File: | build/source/clang/lib/CodeGen/CodeGenModule.cpp |
Warning: | line 6085, column 9 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This coordinates the per-module state used while generating code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenModule.h" |
14 | #include "ABIInfo.h" |
15 | #include "CGBlocks.h" |
16 | #include "CGCUDARuntime.h" |
17 | #include "CGCXXABI.h" |
18 | #include "CGCall.h" |
19 | #include "CGDebugInfo.h" |
20 | #include "CGHLSLRuntime.h" |
21 | #include "CGObjCRuntime.h" |
22 | #include "CGOpenCLRuntime.h" |
23 | #include "CGOpenMPRuntime.h" |
24 | #include "CGOpenMPRuntimeGPU.h" |
25 | #include "CodeGenFunction.h" |
26 | #include "CodeGenPGO.h" |
27 | #include "ConstantEmitter.h" |
28 | #include "CoverageMappingGen.h" |
29 | #include "TargetInfo.h" |
30 | #include "clang/AST/ASTContext.h" |
31 | #include "clang/AST/CharUnits.h" |
32 | #include "clang/AST/DeclCXX.h" |
33 | #include "clang/AST/DeclObjC.h" |
34 | #include "clang/AST/DeclTemplate.h" |
35 | #include "clang/AST/Mangle.h" |
36 | #include "clang/AST/RecursiveASTVisitor.h" |
37 | #include "clang/AST/StmtVisitor.h" |
38 | #include "clang/Basic/Builtins.h" |
39 | #include "clang/Basic/CharInfo.h" |
40 | #include "clang/Basic/CodeGenOptions.h" |
41 | #include "clang/Basic/Diagnostic.h" |
42 | #include "clang/Basic/FileManager.h" |
43 | #include "clang/Basic/Module.h" |
44 | #include "clang/Basic/SourceManager.h" |
45 | #include "clang/Basic/TargetInfo.h" |
46 | #include "clang/Basic/Version.h" |
47 | #include "clang/CodeGen/BackendUtil.h" |
48 | #include "clang/CodeGen/ConstantInitBuilder.h" |
49 | #include "clang/Frontend/FrontendDiagnostic.h" |
50 | #include "llvm/ADT/STLExtras.h" |
51 | #include "llvm/ADT/StringExtras.h" |
52 | #include "llvm/ADT/StringSwitch.h" |
53 | #include "llvm/ADT/Triple.h" |
54 | #include "llvm/Analysis/TargetLibraryInfo.h" |
55 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
56 | #include "llvm/IR/CallingConv.h" |
57 | #include "llvm/IR/DataLayout.h" |
58 | #include "llvm/IR/Intrinsics.h" |
59 | #include "llvm/IR/LLVMContext.h" |
60 | #include "llvm/IR/Module.h" |
61 | #include "llvm/IR/ProfileSummary.h" |
62 | #include "llvm/ProfileData/InstrProfReader.h" |
63 | #include "llvm/ProfileData/SampleProf.h" |
64 | #include "llvm/Support/CRC.h" |
65 | #include "llvm/Support/CodeGen.h" |
66 | #include "llvm/Support/CommandLine.h" |
67 | #include "llvm/Support/ConvertUTF.h" |
68 | #include "llvm/Support/ErrorHandling.h" |
69 | #include "llvm/Support/TimeProfiler.h" |
70 | #include "llvm/Support/X86TargetParser.h" |
71 | #include "llvm/Support/xxhash.h" |
72 | #include <optional> |
73 | |
74 | using namespace clang; |
75 | using namespace CodeGen; |
76 | |
77 | static llvm::cl::opt<bool> LimitedCoverage( |
78 | "limited-coverage-experimental", llvm::cl::Hidden, |
79 | llvm::cl::desc("Emit limited coverage mapping information (experimental)")); |
80 | |
81 | static const char AnnotationSection[] = "llvm.metadata"; |
82 | |
83 | static CGCXXABI *createCXXABI(CodeGenModule &CGM) { |
84 | switch (CGM.getContext().getCXXABIKind()) { |
85 | case TargetCXXABI::AppleARM64: |
86 | case TargetCXXABI::Fuchsia: |
87 | case TargetCXXABI::GenericAArch64: |
88 | case TargetCXXABI::GenericARM: |
89 | case TargetCXXABI::iOS: |
90 | case TargetCXXABI::WatchOS: |
91 | case TargetCXXABI::GenericMIPS: |
92 | case TargetCXXABI::GenericItanium: |
93 | case TargetCXXABI::WebAssembly: |
94 | case TargetCXXABI::XL: |
95 | return CreateItaniumCXXABI(CGM); |
96 | case TargetCXXABI::Microsoft: |
97 | return CreateMicrosoftCXXABI(CGM); |
98 | } |
99 | |
100 | llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "clang/lib/CodeGen/CodeGenModule.cpp" , 100); |
101 | } |
102 | |
103 | CodeGenModule::CodeGenModule(ASTContext &C, |
104 | IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, |
105 | const HeaderSearchOptions &HSO, |
106 | const PreprocessorOptions &PPO, |
107 | const CodeGenOptions &CGO, llvm::Module &M, |
108 | DiagnosticsEngine &diags, |
109 | CoverageSourceInfo *CoverageInfo) |
110 | : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), |
111 | PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), |
112 | Target(C.getTargetInfo()), ABI(createCXXABI(*this)), |
113 | VMContext(M.getContext()), Types(*this), VTables(*this), |
114 | SanitizerMD(new SanitizerMetadata(*this)) { |
115 | |
116 | // Initialize the type cache. |
117 | llvm::LLVMContext &LLVMContext = M.getContext(); |
118 | VoidTy = llvm::Type::getVoidTy(LLVMContext); |
119 | Int8Ty = llvm::Type::getInt8Ty(LLVMContext); |
120 | Int16Ty = llvm::Type::getInt16Ty(LLVMContext); |
121 | Int32Ty = llvm::Type::getInt32Ty(LLVMContext); |
122 | Int64Ty = llvm::Type::getInt64Ty(LLVMContext); |
123 | HalfTy = llvm::Type::getHalfTy(LLVMContext); |
124 | BFloatTy = llvm::Type::getBFloatTy(LLVMContext); |
125 | FloatTy = llvm::Type::getFloatTy(LLVMContext); |
126 | DoubleTy = llvm::Type::getDoubleTy(LLVMContext); |
127 | PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); |
128 | PointerAlignInBytes = |
129 | C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) |
130 | .getQuantity(); |
131 | SizeSizeInBytes = |
132 | C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); |
133 | IntAlignInBytes = |
134 | C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); |
135 | CharTy = |
136 | llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); |
137 | IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); |
138 | IntPtrTy = llvm::IntegerType::get(LLVMContext, |
139 | C.getTargetInfo().getMaxPointerWidth()); |
140 | Int8PtrTy = Int8Ty->getPointerTo(0); |
141 | Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); |
142 | const llvm::DataLayout &DL = M.getDataLayout(); |
143 | AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); |
144 | GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); |
145 | ConstGlobalsPtrTy = Int8Ty->getPointerTo( |
146 | C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); |
147 | ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); |
148 | |
149 | // Build C++20 Module initializers. |
150 | // TODO: Add Microsoft here once we know the mangling required for the |
151 | // initializers. |
152 | CXX20ModuleInits = |
153 | LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == |
154 | ItaniumMangleContext::MK_Itanium; |
155 | |
156 | RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); |
157 | |
158 | if (LangOpts.ObjC) |
159 | createObjCRuntime(); |
160 | if (LangOpts.OpenCL) |
161 | createOpenCLRuntime(); |
162 | if (LangOpts.OpenMP) |
163 | createOpenMPRuntime(); |
164 | if (LangOpts.CUDA) |
165 | createCUDARuntime(); |
166 | if (LangOpts.HLSL) |
167 | createHLSLRuntime(); |
168 | |
169 | // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. |
170 | if (LangOpts.Sanitize.has(SanitizerKind::Thread) || |
171 | (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) |
172 | TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), |
173 | getCXXABI().getMangleContext())); |
174 | |
175 | // If debug info or coverage generation is enabled, create the CGDebugInfo |
176 | // object. |
177 | if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || |
178 | CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) |
179 | DebugInfo.reset(new CGDebugInfo(*this)); |
180 | |
181 | Block.GlobalUniqueCount = 0; |
182 | |
183 | if (C.getLangOpts().ObjC) |
184 | ObjCData.reset(new ObjCEntrypoints()); |
185 | |
186 | if (CodeGenOpts.hasProfileClangUse()) { |
187 | auto ReaderOrErr = llvm::IndexedInstrProfReader::create( |
188 | CodeGenOpts.ProfileInstrumentUsePath, *FS, |
189 | CodeGenOpts.ProfileRemappingFile); |
190 | // We're checking for profile read errors in CompilerInvocation, so if |
191 | // there was an error it should've already been caught. If it hasn't been |
192 | // somehow, trip an assertion. |
193 | assert(ReaderOrErr)(static_cast <bool> (ReaderOrErr) ? void (0) : __assert_fail ("ReaderOrErr", "clang/lib/CodeGen/CodeGenModule.cpp", 193, __extension__ __PRETTY_FUNCTION__)); |
194 | PGOReader = std::move(ReaderOrErr.get()); |
195 | } |
196 | |
197 | // If coverage mapping generation is enabled, create the |
198 | // CoverageMappingModuleGen object. |
199 | if (CodeGenOpts.CoverageMapping) |
200 | CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); |
201 | |
202 | // Generate the module name hash here if needed. |
203 | if (CodeGenOpts.UniqueInternalLinkageNames && |
204 | !getModule().getSourceFileName().empty()) { |
205 | std::string Path = getModule().getSourceFileName(); |
206 | // Check if a path substitution is needed from the MacroPrefixMap. |
207 | for (const auto &Entry : LangOpts.MacroPrefixMap) |
208 | if (Path.rfind(Entry.first, 0) != std::string::npos) { |
209 | Path = Entry.second + Path.substr(Entry.first.size()); |
210 | break; |
211 | } |
212 | ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); |
213 | } |
214 | } |
215 | |
216 | CodeGenModule::~CodeGenModule() {} |
217 | |
218 | void CodeGenModule::createObjCRuntime() { |
219 | // This is just isGNUFamily(), but we want to force implementors of |
220 | // new ABIs to decide how best to do this. |
221 | switch (LangOpts.ObjCRuntime.getKind()) { |
222 | case ObjCRuntime::GNUstep: |
223 | case ObjCRuntime::GCC: |
224 | case ObjCRuntime::ObjFW: |
225 | ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); |
226 | return; |
227 | |
228 | case ObjCRuntime::FragileMacOSX: |
229 | case ObjCRuntime::MacOSX: |
230 | case ObjCRuntime::iOS: |
231 | case ObjCRuntime::WatchOS: |
232 | ObjCRuntime.reset(CreateMacObjCRuntime(*this)); |
233 | return; |
234 | } |
235 | llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "clang/lib/CodeGen/CodeGenModule.cpp" , 235); |
236 | } |
237 | |
238 | void CodeGenModule::createOpenCLRuntime() { |
239 | OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); |
240 | } |
241 | |
242 | void CodeGenModule::createOpenMPRuntime() { |
243 | // Select a specialized code generation class based on the target, if any. |
244 | // If it does not exist use the default implementation. |
245 | switch (getTriple().getArch()) { |
246 | case llvm::Triple::nvptx: |
247 | case llvm::Triple::nvptx64: |
248 | case llvm::Triple::amdgcn: |
249 | assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice && "OpenMP AMDGPU/NVPTX is only prepared to deal with device code." ) ? void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP AMDGPU/NVPTX is only prepared to deal with device code.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 250, __extension__ __PRETTY_FUNCTION__ )) |
250 | "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice && "OpenMP AMDGPU/NVPTX is only prepared to deal with device code." ) ? void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP AMDGPU/NVPTX is only prepared to deal with device code.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 250, __extension__ __PRETTY_FUNCTION__ )); |
251 | OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); |
252 | break; |
253 | default: |
254 | if (LangOpts.OpenMPSimd) |
255 | OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); |
256 | else |
257 | OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); |
258 | break; |
259 | } |
260 | } |
261 | |
262 | void CodeGenModule::createCUDARuntime() { |
263 | CUDARuntime.reset(CreateNVCUDARuntime(*this)); |
264 | } |
265 | |
266 | void CodeGenModule::createHLSLRuntime() { |
267 | HLSLRuntime.reset(new CGHLSLRuntime(*this)); |
268 | } |
269 | |
270 | void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { |
271 | Replacements[Name] = C; |
272 | } |
273 | |
274 | void CodeGenModule::applyReplacements() { |
275 | for (auto &I : Replacements) { |
276 | StringRef MangledName = I.first(); |
277 | llvm::Constant *Replacement = I.second; |
278 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
279 | if (!Entry) |
280 | continue; |
281 | auto *OldF = cast<llvm::Function>(Entry); |
282 | auto *NewF = dyn_cast<llvm::Function>(Replacement); |
283 | if (!NewF) { |
284 | if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { |
285 | NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); |
286 | } else { |
287 | auto *CE = cast<llvm::ConstantExpr>(Replacement); |
288 | assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction ::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr ) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr" , "clang/lib/CodeGen/CodeGenModule.cpp", 289, __extension__ __PRETTY_FUNCTION__ )) |
289 | CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction ::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr ) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr" , "clang/lib/CodeGen/CodeGenModule.cpp", 289, __extension__ __PRETTY_FUNCTION__ )); |
290 | NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); |
291 | } |
292 | } |
293 | |
294 | // Replace old with new, but keep the old order. |
295 | OldF->replaceAllUsesWith(Replacement); |
296 | if (NewF) { |
297 | NewF->removeFromParent(); |
298 | OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), |
299 | NewF); |
300 | } |
301 | OldF->eraseFromParent(); |
302 | } |
303 | } |
304 | |
305 | void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { |
306 | GlobalValReplacements.push_back(std::make_pair(GV, C)); |
307 | } |
308 | |
309 | void CodeGenModule::applyGlobalValReplacements() { |
310 | for (auto &I : GlobalValReplacements) { |
311 | llvm::GlobalValue *GV = I.first; |
312 | llvm::Constant *C = I.second; |
313 | |
314 | GV->replaceAllUsesWith(C); |
315 | GV->eraseFromParent(); |
316 | } |
317 | } |
318 | |
319 | // This is only used in aliases that we created and we know they have a |
320 | // linear structure. |
321 | static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { |
322 | const llvm::Constant *C; |
323 | if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) |
324 | C = GA->getAliasee(); |
325 | else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) |
326 | C = GI->getResolver(); |
327 | else |
328 | return GV; |
329 | |
330 | const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); |
331 | if (!AliaseeGV) |
332 | return nullptr; |
333 | |
334 | const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); |
335 | if (FinalGV == GV) |
336 | return nullptr; |
337 | |
338 | return FinalGV; |
339 | } |
340 | |
341 | static bool checkAliasedGlobal(DiagnosticsEngine &Diags, |
342 | SourceLocation Location, bool IsIFunc, |
343 | const llvm::GlobalValue *Alias, |
344 | const llvm::GlobalValue *&GV) { |
345 | GV = getAliasedGlobal(Alias); |
346 | if (!GV) { |
347 | Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; |
348 | return false; |
349 | } |
350 | |
351 | if (GV->isDeclaration()) { |
352 | Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; |
353 | return false; |
354 | } |
355 | |
356 | if (IsIFunc) { |
357 | // Check resolver function type. |
358 | const auto *F = dyn_cast<llvm::Function>(GV); |
359 | if (!F) { |
360 | Diags.Report(Location, diag::err_alias_to_undefined) |
361 | << IsIFunc << IsIFunc; |
362 | return false; |
363 | } |
364 | |
365 | llvm::FunctionType *FTy = F->getFunctionType(); |
366 | if (!FTy->getReturnType()->isPointerTy()) { |
367 | Diags.Report(Location, diag::err_ifunc_resolver_return); |
368 | return false; |
369 | } |
370 | } |
371 | |
372 | return true; |
373 | } |
374 | |
375 | void CodeGenModule::checkAliases() { |
376 | // Check if the constructed aliases are well formed. It is really unfortunate |
377 | // that we have to do this in CodeGen, but we only construct mangled names |
378 | // and aliases during codegen. |
379 | bool Error = false; |
380 | DiagnosticsEngine &Diags = getDiags(); |
381 | for (const GlobalDecl &GD : Aliases) { |
382 | const auto *D = cast<ValueDecl>(GD.getDecl()); |
383 | SourceLocation Location; |
384 | bool IsIFunc = D->hasAttr<IFuncAttr>(); |
385 | if (const Attr *A = D->getDefiningAttr()) |
386 | Location = A->getLocation(); |
387 | else |
388 | llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "clang/lib/CodeGen/CodeGenModule.cpp" , 388); |
389 | |
390 | StringRef MangledName = getMangledName(GD); |
391 | llvm::GlobalValue *Alias = GetGlobalValue(MangledName); |
392 | const llvm::GlobalValue *GV = nullptr; |
393 | if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { |
394 | Error = true; |
395 | continue; |
396 | } |
397 | |
398 | llvm::Constant *Aliasee = |
399 | IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() |
400 | : cast<llvm::GlobalAlias>(Alias)->getAliasee(); |
401 | |
402 | llvm::GlobalValue *AliaseeGV; |
403 | if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) |
404 | AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); |
405 | else |
406 | AliaseeGV = cast<llvm::GlobalValue>(Aliasee); |
407 | |
408 | if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { |
409 | StringRef AliasSection = SA->getName(); |
410 | if (AliasSection != AliaseeGV->getSection()) |
411 | Diags.Report(SA->getLocation(), diag::warn_alias_with_section) |
412 | << AliasSection << IsIFunc << IsIFunc; |
413 | } |
414 | |
415 | // We have to handle alias to weak aliases in here. LLVM itself disallows |
416 | // this since the object semantics would not match the IL one. For |
417 | // compatibility with gcc we implement it by just pointing the alias |
418 | // to its aliasee's aliasee. We also warn, since the user is probably |
419 | // expecting the link to be weak. |
420 | if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { |
421 | if (GA->isInterposable()) { |
422 | Diags.Report(Location, diag::warn_alias_to_weak_alias) |
423 | << GV->getName() << GA->getName() << IsIFunc; |
424 | Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
425 | GA->getAliasee(), Alias->getType()); |
426 | |
427 | if (IsIFunc) |
428 | cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); |
429 | else |
430 | cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); |
431 | } |
432 | } |
433 | } |
434 | if (!Error) |
435 | return; |
436 | |
437 | for (const GlobalDecl &GD : Aliases) { |
438 | StringRef MangledName = getMangledName(GD); |
439 | llvm::GlobalValue *Alias = GetGlobalValue(MangledName); |
440 | Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); |
441 | Alias->eraseFromParent(); |
442 | } |
443 | } |
444 | |
445 | void CodeGenModule::clear() { |
446 | DeferredDeclsToEmit.clear(); |
447 | EmittedDeferredDecls.clear(); |
448 | if (OpenMPRuntime) |
449 | OpenMPRuntime->clear(); |
450 | } |
451 | |
452 | void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, |
453 | StringRef MainFile) { |
454 | if (!hasDiagnostics()) |
455 | return; |
456 | if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { |
457 | if (MainFile.empty()) |
458 | MainFile = "<stdin>"; |
459 | Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; |
460 | } else { |
461 | if (Mismatched > 0) |
462 | Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; |
463 | |
464 | if (Missing > 0) |
465 | Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; |
466 | } |
467 | } |
468 | |
469 | static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, |
470 | llvm::Module &M) { |
471 | if (!LO.VisibilityFromDLLStorageClass) |
472 | return; |
473 | |
474 | llvm::GlobalValue::VisibilityTypes DLLExportVisibility = |
475 | CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); |
476 | llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = |
477 | CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); |
478 | llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = |
479 | CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); |
480 | llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = |
481 | CodeGenModule::GetLLVMVisibility( |
482 | LO.getExternDeclNoDLLStorageClassVisibility()); |
483 | |
484 | for (llvm::GlobalValue &GV : M.global_values()) { |
485 | if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) |
486 | continue; |
487 | |
488 | // Reset DSO locality before setting the visibility. This removes |
489 | // any effects that visibility options and annotations may have |
490 | // had on the DSO locality. Setting the visibility will implicitly set |
491 | // appropriate globals to DSO Local; however, this will be pessimistic |
492 | // w.r.t. to the normal compiler IRGen. |
493 | GV.setDSOLocal(false); |
494 | |
495 | if (GV.isDeclarationForLinker()) { |
496 | GV.setVisibility(GV.getDLLStorageClass() == |
497 | llvm::GlobalValue::DLLImportStorageClass |
498 | ? ExternDeclDLLImportVisibility |
499 | : ExternDeclNoDLLStorageClassVisibility); |
500 | } else { |
501 | GV.setVisibility(GV.getDLLStorageClass() == |
502 | llvm::GlobalValue::DLLExportStorageClass |
503 | ? DLLExportVisibility |
504 | : NoDLLStorageClassVisibility); |
505 | } |
506 | |
507 | GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
508 | } |
509 | } |
510 | |
511 | void CodeGenModule::Release() { |
512 | Module *Primary = getContext().getModuleForCodeGen(); |
513 | if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) |
514 | EmitModuleInitializers(Primary); |
515 | EmitDeferred(); |
516 | DeferredDecls.insert(EmittedDeferredDecls.begin(), |
517 | EmittedDeferredDecls.end()); |
518 | EmittedDeferredDecls.clear(); |
519 | EmitVTablesOpportunistically(); |
520 | applyGlobalValReplacements(); |
521 | applyReplacements(); |
522 | emitMultiVersionFunctions(); |
523 | |
524 | if (Context.getLangOpts().IncrementalExtensions && |
525 | GlobalTopLevelStmtBlockInFlight.first) { |
526 | const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; |
527 | GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); |
528 | GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; |
529 | } |
530 | |
531 | if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) |
532 | EmitCXXModuleInitFunc(Primary); |
533 | else |
534 | EmitCXXGlobalInitFunc(); |
535 | EmitCXXGlobalCleanUpFunc(); |
536 | registerGlobalDtorsWithAtExit(); |
537 | EmitCXXThreadLocalInitFunc(); |
538 | if (ObjCRuntime) |
539 | if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) |
540 | AddGlobalCtor(ObjCInitFunction); |
541 | if (Context.getLangOpts().CUDA && CUDARuntime) { |
542 | if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) |
543 | AddGlobalCtor(CudaCtorFunction); |
544 | } |
545 | if (OpenMPRuntime) { |
546 | if (llvm::Function *OpenMPRequiresDirectiveRegFun = |
