Bug Summary

File:build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 5989, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-09-04-125545-48738-1 -x c++ /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/lib/CodeGen/CodeGenModule.cpp
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "ABIInfo.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGHLSLRuntime.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "CGOpenMPRuntime.h"
24#include "CGOpenMPRuntimeGPU.h"
25#include "CodeGenFunction.h"
26#include "CodeGenPGO.h"
27#include "ConstantEmitter.h"
28#include "CoverageMappingGen.h"
29#include "TargetInfo.h"
30#include "clang/AST/ASTContext.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/AST/DeclCXX.h"
33#include "clang/AST/DeclObjC.h"
34#include "clang/AST/DeclTemplate.h"
35#include "clang/AST/Mangle.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/AST/StmtVisitor.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/CharInfo.h"
40#include "clang/Basic/CodeGenOptions.h"
41#include "clang/Basic/Diagnostic.h"
42#include "clang/Basic/FileManager.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/SourceManager.h"
45#include "clang/Basic/TargetInfo.h"
46#include "clang/Basic/Version.h"
47#include "clang/CodeGen/BackendUtil.h"
48#include "clang/CodeGen/ConstantInitBuilder.h"
49#include "clang/Frontend/FrontendDiagnostic.h"
50#include "llvm/ADT/STLExtras.h"
51#include "llvm/ADT/StringExtras.h"
52#include "llvm/ADT/StringSwitch.h"
53#include "llvm/ADT/Triple.h"
54#include "llvm/Analysis/TargetLibraryInfo.h"
55#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/DataLayout.h"
58#include "llvm/IR/Intrinsics.h"
59#include "llvm/IR/LLVMContext.h"
60#include "llvm/IR/Module.h"
61#include "llvm/IR/ProfileSummary.h"
62#include "llvm/ProfileData/InstrProfReader.h"
63#include "llvm/ProfileData/SampleProf.h"
64#include "llvm/Support/CRC.h"
65#include "llvm/Support/CodeGen.h"
66#include "llvm/Support/CommandLine.h"
67#include "llvm/Support/ConvertUTF.h"
68#include "llvm/Support/ErrorHandling.h"
69#include "llvm/Support/TimeProfiler.h"
70#include "llvm/Support/X86TargetParser.h"
71#include "llvm/Support/xxhash.h"
72
73using namespace clang;
74using namespace CodeGen;
75
76static llvm::cl::opt<bool> LimitedCoverage(
77 "limited-coverage-experimental", llvm::cl::Hidden,
78 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79
80static const char AnnotationSection[] = "llvm.metadata";
81
82static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83 switch (CGM.getContext().getCXXABIKind()) {
84 case TargetCXXABI::AppleARM64:
85 case TargetCXXABI::Fuchsia:
86 case TargetCXXABI::GenericAArch64:
87 case TargetCXXABI::GenericARM:
88 case TargetCXXABI::iOS:
89 case TargetCXXABI::WatchOS:
90 case TargetCXXABI::GenericMIPS:
91 case TargetCXXABI::GenericItanium:
92 case TargetCXXABI::WebAssembly:
93 case TargetCXXABI::XL:
94 return CreateItaniumCXXABI(CGM);
95 case TargetCXXABI::Microsoft:
96 return CreateMicrosoftCXXABI(CGM);
97 }
98
99 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "clang/lib/CodeGen/CodeGenModule.cpp"
, 99)
;
100}
101
102CodeGenModule::CodeGenModule(ASTContext &C,
103 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104 const HeaderSearchOptions &HSO,
105 const PreprocessorOptions &PPO,
106 const CodeGenOptions &CGO, llvm::Module &M,
107 DiagnosticsEngine &diags,
108 CoverageSourceInfo *CoverageInfo)
109 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111 TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114
115 // Initialize the type cache.
116 llvm::LLVMContext &LLVMContext = M.getContext();
117 VoidTy = llvm::Type::getVoidTy(LLVMContext);
118 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122 HalfTy = llvm::Type::getHalfTy(LLVMContext);
123 BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124 FloatTy = llvm::Type::getFloatTy(LLVMContext);
125 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127 PointerAlignInBytes =
128 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129 SizeSizeInBytes =
130 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131 IntAlignInBytes =
132 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133 CharTy =
134 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136 IntPtrTy = llvm::IntegerType::get(LLVMContext,
137 C.getTargetInfo().getMaxPointerWidth());
138 Int8PtrTy = Int8Ty->getPointerTo(0);
139 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140 const llvm::DataLayout &DL = M.getDataLayout();
141 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144
145 // Build C++20 Module initializers.
146 // TODO: Add Microsoft here once we know the mangling required for the
147 // initializers.
148 CXX20ModuleInits =
149 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150 ItaniumMangleContext::MK_Itanium;
151
152 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153
154 if (LangOpts.ObjC)
155 createObjCRuntime();
156 if (LangOpts.OpenCL)
157 createOpenCLRuntime();
158 if (LangOpts.OpenMP)
159 createOpenMPRuntime();
160 if (LangOpts.CUDA)
161 createCUDARuntime();
162 if (LangOpts.HLSL)
163 createHLSLRuntime();
164
165 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169 getCXXABI().getMangleContext()));
170
171 // If debug info or coverage generation is enabled, create the CGDebugInfo
172 // object.
173 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175 DebugInfo.reset(new CGDebugInfo(*this));
176
177 Block.GlobalUniqueCount = 0;
178
179 if (C.getLangOpts().ObjC)
180 ObjCData.reset(new ObjCEntrypoints());
181
182 if (CodeGenOpts.hasProfileClangUse()) {
183 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185 if (auto E = ReaderOrErr.takeError()) {
186 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
187 "Could not read profile %0: %1");
188 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
189 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
190 << EI.message();
191 });
192 } else
193 PGOReader = std::move(ReaderOrErr.get());
194 }
195
196 // If coverage mapping generation is enabled, create the
197 // CoverageMappingModuleGen object.
198 if (CodeGenOpts.CoverageMapping)
199 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
200
201 // Generate the module name hash here if needed.
202 if (CodeGenOpts.UniqueInternalLinkageNames &&
203 !getModule().getSourceFileName().empty()) {
204 std::string Path = getModule().getSourceFileName();
205 // Check if a path substitution is needed from the MacroPrefixMap.
206 for (const auto &Entry : LangOpts.MacroPrefixMap)
207 if (Path.rfind(Entry.first, 0) != std::string::npos) {
208 Path = Entry.second + Path.substr(Entry.first.size());
209 break;
210 }
211 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
212 }
213}
214
215CodeGenModule::~CodeGenModule() {}
216
217void CodeGenModule::createObjCRuntime() {
218 // This is just isGNUFamily(), but we want to force implementors of
219 // new ABIs to decide how best to do this.
220 switch (LangOpts.ObjCRuntime.getKind()) {
221 case ObjCRuntime::GNUstep:
222 case ObjCRuntime::GCC:
223 case ObjCRuntime::ObjFW:
224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225 return;
226
227 case ObjCRuntime::FragileMacOSX:
228 case ObjCRuntime::MacOSX:
229 case ObjCRuntime::iOS:
230 case ObjCRuntime::WatchOS:
231 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232 return;
233 }
234 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "clang/lib/CodeGen/CodeGenModule.cpp"
, 234)
;
235}
236
237void CodeGenModule::createOpenCLRuntime() {
238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239}
240
241void CodeGenModule::createOpenMPRuntime() {
242 // Select a specialized code generation class based on the target, if any.
243 // If it does not exist use the default implementation.
244 switch (getTriple().getArch()) {
245 case llvm::Triple::nvptx:
246 case llvm::Triple::nvptx64:
247 case llvm::Triple::amdgcn:
248 assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP AMDGPU/NVPTX is only prepared to deal with device code."
) ? void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP AMDGPU/NVPTX is only prepared to deal with device code.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 249, __extension__ __PRETTY_FUNCTION__
))
249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP AMDGPU/NVPTX is only prepared to deal with device code."
) ? void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP AMDGPU/NVPTX is only prepared to deal with device code.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 249, __extension__ __PRETTY_FUNCTION__
))
;
250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
251 break;
252 default:
253 if (LangOpts.OpenMPSimd)
254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
255 else
256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
257 break;
258 }
259}
260
261void CodeGenModule::createCUDARuntime() {
262 CUDARuntime.reset(CreateNVCUDARuntime(*this));
263}
264
265void CodeGenModule::createHLSLRuntime() {
266 HLSLRuntime.reset(new CGHLSLRuntime(*this));
267}
268
269void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
270 Replacements[Name] = C;
271}
272
273void CodeGenModule::applyReplacements() {
274 for (auto &I : Replacements) {
275 StringRef MangledName = I.first();
276 llvm::Constant *Replacement = I.second;
277 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
278 if (!Entry)
279 continue;
280 auto *OldF = cast<llvm::Function>(Entry);
281 auto *NewF = dyn_cast<llvm::Function>(Replacement);
282 if (!NewF) {
283 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
284 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
285 } else {
286 auto *CE = cast<llvm::ConstantExpr>(Replacement);
287 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "clang/lib/CodeGen/CodeGenModule.cpp", 288, __extension__ __PRETTY_FUNCTION__
))
288 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "clang/lib/CodeGen/CodeGenModule.cpp", 288, __extension__ __PRETTY_FUNCTION__
))
;
289 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
290 }
291 }
292
293 // Replace old with new, but keep the old order.
294 OldF->replaceAllUsesWith(Replacement);
295 if (NewF) {
296 NewF->removeFromParent();
297 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
298 NewF);
299 }
300 OldF->eraseFromParent();
301 }
302}
303
304void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
305 GlobalValReplacements.push_back(std::make_pair(GV, C));
306}
307
308void CodeGenModule::applyGlobalValReplacements() {
309 for (auto &I : GlobalValReplacements) {
310 llvm::GlobalValue *GV = I.first;
311 llvm::Constant *C = I.second;
312
313 GV->replaceAllUsesWith(C);
314 GV->eraseFromParent();
315 }
316}
317
318// This is only used in aliases that we created and we know they have a
319// linear structure.
320static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
321 const llvm::Constant *C;
322 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
323 C = GA->getAliasee();
324 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
325 C = GI->getResolver();
326 else
327 return GV;
328
329 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
330 if (!AliaseeGV)
331 return nullptr;
332
333 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
334 if (FinalGV == GV)
335 return nullptr;
336
337 return FinalGV;
338}
339
340static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
341 SourceLocation Location, bool IsIFunc,
342 const llvm::GlobalValue *Alias,
343 const llvm::GlobalValue *&GV) {
344 GV = getAliasedGlobal(Alias);
345 if (!GV) {
346 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
347 return false;
348 }
349
350 if (GV->isDeclaration()) {
351 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
352 return false;
353 }
354
355 if (IsIFunc) {
356 // Check resolver function type.
357 const auto *F = dyn_cast<llvm::Function>(GV);
358 if (!F) {
359 Diags.Report(Location, diag::err_alias_to_undefined)
360 << IsIFunc << IsIFunc;
361 return false;
362 }
363
364 llvm::FunctionType *FTy = F->getFunctionType();
365 if (!FTy->getReturnType()->isPointerTy()) {
366 Diags.Report(Location, diag::err_ifunc_resolver_return);
367 return false;
368 }
369 }
370
371 return true;
372}
373
374void CodeGenModule::checkAliases() {
375 // Check if the constructed aliases are well formed. It is really unfortunate
376 // that we have to do this in CodeGen, but we only construct mangled names
377 // and aliases during codegen.
378 bool Error = false;
379 DiagnosticsEngine &Diags = getDiags();
380 for (const GlobalDecl &GD : Aliases) {
381 const auto *D = cast<ValueDecl>(GD.getDecl());
382 SourceLocation Location;
383 bool IsIFunc = D->hasAttr<IFuncAttr>();
384 if (const Attr *A = D->getDefiningAttr())
385 Location = A->getLocation();
386 else
387 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "clang/lib/CodeGen/CodeGenModule.cpp"
, 387)
;
388
389 StringRef MangledName = getMangledName(GD);
390 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
391 const llvm::GlobalValue *GV = nullptr;
392 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
393 Error = true;
394 continue;
395 }
396
397 llvm::Constant *Aliasee =
398 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
399 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
400
401 llvm::GlobalValue *AliaseeGV;
402 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
403 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
404 else
405 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
406
407 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
408 StringRef AliasSection = SA->getName();
409 if (AliasSection != AliaseeGV->getSection())
410 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
411 << AliasSection << IsIFunc << IsIFunc;
412 }
413
414 // We have to handle alias to weak aliases in here. LLVM itself disallows
415 // this since the object semantics would not match the IL one. For
416 // compatibility with gcc we implement it by just pointing the alias
417 // to its aliasee's aliasee. We also warn, since the user is probably
418 // expecting the link to be weak.
419 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
420 if (GA->isInterposable()) {
421 Diags.Report(Location, diag::warn_alias_to_weak_alias)
422 << GV->getName() << GA->getName() << IsIFunc;
423 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
424 GA->getAliasee(), Alias->getType());
425
426 if (IsIFunc)
427 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
428 else
429 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
430 }
431 }
432 }
433 if (!Error)
434 return;
435
436 for (const GlobalDecl &GD : Aliases) {
437 StringRef MangledName = getMangledName(GD);
438 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
439 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
440 Alias->eraseFromParent();
441 }
442}
443
444void CodeGenModule::clear() {
445 DeferredDeclsToEmit.clear();
446 EmittedDeferredDecls.clear();
447 if (OpenMPRuntime)
448 OpenMPRuntime->clear();
449}
450
451void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
452 StringRef MainFile) {
453 if (!hasDiagnostics())
454 return;
455 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
456 if (MainFile.empty())
457 MainFile = "<stdin>";
458 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
459 } else {
460 if (Mismatched > 0)
461 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
462
463 if (Missing > 0)
464 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
465 }
466}
467
468static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
469 llvm::Module &M) {
470 if (!LO.VisibilityFromDLLStorageClass)
471 return;
472
473 llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
474 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
475 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
476 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
477 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
478 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
479 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
480 CodeGenModule::GetLLVMVisibility(
481 LO.getExternDeclNoDLLStorageClassVisibility());
482
483 for (llvm::GlobalValue &GV : M.global_values()) {
484 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
485 continue;
486
487 // Reset DSO locality before setting the visibility. This removes
488 // any effects that visibility options and annotations may have
489 // had on the DSO locality. Setting the visibility will implicitly set
490 // appropriate globals to DSO Local; however, this will be pessimistic
491 // w.r.t. to the normal compiler IRGen.
492 GV.setDSOLocal(false);
493
494 if (GV.isDeclarationForLinker()) {
495 GV.setVisibility(GV.getDLLStorageClass() ==
496 llvm::GlobalValue::DLLImportStorageClass
497 ? ExternDeclDLLImportVisibility
498 : ExternDeclNoDLLStorageClassVisibility);
499 } else {
500 GV.setVisibility(GV.getDLLStorageClass() ==
501 llvm::GlobalValue::DLLExportStorageClass
502 ? DLLExportVisibility
503 : NoDLLStorageClassVisibility);
504 }
505
506 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
507 }
508}
509
510void CodeGenModule::Release() {
511 Module *Primary = getContext().getModuleForCodeGen();
512 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
513 EmitModuleInitializers(Primary);
514 EmitDeferred();
515 DeferredDecls.insert(EmittedDeferredDecls.begin(),
516 EmittedDeferredDecls.end());
517 EmittedDeferredDecls.clear();
518 EmitVTablesOpportunistically();
519 applyGlobalValReplacements();
520 applyReplacements();
521 emitMultiVersionFunctions();
522 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
523 EmitCXXModuleInitFunc(Primary);
524 else
525 EmitCXXGlobalInitFunc();
526 EmitCXXGlobalCleanUpFunc();
527 registerGlobalDtorsWithAtExit();
528 EmitCXXThreadLocalInitFunc();
529 if (ObjCRuntime)
530 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
531 AddGlobalCtor(ObjCInitFunction);
532 if (Context.getLangOpts().CUDA && CUDARuntime) {
533 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
534 AddGlobalCtor(CudaCtorFunction);
535 }
536 if (OpenMPRuntime) {
537 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
538 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
539 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
540 }
541 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
542 OpenMPRuntime->clear();
543 }
544 if (PGOReader) {
545 getModule().setProfileSummary(
546 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
547 llvm::ProfileSummary::PSK_Instr);
548 if (PGOStats.hasDiagnostics())
549 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
550 }
551 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
552 return L.LexOrder < R.LexOrder;
553 });
554 EmitCtorList(GlobalCtors, "llvm.global_ctors");
555 EmitCtorList(GlobalDtors, "llvm.global_dtors");
556 EmitGlobalAnnotations();
557 EmitStaticExternCAliases();
558 checkAliases();
559 EmitDeferredUnusedCoverageMappings();
560 CodeGenPGO(*this).setValueProfilingFlag(getModule());
561 if (CoverageMapping)
562 CoverageMapping->emit();
563 if (CodeGenOpts.SanitizeCfiCrossDso) {
564 CodeGenFunction(*this).EmitCfiCheckFail();
565 CodeGenFunction(*this).EmitCfiCheckStub();
566 }
567 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
568 finalizeKCFITypes();
569 emitAtAvailableLinkGuard();
570 if (Context.getTargetInfo().getTriple().isWasm())
571 EmitMainVoidAlias();
572
573 if (getTriple().isAMDGPU()) {
574 // Emit reference of __amdgpu_device_library_preserve_asan_functions to
575 // preserve ASAN functions in bitcode libraries.
576 if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
577 auto *FT = llvm::FunctionType::get(VoidTy, {});
578 auto *F = llvm::Function::Create(
579 FT, llvm::GlobalValue::ExternalLinkage,
580 "__amdgpu_device_library_preserve_asan_functions", &getModule());
581 auto *Var = new llvm::GlobalVariable(
582 getModule(), FT->getPointerTo(),
583 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
584 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
585 llvm::GlobalVariable::NotThreadLocal);
586 addCompilerUsedGlobal(Var);
587 }
588 // Emit amdgpu_code_object_version module flag, which is code object version
589 // times 100.
590 // ToDo: Enable module flag for all code object version when ROCm device
591 // library is ready.
592 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
593 getModule().addModuleFlag(llvm::Module::Error,
594 "amdgpu_code_object_version",
595 getTarget().getTargetOpts().CodeObjectVersion);
596 }
597 }
598
599 // Emit a global array containing all external kernels or device variables
600 // used by host functions and mark it as used for CUDA/HIP. This is necessary
601 // to get kernels or device variables in archives linked in even if these
602 // kernels or device variables are only used in host functions.
603 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
604 SmallVector<llvm::Constant *, 8> UsedArray;
605 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
606 GlobalDecl GD;
607 if (auto *FD = dyn_cast<FunctionDecl>(D))
608 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
609 else
610 GD = GlobalDecl(D);
611 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
612 GetAddrOfGlobal(GD), Int8PtrTy));
613 }
614
615 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
616
617 auto *GV = new llvm::GlobalVariable(
618 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
619 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
620 addCompilerUsedGlobal(GV);
621 }
622
623 emitLLVMUsed();
624 if (SanStats)
625 SanStats->finish();
626
627 if (CodeGenOpts.Autolink &&
628 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
629 EmitModuleLinkOptions();
630 }
631
632 // On ELF we pass the dependent library specifiers directly to the linker
633 // without manipulating them. This is in contrast to other platforms where
634 // they are mapped to a specific linker option by the compiler. This
635 // difference is a result of the greater variety of ELF linkers and the fact
636 // that ELF linkers tend to handle libraries in a more complicated fashion
637 // than on other platforms. This forces us to defer handling the dependent
638 // libs to the linker.
639 //
640 // CUDA/HIP device and host libraries are different. Currently there is no
641 // way to differentiate dependent libraries for host or device. Existing
642 // usage of #pragma comment(lib, *) is intended for host libraries on
643 // Windows. Therefore emit llvm.dependent-libraries only for host.
644 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
645 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
646 for (auto *MD : ELFDependentLibraries)
647 NMD->addOperand(MD);
648 }
649
650 // Record mregparm value now so it is visible through rest of codegen.
651 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
652 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
653 CodeGenOpts.NumRegisterParameters);
654
655 if (CodeGenOpts.DwarfVersion) {
656 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
657 CodeGenOpts.DwarfVersion);
658 }
659
660 if (CodeGenOpts.Dwarf64)
661 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
662
663 if (Context.getLangOpts().SemanticInterposition)
664 // Require various optimization to respect semantic interposition.
665 getModule().setSemanticInterposition(true);
666
667 if (CodeGenOpts.EmitCodeView) {
668 // Indicate that we want CodeView in the metadata.
669 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
670 }
671 if (CodeGenOpts.CodeViewGHash) {
672 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
673 }
674 if (CodeGenOpts.ControlFlowGuard) {
675 // Function ID tables and checks for Control Flow Guard (cfguard=2).
676 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
677 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
678 // Function ID tables for Control Flow Guard (cfguard=1).
679 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
680 }
681 if (CodeGenOpts.EHContGuard) {
682 // Function ID tables for EH Continuation Guard.
683 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
684 }
685 if (Context.getLangOpts().Kernel) {
686 // Note if we are compiling with /kernel.
687 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
688 }
689 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
690 // We don't support LTO with 2 with different StrictVTablePointers
691 // FIXME: we could support it by stripping all the information introduced
692 // by StrictVTablePointers.
693
694 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
695
696 llvm::Metadata *Ops[2] = {
697 llvm::MDString::get(VMContext, "StrictVTablePointers"),
698 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
699 llvm::Type::getInt32Ty(VMContext), 1))};
700
701 getModule().addModuleFlag(llvm::Module::Require,
702 "StrictVTablePointersRequirement",
703 llvm::MDNode::get(VMContext, Ops));
704 }
705 if (getModuleDebugInfo())
706 // We support a single version in the linked module. The LLVM
707 // parser will drop debug info with a different version number
708 // (and warn about it, too).
709 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
710 llvm::DEBUG_METADATA_VERSION);
711
712 // We need to record the widths of enums and wchar_t, so that we can generate
713 // the correct build attributes in the ARM backend. wchar_size is also used by
714 // TargetLibraryInfo.
715 uint64_t WCharWidth =
716 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
717 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
718
719 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
720 if ( Arch == llvm::Triple::arm
721 || Arch == llvm::Triple::armeb
722 || Arch == llvm::Triple::thumb
723 || Arch == llvm::Triple::thumbeb) {
724 // The minimum width of an enum in bytes
725 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
726 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
727 }
728
729 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
730 StringRef ABIStr = Target.getABI();
731 llvm::LLVMContext &Ctx = TheModule.getContext();
732 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
733 llvm::MDString::get(Ctx, ABIStr));
734 }
735
736 if (CodeGenOpts.SanitizeCfiCrossDso) {
737 // Indicate that we want cross-DSO control flow integrity checks.
738 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
739 }
740
741 if (CodeGenOpts.WholeProgramVTables) {
742 // Indicate whether VFE was enabled for this module, so that the
743 // vcall_visibility metadata added under whole program vtables is handled
744 // appropriately in the optimizer.
745 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
746 CodeGenOpts.VirtualFunctionElimination);
747 }
748
749 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
750 getModule().addModuleFlag(llvm::Module::Override,
751 "CFI Canonical Jump Tables",
752 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
753 }
754
755 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
756 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
757
758 if (CodeGenOpts.CFProtectionReturn &&
759 Target.checkCFProtectionReturnSupported(getDiags())) {
760 // Indicate that we want to instrument return control flow protection.
761 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762 1);
763 }
764
765 if (CodeGenOpts.CFProtectionBranch &&
766 Target.checkCFProtectionBranchSupported(getDiags())) {
767 // Indicate that we want to instrument branch control flow protection.
768 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769 1);
770 }
771
772 if (CodeGenOpts.IBTSeal)
773 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774
775 if (CodeGenOpts.FunctionReturnThunks)
776 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777
778 if (CodeGenOpts.IndirectBranchCSPrefix)
779 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
780
781 // Add module metadata for return address signing (ignoring
782 // non-leaf/all) and stack tagging. These are actually turned on by function
783 // attributes, but we use module metadata to emit build attributes. This is
784 // needed for LTO, where the function attributes are inside bitcode
785 // serialised into a global variable by the time build attributes are
786 // emitted, so we can't access them. LTO objects could be compiled with
787 // different flags therefore module flags are set to "Min" behavior to achieve
788 // the same end result of the normal build where e.g BTI is off if any object
789 // doesn't support it.
