ASTContext; // ASTContext creates these.
4488
4489 explicit RecordType(const RecordDecl *D)
4490 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4491 explicit RecordType(TypeClass TC, RecordDecl *D)
4492 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4493
4494public:
4495 RecordDecl *getDecl() const {
4496 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4497 }
4498
4499 /// Recursively check all fields in the record for const-ness. If any field
4500 /// is declared const, return true. Otherwise, return false.
4501 bool hasConstFields() const;
4502
4503 bool isSugared() const { return false; }
4504 QualType desugar() const { return QualType(this, 0); }
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4507};
4508
4509/// A helper class that allows the use of isa/cast/dyncast
4510/// to detect TagType objects of enums.
4511class EnumType : public TagType {
4512 friend class ASTContext; // ASTContext creates these.
4513
4514 explicit EnumType(const EnumDecl *D)
4515 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4516
4517public:
4518 EnumDecl *getDecl() const {
4519 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4520 }
4521
4522 bool isSugared() const { return false; }
4523 QualType desugar() const { return QualType(this, 0); }
4524
4525 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4526};
4527
4528/// An attributed type is a type to which a type attribute has been applied.
4529///
4530/// The "modified type" is the fully-sugared type to which the attributed
4531/// type was applied; generally it is not canonically equivalent to the
4532/// attributed type. The "equivalent type" is the minimally-desugared type
4533/// which the type is canonically equivalent to.
4534///
4535/// For example, in the following attributed type:
4536/// int32_t __attribute__((vector_size(16)))
4537/// - the modified type is the TypedefType for int32_t
4538/// - the equivalent type is VectorType(16, int32_t)
4539/// - the canonical type is VectorType(16, int)
4540class AttributedType : public Type, public llvm::FoldingSetNode {
4541public:
4542 using Kind = attr::Kind;
4543
4544private:
4545 friend class ASTContext; // ASTContext creates these
4546
4547 QualType ModifiedType;
4548 QualType EquivalentType;
4549
4550 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4551 QualType equivalent)
4552 : Type(Attributed, canon, equivalent->isDependentType(),
4553 equivalent->isInstantiationDependentType(),
4554 equivalent->isVariablyModifiedType(),
4555 equivalent->containsUnexpandedParameterPack()),
4556 ModifiedType(modified), EquivalentType(equivalent) {
4557 AttributedTypeBits.AttrKind = attrKind;
4558 }
4559
4560public:
4561 Kind getAttrKind() const {
4562 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4563 }
4564
4565 QualType getModifiedType() const { return ModifiedType; }
4566 QualType getEquivalentType() const { return EquivalentType; }
4567
4568 bool isSugared() const { return true; }
4569 QualType desugar() const { return getEquivalentType(); }
4570
4571 /// Does this attribute behave like a type qualifier?
4572 ///
4573 /// A type qualifier adjusts a type to provide specialized rules for
4574 /// a specific object, like the standard const and volatile qualifiers.
4575 /// This includes attributes controlling things like nullability,
4576 /// address spaces, and ARC ownership. The value of the object is still
4577 /// largely described by the modified type.
4578 ///
4579 /// In contrast, many type attributes "rewrite" their modified type to
4580 /// produce a fundamentally different type, not necessarily related in any
4581 /// formalizable way to the original type. For example, calling convention
4582 /// and vector attributes are not simple type qualifiers.
4583 ///
4584 /// Type qualifiers are often, but not always, reflected in the canonical
4585 /// type.
4586 bool isQualifier() const;
4587
4588 bool isMSTypeSpec() const;
4589
4590 bool isCallingConv() const;
4591
4592 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4593
4594 /// Retrieve the attribute kind corresponding to the given
4595 /// nullability kind.
4596 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4597 switch (kind) {
4598 case NullabilityKind::NonNull:
4599 return attr::TypeNonNull;
4600
4601 case NullabilityKind::Nullable:
4602 return attr::TypeNullable;
4603
4604 case NullabilityKind::Unspecified:
4605 return attr::TypeNullUnspecified;
4606 }
4607 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 4607)
;
4608 }
4609
4610 /// Strip off the top-level nullability annotation on the given
4611 /// type, if it's there.
4612 ///
4613 /// \param T The type to strip. If the type is exactly an
4614 /// AttributedType specifying nullability (without looking through
4615 /// type sugar), the nullability is returned and this type changed
4616 /// to the underlying modified type.
4617 ///
4618 /// \returns the top-level nullability, if present.
4619 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4620
4621 void Profile(llvm::FoldingSetNodeID &ID) {
4622 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4623 }
4624
4625 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4626 QualType modified, QualType equivalent) {
4627 ID.AddInteger(attrKind);
4628 ID.AddPointer(modified.getAsOpaquePtr());
4629 ID.AddPointer(equivalent.getAsOpaquePtr());
4630 }
4631
4632 static bool classof(const Type *T) {
4633 return T->getTypeClass() == Attributed;
4634 }
4635};
4636
4637class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4638 friend class ASTContext; // ASTContext creates these
4639
4640 // Helper data collector for canonical types.
4641 struct CanonicalTTPTInfo {
4642 unsigned Depth : 15;
4643 unsigned ParameterPack : 1;
4644 unsigned Index : 16;
4645 };
4646
4647 union {
4648 // Info for the canonical type.
4649 CanonicalTTPTInfo CanTTPTInfo;
4650
4651 // Info for the non-canonical type.
4652 TemplateTypeParmDecl *TTPDecl;
4653 };
4654
4655 /// Build a non-canonical type.
4656 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4657 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4658 /*InstantiationDependent=*/true,
4659 /*VariablyModified=*/false,
4660 Canon->containsUnexpandedParameterPack()),
4661 TTPDecl(TTPDecl) {}
4662
4663 /// Build the canonical type.
4664 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4665 : Type(TemplateTypeParm, QualType(this, 0),
4666 /*Dependent=*/true,
4667 /*InstantiationDependent=*/true,
4668 /*VariablyModified=*/false, PP) {
4669 CanTTPTInfo.Depth = D;
4670 CanTTPTInfo.Index = I;
4671 CanTTPTInfo.ParameterPack = PP;
4672 }
4673
4674 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4675 QualType Can = getCanonicalTypeInternal();
4676 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4677 }
4678
4679public:
4680 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4681 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4682 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4683
4684 TemplateTypeParmDecl *getDecl() const {
4685 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4686 }
4687
4688 IdentifierInfo *getIdentifier() const;
4689
4690 bool isSugared() const { return false; }
4691 QualType desugar() const { return QualType(this, 0); }
4692
4693 void Profile(llvm::FoldingSetNodeID &ID) {
4694 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4695 }
4696
4697 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4698 unsigned Index, bool ParameterPack,
4699 TemplateTypeParmDecl *TTPDecl) {
4700 ID.AddInteger(Depth);
4701 ID.AddInteger(Index);
4702 ID.AddBoolean(ParameterPack);
4703 ID.AddPointer(TTPDecl);
4704 }
4705
4706 static bool classof(const Type *T) {
4707 return T->getTypeClass() == TemplateTypeParm;
4708 }
4709};
4710
4711/// Represents the result of substituting a type for a template
4712/// type parameter.
4713///
4714/// Within an instantiated template, all template type parameters have
4715/// been replaced with these. They are used solely to record that a
4716/// type was originally written as a template type parameter;
4717/// therefore they are never canonical.
4718class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4719 friend class ASTContext;
4720
4721 // The original type parameter.
4722 const TemplateTypeParmType *Replaced;
4723
4724 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4725 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4726 Canon->isInstantiationDependentType(),
4727 Canon->isVariablyModifiedType(),
4728 Canon->containsUnexpandedParameterPack()),
4729 Replaced(Param) {}
4730
4731public:
4732 /// Gets the template parameter that was substituted for.
4733 const TemplateTypeParmType *getReplacedParameter() const {
4734 return Replaced;
4735 }
4736
4737 /// Gets the type that was substituted for the template
4738 /// parameter.
4739 QualType getReplacementType() const {
4740 return getCanonicalTypeInternal();
4741 }
4742
4743 bool isSugared() const { return true; }
4744 QualType desugar() const { return getReplacementType(); }
4745
4746 void Profile(llvm::FoldingSetNodeID &ID) {
4747 Profile(ID, getReplacedParameter(), getReplacementType());
4748 }
4749
4750 static void Profile(llvm::FoldingSetNodeID &ID,
4751 const TemplateTypeParmType *Replaced,
4752 QualType Replacement) {
4753 ID.AddPointer(Replaced);
4754 ID.AddPointer(Replacement.getAsOpaquePtr());
4755 }
4756
4757 static bool classof(const Type *T) {
4758 return T->getTypeClass() == SubstTemplateTypeParm;
4759 }
4760};
4761
4762/// Represents the result of substituting a set of types for a template
4763/// type parameter pack.
4764///
4765/// When a pack expansion in the source code contains multiple parameter packs
4766/// and those parameter packs correspond to different levels of template
4767/// parameter lists, this type node is used to represent a template type
4768/// parameter pack from an outer level, which has already had its argument pack
4769/// substituted but that still lives within a pack expansion that itself
4770/// could not be instantiated. When actually performing a substitution into
4771/// that pack expansion (e.g., when all template parameters have corresponding
4772/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4773/// at the current pack substitution index.
4774class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4775 friend class ASTContext;
4776
4777 /// The original type parameter.
4778 const TemplateTypeParmType *Replaced;
4779
4780 /// A pointer to the set of template arguments that this
4781 /// parameter pack is instantiated with.
4782 const TemplateArgument *Arguments;
4783
4784 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4785 QualType Canon,
4786 const TemplateArgument &ArgPack);
4787
4788public:
4789 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4790
4791 /// Gets the template parameter that was substituted for.
4792 const TemplateTypeParmType *getReplacedParameter() const {
4793 return Replaced;
4794 }
4795
4796 unsigned getNumArgs() const {
4797 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4798 }
4799
4800 bool isSugared() const { return false; }
4801 QualType desugar() const { return QualType(this, 0); }
4802
4803 TemplateArgument getArgumentPack() const;
4804
4805 void Profile(llvm::FoldingSetNodeID &ID);
4806 static void Profile(llvm::FoldingSetNodeID &ID,
4807 const TemplateTypeParmType *Replaced,
4808 const TemplateArgument &ArgPack);
4809
4810 static bool classof(const Type *T) {
4811 return T->getTypeClass() == SubstTemplateTypeParmPack;
4812 }
4813};
4814
4815/// Common base class for placeholders for types that get replaced by
4816/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4817/// class template types, and (eventually) constrained type names from the C++
4818/// Concepts TS.