547 | OpenMPRuntime->emitRequiresDirectiveRegFun()) { |
548 | AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); |
549 | } |
550 | OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); |
551 | OpenMPRuntime->clear(); |
552 | } |
553 | if (PGOReader) { |
554 | getModule().setProfileSummary( |
555 | PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), |
556 | llvm::ProfileSummary::PSK_Instr); |
557 | if (PGOStats.hasDiagnostics()) |
558 | PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); |
559 | } |
560 | llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { |
561 | return L.LexOrder < R.LexOrder; |
562 | }); |
563 | EmitCtorList(GlobalCtors, "llvm.global_ctors"); |
564 | EmitCtorList(GlobalDtors, "llvm.global_dtors"); |
565 | EmitGlobalAnnotations(); |
566 | EmitStaticExternCAliases(); |
567 | checkAliases(); |
568 | EmitDeferredUnusedCoverageMappings(); |
569 | CodeGenPGO(*this).setValueProfilingFlag(getModule()); |
570 | if (CoverageMapping) |
571 | CoverageMapping->emit(); |
572 | if (CodeGenOpts.SanitizeCfiCrossDso) { |
573 | CodeGenFunction(*this).EmitCfiCheckFail(); |
574 | CodeGenFunction(*this).EmitCfiCheckStub(); |
575 | } |
576 | if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) |
577 | finalizeKCFITypes(); |
578 | emitAtAvailableLinkGuard(); |
579 | if (Context.getTargetInfo().getTriple().isWasm()) |
580 | EmitMainVoidAlias(); |
581 | |
582 | if (getTriple().isAMDGPU()) { |
583 | // Emit reference of __amdgpu_device_library_preserve_asan_functions to |
584 | // preserve ASAN functions in bitcode libraries. |
585 | if (LangOpts.Sanitize.has(SanitizerKind::Address)) { |
586 | auto *FT = llvm::FunctionType::get(VoidTy, {}); |
587 | auto *F = llvm::Function::Create( |
588 | FT, llvm::GlobalValue::ExternalLinkage, |
589 | "__amdgpu_device_library_preserve_asan_functions", &getModule()); |
590 | auto *Var = new llvm::GlobalVariable( |
591 | getModule(), FT->getPointerTo(), |
592 | /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, |
593 | "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, |
594 | llvm::GlobalVariable::NotThreadLocal); |
595 | addCompilerUsedGlobal(Var); |
596 | } |
597 | // Emit amdgpu_code_object_version module flag, which is code object version |
598 | // times 100. |
599 | if (getTarget().getTargetOpts().CodeObjectVersion != |
600 | TargetOptions::COV_None) { |
601 | getModule().addModuleFlag(llvm::Module::Error, |
602 | "amdgpu_code_object_version", |
603 | getTarget().getTargetOpts().CodeObjectVersion); |
604 | } |
605 | } |
606 | |
607 | // Emit a global array containing all external kernels or device variables |
608 | // used by host functions and mark it as used for CUDA/HIP. This is necessary |
609 | // to get kernels or device variables in archives linked in even if these |
610 | // kernels or device variables are only used in host functions. |
611 | if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { |
612 | SmallVector<llvm::Constant *, 8> UsedArray; |
613 | for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { |
614 | GlobalDecl GD; |
615 | if (auto *FD = dyn_cast<FunctionDecl>(D)) |
616 | GD = GlobalDecl(FD, KernelReferenceKind::Kernel); |
617 | else |
618 | GD = GlobalDecl(D); |
619 | UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
620 | GetAddrOfGlobal(GD), Int8PtrTy)); |
621 | } |
622 | |
623 | llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); |
624 | |
625 | auto *GV = new llvm::GlobalVariable( |
626 | getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, |
627 | llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); |
628 | addCompilerUsedGlobal(GV); |
629 | } |
630 | |
631 | emitLLVMUsed(); |
632 | if (SanStats) |
633 | SanStats->finish(); |
634 | |
635 | if (CodeGenOpts.Autolink && |
636 | (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { |
637 | EmitModuleLinkOptions(); |
638 | } |
639 | |
640 | // On ELF we pass the dependent library specifiers directly to the linker |
641 | // without manipulating them. This is in contrast to other platforms where |
642 | // they are mapped to a specific linker option by the compiler. This |
643 | // difference is a result of the greater variety of ELF linkers and the fact |
644 | // that ELF linkers tend to handle libraries in a more complicated fashion |
645 | // than on other platforms. This forces us to defer handling the dependent |
646 | // libs to the linker. |
647 | // |
648 | // CUDA/HIP device and host libraries are different. Currently there is no |
649 | // way to differentiate dependent libraries for host or device. Existing |
650 | // usage of #pragma comment(lib, *) is intended for host libraries on |
651 | // Windows. Therefore emit llvm.dependent-libraries only for host. |
652 | if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { |
653 | auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); |
654 | for (auto *MD : ELFDependentLibraries) |
655 | NMD->addOperand(MD); |
656 | } |
657 | |
658 | // Record mregparm value now so it is visible through rest of codegen. |
659 | if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
660 | getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", |
661 | CodeGenOpts.NumRegisterParameters); |
662 | |
663 | if (CodeGenOpts.DwarfVersion) { |
664 | getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", |
665 | CodeGenOpts.DwarfVersion); |
666 | } |
667 | |
668 | if (CodeGenOpts.Dwarf64) |
669 | getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); |
670 | |
671 | if (Context.getLangOpts().SemanticInterposition) |
672 | // Require various optimization to respect semantic interposition. |
673 | getModule().setSemanticInterposition(true); |
674 | |
675 | if (CodeGenOpts.EmitCodeView) { |
676 | // Indicate that we want CodeView in the metadata. |
677 | getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); |
678 | } |
679 | if (CodeGenOpts.CodeViewGHash) { |
680 | getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); |
681 | } |
682 | if (CodeGenOpts.ControlFlowGuard) { |
683 | // Function ID tables and checks for Control Flow Guard (cfguard=2). |
684 | getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); |
685 | } else if (CodeGenOpts.ControlFlowGuardNoChecks) { |
686 | // Function ID tables for Control Flow Guard (cfguard=1). |
687 | getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); |
688 | } |
689 | if (CodeGenOpts.EHContGuard) { |
690 | // Function ID tables for EH Continuation Guard. |
691 | getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); |
692 | } |
693 | if (Context.getLangOpts().Kernel) { |
694 | // Note if we are compiling with /kernel. |
695 | getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); |
696 | } |
697 | if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { |
698 | // We don't support LTO with 2 with different StrictVTablePointers |
699 | // FIXME: we could support it by stripping all the information introduced |
700 | // by StrictVTablePointers. |
701 | |
702 | getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); |
703 | |
704 | llvm::Metadata *Ops[2] = { |
705 | llvm::MDString::get(VMContext, "StrictVTablePointers"), |
706 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
707 | llvm::Type::getInt32Ty(VMContext), 1))}; |
708 | |
709 | getModule().addModuleFlag(llvm::Module::Require, |
710 | "StrictVTablePointersRequirement", |
711 | llvm::MDNode::get(VMContext, Ops)); |
712 | } |
713 | if (getModuleDebugInfo()) |
714 | // We support a single version in the linked module. The LLVM |
715 | // parser will drop debug info with a different version number |
716 | // (and warn about it, too). |
717 | getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", |
718 | llvm::DEBUG_METADATA_VERSION); |
719 | |
720 | // We need to record the widths of enums and wchar_t, so that we can generate |
721 | // the correct build attributes in the ARM backend. wchar_size is also used by |
722 | // TargetLibraryInfo. |
723 | uint64_t WCharWidth = |
724 | Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); |
725 | getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); |
726 | |
727 | llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); |
728 | if ( Arch == llvm::Triple::arm |
729 | || Arch == llvm::Triple::armeb |
730 | || Arch == llvm::Triple::thumb |
731 | || Arch == llvm::Triple::thumbeb) { |
732 | // The minimum width of an enum in bytes |
733 | uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; |
734 | getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); |
735 | } |
736 | |
737 | if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { |
738 | StringRef ABIStr = Target.getABI(); |
739 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
740 | getModule().addModuleFlag(llvm::Module::Error, "target-abi", |
741 | llvm::MDString::get(Ctx, ABIStr)); |
742 | } |
743 | |
744 | if (CodeGenOpts.SanitizeCfiCrossDso) { |
745 | // Indicate that we want cross-DSO control flow integrity checks. |
746 | getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); |
747 | } |
748 | |
749 | if (CodeGenOpts.WholeProgramVTables) { |
750 | // Indicate whether VFE was enabled for this module, so that the |
751 | // vcall_visibility metadata added under whole program vtables is handled |
752 | // appropriately in the optimizer. |
753 | getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", |
754 | CodeGenOpts.VirtualFunctionElimination); |
755 | } |
756 | |
757 | if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { |
758 | getModule().addModuleFlag(llvm::Module::Override, |
759 | "CFI Canonical Jump Tables", |
760 | CodeGenOpts.SanitizeCfiCanonicalJumpTables); |
761 | } |
762 | |
763 | if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { |
764 | getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); |
765 | // KCFI assumes patchable-function-prefix is the same for all indirectly |
766 | // called functions. Store the expected offset for code generation. |
767 | if (CodeGenOpts.PatchableFunctionEntryOffset) |
768 | getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", |
769 | CodeGenOpts.PatchableFunctionEntryOffset); |
770 | } |
771 | |
772 | if (CodeGenOpts.CFProtectionReturn && |
773 | Target.checkCFProtectionReturnSupported(getDiags())) { |
774 | // Indicate that we want to instrument return control flow protection. |
775 | getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", |
776 | 1); |
777 | } |
778 | |
779 | if (CodeGenOpts.CFProtectionBranch && |
780 | Target.checkCFProtectionBranchSupported(getDiags())) { |
781 | // Indicate that we want to instrument branch control flow protection. |
782 | getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", |
783 | 1); |
784 | } |
785 | |
786 | if (CodeGenOpts.FunctionReturnThunks) |
787 | getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); |
788 | |
789 | if (CodeGenOpts.IndirectBranchCSPrefix) |
790 | getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); |
791 | |
792 | // Add module metadata for return address signing (ignoring |
793 | // non-leaf/all) and stack tagging. These are actually turned on by function |
794 | // attributes, but we use module metadata to emit build attributes. This is |
795 | // needed for LTO, where the function attributes are inside bitcode |
796 | // serialised into a global variable by the time build attributes are |
797 | // emitted, so we can't access them. LTO objects could be compiled with |
798 | // different flags therefore module flags are set to "Min" behavior to achieve |
799 | // the same end result of the normal build where e.g BTI is off if any object |
800 | // doesn't support it. |
801 | if (Context.getTargetInfo().hasFeature("ptrauth") && |
802 | LangOpts.getSignReturnAddressScope() != |
803 | LangOptions::SignReturnAddressScopeKind::None) |
804 | getModule().addModuleFlag(llvm::Module::Override, |
805 | "sign-return-address-buildattr", 1); |
806 | if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) |
807 | getModule().addModuleFlag(llvm::Module::Override, |
808 | "tag-stack-memory-buildattr", 1); |
809 | |
810 | if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || |
811 | Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || |
812 | Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || |
813 | Arch == llvm::Triple::aarch64_be) { |
814 | if (LangOpts.BranchTargetEnforcement) |
815 | getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", |
816 | 1); |
817 | if (LangOpts.hasSignReturnAddress()) |
818 | getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); |
819 | if (LangOpts.isSignReturnAddressScopeAll()) |
820 | getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", |
821 | 1); |
822 | if (!LangOpts.isSignReturnAddressWithAKey()) |
823 | getModule().addModuleFlag(llvm::Module::Min, |
824 | "sign-return-address-with-bkey", 1); |
825 | } |
826 | |
827 | if (!CodeGenOpts.MemoryProfileOutput.empty()) { |
828 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
829 | getModule().addModuleFlag( |
830 | llvm::Module::Error, "MemProfProfileFilename", |
831 | llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); |
832 | } |
833 | |
834 | if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { |
835 | // Indicate whether __nvvm_reflect should be configured to flush denormal |
836 | // floating point values to 0. (This corresponds to its "__CUDA_FTZ" |
837 | // property.) |
838 | getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", |
839 | CodeGenOpts.FP32DenormalMode.Output != |
840 | llvm::DenormalMode::IEEE); |
841 | } |
842 | |
843 | if (LangOpts.EHAsynch) |
844 | getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); |
845 | |
846 | // Indicate whether this Module was compiled with -fopenmp |
847 | if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) |
848 | getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); |
849 | if (getLangOpts().OpenMPIsDevice) |
850 | getModule().addModuleFlag(llvm::Module::Max, "openmp-device", |
851 | LangOpts.OpenMP); |
852 | |
853 | // Emit OpenCL specific module metadata: OpenCL/SPIR version. |
854 | if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { |
855 | EmitOpenCLMetadata(); |
856 | // Emit SPIR version. |
857 | if (getTriple().isSPIR()) { |
858 | // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the |
859 | // opencl.spir.version named metadata. |
860 | // C++ for OpenCL has a distinct mapping for version compatibility with |
861 | // OpenCL. |
862 | auto Version = LangOpts.getOpenCLCompatibleVersion(); |
863 | llvm::Metadata *SPIRVerElts[] = { |
864 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
865 | Int32Ty, Version / 100)), |
866 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
867 | Int32Ty, (Version / 100 > 1) ? 0 : 2))}; |
868 | llvm::NamedMDNode *SPIRVerMD = |
869 | TheModule.getOrInsertNamedMetadata("opencl.spir.version"); |
870 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
871 | SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); |
872 | } |
873 | } |
874 | |
875 | // HLSL related end of code gen work items. |
876 | if (LangOpts.HLSL) |
877 | getHLSLRuntime().finishCodeGen(); |
878 | |
879 | if (uint32_t PLevel = Context.getLangOpts().PICLevel) { |
880 | assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level" ) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 880, __extension__ __PRETTY_FUNCTION__ )); |
881 | getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); |
882 | if (Context.getLangOpts().PIE) |
883 | getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); |
884 | } |
885 | |
886 | if (getCodeGenOpts().CodeModel.size() > 0) { |
887 | unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) |
888 | .Case("tiny", llvm::CodeModel::Tiny) |
889 | .Case("small", llvm::CodeModel::Small) |
890 | .Case("kernel", llvm::CodeModel::Kernel) |
891 | .Case("medium", llvm::CodeModel::Medium) |
892 | .Case("large", llvm::CodeModel::Large) |
893 | .Default(~0u); |
894 | if (CM != ~0u) { |
895 | llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); |
896 | getModule().setCodeModel(codeModel); |
897 | } |
898 | } |
899 | |
900 | if (CodeGenOpts.NoPLT) |
901 | getModule().setRtLibUseGOT(); |
902 | if (CodeGenOpts.UnwindTables) |
903 | getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); |
904 | |
905 | switch (CodeGenOpts.getFramePointer()) { |
906 | case CodeGenOptions::FramePointerKind::None: |
907 | // 0 ("none") is the default. |
908 | break; |
909 | case CodeGenOptions::FramePointerKind::NonLeaf: |
910 | getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); |
911 | break; |
912 | case CodeGenOptions::FramePointerKind::All: |
913 | getModule().setFramePointer(llvm::FramePointerKind::All); |
914 | break; |
915 | } |
916 | |
917 | SimplifyPersonality(); |
918 | |
919 | if (getCodeGenOpts().EmitDeclMetadata) |
920 | EmitDeclMetadata(); |
921 | |
922 | if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) |
923 | EmitCoverageFile(); |
924 | |
925 | if (CGDebugInfo *DI = getModuleDebugInfo()) |
926 | DI->finalize(); |
927 | |
928 | if (getCodeGenOpts().EmitVersionIdentMetadata) |
929 | EmitVersionIdentMetadata(); |
930 | |
931 | if (!getCodeGenOpts().RecordCommandLine.empty()) |
932 | EmitCommandLineMetadata(); |
933 | |
934 | if (!getCodeGenOpts().StackProtectorGuard.empty()) |
935 | getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); |
936 | if (!getCodeGenOpts().StackProtectorGuardReg.empty()) |
937 | getModule().setStackProtectorGuardReg( |
938 | getCodeGenOpts().StackProtectorGuardReg); |
939 | if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) |
940 | getModule().setStackProtectorGuardSymbol( |
941 | getCodeGenOpts().StackProtectorGuardSymbol); |
942 | if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX2147483647) |
943 | getModule().setStackProtectorGuardOffset( |
944 | getCodeGenOpts().StackProtectorGuardOffset); |
945 | if (getCodeGenOpts().StackAlignment) |
946 | getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); |
947 | if (getCodeGenOpts().SkipRaxSetup) |
948 | getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); |
949 | |
950 | getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); |
951 | |
952 | EmitBackendOptionsMetadata(getCodeGenOpts()); |
953 | |
954 | // If there is device offloading code embed it in the host now. |
955 | EmbedObject(&getModule(), CodeGenOpts, getDiags()); |
956 | |
957 | // Set visibility from DLL storage class |
958 | // We do this at the end of LLVM IR generation; after any operation |
959 | // that might affect the DLL storage class or the visibility, and |
960 | // before anything that might act on these. |
961 | setVisibilityFromDLLStorageClass(LangOpts, getModule()); |
962 | } |
963 | |
964 | void CodeGenModule::EmitOpenCLMetadata() { |
965 | // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the |
966 | // opencl.ocl.version named metadata node. |
967 | // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. |
968 | auto Version = LangOpts.getOpenCLCompatibleVersion(); |
969 | llvm::Metadata *OCLVerElts[] = { |
970 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
971 | Int32Ty, Version / 100)), |
972 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
973 | Int32Ty, (Version % 100) / 10))}; |
974 | llvm::NamedMDNode *OCLVerMD = |
975 | TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); |
976 | llvm::LLVMContext &Ctx = TheModule.getContext(); |
977 | OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); |
978 | } |
979 | |
980 | void CodeGenModule::EmitBackendOptionsMetadata( |
981 | const CodeGenOptions CodeGenOpts) { |
982 | if (getTriple().isRISCV()) { |
983 | getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", |
984 | CodeGenOpts.SmallDataLimit); |
985 | } |
986 | } |
987 | |
988 | void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { |
989 | // Make sure that this type is translated. |
990 | Types.UpdateCompletedType(TD); |
991 | } |
992 | |
993 | void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { |
994 | // Make sure that this type is translated. |
995 | Types.RefreshTypeCacheForClass(RD); |
996 | } |
997 | |
998 | llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { |
999 | if (!TBAA) |
1000 | return nullptr; |
1001 | return TBAA->getTypeInfo(QTy); |
1002 | } |
1003 | |
1004 | TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { |
1005 | if (!TBAA) |
1006 | return TBAAAccessInfo(); |
1007 | if (getLangOpts().CUDAIsDevice) { |
1008 | // As CUDA builtin surface/texture types are replaced, skip generating TBAA |
1009 | // access info. |
1010 | if (AccessType->isCUDADeviceBuiltinSurfaceType()) { |
1011 | if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != |
1012 | nullptr) |
1013 | return TBAAAccessInfo(); |
1014 | } else if (AccessType->isCUDADeviceBuiltinTextureType()) { |
1015 | if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != |
1016 | nullptr) |
1017 | return TBAAAccessInfo(); |
1018 | } |
1019 | } |
1020 | return TBAA->getAccessInfo(AccessType); |
1021 | } |
1022 | |
1023 | TBAAAccessInfo |
1024 | CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { |
1025 | if (!TBAA) |
1026 | return TBAAAccessInfo(); |
1027 | return TBAA->getVTablePtrAccessInfo(VTablePtrType); |
1028 | } |
1029 | |
1030 | llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { |
1031 | if (!TBAA) |
1032 | return nullptr; |
1033 | return TBAA->getTBAAStructInfo(QTy); |
1034 | } |
1035 | |
1036 | llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { |
1037 | if (!TBAA) |
1038 | return nullptr; |
1039 | return TBAA->getBaseTypeInfo(QTy); |
1040 | } |
1041 | |
1042 | llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { |
1043 | if (!TBAA) |
1044 | return nullptr; |
1045 | return TBAA->getAccessTagInfo(Info); |
1046 | } |
1047 | |
1048 | TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, |
1049 | TBAAAccessInfo TargetInfo) { |
1050 | if (!TBAA) |
1051 | return TBAAAccessInfo(); |
1052 | return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); |
1053 | } |
1054 | |
1055 | TBAAAccessInfo |
1056 | CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, |
1057 | TBAAAccessInfo InfoB) { |
1058 | if (!TBAA) |
1059 | return TBAAAccessInfo(); |
1060 | return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); |
1061 | } |
1062 | |
1063 | TBAAAccessInfo |
1064 | CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, |