790 if (Context.getTargetInfo().hasFeature("ptrauth") &&
791 LangOpts.getSignReturnAddressScope() !=
792 LangOptions::SignReturnAddressScopeKind::None)
793 getModule().addModuleFlag(llvm::Module::Override,
794 "sign-return-address-buildattr", 1);
795 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
796 getModule().addModuleFlag(llvm::Module::Override,
797 "tag-stack-memory-buildattr", 1);
798
799 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
800 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
801 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
802 Arch == llvm::Triple::aarch64_be) {
803 if (LangOpts.BranchTargetEnforcement)
804 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
805 1);
806 if (LangOpts.hasSignReturnAddress())
807 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
808 if (LangOpts.isSignReturnAddressScopeAll())
809 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
810 1);
811 if (!LangOpts.isSignReturnAddressWithAKey())
812 getModule().addModuleFlag(llvm::Module::Min,
813 "sign-return-address-with-bkey", 1);
814 }
815
816 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
817 llvm::LLVMContext &Ctx = TheModule.getContext();
818 getModule().addModuleFlag(
819 llvm::Module::Error, "MemProfProfileFilename",
820 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
821 }
822
823 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
824 // Indicate whether __nvvm_reflect should be configured to flush denormal
825 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
826 // property.)
827 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
828 CodeGenOpts.FP32DenormalMode.Output !=
829 llvm::DenormalMode::IEEE);
830 }
831
832 if (LangOpts.EHAsynch)
833 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
834
835 // Indicate whether this Module was compiled with -fopenmp
836 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
837 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
838 if (getLangOpts().OpenMPIsDevice)
839 getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
840 LangOpts.OpenMP);
841
842 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
843 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
844 EmitOpenCLMetadata();
845 // Emit SPIR version.
846 if (getTriple().isSPIR()) {
847 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
848 // opencl.spir.version named metadata.
849 // C++ for OpenCL has a distinct mapping for version compatibility with
850 // OpenCL.
851 auto Version = LangOpts.getOpenCLCompatibleVersion();
852 llvm::Metadata *SPIRVerElts[] = {
853 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
854 Int32Ty, Version / 100)),
855 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
856 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
857 llvm::NamedMDNode *SPIRVerMD =
858 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
859 llvm::LLVMContext &Ctx = TheModule.getContext();
860 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
861 }
862 }
863
864 // HLSL related end of code gen work items.
865 if (LangOpts.HLSL)
866 getHLSLRuntime().finishCodeGen();
867
868 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
869 assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level"
) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 869, __extension__ __PRETTY_FUNCTION__
))
;
870 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
871 if (Context.getLangOpts().PIE)
872 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
873 }
874
875 if (getCodeGenOpts().CodeModel.size() > 0) {
876 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
877 .Case("tiny", llvm::CodeModel::Tiny)
878 .Case("small", llvm::CodeModel::Small)
879 .Case("kernel", llvm::CodeModel::Kernel)
880 .Case("medium", llvm::CodeModel::Medium)
881 .Case("large", llvm::CodeModel::Large)
882 .Default(~0u);
883 if (CM != ~0u) {
884 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
885 getModule().setCodeModel(codeModel);
886 }
887 }
888
889 if (CodeGenOpts.NoPLT)
890 getModule().setRtLibUseGOT();
891 if (CodeGenOpts.UnwindTables)
892 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
893
894 switch (CodeGenOpts.getFramePointer()) {
895 case CodeGenOptions::FramePointerKind::None:
896 // 0 ("none") is the default.
897 break;
898 case CodeGenOptions::FramePointerKind::NonLeaf:
899 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
900 break;
901 case CodeGenOptions::FramePointerKind::All:
902 getModule().setFramePointer(llvm::FramePointerKind::All);
903 break;
904 }
905
906 SimplifyPersonality();
907
908 if (getCodeGenOpts().EmitDeclMetadata)
909 EmitDeclMetadata();
910
911 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
912 EmitCoverageFile();
913
914 if (CGDebugInfo *DI = getModuleDebugInfo())
915 DI->finalize();
916
917 if (getCodeGenOpts().EmitVersionIdentMetadata)
918 EmitVersionIdentMetadata();
919
920 if (!getCodeGenOpts().RecordCommandLine.empty())
921 EmitCommandLineMetadata();
922
923 if (!getCodeGenOpts().StackProtectorGuard.empty())
924 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
925 if (!getCodeGenOpts().StackProtectorGuardReg.empty())
926 getModule().setStackProtectorGuardReg(
927 getCodeGenOpts().StackProtectorGuardReg);
928 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
929 getModule().setStackProtectorGuardSymbol(
930 getCodeGenOpts().StackProtectorGuardSymbol);
931 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX2147483647)
932 getModule().setStackProtectorGuardOffset(
933 getCodeGenOpts().StackProtectorGuardOffset);
934 if (getCodeGenOpts().StackAlignment)
935 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
936 if (getCodeGenOpts().SkipRaxSetup)
937 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
938
939 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
940
941 EmitBackendOptionsMetadata(getCodeGenOpts());
942
943 // If there is device offloading code embed it in the host now.
944 EmbedObject(&getModule(), CodeGenOpts, getDiags());
945
946 // Set visibility from DLL storage class
947 // We do this at the end of LLVM IR generation; after any operation
948 // that might affect the DLL storage class or the visibility, and
949 // before anything that might act on these.
950 setVisibilityFromDLLStorageClass(LangOpts, getModule());
951}
952
953void CodeGenModule::EmitOpenCLMetadata() {
954 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
955 // opencl.ocl.version named metadata node.
956 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
957 auto Version = LangOpts.getOpenCLCompatibleVersion();
958 llvm::Metadata *OCLVerElts[] = {
959 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
960 Int32Ty, Version / 100)),
961 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
962 Int32Ty, (Version % 100) / 10))};
963 llvm::NamedMDNode *OCLVerMD =
964 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
965 llvm::LLVMContext &Ctx = TheModule.getContext();
966 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
967}
968
969void CodeGenModule::EmitBackendOptionsMetadata(
970 const CodeGenOptions CodeGenOpts) {
971 if (getTriple().isRISCV()) {
972 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
973 CodeGenOpts.SmallDataLimit);
974 }
975}
976
977void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
978 // Make sure that this type is translated.
979 Types.UpdateCompletedType(TD);
980}
981
982void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
983 // Make sure that this type is translated.
984 Types.RefreshTypeCacheForClass(RD);
985}
986
987llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
988 if (!TBAA)
989 return nullptr;
990 return TBAA->getTypeInfo(QTy);
991}
992
993TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
994 if (!TBAA)
995 return TBAAAccessInfo();
996 if (getLangOpts().CUDAIsDevice) {
997 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
998 // access info.
999 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1000 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1001 nullptr)
1002 return TBAAAccessInfo();
1003 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1004 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1005 nullptr)
1006 return TBAAAccessInfo();
1007 }
1008 }
1009 return TBAA->getAccessInfo(AccessType);
1010}
1011
1012TBAAAccessInfo
1013CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1014 if (!TBAA)
1015 return TBAAAccessInfo();
1016 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1017}
1018
1019llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1020 if (!TBAA)
1021 return nullptr;
1022 return TBAA->getTBAAStructInfo(QTy);
1023}
1024
1025llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1026 if (!TBAA)
1027 return nullptr;
1028 return TBAA->getBaseTypeInfo(QTy);
1029}
1030
1031llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1032 if (!TBAA)
1033 return nullptr;
1034 return TBAA->getAccessTagInfo(Info);
1035}
1036
1037TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1038 TBAAAccessInfo TargetInfo) {
1039 if (!TBAA)
1040 return TBAAAccessInfo();
1041 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1042}
1043
1044TBAAAccessInfo
1045CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1046 TBAAAccessInfo InfoB) {
1047 if (!TBAA)
1048 return TBAAAccessInfo();
1049 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1050}
1051
1052TBAAAccessInfo
1053CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1054 TBAAAccessInfo SrcInfo) {
1055 if (!TBAA)
1056 return TBAAAccessInfo();
1057 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1058}
1059
1060void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1061 TBAAAccessInfo TBAAInfo) {
1062 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1063 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1064}
1065
1066void CodeGenModule::DecorateInstructionWithInvariantGroup(
1067 llvm::Instruction *I, const CXXRecordDecl *RD) {
1068 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1069 llvm::MDNode::get(getLLVMContext(), {}));
1070}
1071
1072void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1073 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1074 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1075}
1076
1077/// ErrorUnsupported - Print out an error that codegen doesn't support the
1078/// specified stmt yet.
1079void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1080 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1081 "cannot compile this %0 yet");
1082 std::string Msg = Type;
1083 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1084 << Msg << S->getSourceRange();
1085}
1086
1087/// ErrorUnsupported - Print out an error that codegen doesn't support the
1088/// specified decl yet.
1089void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1090 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1091 "cannot compile this %0 yet");
1092 std::string Msg = Type;
1093 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1094}
1095
1096llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1097 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1098}
1099
1100void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1101 const NamedDecl *D) const {
1102 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass())
1103 return;
1104 // Internal definitions always have default visibility.
1105 if (GV->hasLocalLinkage()) {
1106 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1107 return;
1108 }
1109 if (!D)
1110 return;
1111 // Set visibility for definitions, and for declarations if requested globally
1112 // or set explicitly.
1113 LinkageInfo LV = D->getLinkageAndVisibility();
1114 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1115 !GV->isDeclarationForLinker())
1116 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1117}
1118
1119static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1120 llvm::GlobalValue *GV) {
1121 if (GV->hasLocalLinkage())
1122 return true;
1123
1124 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1125 return true;
1126
1127 // DLLImport explicitly marks the GV as external.
1128 if (GV->hasDLLImportStorageClass())
1129 return false;
1130
1131 const llvm::Triple &TT = CGM.getTriple();
1132 if (TT.isWindowsGNUEnvironment()) {
1133 // In MinGW, variables without DLLImport can still be automatically
1134 // imported from a DLL by the linker; don't mark variables that
1135 // potentially could come from another DLL as DSO local.
1136
1137 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1138 // (and this actually happens in the public interface of libstdc++), so
1139 // such variables can't be marked as DSO local. (Native TLS variables
1140 // can't be dllimported at all, though.)
1141 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1142 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1143 return false;
1144 }
1145
1146 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1147 // remain unresolved in the link, they can be resolved to zero, which is
1148 // outside the current DSO.
1149 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1150 return false;
1151
1152 // Every other GV is local on COFF.
1153 // Make an exception for windows OS in the triple: Some firmware builds use
1154 // *-win32-macho triples. This (accidentally?) produced windows relocations
1155 // without GOT tables in older clang versions; Keep this behaviour.
1156 // FIXME: even thread local variables?
1157 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1158 return true;
1159
1160 // Only handle COFF and ELF for now.
1161 if (!TT.isOSBinFormatELF())
1162 return false;
1163
1164 // If this is not an executable, don't assume anything is local.
1165 const auto &CGOpts = CGM.getCodeGenOpts();
1166 llvm::Reloc::Model RM = CGOpts.RelocationModel;
1167 const auto &LOpts = CGM.getLangOpts();
1168 if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1169 // On ELF, if -fno-semantic-interposition is specified and the target
1170 // supports local aliases, there will be neither CC1
1171 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1172 // dso_local on the function if using a local alias is preferable (can avoid
1173 // PLT indirection).
1174 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1175 return false;
1176 return !(CGM.getLangOpts().SemanticInterposition ||
1177 CGM.getLangOpts().HalfNoSemanticInterposition);
1178 }
1179
1180 // A definition cannot be preempted from an executable.
1181 if (!GV->isDeclarationForLinker())
1182 return true;
1183
1184 // Most PIC code sequences that assume that a symbol is local cannot produce a
1185 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1186 // depended, it seems worth it to handle it here.
1187 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1188 return false;
1189
1190 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1191 if (TT.isPPC64())
1192 return false;
1193
1194 if (CGOpts.DirectAccessExternalData) {
1195 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1196 // for non-thread-local variables. If the symbol is not defined in the
1197 // executable, a copy relocation will be needed at link time. dso_local is
1198 // excluded for thread-local variables because they generally don't support
1199 // copy relocations.
1200 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1201 if (!Var->isThreadLocal())
1202 return true;
1203
1204 // -fno-pic sets dso_local on a function declaration to allow direct
1205 // accesses when taking its address (similar to a data symbol). If the
1206 // function is not defined in the executable, a canonical PLT entry will be
1207 // needed at link time. -fno-direct-access-external-data can avoid the
1208 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1209 // it could just cause trouble without providing perceptible benefits.
1210 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1211 return true;
1212 }
1213
1214 // If we can use copy relocations we can assume it is local.
1215
1216 // Otherwise don't assume it is local.
1217 return false;
1218}
1219
1220void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1221 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1222}
1223
1224void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1225 GlobalDecl GD) const {
1226 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1227 // C++ destructors have a few C++ ABI specific special cases.
1228 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1229 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1230 return;
1231 }
1232 setDLLImportDLLExport(GV, D);
1233}
1234
1235void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1236 const NamedDecl *D) const {
1237 if (D && D->isExternallyVisible()) {
1238 if (D->hasAttr<DLLImportAttr>())
1239 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1240 else if ((D->hasAttr<DLLExportAttr>() ||
1241 shouldMapVisibilityToDLLExport(D)) &&
1242 !GV->isDeclarationForLinker())
1243 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1244 }
1245}
1246
1247void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1248 GlobalDecl GD) const {
1249 setDLLImportDLLExport(GV, GD);
1250 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1251}
1252
1253void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1254 const NamedDecl *D) const {
1255 setDLLImportDLLExport(GV, D);
1256 setGVPropertiesAux(GV, D);
1257}
1258
1259void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1260 const NamedDecl *D) const {
1261 setGlobalVisibility(GV, D);
1262 setDSOLocal(GV);
1263 GV->setPartition(CodeGenOpts.SymbolPartition);
1264}
1265
1266static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1267 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1268 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1269 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1270 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1271 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1272}
1273
1274llvm::GlobalVariable::ThreadLocalMode
1275CodeGenModule::GetDefaultLLVMTLSModel() const {
1276 switch (CodeGenOpts.getDefaultTLSModel()) {
1277 case CodeGenOptions::GeneralDynamicTLSModel:
1278 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1279 case CodeGenOptions::LocalDynamicTLSModel:
1280 return llvm::GlobalVariable::LocalDynamicTLSModel;
1281 case CodeGenOptions::InitialExecTLSModel:
1282 return llvm::GlobalVariable::InitialExecTLSModel;
1283 case CodeGenOptions::LocalExecTLSModel:
1284 return llvm::GlobalVariable::LocalExecTLSModel;
1285 }
1286 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "clang/lib/CodeGen/CodeGenModule.cpp"
, 1286)
;
1287}
1288
1289void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1290 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1290, __extension__ __PRETTY_FUNCTION__
))
;
1291
1292 llvm::GlobalValue::ThreadLocalMode TLM;
1293 TLM = GetDefaultLLVMTLSModel();
1294
1295 // Override the TLS model if it is explicitly specified.
1296 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1297 TLM = GetLLVMTLSModel(Attr->getModel());
1298 }
1299
1300 GV->setThreadLocalMode(TLM);
1301}
1302
1303static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1304 StringRef Name) {
1305 const TargetInfo &Target = CGM.getTarget();
1306 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1307}
1308
1309static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1310 const CPUSpecificAttr *Attr,
1311 unsigned CPUIndex,
1312 raw_ostream &Out) {
1313 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1314 // supported.
1315 if (Attr)
1316 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1317 else if (CGM.getTarget().supportsIFunc())
1318 Out << ".resolver";
1319}
1320
1321static void AppendTargetMangling(const CodeGenModule &CGM,
1322 const TargetAttr *Attr, raw_ostream &Out) {
1323 if (Attr->isDefaultVersion())
1324 return;
1325
1326 Out << '.';
1327 const TargetInfo &Target = CGM.getTarget();
1328 ParsedTargetAttr Info =
1329 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1330 // Multiversioning doesn't allow "no-${feature}", so we can
1331 // only have "+" prefixes here.
1332 assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1333, __extension__ __PRETTY_FUNCTION__
))
1333 "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1333, __extension__ __PRETTY_FUNCTION__
))
;
1334 return Target.multiVersionSortPriority(LHS.substr(1)) >
1335 Target.multiVersionSortPriority(RHS.substr(1));
1336 });
1337
1338 bool IsFirst = true;
1339
1340 if (!Info.Architecture.empty()) {
1341 IsFirst = false;
1342 Out << "arch_" << Info.Architecture;
1343 }
1344
1345 for (StringRef Feat : Info.Features) {
1346 if (!IsFirst)
1347 Out << '_';
1348 IsFirst = false;
1349 Out << Feat.substr(1);
1350 }
1351}
1352
1353// Returns true if GD is a function decl with internal linkage and
1354// needs a unique suffix after the mangled name.
1355static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1356 CodeGenModule &CGM) {
1357 const Decl *D = GD.getDecl();
1358 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1359 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1360}
1361
1362static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1363 const TargetClonesAttr *Attr,
1364 unsigned VersionIndex,
1365 raw_ostream &Out) {
1366 Out << '.';
1367 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1368 if (FeatureStr.startswith("arch="))
1369 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1370 else
1371 Out << FeatureStr;
1372
1373 Out << '.' << Attr->getMangledIndex(VersionIndex);
1374}
1375
1376static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1377 const NamedDecl *ND,
1378 bool OmitMultiVersionMangling = false) {
1379 SmallString<256> Buffer;
1380 llvm::raw_svector_ostream Out(Buffer);
1381 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1382 if (!CGM.getModuleNameHash().empty())
1383 MC.needsUniqueInternalLinkageNames();
1384 bool ShouldMangle = MC.shouldMangleDeclName(ND);
1385 if (ShouldMangle)
1386 MC.mangleName(GD.getWithDecl(ND), Out);
1387 else {
1388 IdentifierInfo *II = ND->getIdentifier();
1389 assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl."
) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1389, __extension__ __PRETTY_FUNCTION__
))
;
1390 const auto *FD = dyn_cast<FunctionDecl>(ND);
1391
1392 if (FD &&
1393 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1394 Out << "__regcall3__" << II->getName();
1395 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1396 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1397 Out << "__device_stub__" << II->getName();
1398 } else {
1399 Out << II->getName();
1400 }
1401 }
1402
1403 // Check if the module name hash should be appended for internal linkage
1404 // symbols. This should come before multi-version target suffixes are
1405 // appended. This is to keep the name and module hash suffix of the
1406 // internal linkage function together. The unique suffix should only be
1407 // added when name mangling is done to make sure that the final name can
1408 // be properly demangled. For example, for C functions without prototypes,
1409 // name mangling is not done and the unique suffix should not be appeneded
1410 // then.
1411 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1412 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&(static_cast <bool> (CGM.getCodeGenOpts().UniqueInternalLinkageNames
&& "Hash computed when not explicitly requested") ? void
(0) : __assert_fail ("CGM.getCodeGenOpts().UniqueInternalLinkageNames && \"Hash computed when not explicitly requested\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1413, __extension__ __PRETTY_FUNCTION__
))
1413 "Hash computed when not explicitly requested")(static_cast <bool> (CGM.getCodeGenOpts().UniqueInternalLinkageNames
&& "Hash computed when not explicitly requested") ? void
(0) : __assert_fail ("CGM.getCodeGenOpts().UniqueInternalLinkageNames && \"Hash computed when not explicitly requested\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1413, __extension__ __PRETTY_FUNCTION__
))
;
1414 Out << CGM.getModuleNameHash();
1415 }
1416
1417 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1418 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1419 switch (FD->getMultiVersionKind()) {
1420 case MultiVersionKind::CPUDispatch:
1421 case MultiVersionKind::CPUSpecific:
1422 AppendCPUSpecificCPUDispatchMangling(CGM,
1423 FD->getAttr<CPUSpecificAttr>(),
1424 GD.getMultiVersionIndex(), Out);
1425 break;
1426 case MultiVersionKind::Target:
1427 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1428 break;
1429 case MultiVersionKind::TargetClones:
1430 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1431 GD.getMultiVersionIndex(), Out);
1432 break;
1433 case MultiVersionKind::None:
1434 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1434)
;
1435 }
1436 }
1437
1438 // Make unique name for device side static file-scope variable for HIP.
1439 if (CGM.getContext().shouldExternalize(ND) &&
1440 CGM.getLangOpts().GPURelocatableDeviceCode &&
1441 CGM.getLangOpts().CUDAIsDevice)
1442 CGM.printPostfixForExternalizedDecl(Out, ND);
1443
1444 return std::string(Out.str());
1445}
1446
1447void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1448 const FunctionDecl *FD,
1449 StringRef &CurName) {
1450 if (!FD->isMultiVersion())
1451 return;
1452
1453 // Get the name of what this would be without the 'target' attribute. This
1454 // allows us to lookup the version that was emitted when this wasn't a
1455 // multiversion function.
1456 std::string NonTargetName =
1457 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1458 GlobalDecl OtherGD;
1459 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1460 assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
1461 .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
1462 ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
1463 ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
1464 "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__
))
;
1465 // OtherFD is the version of this function that was mangled BEFORE
1466 // becoming a MultiVersion function. It potentially needs to be updated.
1467 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1468 .getDecl()
1469 ->getAsFunction()
1470 ->getMostRecentDecl();
1471 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1472 // This is so that if the initial version was already the 'default'
1473 // version, we don't try to update it.
1474 if (OtherName != NonTargetName) {
1475 // Remove instead of erase, since others may have stored the StringRef
1476 // to this.
1477 const auto ExistingRecord = Manglings.find(NonTargetName);
1478 if (ExistingRecord != std::end(Manglings))
1479 Manglings.remove(&(*ExistingRecord));
1480 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1481 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1482 Result.first->first();
1483 // If this is the current decl is being created, make sure we update the name.
1484 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1485 CurName = OtherNameRef;
1486 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1487 Entry->setName(OtherName);
1488 }
1489 }
1490}
1491
1492StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1493 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1494
1495 // Some ABIs don't have constructor variants. Make sure that base and
1496 // complete constructors get mangled the same.
1497 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1498 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1499 CXXCtorType OrigCtorType = GD.getCtorType();
1500 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType
== Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1500, __extension__ __PRETTY_FUNCTION__
))
;
1501 if (OrigCtorType == Ctor_Base)
1502 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1503 }
1504 }
1505
1506 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1507 // static device variable depends on whether the variable is referenced by
1508 // a host or device host function. Therefore the mangled name cannot be
1509 // cached.
1510 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1511 auto FoundName = MangledDeclNames.find(CanonicalGD);
1512 if (FoundName != MangledDeclNames.end())
1513 return FoundName->second;
1514 }
1515
1516 // Keep the first result in the case of a mangling collision.
1517 const auto *ND = cast<NamedDecl>(GD.getDecl());
1518 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1519
1520 // Ensure either we have different ABIs between host and device compilations,
1521 // says host compilation following MSVC ABI but device compilation follows
1522 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1523 // mangling should be the same after name stubbing. The later checking is
1524 // very important as the device kernel name being mangled in host-compilation
1525 // is used to resolve the device binaries to be executed. Inconsistent naming
1526 // result in undefined behavior. Even though we cannot check that naming
1527 // directly between host- and device-compilations, the host- and
1528 // device-mangling in host compilation could help catching certain ones.
1529 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1530 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1531 (getContext().getAuxTargetInfo() &&(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1532 (getContext().getAuxTargetInfo()->getCXXABI() !=(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1533 getContext().getTargetInfo().getCXXABI())) ||(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1534 getCUDARuntime().getDeviceSideName(ND) ==(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1535 getMangledNameImpl((static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1536 *this,(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1537 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
1538 ND))(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND
->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize
(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail
("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "clang/lib/CodeGen/CodeGenModule.cpp", 1538, __extension__ __PRETTY_FUNCTION__
))
;
1539
1540 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1541 return MangledDeclNames[CanonicalGD] = Result.first->first();
1542}
1543
1544StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1545 const BlockDecl *BD) {
1546 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1547 const Decl *D = GD.getDecl();
1548
1549 SmallString<256> Buffer;
1550 llvm::raw_svector_ostream Out(Buffer);
1551 if (!D)
1552 MangleCtx.mangleGlobalBlock(BD,
1553 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1554 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1555 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1556 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1557 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1558 else
1559 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1560
1561 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1562 return Result.first->first();
1563}
1564
1565const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1566 auto it = MangledDeclNames.begin();
1567 while (it != MangledDeclNames.end()) {
1568 if (it->second == Name)
1569 return it->first;
1570 it++;
1571 }
1572 return GlobalDecl();
1573}
1574
1575llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1576 return getModule().getNamedValue(Name);
1577}
1578
1579/// AddGlobalCtor - Add a function to the list that will be called before
1580/// main() runs.