4819///
4820/// These types are usually a placeholder for a deduced type. However, before
4821/// the initializer is attached, or (usually) if the initializer is
4822/// type-dependent, there is no deduced type and the type is canonical. In
4823/// the latter case, it is also a dependent type.
4824class DeducedType : public Type {
4825protected:
4826 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4827 bool IsInstantiationDependent, bool ContainsParameterPack)
4828 : Type(TC,
4829 // FIXME: Retain the sugared deduced type?
4830 DeducedAsType.isNull() ? QualType(this, 0)
4831 : DeducedAsType.getCanonicalType(),
4832 IsDependent, IsInstantiationDependent,
4833 /*VariablyModified=*/false, ContainsParameterPack) {
4834 if (!DeducedAsType.isNull()) {
4835 if (DeducedAsType->isDependentType())
4836 setDependent();
4837 if (DeducedAsType->isInstantiationDependentType())
4838 setInstantiationDependent();
4839 if (DeducedAsType->containsUnexpandedParameterPack())
4840 setContainsUnexpandedParameterPack();
4841 }
4842 }
4843
4844public:
4845 bool isSugared() const { return !isCanonicalUnqualified(); }
4846 QualType desugar() const { return getCanonicalTypeInternal(); }
4847
4848 /// Get the type deduced for this placeholder type, or null if it's
4849 /// either not been deduced or was deduced to a dependent type.
4850 QualType getDeducedType() const {
4851 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4852 }
4853 bool isDeduced() const {
4854 return !isCanonicalUnqualified() || isDependentType();
4855 }
4856
4857 static bool classof(const Type *T) {
4858 return T->getTypeClass() == Auto ||
4859 T->getTypeClass() == DeducedTemplateSpecialization;
4860 }
4861};
4862
4863/// Represents a C++11 auto or C++14 decltype(auto) type.
4864class AutoType : public DeducedType, public llvm::FoldingSetNode {
4865 friend class ASTContext; // ASTContext creates these
4866
4867 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4868 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4869 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4870 IsDeducedAsDependent, IsDeducedAsPack) {
4871 AutoTypeBits.Keyword = (unsigned)Keyword;
4872 }
4873
4874public:
4875 bool isDecltypeAuto() const {
4876 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4877 }
4878
4879 AutoTypeKeyword getKeyword() const {
4880 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4881 }
4882
4883 void Profile(llvm::FoldingSetNodeID &ID) {
4884 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4885 containsUnexpandedParameterPack());
4886 }
4887
4888 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4889 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4890 ID.AddPointer(Deduced.getAsOpaquePtr());
4891 ID.AddInteger((unsigned)Keyword);
4892 ID.AddBoolean(IsDependent);
4893 ID.AddBoolean(IsPack);
4894 }
4895
4896 static bool classof(const Type *T) {
4897 return T->getTypeClass() == Auto;
4898 }
4899};
4900
4901/// Represents a C++17 deduced template specialization type.
4902class DeducedTemplateSpecializationType : public DeducedType,
4903 public llvm::FoldingSetNode {
4904 friend class ASTContext; // ASTContext creates these
4905
4906 /// The name of the template whose arguments will be deduced.
4907 TemplateName Template;
4908
4909 DeducedTemplateSpecializationType(TemplateName Template,
4910 QualType DeducedAsType,
4911 bool IsDeducedAsDependent)
4912 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4913 IsDeducedAsDependent || Template.isDependent(),
4914 IsDeducedAsDependent || Template.isInstantiationDependent(),
4915 Template.containsUnexpandedParameterPack()),
4916 Template(Template) {}
4917
4918public:
4919 /// Retrieve the name of the template that we are deducing.
4920 TemplateName getTemplateName() const { return Template;}
4921
4922 void Profile(llvm::FoldingSetNodeID &ID) {
4923 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4924 }
4925
4926 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4927 QualType Deduced, bool IsDependent) {
4928 Template.Profile(ID);
4929 ID.AddPointer(Deduced.getAsOpaquePtr());
4930 ID.AddBoolean(IsDependent);
4931 }
4932
4933 static bool classof(const Type *T) {
4934 return T->getTypeClass() == DeducedTemplateSpecialization;
4935 }
4936};
4937
4938/// Represents a type template specialization; the template
4939/// must be a class template, a type alias template, or a template
4940/// template parameter. A template which cannot be resolved to one of
4941/// these, e.g. because it is written with a dependent scope
4942/// specifier, is instead represented as a
4943/// @c DependentTemplateSpecializationType.
4944///
4945/// A non-dependent template specialization type is always "sugar",
4946/// typically for a \c RecordType. For example, a class template
4947/// specialization type of \c vector<int> will refer to a tag type for
4948/// the instantiation \c std::vector<int, std::allocator<int>>
4949///
4950/// Template specializations are dependent if either the template or
4951/// any of the template arguments are dependent, in which case the
4952/// type may also be canonical.
4953///
4954/// Instances of this type are allocated with a trailing array of
4955/// TemplateArguments, followed by a QualType representing the
4956/// non-canonical aliased type when the template is a type alias
4957/// template.
4958class alignas(8) TemplateSpecializationType
4959 : public Type,
4960 public llvm::FoldingSetNode {
4961 friend class ASTContext; // ASTContext creates these
4962
4963 /// The name of the template being specialized. This is
4964 /// either a TemplateName::Template (in which case it is a
4965 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4966 /// TypeAliasTemplateDecl*), a
4967 /// TemplateName::SubstTemplateTemplateParmPack, or a
4968 /// TemplateName::SubstTemplateTemplateParm (in which case the
4969 /// replacement must, recursively, be one of these).
4970 TemplateName Template;
4971
4972 TemplateSpecializationType(TemplateName T,
4973 ArrayRef<TemplateArgument> Args,
4974 QualType Canon,
4975 QualType Aliased);
4976
4977public:
4978 /// Determine whether any of the given template arguments are dependent.
4979 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4980 bool &InstantiationDependent);
4981
4982 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4983 bool &InstantiationDependent);
4984
4985 /// True if this template specialization type matches a current
4986 /// instantiation in the context in which it is found.
4987 bool isCurrentInstantiation() const {
4988 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4989 }
4990
4991 /// Determine if this template specialization type is for a type alias
4992 /// template that has been substituted.
4993 ///
4994 /// Nearly every template specialization type whose template is an alias
4995 /// template will be substituted. However, this is not the case when
4996 /// the specialization contains a pack expansion but the template alias
4997 /// does not have a corresponding parameter pack, e.g.,
4998 ///
4999 /// \code
5000 /// template<typename T, typename U, typename V> struct S;
5001 /// template<typename T, typename U> using A = S<T, int, U>;
5002 /// template<typename... Ts> struct X {
5003 /// typedef A<Ts...> type; // not a type alias
5004 /// };
5005 /// \endcode
5006 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5007
5008 /// Get the aliased type, if this is a specialization of a type alias
5009 /// template.
5010 QualType getAliasedType() const {
5011 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5011, __PRETTY_FUNCTION__))
;
5012 return *reinterpret_cast<const QualType*>(end());
5013 }
5014
5015 using iterator = const TemplateArgument *;
5016
5017 iterator begin() const { return getArgs(); }
5018 iterator end() const; // defined inline in TemplateBase.h
5019
5020 /// Retrieve the name of the template that we are specializing.
5021 TemplateName getTemplateName() const { return Template; }
5022
5023 /// Retrieve the template arguments.
5024 const TemplateArgument *getArgs() const {
5025 return reinterpret_cast<const TemplateArgument *>(this + 1);
5026 }
5027
5028 /// Retrieve the number of template arguments.
5029 unsigned getNumArgs() const {
5030 return TemplateSpecializationTypeBits.NumArgs;
5031 }
5032
5033 /// Retrieve a specific template argument as a type.
5034 /// \pre \c isArgType(Arg)
5035 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5036
5037 ArrayRef<TemplateArgument> template_arguments() const {
5038 return {getArgs(), getNumArgs()};
5039 }
5040
5041 bool isSugared() const {
5042 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5043 }
5044
5045 QualType desugar() const {
5046 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5047 }
5048
5049 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5050 Profile(ID, Template, template_arguments(), Ctx);
5051 if (isTypeAlias())
5052 getAliasedType().Profile(ID);
5053 }
5054
5055 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5056 ArrayRef<TemplateArgument> Args,
5057 const ASTContext &Context);
5058
5059 static bool classof(const Type *T) {
5060 return T->getTypeClass() == TemplateSpecialization;
5061 }
5062};
5063
5064/// Print a template argument list, including the '<' and '>'
5065/// enclosing the template arguments.
5066void printTemplateArgumentList(raw_ostream &OS,
5067 ArrayRef<TemplateArgument> Args,
5068 const PrintingPolicy &Policy);
5069
5070void printTemplateArgumentList(raw_ostream &OS,
5071 ArrayRef<TemplateArgumentLoc> Args,
5072 const PrintingPolicy &Policy);
5073
5074void printTemplateArgumentList(raw_ostream &OS,
5075 const TemplateArgumentListInfo &Args,
5076 const PrintingPolicy &Policy);
5077
5078/// The injected class name of a C++ class template or class
5079/// template partial specialization. Used to record that a type was
5080/// spelled with a bare identifier rather than as a template-id; the
5081/// equivalent for non-templated classes is just RecordType.
5082///
5083/// Injected class name types are always dependent. Template
5084/// instantiation turns these into RecordTypes.
5085///
5086/// Injected class name types are always canonical. This works
5087/// because it is impossible to compare an injected class name type
5088/// with the corresponding non-injected template type, for the same
5089/// reason that it is impossible to directly compare template
5090/// parameters from different dependent contexts: injected class name
5091/// types can only occur within the scope of a particular templated
5092/// declaration, and within that scope every template specialization
5093/// will canonicalize to the injected class name (when appropriate
5094/// according to the rules of the language).
5095class InjectedClassNameType : public Type {
5096 friend class ASTContext; // ASTContext creates these.
5097 friend class ASTNodeImporter;
5098 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5099 // currently suitable for AST reading, too much
5100 // interdependencies.
5101 template <class T> friend class serialization::AbstractTypeReader;
5102
5103 CXXRecordDecl *Decl;
5104
5105 /// The template specialization which this type represents.
5106 /// For example, in
5107 /// template <class T> class A { ... };
5108 /// this is A<T>, whereas in
5109 /// template <class X, class Y> class A<B<X,Y> > { ... };
5110 /// this is A<B<X,Y> >.
5111 ///
5112 /// It is always unqualified, always a template specialization type,
5113 /// and always dependent.