1065 | TBAAAccessInfo SrcInfo) { |
1066 | if (!TBAA) |
1067 | return TBAAAccessInfo(); |
1068 | return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); |
1069 | } |
1070 | |
1071 | void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, |
1072 | TBAAAccessInfo TBAAInfo) { |
1073 | if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) |
1074 | Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); |
1075 | } |
1076 | |
1077 | void CodeGenModule::DecorateInstructionWithInvariantGroup( |
1078 | llvm::Instruction *I, const CXXRecordDecl *RD) { |
1079 | I->setMetadata(llvm::LLVMContext::MD_invariant_group, |
1080 | llvm::MDNode::get(getLLVMContext(), {})); |
1081 | } |
1082 | |
1083 | void CodeGenModule::Error(SourceLocation loc, StringRef message) { |
1084 | unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); |
1085 | getDiags().Report(Context.getFullLoc(loc), diagID) << message; |
1086 | } |
1087 | |
1088 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
1089 | /// specified stmt yet. |
1090 | void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { |
1091 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
1092 | "cannot compile this %0 yet"); |
1093 | std::string Msg = Type; |
1094 | getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) |
1095 | << Msg << S->getSourceRange(); |
1096 | } |
1097 | |
1098 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
1099 | /// specified decl yet. |
1100 | void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { |
1101 | unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
1102 | "cannot compile this %0 yet"); |
1103 | std::string Msg = Type; |
1104 | getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; |
1105 | } |
1106 | |
1107 | llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { |
1108 | return llvm::ConstantInt::get(SizeTy, size.getQuantity()); |
1109 | } |
1110 | |
1111 | void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, |
1112 | const NamedDecl *D) const { |
1113 | // Internal definitions always have default visibility. |
1114 | if (GV->hasLocalLinkage()) { |
1115 | GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
1116 | return; |
1117 | } |
1118 | if (!D) |
1119 | return; |
1120 | // Set visibility for definitions, and for declarations if requested globally |
1121 | // or set explicitly. |
1122 | LinkageInfo LV = D->getLinkageAndVisibility(); |
1123 | if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { |
1124 | // Reject incompatible dlllstorage and visibility annotations. |
1125 | if (!LV.isVisibilityExplicit()) |
1126 | return; |
1127 | if (GV->hasDLLExportStorageClass()) { |
1128 | if (LV.getVisibility() == HiddenVisibility) |
1129 | getDiags().Report(D->getLocation(), |
1130 | diag::err_hidden_visibility_dllexport); |
1131 | } else if (LV.getVisibility() != DefaultVisibility) { |
1132 | getDiags().Report(D->getLocation(), |
1133 | diag::err_non_default_visibility_dllimport); |
1134 | } |
1135 | return; |
1136 | } |
1137 | |
1138 | if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || |
1139 | !GV->isDeclarationForLinker()) |
1140 | GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); |
1141 | } |
1142 | |
1143 | static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, |
1144 | llvm::GlobalValue *GV) { |
1145 | if (GV->hasLocalLinkage()) |
1146 | return true; |
1147 | |
1148 | if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) |
1149 | return true; |
1150 | |
1151 | // DLLImport explicitly marks the GV as external. |
1152 | if (GV->hasDLLImportStorageClass()) |
1153 | return false; |
1154 | |
1155 | const llvm::Triple &TT = CGM.getTriple(); |
1156 | if (TT.isWindowsGNUEnvironment()) { |
1157 | // In MinGW, variables without DLLImport can still be automatically |
1158 | // imported from a DLL by the linker; don't mark variables that |
1159 | // potentially could come from another DLL as DSO local. |
1160 | |
1161 | // With EmulatedTLS, TLS variables can be autoimported from other DLLs |
1162 | // (and this actually happens in the public interface of libstdc++), so |
1163 | // such variables can't be marked as DSO local. (Native TLS variables |
1164 | // can't be dllimported at all, though.) |
1165 | if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && |
1166 | (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) |
1167 | return false; |
1168 | } |
1169 | |
1170 | // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols |
1171 | // remain unresolved in the link, they can be resolved to zero, which is |
1172 | // outside the current DSO. |
1173 | if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) |
1174 | return false; |
1175 | |
1176 | // Every other GV is local on COFF. |
1177 | // Make an exception for windows OS in the triple: Some firmware builds use |
1178 | // *-win32-macho triples. This (accidentally?) produced windows relocations |
1179 | // without GOT tables in older clang versions; Keep this behaviour. |
1180 | // FIXME: even thread local variables? |
1181 | if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) |
1182 | return true; |
1183 | |
1184 | // Only handle COFF and ELF for now. |
1185 | if (!TT.isOSBinFormatELF()) |
1186 | return false; |
1187 | |
1188 | // If this is not an executable, don't assume anything is local. |
1189 | const auto &CGOpts = CGM.getCodeGenOpts(); |
1190 | llvm::Reloc::Model RM = CGOpts.RelocationModel; |
1191 | const auto &LOpts = CGM.getLangOpts(); |
1192 | if (RM != llvm::Reloc::Static && !LOpts.PIE) { |
1193 | // On ELF, if -fno-semantic-interposition is specified and the target |
1194 | // supports local aliases, there will be neither CC1 |
1195 | // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set |
1196 | // dso_local on the function if using a local alias is preferable (can avoid |
1197 | // PLT indirection). |
1198 | if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) |
1199 | return false; |
1200 | return !(CGM.getLangOpts().SemanticInterposition || |
1201 | CGM.getLangOpts().HalfNoSemanticInterposition); |
1202 | } |
1203 | |
1204 | // A definition cannot be preempted from an executable. |
1205 | if (!GV->isDeclarationForLinker()) |
1206 | return true; |
1207 | |
1208 | // Most PIC code sequences that assume that a symbol is local cannot produce a |
1209 | // 0 if it turns out the symbol is undefined. While this is ABI and relocation |
1210 | // depended, it seems worth it to handle it here. |
1211 | if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) |
1212 | return false; |
1213 | |
1214 | // PowerPC64 prefers TOC indirection to avoid copy relocations. |
1215 | if (TT.isPPC64()) |
1216 | return false; |
1217 | |
1218 | if (CGOpts.DirectAccessExternalData) { |
1219 | // If -fdirect-access-external-data (default for -fno-pic), set dso_local |
1220 | // for non-thread-local variables. If the symbol is not defined in the |
1221 | // executable, a copy relocation will be needed at link time. dso_local is |
1222 | // excluded for thread-local variables because they generally don't support |
1223 | // copy relocations. |
1224 | if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) |
1225 | if (!Var->isThreadLocal()) |
1226 | return true; |
1227 | |
1228 | // -fno-pic sets dso_local on a function declaration to allow direct |
1229 | // accesses when taking its address (similar to a data symbol). If the |
1230 | // function is not defined in the executable, a canonical PLT entry will be |
1231 | // needed at link time. -fno-direct-access-external-data can avoid the |
1232 | // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as |
1233 | // it could just cause trouble without providing perceptible benefits. |
1234 | if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) |
1235 | return true; |
1236 | } |
1237 | |
1238 | // If we can use copy relocations we can assume it is local. |
1239 | |
1240 | // Otherwise don't assume it is local. |
1241 | return false; |
1242 | } |
1243 | |
1244 | void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { |
1245 | GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); |
1246 | } |
1247 | |
1248 | void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, |
1249 | GlobalDecl GD) const { |
1250 | const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); |
1251 | // C++ destructors have a few C++ ABI specific special cases. |
1252 | if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { |
1253 | getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); |
1254 | return; |
1255 | } |
1256 | setDLLImportDLLExport(GV, D); |
1257 | } |
1258 | |
1259 | void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, |
1260 | const NamedDecl *D) const { |
1261 | if (D && D->isExternallyVisible()) { |
1262 | if (D->hasAttr<DLLImportAttr>()) |
1263 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
1264 | else if ((D->hasAttr<DLLExportAttr>() || |
1265 | shouldMapVisibilityToDLLExport(D)) && |
1266 | !GV->isDeclarationForLinker()) |
1267 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); |
1268 | } |
1269 | } |
1270 | |
1271 | void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, |
1272 | GlobalDecl GD) const { |
1273 | setDLLImportDLLExport(GV, GD); |
1274 | setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); |
1275 | } |
1276 | |
1277 | void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, |
1278 | const NamedDecl *D) const { |
1279 | setDLLImportDLLExport(GV, D); |
1280 | setGVPropertiesAux(GV, D); |
1281 | } |
1282 | |
1283 | void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, |
1284 | const NamedDecl *D) const { |
1285 | setGlobalVisibility(GV, D); |
1286 | setDSOLocal(GV); |
1287 | GV->setPartition(CodeGenOpts.SymbolPartition); |
1288 | } |
1289 | |
1290 | static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { |
1291 | return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) |
1292 | .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) |
1293 | .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) |
1294 | .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) |
1295 | .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); |
1296 | } |
1297 | |
1298 | llvm::GlobalVariable::ThreadLocalMode |
1299 | CodeGenModule::GetDefaultLLVMTLSModel() const { |
1300 | switch (CodeGenOpts.getDefaultTLSModel()) { |
1301 | case CodeGenOptions::GeneralDynamicTLSModel: |
1302 | return llvm::GlobalVariable::GeneralDynamicTLSModel; |
1303 | case CodeGenOptions::LocalDynamicTLSModel: |
1304 | return llvm::GlobalVariable::LocalDynamicTLSModel; |
1305 | case CodeGenOptions::InitialExecTLSModel: |
1306 | return llvm::GlobalVariable::InitialExecTLSModel; |
1307 | case CodeGenOptions::LocalExecTLSModel: |
1308 | return llvm::GlobalVariable::LocalExecTLSModel; |
1309 | } |
1310 | llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "clang/lib/CodeGen/CodeGenModule.cpp" , 1310); |
1311 | } |
1312 | |
1313 | void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { |
1314 | assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!" ) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1314, __extension__ __PRETTY_FUNCTION__ )); |
1315 | |
1316 | llvm::GlobalValue::ThreadLocalMode TLM; |
1317 | TLM = GetDefaultLLVMTLSModel(); |
1318 | |
1319 | // Override the TLS model if it is explicitly specified. |
1320 | if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { |
1321 | TLM = GetLLVMTLSModel(Attr->getModel()); |
1322 | } |
1323 | |
1324 | GV->setThreadLocalMode(TLM); |
1325 | } |
1326 | |
1327 | static std::string getCPUSpecificMangling(const CodeGenModule &CGM, |
1328 | StringRef Name) { |
1329 | const TargetInfo &Target = CGM.getTarget(); |
1330 | return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); |
1331 | } |
1332 | |
1333 | static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, |
1334 | const CPUSpecificAttr *Attr, |
1335 | unsigned CPUIndex, |
1336 | raw_ostream &Out) { |
1337 | // cpu_specific gets the current name, dispatch gets the resolver if IFunc is |
1338 | // supported. |
1339 | if (Attr) |
1340 | Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); |
1341 | else if (CGM.getTarget().supportsIFunc()) |
1342 | Out << ".resolver"; |
1343 | } |
1344 | |
1345 | static void AppendTargetVersionMangling(const CodeGenModule &CGM, |
1346 | const TargetVersionAttr *Attr, |
1347 | raw_ostream &Out) { |
1348 | if (Attr->isDefaultVersion()) |
1349 | return; |
1350 | Out << "._"; |
1351 | llvm::SmallVector<StringRef, 8> Feats; |
1352 | Attr->getFeatures(Feats); |
1353 | for (const auto &Feat : Feats) { |
1354 | Out << 'M'; |
1355 | Out << Feat; |
1356 | } |
1357 | } |
1358 | |
1359 | static void AppendTargetMangling(const CodeGenModule &CGM, |
1360 | const TargetAttr *Attr, raw_ostream &Out) { |
1361 | if (Attr->isDefaultVersion()) |
1362 | return; |
1363 | |
1364 | Out << '.'; |
1365 | const TargetInfo &Target = CGM.getTarget(); |
1366 | ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); |
1367 | llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { |
1368 | // Multiversioning doesn't allow "no-${feature}", so we can |
1369 | // only have "+" prefixes here. |
1370 | assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS .startswith("+") && "Features should always have a prefix." ) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1371, __extension__ __PRETTY_FUNCTION__ )) |
1371 | "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS .startswith("+") && "Features should always have a prefix." ) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1371, __extension__ __PRETTY_FUNCTION__ )); |
1372 | return Target.multiVersionSortPriority(LHS.substr(1)) > |
1373 | Target.multiVersionSortPriority(RHS.substr(1)); |
1374 | }); |
1375 | |
1376 | bool IsFirst = true; |
1377 | |
1378 | if (!Info.CPU.empty()) { |
1379 | IsFirst = false; |
1380 | Out << "arch_" << Info.CPU; |
1381 | } |
1382 | |
1383 | for (StringRef Feat : Info.Features) { |
1384 | if (!IsFirst) |
1385 | Out << '_'; |
1386 | IsFirst = false; |
1387 | Out << Feat.substr(1); |
1388 | } |
1389 | } |
1390 | |
1391 | // Returns true if GD is a function decl with internal linkage and |
1392 | // needs a unique suffix after the mangled name. |
1393 | static bool isUniqueInternalLinkageDecl(GlobalDecl GD, |
1394 | CodeGenModule &CGM) { |
1395 | const Decl *D = GD.getDecl(); |
1396 | return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && |
1397 | (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); |
1398 | } |
1399 | |
1400 | static void AppendTargetClonesMangling(const CodeGenModule &CGM, |
1401 | const TargetClonesAttr *Attr, |
1402 | unsigned VersionIndex, |
1403 | raw_ostream &Out) { |
1404 | if (CGM.getTarget().getTriple().isAArch64()) { |
1405 | StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); |
1406 | if (FeatureStr == "default") |
1407 | return; |
1408 | Out << "._"; |
1409 | SmallVector<StringRef, 8> Features; |
1410 | FeatureStr.split(Features, "+"); |
1411 | for (auto &Feat : Features) { |
1412 | Out << 'M'; |
1413 | Out << Feat; |
1414 | } |
1415 | } else { |
1416 | Out << '.'; |
1417 | StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); |
1418 | if (FeatureStr.startswith("arch=")) |
1419 | Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); |
1420 | else |
1421 | Out << FeatureStr; |
1422 | |
1423 | Out << '.' << Attr->getMangledIndex(VersionIndex); |
1424 | } |
1425 | } |
1426 | |
1427 | static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, |
1428 | const NamedDecl *ND, |
1429 | bool OmitMultiVersionMangling = false) { |
1430 | SmallString<256> Buffer; |
1431 | llvm::raw_svector_ostream Out(Buffer); |
1432 | MangleContext &MC = CGM.getCXXABI().getMangleContext(); |
1433 | if (!CGM.getModuleNameHash().empty()) |
1434 | MC.needsUniqueInternalLinkageNames(); |
1435 | bool ShouldMangle = MC.shouldMangleDeclName(ND); |
1436 | if (ShouldMangle) |
1437 | MC.mangleName(GD.getWithDecl(ND), Out); |
1438 | else { |
1439 | IdentifierInfo *II = ND->getIdentifier(); |
1440 | assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl." ) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1440, __extension__ __PRETTY_FUNCTION__ )); |
1441 | const auto *FD = dyn_cast<FunctionDecl>(ND); |
1442 | |
1443 | if (FD && |
1444 | FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { |
1445 | Out << "__regcall3__" << II->getName(); |
1446 | } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && |
1447 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { |
1448 | Out << "__device_stub__" << II->getName(); |
1449 | } else { |
1450 | Out << II->getName(); |
1451 | } |
1452 | } |
1453 | |
1454 | // Check if the module name hash should be appended for internal linkage |
1455 | // symbols. This should come before multi-version target suffixes are |
1456 | // appended. This is to keep the name and module hash suffix of the |
1457 | // internal linkage function together. The unique suffix should only be |
1458 | // added when name mangling is done to make sure that the final name can |
1459 | // be properly demangled. For example, for C functions without prototypes, |
1460 | // name mangling is not done and the unique suffix should not be appeneded |
1461 | // then. |
1462 | if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { |
1463 | assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&(static_cast <bool> (CGM.getCodeGenOpts().UniqueInternalLinkageNames && "Hash computed when not explicitly requested") ? void (0) : __assert_fail ("CGM.getCodeGenOpts().UniqueInternalLinkageNames && \"Hash computed when not explicitly requested\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__ )) |
1464 | "Hash computed when not explicitly requested")(static_cast <bool> (CGM.getCodeGenOpts().UniqueInternalLinkageNames && "Hash computed when not explicitly requested") ? void (0) : __assert_fail ("CGM.getCodeGenOpts().UniqueInternalLinkageNames && \"Hash computed when not explicitly requested\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1464, __extension__ __PRETTY_FUNCTION__ )); |
1465 | Out << CGM.getModuleNameHash(); |
1466 | } |
1467 | |
1468 | if (const auto *FD = dyn_cast<FunctionDecl>(ND)) |
1469 | if (FD->isMultiVersion() && !OmitMultiVersionMangling) { |
1470 | switch (FD->getMultiVersionKind()) { |
1471 | case MultiVersionKind::CPUDispatch: |
1472 | case MultiVersionKind::CPUSpecific: |
1473 | AppendCPUSpecificCPUDispatchMangling(CGM, |
1474 | FD->getAttr<CPUSpecificAttr>(), |
1475 | GD.getMultiVersionIndex(), Out); |
1476 | break; |
1477 | case MultiVersionKind::Target: |
1478 | AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); |
1479 | break; |
1480 | case MultiVersionKind::TargetVersion: |
1481 | AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); |
1482 | break; |
1483 | case MultiVersionKind::TargetClones: |
1484 | AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), |
1485 | GD.getMultiVersionIndex(), Out); |
1486 | break; |
1487 | case MultiVersionKind::None: |
1488 | llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here" , "clang/lib/CodeGen/CodeGenModule.cpp", 1488); |
1489 | } |
1490 | } |
1491 | |
1492 | // Make unique name for device side static file-scope variable for HIP. |
1493 | if (CGM.getContext().shouldExternalize(ND) && |
1494 | CGM.getLangOpts().GPURelocatableDeviceCode && |
1495 | CGM.getLangOpts().CUDAIsDevice) |
1496 | CGM.printPostfixForExternalizedDecl(Out, ND); |
1497 | |
1498 | return std::string(Out.str()); |
1499 | } |
1500 | |
1501 | void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, |
1502 | const FunctionDecl *FD, |
1503 | StringRef &CurName) { |
1504 | if (!FD->isMultiVersion()) |
1505 | return; |
1506 | |
1507 | // Get the name of what this would be without the 'target' attribute. This |
1508 | // allows us to lookup the version that was emitted when this wasn't a |
1509 | // multiversion function. |
1510 | std::string NonTargetName = |
1511 | getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); |
1512 | GlobalDecl OtherGD; |
1513 | if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { |
1514 | assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl () ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function" ) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1518, __extension__ __PRETTY_FUNCTION__ )) |
1515 | .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl () ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function" ) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1518, __extension__ __PRETTY_FUNCTION__ )) |
1516 | ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl () ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function" ) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1518, __extension__ __PRETTY_FUNCTION__ )) |
1517 | ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl () ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function" ) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1518, __extension__ __PRETTY_FUNCTION__ )) |
1518 | "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl () ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function" ) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1518, __extension__ __PRETTY_FUNCTION__ )); |
1519 | // OtherFD is the version of this function that was mangled BEFORE |
1520 | // becoming a MultiVersion function. It potentially needs to be updated. |
1521 | const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() |
1522 | .getDecl() |
1523 | ->getAsFunction() |
1524 | ->getMostRecentDecl(); |
1525 | std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); |
1526 | // This is so that if the initial version was already the 'default' |
1527 | // version, we don't try to update it. |
1528 | if (OtherName != NonTargetName) { |
1529 | // Remove instead of erase, since others may have stored the StringRef |
1530 | // to this. |
1531 | const auto ExistingRecord = Manglings.find(NonTargetName); |
1532 | if (ExistingRecord != std::end(Manglings)) |
1533 | Manglings.remove(&(*ExistingRecord)); |
1534 | auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); |
1535 | StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = |
1536 | Result.first->first(); |
1537 | // If this is the current decl is being created, make sure we update the name. |
1538 | if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) |
1539 | CurName = OtherNameRef; |