1581void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1582 unsigned LexOrder,
1583 llvm::Constant *AssociatedData) {
1584 // FIXME: Type coercion of void()* types.
1585 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1586}
1587
1588/// AddGlobalDtor - Add a function to the list that will be called
1589/// when the module is unloaded.
1590void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1591 bool IsDtorAttrFunc) {
1592 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1593 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1594 DtorsUsingAtExit[Priority].push_back(Dtor);
1595 return;
1596 }
1597
1598 // FIXME: Type coercion of void()* types.
1599 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1600}
1601
1602void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1603 if (Fns.empty()) return;
1604
1605 // Ctor function type is void()*.
1606 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1607 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1608 TheModule.getDataLayout().getProgramAddressSpace());
1609
1610 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1611 llvm::StructType *CtorStructTy = llvm::StructType::get(
1612 Int32Ty, CtorPFTy, VoidPtrTy);
1613
1614 // Construct the constructor and destructor arrays.
1615 ConstantInitBuilder builder(*this);
1616 auto ctors = builder.beginArray(CtorStructTy);
1617 for (const auto &I : Fns) {
1618 auto ctor = ctors.beginStruct(CtorStructTy);
1619 ctor.addInt(Int32Ty, I.Priority);
1620 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1621 if (I.AssociatedData)
1622 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1623 else
1624 ctor.addNullPointer(VoidPtrTy);
1625 ctor.finishAndAddTo(ctors);
1626 }
1627
1628 auto list =
1629 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1630 /*constant*/ false,
1631 llvm::GlobalValue::AppendingLinkage);
1632
1633 // The LTO linker doesn't seem to like it when we set an alignment
1634 // on appending variables. Take it off as a workaround.
1635 list->setAlignment(llvm::None);
1636
1637 Fns.clear();
1638}
1639
1640llvm::GlobalValue::LinkageTypes
1641CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1642 const auto *D = cast<FunctionDecl>(GD.getDecl());
1643
1644 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1645
1646 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1647 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1648
1649 if (isa<CXXConstructorDecl>(D) &&
1650 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1651 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1652 // Our approach to inheriting constructors is fundamentally different from
1653 // that used by the MS ABI, so keep our inheriting constructor thunks
1654 // internal rather than trying to pick an unambiguous mangling for them.
1655 return llvm::GlobalValue::InternalLinkage;
1656 }
1657
1658 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1659}
1660
1661llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1662 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1663 if (!MDS) return nullptr;
1664
1665 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1666}
1667
1668llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1669 if (auto *FnType = T->getAs<FunctionProtoType>())
1670 T = getContext().getFunctionType(
1671 FnType->getReturnType(), FnType->getParamTypes(),
1672 FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1673
1674 std::string OutName;
1675 llvm::raw_string_ostream Out(OutName);
1676 getCXXABI().getMangleContext().mangleTypeName(T, Out);
1677
1678 return llvm::ConstantInt::get(Int32Ty,
1679 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1680}
1681
1682void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1683 const CGFunctionInfo &Info,
1684 llvm::Function *F, bool IsThunk) {
1685 unsigned CallingConv;
1686 llvm::AttributeList PAL;
1687 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1688 /*AttrOnCallSite=*/false, IsThunk);
1689 F->setAttributes(PAL);
1690 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1691}
1692
1693static void removeImageAccessQualifier(std::string& TyName) {
1694 std::string ReadOnlyQual("__read_only");
1695 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1696 if (ReadOnlyPos != std::string::npos)
1697 // "+ 1" for the space after access qualifier.
1698 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1699 else {
1700 std::string WriteOnlyQual("__write_only");
1701 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1702 if (WriteOnlyPos != std::string::npos)
1703 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1704 else {
1705 std::string ReadWriteQual("__read_write");
1706 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1707 if (ReadWritePos != std::string::npos)
1708 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1709 }
1710 }
1711}
1712
1713// Returns the address space id that should be produced to the
1714// kernel_arg_addr_space metadata. This is always fixed to the ids
1715// as specified in the SPIR 2.0 specification in order to differentiate
1716// for example in clGetKernelArgInfo() implementation between the address
1717// spaces with targets without unique mapping to the OpenCL address spaces
1718// (basically all single AS CPUs).
1719static unsigned ArgInfoAddressSpace(LangAS AS) {
1720 switch (AS) {
1721 case LangAS::opencl_global:
1722 return 1;
1723 case LangAS::opencl_constant:
1724 return 2;
1725 case LangAS::opencl_local:
1726 return 3;
1727 case LangAS::opencl_generic:
1728 return 4; // Not in SPIR 2.0 specs.
1729 case LangAS::opencl_global_device:
1730 return 5;
1731 case LangAS::opencl_global_host:
1732 return 6;
1733 default:
1734 return 0; // Assume private.
1735 }
1736}
1737
1738void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1739 const FunctionDecl *FD,
1740 CodeGenFunction *CGF) {
1741 assert(((FD && CGF) || (!FD && !CGF)) &&(static_cast <bool> (((FD && CGF) || (!FD &&
!CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? void (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1742, __extension__ __PRETTY_FUNCTION__
))
1742 "Incorrect use - FD and CGF should either be both null or not!")(static_cast <bool> (((FD && CGF) || (!FD &&
!CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? void (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 1742, __extension__ __PRETTY_FUNCTION__
))
;
1743 // Create MDNodes that represent the kernel arg metadata.
1744 // Each MDNode is a list in the form of "key", N number of values which is
1745 // the same number of values as their are kernel arguments.
1746
1747 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1748
1749 // MDNode for the kernel argument address space qualifiers.
1750 SmallVector<llvm::Metadata *, 8> addressQuals;
1751
1752 // MDNode for the kernel argument access qualifiers (images only).
1753 SmallVector<llvm::Metadata *, 8> accessQuals;
1754
1755 // MDNode for the kernel argument type names.
1756 SmallVector<llvm::Metadata *, 8> argTypeNames;
1757
1758 // MDNode for the kernel argument base type names.
1759 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1760
1761 // MDNode for the kernel argument type qualifiers.
1762 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1763
1764 // MDNode for the kernel argument names.
1765 SmallVector<llvm::Metadata *, 8> argNames;
1766
1767 if (FD && CGF)
1768 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1769 const ParmVarDecl *parm = FD->getParamDecl(i);
1770 // Get argument name.
1771 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1772
1773 if (!getLangOpts().OpenCL)
1774 continue;
1775 QualType ty = parm->getType();
1776 std::string typeQuals;
1777
1778 // Get image and pipe access qualifier:
1779 if (ty->isImageType() || ty->isPipeType()) {
1780 const Decl *PDecl = parm;
1781 if (const auto *TD = ty->getAs<TypedefType>())
1782 PDecl = TD->getDecl();
1783 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1784 if (A && A->isWriteOnly())
1785 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1786 else if (A && A->isReadWrite())
1787 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1788 else
1789 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1790 } else
1791 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1792
1793 auto getTypeSpelling = [&](QualType Ty) {
1794 auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1795
1796 if (Ty.isCanonical()) {
1797 StringRef typeNameRef = typeName;
1798 // Turn "unsigned type" to "utype"
1799 if (typeNameRef.consume_front("unsigned "))
1800 return std::string("u") + typeNameRef.str();
1801 if (typeNameRef.consume_front("signed "))
1802 return typeNameRef.str();
1803 }
1804
1805 return typeName;
1806 };
1807
1808 if (ty->isPointerType()) {
1809 QualType pointeeTy = ty->getPointeeType();
1810
1811 // Get address qualifier.
1812 addressQuals.push_back(
1813 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1814 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1815
1816 // Get argument type name.
1817 std::string typeName = getTypeSpelling(pointeeTy) + "*";
1818 std::string baseTypeName =
1819 getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1820 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1821 argBaseTypeNames.push_back(
1822 llvm::MDString::get(VMContext, baseTypeName));
1823
1824 // Get argument type qualifiers:
1825 if (ty.isRestrictQualified())
1826 typeQuals = "restrict";
1827 if (pointeeTy.isConstQualified() ||
1828 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1829 typeQuals += typeQuals.empty() ? "const" : " const";
1830 if (pointeeTy.isVolatileQualified())
1831 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1832 } else {
1833 uint32_t AddrSpc = 0;
1834 bool isPipe = ty->isPipeType();
1835 if (ty->isImageType() || isPipe)
1836 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1837
1838 addressQuals.push_back(
1839 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1840
1841 // Get argument type name.
1842 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1843 std::string typeName = getTypeSpelling(ty);
1844 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1845
1846 // Remove access qualifiers on images
1847 // (as they are inseparable from type in clang implementation,
1848 // but OpenCL spec provides a special query to get access qualifier
1849 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1850 if (ty->isImageType()) {
1851 removeImageAccessQualifier(typeName);
1852 removeImageAccessQualifier(baseTypeName);
1853 }
1854
1855 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1856 argBaseTypeNames.push_back(
1857 llvm::MDString::get(VMContext, baseTypeName));
1858
1859 if (isPipe)
1860 typeQuals = "pipe";
1861 }
1862 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1863 }
1864
1865 if (getLangOpts().OpenCL) {
1866 Fn->setMetadata("kernel_arg_addr_space",
1867 llvm::MDNode::get(VMContext, addressQuals));
1868 Fn->setMetadata("kernel_arg_access_qual",
1869 llvm::MDNode::get(VMContext, accessQuals));
1870 Fn->setMetadata("kernel_arg_type",
1871 llvm::MDNode::get(VMContext, argTypeNames));
1872 Fn->setMetadata("kernel_arg_base_type",
1873 llvm::MDNode::get(VMContext, argBaseTypeNames));
1874 Fn->setMetadata("kernel_arg_type_qual",
1875 llvm::MDNode::get(VMContext, argTypeQuals));
1876 }
1877 if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1878 getCodeGenOpts().HIPSaveKernelArgName)
1879 Fn->setMetadata("kernel_arg_name",
1880 llvm::MDNode::get(VMContext, argNames));
1881}
1882
1883/// Determines whether the language options require us to model
1884/// unwind exceptions. We treat -fexceptions as mandating this
1885/// except under the fragile ObjC ABI with only ObjC exceptions
1886/// enabled. This means, for example, that C with -fexceptions
1887/// enables this.
1888static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1889 // If exceptions are completely disabled, obviously this is false.
1890 if (!LangOpts.Exceptions) return false;
1891
1892 // If C++ exceptions are enabled, this is true.
1893 if (LangOpts.CXXExceptions) return true;
1894
1895 // If ObjC exceptions are enabled, this depends on the ABI.
1896 if (LangOpts.ObjCExceptions) {
1897 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1898 }
1899
1900 return true;
1901}
1902
1903static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1904 const CXXMethodDecl *MD) {
1905 // Check that the type metadata can ever actually be used by a call.
1906 if (!CGM.getCodeGenOpts().LTOUnit ||
1907 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1908 return false;
1909
1910 // Only functions whose address can be taken with a member function pointer
1911 // need this sort of type metadata.
1912 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1913 !isa<CXXDestructorDecl>(MD);
1914}
1915
1916std::vector<const CXXRecordDecl *>
1917CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1918 llvm::SetVector<const CXXRecordDecl *> MostBases;
1919
1920 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1921 CollectMostBases = [&](const CXXRecordDecl *RD) {
1922 if (RD->getNumBases() == 0)
1923 MostBases.insert(RD);
1924 for (const CXXBaseSpecifier &B : RD->bases())
1925 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1926 };
1927 CollectMostBases(RD);
1928 return MostBases.takeVector();
1929}
1930
1931llvm::GlobalVariable *
1932CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1933 auto It = RTTIProxyMap.find(Addr);
1934 if (It != RTTIProxyMap.end())
1935 return It->second;
1936
1937 auto *FTRTTIProxy = new llvm::GlobalVariable(
1938 TheModule, Addr->getType(),
1939 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1940 "__llvm_rtti_proxy");
1941 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1942
1943 RTTIProxyMap[Addr] = FTRTTIProxy;
1944 return FTRTTIProxy;
1945}
1946
1947void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1948 llvm::Function *F) {
1949 llvm::AttrBuilder B(F->getContext());
1950
1951 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1952 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1953
1954 if (CodeGenOpts.StackClashProtector)
1955 B.addAttribute("probe-stack", "inline-asm");
1956
1957 if (!hasUnwindExceptions(LangOpts))
1958 B.addAttribute(llvm::Attribute::NoUnwind);
1959
1960 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1961 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1962 B.addAttribute(llvm::Attribute::StackProtect);
1963 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1964 B.addAttribute(llvm::Attribute::StackProtectStrong);
1965 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1966 B.addAttribute(llvm::Attribute::StackProtectReq);
1967 }
1968
1969 if (!D) {
1970 // If we don't have a declaration to control inlining, the function isn't
1971 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1972 // disabled, mark the function as noinline.
1973 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1974 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1975 B.addAttribute(llvm::Attribute::NoInline);
1976
1977 F->addFnAttrs(B);
1978 return;
1979 }
1980
1981 // Track whether we need to add the optnone LLVM attribute,
1982 // starting with the default for this optimization level.
1983 bool ShouldAddOptNone =
1984 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1985 // We can't add optnone in the following cases, it won't pass the verifier.
1986 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1987 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1988
1989 // Add optnone, but do so only if the function isn't always_inline.
1990 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1991 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1992 B.addAttribute(llvm::Attribute::OptimizeNone);
1993
1994 // OptimizeNone implies noinline; we should not be inlining such functions.
1995 B.addAttribute(llvm::Attribute::NoInline);
1996
1997 // We still need to handle naked functions even though optnone subsumes
1998 // much of their semantics.
1999 if (D->hasAttr<NakedAttr>())
2000 B.addAttribute(llvm::Attribute::Naked);
2001
2002 // OptimizeNone wins over OptimizeForSize and MinSize.
2003 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2004 F->removeFnAttr(llvm::Attribute::MinSize);
2005 } else if (D->hasAttr<NakedAttr>()) {
2006 // Naked implies noinline: we should not be inlining such functions.
2007 B.addAttribute(llvm::Attribute::Naked);
2008 B.addAttribute(llvm::Attribute::NoInline);
2009 } else if (D->hasAttr<NoDuplicateAttr>()) {
2010 B.addAttribute(llvm::Attribute::NoDuplicate);
2011 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2012 // Add noinline if the function isn't always_inline.
2013 B.addAttribute(llvm::Attribute::NoInline);
2014 } else if (D->hasAttr<AlwaysInlineAttr>() &&
2015 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2016 // (noinline wins over always_inline, and we can't specify both in IR)
2017 B.addAttribute(llvm::Attribute::AlwaysInline);
2018 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2019 // If we're not inlining, then force everything that isn't always_inline to
2020 // carry an explicit noinline attribute.
2021 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2022 B.addAttribute(llvm::Attribute::NoInline);
2023 } else {
2024 // Otherwise, propagate the inline hint attribute and potentially use its
2025 // absence to mark things as noinline.
2026 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2027 // Search function and template pattern redeclarations for inline.
2028 auto CheckForInline = [](const FunctionDecl *FD) {
2029 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2030 return Redecl->isInlineSpecified();
2031 };
2032 if (any_of(FD->redecls(), CheckRedeclForInline))
2033 return true;
2034 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2035 if (!Pattern)
2036 return false;
2037 return any_of(Pattern->redecls(), CheckRedeclForInline);
2038 };
2039 if (CheckForInline(FD)) {
2040 B.addAttribute(llvm::Attribute::InlineHint);
2041 } else if (CodeGenOpts.getInlining() ==
2042 CodeGenOptions::OnlyHintInlining &&
2043 !FD->isInlined() &&
2044 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2045 B.addAttribute(llvm::Attribute::NoInline);
2046 }
2047 }
2048 }
2049
2050 // Add other optimization related attributes if we are optimizing this
2051 // function.
2052 if (!D->hasAttr<OptimizeNoneAttr>()) {
2053 if (D->hasAttr<ColdAttr>()) {
2054 if (!ShouldAddOptNone)
2055 B.addAttribute(llvm::Attribute::OptimizeForSize);
2056 B.addAttribute(llvm::Attribute::Cold);
2057 }
2058 if (D->hasAttr<HotAttr>())
2059 B.addAttribute(llvm::Attribute::Hot);
2060 if (D->hasAttr<MinSizeAttr>())
2061 B.addAttribute(llvm::Attribute::MinSize);
2062 }
2063
2064 F->addFnAttrs(B);
2065
2066 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2067 if (alignment)
2068 F->setAlignment(llvm::Align(alignment));
2069
2070 if (!D->hasAttr<AlignedAttr>())
2071 if (LangOpts.FunctionAlignment)
2072 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2073
2074 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2075 // reserve a bit for differentiating between virtual and non-virtual member
2076 // functions. If the current target's C++ ABI requires this and this is a
2077 // member function, set its alignment accordingly.
2078 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2079 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2080 F->setAlignment(llvm::Align(2));
2081 }
2082
2083 // In the cross-dso CFI mode with canonical jump tables, we want !type
2084 // attributes on definitions only.
2085 if (CodeGenOpts.SanitizeCfiCrossDso &&
2086 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2087 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2088 // Skip available_externally functions. They won't be codegen'ed in the
2089 // current module anyway.
2090 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2091 CreateFunctionTypeMetadataForIcall(FD, F);
2092 }
2093 }
2094
2095 // Emit type metadata on member functions for member function pointer checks.
2096 // These are only ever necessary on definitions; we're guaranteed that the
2097 // definition will be present in the LTO unit as a result of LTO visibility.
2098 auto *MD = dyn_cast<CXXMethodDecl>(D);
2099 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2100 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2101 llvm::Metadata *Id =
2102 CreateMetadataIdentifierForType(Context.getMemberPointerType(
2103 MD->getType(), Context.getRecordType(Base).getTypePtr()));
2104 F->addTypeMetadata(0, Id);
2105 }
2106 }
2107}
2108
2109void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2110 llvm::Function *F) {
2111 if (D->hasAttr<StrictFPAttr>()) {
2112 llvm::AttrBuilder FuncAttrs(F->getContext());
2113 FuncAttrs.addAttribute("strictfp");
2114 F->addFnAttrs(FuncAttrs);
2115 }
2116}
2117
2118void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2119 const Decl *D = GD.getDecl();
2120 if (isa_and_nonnull<NamedDecl>(D))
2121 setGVProperties(GV, GD);
2122 else
2123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2124
2125 if (D && D->hasAttr<UsedAttr>())
2126 addUsedOrCompilerUsedGlobal(GV);
2127
2128 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2129 const auto *VD = cast<VarDecl>(D);
2130 if (VD->getType().isConstQualified() &&
2131 VD->getStorageDuration() == SD_Static)
2132 addUsedOrCompilerUsedGlobal(GV);
2133 }
2134}
2135
2136bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2137 llvm::AttrBuilder &Attrs) {
2138 // Add target-cpu and target-features attributes to functions. If
2139 // we have a decl for the function and it has a target attribute then
2140 // parse that and add it to the feature set.
2141 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2142 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2143 std::vector<std::string> Features;
2144 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2145 FD = FD ? FD->getMostRecentDecl() : FD;
2146 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2147 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2148 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2149 bool AddedAttr = false;
2150 if (TD || SD || TC) {
2151 llvm::StringMap<bool> FeatureMap;
2152 getContext().getFunctionFeatureMap(FeatureMap, GD);
2153
2154 // Produce the canonical string for this set of features.
2155 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2156 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2157
2158 // Now add the target-cpu and target-features to the function.
2159 // While we populated the feature map above, we still need to
2160 // get and parse the target attribute so we can get the cpu for
2161 // the function.
2162 if (TD) {
2163 ParsedTargetAttr ParsedAttr = TD->parse();
2164 if (!ParsedAttr.Architecture.empty() &&
2165 getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2166 TargetCPU = ParsedAttr.Architecture;
2167 TuneCPU = ""; // Clear the tune CPU.
2168 }
2169 if (!ParsedAttr.Tune.empty() &&
2170 getTarget().isValidCPUName(ParsedAttr.Tune))
2171 TuneCPU = ParsedAttr.Tune;
2172 }
2173
2174 if (SD) {
2175 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2176 // favor this processor.
2177 TuneCPU = getTarget().getCPUSpecificTuneName(
2178 SD->getCPUName(GD.getMultiVersionIndex())->getName());
2179 }
2180 } else {
2181 // Otherwise just add the existing target cpu and target features to the
2182 // function.
2183 Features = getTarget().getTargetOpts().Features;
2184 }
2185
2186 if (!TargetCPU.empty()) {
2187 Attrs.addAttribute("target-cpu", TargetCPU);
2188 AddedAttr = true;
2189 }
2190 if (!TuneCPU.empty()) {
2191 Attrs.addAttribute("tune-cpu", TuneCPU);
2192 AddedAttr = true;
2193 }
2194 if (!Features.empty()) {
2195 llvm::sort(Features);
2196 Attrs.addAttribute("target-features", llvm::join(Features, ","));
2197 AddedAttr = true;
2198 }
2199
2200 return AddedAttr;
2201}
2202
2203void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2204 llvm::GlobalObject *GO) {
2205 const Decl *D = GD.getDecl();
2206 SetCommonAttributes(GD, GO);
2207
2208 if (D) {
2209 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2210 if (D->hasAttr<RetainAttr>())
2211 addUsedGlobal(GV);
2212 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2213 GV->addAttribute("bss-section", SA->getName());
2214 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2215 GV->addAttribute("data-section", SA->getName());
2216 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2217 GV->addAttribute("rodata-section", SA->getName());
2218 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2219 GV->addAttribute("relro-section", SA->getName());
2220 }
2221
2222 if (auto *F = dyn_cast<llvm::Function>(GO)) {
2223 if (D->hasAttr<RetainAttr>())
2224 addUsedGlobal(F);
2225 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2226 if (!D->getAttr<SectionAttr>())
2227 F->addFnAttr("implicit-section-name", SA->getName());
2228
2229 llvm::AttrBuilder Attrs(F->getContext());
2230 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2231 // We know that GetCPUAndFeaturesAttributes will always have the
2232 // newest set, since it has the newest possible FunctionDecl, so the
2233 // new ones should replace the old.
2234 llvm::AttributeMask RemoveAttrs;
2235 RemoveAttrs.addAttribute("target-cpu");
2236 RemoveAttrs.addAttribute("target-features");
2237 RemoveAttrs.addAttribute("tune-cpu");
2238 F->removeFnAttrs(RemoveAttrs);
2239 F->addFnAttrs(Attrs);
2240 }
2241 }
2242
2243 if (const auto *CSA = D->getAttr<CodeSegAttr>())
2244 GO->setSection(CSA->getName());
2245 else if (const auto *SA = D->getAttr<SectionAttr>())
2246 GO->setSection(SA->getName());
2247 }
2248
2249 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2250}
2251
2252void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2253 llvm::Function *F,
2254 const CGFunctionInfo &FI) {
2255 const Decl *D = GD.getDecl();
2256 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2257 SetLLVMFunctionAttributesForDefinition(D, F);
2258
2259 F->setLinkage(llvm::Function::InternalLinkage);
2260
2261 setNonAliasAttributes(GD, F);
2262}
2263
2264static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2265 // Set linkage and visibility in case we never see a definition.
2266 LinkageInfo LV = ND->getLinkageAndVisibility();
2267 // Don't set internal linkage on declarations.
2268 // "extern_weak" is overloaded in LLVM; we probably should have
2269 // separate linkage types for this.
2270 if (isExternallyVisible(LV.getLinkage()) &&
2271 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2272 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2273}
2274
2275void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2276 llvm::Function *F) {
2277 // Only if we are checking indirect calls.
2278 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2279 return;
2280
2281 // Non-static class methods are handled via vtable or member function pointer
2282 // checks elsewhere.
2283 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2284 return;
2285
2286 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2287 F->addTypeMetadata(0, MD);
2288 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2289
2290 // Emit a hash-based bit set entry for cross-DSO calls.