5114 QualType InjectedType;
5115
5116 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5117 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5118 /*InstantiationDependent=*/true,
5119 /*VariablyModified=*/false,
5120 /*ContainsUnexpandedParameterPack=*/false),
5121 Decl(D), InjectedType(TST) {
5122 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5122, __PRETTY_FUNCTION__))
;
5123 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5123, __PRETTY_FUNCTION__))
;
5124 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5124, __PRETTY_FUNCTION__))
;
5125 }
5126
5127public:
5128 QualType getInjectedSpecializationType() const { return InjectedType; }
5129
5130 const TemplateSpecializationType *getInjectedTST() const {
5131 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5132 }
5133
5134 TemplateName getTemplateName() const {
5135 return getInjectedTST()->getTemplateName();
5136 }
5137
5138 CXXRecordDecl *getDecl() const;
5139
5140 bool isSugared() const { return false; }
5141 QualType desugar() const { return QualType(this, 0); }
5142
5143 static bool classof(const Type *T) {
5144 return T->getTypeClass() == InjectedClassName;
5145 }
5146};
5147
5148/// The kind of a tag type.
5149enum TagTypeKind {
5150 /// The "struct" keyword.
5151 TTK_Struct,
5152
5153 /// The "__interface" keyword.
5154 TTK_Interface,
5155
5156 /// The "union" keyword.
5157 TTK_Union,
5158
5159 /// The "class" keyword.
5160 TTK_Class,
5161
5162 /// The "enum" keyword.
5163 TTK_Enum
5164};
5165
5166/// The elaboration keyword that precedes a qualified type name or
5167/// introduces an elaborated-type-specifier.
5168enum ElaboratedTypeKeyword {
5169 /// The "struct" keyword introduces the elaborated-type-specifier.
5170 ETK_Struct,
5171
5172 /// The "__interface" keyword introduces the elaborated-type-specifier.
5173 ETK_Interface,
5174
5175 /// The "union" keyword introduces the elaborated-type-specifier.
5176 ETK_Union,
5177
5178 /// The "class" keyword introduces the elaborated-type-specifier.
5179 ETK_Class,
5180
5181 /// The "enum" keyword introduces the elaborated-type-specifier.
5182 ETK_Enum,
5183
5184 /// The "typename" keyword precedes the qualified type name, e.g.,
5185 /// \c typename T::type.
5186 ETK_Typename,
5187
5188 /// No keyword precedes the qualified type name.
5189 ETK_None
5190};
5191
5192/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5193/// The keyword in stored in the free bits of the base class.
5194/// Also provides a few static helpers for converting and printing
5195/// elaborated type keyword and tag type kind enumerations.
5196class TypeWithKeyword : public Type {
5197protected:
5198 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5199 QualType Canonical, bool Dependent,
5200 bool InstantiationDependent, bool VariablyModified,
5201 bool ContainsUnexpandedParameterPack)
5202 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5203 ContainsUnexpandedParameterPack) {
5204 TypeWithKeywordBits.Keyword = Keyword;
5205 }
5206
5207public:
5208 ElaboratedTypeKeyword getKeyword() const {
5209 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5210 }
5211
5212 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5213 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5214
5215 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5216 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5217 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5218
5219 /// Converts a TagTypeKind into an elaborated type keyword.
5220 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5221
5222 /// Converts an elaborated type keyword into a TagTypeKind.
5223 /// It is an error to provide an elaborated type keyword
5224 /// which *isn't* a tag kind here.
5225 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5226
5227 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5228
5229 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5230
5231 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5232 return getKeywordName(getKeywordForTagTypeKind(Kind));
5233 }
5234
5235 class CannotCastToThisType {};
5236 static CannotCastToThisType classof(const Type *);
5237};
5238
5239/// Represents a type that was referred to using an elaborated type
5240/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5241/// or both.
5242///
5243/// This type is used to keep track of a type name as written in the
5244/// source code, including tag keywords and any nested-name-specifiers.
5245/// The type itself is always "sugar", used to express what was written
5246/// in the source code but containing no additional semantic information.
5247class ElaboratedType final
5248 : public TypeWithKeyword,
5249 public llvm::FoldingSetNode,
5250 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5251 friend class ASTContext; // ASTContext creates these
5252 friend TrailingObjects;
5253
5254 /// The nested name specifier containing the qualifier.
5255 NestedNameSpecifier *NNS;
5256
5257 /// The type that this qualified name refers to.
5258 QualType NamedType;
5259
5260 /// The (re)declaration of this tag type owned by this occurrence is stored
5261 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5262 /// it, or obtain a null pointer if there is none.
5263
5264 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5265 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5266 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5267 NamedType->isDependentType(),
5268 NamedType->isInstantiationDependentType(),
5269 NamedType->isVariablyModifiedType(),
5270 NamedType->containsUnexpandedParameterPack()),
5271 NNS(NNS), NamedType(NamedType) {
5272 ElaboratedTypeBits.HasOwnedTagDecl = false;
5273 if (OwnedTagDecl) {
5274 ElaboratedTypeBits.HasOwnedTagDecl = true;
5275 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5276 }
5277 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
5278 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
5279 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
;
5280 }
5281
5282public:
5283 /// Retrieve the qualification on this type.
5284 NestedNameSpecifier *getQualifier() const { return NNS; }
5285
5286 /// Retrieve the type named by the qualified-id.
5287 QualType getNamedType() const { return NamedType; }
5288
5289 /// Remove a single level of sugar.
5290 QualType desugar() const { return getNamedType(); }
5291
5292 /// Returns whether this type directly provides sugar.
5293 bool isSugared() const { return true; }
5294
5295 /// Return the (re)declaration of this type owned by this occurrence of this
5296 /// type, or nullptr if there is none.
5297 TagDecl *getOwnedTagDecl() const {
5298 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5299 : nullptr;
5300 }
5301
5302 void Profile(llvm::FoldingSetNodeID &ID) {
5303 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5304 }
5305
5306 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5307 NestedNameSpecifier *NNS, QualType NamedType,
5308 TagDecl *OwnedTagDecl) {
5309 ID.AddInteger(Keyword);
5310 ID.AddPointer(NNS);
5311 NamedType.Profile(ID);
5312 ID.AddPointer(OwnedTagDecl);
5313 }
5314
5315 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5316};
5317
5318/// Represents a qualified type name for which the type name is
5319/// dependent.
5320///
5321/// DependentNameType represents a class of dependent types that involve a
5322/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5323/// name of a type. The DependentNameType may start with a "typename" (for a
5324/// typename-specifier), "class", "struct", "union", or "enum" (for a
5325/// dependent elaborated-type-specifier), or nothing (in contexts where we
5326/// know that we must be referring to a type, e.g., in a base class specifier).
5327/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5328/// mode, this type is used with non-dependent names to delay name lookup until
5329/// instantiation.
5330class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5331 friend class ASTContext; // ASTContext creates these
5332
5333 /// The nested name specifier containing the qualifier.
5334 NestedNameSpecifier *NNS;
5335
5336 /// The type that this typename specifier refers to.
5337 const IdentifierInfo *Name;
5338
5339 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5340 const IdentifierInfo *Name, QualType CanonType)
5341 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5342 /*InstantiationDependent=*/true,
5343 /*VariablyModified=*/false,
5344 NNS->containsUnexpandedParameterPack()),
5345 NNS(NNS), Name(Name) {}
5346
5347public:
5348 /// Retrieve the qualification on this type.
5349 NestedNameSpecifier *getQualifier() const { return NNS; }
5350
5351 /// Retrieve the type named by the typename specifier as an identifier.
5352 ///
5353 /// This routine will return a non-NULL identifier pointer when the
5354 /// form of the original typename was terminated by an identifier,
5355 /// e.g., "typename T::type".
5356 const IdentifierInfo *getIdentifier() const {
5357 return Name;
5358 }
5359
5360 bool isSugared() const { return false; }
5361 QualType desugar() const { return QualType(this, 0); }
5362
5363 void Profile(llvm::FoldingSetNodeID &ID) {
5364 Profile(ID, getKeyword(), NNS, Name);
5365 }
5366
5367 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5368 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5369 ID.AddInteger(Keyword);
5370 ID.AddPointer(NNS);
5371 ID.AddPointer(Name);
5372 }
5373
5374 static bool classof(const Type *T) {
5375 return T->getTypeClass() == DependentName;
5376 }
5377};
5378
5379/// Represents a template specialization type whose template cannot be
5380/// resolved, e.g.
5381/// A<T>::template B<T>
5382class alignas(8) DependentTemplateSpecializationType
5383 : public TypeWithKeyword,
5384 public llvm::FoldingSetNode {
5385 friend class ASTContext; // ASTContext creates these
5386
5387 /// The nested name specifier containing the qualifier.
5388 NestedNameSpecifier *NNS;
5389
5390 /// The identifier of the template.
5391 const IdentifierInfo *Name;
5392
5393 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5394 NestedNameSpecifier *NNS,
5395 const IdentifierInfo *Name,
5396 ArrayRef<TemplateArgument> Args,
5397 QualType Canon);
5398
5399 const TemplateArgument *getArgBuffer() const {
5400 return reinterpret_cast<const TemplateArgument*>(this+1);
5401 }
5402
5403 TemplateArgument *getArgBuffer() {
5404 return reinterpret_cast<TemplateArgument*>(this+1);
5405 }
5406
5407public:
5408 NestedNameSpecifier *getQualifier() const { return NNS; }
5409 const IdentifierInfo *getIdentifier() const { return Name; }
5410
5411 /// Retrieve the template arguments.
5412 const TemplateArgument *getArgs() const {
5413 return getArgBuffer();
5414 }
5415
5416 /// Retrieve the number of template arguments.
5417 unsigned getNumArgs() const {
5418 return DependentTemplateSpecializationTypeBits.NumArgs;
5419 }
5420
5421 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5422
5423 ArrayRef<TemplateArgument> template_arguments() const {
5424 return {getArgs(), getNumArgs()};
5425 }
5426
5427 using iterator = const TemplateArgument *;
5428
5429 iterator begin() const { return getArgs(); }
5430 iterator end() const; // inline in TemplateBase.h
5431
5432 bool isSugared() const { return false; }
5433 QualType desugar() const { return QualType(this, 0); }
5434
5435 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5436 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5437 }
5438
5439 static void Profile(llvm::FoldingSetNodeID &ID,
5440 const ASTContext &Context,
5441 ElaboratedTypeKeyword Keyword,
5442 NestedNameSpecifier *Qualifier,
5443 const IdentifierInfo *Name,
5444 ArrayRef<TemplateArgument> Args);
5445
5446 static bool classof(const Type *T) {
5447 return T->getTypeClass() == DependentTemplateSpecialization;
5448 }
5449};
5450
5451/// Represents a pack expansion of types.