1540 | if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) |
1541 | Entry->setName(OtherName); |
1542 | } |
1543 | } |
1544 | } |
1545 | |
1546 | StringRef CodeGenModule::getMangledName(GlobalDecl GD) { |
1547 | GlobalDecl CanonicalGD = GD.getCanonicalDecl(); |
1548 | |
1549 | // Some ABIs don't have constructor variants. Make sure that base and |
1550 | // complete constructors get mangled the same. |
1551 | if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { |
1552 | if (!getTarget().getCXXABI().hasConstructorVariants()) { |
1553 | CXXCtorType OrigCtorType = GD.getCtorType(); |
1554 | assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete" , "clang/lib/CodeGen/CodeGenModule.cpp", 1554, __extension__ __PRETTY_FUNCTION__ )); |
1555 | if (OrigCtorType == Ctor_Base) |
1556 | CanonicalGD = GlobalDecl(CD, Ctor_Complete); |
1557 | } |
1558 | } |
1559 | |
1560 | // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a |
1561 | // static device variable depends on whether the variable is referenced by |
1562 | // a host or device host function. Therefore the mangled name cannot be |
1563 | // cached. |
1564 | if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { |
1565 | auto FoundName = MangledDeclNames.find(CanonicalGD); |
1566 | if (FoundName != MangledDeclNames.end()) |
1567 | return FoundName->second; |
1568 | } |
1569 | |
1570 | // Keep the first result in the case of a mangling collision. |
1571 | const auto *ND = cast<NamedDecl>(GD.getDecl()); |
1572 | std::string MangledName = getMangledNameImpl(*this, GD, ND); |
1573 | |
1574 | // Ensure either we have different ABIs between host and device compilations, |
1575 | // says host compilation following MSVC ABI but device compilation follows |
1576 | // Itanium C++ ABI or, if they follow the same ABI, kernel names after |
1577 | // mangling should be the same after name stubbing. The later checking is |
1578 | // very important as the device kernel name being mangled in host-compilation |
1579 | // is used to resolve the device binaries to be executed. Inconsistent naming |
1580 | // result in undefined behavior. Even though we cannot check that naming |
1581 | // directly between host- and device-compilations, the host- and |
1582 | // device-mangling in host compilation could help catching certain ones. |
1583 | assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1584 | getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1585 | (getContext().getAuxTargetInfo() &&(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1586 | (getContext().getAuxTargetInfo()->getCXXABI() !=(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1587 | getContext().getTargetInfo().getCXXABI())) ||(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1588 | getCUDARuntime().getDeviceSideName(ND) ==(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1589 | getMangledNameImpl((static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1590 | *this,(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1591 | GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )) |
1592 | ND))(static_cast <bool> (!isa<FunctionDecl>(ND) || !ND ->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize (ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo () && (getContext().getAuxTargetInfo()->getCXXABI( ) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime ().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind (KernelReferenceKind::Kernel), ND)) ? void (0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)" , "clang/lib/CodeGen/CodeGenModule.cpp", 1592, __extension__ __PRETTY_FUNCTION__ )); |
1593 | |
1594 | auto Result = Manglings.insert(std::make_pair(MangledName, GD)); |
1595 | return MangledDeclNames[CanonicalGD] = Result.first->first(); |
1596 | } |
1597 | |
1598 | StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, |
1599 | const BlockDecl *BD) { |
1600 | MangleContext &MangleCtx = getCXXABI().getMangleContext(); |
1601 | const Decl *D = GD.getDecl(); |
1602 | |
1603 | SmallString<256> Buffer; |
1604 | llvm::raw_svector_ostream Out(Buffer); |
1605 | if (!D) |
1606 | MangleCtx.mangleGlobalBlock(BD, |
1607 | dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); |
1608 | else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) |
1609 | MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); |
1610 | else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) |
1611 | MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); |
1612 | else |
1613 | MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); |
1614 | |
1615 | auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); |
1616 | return Result.first->first(); |
1617 | } |
1618 | |
1619 | const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { |
1620 | auto it = MangledDeclNames.begin(); |
1621 | while (it != MangledDeclNames.end()) { |
1622 | if (it->second == Name) |
1623 | return it->first; |
1624 | it++; |
1625 | } |
1626 | return GlobalDecl(); |
1627 | } |
1628 | |
1629 | llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { |
1630 | return getModule().getNamedValue(Name); |
1631 | } |
1632 | |
1633 | /// AddGlobalCtor - Add a function to the list that will be called before |
1634 | /// main() runs. |
1635 | void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, |
1636 | unsigned LexOrder, |
1637 | llvm::Constant *AssociatedData) { |
1638 | // FIXME: Type coercion of void()* types. |
1639 | GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); |
1640 | } |
1641 | |
1642 | /// AddGlobalDtor - Add a function to the list that will be called |
1643 | /// when the module is unloaded. |
1644 | void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, |
1645 | bool IsDtorAttrFunc) { |
1646 | if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && |
1647 | (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { |
1648 | DtorsUsingAtExit[Priority].push_back(Dtor); |
1649 | return; |
1650 | } |
1651 | |
1652 | // FIXME: Type coercion of void()* types. |
1653 | GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); |
1654 | } |
1655 | |
1656 | void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { |
1657 | if (Fns.empty()) return; |
1658 | |
1659 | // Ctor function type is void()*. |
1660 | llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); |
1661 | llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, |
1662 | TheModule.getDataLayout().getProgramAddressSpace()); |
1663 | |
1664 | // Get the type of a ctor entry, { i32, void ()*, i8* }. |
1665 | llvm::StructType *CtorStructTy = llvm::StructType::get( |
1666 | Int32Ty, CtorPFTy, VoidPtrTy); |
1667 | |
1668 | // Construct the constructor and destructor arrays. |
1669 | ConstantInitBuilder builder(*this); |
1670 | auto ctors = builder.beginArray(CtorStructTy); |
1671 | for (const auto &I : Fns) { |
1672 | auto ctor = ctors.beginStruct(CtorStructTy); |
1673 | ctor.addInt(Int32Ty, I.Priority); |
1674 | ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); |
1675 | if (I.AssociatedData) |
1676 | ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); |
1677 | else |
1678 | ctor.addNullPointer(VoidPtrTy); |
1679 | ctor.finishAndAddTo(ctors); |
1680 | } |
1681 | |
1682 | auto list = |
1683 | ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), |
1684 | /*constant*/ false, |
1685 | llvm::GlobalValue::AppendingLinkage); |
1686 | |
1687 | // The LTO linker doesn't seem to like it when we set an alignment |
1688 | // on appending variables. Take it off as a workaround. |
1689 | list->setAlignment(std::nullopt); |
1690 | |
1691 | Fns.clear(); |
1692 | } |
1693 | |
1694 | llvm::GlobalValue::LinkageTypes |
1695 | CodeGenModule::getFunctionLinkage(GlobalDecl GD) { |
1696 | const auto *D = cast<FunctionDecl>(GD.getDecl()); |
1697 | |
1698 | GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); |
1699 | |
1700 | if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) |
1701 | return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); |
1702 | |
1703 | if (isa<CXXConstructorDecl>(D) && |
1704 | cast<CXXConstructorDecl>(D)->isInheritingConstructor() && |
1705 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
1706 | // Our approach to inheriting constructors is fundamentally different from |
1707 | // that used by the MS ABI, so keep our inheriting constructor thunks |
1708 | // internal rather than trying to pick an unambiguous mangling for them. |
1709 | return llvm::GlobalValue::InternalLinkage; |
1710 | } |
1711 | |
1712 | return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); |
1713 | } |
1714 | |
1715 | llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { |
1716 | llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); |
1717 | if (!MDS) return nullptr; |
1718 | |
1719 | return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); |
1720 | } |
1721 | |
1722 | llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { |
1723 | if (auto *FnType = T->getAs<FunctionProtoType>()) |
1724 | T = getContext().getFunctionType( |
1725 | FnType->getReturnType(), FnType->getParamTypes(), |
1726 | FnType->getExtProtoInfo().withExceptionSpec(EST_None)); |
1727 | |
1728 | std::string OutName; |
1729 | llvm::raw_string_ostream Out(OutName); |
1730 | getCXXABI().getMangleContext().mangleTypeName(T, Out); |
1731 | |
1732 | return llvm::ConstantInt::get(Int32Ty, |
1733 | static_cast<uint32_t>(llvm::xxHash64(OutName))); |
1734 | } |
1735 | |
1736 | void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, |
1737 | const CGFunctionInfo &Info, |
1738 | llvm::Function *F, bool IsThunk) { |
1739 | unsigned CallingConv; |
1740 | llvm::AttributeList PAL; |
1741 | ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, |
1742 | /*AttrOnCallSite=*/false, IsThunk); |
1743 | F->setAttributes(PAL); |
1744 | F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
1745 | } |
1746 | |
1747 | static void removeImageAccessQualifier(std::string& TyName) { |
1748 | std::string ReadOnlyQual("__read_only"); |
1749 | std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); |
1750 | if (ReadOnlyPos != std::string::npos) |
1751 | // "+ 1" for the space after access qualifier. |
1752 | TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); |
1753 | else { |
1754 | std::string WriteOnlyQual("__write_only"); |
1755 | std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); |
1756 | if (WriteOnlyPos != std::string::npos) |
1757 | TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); |
1758 | else { |
1759 | std::string ReadWriteQual("__read_write"); |
1760 | std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); |
1761 | if (ReadWritePos != std::string::npos) |
1762 | TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); |
1763 | } |
1764 | } |
1765 | } |
1766 | |
1767 | // Returns the address space id that should be produced to the |
1768 | // kernel_arg_addr_space metadata. This is always fixed to the ids |
1769 | // as specified in the SPIR 2.0 specification in order to differentiate |
1770 | // for example in clGetKernelArgInfo() implementation between the address |
1771 | // spaces with targets without unique mapping to the OpenCL address spaces |
1772 | // (basically all single AS CPUs). |
1773 | static unsigned ArgInfoAddressSpace(LangAS AS) { |
1774 | switch (AS) { |
1775 | case LangAS::opencl_global: |
1776 | return 1; |
1777 | case LangAS::opencl_constant: |
1778 | return 2; |
1779 | case LangAS::opencl_local: |
1780 | return 3; |
1781 | case LangAS::opencl_generic: |
1782 | return 4; // Not in SPIR 2.0 specs. |
1783 | case LangAS::opencl_global_device: |
1784 | return 5; |
1785 | case LangAS::opencl_global_host: |
1786 | return 6; |
1787 | default: |
1788 | return 0; // Assume private. |
1789 | } |
1790 | } |
1791 | |
1792 | void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, |
1793 | const FunctionDecl *FD, |
1794 | CodeGenFunction *CGF) { |
1795 | assert(((FD && CGF) || (!FD && !CGF)) &&(static_cast <bool> (((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!" ) ? void (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1796, __extension__ __PRETTY_FUNCTION__ )) |
1796 | "Incorrect use - FD and CGF should either be both null or not!")(static_cast <bool> (((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!" ) ? void (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 1796, __extension__ __PRETTY_FUNCTION__ )); |
1797 | // Create MDNodes that represent the kernel arg metadata. |
1798 | // Each MDNode is a list in the form of "key", N number of values which is |
1799 | // the same number of values as their are kernel arguments. |
1800 | |
1801 | const PrintingPolicy &Policy = Context.getPrintingPolicy(); |
1802 | |
1803 | // MDNode for the kernel argument address space qualifiers. |
1804 | SmallVector<llvm::Metadata *, 8> addressQuals; |
1805 | |
1806 | // MDNode for the kernel argument access qualifiers (images only). |
1807 | SmallVector<llvm::Metadata *, 8> accessQuals; |
1808 | |
1809 | // MDNode for the kernel argument type names. |
1810 | SmallVector<llvm::Metadata *, 8> argTypeNames; |
1811 | |
1812 | // MDNode for the kernel argument base type names. |
1813 | SmallVector<llvm::Metadata *, 8> argBaseTypeNames; |
1814 | |
1815 | // MDNode for the kernel argument type qualifiers. |
1816 | SmallVector<llvm::Metadata *, 8> argTypeQuals; |
1817 | |
1818 | // MDNode for the kernel argument names. |
1819 | SmallVector<llvm::Metadata *, 8> argNames; |
1820 | |
1821 | if (FD && CGF) |
1822 | for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { |
1823 | const ParmVarDecl *parm = FD->getParamDecl(i); |
1824 | // Get argument name. |
1825 | argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); |
1826 | |
1827 | if (!getLangOpts().OpenCL) |
1828 | continue; |
1829 | QualType ty = parm->getType(); |
1830 | std::string typeQuals; |
1831 | |
1832 | // Get image and pipe access qualifier: |
1833 | if (ty->isImageType() || ty->isPipeType()) { |
1834 | const Decl *PDecl = parm; |
1835 | if (const auto *TD = ty->getAs<TypedefType>()) |
1836 | PDecl = TD->getDecl(); |
1837 | const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); |
1838 | if (A && A->isWriteOnly()) |
1839 | accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); |
1840 | else if (A && A->isReadWrite()) |
1841 | accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); |
1842 | else |
1843 | accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); |
1844 | } else |
1845 | accessQuals.push_back(llvm::MDString::get(VMContext, "none")); |
1846 | |
1847 | auto getTypeSpelling = [&](QualType Ty) { |
1848 | auto typeName = Ty.getUnqualifiedType().getAsString(Policy); |
1849 | |
1850 | if (Ty.isCanonical()) { |
1851 | StringRef typeNameRef = typeName; |
1852 | // Turn "unsigned type" to "utype" |
1853 | if (typeNameRef.consume_front("unsigned ")) |
1854 | return std::string("u") + typeNameRef.str(); |
1855 | if (typeNameRef.consume_front("signed ")) |
1856 | return typeNameRef.str(); |
1857 | } |
1858 | |
1859 | return typeName; |
1860 | }; |
1861 | |
1862 | if (ty->isPointerType()) { |
1863 | QualType pointeeTy = ty->getPointeeType(); |
1864 | |
1865 | // Get address qualifier. |
1866 | addressQuals.push_back( |
1867 | llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( |
1868 | ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); |
1869 | |
1870 | // Get argument type name. |
1871 | std::string typeName = getTypeSpelling(pointeeTy) + "*"; |
1872 | std::string baseTypeName = |
1873 | getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; |
1874 | argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); |
1875 | argBaseTypeNames.push_back( |
1876 | llvm::MDString::get(VMContext, baseTypeName)); |
1877 | |
1878 | // Get argument type qualifiers: |
1879 | if (ty.isRestrictQualified()) |
1880 | typeQuals = "restrict"; |
1881 | if (pointeeTy.isConstQualified() || |
1882 | (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) |
1883 | typeQuals += typeQuals.empty() ? "const" : " const"; |
1884 | if (pointeeTy.isVolatileQualified()) |
1885 | typeQuals += typeQuals.empty() ? "volatile" : " volatile"; |
1886 | } else { |
1887 | uint32_t AddrSpc = 0; |
1888 | bool isPipe = ty->isPipeType(); |
1889 | if (ty->isImageType() || isPipe) |
1890 | AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); |
1891 | |
1892 | addressQuals.push_back( |
1893 | llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); |
1894 | |
1895 | // Get argument type name. |
1896 | ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; |
1897 | std::string typeName = getTypeSpelling(ty); |
1898 | std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); |
1899 | |
1900 | // Remove access qualifiers on images |
1901 | // (as they are inseparable from type in clang implementation, |
1902 | // but OpenCL spec provides a special query to get access qualifier |
1903 | // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): |
1904 | if (ty->isImageType()) { |
1905 | removeImageAccessQualifier(typeName); |
1906 | removeImageAccessQualifier(baseTypeName); |
1907 | } |
1908 | |
1909 | argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); |
1910 | argBaseTypeNames.push_back( |
1911 | llvm::MDString::get(VMContext, baseTypeName)); |
1912 | |
1913 | if (isPipe) |
1914 | typeQuals = "pipe"; |
1915 | } |
1916 | argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); |
1917 | } |
1918 | |
1919 | if (getLangOpts().OpenCL) { |
1920 | Fn->setMetadata("kernel_arg_addr_space", |
1921 | llvm::MDNode::get(VMContext, addressQuals)); |
1922 | Fn->setMetadata("kernel_arg_access_qual", |
1923 | llvm::MDNode::get(VMContext, accessQuals)); |
1924 | Fn->setMetadata("kernel_arg_type", |
1925 | llvm::MDNode::get(VMContext, argTypeNames)); |
1926 | Fn->setMetadata("kernel_arg_base_type", |
1927 | llvm::MDNode::get(VMContext, argBaseTypeNames)); |
1928 | Fn->setMetadata("kernel_arg_type_qual", |
1929 | llvm::MDNode::get(VMContext, argTypeQuals)); |
1930 | } |
1931 | if (getCodeGenOpts().EmitOpenCLArgMetadata || |
1932 | getCodeGenOpts().HIPSaveKernelArgName) |
1933 | Fn->setMetadata("kernel_arg_name", |
1934 | llvm::MDNode::get(VMContext, argNames)); |
1935 | } |
1936 | |
1937 | /// Determines whether the language options require us to model |
1938 | /// unwind exceptions. We treat -fexceptions as mandating this |
1939 | /// except under the fragile ObjC ABI with only ObjC exceptions |
1940 | /// enabled. This means, for example, that C with -fexceptions |
1941 | /// enables this. |
1942 | static bool hasUnwindExceptions(const LangOptions &LangOpts) { |
1943 | // If exceptions are completely disabled, obviously this is false. |
1944 | if (!LangOpts.Exceptions) return false; |
1945 | |
1946 | // If C++ exceptions are enabled, this is true. |
1947 | if (LangOpts.CXXExceptions) return true; |
1948 | |
1949 | // If ObjC exceptions are enabled, this depends on the ABI. |
1950 | if (LangOpts.ObjCExceptions) { |
1951 | return LangOpts.ObjCRuntime.hasUnwindExceptions(); |
1952 | } |
1953 | |
1954 | return true; |
1955 | } |
1956 | |
1957 | static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, |
1958 | const CXXMethodDecl *MD) { |
1959 | // Check that the type metadata can ever actually be used by a call. |
1960 | if (!CGM.getCodeGenOpts().LTOUnit || |
1961 | !CGM.HasHiddenLTOVisibility(MD->getParent())) |
1962 | return false; |
1963 | |
1964 | // Only functions whose address can be taken with a member function pointer |
1965 | // need this sort of type metadata. |
1966 | return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && |
1967 | !isa<CXXDestructorDecl>(MD); |
1968 | } |
1969 | |
1970 | std::vector<const CXXRecordDecl *> |
1971 | CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { |
1972 | llvm::SetVector<const CXXRecordDecl *> MostBases; |
1973 | |
1974 | std::function<void (const CXXRecordDecl *)> CollectMostBases; |
1975 | CollectMostBases = [&](const CXXRecordDecl *RD) { |
1976 | if (RD->getNumBases() == 0) |
1977 | MostBases.insert(RD); |
1978 | for (const CXXBaseSpecifier &B : RD->bases()) |
1979 | CollectMostBases(B.getType()->getAsCXXRecordDecl()); |
1980 | }; |
1981 | CollectMostBases(RD); |
1982 | return MostBases.takeVector(); |
1983 | } |
1984 | |
1985 | llvm::GlobalVariable * |
1986 | CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { |
1987 | auto It = RTTIProxyMap.find(Addr); |
1988 | if (It != RTTIProxyMap.end()) |
1989 | return It->second; |
1990 | |
1991 | auto *FTRTTIProxy = new llvm::GlobalVariable( |
1992 | TheModule, Addr->getType(), |
1993 | /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, |
1994 | "__llvm_rtti_proxy"); |
1995 | FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
1996 | |
1997 | RTTIProxyMap[Addr] = FTRTTIProxy; |
1998 | return FTRTTIProxy; |
1999 | } |
2000 | |
2001 | void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, |
2002 | llvm::Function *F) { |
2003 | llvm::AttrBuilder B(F->getContext()); |
2004 | |
2005 | if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) |
2006 | B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); |
2007 | |
2008 | if (CodeGenOpts.StackClashProtector) |
2009 | B.addAttribute("probe-stack", "inline-asm"); |
2010 | |
2011 | if (!hasUnwindExceptions(LangOpts)) |
2012 | B.addAttribute(llvm::Attribute::NoUnwind); |
2013 | |
2014 | if (D && D->hasAttr<NoStackProtectorAttr>()) |
2015 | ; // Do nothing. |
2016 | else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && |
2017 | LangOpts.getStackProtector() == LangOptions::SSPOn) |
2018 | B.addAttribute(llvm::Attribute::StackProtectStrong); |
2019 | else if (LangOpts.getStackProtector() == LangOptions::SSPOn) |
2020 | B.addAttribute(llvm::Attribute::StackProtect); |
2021 | else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) |
2022 | B.addAttribute(llvm::Attribute::StackProtectStrong); |
2023 | else if (LangOpts.getStackProtector() == LangOptions::SSPReq) |
2024 | B.addAttribute(llvm::Attribute::StackProtectReq); |
2025 | |
2026 | if (!D) { |
2027 | // If we don't have a declaration to control inlining, the function isn't |
2028 | // explicitly marked as alwaysinline for semantic reasons, and inlining is |
2029 | // disabled, mark the function as noinline. |
2030 | if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && |
2031 | CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) |