2291 if (CodeGenOpts.SanitizeCfiCrossDso)
2292 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2293 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2294}
2295
2296void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2297 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2298 return;
2299
2300 llvm::LLVMContext &Ctx = F->getContext();
2301 llvm::MDBuilder MDB(Ctx);
2302 F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2303 llvm::MDNode::get(
2304 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2305}
2306
2307static bool allowKCFIIdentifier(StringRef Name) {
2308 // KCFI type identifier constants are only necessary for external assembly
2309 // functions, which means it's safe to skip unusual names. Subset of
2310 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2311 return llvm::all_of(Name, [](const char &C) {
2312 return llvm::isAlnum(C) || C == '_' || C == '.';
2313 });
2314}
2315
2316void CodeGenModule::finalizeKCFITypes() {
2317 llvm::Module &M = getModule();
2318 for (auto &F : M.functions()) {
2319 // Remove KCFI type metadata from non-address-taken local functions.
2320 bool AddressTaken = F.hasAddressTaken();
2321 if (!AddressTaken && F.hasLocalLinkage())
2322 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2323
2324 // Generate a constant with the expected KCFI type identifier for all
2325 // address-taken function declarations to support annotating indirectly
2326 // called assembly functions.
2327 if (!AddressTaken || !F.isDeclaration())
2328 continue;
2329
2330 const llvm::ConstantInt *Type;
2331 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2332 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2333 else
2334 continue;
2335
2336 StringRef Name = F.getName();
2337 if (!allowKCFIIdentifier(Name))
2338 continue;
2339
2340 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2341 Name + ", " + Twine(Type->getZExtValue()) + "\n")
2342 .str();
2343 M.appendModuleInlineAsm(Asm);
2344 }
2345}
2346
2347void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2348 bool IsIncompleteFunction,
2349 bool IsThunk) {
2350
2351 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2352 // If this is an intrinsic function, set the function's attributes
2353 // to the intrinsic's attributes.
2354 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2355 return;
2356 }
2357
2358 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2359
2360 if (!IsIncompleteFunction)
2361 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2362 IsThunk);
2363
2364 // Add the Returned attribute for "this", except for iOS 5 and earlier
2365 // where substantial code, including the libstdc++ dylib, was compiled with
2366 // GCC and does not actually return "this".
2367 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2368 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2369 assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2372, __extension__ __PRETTY_FUNCTION__
))
2370 F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2372, __extension__ __PRETTY_FUNCTION__
))
2371 ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2372, __extension__ __PRETTY_FUNCTION__
))
2372 "unexpected this return")(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2372, __extension__ __PRETTY_FUNCTION__
))
;
2373 F->addParamAttr(0, llvm::Attribute::Returned);
2374 }
2375
2376 // Only a few attributes are set on declarations; these may later be
2377 // overridden by a definition.
2378
2379 setLinkageForGV(F, FD);
2380 setGVProperties(F, FD);
2381
2382 // Setup target-specific attributes.
2383 if (!IsIncompleteFunction && F->isDeclaration())
2384 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2385
2386 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2387 F->setSection(CSA->getName());
2388 else if (const auto *SA = FD->getAttr<SectionAttr>())
2389 F->setSection(SA->getName());
2390
2391 if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2392 if (EA->isError())
2393 F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2394 else if (EA->isWarning())
2395 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2396 }
2397
2398 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2399 if (FD->isInlineBuiltinDeclaration()) {
2400 const FunctionDecl *FDBody;
2401 bool HasBody = FD->hasBody(FDBody);
2402 (void)HasBody;
2403 assert(HasBody && "Inline builtin declarations should always have an "(static_cast <bool> (HasBody && "Inline builtin declarations should always have an "
"available body!") ? void (0) : __assert_fail ("HasBody && \"Inline builtin declarations should always have an \" \"available body!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2404, __extension__ __PRETTY_FUNCTION__
))
2404 "available body!")(static_cast <bool> (HasBody && "Inline builtin declarations should always have an "
"available body!") ? void (0) : __assert_fail ("HasBody && \"Inline builtin declarations should always have an \" \"available body!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2404, __extension__ __PRETTY_FUNCTION__
))
;
2405 if (shouldEmitFunction(FDBody))
2406 F->addFnAttr(llvm::Attribute::NoBuiltin);
2407 }
2408
2409 if (FD->isReplaceableGlobalAllocationFunction()) {
2410 // A replaceable global allocation function does not act like a builtin by
2411 // default, only if it is invoked by a new-expression or delete-expression.
2412 F->addFnAttr(llvm::Attribute::NoBuiltin);
2413 }
2414
2415 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2416 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2417 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2418 if (MD->isVirtual())
2419 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2420
2421 // Don't emit entries for function declarations in the cross-DSO mode. This
2422 // is handled with better precision by the receiving DSO. But if jump tables
2423 // are non-canonical then we need type metadata in order to produce the local
2424 // jump table.
2425 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2426 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2427 CreateFunctionTypeMetadataForIcall(FD, F);
2428
2429 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2430 setKCFIType(FD, F);
2431
2432 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2433 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2434
2435 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX(2147483647 *2U +1U))
2436 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2437
2438 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2439 // Annotate the callback behavior as metadata:
2440 // - The callback callee (as argument number).
2441 // - The callback payloads (as argument numbers).
2442 llvm::LLVMContext &Ctx = F->getContext();
2443 llvm::MDBuilder MDB(Ctx);
2444
2445 // The payload indices are all but the first one in the encoding. The first
2446 // identifies the callback callee.
2447 int CalleeIdx = *CB->encoding_begin();
2448 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2449 F->addMetadata(llvm::LLVMContext::MD_callback,
2450 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2451 CalleeIdx, PayloadIndices,
2452 /* VarArgsArePassed */ false)}));
2453 }
2454}
2455
2456void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2457 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&(static_cast <bool> ((isa<llvm::Function>(GV) || !
GV->isDeclaration()) && "Only globals with definition can force usage."
) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2458, __extension__ __PRETTY_FUNCTION__
))
2458 "Only globals with definition can force usage.")(static_cast <bool> ((isa<llvm::Function>(GV) || !
GV->isDeclaration()) && "Only globals with definition can force usage."
) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2458, __extension__ __PRETTY_FUNCTION__
))
;
2459 LLVMUsed.emplace_back(GV);
2460}
2461
2462void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2463 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2464, __extension__ __PRETTY_FUNCTION__
))
2464 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2464, __extension__ __PRETTY_FUNCTION__
))
;
2465 LLVMCompilerUsed.emplace_back(GV);
2466}
2467
2468void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2469 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&(static_cast <bool> ((isa<llvm::Function>(GV) || !
GV->isDeclaration()) && "Only globals with definition can force usage."
) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2470, __extension__ __PRETTY_FUNCTION__
))
2470 "Only globals with definition can force usage.")(static_cast <bool> ((isa<llvm::Function>(GV) || !
GV->isDeclaration()) && "Only globals with definition can force usage."
) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2470, __extension__ __PRETTY_FUNCTION__
))
;
2471 if (getTriple().isOSBinFormatELF())
2472 LLVMCompilerUsed.emplace_back(GV);
2473 else
2474 LLVMUsed.emplace_back(GV);
2475}
2476
2477static void emitUsed(CodeGenModule &CGM, StringRef Name,
2478 std::vector<llvm::WeakTrackingVH> &List) {
2479 // Don't create llvm.used if there is no need.
2480 if (List.empty())
2481 return;
2482
2483 // Convert List to what ConstantArray needs.
2484 SmallVector<llvm::Constant*, 8> UsedArray;
2485 UsedArray.resize(List.size());
2486 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2487 UsedArray[i] =
2488 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2489 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2490 }
2491
2492 if (UsedArray.empty())
2493 return;
2494 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2495
2496 auto *GV = new llvm::GlobalVariable(
2497 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2498 llvm::ConstantArray::get(ATy, UsedArray), Name);
2499
2500 GV->setSection("llvm.metadata");
2501}
2502
2503void CodeGenModule::emitLLVMUsed() {
2504 emitUsed(*this, "llvm.used", LLVMUsed);
2505 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2506}
2507
2508void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2509 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2510 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2511}
2512
2513void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2514 llvm::SmallString<32> Opt;
2515 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2516 if (Opt.empty())
2517 return;
2518 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2519 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2520}
2521
2522void CodeGenModule::AddDependentLib(StringRef Lib) {
2523 auto &C = getLLVMContext();
2524 if (getTarget().getTriple().isOSBinFormatELF()) {
2525 ELFDependentLibraries.push_back(
2526 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2527 return;
2528 }
2529
2530 llvm::SmallString<24> Opt;
2531 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2532 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2533 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2534}
2535
2536/// Add link options implied by the given module, including modules
2537/// it depends on, using a postorder walk.
2538static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2539 SmallVectorImpl<llvm::MDNode *> &Metadata,
2540 llvm::SmallPtrSet<Module *, 16> &Visited) {
2541 // Import this module's parent.
2542 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2543 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2544 }
2545
2546 // Import this module's dependencies.
2547 for (Module *Import : llvm::reverse(Mod->Imports)) {
2548 if (Visited.insert(Import).second)
2549 addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2550 }
2551
2552 // Add linker options to link against the libraries/frameworks
2553 // described by this module.
2554 llvm::LLVMContext &Context = CGM.getLLVMContext();
2555 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2556
2557 // For modules that use export_as for linking, use that module
2558 // name instead.
2559 if (Mod->UseExportAsModuleLinkName)
2560 return;
2561
2562 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2563 // Link against a framework. Frameworks are currently Darwin only, so we
2564 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2565 if (LL.IsFramework) {
2566 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2567 llvm::MDString::get(Context, LL.Library)};
2568
2569 Metadata.push_back(llvm::MDNode::get(Context, Args));
2570 continue;
2571 }
2572
2573 // Link against a library.
2574 if (IsELF) {
2575 llvm::Metadata *Args[2] = {
2576 llvm::MDString::get(Context, "lib"),
2577 llvm::MDString::get(Context, LL.Library),
2578 };
2579 Metadata.push_back(llvm::MDNode::get(Context, Args));
2580 } else {
2581 llvm::SmallString<24> Opt;
2582 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2583 auto *OptString = llvm::MDString::get(Context, Opt);
2584 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2585 }
2586 }
2587}
2588
2589void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2590 // Emit the initializers in the order that sub-modules appear in the
2591 // source, first Global Module Fragments, if present.
2592 if (auto GMF = Primary->getGlobalModuleFragment()) {
2593 for (Decl *D : getContext().getModuleInitializers(GMF)) {
2594 if (isa<ImportDecl>(D))
2595 continue;
2596 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?")(static_cast <bool> (isa<VarDecl>(D) && "GMF initializer decl is not a var?"
) ? void (0) : __assert_fail ("isa<VarDecl>(D) && \"GMF initializer decl is not a var?\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2596, __extension__ __PRETTY_FUNCTION__
))
;
2597 EmitTopLevelDecl(D);
2598 }
2599 }
2600 // Second any associated with the module, itself.
2601 for (Decl *D : getContext().getModuleInitializers(Primary)) {
2602 // Skip import decls, the inits for those are called explicitly.
2603 if (isa<ImportDecl>(D))
2604 continue;
2605 EmitTopLevelDecl(D);
2606 }
2607 // Third any associated with the Privat eMOdule Fragment, if present.
2608 if (auto PMF = Primary->getPrivateModuleFragment()) {
2609 for (Decl *D : getContext().getModuleInitializers(PMF)) {
2610 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?")(static_cast <bool> (isa<VarDecl>(D) && "PMF initializer decl is not a var?"
) ? void (0) : __assert_fail ("isa<VarDecl>(D) && \"PMF initializer decl is not a var?\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2610, __extension__ __PRETTY_FUNCTION__
))
;
2611 EmitTopLevelDecl(D);
2612 }
2613 }
2614}
2615
2616void CodeGenModule::EmitModuleLinkOptions() {
2617 // Collect the set of all of the modules we want to visit to emit link
2618 // options, which is essentially the imported modules and all of their
2619 // non-explicit child modules.
2620 llvm::SetVector<clang::Module *> LinkModules;
2621 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2622 SmallVector<clang::Module *, 16> Stack;
2623
2624 // Seed the stack with imported modules.
2625 for (Module *M : ImportedModules) {
2626 // Do not add any link flags when an implementation TU of a module imports
2627 // a header of that same module.
2628 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2629 !getLangOpts().isCompilingModule())
2630 continue;
2631 if (Visited.insert(M).second)
2632 Stack.push_back(M);
2633 }
2634
2635 // Find all of the modules to import, making a little effort to prune
2636 // non-leaf modules.
2637 while (!Stack.empty()) {
2638 clang::Module *Mod = Stack.pop_back_val();
2639
2640 bool AnyChildren = false;
2641
2642 // Visit the submodules of this module.
2643 for (const auto &SM : Mod->submodules()) {
2644 // Skip explicit children; they need to be explicitly imported to be
2645 // linked against.
2646 if (SM->IsExplicit)
2647 continue;
2648
2649 if (Visited.insert(SM).second) {
2650 Stack.push_back(SM);
2651 AnyChildren = true;
2652 }
2653 }
2654
2655 // We didn't find any children, so add this module to the list of
2656 // modules to link against.
2657 if (!AnyChildren) {
2658 LinkModules.insert(Mod);
2659 }
2660 }
2661
2662 // Add link options for all of the imported modules in reverse topological
2663 // order. We don't do anything to try to order import link flags with respect
2664 // to linker options inserted by things like #pragma comment().
2665 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2666 Visited.clear();
2667 for (Module *M : LinkModules)
2668 if (Visited.insert(M).second)
2669 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2670 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2671 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2672
2673 // Add the linker options metadata flag.
2674 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2675 for (auto *MD : LinkerOptionsMetadata)
2676 NMD->addOperand(MD);
2677}
2678
2679void CodeGenModule::EmitDeferred() {
2680 // Emit deferred declare target declarations.
2681 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2682 getOpenMPRuntime().emitDeferredTargetDecls();
2683
2684 // Emit code for any potentially referenced deferred decls. Since a
2685 // previously unused static decl may become used during the generation of code
2686 // for a static function, iterate until no changes are made.
2687
2688 if (!DeferredVTables.empty()) {
2689 EmitDeferredVTables();
2690
2691 // Emitting a vtable doesn't directly cause more vtables to
2692 // become deferred, although it can cause functions to be
2693 // emitted that then need those vtables.
2694 assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0
) : __assert_fail ("DeferredVTables.empty()", "clang/lib/CodeGen/CodeGenModule.cpp"
, 2694, __extension__ __PRETTY_FUNCTION__))
;
2695 }
2696
2697 // Emit CUDA/HIP static device variables referenced by host code only.
2698 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2699 // needed for further handling.
2700 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2701 llvm::append_range(DeferredDeclsToEmit,
2702 getContext().CUDADeviceVarODRUsedByHost);
2703
2704 // Stop if we're out of both deferred vtables and deferred declarations.
2705 if (DeferredDeclsToEmit.empty())
2706 return;
2707
2708 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2709 // work, it will not interfere with this.
2710 std::vector<GlobalDecl> CurDeclsToEmit;
2711 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2712
2713 for (GlobalDecl &D : CurDeclsToEmit) {
2714 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2715 // to get GlobalValue with exactly the type we need, not something that
2716 // might had been created for another decl with the same mangled name but
2717 // different type.
2718 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2719 GetAddrOfGlobal(D, ForDefinition));
2720
2721 // In case of different address spaces, we may still get a cast, even with
2722 // IsForDefinition equal to true. Query mangled names table to get
2723 // GlobalValue.
2724 if (!GV)
2725 GV = GetGlobalValue(getMangledName(D));
2726
2727 // Make sure GetGlobalValue returned non-null.
2728 assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV"
, "clang/lib/CodeGen/CodeGenModule.cpp", 2728, __extension__ __PRETTY_FUNCTION__
))
;
2729
2730 // Check to see if we've already emitted this. This is necessary
2731 // for a couple of reasons: first, decls can end up in the
2732 // deferred-decls queue multiple times, and second, decls can end
2733 // up with definitions in unusual ways (e.g. by an extern inline
2734 // function acquiring a strong function redefinition). Just
2735 // ignore these cases.
2736 if (!GV->isDeclaration())
2737 continue;
2738
2739 // If this is OpenMP, check if it is legal to emit this global normally.
2740 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2741 continue;
2742
2743 // Otherwise, emit the definition and move on to the next one.
2744 EmitGlobalDefinition(D, GV);
2745
2746 // If we found out that we need to emit more decls, do that recursively.
2747 // This has the advantage that the decls are emitted in a DFS and related
2748 // ones are close together, which is convenient for testing.
2749 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2750 EmitDeferred();
2751 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() &&
DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "clang/lib/CodeGen/CodeGenModule.cpp", 2751, __extension__ __PRETTY_FUNCTION__
))
;
2752 }
2753 }
2754}
2755
2756void CodeGenModule::EmitVTablesOpportunistically() {
2757 // Try to emit external vtables as available_externally if they have emitted
2758 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2759 // is not allowed to create new references to things that need to be emitted
2760 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2761
2762 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2763, __extension__ __PRETTY_FUNCTION__
))
2763 && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2763, __extension__ __PRETTY_FUNCTION__
))
;
2764
2765 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2766 assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2767, __extension__ __PRETTY_FUNCTION__
))
2767 "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2767, __extension__ __PRETTY_FUNCTION__
))
;
2768 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2769 VTables.GenerateClassData(RD);
2770 }
2771 OpportunisticVTables.clear();
2772}
2773
2774void CodeGenModule::EmitGlobalAnnotations() {
2775 if (Annotations.empty())
2776 return;
2777
2778 // Create a new global variable for the ConstantStruct in the Module.
2779 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2780 Annotations[0]->getType(), Annotations.size()), Annotations);
2781 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2782 llvm::GlobalValue::AppendingLinkage,
2783 Array, "llvm.global.annotations");
2784 gv->setSection(AnnotationSection);
2785}
2786
2787llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2788 llvm::Constant *&AStr = AnnotationStrings[Str];
2789 if (AStr)
2790 return AStr;
2791
2792 // Not found yet, create a new global.
2793 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2794 auto *gv =
2795 new llvm::GlobalVariable(getModule(), s->getType(), true,
2796 llvm::GlobalValue::PrivateLinkage, s, ".str");
2797 gv->setSection(AnnotationSection);
2798 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2799 AStr = gv;
2800 return gv;
2801}
2802
2803llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2804 SourceManager &SM = getContext().getSourceManager();
2805 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2806 if (PLoc.isValid())
2807 return EmitAnnotationString(PLoc.getFilename());
2808 return EmitAnnotationString(SM.getBufferName(Loc));
2809}
2810
2811llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2812 SourceManager &SM = getContext().getSourceManager();
2813 PresumedLoc PLoc = SM.getPresumedLoc(L);
2814 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2815 SM.getExpansionLineNumber(L);
2816 return llvm::ConstantInt::get(Int32Ty, LineNo);
2817}
2818
2819llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2820 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2821 if (Exprs.empty())
2822 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2823
2824 llvm::FoldingSetNodeID ID;
2825 for (Expr *E : Exprs) {
2826 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2827 }
2828 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2829 if (Lookup)
2830 return Lookup;
2831
2832 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2833 LLVMArgs.reserve(Exprs.size());
2834 ConstantEmitter ConstEmiter(*this);
2835 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2836 const auto *CE = cast<clang::ConstantExpr>(E);
2837 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2838 CE->getType());
2839 });
2840 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2841 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2842 llvm::GlobalValue::PrivateLinkage, Struct,
2843 ".args");
2844 GV->setSection(AnnotationSection);
2845 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2846 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2847
2848 Lookup = Bitcasted;
2849 return Bitcasted;
2850}
2851
2852llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2853 const AnnotateAttr *AA,
2854 SourceLocation L) {
2855 // Get the globals for file name, annotation, and the line number.
2856 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2857 *UnitGV = EmitAnnotationUnit(L),
2858 *LineNoCst = EmitAnnotationLineNo(L),
2859 *Args = EmitAnnotationArgs(AA);
2860
2861 llvm::Constant *GVInGlobalsAS = GV;
2862 if (GV->getAddressSpace() !=
2863 getDataLayout().getDefaultGlobalsAddressSpace()) {
2864 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2865 GV, GV->getValueType()->getPointerTo(
2866 getDataLayout().getDefaultGlobalsAddressSpace()));
2867 }
2868
2869 // Create the ConstantStruct for the global annotation.
2870 llvm::Constant *Fields[] = {
2871 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2872 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2873 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2874 LineNoCst,
2875 Args,
2876 };
2877 return llvm::ConstantStruct::getAnon(Fields);
2878}
2879
2880void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2881 llvm::GlobalValue *GV) {
2882 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>(
) && "no annotate attribute") ? void (0) : __assert_fail
("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 2882, __extension__ __PRETTY_FUNCTION__
))
;
2883 // Get the struct elements for these annotations.
2884 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2885 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2886}
2887
2888bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2889 SourceLocation Loc) const {
2890 const auto &NoSanitizeL = getContext().getNoSanitizeList();
2891 // NoSanitize by function name.
2892 if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2893 return true;
2894 // NoSanitize by location. Check "mainfile" prefix.
2895 auto &SM = Context.getSourceManager();
2896 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2897 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2898 return true;
2899
2900 // Check "src" prefix.
2901 if (Loc.isValid())
2902 return NoSanitizeL.containsLocation(Kind, Loc);
2903 // If location is unknown, this may be a compiler-generated function. Assume
2904 // it's located in the main file.
2905 return NoSanitizeL.containsFile(Kind, MainFile.getName());
2906}
2907
2908bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2909 llvm::GlobalVariable *GV,
2910 SourceLocation Loc, QualType Ty,
2911 StringRef Category) const {
2912 const auto &NoSanitizeL = getContext().getNoSanitizeList();
2913 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2914 return true;
2915 auto &SM = Context.getSourceManager();
2916 if (NoSanitizeL.containsMainFile(
2917 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2918 return true;
2919 if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2920 return true;
2921
2922 // Check global type.
2923 if (!Ty.isNull()) {
2924 // Drill down the array types: if global variable of a fixed type is
2925 // not sanitized, we also don't instrument arrays of them.
2926 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2927 Ty = AT->getElementType();
2928 Ty = Ty.getCanonicalType().getUnqualifiedType();
2929 // Only record types (classes, structs etc.) are ignored.
2930 if (Ty->isRecordType()) {
2931 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2932 if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2933 return true;
2934 }
2935 }
2936 return false;
2937}
2938
2939bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2940 StringRef Category) const {
2941 const auto &XRayFilter = getContext().getXRayFilter();
2942 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2943 auto Attr = ImbueAttr::NONE;
2944 if (Loc.isValid())
2945 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2946 if (Attr == ImbueAttr::NONE)
2947 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2948 switch (Attr) {
2949 case ImbueAttr::NONE:
2950 return false;
2951 case ImbueAttr::ALWAYS:
2952 Fn->addFnAttr("function-instrument", "xray-always");
2953 break;
2954 case ImbueAttr::ALWAYS_ARG1:
2955 Fn->addFnAttr("function-instrument", "xray-always");
2956 Fn->addFnAttr("xray-log-args", "1");
2957 break;
2958 case ImbueAttr::NEVER:
2959 Fn->addFnAttr("function-instrument", "xray-never");
2960 break;
2961 }
2962 return true;
2963}
2964
2965ProfileList::ExclusionType
2966CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2967 SourceLocation Loc) const {
2968 const auto &ProfileList = getContext().getProfileList();
2969 // If the profile list is empty, then instrument everything.
2970 if (ProfileList.isEmpty())
2971 return ProfileList::Allow;
2972 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2973 // First, check the function name.
2974 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2975 return *V;
2976 // Next, check the source location.
2977 if (Loc.isValid())
2978 if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2979 return *V;
2980 // If location is unknown, this may be a compiler-generated function. Assume
2981 // it's located in the main file.
2982 auto &SM = Context.getSourceManager();
2983 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2984 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2985 return *V;
2986 return ProfileList.getDefault(Kind);
2987}
2988
2989ProfileList::ExclusionType
2990CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
2991 SourceLocation Loc) const {
2992 auto V = isFunctionBlockedByProfileList(Fn, Loc);
2993 if (V != ProfileList::Allow)
2994 return V;
2995
2996 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
2997 if (NumGroups > 1) {
2998 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
2999 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3000 return ProfileList::Skip;
3001 }
3002 return ProfileList::Allow;
3003}
3004
3005bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3006 // Never defer when EmitAllDecls is specified.