5452///
5453/// Pack expansions are part of C++11 variadic templates. A pack
5454/// expansion contains a pattern, which itself contains one or more
5455/// "unexpanded" parameter packs. When instantiated, a pack expansion
5456/// produces a series of types, each instantiated from the pattern of
5457/// the expansion, where the Ith instantiation of the pattern uses the
5458/// Ith arguments bound to each of the unexpanded parameter packs. The
5459/// pack expansion is considered to "expand" these unexpanded
5460/// parameter packs.
5461///
5462/// \code
5463/// template<typename ...Types> struct tuple;
5464///
5465/// template<typename ...Types>
5466/// struct tuple_of_references {
5467/// typedef tuple<Types&...> type;
5468/// };
5469/// \endcode
5470///
5471/// Here, the pack expansion \c Types&... is represented via a
5472/// PackExpansionType whose pattern is Types&.
5473class PackExpansionType : public Type, public llvm::FoldingSetNode {
5474 friend class ASTContext; // ASTContext creates these
5475
5476 /// The pattern of the pack expansion.
5477 QualType Pattern;
5478
5479 PackExpansionType(QualType Pattern, QualType Canon,
5480 Optional<unsigned> NumExpansions)
5481 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5482 /*InstantiationDependent=*/true,
5483 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5484 /*ContainsUnexpandedParameterPack=*/false),
5485 Pattern(Pattern) {
5486 PackExpansionTypeBits.NumExpansions =
5487 NumExpansions ? *NumExpansions + 1 : 0;
5488 }
5489
5490public:
5491 /// Retrieve the pattern of this pack expansion, which is the
5492 /// type that will be repeatedly instantiated when instantiating the
5493 /// pack expansion itself.
5494 QualType getPattern() const { return Pattern; }
5495
5496 /// Retrieve the number of expansions that this pack expansion will
5497 /// generate, if known.
5498 Optional<unsigned> getNumExpansions() const {
5499 if (PackExpansionTypeBits.NumExpansions)
5500 return PackExpansionTypeBits.NumExpansions - 1;
5501 return None;
5502 }
5503
5504 bool isSugared() const { return !Pattern->isDependentType(); }
5505 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5506
5507 void Profile(llvm::FoldingSetNodeID &ID) {
5508 Profile(ID, getPattern(), getNumExpansions());
5509 }
5510
5511 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5512 Optional<unsigned> NumExpansions) {
5513 ID.AddPointer(Pattern.getAsOpaquePtr());
5514 ID.AddBoolean(NumExpansions.hasValue());
5515 if (NumExpansions)
5516 ID.AddInteger(*NumExpansions);
5517 }
5518
5519 static bool classof(const Type *T) {
5520 return T->getTypeClass() == PackExpansion;
5521 }
5522};
5523
5524/// This class wraps the list of protocol qualifiers. For types that can
5525/// take ObjC protocol qualifers, they can subclass this class.
5526template <class T>
5527class ObjCProtocolQualifiers {
5528protected:
5529 ObjCProtocolQualifiers() = default;
5530
5531 ObjCProtocolDecl * const *getProtocolStorage() const {
5532 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5533 }
5534
5535 ObjCProtocolDecl **getProtocolStorage() {
5536 return static_cast<T*>(this)->getProtocolStorageImpl();
5537 }
5538
5539 void setNumProtocols(unsigned N) {
5540 static_cast<T*>(this)->setNumProtocolsImpl(N);
5541 }
5542
5543 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5544 setNumProtocols(protocols.size());
5545 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5546, __PRETTY_FUNCTION__))
5546 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5546, __PRETTY_FUNCTION__))
;
5547 if (!protocols.empty())
5548 memcpy(getProtocolStorage(), protocols.data(),
5549 protocols.size() * sizeof(ObjCProtocolDecl*));
5550 }
5551
5552public:
5553 using qual_iterator = ObjCProtocolDecl * const *;
5554 using qual_range = llvm::iterator_range<qual_iterator>;
5555
5556 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5557 qual_iterator qual_begin() const { return getProtocolStorage(); }
5558 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5559
5560 bool qual_empty() const { return getNumProtocols() == 0; }
5561
5562 /// Return the number of qualifying protocols in this type, or 0 if
5563 /// there are none.
5564 unsigned getNumProtocols() const {
5565 return static_cast<const T*>(this)->getNumProtocolsImpl();
5566 }
5567
5568 /// Fetch a protocol by index.
5569 ObjCProtocolDecl *getProtocol(unsigned I) const {
5570 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5570, __PRETTY_FUNCTION__))
;
5571 return qual_begin()[I];
5572 }
5573
5574 /// Retrieve all of the protocol qualifiers.
5575 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5576 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5577 }
5578};
5579
5580/// Represents a type parameter type in Objective C. It can take
5581/// a list of protocols.
5582class ObjCTypeParamType : public Type,
5583 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5584 public llvm::FoldingSetNode {
5585 friend class ASTContext;
5586 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5587
5588 /// The number of protocols stored on this type.
5589 unsigned NumProtocols : 6;
5590
5591 ObjCTypeParamDecl *OTPDecl;
5592
5593 /// The protocols are stored after the ObjCTypeParamType node. In the
5594 /// canonical type, the list of protocols are sorted alphabetically
5595 /// and uniqued.
5596 ObjCProtocolDecl **getProtocolStorageImpl();
5597
5598 /// Return the number of qualifying protocols in this interface type,
5599 /// or 0 if there are none.
5600 unsigned getNumProtocolsImpl() const {
5601 return NumProtocols;
5602 }
5603
5604 void setNumProtocolsImpl(unsigned N) {
5605 NumProtocols = N;
5606 }
5607
5608 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5609 QualType can,
5610 ArrayRef<ObjCProtocolDecl *> protocols);
5611
5612public:
5613 bool isSugared() const { return true; }
5614 QualType desugar() const { return getCanonicalTypeInternal(); }
5615
5616 static bool classof(const Type *T) {
5617 return T->getTypeClass() == ObjCTypeParam;
5618 }
5619
5620 void Profile(llvm::FoldingSetNodeID &ID);
5621 static void Profile(llvm::FoldingSetNodeID &ID,
5622 const ObjCTypeParamDecl *OTPDecl,
5623 ArrayRef<ObjCProtocolDecl *> protocols);
5624
5625 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5626};
5627
5628/// Represents a class type in Objective C.
5629///
5630/// Every Objective C type is a combination of a base type, a set of
5631/// type arguments (optional, for parameterized classes) and a list of
5632/// protocols.
5633///
5634/// Given the following declarations:
5635/// \code
5636/// \@class C<T>;
5637/// \@protocol P;
5638/// \endcode
5639///
5640/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5641/// with base C and no protocols.
5642///
5643/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5644/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5645/// protocol list.
5646/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5647/// and protocol list [P].
5648///
5649/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5650/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5651/// and no protocols.
5652///
5653/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5654/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5655/// this should get its own sugar class to better represent the source.
5656class ObjCObjectType : public Type,
5657 public ObjCProtocolQualifiers<ObjCObjectType> {
5658 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5659
5660 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5661 // after the ObjCObjectPointerType node.
5662 // ObjCObjectType.NumProtocols - the number of protocols stored
5663 // after the type arguments of ObjCObjectPointerType node.
5664 //
5665 // These protocols are those written directly on the type. If
5666 // protocol qualifiers ever become additive, the iterators will need
5667 // to get kindof complicated.
5668 //
5669 // In the canonical object type, these are sorted alphabetically
5670 // and uniqued.
5671
5672 /// Either a BuiltinType or an InterfaceType or sugar for either.
5673 QualType BaseType;
5674
5675 /// Cached superclass type.
5676 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5677 CachedSuperClassType;
5678
5679 QualType *getTypeArgStorage();
5680 const QualType *getTypeArgStorage() const {
5681 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5682 }
5683
5684 ObjCProtocolDecl **getProtocolStorageImpl();
5685 /// Return the number of qualifying protocols in this interface type,
5686 /// or 0 if there are none.
5687 unsigned getNumProtocolsImpl() const {
5688 return ObjCObjectTypeBits.NumProtocols;
5689 }
5690 void setNumProtocolsImpl(unsigned N) {
5691 ObjCObjectTypeBits.NumProtocols = N;
5692 }
5693
5694protected:
5695 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5696
5697 ObjCObjectType(QualType Canonical, QualType Base,
5698 ArrayRef<QualType> typeArgs,
5699 ArrayRef<ObjCProtocolDecl *> protocols,
5700 bool isKindOf);
5701
5702 ObjCObjectType(enum Nonce_ObjCInterface)
5703 : Type(ObjCInterface, QualType(), false, false, false, false),
5704 BaseType(QualType(this_(), 0)) {
5705 ObjCObjectTypeBits.NumProtocols = 0;
5706 ObjCObjectTypeBits.NumTypeArgs = 0;
5707 ObjCObjectTypeBits.IsKindOf = 0;
5708 }
5709
5710 void computeSuperClassTypeSlow() const;
5711
5712public:
5713 /// Gets the base type of this object type. This is always (possibly
5714 /// sugar for) one of:
5715 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5716 /// user, which is a typedef for an ObjCObjectPointerType)
5717 /// - the 'Class' builtin type (same caveat)
5718 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5719 QualType getBaseType() const { return BaseType; }
5720
5721 bool isObjCId() const {
5722 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5723 }
5724
5725 bool isObjCClass() const {
5726 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5727 }
5728
5729 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5730 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5731 bool isObjCUnqualifiedIdOrClass() const {
5732 if (!qual_empty()) return false;
5733 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5734 return T->getKind() == BuiltinType::ObjCId ||
5735 T->getKind() == BuiltinType::ObjCClass;
5736 return false;
5737 }
5738 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5739 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5740
5741 /// Gets the interface declaration for this object type, if the base type
5742 /// really is an interface.
5743 ObjCInterfaceDecl *getInterface() const;
5744
5745 /// Determine whether this object type is "specialized", meaning
5746 /// that it has type arguments.
5747 bool isSpecialized() const;
5748
5749 /// Determine whether this object type was written with type arguments.
5750 bool isSpecializedAsWritten() const {
5751 return ObjCObjectTypeBits.NumTypeArgs > 0;
5752 }
5753
5754 /// Determine whether this object type is "unspecialized", meaning
5755 /// that it has no type arguments.
5756 bool isUnspecialized() const { return !isSpecialized(); }
5757
5758 /// Determine whether this object type is "unspecialized" as
5759 /// written, meaning that it has no type arguments.
5760 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5761
5762 /// Retrieve the type arguments of this object type (semantically).
5763 ArrayRef<QualType> getTypeArgs() const;
5764
5765 /// Retrieve the type arguments of this object type as they were
5766 /// written.
5767 ArrayRef<QualType> getTypeArgsAsWritten() const {
5768 return llvm::makeArrayRef(getTypeArgStorage(),
5769 ObjCObjectTypeBits.NumTypeArgs);
5770 }
5771
5772 /// Whether this is a "__kindof" type as written.