2032 | B.addAttribute(llvm::Attribute::NoInline); |
2033 | |
2034 | F->addFnAttrs(B); |
2035 | return; |
2036 | } |
2037 | |
2038 | // Track whether we need to add the optnone LLVM attribute, |
2039 | // starting with the default for this optimization level. |
2040 | bool ShouldAddOptNone = |
2041 | !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; |
2042 | // We can't add optnone in the following cases, it won't pass the verifier. |
2043 | ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); |
2044 | ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); |
2045 | |
2046 | // Add optnone, but do so only if the function isn't always_inline. |
2047 | if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && |
2048 | !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { |
2049 | B.addAttribute(llvm::Attribute::OptimizeNone); |
2050 | |
2051 | // OptimizeNone implies noinline; we should not be inlining such functions. |
2052 | B.addAttribute(llvm::Attribute::NoInline); |
2053 | |
2054 | // We still need to handle naked functions even though optnone subsumes |
2055 | // much of their semantics. |
2056 | if (D->hasAttr<NakedAttr>()) |
2057 | B.addAttribute(llvm::Attribute::Naked); |
2058 | |
2059 | // OptimizeNone wins over OptimizeForSize and MinSize. |
2060 | F->removeFnAttr(llvm::Attribute::OptimizeForSize); |
2061 | F->removeFnAttr(llvm::Attribute::MinSize); |
2062 | } else if (D->hasAttr<NakedAttr>()) { |
2063 | // Naked implies noinline: we should not be inlining such functions. |
2064 | B.addAttribute(llvm::Attribute::Naked); |
2065 | B.addAttribute(llvm::Attribute::NoInline); |
2066 | } else if (D->hasAttr<NoDuplicateAttr>()) { |
2067 | B.addAttribute(llvm::Attribute::NoDuplicate); |
2068 | } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { |
2069 | // Add noinline if the function isn't always_inline. |
2070 | B.addAttribute(llvm::Attribute::NoInline); |
2071 | } else if (D->hasAttr<AlwaysInlineAttr>() && |
2072 | !F->hasFnAttribute(llvm::Attribute::NoInline)) { |
2073 | // (noinline wins over always_inline, and we can't specify both in IR) |
2074 | B.addAttribute(llvm::Attribute::AlwaysInline); |
2075 | } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { |
2076 | // If we're not inlining, then force everything that isn't always_inline to |
2077 | // carry an explicit noinline attribute. |
2078 | if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) |
2079 | B.addAttribute(llvm::Attribute::NoInline); |
2080 | } else { |
2081 | // Otherwise, propagate the inline hint attribute and potentially use its |
2082 | // absence to mark things as noinline. |
2083 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
2084 | // Search function and template pattern redeclarations for inline. |
2085 | auto CheckForInline = [](const FunctionDecl *FD) { |
2086 | auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { |
2087 | return Redecl->isInlineSpecified(); |
2088 | }; |
2089 | if (any_of(FD->redecls(), CheckRedeclForInline)) |
2090 | return true; |
2091 | const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); |
2092 | if (!Pattern) |
2093 | return false; |
2094 | return any_of(Pattern->redecls(), CheckRedeclForInline); |
2095 | }; |
2096 | if (CheckForInline(FD)) { |
2097 | B.addAttribute(llvm::Attribute::InlineHint); |
2098 | } else if (CodeGenOpts.getInlining() == |
2099 | CodeGenOptions::OnlyHintInlining && |
2100 | !FD->isInlined() && |
2101 | !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { |
2102 | B.addAttribute(llvm::Attribute::NoInline); |
2103 | } |
2104 | } |
2105 | } |
2106 | |
2107 | // Add other optimization related attributes if we are optimizing this |
2108 | // function. |
2109 | if (!D->hasAttr<OptimizeNoneAttr>()) { |
2110 | if (D->hasAttr<ColdAttr>()) { |
2111 | if (!ShouldAddOptNone) |
2112 | B.addAttribute(llvm::Attribute::OptimizeForSize); |
2113 | B.addAttribute(llvm::Attribute::Cold); |
2114 | } |
2115 | if (D->hasAttr<HotAttr>()) |
2116 | B.addAttribute(llvm::Attribute::Hot); |
2117 | if (D->hasAttr<MinSizeAttr>()) |
2118 | B.addAttribute(llvm::Attribute::MinSize); |
2119 | } |
2120 | |
2121 | F->addFnAttrs(B); |
2122 | |
2123 | unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); |
2124 | if (alignment) |
2125 | F->setAlignment(llvm::Align(alignment)); |
2126 | |
2127 | if (!D->hasAttr<AlignedAttr>()) |
2128 | if (LangOpts.FunctionAlignment) |
2129 | F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); |
2130 | |
2131 | // Some C++ ABIs require 2-byte alignment for member functions, in order to |
2132 | // reserve a bit for differentiating between virtual and non-virtual member |
2133 | // functions. If the current target's C++ ABI requires this and this is a |
2134 | // member function, set its alignment accordingly. |
2135 | if (getTarget().getCXXABI().areMemberFunctionsAligned()) { |
2136 | if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) |
2137 | F->setAlignment(llvm::Align(2)); |
2138 | } |
2139 | |
2140 | // In the cross-dso CFI mode with canonical jump tables, we want !type |
2141 | // attributes on definitions only. |
2142 | if (CodeGenOpts.SanitizeCfiCrossDso && |
2143 | CodeGenOpts.SanitizeCfiCanonicalJumpTables) { |
2144 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
2145 | // Skip available_externally functions. They won't be codegen'ed in the |
2146 | // current module anyway. |
2147 | if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) |
2148 | CreateFunctionTypeMetadataForIcall(FD, F); |
2149 | } |
2150 | } |
2151 | |
2152 | // Emit type metadata on member functions for member function pointer checks. |
2153 | // These are only ever necessary on definitions; we're guaranteed that the |
2154 | // definition will be present in the LTO unit as a result of LTO visibility. |
2155 | auto *MD = dyn_cast<CXXMethodDecl>(D); |
2156 | if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { |
2157 | for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { |
2158 | llvm::Metadata *Id = |
2159 | CreateMetadataIdentifierForType(Context.getMemberPointerType( |
2160 | MD->getType(), Context.getRecordType(Base).getTypePtr())); |
2161 | F->addTypeMetadata(0, Id); |
2162 | } |
2163 | } |
2164 | } |
2165 | |
2166 | void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, |
2167 | llvm::Function *F) { |
2168 | if (D->hasAttr<StrictFPAttr>()) { |
2169 | llvm::AttrBuilder FuncAttrs(F->getContext()); |
2170 | FuncAttrs.addAttribute("strictfp"); |
2171 | F->addFnAttrs(FuncAttrs); |
2172 | } |
2173 | } |
2174 | |
2175 | void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { |
2176 | const Decl *D = GD.getDecl(); |
2177 | if (isa_and_nonnull<NamedDecl>(D)) |
2178 | setGVProperties(GV, GD); |
2179 | else |
2180 | GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
2181 | |
2182 | if (D && D->hasAttr<UsedAttr>()) |
2183 | addUsedOrCompilerUsedGlobal(GV); |
2184 | |
2185 | if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { |
2186 | const auto *VD = cast<VarDecl>(D); |
2187 | if (VD->getType().isConstQualified() && |
2188 | VD->getStorageDuration() == SD_Static) |
2189 | addUsedOrCompilerUsedGlobal(GV); |
2190 | } |
2191 | } |
2192 | |
2193 | bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, |
2194 | llvm::AttrBuilder &Attrs) { |
2195 | // Add target-cpu and target-features attributes to functions. If |
2196 | // we have a decl for the function and it has a target attribute then |
2197 | // parse that and add it to the feature set. |
2198 | StringRef TargetCPU = getTarget().getTargetOpts().CPU; |
2199 | StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; |
2200 | std::vector<std::string> Features; |
2201 | const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); |
2202 | FD = FD ? FD->getMostRecentDecl() : FD; |
2203 | const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; |
2204 | const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; |
2205 | assert((!TD || !TV) && "both target_version and target specified")(static_cast <bool> ((!TD || !TV) && "both target_version and target specified" ) ? void (0) : __assert_fail ("(!TD || !TV) && \"both target_version and target specified\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2205, __extension__ __PRETTY_FUNCTION__ )); |
2206 | const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; |
2207 | const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; |
2208 | bool AddedAttr = false; |
2209 | if (TD || TV || SD || TC) { |
2210 | llvm::StringMap<bool> FeatureMap; |
2211 | getContext().getFunctionFeatureMap(FeatureMap, GD); |
2212 | |
2213 | // Produce the canonical string for this set of features. |
2214 | for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) |
2215 | Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); |
2216 | |
2217 | // Now add the target-cpu and target-features to the function. |
2218 | // While we populated the feature map above, we still need to |
2219 | // get and parse the target attribute so we can get the cpu for |
2220 | // the function. |
2221 | if (TD) { |
2222 | ParsedTargetAttr ParsedAttr = |
2223 | Target.parseTargetAttr(TD->getFeaturesStr()); |
2224 | if (!ParsedAttr.CPU.empty() && |
2225 | getTarget().isValidCPUName(ParsedAttr.CPU)) { |
2226 | TargetCPU = ParsedAttr.CPU; |
2227 | TuneCPU = ""; // Clear the tune CPU. |
2228 | } |
2229 | if (!ParsedAttr.Tune.empty() && |
2230 | getTarget().isValidCPUName(ParsedAttr.Tune)) |
2231 | TuneCPU = ParsedAttr.Tune; |
2232 | } |
2233 | |
2234 | if (SD) { |
2235 | // Apply the given CPU name as the 'tune-cpu' so that the optimizer can |
2236 | // favor this processor. |
2237 | TuneCPU = getTarget().getCPUSpecificTuneName( |
2238 | SD->getCPUName(GD.getMultiVersionIndex())->getName()); |
2239 | } |
2240 | } else { |
2241 | // Otherwise just add the existing target cpu and target features to the |
2242 | // function. |
2243 | Features = getTarget().getTargetOpts().Features; |
2244 | } |
2245 | |
2246 | if (!TargetCPU.empty()) { |
2247 | Attrs.addAttribute("target-cpu", TargetCPU); |
2248 | AddedAttr = true; |
2249 | } |
2250 | if (!TuneCPU.empty()) { |
2251 | Attrs.addAttribute("tune-cpu", TuneCPU); |
2252 | AddedAttr = true; |
2253 | } |
2254 | if (!Features.empty()) { |
2255 | llvm::sort(Features); |
2256 | Attrs.addAttribute("target-features", llvm::join(Features, ",")); |
2257 | AddedAttr = true; |
2258 | } |
2259 | |
2260 | return AddedAttr; |
2261 | } |
2262 | |
2263 | void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, |
2264 | llvm::GlobalObject *GO) { |
2265 | const Decl *D = GD.getDecl(); |
2266 | SetCommonAttributes(GD, GO); |
2267 | |
2268 | if (D) { |
2269 | if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { |
2270 | if (D->hasAttr<RetainAttr>()) |
2271 | addUsedGlobal(GV); |
2272 | if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) |
2273 | GV->addAttribute("bss-section", SA->getName()); |
2274 | if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) |
2275 | GV->addAttribute("data-section", SA->getName()); |
2276 | if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) |
2277 | GV->addAttribute("rodata-section", SA->getName()); |
2278 | if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) |
2279 | GV->addAttribute("relro-section", SA->getName()); |
2280 | } |
2281 | |
2282 | if (auto *F = dyn_cast<llvm::Function>(GO)) { |
2283 | if (D->hasAttr<RetainAttr>()) |
2284 | addUsedGlobal(F); |
2285 | if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) |
2286 | if (!D->getAttr<SectionAttr>()) |
2287 | F->addFnAttr("implicit-section-name", SA->getName()); |
2288 | |
2289 | llvm::AttrBuilder Attrs(F->getContext()); |
2290 | if (GetCPUAndFeaturesAttributes(GD, Attrs)) { |
2291 | // We know that GetCPUAndFeaturesAttributes will always have the |
2292 | // newest set, since it has the newest possible FunctionDecl, so the |
2293 | // new ones should replace the old. |
2294 | llvm::AttributeMask RemoveAttrs; |
2295 | RemoveAttrs.addAttribute("target-cpu"); |
2296 | RemoveAttrs.addAttribute("target-features"); |
2297 | RemoveAttrs.addAttribute("tune-cpu"); |
2298 | F->removeFnAttrs(RemoveAttrs); |
2299 | F->addFnAttrs(Attrs); |
2300 | } |
2301 | } |
2302 | |
2303 | if (const auto *CSA = D->getAttr<CodeSegAttr>()) |
2304 | GO->setSection(CSA->getName()); |
2305 | else if (const auto *SA = D->getAttr<SectionAttr>()) |
2306 | GO->setSection(SA->getName()); |
2307 | } |
2308 | |
2309 | getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); |
2310 | } |
2311 | |
2312 | void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, |
2313 | llvm::Function *F, |
2314 | const CGFunctionInfo &FI) { |
2315 | const Decl *D = GD.getDecl(); |
2316 | SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); |
2317 | SetLLVMFunctionAttributesForDefinition(D, F); |
2318 | |
2319 | F->setLinkage(llvm::Function::InternalLinkage); |
2320 | |
2321 | setNonAliasAttributes(GD, F); |
2322 | } |
2323 | |
2324 | static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { |
2325 | // Set linkage and visibility in case we never see a definition. |
2326 | LinkageInfo LV = ND->getLinkageAndVisibility(); |
2327 | // Don't set internal linkage on declarations. |
2328 | // "extern_weak" is overloaded in LLVM; we probably should have |
2329 | // separate linkage types for this. |
2330 | if (isExternallyVisible(LV.getLinkage()) && |
2331 | (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) |
2332 | GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); |
2333 | } |
2334 | |
2335 | void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, |
2336 | llvm::Function *F) { |
2337 | // Only if we are checking indirect calls. |
2338 | if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) |
2339 | return; |
2340 | |
2341 | // Non-static class methods are handled via vtable or member function pointer |
2342 | // checks elsewhere. |
2343 | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) |
2344 | return; |
2345 | |
2346 | llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); |
2347 | F->addTypeMetadata(0, MD); |
2348 | F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); |
2349 | |
2350 | // Emit a hash-based bit set entry for cross-DSO calls. |
2351 | if (CodeGenOpts.SanitizeCfiCrossDso) |
2352 | if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) |
2353 | F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); |
2354 | } |
2355 | |
2356 | void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { |
2357 | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) |
2358 | return; |
2359 | |
2360 | llvm::LLVMContext &Ctx = F->getContext(); |
2361 | llvm::MDBuilder MDB(Ctx); |
2362 | F->setMetadata(llvm::LLVMContext::MD_kcfi_type, |
2363 | llvm::MDNode::get( |
2364 | Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); |
2365 | } |
2366 | |
2367 | static bool allowKCFIIdentifier(StringRef Name) { |
2368 | // KCFI type identifier constants are only necessary for external assembly |
2369 | // functions, which means it's safe to skip unusual names. Subset of |
2370 | // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). |
2371 | return llvm::all_of(Name, [](const char &C) { |
2372 | return llvm::isAlnum(C) || C == '_' || C == '.'; |
2373 | }); |
2374 | } |
2375 | |
2376 | void CodeGenModule::finalizeKCFITypes() { |
2377 | llvm::Module &M = getModule(); |
2378 | for (auto &F : M.functions()) { |
2379 | // Remove KCFI type metadata from non-address-taken local functions. |
2380 | bool AddressTaken = F.hasAddressTaken(); |
2381 | if (!AddressTaken && F.hasLocalLinkage()) |
2382 | F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); |
2383 | |
2384 | // Generate a constant with the expected KCFI type identifier for all |
2385 | // address-taken function declarations to support annotating indirectly |
2386 | // called assembly functions. |
2387 | if (!AddressTaken || !F.isDeclaration()) |
2388 | continue; |
2389 | |
2390 | const llvm::ConstantInt *Type; |
2391 | if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) |
2392 | Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); |
2393 | else |
2394 | continue; |
2395 | |
2396 | StringRef Name = F.getName(); |
2397 | if (!allowKCFIIdentifier(Name)) |
2398 | continue; |
2399 | |
2400 | std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + |
2401 | Name + ", " + Twine(Type->getZExtValue()) + "\n") |
2402 | .str(); |
2403 | M.appendModuleInlineAsm(Asm); |
2404 | } |
2405 | } |
2406 | |
2407 | void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, |
2408 | bool IsIncompleteFunction, |
2409 | bool IsThunk) { |
2410 | |
2411 | if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { |
2412 | // If this is an intrinsic function, set the function's attributes |
2413 | // to the intrinsic's attributes. |
2414 | F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); |
2415 | return; |
2416 | } |
2417 | |
2418 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
2419 | |
2420 | if (!IsIncompleteFunction) |
2421 | SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, |
2422 | IsThunk); |
2423 | |
2424 | // Add the Returned attribute for "this", except for iOS 5 and earlier |
2425 | // where substantial code, including the libstdc++ dylib, was compiled with |
2426 | // GCC and does not actually return "this". |
2427 | if (!IsThunk && getCXXABI().HasThisReturn(GD) && |
2428 | !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { |
2429 | assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F-> arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType ()) && "unexpected this return") ? void (0) : __assert_fail ("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2432, __extension__ __PRETTY_FUNCTION__ )) |
2430 | F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F-> arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType ()) && "unexpected this return") ? void (0) : __assert_fail ("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2432, __extension__ __PRETTY_FUNCTION__ )) |
2431 | ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F-> arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType ()) && "unexpected this return") ? void (0) : __assert_fail ("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2432, __extension__ __PRETTY_FUNCTION__ )) |
2432 | "unexpected this return")(static_cast <bool> (!F->arg_empty() && F-> arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType ()) && "unexpected this return") ? void (0) : __assert_fail ("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2432, __extension__ __PRETTY_FUNCTION__ )); |
2433 | F->addParamAttr(0, llvm::Attribute::Returned); |
2434 | } |
2435 | |
2436 | // Only a few attributes are set on declarations; these may later be |
2437 | // overridden by a definition. |
2438 | |
2439 | setLinkageForGV(F, FD); |
2440 | setGVProperties(F, FD); |
2441 | |
2442 | // Setup target-specific attributes. |
2443 | if (!IsIncompleteFunction && F->isDeclaration()) |
2444 | getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); |
2445 | |
2446 | if (const auto *CSA = FD->getAttr<CodeSegAttr>()) |
2447 | F->setSection(CSA->getName()); |
2448 | else if (const auto *SA = FD->getAttr<SectionAttr>()) |
2449 | F->setSection(SA->getName()); |
2450 | |
2451 | if (const auto *EA = FD->getAttr<ErrorAttr>()) { |
2452 | if (EA->isError()) |
2453 | F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); |
2454 | else if (EA->isWarning()) |
2455 | F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); |
2456 | } |
2457 | |
2458 | // If we plan on emitting this inline builtin, we can't treat it as a builtin. |
2459 | if (FD->isInlineBuiltinDeclaration()) { |
2460 | const FunctionDecl *FDBody; |
2461 | bool HasBody = FD->hasBody(FDBody); |
2462 | (void)HasBody; |
2463 | assert(HasBody && "Inline builtin declarations should always have an "(static_cast <bool> (HasBody && "Inline builtin declarations should always have an " "available body!") ? void (0) : __assert_fail ("HasBody && \"Inline builtin declarations should always have an \" \"available body!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2464, __extension__ __PRETTY_FUNCTION__ )) |
2464 | "available body!")(static_cast <bool> (HasBody && "Inline builtin declarations should always have an " "available body!") ? void (0) : __assert_fail ("HasBody && \"Inline builtin declarations should always have an \" \"available body!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2464, __extension__ __PRETTY_FUNCTION__ )); |
2465 | if (shouldEmitFunction(FDBody)) |
2466 | F->addFnAttr(llvm::Attribute::NoBuiltin); |
2467 | } |
2468 | |
2469 | if (FD->isReplaceableGlobalAllocationFunction()) { |
2470 | // A replaceable global allocation function does not act like a builtin by |
2471 | // default, only if it is invoked by a new-expression or delete-expression. |
2472 | F->addFnAttr(llvm::Attribute::NoBuiltin); |
2473 | } |
2474 | |
2475 | if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) |
2476 | F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2477 | else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
2478 | if (MD->isVirtual()) |
2479 | F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2480 | |
2481 | // Don't emit entries for function declarations in the cross-DSO mode. This |
2482 | // is handled with better precision by the receiving DSO. But if jump tables |
2483 | // are non-canonical then we need type metadata in order to produce the local |
2484 | // jump table. |
2485 | if (!CodeGenOpts.SanitizeCfiCrossDso || |
2486 | !CodeGenOpts.SanitizeCfiCanonicalJumpTables) |
2487 | CreateFunctionTypeMetadataForIcall(FD, F); |
2488 | |
2489 | if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) |
2490 | setKCFIType(FD, F); |
2491 | |
2492 | if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) |
2493 | getOpenMPRuntime().emitDeclareSimdFunction(FD, F); |
2494 | |
2495 | if (CodeGenOpts.InlineMaxStackSize != UINT_MAX(2147483647 *2U +1U)) |
2496 | F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); |
2497 | |
2498 | if (const auto *CB = FD->getAttr<CallbackAttr>()) { |
2499 | // Annotate the callback behavior as metadata: |
2500 | // - The callback callee (as argument number). |
2501 | // - The callback payloads (as argument numbers). |
2502 | llvm::LLVMContext &Ctx = F->getContext(); |
2503 | llvm::MDBuilder MDB(Ctx); |
2504 | |