3007 if (LangOpts.EmitAllDecls)
3008 return true;
3009
3010 if (CodeGenOpts.KeepStaticConsts) {
3011 const auto *VD = dyn_cast<VarDecl>(Global);
3012 if (VD && VD->getType().isConstQualified() &&
3013 VD->getStorageDuration() == SD_Static)
3014 return true;
3015 }
3016
3017 return getContext().DeclMustBeEmitted(Global);
3018}
3019
3020bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3021 // In OpenMP 5.0 variables and function may be marked as
3022 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3023 // that they must be emitted on the host/device. To be sure we need to have
3024 // seen a declare target with an explicit mentioning of the function, we know
3025 // we have if the level of the declare target attribute is -1. Note that we
3026 // check somewhere else if we should emit this at all.
3027 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3028 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3029 OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3030 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3031 return false;
3032 }
3033
3034 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3035 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3036 // Implicit template instantiations may change linkage if they are later
3037 // explicitly instantiated, so they should not be emitted eagerly.
3038 return false;
3039 }
3040 if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3041 if (Context.getInlineVariableDefinitionKind(VD) ==
3042 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3043 // A definition of an inline constexpr static data member may change
3044 // linkage later if it's redeclared outside the class.
3045 return false;
3046 if (CXX20ModuleInits && VD->getOwningModule() &&
3047 !VD->getOwningModule()->isModuleMapModule()) {
3048 // For CXX20, module-owned initializers need to be deferred, since it is
3049 // not known at this point if they will be run for the current module or
3050 // as part of the initializer for an imported one.
3051 return false;
3052 }
3053 }
3054 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3055 // codegen for global variables, because they may be marked as threadprivate.
3056 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3057 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3058 !isTypeConstant(Global->getType(), false) &&
3059 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3060 return false;
3061
3062 return true;
3063}
3064
3065ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3066 StringRef Name = getMangledName(GD);
3067
3068 // The UUID descriptor should be pointer aligned.
3069 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3070
3071 // Look for an existing global.
3072 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3073 return ConstantAddress(GV, GV->getValueType(), Alignment);
3074
3075 ConstantEmitter Emitter(*this);
3076 llvm::Constant *Init;
3077
3078 APValue &V = GD->getAsAPValue();
3079 if (!V.isAbsent()) {
3080 // If possible, emit the APValue version of the initializer. In particular,
3081 // this gets the type of the constant right.
3082 Init = Emitter.emitForInitializer(
3083 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3084 } else {
3085 // As a fallback, directly construct the constant.
3086 // FIXME: This may get padding wrong under esoteric struct layout rules.
3087 // MSVC appears to create a complete type 'struct __s_GUID' that it
3088 // presumably uses to represent these constants.
3089 MSGuidDecl::Parts Parts = GD->getParts();
3090 llvm::Constant *Fields[4] = {
3091 llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3092 llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3093 llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3094 llvm::ConstantDataArray::getRaw(
3095 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3096 Int8Ty)};
3097 Init = llvm::ConstantStruct::getAnon(Fields);
3098 }
3099
3100 auto *GV = new llvm::GlobalVariable(
3101 getModule(), Init->getType(),
3102 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3103 if (supportsCOMDAT())
3104 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3105 setDSOLocal(GV);
3106
3107 if (!V.isAbsent()) {
3108 Emitter.finalize(GV);
3109 return ConstantAddress(GV, GV->getValueType(), Alignment);
3110 }
3111
3112 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3113 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3114 GV, Ty->getPointerTo(GV->getAddressSpace()));
3115 return ConstantAddress(Addr, Ty, Alignment);
3116}
3117
3118ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3119 const UnnamedGlobalConstantDecl *GCD) {
3120 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3121
3122 llvm::GlobalVariable **Entry = nullptr;
3123 Entry = &UnnamedGlobalConstantDeclMap[GCD];
3124 if (*Entry)
3125 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3126
3127 ConstantEmitter Emitter(*this);
3128 llvm::Constant *Init;
3129
3130 const APValue &V = GCD->getValue();
3131
3132 assert(!V.isAbsent())(static_cast <bool> (!V.isAbsent()) ? void (0) : __assert_fail
("!V.isAbsent()", "clang/lib/CodeGen/CodeGenModule.cpp", 3132
, __extension__ __PRETTY_FUNCTION__))
;
3133 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3134 GCD->getType());
3135
3136 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3137 /*isConstant=*/true,
3138 llvm::GlobalValue::PrivateLinkage, Init,
3139 ".constant");
3140 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3141 GV->setAlignment(Alignment.getAsAlign());
3142
3143 Emitter.finalize(GV);
3144
3145 *Entry = GV;
3146 return ConstantAddress(GV, GV->getValueType(), Alignment);
3147}
3148
3149ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3150 const TemplateParamObjectDecl *TPO) {
3151 StringRef Name = getMangledName(TPO);
3152 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3153
3154 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3155 return ConstantAddress(GV, GV->getValueType(), Alignment);
3156
3157 ConstantEmitter Emitter(*this);
3158 llvm::Constant *Init = Emitter.emitForInitializer(
3159 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3160
3161 if (!Init) {
3162 ErrorUnsupported(TPO, "template parameter object");
3163 return ConstantAddress::invalid();
3164 }
3165
3166 auto *GV = new llvm::GlobalVariable(
3167 getModule(), Init->getType(),
3168 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3169 if (supportsCOMDAT())
3170 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3171 Emitter.finalize(GV);
3172
3173 return ConstantAddress(GV, GV->getValueType(), Alignment);
3174}
3175
3176ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3177 const AliasAttr *AA = VD->getAttr<AliasAttr>();
3178 assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void (
0) : __assert_fail ("AA && \"No alias?\"", "clang/lib/CodeGen/CodeGenModule.cpp"
, 3178, __extension__ __PRETTY_FUNCTION__))
;
3179
3180 CharUnits Alignment = getContext().getDeclAlign(VD);
3181 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3182
3183 // See if there is already something with the target's name in the module.
3184 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3185 if (Entry) {
3186 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3187 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3188 return ConstantAddress(Ptr, DeclTy, Alignment);
3189 }
3190
3191 llvm::Constant *Aliasee;
3192 if (isa<llvm::FunctionType>(DeclTy))
3193 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3194 GlobalDecl(cast<FunctionDecl>(VD)),
3195 /*ForVTable=*/false);
3196 else
3197 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3198 nullptr);
3199
3200 auto *F = cast<llvm::GlobalValue>(Aliasee);
3201 F->setLinkage(llvm::Function::ExternalWeakLinkage);
3202 WeakRefReferences.insert(F);
3203
3204 return ConstantAddress(Aliasee, DeclTy, Alignment);
3205}
3206
3207void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3208 const auto *Global = cast<ValueDecl>(GD.getDecl());
3209
3210 // Weak references don't produce any output by themselves.
3211 if (Global->hasAttr<WeakRefAttr>())
3212 return;
3213
3214 // If this is an alias definition (which otherwise looks like a declaration)
3215 // emit it now.
3216 if (Global->hasAttr<AliasAttr>())
3217 return EmitAliasDefinition(GD);
3218
3219 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3220 if (Global->hasAttr<IFuncAttr>())
3221 return emitIFuncDefinition(GD);
3222
3223 // If this is a cpu_dispatch multiversion function, emit the resolver.
3224 if (Global->hasAttr<CPUDispatchAttr>())
3225 return emitCPUDispatchDefinition(GD);
3226
3227 // If this is CUDA, be selective about which declarations we emit.
3228 if (LangOpts.CUDA) {
3229 if (LangOpts.CUDAIsDevice) {
3230 if (!Global->hasAttr<CUDADeviceAttr>() &&
3231 !Global->hasAttr<CUDAGlobalAttr>() &&
3232 !Global->hasAttr<CUDAConstantAttr>() &&
3233 !Global->hasAttr<CUDASharedAttr>() &&
3234 !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3235 !Global->getType()->isCUDADeviceBuiltinTextureType())
3236 return;
3237 } else {
3238 // We need to emit host-side 'shadows' for all global
3239 // device-side variables because the CUDA runtime needs their
3240 // size and host-side address in order to provide access to
3241 // their device-side incarnations.
3242
3243 // So device-only functions are the only things we skip.
3244 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3245 Global->hasAttr<CUDADeviceAttr>())
3246 return;
3247
3248 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3249, __extension__ __PRETTY_FUNCTION__
))
3249 "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3249, __extension__ __PRETTY_FUNCTION__
))
;
3250 }
3251 }
3252
3253 if (LangOpts.OpenMP) {
3254 // If this is OpenMP, check if it is legal to emit this global normally.
3255 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3256 return;
3257 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3258 if (MustBeEmitted(Global))
3259 EmitOMPDeclareReduction(DRD);
3260 return;
3261 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3262 if (MustBeEmitted(Global))
3263 EmitOMPDeclareMapper(DMD);
3264 return;
3265 }
3266 }
3267
3268 // Ignore declarations, they will be emitted on their first use.
3269 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3270 // Forward declarations are emitted lazily on first use.
3271 if (!FD->doesThisDeclarationHaveABody()) {
3272 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3273 return;
3274
3275 StringRef MangledName = getMangledName(GD);
3276
3277 // Compute the function info and LLVM type.
3278 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3279 llvm::Type *Ty = getTypes().GetFunctionType(FI);
3280
3281 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3282 /*DontDefer=*/false);
3283 return;
3284 }
3285 } else {
3286 const auto *VD = cast<VarDecl>(Global);
3287 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3287, __extension__ __PRETTY_FUNCTION__
))
;
3288 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3289 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3290 if (LangOpts.OpenMP) {
3291 // Emit declaration of the must-be-emitted declare target variable.
3292 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3293 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3294 bool UnifiedMemoryEnabled =
3295 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3296 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3297 !UnifiedMemoryEnabled) {
3298 (void)GetAddrOfGlobalVar(VD);
3299 } else {
3300 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr
::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3303, __extension__ __PRETTY_FUNCTION__
))
3301 (*Res == OMPDeclareTargetDeclAttr::MT_To &&(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr
::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3303, __extension__ __PRETTY_FUNCTION__
))
3302 UnifiedMemoryEnabled)) &&(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr
::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3303, __extension__ __PRETTY_FUNCTION__
))
3303 "Link clause or to clause with unified memory expected.")(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr
::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3303, __extension__ __PRETTY_FUNCTION__
))
;
3304 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3305 }
3306
3307 return;
3308 }
3309 }
3310 // If this declaration may have caused an inline variable definition to
3311 // change linkage, make sure that it's emitted.
3312 if (Context.getInlineVariableDefinitionKind(VD) ==
3313 ASTContext::InlineVariableDefinitionKind::Strong)
3314 GetAddrOfGlobalVar(VD);
3315 return;
3316 }
3317 }
3318
3319 // Defer code generation to first use when possible, e.g. if this is an inline
3320 // function. If the global must always be emitted, do it eagerly if possible
3321 // to benefit from cache locality.
3322 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3323 // Emit the definition if it can't be deferred.
3324 EmitGlobalDefinition(GD);
3325 return;
3326 }
3327
3328 // If we're deferring emission of a C++ variable with an
3329 // initializer, remember the order in which it appeared in the file.
3330 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3331 cast<VarDecl>(Global)->hasInit()) {
3332 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3333 CXXGlobalInits.push_back(nullptr);
3334 }
3335
3336 StringRef MangledName = getMangledName(GD);
3337 if (GetGlobalValue(MangledName) != nullptr) {
3338 // The value has already been used and should therefore be emitted.
3339 addDeferredDeclToEmit(GD);
3340 } else if (MustBeEmitted(Global)) {
3341 // The value must be emitted, but cannot be emitted eagerly.
3342 assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void
(0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "clang/lib/CodeGen/CodeGenModule.cpp"
, 3342, __extension__ __PRETTY_FUNCTION__))
;
3343 addDeferredDeclToEmit(GD);
3344 EmittedDeferredDecls[MangledName] = GD;
3345 } else {
3346 // Otherwise, remember that we saw a deferred decl with this name. The
3347 // first use of the mangled name will cause it to move into
3348 // DeferredDeclsToEmit.
3349 DeferredDecls[MangledName] = GD;
3350 }
3351}
3352
3353// Check if T is a class type with a destructor that's not dllimport.
3354static bool HasNonDllImportDtor(QualType T) {
3355 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3356 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3357 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3358 return true;
3359
3360 return false;
3361}
3362
3363namespace {
3364 struct FunctionIsDirectlyRecursive
3365 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3366 const StringRef Name;
3367 const Builtin::Context &BI;
3368 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3369 : Name(N), BI(C) {}
3370
3371 bool VisitCallExpr(const CallExpr *E) {
3372 const FunctionDecl *FD = E->getDirectCallee();
3373 if (!FD)
3374 return false;
3375 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3376 if (Attr && Name == Attr->getLabel())
3377 return true;
3378 unsigned BuiltinID = FD->getBuiltinID();
3379 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3380 return false;
3381 StringRef BuiltinName = BI.getName(BuiltinID);
3382 if (BuiltinName.startswith("__builtin_") &&
3383 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3384 return true;
3385 }
3386 return false;
3387 }
3388
3389 bool VisitStmt(const Stmt *S) {
3390 for (const Stmt *Child : S->children())
3391 if (Child && this->Visit(Child))
3392 return true;
3393 return false;
3394 }
3395 };
3396
3397 // Make sure we're not referencing non-imported vars or functions.
3398 struct DLLImportFunctionVisitor
3399 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3400 bool SafeToInline = true;
3401
3402 bool shouldVisitImplicitCode() const { return true; }
3403
3404 bool VisitVarDecl(VarDecl *VD) {
3405 if (VD->getTLSKind()) {
3406 // A thread-local variable cannot be imported.
3407 SafeToInline = false;
3408 return SafeToInline;
3409 }
3410
3411 // A variable definition might imply a destructor call.
3412 if (VD->isThisDeclarationADefinition())
3413 SafeToInline = !HasNonDllImportDtor(VD->getType());
3414
3415 return SafeToInline;
3416 }
3417
3418 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3419 if (const auto *D = E->getTemporary()->getDestructor())
3420 SafeToInline = D->hasAttr<DLLImportAttr>();
3421 return SafeToInline;
3422 }
3423
3424 bool VisitDeclRefExpr(DeclRefExpr *E) {
3425 ValueDecl *VD = E->getDecl();
3426 if (isa<FunctionDecl>(VD))
3427 SafeToInline = VD->hasAttr<DLLImportAttr>();
3428 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3429 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3430 return SafeToInline;
3431 }
3432
3433 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3434 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3435 return SafeToInline;
3436 }
3437
3438 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3439 CXXMethodDecl *M = E->getMethodDecl();
3440 if (!M) {
3441 // Call through a pointer to member function. This is safe to inline.
3442 SafeToInline = true;
3443 } else {
3444 SafeToInline = M->hasAttr<DLLImportAttr>();
3445 }
3446 return SafeToInline;
3447 }
3448
3449 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3450 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3451 return SafeToInline;
3452 }
3453
3454 bool VisitCXXNewExpr(CXXNewExpr *E) {
3455 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3456 return SafeToInline;
3457 }
3458 };
3459}
3460
3461// isTriviallyRecursive - Check if this function calls another
3462// decl that, because of the asm attribute or the other decl being a builtin,
3463// ends up pointing to itself.
3464bool
3465CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3466 StringRef Name;
3467 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3468 // asm labels are a special kind of mangling we have to support.
3469 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3470 if (!Attr)
3471 return false;
3472 Name = Attr->getLabel();
3473 } else {
3474 Name = FD->getName();
3475 }
3476
3477 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3478 const Stmt *Body = FD->getBody();
3479 return Body ? Walker.Visit(Body) : false;
3480}
3481
3482bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3483 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3484 return true;
3485 const auto *F = cast<FunctionDecl>(GD.getDecl());
3486 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3487 return false;
3488
3489 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3490 // Check whether it would be safe to inline this dllimport function.
3491 DLLImportFunctionVisitor Visitor;
3492 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3493 if (!Visitor.SafeToInline)
3494 return false;
3495
3496 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3497 // Implicit destructor invocations aren't captured in the AST, so the
3498 // check above can't see them. Check for them manually here.
3499 for (const Decl *Member : Dtor->getParent()->decls())
3500 if (isa<FieldDecl>(Member))
3501 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3502 return false;
3503 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3504 if (HasNonDllImportDtor(B.getType()))
3505 return false;
3506 }
3507 }
3508
3509 // Inline builtins declaration must be emitted. They often are fortified
3510 // functions.
3511 if (F->isInlineBuiltinDeclaration())
3512 return true;
3513
3514 // PR9614. Avoid cases where the source code is lying to us. An available
3515 // externally function should have an equivalent function somewhere else,
3516 // but a function that calls itself through asm label/`__builtin_` trickery is
3517 // clearly not equivalent to the real implementation.
3518 // This happens in glibc's btowc and in some configure checks.
3519 return !isTriviallyRecursive(F);
3520}
3521
3522bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3523 return CodeGenOpts.OptimizationLevel > 0;
3524}
3525
3526void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3527 llvm::GlobalValue *GV) {
3528 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3529
3530 if (FD->isCPUSpecificMultiVersion()) {
3531 auto *Spec = FD->getAttr<CPUSpecificAttr>();
3532 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3533 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3534 } else if (FD->isTargetClonesMultiVersion()) {
3535 auto *Clone = FD->getAttr<TargetClonesAttr>();
3536 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3537 if (Clone->isFirstOfVersion(I))
3538 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3539 // Ensure that the resolver function is also emitted.
3540 GetOrCreateMultiVersionResolver(GD);
3541 } else
3542 EmitGlobalFunctionDefinition(GD, GV);
3543}
3544
3545void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3546 const auto *D = cast<ValueDecl>(GD.getDecl());
3547
3548 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3549 Context.getSourceManager(),
3550 "Generating code for declaration");
3551
3552 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3553 // At -O0, don't generate IR for functions with available_externally
3554 // linkage.
3555 if (!shouldEmitFunction(GD))
3556 return;
3557
3558 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3559 std::string Name;
3560 llvm::raw_string_ostream OS(Name);
3561 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3562 /*Qualified=*/true);
3563 return Name;
3564 });
3565
3566 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3567 // Make sure to emit the definition(s) before we emit the thunks.
3568 // This is necessary for the generation of certain thunks.
3569 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3570 ABI->emitCXXStructor(GD);
3571 else if (FD->isMultiVersion())
3572 EmitMultiVersionFunctionDefinition(GD, GV);
3573 else
3574 EmitGlobalFunctionDefinition(GD, GV);
3575
3576 if (Method->isVirtual())
3577 getVTables().EmitThunks(GD);
3578
3579 return;
3580 }
3581
3582 if (FD->isMultiVersion())
3583 return EmitMultiVersionFunctionDefinition(GD, GV);
3584 return EmitGlobalFunctionDefinition(GD, GV);
3585 }
3586
3587 if (const auto *VD = dyn_cast<VarDecl>(D))
3588 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3589
3590 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "clang/lib/CodeGen/CodeGenModule.cpp", 3590)
;
3591}
3592
3593static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3594 llvm::Function *NewFn);
3595
3596static unsigned
3597TargetMVPriority(const TargetInfo &TI,
3598 const CodeGenFunction::MultiVersionResolverOption &RO) {
3599 unsigned Priority = 0;
3600 for (StringRef Feat : RO.Conditions.Features)
3601 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3602
3603 if (!RO.Conditions.Architecture.empty())
3604 Priority = std::max(
3605 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3606 return Priority;
3607}
3608
3609// Multiversion functions should be at most 'WeakODRLinkage' so that a different
3610// TU can forward declare the function without causing problems. Particularly
3611// in the cases of CPUDispatch, this causes issues. This also makes sure we
3612// work with internal linkage functions, so that the same function name can be
3613// used with internal linkage in multiple TUs.
3614llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3615 GlobalDecl GD) {
3616 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3617 if (FD->getFormalLinkage() == InternalLinkage)
3618 return llvm::GlobalValue::InternalLinkage;
3619 return llvm::GlobalValue::WeakODRLinkage;
3620}
3621
3622void CodeGenModule::emitMultiVersionFunctions() {
3623 std::vector<GlobalDecl> MVFuncsToEmit;
3624 MultiVersionFuncs.swap(MVFuncsToEmit);
3625 for (GlobalDecl GD : MVFuncsToEmit) {
3626 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3627 assert(FD && "Expected a FunctionDecl")(static_cast <bool> (FD && "Expected a FunctionDecl"
) ? void (0) : __assert_fail ("FD && \"Expected a FunctionDecl\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3627, __extension__ __PRETTY_FUNCTION__
))
;
3628
3629 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3630 if (FD->isTargetMultiVersion()) {
3631 getContext().forEachMultiversionedFunctionVersion(
3632 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3633 GlobalDecl CurGD{
3634 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3635 StringRef MangledName = getMangledName(CurGD);
3636 llvm::Constant *Func = GetGlobalValue(MangledName);
3637 if (!Func) {
3638 if (CurFD->isDefined()) {
3639 EmitGlobalFunctionDefinition(CurGD, nullptr);
3640 Func = GetGlobalValue(MangledName);
3641 } else {
3642 const CGFunctionInfo &FI =
3643 getTypes().arrangeGlobalDeclaration(GD);
3644 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3645 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3646 /*DontDefer=*/false, ForDefinition);
3647 }
3648 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3648, __extension__ __PRETTY_FUNCTION__
))
;
3649 }
3650
3651 const auto *TA = CurFD->getAttr<TargetAttr>();
3652 llvm::SmallVector<StringRef, 8> Feats;
3653 TA->getAddedFeatures(Feats);
3654
3655 Options.emplace_back(cast<llvm::Function>(Func),
3656 TA->getArchitecture(), Feats);
3657 });
3658 } else if (FD->isTargetClonesMultiVersion()) {
3659 const auto *TC = FD->getAttr<TargetClonesAttr>();
3660 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3661 ++VersionIndex) {
3662 if (!TC->isFirstOfVersion(VersionIndex))
3663 continue;
3664 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3665 VersionIndex};
3666 StringRef Version = TC->getFeatureStr(VersionIndex);
3667 StringRef MangledName = getMangledName(CurGD);
3668 llvm::Constant *Func = GetGlobalValue(MangledName);
3669 if (!Func) {
3670 if (FD->isDefined()) {
3671 EmitGlobalFunctionDefinition(CurGD, nullptr);
3672 Func = GetGlobalValue(MangledName);
3673 } else {
3674 const CGFunctionInfo &FI =
3675 getTypes().arrangeGlobalDeclaration(CurGD);
3676 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3677 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3678 /*DontDefer=*/false, ForDefinition);
3679 }
3680 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3680, __extension__ __PRETTY_FUNCTION__
))
;
3681 }
3682
3683 StringRef Architecture;
3684 llvm::SmallVector<StringRef, 1> Feature;
3685
3686 if (Version.startswith("arch="))
3687 Architecture = Version.drop_front(sizeof("arch=") - 1);
3688 else if (Version != "default")
3689 Feature.push_back(Version);
3690
3691 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3692 }
3693 } else {
3694 assert(0 && "Expected a target or target_clones multiversion function")(static_cast <bool> (0 && "Expected a target or target_clones multiversion function"
) ? void (0) : __assert_fail ("0 && \"Expected a target or target_clones multiversion function\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3694, __extension__ __PRETTY_FUNCTION__
))
;
3695 continue;
3696 }
3697
3698 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3699 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3700 ResolverConstant = IFunc->getResolver();
3701 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3702
3703 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3704
3705 if (supportsCOMDAT())
3706 ResolverFunc->setComdat(
3707 getModule().getOrInsertComdat(ResolverFunc->getName()));
3708
3709 const TargetInfo &TI = getTarget();
3710 llvm::stable_sort(
3711 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3712 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3713 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3714 });
3715 CodeGenFunction CGF(*this);
3716 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3717 }
3718
3719 // Ensure that any additions to the deferred decls list caused by emitting a
3720 // variant are emitted. This can happen when the variant itself is inline and
3721 // calls a function without linkage.
3722 if (!MVFuncsToEmit.empty())
3723 EmitDeferred();
3724
3725 // Ensure that any additions to the multiversion funcs list from either the
3726 // deferred decls or the multiversion functions themselves are emitted.