5773 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5774
5775 /// Whether this ia a "__kindof" type (semantically).
5776 bool isKindOfType() const;
5777
5778 /// Retrieve the type of the superclass of this object type.
5779 ///
5780 /// This operation substitutes any type arguments into the
5781 /// superclass of the current class type, potentially producing a
5782 /// specialization of the superclass type. Produces a null type if
5783 /// there is no superclass.
5784 QualType getSuperClassType() const {
5785 if (!CachedSuperClassType.getInt())
5786 computeSuperClassTypeSlow();
5787
5788 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 5788, __PRETTY_FUNCTION__))
;
5789 return QualType(CachedSuperClassType.getPointer(), 0);
5790 }
5791
5792 /// Strip off the Objective-C "kindof" type and (with it) any
5793 /// protocol qualifiers.
5794 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5795
5796 bool isSugared() const { return false; }
5797 QualType desugar() const { return QualType(this, 0); }
5798
5799 static bool classof(const Type *T) {
5800 return T->getTypeClass() == ObjCObject ||
5801 T->getTypeClass() == ObjCInterface;
5802 }
5803};
5804
5805/// A class providing a concrete implementation
5806/// of ObjCObjectType, so as to not increase the footprint of
5807/// ObjCInterfaceType. Code outside of ASTContext and the core type
5808/// system should not reference this type.
5809class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5810 friend class ASTContext;
5811
5812 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5813 // will need to be modified.
5814
5815 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5816 ArrayRef<QualType> typeArgs,
5817 ArrayRef<ObjCProtocolDecl *> protocols,
5818 bool isKindOf)
5819 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5820
5821public:
5822 void Profile(llvm::FoldingSetNodeID &ID);
5823 static void Profile(llvm::FoldingSetNodeID &ID,
5824 QualType Base,
5825 ArrayRef<QualType> typeArgs,
5826 ArrayRef<ObjCProtocolDecl *> protocols,
5827 bool isKindOf);
5828};
5829
5830inline QualType *ObjCObjectType::getTypeArgStorage() {
5831 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5832}
5833
5834inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5835 return reinterpret_cast<ObjCProtocolDecl**>(
5836 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5837}
5838
5839inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5840 return reinterpret_cast<ObjCProtocolDecl**>(
5841 static_cast<ObjCTypeParamType*>(this)+1);
5842}
5843
5844/// Interfaces are the core concept in Objective-C for object oriented design.
5845/// They basically correspond to C++ classes. There are two kinds of interface
5846/// types: normal interfaces like `NSString`, and qualified interfaces, which
5847/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5848///
5849/// ObjCInterfaceType guarantees the following properties when considered
5850/// as a subtype of its superclass, ObjCObjectType:
5851/// - There are no protocol qualifiers. To reinforce this, code which
5852/// tries to invoke the protocol methods via an ObjCInterfaceType will
5853/// fail to compile.
5854/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5855/// T->getBaseType() == QualType(T, 0).
5856class ObjCInterfaceType : public ObjCObjectType {
5857 friend class ASTContext; // ASTContext creates these.
5858 friend class ASTReader;
5859 friend class ObjCInterfaceDecl;
5860 template <class T> friend class serialization::AbstractTypeReader;
5861
5862 mutable ObjCInterfaceDecl *Decl;
5863
5864 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5865 : ObjCObjectType(Nonce_ObjCInterface),
5866 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5867
5868public:
5869 /// Get the declaration of this interface.
5870 ObjCInterfaceDecl *getDecl() const { return Decl; }
5871
5872 bool isSugared() const { return false; }
5873 QualType desugar() const { return QualType(this, 0); }
5874
5875 static bool classof(const Type *T) {
5876 return T->getTypeClass() == ObjCInterface;
5877 }
5878
5879 // Nonsense to "hide" certain members of ObjCObjectType within this
5880 // class. People asking for protocols on an ObjCInterfaceType are
5881 // not going to get what they want: ObjCInterfaceTypes are
5882 // guaranteed to have no protocols.
5883 enum {
5884 qual_iterator,
5885 qual_begin,
5886 qual_end,
5887 getNumProtocols,
5888 getProtocol
5889 };
5890};
5891
5892inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5893 QualType baseType = getBaseType();
5894 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5895 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5896 return T->getDecl();
5897
5898 baseType = ObjT->getBaseType();
5899 }
5900
5901 return nullptr;
5902}
5903
5904/// Represents a pointer to an Objective C object.
5905///
5906/// These are constructed from pointer declarators when the pointee type is
5907/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5908/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5909/// and 'Class<P>' are translated into these.
5910///
5911/// Pointers to pointers to Objective C objects are still PointerTypes;
5912/// only the first level of pointer gets it own type implementation.
5913class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5914 friend class ASTContext; // ASTContext creates these.
5915
5916 QualType PointeeType;
5917
5918 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5919 : Type(ObjCObjectPointer, Canonical,
5920 Pointee->isDependentType(),
5921 Pointee->isInstantiationDependentType(),
5922 Pointee->isVariablyModifiedType(),
5923 Pointee->containsUnexpandedParameterPack()),
5924 PointeeType(Pointee) {}
5925
5926public:
5927 /// Gets the type pointed to by this ObjC pointer.
5928 /// The result will always be an ObjCObjectType or sugar thereof.
5929 QualType getPointeeType() const { return PointeeType; }
5930
5931 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5932 ///
5933 /// This method is equivalent to getPointeeType() except that
5934 /// it discards any typedefs (or other sugar) between this
5935 /// type and the "outermost" object type. So for:
5936 /// \code
5937 /// \@class A; \@protocol P; \@protocol Q;
5938 /// typedef A<P> AP;
5939 /// typedef A A1;
5940 /// typedef A1<P> A1P;
5941 /// typedef A1P<Q> A1PQ;
5942 /// \endcode
5943 /// For 'A*', getObjectType() will return 'A'.
5944 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5945 /// For 'AP*', getObjectType() will return 'A<P>'.
5946 /// For 'A1*', getObjectType() will return 'A'.
5947 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5948 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5949 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5950 /// adding protocols to a protocol-qualified base discards the
5951 /// old qualifiers (for now). But if it didn't, getObjectType()
5952 /// would return 'A1P<Q>' (and we'd have to make iterating over
5953 /// qualifiers more complicated).
5954 const ObjCObjectType *getObjectType() const {
5955 return PointeeType->castAs<ObjCObjectType>();
5956 }
5957
5958 /// If this pointer points to an Objective C
5959 /// \@interface type, gets the type for that interface. Any protocol
5960 /// qualifiers on the interface are ignored.
5961 ///
5962 /// \return null if the base type for this pointer is 'id' or 'Class'
5963 const ObjCInterfaceType *getInterfaceType() const;
5964
5965 /// If this pointer points to an Objective \@interface
5966 /// type, gets the declaration for that interface.
5967 ///
5968 /// \return null if the base type for this pointer is 'id' or 'Class'
5969 ObjCInterfaceDecl *getInterfaceDecl() const {
5970 return getObjectType()->getInterface();
5971 }
5972
5973 /// True if this is equivalent to the 'id' type, i.e. if
5974 /// its object type is the primitive 'id' type with no protocols.
5975 bool isObjCIdType() const {
5976 return getObjectType()->isObjCUnqualifiedId();
5977 }
5978
5979 /// True if this is equivalent to the 'Class' type,
5980 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5981 bool isObjCClassType() const {
5982 return getObjectType()->isObjCUnqualifiedClass();
5983 }
5984
5985 /// True if this is equivalent to the 'id' or 'Class' type,
5986 bool isObjCIdOrClassType() const {
5987 return getObjectType()->isObjCUnqualifiedIdOrClass();
5988 }
5989
5990 /// True if this is equivalent to 'id<P>' for some non-empty set of
5991 /// protocols.
5992 bool isObjCQualifiedIdType() const {
5993 return getObjectType()->isObjCQualifiedId();
5994 }
5995
5996 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5997 /// protocols.
5998 bool isObjCQualifiedClassType() const {
5999 return getObjectType()->isObjCQualifiedClass();
6000 }
6001
6002 /// Whether this is a "__kindof" type.
6003 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6004
6005 /// Whether this type is specialized, meaning that it has type arguments.
6006 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6007
6008 /// Whether this type is specialized, meaning that it has type arguments.
6009 bool isSpecializedAsWritten() const {
6010 return getObjectType()->isSpecializedAsWritten();
6011 }
6012
6013 /// Whether this type is unspecialized, meaning that is has no type arguments.
6014 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6015
6016 /// Determine whether this object type is "unspecialized" as
6017 /// written, meaning that it has no type arguments.
6018 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6019
6020 /// Retrieve the type arguments for this type.
6021 ArrayRef<QualType> getTypeArgs() const {
6022 return getObjectType()->getTypeArgs();
6023 }
6024
6025 /// Retrieve the type arguments for this type.
6026 ArrayRef<QualType> getTypeArgsAsWritten() const {
6027 return getObjectType()->getTypeArgsAsWritten();
6028 }
6029
6030 /// An iterator over the qualifiers on the object type. Provided
6031 /// for convenience. This will always iterate over the full set of
6032 /// protocols on a type, not just those provided directly.
6033 using qual_iterator = ObjCObjectType::qual_iterator;
6034 using qual_range = llvm::iterator_range<qual_iterator>;
6035
6036 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6037
6038 qual_iterator qual_begin() const {
6039 return getObjectType()->qual_begin();
6040 }
6041
6042 qual_iterator qual_end() const {
6043 return getObjectType()->qual_end();
6044 }
6045
6046 bool qual_empty() const { return getObjectType()->qual_empty(); }
6047
6048 /// Return the number of qualifying protocols on the object type.
6049 unsigned getNumProtocols() const {
6050 return getObjectType()->getNumProtocols();
6051 }
6052
6053 /// Retrieve a qualifying protocol by index on the object type.
6054 ObjCProtocolDecl *getProtocol(unsigned I) const {
6055 return getObjectType()->getProtocol(I);
6056 }
6057
6058 bool isSugared() const { return false; }
6059 QualType desugar() const { return QualType(this, 0); }
6060
6061 /// Retrieve the type of the superclass of this object pointer type.
6062 ///
6063 /// This operation substitutes any type arguments into the
6064 /// superclass of the current class type, potentially producing a
6065 /// pointer to a specialization of the superclass type. Produces a
6066 /// null type if there is no superclass.
6067 QualType getSuperClassType() const;
6068
6069 /// Strip off the Objective-C "kindof" type and (with it) any
6070 /// protocol qualifiers.