2505 | // The payload indices are all but the first one in the encoding. The first |
2506 | // identifies the callback callee. |
2507 | int CalleeIdx = *CB->encoding_begin(); |
2508 | ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); |
2509 | F->addMetadata(llvm::LLVMContext::MD_callback, |
2510 | *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( |
2511 | CalleeIdx, PayloadIndices, |
2512 | /* VarArgsArePassed */ false)})); |
2513 | } |
2514 | } |
2515 | |
2516 | void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { |
2517 | assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&(static_cast <bool> ((isa<llvm::Function>(GV) || ! GV->isDeclaration()) && "Only globals with definition can force usage." ) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2518, __extension__ __PRETTY_FUNCTION__ )) |
2518 | "Only globals with definition can force usage.")(static_cast <bool> ((isa<llvm::Function>(GV) || ! GV->isDeclaration()) && "Only globals with definition can force usage." ) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2518, __extension__ __PRETTY_FUNCTION__ )); |
2519 | LLVMUsed.emplace_back(GV); |
2520 | } |
2521 | |
2522 | void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { |
2523 | assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() && "Only globals with definition can force usage.") ? void (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2524, __extension__ __PRETTY_FUNCTION__ )) |
2524 | "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() && "Only globals with definition can force usage.") ? void (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2524, __extension__ __PRETTY_FUNCTION__ )); |
2525 | LLVMCompilerUsed.emplace_back(GV); |
2526 | } |
2527 | |
2528 | void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { |
2529 | assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&(static_cast <bool> ((isa<llvm::Function>(GV) || ! GV->isDeclaration()) && "Only globals with definition can force usage." ) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2530, __extension__ __PRETTY_FUNCTION__ )) |
2530 | "Only globals with definition can force usage.")(static_cast <bool> ((isa<llvm::Function>(GV) || ! GV->isDeclaration()) && "Only globals with definition can force usage." ) ? void (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2530, __extension__ __PRETTY_FUNCTION__ )); |
2531 | if (getTriple().isOSBinFormatELF()) |
2532 | LLVMCompilerUsed.emplace_back(GV); |
2533 | else |
2534 | LLVMUsed.emplace_back(GV); |
2535 | } |
2536 | |
2537 | static void emitUsed(CodeGenModule &CGM, StringRef Name, |
2538 | std::vector<llvm::WeakTrackingVH> &List) { |
2539 | // Don't create llvm.used if there is no need. |
2540 | if (List.empty()) |
2541 | return; |
2542 | |
2543 | // Convert List to what ConstantArray needs. |
2544 | SmallVector<llvm::Constant*, 8> UsedArray; |
2545 | UsedArray.resize(List.size()); |
2546 | for (unsigned i = 0, e = List.size(); i != e; ++i) { |
2547 | UsedArray[i] = |
2548 | llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
2549 | cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); |
2550 | } |
2551 | |
2552 | if (UsedArray.empty()) |
2553 | return; |
2554 | llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); |
2555 | |
2556 | auto *GV = new llvm::GlobalVariable( |
2557 | CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, |
2558 | llvm::ConstantArray::get(ATy, UsedArray), Name); |
2559 | |
2560 | GV->setSection("llvm.metadata"); |
2561 | } |
2562 | |
2563 | void CodeGenModule::emitLLVMUsed() { |
2564 | emitUsed(*this, "llvm.used", LLVMUsed); |
2565 | emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); |
2566 | } |
2567 | |
2568 | void CodeGenModule::AppendLinkerOptions(StringRef Opts) { |
2569 | auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); |
2570 | LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); |
2571 | } |
2572 | |
2573 | void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { |
2574 | llvm::SmallString<32> Opt; |
2575 | getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); |
2576 | if (Opt.empty()) |
2577 | return; |
2578 | auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); |
2579 | LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); |
2580 | } |
2581 | |
2582 | void CodeGenModule::AddDependentLib(StringRef Lib) { |
2583 | auto &C = getLLVMContext(); |
2584 | if (getTarget().getTriple().isOSBinFormatELF()) { |
2585 | ELFDependentLibraries.push_back( |
2586 | llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); |
2587 | return; |
2588 | } |
2589 | |
2590 | llvm::SmallString<24> Opt; |
2591 | getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); |
2592 | auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); |
2593 | LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); |
2594 | } |
2595 | |
2596 | /// Add link options implied by the given module, including modules |
2597 | /// it depends on, using a postorder walk. |
2598 | static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, |
2599 | SmallVectorImpl<llvm::MDNode *> &Metadata, |
2600 | llvm::SmallPtrSet<Module *, 16> &Visited) { |
2601 | // Import this module's parent. |
2602 | if (Mod->Parent && Visited.insert(Mod->Parent).second) { |
2603 | addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); |
2604 | } |
2605 | |
2606 | // Import this module's dependencies. |
2607 | for (Module *Import : llvm::reverse(Mod->Imports)) { |
2608 | if (Visited.insert(Import).second) |
2609 | addLinkOptionsPostorder(CGM, Import, Metadata, Visited); |
2610 | } |
2611 | |
2612 | // Add linker options to link against the libraries/frameworks |
2613 | // described by this module. |
2614 | llvm::LLVMContext &Context = CGM.getLLVMContext(); |
2615 | bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); |
2616 | |
2617 | // For modules that use export_as for linking, use that module |
2618 | // name instead. |
2619 | if (Mod->UseExportAsModuleLinkName) |
2620 | return; |
2621 | |
2622 | for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { |
2623 | // Link against a framework. Frameworks are currently Darwin only, so we |
2624 | // don't to ask TargetCodeGenInfo for the spelling of the linker option. |
2625 | if (LL.IsFramework) { |
2626 | llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), |
2627 | llvm::MDString::get(Context, LL.Library)}; |
2628 | |
2629 | Metadata.push_back(llvm::MDNode::get(Context, Args)); |
2630 | continue; |
2631 | } |
2632 | |
2633 | // Link against a library. |
2634 | if (IsELF) { |
2635 | llvm::Metadata *Args[2] = { |
2636 | llvm::MDString::get(Context, "lib"), |
2637 | llvm::MDString::get(Context, LL.Library), |
2638 | }; |
2639 | Metadata.push_back(llvm::MDNode::get(Context, Args)); |
2640 | } else { |
2641 | llvm::SmallString<24> Opt; |
2642 | CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); |
2643 | auto *OptString = llvm::MDString::get(Context, Opt); |
2644 | Metadata.push_back(llvm::MDNode::get(Context, OptString)); |
2645 | } |
2646 | } |
2647 | } |
2648 | |
2649 | void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { |
2650 | // Emit the initializers in the order that sub-modules appear in the |
2651 | // source, first Global Module Fragments, if present. |
2652 | if (auto GMF = Primary->getGlobalModuleFragment()) { |
2653 | for (Decl *D : getContext().getModuleInitializers(GMF)) { |
2654 | if (isa<ImportDecl>(D)) |
2655 | continue; |
2656 | assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?")(static_cast <bool> (isa<VarDecl>(D) && "GMF initializer decl is not a var?" ) ? void (0) : __assert_fail ("isa<VarDecl>(D) && \"GMF initializer decl is not a var?\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2656, __extension__ __PRETTY_FUNCTION__ )); |
2657 | EmitTopLevelDecl(D); |
2658 | } |
2659 | } |
2660 | // Second any associated with the module, itself. |
2661 | for (Decl *D : getContext().getModuleInitializers(Primary)) { |
2662 | // Skip import decls, the inits for those are called explicitly. |
2663 | if (isa<ImportDecl>(D)) |
2664 | continue; |
2665 | EmitTopLevelDecl(D); |
2666 | } |
2667 | // Third any associated with the Privat eMOdule Fragment, if present. |
2668 | if (auto PMF = Primary->getPrivateModuleFragment()) { |
2669 | for (Decl *D : getContext().getModuleInitializers(PMF)) { |
2670 | assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?")(static_cast <bool> (isa<VarDecl>(D) && "PMF initializer decl is not a var?" ) ? void (0) : __assert_fail ("isa<VarDecl>(D) && \"PMF initializer decl is not a var?\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2670, __extension__ __PRETTY_FUNCTION__ )); |
2671 | EmitTopLevelDecl(D); |
2672 | } |
2673 | } |
2674 | } |
2675 | |
2676 | void CodeGenModule::EmitModuleLinkOptions() { |
2677 | // Collect the set of all of the modules we want to visit to emit link |
2678 | // options, which is essentially the imported modules and all of their |
2679 | // non-explicit child modules. |
2680 | llvm::SetVector<clang::Module *> LinkModules; |
2681 | llvm::SmallPtrSet<clang::Module *, 16> Visited; |
2682 | SmallVector<clang::Module *, 16> Stack; |
2683 | |
2684 | // Seed the stack with imported modules. |
2685 | for (Module *M : ImportedModules) { |
2686 | // Do not add any link flags when an implementation TU of a module imports |
2687 | // a header of that same module. |
2688 | if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && |
2689 | !getLangOpts().isCompilingModule()) |
2690 | continue; |
2691 | if (Visited.insert(M).second) |
2692 | Stack.push_back(M); |
2693 | } |
2694 | |
2695 | // Find all of the modules to import, making a little effort to prune |
2696 | // non-leaf modules. |
2697 | while (!Stack.empty()) { |
2698 | clang::Module *Mod = Stack.pop_back_val(); |
2699 | |
2700 | bool AnyChildren = false; |
2701 | |
2702 | // Visit the submodules of this module. |
2703 | for (const auto &SM : Mod->submodules()) { |
2704 | // Skip explicit children; they need to be explicitly imported to be |
2705 | // linked against. |
2706 | if (SM->IsExplicit) |
2707 | continue; |
2708 | |
2709 | if (Visited.insert(SM).second) { |
2710 | Stack.push_back(SM); |
2711 | AnyChildren = true; |
2712 | } |
2713 | } |
2714 | |
2715 | // We didn't find any children, so add this module to the list of |
2716 | // modules to link against. |
2717 | if (!AnyChildren) { |
2718 | LinkModules.insert(Mod); |
2719 | } |
2720 | } |
2721 | |
2722 | // Add link options for all of the imported modules in reverse topological |
2723 | // order. We don't do anything to try to order import link flags with respect |
2724 | // to linker options inserted by things like #pragma comment(). |
2725 | SmallVector<llvm::MDNode *, 16> MetadataArgs; |
2726 | Visited.clear(); |
2727 | for (Module *M : LinkModules) |
2728 | if (Visited.insert(M).second) |
2729 | addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); |
2730 | std::reverse(MetadataArgs.begin(), MetadataArgs.end()); |
2731 | LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); |
2732 | |
2733 | // Add the linker options metadata flag. |
2734 | auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); |
2735 | for (auto *MD : LinkerOptionsMetadata) |
2736 | NMD->addOperand(MD); |
2737 | } |
2738 | |
2739 | void CodeGenModule::EmitDeferred() { |
2740 | // Emit deferred declare target declarations. |
2741 | if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) |
2742 | getOpenMPRuntime().emitDeferredTargetDecls(); |
2743 | |
2744 | // Emit code for any potentially referenced deferred decls. Since a |
2745 | // previously unused static decl may become used during the generation of code |
2746 | // for a static function, iterate until no changes are made. |
2747 | |
2748 | if (!DeferredVTables.empty()) { |
2749 | EmitDeferredVTables(); |
2750 | |
2751 | // Emitting a vtable doesn't directly cause more vtables to |
2752 | // become deferred, although it can cause functions to be |
2753 | // emitted that then need those vtables. |
2754 | assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0 ) : __assert_fail ("DeferredVTables.empty()", "clang/lib/CodeGen/CodeGenModule.cpp" , 2754, __extension__ __PRETTY_FUNCTION__)); |
2755 | } |
2756 | |
2757 | // Emit CUDA/HIP static device variables referenced by host code only. |
2758 | // Note we should not clear CUDADeviceVarODRUsedByHost since it is still |
2759 | // needed for further handling. |
2760 | if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) |
2761 | llvm::append_range(DeferredDeclsToEmit, |
2762 | getContext().CUDADeviceVarODRUsedByHost); |
2763 | |
2764 | // Stop if we're out of both deferred vtables and deferred declarations. |
2765 | if (DeferredDeclsToEmit.empty()) |
2766 | return; |
2767 | |
2768 | // Grab the list of decls to emit. If EmitGlobalDefinition schedules more |
2769 | // work, it will not interfere with this. |
2770 | std::vector<GlobalDecl> CurDeclsToEmit; |
2771 | CurDeclsToEmit.swap(DeferredDeclsToEmit); |
2772 | |
2773 | for (GlobalDecl &D : CurDeclsToEmit) { |
2774 | // We should call GetAddrOfGlobal with IsForDefinition set to true in order |
2775 | // to get GlobalValue with exactly the type we need, not something that |
2776 | // might had been created for another decl with the same mangled name but |
2777 | // different type. |
2778 | llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( |
2779 | GetAddrOfGlobal(D, ForDefinition)); |
2780 | |
2781 | // In case of different address spaces, we may still get a cast, even with |
2782 | // IsForDefinition equal to true. Query mangled names table to get |
2783 | // GlobalValue. |
2784 | if (!GV) |
2785 | GV = GetGlobalValue(getMangledName(D)); |
2786 | |
2787 | // Make sure GetGlobalValue returned non-null. |
2788 | assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV" , "clang/lib/CodeGen/CodeGenModule.cpp", 2788, __extension__ __PRETTY_FUNCTION__ )); |
2789 | |
2790 | // Check to see if we've already emitted this. This is necessary |
2791 | // for a couple of reasons: first, decls can end up in the |
2792 | // deferred-decls queue multiple times, and second, decls can end |
2793 | // up with definitions in unusual ways (e.g. by an extern inline |
2794 | // function acquiring a strong function redefinition). Just |
2795 | // ignore these cases. |
2796 | if (!GV->isDeclaration()) |
2797 | continue; |
2798 | |
2799 | // If this is OpenMP, check if it is legal to emit this global normally. |
2800 | if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) |
2801 | continue; |
2802 | |
2803 | // Otherwise, emit the definition and move on to the next one. |
2804 | EmitGlobalDefinition(D, GV); |
2805 | |
2806 | // If we found out that we need to emit more decls, do that recursively. |
2807 | // This has the advantage that the decls are emitted in a DFS and related |
2808 | // ones are close together, which is convenient for testing. |
2809 | if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { |
2810 | EmitDeferred(); |
2811 | assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() && DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()" , "clang/lib/CodeGen/CodeGenModule.cpp", 2811, __extension__ __PRETTY_FUNCTION__ )); |
2812 | } |
2813 | } |
2814 | } |
2815 | |
2816 | void CodeGenModule::EmitVTablesOpportunistically() { |
2817 | // Try to emit external vtables as available_externally if they have emitted |
2818 | // all inlined virtual functions. It runs after EmitDeferred() and therefore |
2819 | // is not allowed to create new references to things that need to be emitted |
2820 | // lazily. Note that it also uses fact that we eagerly emitting RTTI. |
2821 | |
2822 | assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables ()) && "Only emit opportunistic vtables with optimizations" ) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2823, __extension__ __PRETTY_FUNCTION__ )) |
2823 | && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables ()) && "Only emit opportunistic vtables with optimizations" ) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2823, __extension__ __PRETTY_FUNCTION__ )); |
2824 | |
2825 | for (const CXXRecordDecl *RD : OpportunisticVTables) { |
2826 | assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) && "This queue should only contain external vtables") ? void (0 ) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2827, __extension__ __PRETTY_FUNCTION__ )) |
2827 | "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) && "This queue should only contain external vtables") ? void (0 ) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2827, __extension__ __PRETTY_FUNCTION__ )); |
2828 | if (getCXXABI().canSpeculativelyEmitVTable(RD)) |
2829 | VTables.GenerateClassData(RD); |
2830 | } |
2831 | OpportunisticVTables.clear(); |
2832 | } |
2833 | |
2834 | void CodeGenModule::EmitGlobalAnnotations() { |
2835 | if (Annotations.empty()) |
2836 | return; |
2837 | |
2838 | // Create a new global variable for the ConstantStruct in the Module. |
2839 | llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( |
2840 | Annotations[0]->getType(), Annotations.size()), Annotations); |
2841 | auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, |
2842 | llvm::GlobalValue::AppendingLinkage, |
2843 | Array, "llvm.global.annotations"); |
2844 | gv->setSection(AnnotationSection); |
2845 | } |
2846 | |
2847 | llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { |
2848 | llvm::Constant *&AStr = AnnotationStrings[Str]; |
2849 | if (AStr) |
2850 | return AStr; |
2851 | |
2852 | // Not found yet, create a new global. |
2853 | llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); |
2854 | auto *gv = new llvm::GlobalVariable( |
2855 | getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, |
2856 | ".str", nullptr, llvm::GlobalValue::NotThreadLocal, |
2857 | ConstGlobalsPtrTy->getAddressSpace()); |
2858 | gv->setSection(AnnotationSection); |
2859 | gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2860 | AStr = gv; |
2861 | return gv; |
2862 | } |
2863 | |
2864 | llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { |
2865 | SourceManager &SM = getContext().getSourceManager(); |
2866 | PresumedLoc PLoc = SM.getPresumedLoc(Loc); |
2867 | if (PLoc.isValid()) |
2868 | return EmitAnnotationString(PLoc.getFilename()); |
2869 | return EmitAnnotationString(SM.getBufferName(Loc)); |
2870 | } |
2871 | |
2872 | llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { |
2873 | SourceManager &SM = getContext().getSourceManager(); |
2874 | PresumedLoc PLoc = SM.getPresumedLoc(L); |
2875 | unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : |
2876 | SM.getExpansionLineNumber(L); |
2877 | return llvm::ConstantInt::get(Int32Ty, LineNo); |
2878 | } |
2879 | |
2880 | llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { |
2881 | ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; |
2882 | if (Exprs.empty()) |
2883 | return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); |
2884 | |
2885 | llvm::FoldingSetNodeID ID; |
2886 | for (Expr *E : Exprs) { |
2887 | ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); |
2888 | } |
2889 | llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; |
2890 | if (Lookup) |
2891 | return Lookup; |
2892 | |
2893 | llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; |
2894 | LLVMArgs.reserve(Exprs.size()); |
2895 | ConstantEmitter ConstEmiter(*this); |
2896 | llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { |
2897 | const auto *CE = cast<clang::ConstantExpr>(E); |
2898 | return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), |
2899 | CE->getType()); |
2900 | }); |
2901 | auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); |
2902 | auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, |
2903 | llvm::GlobalValue::PrivateLinkage, Struct, |
2904 | ".args"); |
2905 | GV->setSection(AnnotationSection); |
2906 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2907 | auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); |
2908 | |
2909 | Lookup = Bitcasted; |
2910 | return Bitcasted; |
2911 | } |
2912 | |
2913 | llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, |
2914 | const AnnotateAttr *AA, |
2915 | SourceLocation L) { |
2916 | // Get the globals for file name, annotation, and the line number. |
2917 | llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), |
2918 | *UnitGV = EmitAnnotationUnit(L), |
2919 | *LineNoCst = EmitAnnotationLineNo(L), |
2920 | *Args = EmitAnnotationArgs(AA); |
2921 | |
2922 | llvm::Constant *GVInGlobalsAS = GV; |
2923 | if (GV->getAddressSpace() != |
2924 | getDataLayout().getDefaultGlobalsAddressSpace()) { |
2925 | GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( |
2926 | GV, GV->getValueType()->getPointerTo( |
2927 | getDataLayout().getDefaultGlobalsAddressSpace())); |
2928 | } |
2929 | |
2930 | // Create the ConstantStruct for the global annotation. |
2931 | llvm::Constant *Fields[] = { |
2932 | llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), |
2933 | llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), |
2934 | llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), |
2935 | LineNoCst, |
2936 | Args, |
2937 | }; |
2938 | return llvm::ConstantStruct::getAnon(Fields); |
2939 | } |
2940 | |
2941 | void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, |
2942 | llvm::GlobalValue *GV) { |
2943 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>( ) && "no annotate attribute") ? void (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 2943, __extension__ __PRETTY_FUNCTION__ )); |
2944 | // Get the struct elements for these annotations. |
2945 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) |
2946 | Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); |
2947 | } |
2948 | |
2949 | bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, |
2950 | SourceLocation Loc) const { |
2951 | const auto &NoSanitizeL = getContext().getNoSanitizeList(); |
2952 | // NoSanitize by function name. |
2953 | if (NoSanitizeL.containsFunction(Kind, Fn->getName())) |
2954 | return true; |
2955 | // NoSanitize by location. Check "mainfile" prefix. |
2956 | auto &SM = Context.getSourceManager(); |
2957 | const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); |
2958 | if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) |
2959 | return true; |
2960 | |
2961 | // Check "src" prefix. |