3727 if (!MultiVersionFuncs.empty())
3728 emitMultiVersionFunctions();
3729}
3730
3731void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3732 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3733 assert(FD && "Not a FunctionDecl?")(static_cast <bool> (FD && "Not a FunctionDecl?"
) ? void (0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3733, __extension__ __PRETTY_FUNCTION__
))
;
3734 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?")(static_cast <bool> (FD->isCPUDispatchMultiVersion()
&& "Not a multiversion function?") ? void (0) : __assert_fail
("FD->isCPUDispatchMultiVersion() && \"Not a multiversion function?\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3734, __extension__ __PRETTY_FUNCTION__
))
;
3735 const auto *DD = FD->getAttr<CPUDispatchAttr>();
3736 assert(DD && "Not a cpu_dispatch Function?")(static_cast <bool> (DD && "Not a cpu_dispatch Function?"
) ? void (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3736, __extension__ __PRETTY_FUNCTION__
))
;
3737
3738 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3739 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3740
3741 StringRef ResolverName = getMangledName(GD);
3742 UpdateMultiVersionNames(GD, FD, ResolverName);
3743
3744 llvm::Type *ResolverType;
3745 GlobalDecl ResolverGD;
3746 if (getTarget().supportsIFunc()) {
3747 ResolverType = llvm::FunctionType::get(
3748 llvm::PointerType::get(DeclTy,
3749 Context.getTargetAddressSpace(FD->getType())),
3750 false);
3751 }
3752 else {
3753 ResolverType = DeclTy;
3754 ResolverGD = GD;
3755 }
3756
3757 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3758 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3759 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3760 if (supportsCOMDAT())
3761 ResolverFunc->setComdat(
3762 getModule().getOrInsertComdat(ResolverFunc->getName()));
3763
3764 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3765 const TargetInfo &Target = getTarget();
3766 unsigned Index = 0;
3767 for (const IdentifierInfo *II : DD->cpus()) {
3768 // Get the name of the target function so we can look it up/create it.
3769 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3770 getCPUSpecificMangling(*this, II->getName());
3771
3772 llvm::Constant *Func = GetGlobalValue(MangledName);
3773
3774 if (!Func) {
3775 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3776 if (ExistingDecl.getDecl() &&
3777 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3778 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3779 Func = GetGlobalValue(MangledName);
3780 } else {
3781 if (!ExistingDecl.getDecl())
3782 ExistingDecl = GD.getWithMultiVersionIndex(Index);
3783
3784 Func = GetOrCreateLLVMFunction(
3785 MangledName, DeclTy, ExistingDecl,
3786 /*ForVTable=*/false, /*DontDefer=*/true,
3787 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3788 }
3789 }
3790
3791 llvm::SmallVector<StringRef, 32> Features;
3792 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3793 llvm::transform(Features, Features.begin(),
3794 [](StringRef Str) { return Str.substr(1); });
3795 llvm::erase_if(Features, [&Target](StringRef Feat) {
3796 return !Target.validateCpuSupports(Feat);
3797 });
3798 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3799 ++Index;
3800 }
3801
3802 llvm::stable_sort(
3803 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3804 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3805 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3806 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3807 });
3808
3809 // If the list contains multiple 'default' versions, such as when it contains
3810 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3811 // always run on at least a 'pentium'). We do this by deleting the 'least
3812 // advanced' (read, lowest mangling letter).
3813 while (Options.size() > 1 &&
3814 llvm::X86::getCpuSupportsMask(
3815 (Options.end() - 2)->Conditions.Features) == 0) {
3816 StringRef LHSName = (Options.end() - 2)->Function->getName();
3817 StringRef RHSName = (Options.end() - 1)->Function->getName();
3818 if (LHSName.compare(RHSName) < 0)
3819 Options.erase(Options.end() - 2);
3820 else
3821 Options.erase(Options.end() - 1);
3822 }
3823
3824 CodeGenFunction CGF(*this);
3825 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3826
3827 if (getTarget().supportsIFunc()) {
3828 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3829 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3830
3831 // Fix up function declarations that were created for cpu_specific before
3832 // cpu_dispatch was known
3833 if (!isa<llvm::GlobalIFunc>(IFunc)) {
3834 assert(cast<llvm::Function>(IFunc)->isDeclaration())(static_cast <bool> (cast<llvm::Function>(IFunc)->
isDeclaration()) ? void (0) : __assert_fail ("cast<llvm::Function>(IFunc)->isDeclaration()"
, "clang/lib/CodeGen/CodeGenModule.cpp", 3834, __extension__ __PRETTY_FUNCTION__
))
;
3835 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3836 &getModule());
3837 GI->takeName(IFunc);
3838 IFunc->replaceAllUsesWith(GI);
3839 IFunc->eraseFromParent();
3840 IFunc = GI;
3841 }
3842
3843 std::string AliasName = getMangledNameImpl(
3844 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3845 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3846 if (!AliasFunc) {
3847 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3848 &getModule());
3849 SetCommonAttributes(GD, GA);
3850 }
3851 }
3852}
3853
3854/// If a dispatcher for the specified mangled name is not in the module, create
3855/// and return an llvm Function with the specified type.
3856llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3857 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3858 assert(FD && "Not a FunctionDecl?")(static_cast <bool> (FD && "Not a FunctionDecl?"
) ? void (0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3858, __extension__ __PRETTY_FUNCTION__
))
;
3859
3860 std::string MangledName =
3861 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3862
3863 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3864 // a separate resolver).
3865 std::string ResolverName = MangledName;
3866 if (getTarget().supportsIFunc())
3867 ResolverName += ".ifunc";
3868 else if (FD->isTargetMultiVersion())
3869 ResolverName += ".resolver";
3870
3871 // If the resolver has already been created, just return it.
3872 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3873 return ResolverGV;
3874
3875 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3876 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3877
3878 // The resolver needs to be created. For target and target_clones, defer
3879 // creation until the end of the TU.
3880 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3881 MultiVersionFuncs.push_back(GD);
3882
3883 // For cpu_specific, don't create an ifunc yet because we don't know if the
3884 // cpu_dispatch will be emitted in this translation unit.
3885 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3886 llvm::Type *ResolverType = llvm::FunctionType::get(
3887 llvm::PointerType::get(
3888 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3889 false);
3890 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3891 MangledName + ".resolver", ResolverType, GlobalDecl{},
3892 /*ForVTable=*/false);
3893 llvm::GlobalIFunc *GIF =
3894 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3895 "", Resolver, &getModule());
3896 GIF->setName(ResolverName);
3897 SetCommonAttributes(FD, GIF);
3898
3899 return GIF;
3900 }
3901
3902 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3903 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3904 assert(isa<llvm::GlobalValue>(Resolver) &&(static_cast <bool> (isa<llvm::GlobalValue>(Resolver
) && "Resolver should be created for the first time")
? void (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3905, __extension__ __PRETTY_FUNCTION__
))
3905 "Resolver should be created for the first time")(static_cast <bool> (isa<llvm::GlobalValue>(Resolver
) && "Resolver should be created for the first time")
? void (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 3905, __extension__ __PRETTY_FUNCTION__
))
;
3906 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3907 return Resolver;
3908}
3909
3910/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3911/// module, create and return an llvm Function with the specified type. If there
3912/// is something in the module with the specified name, return it potentially
3913/// bitcasted to the right type.
3914///
3915/// If D is non-null, it specifies a decl that correspond to this. This is used
3916/// to set the attributes on the function when it is first created.
3917llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3918 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3919 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3920 ForDefinition_t IsForDefinition) {
3921 const Decl *D = GD.getDecl();
3922
3923 // Any attempts to use a MultiVersion function should result in retrieving
3924 // the iFunc instead. Name Mangling will handle the rest of the changes.
3925 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3926 // For the device mark the function as one that should be emitted.
3927 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3928 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3929 !DontDefer && !IsForDefinition) {
3930 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3931 GlobalDecl GDDef;
3932 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3933 GDDef = GlobalDecl(CD, GD.getCtorType());
3934 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3935 GDDef = GlobalDecl(DD, GD.getDtorType());
3936 else
3937 GDDef = GlobalDecl(FDDef);
3938 EmitGlobal(GDDef);
3939 }
3940 }
3941
3942 if (FD->isMultiVersion()) {
3943 UpdateMultiVersionNames(GD, FD, MangledName);
3944 if (!IsForDefinition)
3945 return GetOrCreateMultiVersionResolver(GD);
3946 }
3947 }
3948
3949 // Lookup the entry, lazily creating it if necessary.
3950 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3951 if (Entry) {
3952 if (WeakRefReferences.erase(Entry)) {
3953 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3954 if (FD && !FD->hasAttr<WeakAttr>())
3955 Entry->setLinkage(llvm::Function::ExternalLinkage);
3956 }
3957
3958 // Handle dropped DLL attributes.
3959 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3960 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3961 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3962 setDSOLocal(Entry);
3963 }
3964
3965 // If there are two attempts to define the same mangled name, issue an
3966 // error.
3967 if (IsForDefinition && !Entry->isDeclaration()) {
3968 GlobalDecl OtherGD;
3969 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3970 // to make sure that we issue an error only once.
3971 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3972 (GD.getCanonicalDecl().getDecl() !=
3973 OtherGD.getCanonicalDecl().getDecl()) &&
3974 DiagnosedConflictingDefinitions.insert(GD).second) {
3975 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3976 << MangledName;
3977 getDiags().Report(OtherGD.getDecl()->getLocation(),
3978 diag::note_previous_definition);
3979 }
3980 }
3981
3982 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3983 (Entry->getValueType() == Ty)) {
3984 return Entry;
3985 }
3986
3987 // Make sure the result is of the correct type.
3988 // (If function is requested for a definition, we always need to create a new
3989 // function, not just return a bitcast.)
3990 if (!IsForDefinition)
3991 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3992 }
3993
3994 // This function doesn't have a complete type (for example, the return
3995 // type is an incomplete struct). Use a fake type instead, and make
3996 // sure not to try to set attributes.
3997 bool IsIncompleteFunction = false;
3998
3999 llvm::FunctionType *FTy;
4000 if (isa<llvm::FunctionType>(Ty)) {
4001 FTy = cast<llvm::FunctionType>(Ty);
4002 } else {
4003 FTy = llvm::FunctionType::get(VoidTy, false);
4004 IsIncompleteFunction = true;
4005 }
4006
4007 llvm::Function *F =
4008 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4009 Entry ? StringRef() : MangledName, &getModule());
4010
4011 // If we already created a function with the same mangled name (but different
4012 // type) before, take its name and add it to the list of functions to be
4013 // replaced with F at the end of CodeGen.
4014 //
4015 // This happens if there is a prototype for a function (e.g. "int f()") and
4016 // then a definition of a different type (e.g. "int f(int x)").
4017 if (Entry) {
4018 F->takeName(Entry);
4019
4020 // This might be an implementation of a function without a prototype, in
4021 // which case, try to do special replacement of calls which match the new
4022 // prototype. The really key thing here is that we also potentially drop
4023 // arguments from the call site so as to make a direct call, which makes the
4024 // inliner happier and suppresses a number of optimizer warnings (!) about
4025 // dropping arguments.
4026 if (!Entry->use_empty()) {
4027 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4028 Entry->removeDeadConstantUsers();
4029 }
4030
4031 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4032 F, Entry->getValueType()->getPointerTo());
4033 addGlobalValReplacement(Entry, BC);
4034 }
4035
4036 assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName &&
"name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4036, __extension__ __PRETTY_FUNCTION__
))
;
4037 if (D)
4038 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4039 if (ExtraAttrs.hasFnAttrs()) {
4040 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4041 F->addFnAttrs(B);
4042 }
4043
4044 if (!DontDefer) {
4045 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4046 // each other bottoming out with the base dtor. Therefore we emit non-base
4047 // dtors on usage, even if there is no dtor definition in the TU.
4048 if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4049 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4050 GD.getDtorType()))
4051 addDeferredDeclToEmit(GD);
4052
4053 // This is the first use or definition of a mangled name. If there is a
4054 // deferred decl with this name, remember that we need to emit it at the end
4055 // of the file.
4056 auto DDI = DeferredDecls.find(MangledName);
4057 if (DDI != DeferredDecls.end()) {
4058 // Move the potentially referenced deferred decl to the
4059 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4060 // don't need it anymore).
4061 addDeferredDeclToEmit(DDI->second);
4062 EmittedDeferredDecls[DDI->first] = DDI->second;
4063 DeferredDecls.erase(DDI);
4064
4065 // Otherwise, there are cases we have to worry about where we're
4066 // using a declaration for which we must emit a definition but where
4067 // we might not find a top-level definition:
4068 // - member functions defined inline in their classes
4069 // - friend functions defined inline in some class
4070 // - special member functions with implicit definitions
4071 // If we ever change our AST traversal to walk into class methods,
4072 // this will be unnecessary.
4073 //
4074 // We also don't emit a definition for a function if it's going to be an
4075 // entry in a vtable, unless it's already marked as used.
4076 } else if (getLangOpts().CPlusPlus && D) {
4077 // Look for a declaration that's lexically in a record.
4078 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4079 FD = FD->getPreviousDecl()) {
4080 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4081 if (FD->doesThisDeclarationHaveABody()) {
4082 addDeferredDeclToEmit(GD.getWithDecl(FD));
4083 break;
4084 }
4085 }
4086 }
4087 }
4088 }
4089
4090 // Make sure the result is of the requested type.
4091 if (!IsIncompleteFunction) {
4092 assert(F->getFunctionType() == Ty)(static_cast <bool> (F->getFunctionType() == Ty) ? void
(0) : __assert_fail ("F->getFunctionType() == Ty", "clang/lib/CodeGen/CodeGenModule.cpp"
, 4092, __extension__ __PRETTY_FUNCTION__))
;
4093 return F;
4094 }
4095
4096 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4097 return llvm::ConstantExpr::getBitCast(F, PTy);
4098}
4099
4100/// GetAddrOfFunction - Return the address of the given function. If Ty is
4101/// non-null, then this function will use the specified type if it has to
4102/// create it (this occurs when we see a definition of the function).
4103llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4104 llvm::Type *Ty,
4105 bool ForVTable,
4106 bool DontDefer,
4107 ForDefinition_t IsForDefinition) {
4108 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&(static_cast <bool> (!cast<FunctionDecl>(GD.getDecl
())->isConsteval() && "consteval function should never be emitted"
) ? void (0) : __assert_fail ("!cast<FunctionDecl>(GD.getDecl())->isConsteval() && \"consteval function should never be emitted\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4109, __extension__ __PRETTY_FUNCTION__
))
4109 "consteval function should never be emitted")(static_cast <bool> (!cast<FunctionDecl>(GD.getDecl
())->isConsteval() && "consteval function should never be emitted"
) ? void (0) : __assert_fail ("!cast<FunctionDecl>(GD.getDecl())->isConsteval() && \"consteval function should never be emitted\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4109, __extension__ __PRETTY_FUNCTION__
))
;
4110 // If there was no specific requested type, just convert it now.
4111 if (!Ty) {
4112 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4113 Ty = getTypes().ConvertType(FD->getType());
4114 }
4115
4116 // Devirtualized destructor calls may come through here instead of via
4117 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4118 // of the complete destructor when necessary.
4119 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4120 if (getTarget().getCXXABI().isMicrosoft() &&
4121 GD.getDtorType() == Dtor_Complete &&
4122 DD->getParent()->getNumVBases() == 0)
4123 GD = GlobalDecl(DD, Dtor_Base);
4124 }
4125
4126 StringRef MangledName = getMangledName(GD);
4127 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4128 /*IsThunk=*/false, llvm::AttributeList(),
4129 IsForDefinition);
4130 // Returns kernel handle for HIP kernel stub function.
4131 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4132 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4133 auto *Handle = getCUDARuntime().getKernelHandle(
4134 cast<llvm::Function>(F->stripPointerCasts()), GD);
4135 if (IsForDefinition)
4136 return F;
4137 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4138 }
4139 return F;
4140}
4141
4142llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4143 llvm::GlobalValue *F =
4144 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4145
4146 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4147 llvm::Type::getInt8PtrTy(VMContext));
4148}
4149
4150static const FunctionDecl *
4151GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4152 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4153 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4154
4155 IdentifierInfo &CII = C.Idents.get(Name);
4156 for (const auto *Result : DC->lookup(&CII))
4157 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4158 return FD;
4159
4160 if (!C.getLangOpts().CPlusPlus)
4161 return nullptr;
4162
4163 // Demangle the premangled name from getTerminateFn()
4164 IdentifierInfo &CXXII =
4165 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4166 ? C.Idents.get("terminate")
4167 : C.Idents.get(Name);
4168
4169 for (const auto &N : {"__cxxabiv1", "std"}) {
4170 IdentifierInfo &NS = C.Idents.get(N);
4171 for (const auto *Result : DC->lookup(&NS)) {
4172 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4173 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4174 for (const auto *Result : LSD->lookup(&NS))
4175 if ((ND = dyn_cast<NamespaceDecl>(Result)))
4176 break;
4177
4178 if (ND)
4179 for (const auto *Result : ND->lookup(&CXXII))
4180 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4181 return FD;
4182 }
4183 }
4184
4185 return nullptr;
4186}
4187
4188/// CreateRuntimeFunction - Create a new runtime function with the specified
4189/// type and name.
4190llvm::FunctionCallee
4191CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4192 llvm::AttributeList ExtraAttrs, bool Local,
4193 bool AssumeConvergent) {
4194 if (AssumeConvergent) {
4195 ExtraAttrs =
4196 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4197 }
4198
4199 llvm::Constant *C =
4200 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4201 /*DontDefer=*/false, /*IsThunk=*/false,
4202 ExtraAttrs);
4203
4204 if (auto *F = dyn_cast<llvm::Function>(C)) {
4205 if (F->empty()) {
4206 F->setCallingConv(getRuntimeCC());
4207
4208 // In Windows Itanium environments, try to mark runtime functions
4209 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4210 // will link their standard library statically or dynamically. Marking
4211 // functions imported when they are not imported can cause linker errors
4212 // and warnings.
4213 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4214 !getCodeGenOpts().LTOVisibilityPublicStd) {
4215 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4216 if (!FD || FD->hasAttr<DLLImportAttr>()) {
4217 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4218 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4219 }
4220 }
4221 setDSOLocal(F);
4222 }
4223 }
4224
4225 return {FTy, C};
4226}
4227
4228/// isTypeConstant - Determine whether an object of this type can be emitted
4229/// as a constant.
4230///
4231/// If ExcludeCtor is true, the duration when the object's constructor runs
4232/// will not be considered. The caller will need to verify that the object is
4233/// not written to during its construction.
4234bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4235 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4236 return false;
4237
4238 if (Context.getLangOpts().CPlusPlus) {
4239 if (const CXXRecordDecl *Record
4240 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4241 return ExcludeCtor && !Record->hasMutableFields() &&
4242 Record->hasTrivialDestructor();
4243 }
4244
4245 return true;
4246}
4247
4248/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4249/// create and return an llvm GlobalVariable with the specified type and address
4250/// space. If there is something in the module with the specified name, return
4251/// it potentially bitcasted to the right type.
4252///
4253/// If D is non-null, it specifies a decl that correspond to this. This is used
4254/// to set the attributes on the global when it is first created.
4255///
4256/// If IsForDefinition is true, it is guaranteed that an actual global with
4257/// type Ty will be returned, not conversion of a variable with the same
4258/// mangled name but some other type.
4259llvm::Constant *
4260CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4261 LangAS AddrSpace, const VarDecl *D,
4262 ForDefinition_t IsForDefinition) {
4263 // Lookup the entry, lazily creating it if necessary.
4264 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4265 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4266 if (Entry) {
4267 if (WeakRefReferences.erase(Entry)) {
4268 if (D && !D->hasAttr<WeakAttr>())
4269 Entry->setLinkage(llvm::Function::ExternalLinkage);
4270 }
4271
4272 // Handle dropped DLL attributes.
4273 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4274 !shouldMapVisibilityToDLLExport(D))
4275 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4276
4277 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4278 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4279
4280 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4281 return Entry;
4282
4283 // If there are two attempts to define the same mangled name, issue an
4284 // error.
4285 if (IsForDefinition && !Entry->isDeclaration()) {
4286 GlobalDecl OtherGD;
4287 const VarDecl *OtherD;
4288
4289 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4290 // to make sure that we issue an error only once.
4291 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4292 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4293 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4294 OtherD->hasInit() &&
4295 DiagnosedConflictingDefinitions.insert(D).second) {
4296 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4297 << MangledName;
4298 getDiags().Report(OtherGD.getDecl()->getLocation(),
4299 diag::note_previous_definition);
4300 }
4301 }
4302
4303 // Make sure the result is of the correct type.
4304 if (Entry->getType()->getAddressSpace() != TargetAS) {
4305 return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4306 Ty->getPointerTo(TargetAS));
4307 }
4308
4309 // (If global is requested for a definition, we always need to create a new
4310 // global, not just return a bitcast.)
4311 if (!IsForDefinition)
4312 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4313 }
4314
4315 auto DAddrSpace = GetGlobalVarAddressSpace(D);
4316
4317 auto *GV = new llvm::GlobalVariable(
4318 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4319 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4320 getContext().getTargetAddressSpace(DAddrSpace));
4321
4322 // If we already created a global with the same mangled name (but different
4323 // type) before, take its name and remove it from its parent.
4324 if (Entry) {
4325 GV->takeName(Entry);
4326
4327 if (!Entry->use_empty()) {
4328 llvm::Constant *NewPtrForOldDecl =
4329 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4330 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4331 }
4332
4333 Entry->eraseFromParent();
4334 }
4335
4336 // This is the first use or definition of a mangled name. If there is a
4337 // deferred decl with this name, remember that we need to emit it at the end
4338 // of the file.
4339 auto DDI = DeferredDecls.find(MangledName);
4340 if (DDI != DeferredDecls.end()) {
4341 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4342 // list, and remove it from DeferredDecls (since we don't need it anymore).
4343 addDeferredDeclToEmit(DDI->second);
4344 EmittedDeferredDecls[DDI->first] = DDI->second;
4345 DeferredDecls.erase(DDI);
4346 }
4347
4348 // Handle things which are present even on external declarations.
4349 if (D) {
4350 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4351 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4352
4353 // FIXME: This code is overly simple and should be merged with other global
4354 // handling.
4355 GV->setConstant(isTypeConstant(D->getType(), false));
4356
4357 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4358
4359 setLinkageForGV(GV, D);
4360
4361 if (D->getTLSKind()) {
4362 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4363 CXXThreadLocals.push_back(D);
4364 setTLSMode(GV, *D);
4365 }
4366
4367 setGVProperties(GV, D);
4368
4369 // If required by the ABI, treat declarations of static data members with
4370 // inline initializers as definitions.
4371 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4372 EmitGlobalVarDefinition(D);
4373 }
4374
4375 // Emit section information for extern variables.
4376 if (D->hasExternalStorage()) {
4377 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4378 GV->setSection(SA->getName());
4379 }
4380
4381 // Handle XCore specific ABI requirements.
4382 if (getTriple().getArch() == llvm::Triple::xcore &&
4383 D->getLanguageLinkage() == CLanguageLinkage &&
4384 D->getType().isConstant(Context) &&
4385 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4386 GV->setSection(".cp.rodata");
4387
4388 // Check if we a have a const declaration with an initializer, we may be
4389 // able to emit it as available_externally to expose it's value to the
4390 // optimizer.
4391 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4392 D->getType().isConstQualified() && !GV->hasInitializer() &&
4393 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4394 const auto *Record =
4395 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4396 bool HasMutableFields = Record && Record->hasMutableFields();
4397 if (!HasMutableFields) {
4398 const VarDecl *InitDecl;
4399 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4400 if (InitExpr) {
4401 ConstantEmitter emitter(*this);
4402 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4403 if (Init) {
4404 auto *InitType = Init->getType();
4405 if (GV->getValueType() != InitType) {
4406 // The type of the initializer does not match the definition.
4407 // This happens when an initializer has a different type from
4408 // the type of the global (because of padding at the end of a
4409 // structure for instance).
4410 GV->setName(StringRef());
4411 // Make a new global with the correct type, this is now guaranteed
4412 // to work.
4413 auto *NewGV = cast<llvm::GlobalVariable>(
4414 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4415 ->stripPointerCasts());
4416
4417 // Erase the old global, since it is no longer used.