6071 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6072 const ASTContext &ctx) const;
6073
6074 void Profile(llvm::FoldingSetNodeID &ID) {
6075 Profile(ID, getPointeeType());
6076 }
6077
6078 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6079 ID.AddPointer(T.getAsOpaquePtr());
6080 }
6081
6082 static bool classof(const Type *T) {
6083 return T->getTypeClass() == ObjCObjectPointer;
6084 }
6085};
6086
6087class AtomicType : public Type, public llvm::FoldingSetNode {
6088 friend class ASTContext; // ASTContext creates these.
6089
6090 QualType ValueType;
6091
6092 AtomicType(QualType ValTy, QualType Canonical)
6093 : Type(Atomic, Canonical, ValTy->isDependentType(),
6094 ValTy->isInstantiationDependentType(),
6095 ValTy->isVariablyModifiedType(),
6096 ValTy->containsUnexpandedParameterPack()),
6097 ValueType(ValTy) {}
6098
6099public:
6100 /// Gets the type contained by this atomic type, i.e.
6101 /// the type returned by performing an atomic load of this atomic type.
6102 QualType getValueType() const { return ValueType; }
6103
6104 bool isSugared() const { return false; }
6105 QualType desugar() const { return QualType(this, 0); }
6106
6107 void Profile(llvm::FoldingSetNodeID &ID) {
6108 Profile(ID, getValueType());
6109 }
6110
6111 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6112 ID.AddPointer(T.getAsOpaquePtr());
6113 }
6114
6115 static bool classof(const Type *T) {
6116 return T->getTypeClass() == Atomic;
6117 }
6118};
6119
6120/// PipeType - OpenCL20.
6121class PipeType : public Type, public llvm::FoldingSetNode {
6122 friend class ASTContext; // ASTContext creates these.
6123
6124 QualType ElementType;
6125 bool isRead;
6126
6127 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6128 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6129 elemType->isInstantiationDependentType(),
6130 elemType->isVariablyModifiedType(),
6131 elemType->containsUnexpandedParameterPack()),
6132 ElementType(elemType), isRead(isRead) {}
6133
6134public:
6135 QualType getElementType() const { return ElementType; }
6136
6137 bool isSugared() const { return false; }
6138
6139 QualType desugar() const { return QualType(this, 0); }
6140
6141 void Profile(llvm::FoldingSetNodeID &ID) {
6142 Profile(ID, getElementType(), isReadOnly());
6143 }
6144
6145 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6146 ID.AddPointer(T.getAsOpaquePtr());
6147 ID.AddBoolean(isRead);
6148 }
6149
6150 static bool classof(const Type *T) {
6151 return T->getTypeClass() == Pipe;
6152 }
6153
6154 bool isReadOnly() const { return isRead; }
6155};
6156
6157/// A qualifier set is used to build a set of qualifiers.
6158class QualifierCollector : public Qualifiers {
6159public:
6160 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6161
6162 /// Collect any qualifiers on the given type and return an
6163 /// unqualified type. The qualifiers are assumed to be consistent
6164 /// with those already in the type.
6165 const Type *strip(QualType type) {
6166 addFastQualifiers(type.getLocalFastQualifiers());
6167 if (!type.hasLocalNonFastQualifiers())
6168 return type.getTypePtrUnsafe();
6169
6170 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6171 addConsistentQualifiers(extQuals->getQualifiers());
6172 return extQuals->getBaseType();
6173 }
6174
6175 /// Apply the collected qualifiers to the given type.
6176 QualType apply(const ASTContext &Context, QualType QT) const;
6177
6178 /// Apply the collected qualifiers to the given type.
6179 QualType apply(const ASTContext &Context, const Type* T) const;
6180};
6181
6182/// A container of type source information.
6183///
6184/// A client can read the relevant info using TypeLoc wrappers, e.g:
6185/// @code
6186/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6187/// TL.getBeginLoc().print(OS, SrcMgr);
6188/// @endcode
6189class alignas(8) TypeSourceInfo {
6190 // Contains a memory block after the class, used for type source information,
6191 // allocated by ASTContext.
6192 friend class ASTContext;
6193
6194 QualType Ty;
6195
6196 TypeSourceInfo(QualType ty) : Ty(ty) {}
6197
6198public:
6199 /// Return the type wrapped by this type source info.
6200 QualType getType() const { return Ty; }
6201
6202 /// Return the TypeLoc wrapper for the type source info.
6203 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6204
6205 /// Override the type stored in this TypeSourceInfo. Use with caution!
6206 void overrideType(QualType T) { Ty = T; }
6207};
6208
6209// Inline function definitions.
6210
6211inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6212 SplitQualType desugar =
6213 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6214 desugar.Quals.addConsistentQualifiers(Quals);
6215 return desugar;
6216}
6217
6218inline const Type *QualType::getTypePtr() const {
6219 return getCommonPtr()->BaseType;
6220}
6221
6222inline const Type *QualType::getTypePtrOrNull() const {
6223 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6224}
6225
6226inline SplitQualType QualType::split() const {
6227 if (!hasLocalNonFastQualifiers())
6228 return SplitQualType(getTypePtrUnsafe(),
6229 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6230
6231 const ExtQuals *eq = getExtQualsUnsafe();
6232 Qualifiers qs = eq->getQualifiers();
6233 qs.addFastQualifiers(getLocalFastQualifiers());
6234 return SplitQualType(eq->getBaseType(), qs);
6235}
6236
6237inline Qualifiers QualType::getLocalQualifiers() const {
6238 Qualifiers Quals;
6239 if (hasLocalNonFastQualifiers())
6240 Quals = getExtQualsUnsafe()->getQualifiers();
6241 Quals.addFastQualifiers(getLocalFastQualifiers());
6242 return Quals;
6243}
6244
6245inline Qualifiers QualType::getQualifiers() const {
6246 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6247 quals.addFastQualifiers(getLocalFastQualifiers());
6248 return quals;
6249}
6250
6251inline unsigned QualType::getCVRQualifiers() const {
6252 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6253 cvr |= getLocalCVRQualifiers();
6254 return cvr;
6255}
6256
6257inline QualType QualType::getCanonicalType() const {
6258 QualType canon = getCommonPtr()->CanonicalType;
6259 return canon.withFastQualifiers(getLocalFastQualifiers());
6260}
6261
6262inline bool QualType::isCanonical() const {
6263 return getTypePtr()->isCanonicalUnqualified();
6264}
6265
6266inline bool QualType::isCanonicalAsParam() const {
6267 if (!isCanonical()) return false;
6268 if (hasLocalQualifiers()) return false;
6269
6270 const Type *T = getTypePtr();
6271 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6272 return false;
6273
6274 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6275}
6276
6277inline bool QualType::isConstQualified() const {
6278 return isLocalConstQualified() ||
6279 getCommonPtr()->CanonicalType.isLocalConstQualified();
6280}
6281
6282inline bool QualType::isRestrictQualified() const {
6283 return isLocalRestrictQualified() ||
6284 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6285}
6286
6287
6288inline bool QualType::isVolatileQualified() const {
6289 return isLocalVolatileQualified() ||
6290 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6291}
6292
6293inline bool QualType::hasQualifiers() const {
6294 return hasLocalQualifiers() ||
6295 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6296}
6297
6298inline QualType QualType::getUnqualifiedType() const {
6299 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6300 return QualType(getTypePtr(), 0);
6301
6302 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6303}
6304
6305inline SplitQualType QualType::getSplitUnqualifiedType() const {
6306 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6307 return split();
6308
6309 return getSplitUnqualifiedTypeImpl(*this);
6310}
6311
6312inline void QualType::removeLocalConst() {
6313 removeLocalFastQualifiers(Qualifiers::Const);
6314}
6315
6316inline void QualType::removeLocalRestrict() {
6317 removeLocalFastQualifiers(Qualifiers::Restrict);
6318}
6319
6320inline void QualType::removeLocalVolatile() {
6321 removeLocalFastQualifiers(Qualifiers::Volatile);
6322}
6323
6324inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6325 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 6325, __PRETTY_FUNCTION__))
;
6326 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6327 "Fast bits differ from CVR bits!");
6328
6329 // Fast path: we don't need to touch the slow qualifiers.
6330 removeLocalFastQualifiers(Mask);
6331}
6332
6333/// Check if this type has any address space qualifier.
6334inline bool QualType::hasAddressSpace() const {
6335 return getQualifiers().hasAddressSpace();
6336}
6337
6338/// Return the address space of this type.
6339inline LangAS QualType::getAddressSpace() const {
6340 return getQualifiers().getAddressSpace();
6341}
6342
6343/// Return the gc attribute of this type.
6344inline Qualifiers::GC QualType::getObjCGCAttr() const {
6345 return getQualifiers().getObjCGCAttr();
6346}
6347
6348inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6349 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6350 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6351 return false;
6352}
6353
6354inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6355 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6356 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6357 return false;
6358}
6359
6360inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6361 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6362 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6363 return false;
6364}
6365
6366inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6367 if (const auto *PT = t.getAs<PointerType>()) {
6368 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6369 return FT->getExtInfo();
6370 } else if (const auto *FT = t.getAs<FunctionType>())
6371 return FT->getExtInfo();
6372
6373 return FunctionType::ExtInfo();
6374}
6375
6376inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6377 return getFunctionExtInfo(*t);
6378}
6379
6380/// Determine whether this type is more
6381/// qualified than the Other type. For example, "const volatile int"
6382/// is more qualified than "const int", "volatile int", and
6383/// "int". However, it is not more qualified than "const volatile
6384/// int".
6385inline bool QualType::isMoreQualifiedThan(QualType other) const {
6386 Qualifiers MyQuals = getQualifiers();
6387 Qualifiers OtherQuals = other.getQualifiers();
6388 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6389}
6390
6391/// Determine whether this type is at last
6392/// as qualified as the Other type. For example, "const volatile
6393/// int" is at least as qualified as "const int", "volatile int",
6394/// "int", and "const volatile int".
6395inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6396 Qualifiers OtherQuals = other.getQualifiers();
6397
6398 // Ignore __unaligned qualifier if this type is a void.
6399 if (getUnqualifiedType()->isVoidType())
6400 OtherQuals.removeUnaligned();
6401
6402 return getQualifiers().compatiblyIncludes(OtherQuals);
6403}
6404
6405/// If Type is a reference type (e.g., const
6406/// int&), returns the type that the reference refers to ("const
6407/// int"). Otherwise, returns the type itself. This routine is used
6408/// throughout Sema to implement C++ 5p6:
6409///
6410/// If an expression initially has the type "reference to T" (8.3.2,
6411/// 8.5.3), the type is adjusted to "T" prior to any further
6412/// analysis, the expression designates the object or function
6413/// denoted by the reference, and the expression is an lvalue.