2962 | if (Loc.isValid()) |
2963 | return NoSanitizeL.containsLocation(Kind, Loc); |
2964 | // If location is unknown, this may be a compiler-generated function. Assume |
2965 | // it's located in the main file. |
2966 | return NoSanitizeL.containsFile(Kind, MainFile.getName()); |
2967 | } |
2968 | |
2969 | bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, |
2970 | llvm::GlobalVariable *GV, |
2971 | SourceLocation Loc, QualType Ty, |
2972 | StringRef Category) const { |
2973 | const auto &NoSanitizeL = getContext().getNoSanitizeList(); |
2974 | if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) |
2975 | return true; |
2976 | auto &SM = Context.getSourceManager(); |
2977 | if (NoSanitizeL.containsMainFile( |
2978 | Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) |
2979 | return true; |
2980 | if (NoSanitizeL.containsLocation(Kind, Loc, Category)) |
2981 | return true; |
2982 | |
2983 | // Check global type. |
2984 | if (!Ty.isNull()) { |
2985 | // Drill down the array types: if global variable of a fixed type is |
2986 | // not sanitized, we also don't instrument arrays of them. |
2987 | while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) |
2988 | Ty = AT->getElementType(); |
2989 | Ty = Ty.getCanonicalType().getUnqualifiedType(); |
2990 | // Only record types (classes, structs etc.) are ignored. |
2991 | if (Ty->isRecordType()) { |
2992 | std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); |
2993 | if (NoSanitizeL.containsType(Kind, TypeStr, Category)) |
2994 | return true; |
2995 | } |
2996 | } |
2997 | return false; |
2998 | } |
2999 | |
3000 | bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, |
3001 | StringRef Category) const { |
3002 | const auto &XRayFilter = getContext().getXRayFilter(); |
3003 | using ImbueAttr = XRayFunctionFilter::ImbueAttribute; |
3004 | auto Attr = ImbueAttr::NONE; |
3005 | if (Loc.isValid()) |
3006 | Attr = XRayFilter.shouldImbueLocation(Loc, Category); |
3007 | if (Attr == ImbueAttr::NONE) |
3008 | Attr = XRayFilter.shouldImbueFunction(Fn->getName()); |
3009 | switch (Attr) { |
3010 | case ImbueAttr::NONE: |
3011 | return false; |
3012 | case ImbueAttr::ALWAYS: |
3013 | Fn->addFnAttr("function-instrument", "xray-always"); |
3014 | break; |
3015 | case ImbueAttr::ALWAYS_ARG1: |
3016 | Fn->addFnAttr("function-instrument", "xray-always"); |
3017 | Fn->addFnAttr("xray-log-args", "1"); |
3018 | break; |
3019 | case ImbueAttr::NEVER: |
3020 | Fn->addFnAttr("function-instrument", "xray-never"); |
3021 | break; |
3022 | } |
3023 | return true; |
3024 | } |
3025 | |
3026 | ProfileList::ExclusionType |
3027 | CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, |
3028 | SourceLocation Loc) const { |
3029 | const auto &ProfileList = getContext().getProfileList(); |
3030 | // If the profile list is empty, then instrument everything. |
3031 | if (ProfileList.isEmpty()) |
3032 | return ProfileList::Allow; |
3033 | CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); |
3034 | // First, check the function name. |
3035 | if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) |
3036 | return *V; |
3037 | // Next, check the source location. |
3038 | if (Loc.isValid()) |
3039 | if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) |
3040 | return *V; |
3041 | // If location is unknown, this may be a compiler-generated function. Assume |
3042 | // it's located in the main file. |
3043 | auto &SM = Context.getSourceManager(); |
3044 | if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) |
3045 | if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) |
3046 | return *V; |
3047 | return ProfileList.getDefault(Kind); |
3048 | } |
3049 | |
3050 | ProfileList::ExclusionType |
3051 | CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, |
3052 | SourceLocation Loc) const { |
3053 | auto V = isFunctionBlockedByProfileList(Fn, Loc); |
3054 | if (V != ProfileList::Allow) |
3055 | return V; |
3056 | |
3057 | auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; |
3058 | if (NumGroups > 1) { |
3059 | auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; |
3060 | if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) |
3061 | return ProfileList::Skip; |
3062 | } |
3063 | return ProfileList::Allow; |
3064 | } |
3065 | |
3066 | bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { |
3067 | // Never defer when EmitAllDecls is specified. |
3068 | if (LangOpts.EmitAllDecls) |
3069 | return true; |
3070 | |
3071 | if (CodeGenOpts.KeepStaticConsts) { |
3072 | const auto *VD = dyn_cast<VarDecl>(Global); |
3073 | if (VD && VD->getType().isConstQualified() && |
3074 | VD->getStorageDuration() == SD_Static) |
3075 | return true; |
3076 | } |
3077 | |
3078 | return getContext().DeclMustBeEmitted(Global); |
3079 | } |
3080 | |
3081 | bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { |
3082 | // In OpenMP 5.0 variables and function may be marked as |
3083 | // device_type(host/nohost) and we should not emit them eagerly unless we sure |
3084 | // that they must be emitted on the host/device. To be sure we need to have |
3085 | // seen a declare target with an explicit mentioning of the function, we know |
3086 | // we have if the level of the declare target attribute is -1. Note that we |
3087 | // check somewhere else if we should emit this at all. |
3088 | if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { |
3089 | std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = |
3090 | OMPDeclareTargetDeclAttr::getActiveAttr(Global); |
3091 | if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) |
3092 | return false; |
3093 | } |
3094 | |
3095 | if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { |
3096 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
3097 | // Implicit template instantiations may change linkage if they are later |
3098 | // explicitly instantiated, so they should not be emitted eagerly. |
3099 | return false; |
3100 | } |
3101 | if (const auto *VD = dyn_cast<VarDecl>(Global)) { |
3102 | if (Context.getInlineVariableDefinitionKind(VD) == |
3103 | ASTContext::InlineVariableDefinitionKind::WeakUnknown) |
3104 | // A definition of an inline constexpr static data member may change |
3105 | // linkage later if it's redeclared outside the class. |
3106 | return false; |
3107 | if (CXX20ModuleInits && VD->getOwningModule() && |
3108 | !VD->getOwningModule()->isModuleMapModule()) { |
3109 | // For CXX20, module-owned initializers need to be deferred, since it is |
3110 | // not known at this point if they will be run for the current module or |
3111 | // as part of the initializer for an imported one. |
3112 | return false; |
3113 | } |
3114 | } |
3115 | // If OpenMP is enabled and threadprivates must be generated like TLS, delay |
3116 | // codegen for global variables, because they may be marked as threadprivate. |
3117 | if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && |
3118 | getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && |
3119 | !isTypeConstant(Global->getType(), false) && |
3120 | !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) |
3121 | return false; |
3122 | |
3123 | return true; |
3124 | } |
3125 | |
3126 | ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { |
3127 | StringRef Name = getMangledName(GD); |
3128 | |
3129 | // The UUID descriptor should be pointer aligned. |
3130 | CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); |
3131 | |
3132 | // Look for an existing global. |
3133 | if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) |
3134 | return ConstantAddress(GV, GV->getValueType(), Alignment); |
3135 | |
3136 | ConstantEmitter Emitter(*this); |
3137 | llvm::Constant *Init; |
3138 | |
3139 | APValue &V = GD->getAsAPValue(); |
3140 | if (!V.isAbsent()) { |
3141 | // If possible, emit the APValue version of the initializer. In particular, |
3142 | // this gets the type of the constant right. |
3143 | Init = Emitter.emitForInitializer( |
3144 | GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); |
3145 | } else { |
3146 | // As a fallback, directly construct the constant. |
3147 | // FIXME: This may get padding wrong under esoteric struct layout rules. |
3148 | // MSVC appears to create a complete type 'struct __s_GUID' that it |
3149 | // presumably uses to represent these constants. |
3150 | MSGuidDecl::Parts Parts = GD->getParts(); |
3151 | llvm::Constant *Fields[4] = { |
3152 | llvm::ConstantInt::get(Int32Ty, Parts.Part1), |
3153 | llvm::ConstantInt::get(Int16Ty, Parts.Part2), |
3154 | llvm::ConstantInt::get(Int16Ty, Parts.Part3), |
3155 | llvm::ConstantDataArray::getRaw( |
3156 | StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, |
3157 | Int8Ty)}; |
3158 | Init = llvm::ConstantStruct::getAnon(Fields); |
3159 | } |
3160 | |
3161 | auto *GV = new llvm::GlobalVariable( |
3162 | getModule(), Init->getType(), |
3163 | /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); |
3164 | if (supportsCOMDAT()) |
3165 | GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); |
3166 | setDSOLocal(GV); |
3167 | |
3168 | if (!V.isAbsent()) { |
3169 | Emitter.finalize(GV); |
3170 | return ConstantAddress(GV, GV->getValueType(), Alignment); |
3171 | } |
3172 | |
3173 | llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); |
3174 | llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( |
3175 | GV, Ty->getPointerTo(GV->getAddressSpace())); |
3176 | return ConstantAddress(Addr, Ty, Alignment); |
3177 | } |
3178 | |
3179 | ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( |
3180 | const UnnamedGlobalConstantDecl *GCD) { |
3181 | CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); |
3182 | |
3183 | llvm::GlobalVariable **Entry = nullptr; |
3184 | Entry = &UnnamedGlobalConstantDeclMap[GCD]; |
3185 | if (*Entry) |
3186 | return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); |
3187 | |
3188 | ConstantEmitter Emitter(*this); |
3189 | llvm::Constant *Init; |
3190 | |
3191 | const APValue &V = GCD->getValue(); |
3192 | |
3193 | assert(!V.isAbsent())(static_cast <bool> (!V.isAbsent()) ? void (0) : __assert_fail ("!V.isAbsent()", "clang/lib/CodeGen/CodeGenModule.cpp", 3193 , __extension__ __PRETTY_FUNCTION__)); |
3194 | Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), |
3195 | GCD->getType()); |
3196 | |
3197 | auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), |
3198 | /*isConstant=*/true, |
3199 | llvm::GlobalValue::PrivateLinkage, Init, |
3200 | ".constant"); |
3201 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
3202 | GV->setAlignment(Alignment.getAsAlign()); |
3203 | |
3204 | Emitter.finalize(GV); |
3205 | |
3206 | *Entry = GV; |
3207 | return ConstantAddress(GV, GV->getValueType(), Alignment); |
3208 | } |
3209 | |
3210 | ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( |
3211 | const TemplateParamObjectDecl *TPO) { |
3212 | StringRef Name = getMangledName(TPO); |
3213 | CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); |
3214 | |
3215 | if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) |
3216 | return ConstantAddress(GV, GV->getValueType(), Alignment); |
3217 | |
3218 | ConstantEmitter Emitter(*this); |
3219 | llvm::Constant *Init = Emitter.emitForInitializer( |
3220 | TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); |
3221 | |
3222 | if (!Init) { |
3223 | ErrorUnsupported(TPO, "template parameter object"); |
3224 | return ConstantAddress::invalid(); |
3225 | } |
3226 | |
3227 | auto *GV = new llvm::GlobalVariable( |
3228 | getModule(), Init->getType(), |
3229 | /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); |
3230 | if (supportsCOMDAT()) |
3231 | GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); |
3232 | Emitter.finalize(GV); |
3233 | |
3234 | return ConstantAddress(GV, GV->getValueType(), Alignment); |
3235 | } |
3236 | |
3237 | ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { |
3238 | const AliasAttr *AA = VD->getAttr<AliasAttr>(); |
3239 | assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void ( 0) : __assert_fail ("AA && \"No alias?\"", "clang/lib/CodeGen/CodeGenModule.cpp" , 3239, __extension__ __PRETTY_FUNCTION__)); |
3240 | |
3241 | CharUnits Alignment = getContext().getDeclAlign(VD); |
3242 | llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); |
3243 | |
3244 | // See if there is already something with the target's name in the module. |
3245 | llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); |
3246 | if (Entry) { |
3247 | unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); |
3248 | auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); |
3249 | return ConstantAddress(Ptr, DeclTy, Alignment); |
3250 | } |
3251 | |
3252 | llvm::Constant *Aliasee; |
3253 | if (isa<llvm::FunctionType>(DeclTy)) |
3254 | Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, |
3255 | GlobalDecl(cast<FunctionDecl>(VD)), |
3256 | /*ForVTable=*/false); |
3257 | else |
3258 | Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, |
3259 | nullptr); |
3260 | |
3261 | auto *F = cast<llvm::GlobalValue>(Aliasee); |
3262 | F->setLinkage(llvm::Function::ExternalWeakLinkage); |
3263 | WeakRefReferences.insert(F); |
3264 | |
3265 | return ConstantAddress(Aliasee, DeclTy, Alignment); |
3266 | } |
3267 | |
3268 | void CodeGenModule::EmitGlobal(GlobalDecl GD) { |
3269 | const auto *Global = cast<ValueDecl>(GD.getDecl()); |
3270 | |
3271 | // Weak references don't produce any output by themselves. |
3272 | if (Global->hasAttr<WeakRefAttr>()) |
3273 | return; |
3274 | |
3275 | // If this is an alias definition (which otherwise looks like a declaration) |
3276 | // emit it now. |
3277 | if (Global->hasAttr<AliasAttr>()) |
3278 | return EmitAliasDefinition(GD); |
3279 | |
3280 | // IFunc like an alias whose value is resolved at runtime by calling resolver. |
3281 | if (Global->hasAttr<IFuncAttr>()) |
3282 | return emitIFuncDefinition(GD); |
3283 | |
3284 | // If this is a cpu_dispatch multiversion function, emit the resolver. |
3285 | if (Global->hasAttr<CPUDispatchAttr>()) |
3286 | return emitCPUDispatchDefinition(GD); |
3287 | |
3288 | // If this is CUDA, be selective about which declarations we emit. |
3289 | if (LangOpts.CUDA) { |
3290 | if (LangOpts.CUDAIsDevice) { |
3291 | if (!Global->hasAttr<CUDADeviceAttr>() && |
3292 | !Global->hasAttr<CUDAGlobalAttr>() && |
3293 | !Global->hasAttr<CUDAConstantAttr>() && |
3294 | !Global->hasAttr<CUDASharedAttr>() && |
3295 | !Global->getType()->isCUDADeviceBuiltinSurfaceType() && |
3296 | !Global->getType()->isCUDADeviceBuiltinTextureType()) |
3297 | return; |
3298 | } else { |
3299 | // We need to emit host-side 'shadows' for all global |
3300 | // device-side variables because the CUDA runtime needs their |
3301 | // size and host-side address in order to provide access to |
3302 | // their device-side incarnations. |
3303 | |
3304 | // So device-only functions are the only things we skip. |
3305 | if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && |
3306 | Global->hasAttr<CUDADeviceAttr>()) |
3307 | return; |
3308 | |
3309 | assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && "Expected Variable or Function" ) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3310, __extension__ __PRETTY_FUNCTION__ )) |
3310 | "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && "Expected Variable or Function" ) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3310, __extension__ __PRETTY_FUNCTION__ )); |
3311 | } |
3312 | } |
3313 | |
3314 | if (LangOpts.OpenMP) { |
3315 | // If this is OpenMP, check if it is legal to emit this global normally. |
3316 | if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) |
3317 | return; |
3318 | if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { |
3319 | if (MustBeEmitted(Global)) |
3320 | EmitOMPDeclareReduction(DRD); |
3321 | return; |
3322 | } |
3323 | if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { |
3324 | if (MustBeEmitted(Global)) |
3325 | EmitOMPDeclareMapper(DMD); |
3326 | return; |
3327 | } |
3328 | } |
3329 | |
3330 | // Ignore declarations, they will be emitted on their first use. |
3331 | if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { |
3332 | // Forward declarations are emitted lazily on first use. |
3333 | if (!FD->doesThisDeclarationHaveABody()) { |
3334 | if (!FD->doesDeclarationForceExternallyVisibleDefinition()) |
3335 | return; |
3336 | |
3337 | StringRef MangledName = getMangledName(GD); |
3338 | |
3339 | // Compute the function info and LLVM type. |
3340 | const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
3341 | llvm::Type *Ty = getTypes().GetFunctionType(FI); |
3342 | |
3343 | GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, |
3344 | /*DontDefer=*/false); |
3345 | return; |
3346 | } |
3347 | } else { |
3348 | const auto *VD = cast<VarDecl>(Global); |
3349 | assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global." ) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3349, __extension__ __PRETTY_FUNCTION__ )); |
3350 | if (VD->isThisDeclarationADefinition() != VarDecl::Definition && |
3351 | !Context.isMSStaticDataMemberInlineDefinition(VD)) { |
3352 | if (LangOpts.OpenMP) { |
3353 | // Emit declaration of the must-be-emitted declare target variable. |
3354 | if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
3355 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { |
3356 | bool UnifiedMemoryEnabled = |
3357 | getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); |
3358 | if ((*Res == OMPDeclareTargetDeclAttr::MT_To || |
3359 | *Res == OMPDeclareTargetDeclAttr::MT_Enter) && |
3360 | !UnifiedMemoryEnabled) { |
3361 | (void)GetAddrOfGlobalVar(VD); |
3362 | } else { |
3363 | assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr ::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled )) && "Link clause or to clause with unified memory expected." ) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3367, __extension__ __PRETTY_FUNCTION__ )) |
3364 | ((*Res == OMPDeclareTargetDeclAttr::MT_To ||(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr ::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled )) && "Link clause or to clause with unified memory expected." ) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3367, __extension__ __PRETTY_FUNCTION__ )) |
3365 | *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr ::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled )) && "Link clause or to clause with unified memory expected." ) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3367, __extension__ __PRETTY_FUNCTION__ )) |
3366 | UnifiedMemoryEnabled)) &&(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr ::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled )) && "Link clause or to clause with unified memory expected." ) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3367, __extension__ __PRETTY_FUNCTION__ )) |
3367 | "Link clause or to clause with unified memory expected.")(static_cast <bool> (((*Res == OMPDeclareTargetDeclAttr ::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled )) && "Link clause or to clause with unified memory expected." ) ? void (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3367, __extension__ __PRETTY_FUNCTION__ )); |
3368 | (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); |
3369 | } |
3370 | |
3371 | return; |
3372 | } |
3373 | } |
3374 | // If this declaration may have caused an inline variable definition to |
3375 | // change linkage, make sure that it's emitted. |
3376 | if (Context.getInlineVariableDefinitionKind(VD) == |
3377 | ASTContext::InlineVariableDefinitionKind::Strong) |
3378 | GetAddrOfGlobalVar(VD); |
3379 | return; |
3380 | } |
3381 | } |
3382 | |
3383 | // Defer code generation to first use when possible, e.g. if this is an inline |
3384 | // function. If the global must always be emitted, do it eagerly if possible |
3385 | // to benefit from cache locality. |
3386 | if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { |
3387 | // Emit the definition if it can't be deferred. |
3388 | EmitGlobalDefinition(GD); |
3389 | return; |
3390 | } |
3391 | |
3392 | // If we're deferring emission of a C++ variable with an |
3393 | // initializer, remember the order in which it appeared in the file. |
3394 | if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && |
3395 | cast<VarDecl>(Global)->hasInit()) { |
3396 | DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); |
3397 | CXXGlobalInits.push_back(nullptr); |
3398 | } |
3399 | |
3400 | StringRef MangledName = getMangledName(GD); |
3401 | if (GetGlobalValue(MangledName) != nullptr) { |
3402 | // The value has already been used and should therefore be emitted. |
3403 | addDeferredDeclToEmit(GD); |
3404 | } else if (MustBeEmitted(Global)) { |
3405 | // The value must be emitted, but cannot be emitted eagerly. |
3406 | assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void (0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "clang/lib/CodeGen/CodeGenModule.cpp" , 3406, __extension__ __PRETTY_FUNCTION__)); |
3407 | addDeferredDeclToEmit(GD); |
3408 | EmittedDeferredDecls[MangledName] = GD; |
3409 | } else { |
3410 | // Otherwise, remember that we saw a deferred decl with this name. The |
3411 | // first use of the mangled name will cause it to move into |
3412 | // DeferredDeclsToEmit. |
3413 | DeferredDecls[MangledName] = GD; |
3414 | } |
3415 | } |
3416 | |
3417 | // Check if T is a class type with a destructor that's not dllimport. |
3418 | static bool HasNonDllImportDtor(QualType T) { |
3419 | if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
3420 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) |
3421 | if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) |
3422 | return true; |
3423 | |
3424 | return false; |
3425 | } |
3426 | |
3427 | namespace { |
3428 | struct FunctionIsDirectlyRecursive |
3429 | : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { |
3430 | const StringRef Name; |
3431 | const Builtin::Context &BI; |
3432 | FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) |
3433 | : Name(N), BI(C) {} |
3434 | |
3435 | bool VisitCallExpr(const CallExpr *E) { |
3436 | const FunctionDecl *FD = E->getDirectCallee(); |
3437 | if (!FD) |
3438 | return false; |
3439 | AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); |
3440 | if (Attr && Name == Attr->getLabel()) |
3441 | return true; |