4418 GV->eraseFromParent();
4419 GV = NewGV;
4420 } else {
4421 GV->setInitializer(Init);
4422 GV->setConstant(true);
4423 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4424 }
4425 emitter.finalize(GV);
4426 }
4427 }
4428 }
4429 }
4430 }
4431
4432 if (GV->isDeclaration()) {
4433 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4434 // External HIP managed variables needed to be recorded for transformation
4435 // in both device and host compilations.
4436 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4437 D->hasExternalStorage())
4438 getCUDARuntime().handleVarRegistration(D, *GV);
4439 }
4440
4441 if (D)
4442 SanitizerMD->reportGlobal(GV, *D);
4443
4444 LangAS ExpectedAS =
4445 D ? D->getType().getAddressSpace()
4446 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4447 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS)(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == TargetAS) ? void (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == TargetAS"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4447, __extension__ __PRETTY_FUNCTION__
))
;
4448 if (DAddrSpace != ExpectedAS) {
4449 return getTargetCodeGenInfo().performAddrSpaceCast(
4450 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4451 }
4452
4453 return GV;
4454}
4455
4456llvm::Constant *
4457CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4458 const Decl *D = GD.getDecl();
4459
4460 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4461 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4462 /*DontDefer=*/false, IsForDefinition);
4463
4464 if (isa<CXXMethodDecl>(D)) {
4465 auto FInfo =
4466 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4467 auto Ty = getTypes().GetFunctionType(*FInfo);
4468 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4469 IsForDefinition);
4470 }
4471
4472 if (isa<FunctionDecl>(D)) {
4473 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4474 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4475 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4476 IsForDefinition);
4477 }
4478
4479 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4480}
4481
4482llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4483 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4484 unsigned Alignment) {
4485 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4486 llvm::GlobalVariable *OldGV = nullptr;
4487
4488 if (GV) {
4489 // Check if the variable has the right type.
4490 if (GV->getValueType() == Ty)
4491 return GV;
4492
4493 // Because C++ name mangling, the only way we can end up with an already
4494 // existing global with the same name is if it has been declared extern "C".
4495 assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!"
) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4495, __extension__ __PRETTY_FUNCTION__
))
;
4496 OldGV = GV;
4497 }
4498
4499 // Create a new variable.
4500 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4501 Linkage, nullptr, Name);
4502
4503 if (OldGV) {
4504 // Replace occurrences of the old variable if needed.
4505 GV->takeName(OldGV);
4506
4507 if (!OldGV->use_empty()) {
4508 llvm::Constant *NewPtrForOldDecl =
4509 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4510 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4511 }
4512
4513 OldGV->eraseFromParent();
4514 }
4515
4516 if (supportsCOMDAT() && GV->isWeakForLinker() &&
4517 !GV->hasAvailableExternallyLinkage())
4518 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4519
4520 GV->setAlignment(llvm::MaybeAlign(Alignment));
4521
4522 return GV;
4523}
4524
4525/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4526/// given global variable. If Ty is non-null and if the global doesn't exist,
4527/// then it will be created with the specified type instead of whatever the
4528/// normal requested type would be. If IsForDefinition is true, it is guaranteed
4529/// that an actual global with type Ty will be returned, not conversion of a
4530/// variable with the same mangled name but some other type.
4531llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4532 llvm::Type *Ty,
4533 ForDefinition_t IsForDefinition) {
4534 assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() &&
"Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4534, __extension__ __PRETTY_FUNCTION__
))
;
4535 QualType ASTTy = D->getType();
4536 if (!Ty)
4537 Ty = getTypes().ConvertTypeForMem(ASTTy);
4538
4539 StringRef MangledName = getMangledName(D);
4540 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4541 IsForDefinition);
4542}
4543
4544/// CreateRuntimeVariable - Create a new runtime global variable with the
4545/// specified type and name.
4546llvm::Constant *
4547CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4548 StringRef Name) {
4549 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4550 : LangAS::Default;
4551 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4552 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4553 return Ret;
4554}
4555
4556void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4557 assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!"
) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4557, __extension__ __PRETTY_FUNCTION__
))
;
4558
4559 StringRef MangledName = getMangledName(D);
4560 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4561
4562 // We already have a definition, not declaration, with the same mangled name.
4563 // Emitting of declaration is not required (and actually overwrites emitted
4564 // definition).
4565 if (GV && !GV->isDeclaration())
4566 return;
4567
4568 // If we have not seen a reference to this variable yet, place it into the
4569 // deferred declarations table to be emitted if needed later.
4570 if (!MustBeEmitted(D) && !GV) {
4571 DeferredDecls[MangledName] = D;
4572 return;
4573 }
4574
4575 // The tentative definition is the only definition.
4576 EmitGlobalVarDefinition(D);
4577}
4578
4579void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4580 EmitExternalVarDeclaration(D);
4581}
4582
4583CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4584 return Context.toCharUnitsFromBits(
4585 getDataLayout().getTypeStoreSizeInBits(Ty));
4586}
4587
4588LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4589 if (LangOpts.OpenCL) {
4590 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4591 assert(AS == LangAS::opencl_global ||(static_cast <bool> (AS == LangAS::opencl_global || AS ==
LangAS::opencl_global_device || AS == LangAS::opencl_global_host
|| AS == LangAS::opencl_constant || AS == LangAS::opencl_local
|| AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail
("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
4592 AS == LangAS::opencl_global_device ||(static_cast <bool> (AS == LangAS::opencl_global || AS ==
LangAS::opencl_global_device || AS == LangAS::opencl_global_host
|| AS == LangAS::opencl_constant || AS == LangAS::opencl_local
|| AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail
("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
4593 AS == LangAS::opencl_global_host ||(static_cast <bool> (AS == LangAS::opencl_global || AS ==
LangAS::opencl_global_device || AS == LangAS::opencl_global_host
|| AS == LangAS::opencl_constant || AS == LangAS::opencl_local
|| AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail
("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
4594 AS == LangAS::opencl_constant ||(static_cast <bool> (AS == LangAS::opencl_global || AS ==
LangAS::opencl_global_device || AS == LangAS::opencl_global_host
|| AS == LangAS::opencl_constant || AS == LangAS::opencl_local
|| AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail
("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
4595 AS == LangAS::opencl_local ||(static_cast <bool> (AS == LangAS::opencl_global || AS ==
LangAS::opencl_global_device || AS == LangAS::opencl_global_host
|| AS == LangAS::opencl_constant || AS == LangAS::opencl_local
|| AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail
("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
4596 AS >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AS == LangAS::opencl_global || AS ==
LangAS::opencl_global_device || AS == LangAS::opencl_global_host
|| AS == LangAS::opencl_constant || AS == LangAS::opencl_local
|| AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail
("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace"
, "clang/lib/CodeGen/CodeGenModule.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
;
4597 return AS;
4598 }
4599
4600 if (LangOpts.SYCLIsDevice &&
4601 (!D || D->getType().getAddressSpace() == LangAS::Default))
4602 return LangAS::sycl_global;
4603
4604 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4605 if (D && D->hasAttr<CUDAConstantAttr>())
4606 return LangAS::cuda_constant;
4607 else if (D && D->hasAttr<CUDASharedAttr>())
4608 return LangAS::cuda_shared;
4609 else if (D && D->hasAttr<CUDADeviceAttr>())
4610 return LangAS::cuda_device;
4611 else if (D && D->getType().isConstQualified())
4612 return LangAS::cuda_constant;
4613 else
4614 return LangAS::cuda_device;
4615 }
4616
4617 if (LangOpts.OpenMP) {
4618 LangAS AS;
4619 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4620 return AS;
4621 }
4622 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4623}
4624
4625LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4626 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4627 if (LangOpts.OpenCL)
4628 return LangAS::opencl_constant;
4629 if (LangOpts.SYCLIsDevice)
4630 return LangAS::sycl_global;
4631 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4632 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4633 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4634 // with OpVariable instructions with Generic storage class which is not
4635 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4636 // UniformConstant storage class is not viable as pointers to it may not be
4637 // casted to Generic pointers which are used to model HIP's "flat" pointers.
4638 return LangAS::cuda_device;
4639 if (auto AS = getTarget().getConstantAddressSpace())
4640 return *AS;
4641 return LangAS::Default;
4642}
4643
4644// In address space agnostic languages, string literals are in default address
4645// space in AST. However, certain targets (e.g. amdgcn) request them to be
4646// emitted in constant address space in LLVM IR. To be consistent with other
4647// parts of AST, string literal global variables in constant address space
4648// need to be casted to default address space before being put into address
4649// map and referenced by other part of CodeGen.
4650// In OpenCL, string literals are in constant address space in AST, therefore
4651// they should not be casted to default address space.
4652static llvm::Constant *
4653castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4654 llvm::GlobalVariable *GV) {
4655 llvm::Constant *Cast = GV;
4656 if (!CGM.getLangOpts().OpenCL) {
4657 auto AS = CGM.GetGlobalConstantAddressSpace();
4658 if (AS != LangAS::Default)
4659 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4660 CGM, GV, AS, LangAS::Default,
4661 GV->getValueType()->getPointerTo(
4662 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4663 }
4664 return Cast;
4665}
4666
4667template<typename SomeDecl>
4668void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4669 llvm::GlobalValue *GV) {
4670 if (!getLangOpts().CPlusPlus)
4671 return;
4672
4673 // Must have 'used' attribute, or else inline assembly can't rely on
4674 // the name existing.
4675 if (!D->template hasAttr<UsedAttr>())
4676 return;
4677
4678 // Must have internal linkage and an ordinary name.
4679 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4680 return;
4681
4682 // Must be in an extern "C" context. Entities declared directly within
4683 // a record are not extern "C" even if the record is in such a context.
4684 const SomeDecl *First = D->getFirstDecl();
4685 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4686 return;
4687
4688 // OK, this is an internal linkage entity inside an extern "C" linkage
4689 // specification. Make a note of that so we can give it the "expected"
4690 // mangled name if nothing else is using that name.
4691 std::pair<StaticExternCMap::iterator, bool> R =
4692 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4693
4694 // If we have multiple internal linkage entities with the same name
4695 // in extern "C" regions, none of them gets that name.
4696 if (!R.second)
4697 R.first->second = nullptr;
4698}
4699
4700static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4701 if (!CGM.supportsCOMDAT())
4702 return false;
4703
4704 if (D.hasAttr<SelectAnyAttr>())
4705 return true;
4706
4707 GVALinkage Linkage;
4708 if (auto *VD = dyn_cast<VarDecl>(&D))
4709 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4710 else
4711 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4712
4713 switch (Linkage) {
4714 case GVA_Internal:
4715 case GVA_AvailableExternally:
4716 case GVA_StrongExternal:
4717 return false;
4718 case GVA_DiscardableODR:
4719 case GVA_StrongODR:
4720 return true;
4721 }
4722 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "clang/lib/CodeGen/CodeGenModule.cpp"
, 4722)
;
4723}
4724
4725void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4726 llvm::GlobalObject &GO) {
4727 if (!shouldBeInCOMDAT(*this, D))
4728 return;
4729 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4730}
4731
4732/// Pass IsTentative as true if you want to create a tentative definition.
4733void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4734 bool IsTentative) {
4735 // OpenCL global variables of sampler type are translated to function calls,
4736 // therefore no need to be translated.
4737 QualType ASTTy = D->getType();
4738 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4739 return;
4740
4741 // If this is OpenMP device, check if it is legal to emit this global
4742 // normally.
4743 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4744 OpenMPRuntime->emitTargetGlobalVariable(D))
4745 return;
4746
4747 llvm::TrackingVH<llvm::Constant> Init;
4748 bool NeedsGlobalCtor = false;
4749 bool NeedsGlobalDtor =
4750 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4751
4752 const VarDecl *InitDecl;
4753 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4754
4755 Optional<ConstantEmitter> emitter;
4756
4757 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4758 // as part of their declaration." Sema has already checked for
4759 // error cases, so we just need to set Init to UndefValue.
4760 bool IsCUDASharedVar =
4761 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4762 // Shadows of initialized device-side global variables are also left
4763 // undefined.
4764 // Managed Variables should be initialized on both host side and device side.
4765 bool IsCUDAShadowVar =
4766 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4767 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4768 D->hasAttr<CUDASharedAttr>());
4769 bool IsCUDADeviceShadowVar =
4770 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4771 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4772 D->getType()->isCUDADeviceBuiltinTextureType());
4773 if (getLangOpts().CUDA &&
4774 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4775 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4776 else if (D->hasAttr<LoaderUninitializedAttr>())
4777 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4778 else if (!InitExpr) {
4779 // This is a tentative definition; tentative definitions are
4780 // implicitly initialized with { 0 }.
4781 //
4782 // Note that tentative definitions are only emitted at the end of
4783 // a translation unit, so they should never have incomplete
4784 // type. In addition, EmitTentativeDefinition makes sure that we
4785 // never attempt to emit a tentative definition if a real one
4786 // exists. A use may still exists, however, so we still may need
4787 // to do a RAUW.
4788 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() &&
"Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4788, __extension__ __PRETTY_FUNCTION__
))
;
4789 Init = EmitNullConstant(D->getType());
4790 } else {
4791 initializedGlobalDecl = GlobalDecl(D);
4792 emitter.emplace(*this);
4793 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4794 if (!Initializer) {
4795 QualType T = InitExpr->getType();
4796 if (D->getType()->isReferenceType())
4797 T = D->getType();
4798
4799 if (getLangOpts().CPlusPlus) {
4800 if (InitDecl->hasFlexibleArrayInit(getContext()))
4801 ErrorUnsupported(D, "flexible array initializer");
4802 Init = EmitNullConstant(T);
4803 NeedsGlobalCtor = true;
4804 } else {
4805 ErrorUnsupported(D, "static initializer");
4806 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4807 }
4808 } else {
4809 Init = Initializer;
4810 // We don't need an initializer, so remove the entry for the delayed
4811 // initializer position (just in case this entry was delayed) if we
4812 // also don't need to register a destructor.
4813 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4814 DelayedCXXInitPosition.erase(D);
4815
4816#ifndef NDEBUG
4817 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4818 InitDecl->getFlexibleArrayInitChars(getContext());
4819 CharUnits CstSize = CharUnits::fromQuantity(
4820 getDataLayout().getTypeAllocSize(Init->getType()));
4821 assert(VarSize == CstSize && "Emitted constant has unexpected size")(static_cast <bool> (VarSize == CstSize && "Emitted constant has unexpected size"
) ? void (0) : __assert_fail ("VarSize == CstSize && \"Emitted constant has unexpected size\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 4821, __extension__ __PRETTY_FUNCTION__
))
;
4822#endif
4823 }
4824 }
4825
4826 llvm::Type* InitType = Init->getType();
4827 llvm::Constant *Entry =
4828 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4829
4830 // Strip off pointer casts if we got them.
4831 Entry = Entry->stripPointerCasts();
4832
4833 // Entry is now either a Function or GlobalVariable.
4834 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4835
4836 // We have a definition after a declaration with the wrong type.
4837 // We must make a new GlobalVariable* and update everything that used OldGV
4838 // (a declaration or tentative definition) with the new GlobalVariable*
4839 // (which will be a definition).
4840 //
4841 // This happens if there is a prototype for a global (e.g.
4842 // "extern int x[];") and then a definition of a different type (e.g.
4843 // "int x[10];"). This also happens when an initializer has a different type
4844 // from the type of the global (this happens with unions).
4845 if (!GV || GV->getValueType() != InitType ||
4846 GV->getType()->getAddressSpace() !=
4847 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4848
4849 // Move the old entry aside so that we'll create a new one.
4850 Entry->setName(StringRef());
4851
4852 // Make a new global with the correct type, this is now guaranteed to work.
4853 GV = cast<llvm::GlobalVariable>(
4854 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4855 ->stripPointerCasts());
4856
4857 // Replace all uses of the old global with the new global
4858 llvm::Constant *NewPtrForOldDecl =
4859 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4860 Entry->getType());
4861 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4862
4863 // Erase the old global, since it is no longer used.
4864 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4865 }
4866
4867 MaybeHandleStaticInExternC(D, GV);
4868
4869 if (D->hasAttr<AnnotateAttr>())
4870 AddGlobalAnnotations(D, GV);
4871
4872 // Set the llvm linkage type as appropriate.
4873 llvm::GlobalValue::LinkageTypes Linkage =
4874 getLLVMLinkageVarDefinition(D, GV->isConstant());
4875
4876 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4877 // the device. [...]"
4878 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4879 // __device__, declares a variable that: [...]
4880 // Is accessible from all the threads within the grid and from the host
4881 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4882 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4883 if (GV && LangOpts.CUDA) {
4884 if (LangOpts.CUDAIsDevice) {
4885 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4886 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4887 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4888 D->getType()->isCUDADeviceBuiltinTextureType()))
4889 GV->setExternallyInitialized(true);
4890 } else {
4891 getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4892 }
4893 getCUDARuntime().handleVarRegistration(D, *GV);
4894 }
4895
4896 GV->setInitializer(Init);
4897 if (emitter)
4898 emitter->finalize(GV);
4899
4900 // If it is safe to mark the global 'constant', do so now.
4901 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4902 isTypeConstant(D->getType(), true));
4903
4904 // If it is in a read-only section, mark it 'constant'.
4905 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4906 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4907 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4908 GV->setConstant(true);
4909 }
4910
4911 CharUnits AlignVal = getContext().getDeclAlign(D);
4912 // Check for alignment specifed in an 'omp allocate' directive.
4913 if (llvm::Optional<CharUnits> AlignValFromAllocate =
4914 getOMPAllocateAlignment(D))
4915 AlignVal = *AlignValFromAllocate;
4916 GV->setAlignment(AlignVal.getAsAlign());
4917
4918 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4919 // function is only defined alongside the variable, not also alongside
4920 // callers. Normally, all accesses to a thread_local go through the
4921 // thread-wrapper in order to ensure initialization has occurred, underlying
4922 // variable will never be used other than the thread-wrapper, so it can be
4923 // converted to internal linkage.
4924 //
4925 // However, if the variable has the 'constinit' attribute, it _can_ be
4926 // referenced directly, without calling the thread-wrapper, so the linkage
4927 // must not be changed.
4928 //
4929 // Additionally, if the variable isn't plain external linkage, e.g. if it's
4930 // weak or linkonce, the de-duplication semantics are important to preserve,
4931 // so we don't change the linkage.
4932 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4933 Linkage == llvm::GlobalValue::ExternalLinkage &&
4934 Context.getTargetInfo().getTriple().isOSDarwin() &&
4935 !D->hasAttr<ConstInitAttr>())
4936 Linkage = llvm::GlobalValue::InternalLinkage;
4937
4938 GV->setLinkage(Linkage);
4939 if (D->hasAttr<DLLImportAttr>())
4940 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4941 else if (D->hasAttr<DLLExportAttr>())
4942 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4943 else
4944 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4945
4946 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4947 // common vars aren't constant even if declared const.
4948 GV->setConstant(false);
4949 // Tentative definition of global variables may be initialized with
4950 // non-zero null pointers. In this case they should have weak linkage
4951 // since common linkage must have zero initializer and must not have
4952 // explicit section therefore cannot have non-zero initial value.
4953 if (!GV->getInitializer()->isNullValue())
4954 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4955 }
4956
4957 setNonAliasAttributes(D, GV);
4958
4959 if (D->getTLSKind() && !GV->isThreadLocal()) {
4960 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4961 CXXThreadLocals.push_back(D);
4962 setTLSMode(GV, *D);
4963 }
4964
4965 maybeSetTrivialComdat(*D, *GV);
4966
4967 // Emit the initializer function if necessary.
4968 if (NeedsGlobalCtor || NeedsGlobalDtor)
4969 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4970
4971 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4972
4973 // Emit global variable debug information.
4974 if (CGDebugInfo *DI = getModuleDebugInfo())
4975 if (getCodeGenOpts().hasReducedDebugInfo())
4976 DI->EmitGlobalVariable(GV, D);
4977}
4978
4979void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4980 if (CGDebugInfo *DI = getModuleDebugInfo())
4981 if (getCodeGenOpts().hasReducedDebugInfo()) {
4982 QualType ASTTy = D->getType();
4983 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4984 llvm::Constant *GV =
4985 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4986 DI->EmitExternalVariable(
4987 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4988 }
4989}
4990
4991static bool isVarDeclStrongDefinition(const ASTContext &Context,
4992 CodeGenModule &CGM, const VarDecl *D,
4993 bool NoCommon) {
4994 // Don't give variables common linkage if -fno-common was specified unless it
4995 // was overridden by a NoCommon attribute.
4996 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4997 return true;
4998
4999 // C11 6.9.2/2:
5000 // A declaration of an identifier for an object that has file scope without
5001 // an initializer, and without a storage-class specifier or with the
5002 // storage-class specifier static, constitutes a tentative definition.
5003 if (D->getInit() || D->hasExternalStorage())
5004 return true;
5005
5006 // A variable cannot be both common and exist in a section.
5007 if (D->hasAttr<SectionAttr>())
5008 return true;
5009
5010 // A variable cannot be both common and exist in a section.
5011 // We don't try to determine which is the right section in the front-end.
5012 // If no specialized section name is applicable, it will resort to default.
5013 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5014 D->hasAttr<PragmaClangDataSectionAttr>() ||
5015 D->hasAttr<PragmaClangRelroSectionAttr>() ||
5016 D->hasAttr<PragmaClangRodataSectionAttr>())
5017 return true;
5018
5019 // Thread local vars aren't considered common linkage.
5020 if (D->getTLSKind())
5021 return true;
5022
5023 // Tentative definitions marked with WeakImportAttr are true definitions.
5024 if (D->hasAttr<WeakImportAttr>())
5025 return true;
5026
5027 // A variable cannot be both common and exist in a comdat.
5028 if (shouldBeInCOMDAT(CGM, *D))
5029 return true;
5030
5031 // Declarations with a required alignment do not have common linkage in MSVC
5032 // mode.
5033 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5034 if (D->hasAttr<AlignedAttr>())
5035 return true;
5036 QualType VarType = D->getType();
5037 if (Context.isAlignmentRequired(VarType))
5038 return true;
5039
5040 if (const auto *RT = VarType->getAs<RecordType>()) {
5041 const RecordDecl *RD = RT->getDecl();
5042 for (const FieldDecl *FD : RD->fields()) {
5043 if (FD->isBitField())
5044 continue;
5045 if (FD->hasAttr<AlignedAttr>())
5046 return true;
5047 if (Context.isAlignmentRequired(FD->getType()))
5048 return true;
5049 }
5050 }
5051 }
5052
5053 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5054 // common symbols, so symbols with greater alignment requirements cannot be
5055 // common.
5056 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5057 // alignments for common symbols via the aligncomm directive, so this
5058 // restriction only applies to MSVC environments.
5059 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5060 Context.getTypeAlignIfKnown(D->getType()) >
5061 Context.toBits(CharUnits::fromQuantity(32)))
5062 return true;
5063
5064 return false;
5065}
5066
5067llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5068 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5069 if (Linkage == GVA_Internal)
5070 return llvm::Function::InternalLinkage;
5071
5072 if (D->hasAttr<WeakAttr>())
5073 return llvm::GlobalVariable::WeakAnyLinkage;
5074
5075 if (const auto *FD = D->getAsFunction())
5076 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5077 return llvm::GlobalVariable::LinkOnceAnyLinkage;
5078
5079 // We are guaranteed to have a strong definition somewhere else,
5080 // so we can use available_externally linkage.
5081 if (Linkage == GVA_AvailableExternally)
5082 return llvm::GlobalValue::AvailableExternallyLinkage;
5083
5084 // Note that Apple's kernel linker doesn't support symbol
5085 // coalescing, so we need to avoid linkonce and weak linkages there.
5086 // Normally, this means we just map to internal, but for explicit
5087 // instantiations we'll map to external.
5088
5089 // In C++, the compiler has to emit a definition in every translation unit
5090 // that references the function. We should use linkonce_odr because
5091 // a) if all references in this translation unit are optimized away, we
5092 // don't need to codegen it. b) if the function persists, it needs to be
5093 // merged with other definitions. c) C++ has the ODR, so we know the
5094 // definition is dependable.
5095 if (Linkage == GVA_DiscardableODR)
5096 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5097 : llvm::Function::InternalLinkage;
5098
5099 // An explicit instantiation of a template has weak linkage, since
5100 // explicit instantiations can occur in multiple translation units
5101 // and must all be equivalent. However, we are not allowed to
5102 // throw away these explicit instantiations.