6414inline QualType QualType::getNonReferenceType() const {
6415 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6416 return RefType->getPointeeType();
6417 else
6418 return *this;
6419}
6420
6421inline bool QualType::isCForbiddenLValueType() const {
6422 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6423 getTypePtr()->isFunctionType());
6424}
6425
6426/// Tests whether the type is categorized as a fundamental type.
6427///
6428/// \returns True for types specified in C++0x [basic.fundamental].
6429inline bool Type::isFundamentalType() const {
6430 return isVoidType() ||
6431 isNullPtrType() ||
6432 // FIXME: It's really annoying that we don't have an
6433 // 'isArithmeticType()' which agrees with the standard definition.
6434 (isArithmeticType() && !isEnumeralType());
6435}
6436
6437/// Tests whether the type is categorized as a compound type.
6438///
6439/// \returns True for types specified in C++0x [basic.compound].
6440inline bool Type::isCompoundType() const {
6441 // C++0x [basic.compound]p1:
6442 // Compound types can be constructed in the following ways:
6443 // -- arrays of objects of a given type [...];
6444 return isArrayType() ||
6445 // -- functions, which have parameters of given types [...];
6446 isFunctionType() ||
6447 // -- pointers to void or objects or functions [...];
6448 isPointerType() ||
6449 // -- references to objects or functions of a given type. [...]
6450 isReferenceType() ||
6451 // -- classes containing a sequence of objects of various types, [...];
6452 isRecordType() ||
6453 // -- unions, which are classes capable of containing objects of different
6454 // types at different times;
6455 isUnionType() ||
6456 // -- enumerations, which comprise a set of named constant values. [...];
6457 isEnumeralType() ||
6458 // -- pointers to non-static class members, [...].
6459 isMemberPointerType();
6460}
6461
6462inline bool Type::isFunctionType() const {
6463 return isa<FunctionType>(CanonicalType);
6464}
6465
6466inline bool Type::isPointerType() const {
6467 return isa<PointerType>(CanonicalType);
8
Assuming field 'CanonicalType' is not a 'PointerType'
9
Returning zero, which participates in a condition later
6468}
6469
6470inline bool Type::isAnyPointerType() const {
6471 return isPointerType() || isObjCObjectPointerType();
6472}
6473
6474inline bool Type::isBlockPointerType() const {
6475 return isa<BlockPointerType>(CanonicalType);
6476}
6477
6478inline bool Type::isReferenceType() const {
6479 return isa<ReferenceType>(CanonicalType);
6480}
6481
6482inline bool Type::isLValueReferenceType() const {
6483 return isa<LValueReferenceType>(CanonicalType);
6484}
6485
6486inline bool Type::isRValueReferenceType() const {
6487 return isa<RValueReferenceType>(CanonicalType);
6488}
6489
6490inline bool Type::isObjectPointerType() const {
6491 // Note: an "object pointer type" is not the same thing as a pointer to an
6492 // object type; rather, it is a pointer to an object type or a pointer to cv
6493 // void.
6494 if (const auto *T = getAs<PointerType>())
6495 return !T->getPointeeType()->isFunctionType();
6496 else
6497 return false;
6498}
6499
6500inline bool Type::isFunctionPointerType() const {
6501 if (const auto *T = getAs<PointerType>())
6502 return T->getPointeeType()->isFunctionType();
6503 else
6504 return false;
6505}
6506
6507inline bool Type::isFunctionReferenceType() const {
6508 if (const auto *T = getAs<ReferenceType>())
6509 return T->getPointeeType()->isFunctionType();
6510 else
6511 return false;
6512}
6513
6514inline bool Type::isMemberPointerType() const {
6515 return isa<MemberPointerType>(CanonicalType);
6516}
6517
6518inline bool Type::isMemberFunctionPointerType() const {
6519 if (const auto *T = getAs<MemberPointerType>())
6520 return T->isMemberFunctionPointer();
6521 else
6522 return false;
6523}
6524
6525inline bool Type::isMemberDataPointerType() const {
6526 if (const auto *T = getAs<MemberPointerType>())
6527 return T->isMemberDataPointer();
6528 else
6529 return false;
6530}
6531
6532inline bool Type::isArrayType() const {
6533 return isa<ArrayType>(CanonicalType);
6534}
6535
6536inline bool Type::isConstantArrayType() const {
6537 return isa<ConstantArrayType>(CanonicalType);
6538}
6539
6540inline bool Type::isIncompleteArrayType() const {
6541 return isa<IncompleteArrayType>(CanonicalType);
6542}
6543
6544inline bool Type::isVariableArrayType() const {
6545 return isa<VariableArrayType>(CanonicalType);
6546}
6547
6548inline bool Type::isDependentSizedArrayType() const {
6549 return isa<DependentSizedArrayType>(CanonicalType);
6550}
6551
6552inline bool Type::isBuiltinType() const {
6553 return isa<BuiltinType>(CanonicalType);
6554}
6555
6556inline bool Type::isRecordType() const {
6557 return isa<RecordType>(CanonicalType);
6558}
6559
6560inline bool Type::isEnumeralType() const {
6561 return isa<EnumType>(CanonicalType);
6562}
6563
6564inline bool Type::isAnyComplexType() const {
6565 return isa<ComplexType>(CanonicalType);
6566}
6567
6568inline bool Type::isVectorType() const {
6569 return isa<VectorType>(CanonicalType);
6570}
6571
6572inline bool Type::isExtVectorType() const {
6573 return isa<ExtVectorType>(CanonicalType);
6574}
6575
6576inline bool Type::isDependentAddressSpaceType() const {
6577 return isa<DependentAddressSpaceType>(CanonicalType);
6578}
6579
6580inline bool Type::isObjCObjectPointerType() const {
6581 return isa<ObjCObjectPointerType>(CanonicalType);
6582}
6583
6584inline bool Type::isObjCObjectType() const {
6585 return isa<ObjCObjectType>(CanonicalType);
6586}
6587
6588inline bool Type::isObjCObjectOrInterfaceType() const {
6589 return isa<ObjCInterfaceType>(CanonicalType) ||
6590 isa<ObjCObjectType>(CanonicalType);
6591}
6592
6593inline bool Type::isAtomicType() const {
6594 return isa<AtomicType>(CanonicalType);
6595}
6596
6597inline bool Type::isUndeducedAutoType() const {
6598 return isa<AutoType>(CanonicalType);
6599}
6600
6601inline bool Type::isObjCQualifiedIdType() const {
6602 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6603 return OPT->isObjCQualifiedIdType();
6604 return false;
6605}
6606
6607inline bool Type::isObjCQualifiedClassType() const {
6608 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6609 return OPT->isObjCQualifiedClassType();
6610 return false;
6611}
6612
6613inline bool Type::isObjCIdType() const {
6614 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6615 return OPT->isObjCIdType();
6616 return false;
6617}
6618
6619inline bool Type::isObjCClassType() const {
6620 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6621 return OPT->isObjCClassType();
6622 return false;
6623}
6624
6625inline bool Type::isObjCSelType() const {
6626 if (const auto *OPT = getAs<PointerType>())
6627 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6628 return false;
6629}
6630
6631inline bool Type::isObjCBuiltinType() const {
6632 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6633}
6634
6635inline bool Type::isDecltypeType() const {
6636 return isa<DecltypeType>(this);
6637}
6638
6639#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6640 inline bool Type::is##Id##Type() const { \
6641 return isSpecificBuiltinType(BuiltinType::Id); \
6642 }
6643#include "clang/Basic/OpenCLImageTypes.def"
6644
6645inline bool Type::isSamplerT() const {
6646 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6647}
6648
6649inline bool Type::isEventT() const {
6650 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6651}
6652
6653inline bool Type::isClkEventT() const {
6654 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6655}
6656
6657inline bool Type::isQueueT() const {
6658 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6659}
6660
6661inline bool Type::isReserveIDT() const {
6662 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6663}
6664
6665inline bool Type::isImageType() const {
6666#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6667 return
6668#include "clang/Basic/OpenCLImageTypes.def"
6669 false; // end boolean or operation
6670}
6671
6672inline bool Type::isPipeType() const {
6673 return isa<PipeType>(CanonicalType);
13
Assuming field 'CanonicalType' is a 'PipeType'
14
Returning the value 1, which participates in a condition later
6674}
6675
6676#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6677 inline bool Type::is##Id##Type() const { \
6678 return isSpecificBuiltinType(BuiltinType::Id); \
6679 }
6680#include "clang/Basic/OpenCLExtensionTypes.def"
6681
6682inline bool Type::isOCLIntelSubgroupAVCType() const {
6683#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6684 isOCLIntelSubgroupAVC##Id##Type() ||
6685 return
6686#include "clang/Basic/OpenCLExtensionTypes.def"
6687 false; // end of boolean or operation
6688}
6689
6690inline bool Type::isOCLExtOpaqueType() const {
6691#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6692 return
6693#include "clang/Basic/OpenCLExtensionTypes.def"
6694 false; // end of boolean or operation
6695}
6696
6697inline bool Type::isOpenCLSpecificType() const {
6698 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6699 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6700}
6701
6702inline bool Type::isTemplateTypeParmType() const {
6703 return isa<TemplateTypeParmType>(CanonicalType);
6704}
6705
6706inline bool Type::isSpecificBuiltinType(unsigned K) const {
6707 if (const BuiltinType *BT = getAs<BuiltinType>())
6708 if (BT->getKind() == (BuiltinType::Kind) K)
6709 return true;
6710 return false;
6711}
6712
6713inline bool Type::isPlaceholderType() const {
6714 if (const auto *BT = dyn_cast<BuiltinType>(this))
6715 return BT->isPlaceholderType();
6716 return false;
6717}
6718
6719inline const BuiltinType *Type::getAsPlaceholderType() const {
6720 if (const auto *BT = dyn_cast<BuiltinType>(this))
6721 if (BT->isPlaceholderType())
6722 return BT;
6723 return nullptr;
6724}
6725
6726inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6727 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 6727, __PRETTY_FUNCTION__))
;
6728 if (const auto *BT = dyn_cast<BuiltinType>(this))
6729 return (BT->getKind() == (BuiltinType::Kind) K);
6730 return false;
6731}
6732
6733inline bool Type::isNonOverloadPlaceholderType() const {
6734 if (const auto *BT = dyn_cast<BuiltinType>(this))
6735 return BT->isNonOverloadPlaceholderType();
6736 return false;
6737}
6738
6739inline bool Type::isVoidType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() == BuiltinType::Void;
6742 return false;
6743}
6744
6745inline bool Type::isHalfType() const {
6746 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6747 return BT->getKind() == BuiltinType::Half;
6748 // FIXME: Should we allow complex __fp16? Probably not.