5103 //
5104 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5105 // so say that CUDA templates are either external (for kernels) or internal.
5106 // This lets llvm perform aggressive inter-procedural optimizations. For
5107 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5108 // therefore we need to follow the normal linkage paradigm.
5109 if (Linkage == GVA_StrongODR) {
5110 if (getLangOpts().AppleKext)
5111 return llvm::Function::ExternalLinkage;
5112 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5113 !getLangOpts().GPURelocatableDeviceCode)
5114 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5115 : llvm::Function::InternalLinkage;
5116 return llvm::Function::WeakODRLinkage;
5117 }
5118
5119 // C++ doesn't have tentative definitions and thus cannot have common
5120 // linkage.
5121 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5122 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5123 CodeGenOpts.NoCommon))
5124 return llvm::GlobalVariable::CommonLinkage;
5125
5126 // selectany symbols are externally visible, so use weak instead of
5127 // linkonce. MSVC optimizes away references to const selectany globals, so
5128 // all definitions should be the same and ODR linkage should be used.
5129 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5130 if (D->hasAttr<SelectAnyAttr>())
5131 return llvm::GlobalVariable::WeakODRLinkage;
5132
5133 // Otherwise, we have strong external linkage.
5134 assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void
(0) : __assert_fail ("Linkage == GVA_StrongExternal", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5134, __extension__ __PRETTY_FUNCTION__))
;
5135 return llvm::GlobalVariable::ExternalLinkage;
5136}
5137
5138llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5139 const VarDecl *VD, bool IsConstant) {
5140 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5141 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5142}
5143
5144/// Replace the uses of a function that was declared with a non-proto type.
5145/// We want to silently drop extra arguments from call sites
5146static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5147 llvm::Function *newFn) {
5148 // Fast path.
5149 if (old->use_empty()) return;
5150
5151 llvm::Type *newRetTy = newFn->getReturnType();
5152 SmallVector<llvm::Value*, 4> newArgs;
5153
5154 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5155 ui != ue; ) {
5156 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5157 llvm::User *user = use->getUser();
5158
5159 // Recognize and replace uses of bitcasts. Most calls to
5160 // unprototyped functions will use bitcasts.
5161 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5162 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5163 replaceUsesOfNonProtoConstant(bitcast, newFn);
5164 continue;
5165 }
5166
5167 // Recognize calls to the function.
5168 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5169 if (!callSite) continue;
5170 if (!callSite->isCallee(&*use))
5171 continue;
5172
5173 // If the return types don't match exactly, then we can't
5174 // transform this call unless it's dead.
5175 if (callSite->getType() != newRetTy && !callSite->use_empty())
5176 continue;
5177
5178 // Get the call site's attribute list.
5179 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5180 llvm::AttributeList oldAttrs = callSite->getAttributes();
5181
5182 // If the function was passed too few arguments, don't transform.
5183 unsigned newNumArgs = newFn->arg_size();
5184 if (callSite->arg_size() < newNumArgs)
5185 continue;
5186
5187 // If extra arguments were passed, we silently drop them.
5188 // If any of the types mismatch, we don't transform.
5189 unsigned argNo = 0;
5190 bool dontTransform = false;
5191 for (llvm::Argument &A : newFn->args()) {
5192 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5193 dontTransform = true;
5194 break;
5195 }
5196
5197 // Add any parameter attributes.
5198 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5199 argNo++;
5200 }
5201 if (dontTransform)
5202 continue;
5203
5204 // Okay, we can transform this. Create the new call instruction and copy
5205 // over the required information.
5206 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5207
5208 // Copy over any operand bundles.
5209 SmallVector<llvm::OperandBundleDef, 1> newBundles;
5210 callSite->getOperandBundlesAsDefs(newBundles);
5211
5212 llvm::CallBase *newCall;
5213 if (isa<llvm::CallInst>(callSite)) {
5214 newCall =
5215 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5216 } else {
5217 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5218 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5219 oldInvoke->getUnwindDest(), newArgs,
5220 newBundles, "", callSite);
5221 }
5222 newArgs.clear(); // for the next iteration
5223
5224 if (!newCall->getType()->isVoidTy())
5225 newCall->takeName(callSite);
5226 newCall->setAttributes(
5227 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5228 oldAttrs.getRetAttrs(), newArgAttrs));
5229 newCall->setCallingConv(callSite->getCallingConv());
5230
5231 // Finally, remove the old call, replacing any uses with the new one.
5232 if (!callSite->use_empty())
5233 callSite->replaceAllUsesWith(newCall);
5234
5235 // Copy debug location attached to CI.
5236 if (callSite->getDebugLoc())
5237 newCall->setDebugLoc(callSite->getDebugLoc());
5238
5239 callSite->eraseFromParent();
5240 }
5241}
5242
5243/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5244/// implement a function with no prototype, e.g. "int foo() {}". If there are
5245/// existing call uses of the old function in the module, this adjusts them to
5246/// call the new function directly.
5247///
5248/// This is not just a cleanup: the always_inline pass requires direct calls to
5249/// functions to be able to inline them. If there is a bitcast in the way, it
5250/// won't inline them. Instcombine normally deletes these calls, but it isn't
5251/// run at -O0.
5252static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5253 llvm::Function *NewFn) {
5254 // If we're redefining a global as a function, don't transform it.
5255 if (!isa<llvm::Function>(Old)) return;
5256
5257 replaceUsesOfNonProtoConstant(Old, NewFn);
5258}
5259
5260void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5261 auto DK = VD->isThisDeclarationADefinition();
5262 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5263 return;
5264
5265 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5266 // If we have a definition, this might be a deferred decl. If the
5267 // instantiation is explicit, make sure we emit it at the end.
5268 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5269 GetAddrOfGlobalVar(VD);
5270
5271 EmitTopLevelDecl(VD);
5272}
5273
5274void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5275 llvm::GlobalValue *GV) {
5276 const auto *D = cast<FunctionDecl>(GD.getDecl());
5277
5278 // Compute the function info and LLVM type.
5279 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5280 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5281
5282 // Get or create the prototype for the function.
5283 if (!GV || (GV->getValueType() != Ty))
5284 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5285 /*DontDefer=*/true,
5286 ForDefinition));
5287
5288 // Already emitted.
5289 if (!GV->isDeclaration())
5290 return;
5291
5292 // We need to set linkage and visibility on the function before
5293 // generating code for it because various parts of IR generation
5294 // want to propagate this information down (e.g. to local static
5295 // declarations).
5296 auto *Fn = cast<llvm::Function>(GV);
5297 setFunctionLinkage(GD, Fn);
5298
5299 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5300 setGVProperties(Fn, GD);
5301
5302 MaybeHandleStaticInExternC(D, Fn);
5303
5304 maybeSetTrivialComdat(*D, *Fn);
5305
5306 // Set CodeGen attributes that represent floating point environment.
5307 setLLVMFunctionFEnvAttributes(D, Fn);
5308
5309 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5310
5311 setNonAliasAttributes(GD, Fn);
5312 SetLLVMFunctionAttributesForDefinition(D, Fn);
5313
5314 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5315 AddGlobalCtor(Fn, CA->getPriority());
5316 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5317 AddGlobalDtor(Fn, DA->getPriority(), true);
5318 if (D->hasAttr<AnnotateAttr>())
5319 AddGlobalAnnotations(D, Fn);
5320}
5321
5322void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5323 const auto *D = cast<ValueDecl>(GD.getDecl());
5324 const AliasAttr *AA = D->getAttr<AliasAttr>();
5325 assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void
(0) : __assert_fail ("AA && \"Not an alias?\"", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5325, __extension__ __PRETTY_FUNCTION__))
;
5326
5327 StringRef MangledName = getMangledName(GD);
5328
5329 if (AA->getAliasee() == MangledName) {
5330 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5331 return;
5332 }
5333
5334 // If there is a definition in the module, then it wins over the alias.
5335 // This is dubious, but allow it to be safe. Just ignore the alias.
5336 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5337 if (Entry && !Entry->isDeclaration())
5338 return;
5339
5340 Aliases.push_back(GD);
5341
5342 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5343
5344 // Create a reference to the named value. This ensures that it is emitted
5345 // if a deferred decl.
5346 llvm::Constant *Aliasee;
5347 llvm::GlobalValue::LinkageTypes LT;
5348 if (isa<llvm::FunctionType>(DeclTy)) {
5349 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5350 /*ForVTable=*/false);
5351 LT = getFunctionLinkage(GD);
5352 } else {
5353 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5354 /*D=*/nullptr);
5355 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5356 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5357 else
5358 LT = getFunctionLinkage(GD);
5359 }
5360
5361 // Create the new alias itself, but don't set a name yet.
5362 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5363 auto *GA =
5364 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5365
5366 if (Entry) {
5367 if (GA->getAliasee() == Entry) {
5368 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5369 return;
5370 }
5371
5372 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5372, __extension__ __PRETTY_FUNCTION__))
;
5373
5374 // If there is a declaration in the module, then we had an extern followed
5375 // by the alias, as in:
5376 // extern int test6();
5377 // ...
5378 // int test6() __attribute__((alias("test7")));
5379 //
5380 // Remove it and replace uses of it with the alias.
5381 GA->takeName(Entry);
5382
5383 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5384 Entry->getType()));
5385 Entry->eraseFromParent();
5386 } else {
5387 GA->setName(MangledName);
5388 }
5389
5390 // Set attributes which are particular to an alias; this is a
5391 // specialization of the attributes which may be set on a global
5392 // variable/function.
5393 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5394 D->isWeakImported()) {
5395 GA->setLinkage(llvm::Function::WeakAnyLinkage);
5396 }
5397
5398 if (const auto *VD = dyn_cast<VarDecl>(D))
5399 if (VD->getTLSKind())
5400 setTLSMode(GA, *VD);
5401
5402 SetCommonAttributes(GD, GA);
5403
5404 // Emit global alias debug information.
5405 if (isa<VarDecl>(D))
5406 if (CGDebugInfo *DI = getModuleDebugInfo())
5407 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5408}
5409
5410void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5411 const auto *D = cast<ValueDecl>(GD.getDecl());
5412 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5413 assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void
(0) : __assert_fail ("IFA && \"Not an ifunc?\"", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5413, __extension__ __PRETTY_FUNCTION__))
;
5414
5415 StringRef MangledName = getMangledName(GD);
5416
5417 if (IFA->getResolver() == MangledName) {
5418 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5419 return;
5420 }
5421
5422 // Report an error if some definition overrides ifunc.
5423 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5424 if (Entry && !Entry->isDeclaration()) {
5425 GlobalDecl OtherGD;
5426 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5427 DiagnosedConflictingDefinitions.insert(GD).second) {
5428 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5429 << MangledName;
5430 Diags.Report(OtherGD.getDecl()->getLocation(),
5431 diag::note_previous_definition);
5432 }
5433 return;
5434 }
5435
5436 Aliases.push_back(GD);
5437
5438 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5439 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5440 llvm::Constant *Resolver =
5441 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5442 /*ForVTable=*/false);
5443 llvm::GlobalIFunc *GIF =
5444 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5445 "", Resolver, &getModule());
5446 if (Entry) {
5447 if (GIF->getResolver() == Entry) {
5448 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5449 return;
5450 }
5451 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5451, __extension__ __PRETTY_FUNCTION__))
;
5452
5453 // If there is a declaration in the module, then we had an extern followed
5454 // by the ifunc, as in:
5455 // extern int test();
5456 // ...
5457 // int test() __attribute__((ifunc("resolver")));
5458 //
5459 // Remove it and replace uses of it with the ifunc.
5460 GIF->takeName(Entry);
5461
5462 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5463 Entry->getType()));
5464 Entry->eraseFromParent();
5465 } else
5466 GIF->setName(MangledName);
5467
5468 SetCommonAttributes(GD, GIF);
5469}
5470
5471llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5472 ArrayRef<llvm::Type*> Tys) {
5473 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5474 Tys);
5475}
5476
5477static llvm::StringMapEntry<llvm::GlobalVariable *> &
5478GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5479 const StringLiteral *Literal, bool TargetIsLSB,
5480 bool &IsUTF16, unsigned &StringLength) {
5481 StringRef String = Literal->getString();
5482 unsigned NumBytes = String.size();
5483
5484 // Check for simple case.
5485 if (!Literal->containsNonAsciiOrNull()) {
5486 StringLength = NumBytes;
5487 return *Map.insert(std::make_pair(String, nullptr)).first;
5488 }
5489
5490 // Otherwise, convert the UTF8 literals into a string of shorts.
5491 IsUTF16 = true;
5492
5493 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5494 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5495 llvm::UTF16 *ToPtr = &ToBuf[0];
5496
5497 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5498 ToPtr + NumBytes, llvm::strictConversion);
5499
5500 // ConvertUTF8toUTF16 returns the length in ToPtr.
5501 StringLength = ToPtr - &ToBuf[0];
5502
5503 // Add an explicit null.
5504 *ToPtr = 0;
5505 return *Map.insert(std::make_pair(
5506 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5507 (StringLength + 1) * 2),
5508 nullptr)).first;
5509}
5510
5511ConstantAddress
5512CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5513 unsigned StringLength = 0;
5514 bool isUTF16 = false;
5515 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5516 GetConstantCFStringEntry(CFConstantStringMap, Literal,
5517 getDataLayout().isLittleEndian(), isUTF16,
5518 StringLength);
5519
5520 if (auto *C = Entry.second)
5521 return ConstantAddress(
5522 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5523
5524 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5525 llvm::Constant *Zeros[] = { Zero, Zero };
5526
5527 const ASTContext &Context = getContext();
5528 const llvm::Triple &Triple = getTriple();
5529
5530 const auto CFRuntime = getLangOpts().CFRuntime;
5531 const bool IsSwiftABI =
5532 static_cast<unsigned>(CFRuntime) >=
5533 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5534 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5535
5536 // If we don't already have it, get __CFConstantStringClassReference.
5537 if (!CFConstantStringClassRef) {
5538 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5539 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5540 Ty = llvm::ArrayType::get(Ty, 0);
5541
5542 switch (CFRuntime) {
5543 default: break;
5544 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5545 case LangOptions::CoreFoundationABI::Swift5_0:
5546 CFConstantStringClassName =
5547 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5548 : "$s10Foundation19_NSCFConstantStringCN";
5549 Ty = IntPtrTy;
5550 break;
5551 case LangOptions::CoreFoundationABI::Swift4_2:
5552 CFConstantStringClassName =
5553 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5554 : "$S10Foundation19_NSCFConstantStringCN";
5555 Ty = IntPtrTy;
5556 break;
5557 case LangOptions::CoreFoundationABI::Swift4_1:
5558 CFConstantStringClassName =
5559 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5560 : "__T010Foundation19_NSCFConstantStringCN";
5561 Ty = IntPtrTy;
5562 break;
5563 }
5564
5565 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5566
5567 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5568 llvm::GlobalValue *GV = nullptr;
5569
5570 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5571 IdentifierInfo &II = Context.Idents.get(GV->getName());
5572 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5573 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5574
5575 const VarDecl *VD = nullptr;
5576 for (const auto *Result : DC->lookup(&II))
5577 if ((VD = dyn_cast<VarDecl>(Result)))
5578 break;
5579
5580 if (Triple.isOSBinFormatELF()) {
5581 if (!VD)
5582 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5583 } else {
5584 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5585 if (!VD || !VD->hasAttr<DLLExportAttr>())
5586 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5587 else
5588 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5589 }
5590
5591 setDSOLocal(GV);
5592 }
5593 }
5594
5595 // Decay array -> ptr
5596 CFConstantStringClassRef =
5597 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5598 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5599 }
5600
5601 QualType CFTy = Context.getCFConstantStringType();
5602
5603 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5604
5605 ConstantInitBuilder Builder(*this);
5606 auto Fields = Builder.beginStruct(STy);
5607
5608 // Class pointer.
5609 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5610
5611 // Flags.
5612 if (IsSwiftABI) {
5613 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5614 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5615 } else {
5616 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5617 }
5618
5619 // String pointer.
5620 llvm::Constant *C = nullptr;
5621 if (isUTF16) {
5622 auto Arr = llvm::makeArrayRef(
5623 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5624 Entry.first().size() / 2);
5625 C = llvm::ConstantDataArray::get(VMContext, Arr);
5626 } else {
5627 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5628 }
5629
5630 // Note: -fwritable-strings doesn't make the backing store strings of
5631 // CFStrings writable. (See <rdar://problem/10657500>)
5632 auto *GV =
5633 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5634 llvm::GlobalValue::PrivateLinkage, C, ".str");
5635 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5636 // Don't enforce the target's minimum global alignment, since the only use
5637 // of the string is via this class initializer.
5638 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5639 : Context.getTypeAlignInChars(Context.CharTy);
5640 GV->setAlignment(Align.getAsAlign());
5641
5642 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5643 // Without it LLVM can merge the string with a non unnamed_addr one during
5644 // LTO. Doing that changes the section it ends in, which surprises ld64.
5645 if (Triple.isOSBinFormatMachO())
5646 GV->setSection(isUTF16 ? "__TEXT,__ustring"
5647 : "__TEXT,__cstring,cstring_literals");
5648 // Make sure the literal ends up in .rodata to allow for safe ICF and for
5649 // the static linker to adjust permissions to read-only later on.
5650 else if (Triple.isOSBinFormatELF())
5651 GV->setSection(".rodata");
5652
5653 // String.
5654 llvm::Constant *Str =
5655 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5656
5657 if (isUTF16)
5658 // Cast the UTF16 string to the correct type.
5659 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5660 Fields.add(Str);
5661
5662 // String length.
5663 llvm::IntegerType *LengthTy =
5664 llvm::IntegerType::get(getModule().getContext(),
5665 Context.getTargetInfo().getLongWidth());
5666 if (IsSwiftABI) {
5667 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5668 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5669 LengthTy = Int32Ty;
5670 else
5671 LengthTy = IntPtrTy;
5672 }
5673 Fields.addInt(LengthTy, StringLength);
5674
5675 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5676 // properly aligned on 32-bit platforms.
5677 CharUnits Alignment =
5678 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5679
5680 // The struct.
5681 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5682 /*isConstant=*/false,
5683 llvm::GlobalVariable::PrivateLinkage);
5684 GV->addAttribute("objc_arc_inert");
5685 switch (Triple.getObjectFormat()) {
5686 case llvm::Triple::UnknownObjectFormat:
5687 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5687)
;
5688 case llvm::Triple::DXContainer:
5689 case llvm::Triple::GOFF:
5690 case llvm::Triple::SPIRV:
5691 case llvm::Triple::XCOFF:
5692 llvm_unreachable("unimplemented")::llvm::llvm_unreachable_internal("unimplemented", "clang/lib/CodeGen/CodeGenModule.cpp"
, 5692)
;
5693 case llvm::Triple::COFF:
5694 case llvm::Triple::ELF:
5695 case llvm::Triple::Wasm:
5696 GV->setSection("cfstring");
5697 break;
5698 case llvm::Triple::MachO:
5699 GV->setSection("__DATA,__cfstring");
5700 break;
5701 }
5702 Entry.second = GV;
5703
5704 return ConstantAddress(GV, GV->getValueType(), Alignment);
5705}
5706
5707bool CodeGenModule::getExpressionLocationsEnabled() const {
5708 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5709}
5710
5711QualType CodeGenModule::getObjCFastEnumerationStateType() {
5712 if (ObjCFastEnumerationStateType.isNull()) {
5713 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5714 D->startDefinition();
5715
5716 QualType FieldTypes[] = {
5717 Context.UnsignedLongTy,
5718 Context.getPointerType(Context.getObjCIdType()),
5719 Context.getPointerType(Context.UnsignedLongTy),
5720 Context.getConstantArrayType(Context.UnsignedLongTy,
5721 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5722 };
5723
5724 for (size_t i = 0; i < 4; ++i) {
5725 FieldDecl *Field = FieldDecl::Create(Context,
5726 D,
5727 SourceLocation(),
5728 SourceLocation(), nullptr,
5729 FieldTypes[i], /*TInfo=*/nullptr,
5730 /*BitWidth=*/nullptr,
5731 /*Mutable=*/false,
5732 ICIS_NoInit);
5733 Field->setAccess(AS_public);
5734 D->addDecl(Field);
5735 }
5736
5737 D->completeDefinition();
5738 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5739 }
5740
5741 return ObjCFastEnumerationStateType;
5742}
5743
5744llvm::Constant *
5745CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5746 assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast <bool> (!E->getType()->isPointerType
() && "Strings are always arrays") ? void (0) : __assert_fail
("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 5746, __extension__ __PRETTY_FUNCTION__
))
;
5747
5748 // Don't emit it as the address of the string, emit the string data itself
5749 // as an inline array.
5750 if (E->getCharByteWidth() == 1) {
5751 SmallString<64> Str(E->getString());
5752
5753 // Resize the string to the right size, which is indicated by its type.
5754 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5755 Str.resize(CAT->getSize().getZExtValue());
5756 return llvm::ConstantDataArray::getString(VMContext, Str, false);
5757 }
5758
5759 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5760 llvm::Type *ElemTy = AType->getElementType();
5761 unsigned NumElements = AType->getNumElements();
5762
5763 // Wide strings have either 2-byte or 4-byte elements.
5764 if (ElemTy->getPrimitiveSizeInBits() == 16) {
5765 SmallVector<uint16_t, 32> Elements;
5766 Elements.reserve(NumElements);
5767
5768 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5769 Elements.push_back(E->getCodeUnit(i));
5770 Elements.resize(NumElements);
5771 return llvm::ConstantDataArray::get(VMContext, Elements);
5772 }
5773
5774 assert(ElemTy->getPrimitiveSizeInBits() == 32)(static_cast <bool> (ElemTy->getPrimitiveSizeInBits(
) == 32) ? void (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "clang/lib/CodeGen/CodeGenModule.cpp", 5774, __extension__ __PRETTY_FUNCTION__
))
;
5775 SmallVector<uint32_t, 32> Elements;
5776 Elements.reserve(NumElements);
5777
5778 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5779 Elements.push_back(E->getCodeUnit(i));
5780 Elements.resize(NumElements);
5781 return llvm::ConstantDataArray::get(VMContext, Elements);
5782}
5783
5784static llvm::GlobalVariable *
5785GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5786 CodeGenModule &CGM, StringRef GlobalName,
5787 CharUnits Alignment) {
5788 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5789 CGM.GetGlobalConstantAddressSpace());
5790
5791 llvm::Module &M = CGM.getModule();
5792 // Create a global variable for this string
5793 auto *GV = new llvm::GlobalVariable(
5794 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5795 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5796 GV->setAlignment(Alignment.getAsAlign());
5797 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5798 if (GV->isWeakForLinker()) {
5799 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")(static_cast <bool> (CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? void (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "clang/lib/CodeGen/CodeGenModule.cpp", 5799, __extension__ __PRETTY_FUNCTION__
))
;
5800 GV->setComdat(M.getOrInsertComdat(GV->getName()));
5801 }
5802 CGM.setDSOLocal(GV);
5803
5804 return GV;
5805}
5806
5807/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5808/// constant array for the given string literal.
5809ConstantAddress
5810CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5811 StringRef Name) {
5812 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5813
5814 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5815 llvm::GlobalVariable **Entry = nullptr;
5816 if (!LangOpts.WritableStrings) {
5817 Entry = &ConstantStringMap[C];
5818 if (auto GV = *Entry) {
5819 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5820 GV->setAlignment(Alignment.getAsAlign());
5821 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5822 GV->getValueType(), Alignment);
5823 }
5824 }
5825
5826 SmallString<256> MangledNameBuffer;
5827 StringRef GlobalVariableName;
5828 llvm::GlobalValue::LinkageTypes LT;
5829
5830 // Mangle the string literal if that's how the ABI merges duplicate strings.
5831 // Don't do it if they are writable, since we don't want writes in one TU to
5832 // affect strings in another.
5833 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5834 !LangOpts.WritableStrings) {
5835 llvm::raw_svector_ostream Out(MangledNameBuffer);
5836 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5837 LT = llvm::GlobalValue::LinkOnceODRLinkage;
5838 GlobalVariableName = MangledNameBuffer;
5839 } else {
5840 LT = llvm::GlobalValue::PrivateLinkage;
5841 GlobalVariableName = Name;
5842 }
5843
5844 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5845
5846 CGDebugInfo *DI = getModuleDebugInfo();
5847