6749 return false;
6750}
6751
6752inline bool Type::isFloat16Type() const {
6753 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6754 return BT->getKind() == BuiltinType::Float16;
6755 return false;
6756}
6757
6758inline bool Type::isFloat128Type() const {
6759 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6760 return BT->getKind() == BuiltinType::Float128;
6761 return false;
6762}
6763
6764inline bool Type::isNullPtrType() const {
6765 if (const auto *BT = getAs<BuiltinType>())
6766 return BT->getKind() == BuiltinType::NullPtr;
6767 return false;
6768}
6769
6770bool IsEnumDeclComplete(EnumDecl *);
6771bool IsEnumDeclScoped(EnumDecl *);
6772
6773inline bool Type::isIntegerType() const {
6774 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6775 return BT->getKind() >= BuiltinType::Bool &&
6776 BT->getKind() <= BuiltinType::Int128;
6777 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6778 // Incomplete enum types are not treated as integer types.
6779 // FIXME: In C++, enum types are never integer types.
6780 return IsEnumDeclComplete(ET->getDecl()) &&
6781 !IsEnumDeclScoped(ET->getDecl());
6782 }
6783 return false;
6784}
6785
6786inline bool Type::isFixedPointType() const {
6787 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6788 return BT->getKind() >= BuiltinType::ShortAccum &&
6789 BT->getKind() <= BuiltinType::SatULongFract;
6790 }
6791 return false;
6792}
6793
6794inline bool Type::isFixedPointOrIntegerType() const {
6795 return isFixedPointType() || isIntegerType();
6796}
6797
6798inline bool Type::isSaturatedFixedPointType() const {
6799 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6800 return BT->getKind() >= BuiltinType::SatShortAccum &&
6801 BT->getKind() <= BuiltinType::SatULongFract;
6802 }
6803 return false;
6804}
6805
6806inline bool Type::isUnsaturatedFixedPointType() const {
6807 return isFixedPointType() && !isSaturatedFixedPointType();
6808}
6809
6810inline bool Type::isSignedFixedPointType() const {
6811 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6812 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6813 BT->getKind() <= BuiltinType::LongAccum) ||
6814 (BT->getKind() >= BuiltinType::ShortFract &&
6815 BT->getKind() <= BuiltinType::LongFract) ||
6816 (BT->getKind() >= BuiltinType::SatShortAccum &&
6817 BT->getKind() <= BuiltinType::SatLongAccum) ||
6818 (BT->getKind() >= BuiltinType::SatShortFract &&
6819 BT->getKind() <= BuiltinType::SatLongFract));
6820 }
6821 return false;
6822}
6823
6824inline bool Type::isUnsignedFixedPointType() const {
6825 return isFixedPointType() && !isSignedFixedPointType();
6826}
6827
6828inline bool Type::isScalarType() const {
6829 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6830 return BT->getKind() > BuiltinType::Void &&
6831 BT->getKind() <= BuiltinType::NullPtr;
6832 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6833 // Enums are scalar types, but only if they are defined. Incomplete enums
6834 // are not treated as scalar types.
6835 return IsEnumDeclComplete(ET->getDecl());
6836 return isa<PointerType>(CanonicalType) ||
6837 isa<BlockPointerType>(CanonicalType) ||
6838 isa<MemberPointerType>(CanonicalType) ||
6839 isa<ComplexType>(CanonicalType) ||
6840 isa<ObjCObjectPointerType>(CanonicalType);
6841}
6842
6843inline bool Type::isIntegralOrEnumerationType() const {
6844 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6845 return BT->getKind() >= BuiltinType::Bool &&
6846 BT->getKind() <= BuiltinType::Int128;
6847
6848 // Check for a complete enum type; incomplete enum types are not properly an
6849 // enumeration type in the sense required here.
6850 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6851 return IsEnumDeclComplete(ET->getDecl());
6852
6853 return false;
6854}
6855
6856inline bool Type::isBooleanType() const {
6857 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6858 return BT->getKind() == BuiltinType::Bool;
6859 return false;
6860}
6861
6862inline bool Type::isUndeducedType() const {
6863 auto *DT = getContainedDeducedType();
6864 return DT && !DT->isDeduced();
6865}
6866
6867/// Determines whether this is a type for which one can define
6868/// an overloaded operator.
6869inline bool Type::isOverloadableType() const {
6870 return isDependentType() || isRecordType() || isEnumeralType();
6871}
6872
6873/// Determines whether this type can decay to a pointer type.
6874inline bool Type::canDecayToPointerType() const {
6875 return isFunctionType() || isArrayType();
6876}
6877
6878inline bool Type::hasPointerRepresentation() const {
6879 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6880 isObjCObjectPointerType() || isNullPtrType());
6881}
6882
6883inline bool Type::hasObjCPointerRepresentation() const {
6884 return isObjCObjectPointerType();
6885}
6886
6887inline const Type *Type::getBaseElementTypeUnsafe() const {
6888 const Type *type = this;
6889 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6890 type = arrayType->getElementType().getTypePtr();
6891 return type;
6892}
6893
6894inline const Type *Type::getPointeeOrArrayElementType() const {
6895 const Type *type = this;
6896 if (type->isAnyPointerType())
6897 return type->getPointeeType().getTypePtr();
6898 else if (type->isArrayType())
6899 return type->getBaseElementTypeUnsafe();
6900 return type;
6901}
6902/// Insertion operator for diagnostics. This allows sending address spaces into
6903/// a diagnostic with <<.
6904inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6905 LangAS AS) {
6906 DB.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
6907 DiagnosticsEngine::ArgumentKind::ak_addrspace);
6908 return DB;
6909}
6910
6911/// Insertion operator for partial diagnostics. This allows sending adress
6912/// spaces into a diagnostic with <<.
6913inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6914 LangAS AS) {
6915 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
6916 DiagnosticsEngine::ArgumentKind::ak_addrspace);
6917 return PD;
6918}
6919
6920/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6921/// diagnostic with <<.
6922inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6923 Qualifiers Q) {
6924 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6925 DiagnosticsEngine::ArgumentKind::ak_qual);
6926 return DB;
6927}
6928
6929/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6930/// into a diagnostic with <<.
6931inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6932 Qualifiers Q) {
6933 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6934 DiagnosticsEngine::ArgumentKind::ak_qual);
6935 return PD;
6936}
6937
6938/// Insertion operator for diagnostics. This allows sending QualType's into a
6939/// diagnostic with <<.
6940inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6941 QualType T) {
6942 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6943 DiagnosticsEngine::ak_qualtype);
6944 return DB;
6945}
6946
6947/// Insertion operator for partial diagnostics. This allows sending QualType's
6948/// into a diagnostic with <<.
6949inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6950 QualType T) {
6951 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6952 DiagnosticsEngine::ak_qualtype);
6953 return PD;
6954}
6955
6956// Helper class template that is used by Type::getAs to ensure that one does
6957// not try to look through a qualified type to get to an array type.
6958template <typename T>
6959using TypeIsArrayType =
6960 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6961 std::is_base_of<ArrayType, T>::value>;
6962
6963// Member-template getAs<specific type>'.
6964template <typename T> const T *Type::getAs() const {
6965 static_assert(!TypeIsArrayType<T>::value,
6966 "ArrayType cannot be used with getAs!");
6967
6968 // If this is directly a T type, return it.
6969 if (const auto *Ty = dyn_cast<T>(this))
6970 return Ty;
6971
6972 // If the canonical form of this type isn't the right kind, reject it.
6973 if (!isa<T>(CanonicalType))
6974 return nullptr;
6975
6976 // If this is a typedef for the type, strip the typedef off without
6977 // losing all typedef information.
6978 return cast<T>(getUnqualifiedDesugaredType());
6979}
6980
6981template <typename T> const T *Type::getAsAdjusted() const {
6982 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6983
6984 // If this is directly a T type, return it.
6985 if (const auto *Ty = dyn_cast<T>(this))
6986 return Ty;
6987
6988 // If the canonical form of this type isn't the right kind, reject it.
6989 if (!isa<T>(CanonicalType))
6990 return nullptr;
6991
6992 // Strip off type adjustments that do not modify the underlying nature of the
6993 // type.
6994 const Type *Ty = this;
6995 while (Ty) {
6996 if (const auto *A = dyn_cast<AttributedType>(Ty))
6997 Ty = A->getModifiedType().getTypePtr();
6998 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6999 Ty = E->desugar().getTypePtr();
7000 else if (const auto *P = dyn_cast<ParenType>(Ty))
7001 Ty = P->desugar().getTypePtr();
7002 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7003 Ty = A->desugar().getTypePtr();
7004 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7005 Ty = M->desugar().getTypePtr();
7006 else
7007 break;
7008 }
7009
7010 // Just because the canonical type is correct does not mean we can use cast<>,
7011 // since we may not have stripped off all the sugar down to the base type.
7012 return dyn_cast<T>(Ty);
7013}
7014
7015inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7016 // If this is directly an array type, return it.
7017 if (const auto *arr = dyn_cast<ArrayType>(this))
7018 return arr;
7019
7020 // If the canonical form of this type isn't the right kind, reject it.
7021 if (!isa<ArrayType>(CanonicalType))
7022 return nullptr;
7023
7024 // If this is a typedef for the type, strip the typedef off without
7025 // losing all typedef information.
7026 return cast<ArrayType>(getUnqualifiedDesugaredType());
7027}
7028
7029template <typename T> const T *Type::castAs() const {
7030 static_assert(!TypeIsArrayType<T>::value,
7031 "ArrayType cannot be used with castAs!");
7032
7033 if (const auto *ty = dyn_cast<T>(this)) return ty;
7034 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 7034, __PRETTY_FUNCTION__))
;
7035 return cast<T>(getUnqualifiedDesugaredType());
7036}
7037
7038inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7039 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 7039, __PRETTY_FUNCTION__))
;
7040 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7041 return cast<ArrayType>(getUnqualifiedDesugaredType());
7042}
7043
7044DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7045 QualType CanonicalPtr)
7046 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7047#ifndef NDEBUG
7048 QualType Adjusted = getAdjustedType();
7049 (void)AttributedType::stripOuterNullability(Adjusted);
7050 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/AST/Type.h"
, 7050, __PRETTY_FUNCTION__))
;
7051#endif
7052}
7053
7054QualType DecayedType::getPointeeType() const {
7055 QualType Decayed = getDecayedType();
7056 (void)AttributedType::stripOuterNullability(Decayed);
7057 return cast<PointerType>(Decayed)->getPointeeType();
7058}
7059
7060// Get the decimal string representation of a fixed point type, represented
7061// as a scaled integer.
7062// TODO: At some point, we should change the arguments to instead just accept an
7063// APFixedPoint instead of APSInt and scale.
7064void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7065 unsigned Scale);
7066
7067} // namespace clang
7068
7069#endif // LLVM_CLANG_AST_TYPE_H