3442 | unsigned BuiltinID = FD->getBuiltinID(); |
3443 | if (!BuiltinID || !BI.isLibFunction(BuiltinID)) |
3444 | return false; |
3445 | StringRef BuiltinName = BI.getName(BuiltinID); |
3446 | if (BuiltinName.startswith("__builtin_") && |
3447 | Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { |
3448 | return true; |
3449 | } |
3450 | return false; |
3451 | } |
3452 | |
3453 | bool VisitStmt(const Stmt *S) { |
3454 | for (const Stmt *Child : S->children()) |
3455 | if (Child && this->Visit(Child)) |
3456 | return true; |
3457 | return false; |
3458 | } |
3459 | }; |
3460 | |
3461 | // Make sure we're not referencing non-imported vars or functions. |
3462 | struct DLLImportFunctionVisitor |
3463 | : public RecursiveASTVisitor<DLLImportFunctionVisitor> { |
3464 | bool SafeToInline = true; |
3465 | |
3466 | bool shouldVisitImplicitCode() const { return true; } |
3467 | |
3468 | bool VisitVarDecl(VarDecl *VD) { |
3469 | if (VD->getTLSKind()) { |
3470 | // A thread-local variable cannot be imported. |
3471 | SafeToInline = false; |
3472 | return SafeToInline; |
3473 | } |
3474 | |
3475 | // A variable definition might imply a destructor call. |
3476 | if (VD->isThisDeclarationADefinition()) |
3477 | SafeToInline = !HasNonDllImportDtor(VD->getType()); |
3478 | |
3479 | return SafeToInline; |
3480 | } |
3481 | |
3482 | bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
3483 | if (const auto *D = E->getTemporary()->getDestructor()) |
3484 | SafeToInline = D->hasAttr<DLLImportAttr>(); |
3485 | return SafeToInline; |
3486 | } |
3487 | |
3488 | bool VisitDeclRefExpr(DeclRefExpr *E) { |
3489 | ValueDecl *VD = E->getDecl(); |
3490 | if (isa<FunctionDecl>(VD)) |
3491 | SafeToInline = VD->hasAttr<DLLImportAttr>(); |
3492 | else if (VarDecl *V = dyn_cast<VarDecl>(VD)) |
3493 | SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); |
3494 | return SafeToInline; |
3495 | } |
3496 | |
3497 | bool VisitCXXConstructExpr(CXXConstructExpr *E) { |
3498 | SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); |
3499 | return SafeToInline; |
3500 | } |
3501 | |
3502 | bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { |
3503 | CXXMethodDecl *M = E->getMethodDecl(); |
3504 | if (!M) { |
3505 | // Call through a pointer to member function. This is safe to inline. |
3506 | SafeToInline = true; |
3507 | } else { |
3508 | SafeToInline = M->hasAttr<DLLImportAttr>(); |
3509 | } |
3510 | return SafeToInline; |
3511 | } |
3512 | |
3513 | bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { |
3514 | SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); |
3515 | return SafeToInline; |
3516 | } |
3517 | |
3518 | bool VisitCXXNewExpr(CXXNewExpr *E) { |
3519 | SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); |
3520 | return SafeToInline; |
3521 | } |
3522 | }; |
3523 | } |
3524 | |
3525 | // isTriviallyRecursive - Check if this function calls another |
3526 | // decl that, because of the asm attribute or the other decl being a builtin, |
3527 | // ends up pointing to itself. |
3528 | bool |
3529 | CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { |
3530 | StringRef Name; |
3531 | if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { |
3532 | // asm labels are a special kind of mangling we have to support. |
3533 | AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); |
3534 | if (!Attr) |
3535 | return false; |
3536 | Name = Attr->getLabel(); |
3537 | } else { |
3538 | Name = FD->getName(); |
3539 | } |
3540 | |
3541 | FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); |
3542 | const Stmt *Body = FD->getBody(); |
3543 | return Body ? Walker.Visit(Body) : false; |
3544 | } |
3545 | |
3546 | bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { |
3547 | if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) |
3548 | return true; |
3549 | const auto *F = cast<FunctionDecl>(GD.getDecl()); |
3550 | if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) |
3551 | return false; |
3552 | |
3553 | if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { |
3554 | // Check whether it would be safe to inline this dllimport function. |
3555 | DLLImportFunctionVisitor Visitor; |
3556 | Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); |
3557 | if (!Visitor.SafeToInline) |
3558 | return false; |
3559 | |
3560 | if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { |
3561 | // Implicit destructor invocations aren't captured in the AST, so the |
3562 | // check above can't see them. Check for them manually here. |
3563 | for (const Decl *Member : Dtor->getParent()->decls()) |
3564 | if (isa<FieldDecl>(Member)) |
3565 | if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) |
3566 | return false; |
3567 | for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) |
3568 | if (HasNonDllImportDtor(B.getType())) |
3569 | return false; |
3570 | } |
3571 | } |
3572 | |
3573 | // Inline builtins declaration must be emitted. They often are fortified |
3574 | // functions. |
3575 | if (F->isInlineBuiltinDeclaration()) |
3576 | return true; |
3577 | |
3578 | // PR9614. Avoid cases where the source code is lying to us. An available |
3579 | // externally function should have an equivalent function somewhere else, |
3580 | // but a function that calls itself through asm label/`__builtin_` trickery is |
3581 | // clearly not equivalent to the real implementation. |
3582 | // This happens in glibc's btowc and in some configure checks. |
3583 | return !isTriviallyRecursive(F); |
3584 | } |
3585 | |
3586 | bool CodeGenModule::shouldOpportunisticallyEmitVTables() { |
3587 | return CodeGenOpts.OptimizationLevel > 0; |
3588 | } |
3589 | |
3590 | void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, |
3591 | llvm::GlobalValue *GV) { |
3592 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
3593 | |
3594 | if (FD->isCPUSpecificMultiVersion()) { |
3595 | auto *Spec = FD->getAttr<CPUSpecificAttr>(); |
3596 | for (unsigned I = 0; I < Spec->cpus_size(); ++I) |
3597 | EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); |
3598 | } else if (FD->isTargetClonesMultiVersion()) { |
3599 | auto *Clone = FD->getAttr<TargetClonesAttr>(); |
3600 | for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) |
3601 | if (Clone->isFirstOfVersion(I)) |
3602 | EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); |
3603 | // Ensure that the resolver function is also emitted. |
3604 | GetOrCreateMultiVersionResolver(GD); |
3605 | } else |
3606 | EmitGlobalFunctionDefinition(GD, GV); |
3607 | } |
3608 | |
3609 | void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { |
3610 | const auto *D = cast<ValueDecl>(GD.getDecl()); |
3611 | |
3612 | PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), |
3613 | Context.getSourceManager(), |
3614 | "Generating code for declaration"); |
3615 | |
3616 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
3617 | // At -O0, don't generate IR for functions with available_externally |
3618 | // linkage. |
3619 | if (!shouldEmitFunction(GD)) |
3620 | return; |
3621 | |
3622 | llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { |
3623 | std::string Name; |
3624 | llvm::raw_string_ostream OS(Name); |
3625 | FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), |
3626 | /*Qualified=*/true); |
3627 | return Name; |
3628 | }); |
3629 | |
3630 | if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { |
3631 | // Make sure to emit the definition(s) before we emit the thunks. |
3632 | // This is necessary for the generation of certain thunks. |
3633 | if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) |
3634 | ABI->emitCXXStructor(GD); |
3635 | else if (FD->isMultiVersion()) |
3636 | EmitMultiVersionFunctionDefinition(GD, GV); |
3637 | else |
3638 | EmitGlobalFunctionDefinition(GD, GV); |
3639 | |
3640 | if (Method->isVirtual()) |
3641 | getVTables().EmitThunks(GD); |
3642 | |
3643 | return; |
3644 | } |
3645 | |
3646 | if (FD->isMultiVersion()) |
3647 | return EmitMultiVersionFunctionDefinition(GD, GV); |
3648 | return EmitGlobalFunctionDefinition(GD, GV); |
3649 | } |
3650 | |
3651 | if (const auto *VD = dyn_cast<VarDecl>(D)) |
3652 | return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); |
3653 | |
3654 | llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()" , "clang/lib/CodeGen/CodeGenModule.cpp", 3654); |
3655 | } |
3656 | |
3657 | static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, |
3658 | llvm::Function *NewFn); |
3659 | |
3660 | static unsigned |
3661 | TargetMVPriority(const TargetInfo &TI, |
3662 | const CodeGenFunction::MultiVersionResolverOption &RO) { |
3663 | unsigned Priority = 0; |
3664 | unsigned NumFeatures = 0; |
3665 | for (StringRef Feat : RO.Conditions.Features) { |
3666 | Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); |
3667 | NumFeatures++; |
3668 | } |
3669 | |
3670 | if (!RO.Conditions.Architecture.empty()) |
3671 | Priority = std::max( |
3672 | Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); |
3673 | |
3674 | Priority += TI.multiVersionFeatureCost() * NumFeatures; |
3675 | |
3676 | return Priority; |
3677 | } |
3678 | |
3679 | // Multiversion functions should be at most 'WeakODRLinkage' so that a different |
3680 | // TU can forward declare the function without causing problems. Particularly |
3681 | // in the cases of CPUDispatch, this causes issues. This also makes sure we |
3682 | // work with internal linkage functions, so that the same function name can be |
3683 | // used with internal linkage in multiple TUs. |
3684 | llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, |
3685 | GlobalDecl GD) { |
3686 | const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
3687 | if (FD->getFormalLinkage() == InternalLinkage) |
3688 | return llvm::GlobalValue::InternalLinkage; |
3689 | return llvm::GlobalValue::WeakODRLinkage; |
3690 | } |
3691 | |
3692 | void CodeGenModule::emitMultiVersionFunctions() { |
3693 | std::vector<GlobalDecl> MVFuncsToEmit; |
3694 | MultiVersionFuncs.swap(MVFuncsToEmit); |
3695 | for (GlobalDecl GD : MVFuncsToEmit) { |
3696 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
3697 | assert(FD && "Expected a FunctionDecl")(static_cast <bool> (FD && "Expected a FunctionDecl" ) ? void (0) : __assert_fail ("FD && \"Expected a FunctionDecl\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3697, __extension__ __PRETTY_FUNCTION__ )); |
3698 | |
3699 | SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; |
3700 | if (FD->isTargetMultiVersion()) { |
3701 | getContext().forEachMultiversionedFunctionVersion( |
3702 | FD, [this, &GD, &Options](const FunctionDecl *CurFD) { |
3703 | GlobalDecl CurGD{ |
3704 | (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; |
3705 | StringRef MangledName = getMangledName(CurGD); |
3706 | llvm::Constant *Func = GetGlobalValue(MangledName); |
3707 | if (!Func) { |
3708 | if (CurFD->isDefined()) { |
3709 | EmitGlobalFunctionDefinition(CurGD, nullptr); |
3710 | Func = GetGlobalValue(MangledName); |
3711 | } else { |
3712 | const CGFunctionInfo &FI = |
3713 | getTypes().arrangeGlobalDeclaration(GD); |
3714 | llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); |
3715 | Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, |
3716 | /*DontDefer=*/false, ForDefinition); |
3717 | } |
3718 | assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created" ) ? void (0) : __assert_fail ("Func && \"This should have just been created\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3718, __extension__ __PRETTY_FUNCTION__ )); |
3719 | } |
3720 | if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { |
3721 | const auto *TA = CurFD->getAttr<TargetAttr>(); |
3722 | llvm::SmallVector<StringRef, 8> Feats; |
3723 | TA->getAddedFeatures(Feats); |
3724 | Options.emplace_back(cast<llvm::Function>(Func), |
3725 | TA->getArchitecture(), Feats); |
3726 | } else { |
3727 | const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); |
3728 | llvm::SmallVector<StringRef, 8> Feats; |
3729 | TVA->getFeatures(Feats); |
3730 | Options.emplace_back(cast<llvm::Function>(Func), |
3731 | /*Architecture*/ "", Feats); |
3732 | } |
3733 | }); |
3734 | } else if (FD->isTargetClonesMultiVersion()) { |
3735 | const auto *TC = FD->getAttr<TargetClonesAttr>(); |
3736 | for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); |
3737 | ++VersionIndex) { |
3738 | if (!TC->isFirstOfVersion(VersionIndex)) |
3739 | continue; |
3740 | GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), |
3741 | VersionIndex}; |
3742 | StringRef Version = TC->getFeatureStr(VersionIndex); |
3743 | StringRef MangledName = getMangledName(CurGD); |
3744 | llvm::Constant *Func = GetGlobalValue(MangledName); |
3745 | if (!Func) { |
3746 | if (FD->isDefined()) { |
3747 | EmitGlobalFunctionDefinition(CurGD, nullptr); |
3748 | Func = GetGlobalValue(MangledName); |
3749 | } else { |
3750 | const CGFunctionInfo &FI = |
3751 | getTypes().arrangeGlobalDeclaration(CurGD); |
3752 | llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); |
3753 | Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, |
3754 | /*DontDefer=*/false, ForDefinition); |
3755 | } |
3756 | assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created" ) ? void (0) : __assert_fail ("Func && \"This should have just been created\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3756, __extension__ __PRETTY_FUNCTION__ )); |
3757 | } |
3758 | |
3759 | StringRef Architecture; |
3760 | llvm::SmallVector<StringRef, 1> Feature; |
3761 | |
3762 | if (getTarget().getTriple().isAArch64()) { |
3763 | if (Version != "default") { |
3764 | llvm::SmallVector<StringRef, 8> VerFeats; |
3765 | Version.split(VerFeats, "+"); |
3766 | for (auto &CurFeat : VerFeats) |
3767 | Feature.push_back(CurFeat.trim()); |
3768 | } |
3769 | } else { |
3770 | if (Version.startswith("arch=")) |
3771 | Architecture = Version.drop_front(sizeof("arch=") - 1); |
3772 | else if (Version != "default") |
3773 | Feature.push_back(Version); |
3774 | } |
3775 | |
3776 | Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); |
3777 | } |
3778 | } else { |
3779 | assert(0 && "Expected a target or target_clones multiversion function")(static_cast <bool> (0 && "Expected a target or target_clones multiversion function" ) ? void (0) : __assert_fail ("0 && \"Expected a target or target_clones multiversion function\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3779, __extension__ __PRETTY_FUNCTION__ )); |
3780 | continue; |
3781 | } |
3782 | |
3783 | llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); |
3784 | if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) |
3785 | ResolverConstant = IFunc->getResolver(); |
3786 | llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); |
3787 | |
3788 | ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); |
3789 | |
3790 | if (supportsCOMDAT()) |
3791 | ResolverFunc->setComdat( |
3792 | getModule().getOrInsertComdat(ResolverFunc->getName())); |
3793 | |
3794 | const TargetInfo &TI = getTarget(); |
3795 | llvm::stable_sort( |
3796 | Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, |
3797 | const CodeGenFunction::MultiVersionResolverOption &RHS) { |
3798 | return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); |
3799 | }); |
3800 | CodeGenFunction CGF(*this); |
3801 | CGF.EmitMultiVersionResolver(ResolverFunc, Options); |
3802 | } |
3803 | |
3804 | // Ensure that any additions to the deferred decls list caused by emitting a |
3805 | // variant are emitted. This can happen when the variant itself is inline and |
3806 | // calls a function without linkage. |
3807 | if (!MVFuncsToEmit.empty()) |
3808 | EmitDeferred(); |
3809 | |
3810 | // Ensure that any additions to the multiversion funcs list from either the |
3811 | // deferred decls or the multiversion functions themselves are emitted. |
3812 | if (!MultiVersionFuncs.empty()) |
3813 | emitMultiVersionFunctions(); |
3814 | } |
3815 | |
3816 | void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { |
3817 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
3818 | assert(FD && "Not a FunctionDecl?")(static_cast <bool> (FD && "Not a FunctionDecl?" ) ? void (0) : __assert_fail ("FD && \"Not a FunctionDecl?\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3818, __extension__ __PRETTY_FUNCTION__ )); |
3819 | assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?")(static_cast <bool> (FD->isCPUDispatchMultiVersion() && "Not a multiversion function?") ? void (0) : __assert_fail ("FD->isCPUDispatchMultiVersion() && \"Not a multiversion function?\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3819, __extension__ __PRETTY_FUNCTION__ )); |
3820 | const auto *DD = FD->getAttr<CPUDispatchAttr>(); |
3821 | assert(DD && "Not a cpu_dispatch Function?")(static_cast <bool> (DD && "Not a cpu_dispatch Function?" ) ? void (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3821, __extension__ __PRETTY_FUNCTION__ )); |
3822 | |
3823 | const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
3824 | llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); |
3825 | |
3826 | StringRef ResolverName = getMangledName(GD); |
3827 | UpdateMultiVersionNames(GD, FD, ResolverName); |
3828 | |
3829 | llvm::Type *ResolverType; |
3830 | GlobalDecl ResolverGD; |
3831 | if (getTarget().supportsIFunc()) { |
3832 | ResolverType = llvm::FunctionType::get( |
3833 | llvm::PointerType::get(DeclTy, |
3834 | getTypes().getTargetAddressSpace(FD->getType())), |
3835 | false); |
3836 | } |
3837 | else { |
3838 | ResolverType = DeclTy; |
3839 | ResolverGD = GD; |
3840 | } |
3841 | |
3842 | auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( |
3843 | ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); |
3844 | ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); |
3845 | if (supportsCOMDAT()) |
3846 | ResolverFunc->setComdat( |
3847 | getModule().getOrInsertComdat(ResolverFunc->getName())); |
3848 | |
3849 | SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; |
3850 | const TargetInfo &Target = getTarget(); |
3851 | unsigned Index = 0; |
3852 | for (const IdentifierInfo *II : DD->cpus()) { |
3853 | // Get the name of the target function so we can look it up/create it. |
3854 | std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + |
3855 | getCPUSpecificMangling(*this, II->getName()); |
3856 | |
3857 | llvm::Constant *Func = GetGlobalValue(MangledName); |
3858 | |
3859 | if (!Func) { |
3860 | GlobalDecl ExistingDecl = Manglings.lookup(MangledName); |
3861 | if (ExistingDecl.getDecl() && |
3862 | ExistingDecl.getDecl()->getAsFunction()->isDefined()) { |
3863 | EmitGlobalFunctionDefinition(ExistingDecl, nullptr); |
3864 | Func = GetGlobalValue(MangledName); |
3865 | } else { |
3866 | if (!ExistingDecl.getDecl()) |
3867 | ExistingDecl = GD.getWithMultiVersionIndex(Index); |
3868 | |
3869 | Func = GetOrCreateLLVMFunction( |
3870 | MangledName, DeclTy, ExistingDecl, |
3871 | /*ForVTable=*/false, /*DontDefer=*/true, |
3872 | /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); |
3873 | } |
3874 | } |
3875 | |
3876 | llvm::SmallVector<StringRef, 32> Features; |
3877 | Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); |
3878 | llvm::transform(Features, Features.begin(), |
3879 | [](StringRef Str) { return Str.substr(1); }); |
3880 | llvm::erase_if(Features, [&Target](StringRef Feat) { |
3881 | return !Target.validateCpuSupports(Feat); |
3882 | }); |
3883 | Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); |
3884 | ++Index; |
3885 | } |
3886 | |
3887 | llvm::stable_sort( |
3888 | Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, |
3889 | const CodeGenFunction::MultiVersionResolverOption &RHS) { |
3890 | return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > |
3891 | llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); |
3892 | }); |
3893 | |
3894 | // If the list contains multiple 'default' versions, such as when it contains |
3895 | // 'pentium' and 'generic', don't emit the call to the generic one (since we |
3896 | // always run on at least a 'pentium'). We do this by deleting the 'least |
3897 | // advanced' (read, lowest mangling letter). |
3898 | while (Options.size() > 1 && |
3899 | llvm::X86::getCpuSupportsMask( |
3900 | (Options.end() - 2)->Conditions.Features) == 0) { |
3901 | StringRef LHSName = (Options.end() - 2)->Function->getName(); |
3902 | StringRef RHSName = (Options.end() - 1)->Function->getName(); |
3903 | if (LHSName.compare(RHSName) < 0) |
3904 | Options.erase(Options.end() - 2); |
3905 | else |
3906 | Options.erase(Options.end() - 1); |
3907 | } |
3908 | |
3909 | CodeGenFunction CGF(*this); |
3910 | CGF.EmitMultiVersionResolver(ResolverFunc, Options); |
3911 | |
3912 | if (getTarget().supportsIFunc()) { |
3913 | llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); |
3914 | auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); |
3915 | |
3916 | // Fix up function declarations that were created for cpu_specific before |
3917 | // cpu_dispatch was known |
3918 | if (!isa<llvm::GlobalIFunc>(IFunc)) { |
3919 | assert(cast<llvm::Function>(IFunc)->isDeclaration())(static_cast <bool> (cast<llvm::Function>(IFunc)-> isDeclaration()) ? void (0) : __assert_fail ("cast<llvm::Function>(IFunc)->isDeclaration()" , "clang/lib/CodeGen/CodeGenModule.cpp", 3919, __extension__ __PRETTY_FUNCTION__ )); |
3920 | auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, |
3921 | &getModule()); |
3922 | GI->takeName(IFunc); |
3923 | IFunc->replaceAllUsesWith(GI); |
3924 | IFunc->eraseFromParent(); |
3925 | IFunc = GI; |
3926 | } |
3927 | |
3928 | std::string AliasName = getMangledNameImpl( |
3929 | *this, GD, FD, /*OmitMultiVersionMangling=*/true); |
3930 | llvm::Constant *AliasFunc = GetGlobalValue(AliasName); |
3931 | if (!AliasFunc) { |
3932 | auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, |
3933 | &getModule()); |
3934 | SetCommonAttributes(GD, GA); |
3935 | } |
3936 | } |
3937 | } |
3938 | |
3939 | /// If a dispatcher for the specified mangled name is not in the module, create |
3940 | /// and return an llvm Function with the specified type. |
3941 | llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { |
3942 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
3943 | assert(FD && "Not a FunctionDecl?")(static_cast <bool> (FD && "Not a FunctionDecl?" ) ? void (0) : __assert_fail ("FD && \"Not a FunctionDecl?\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3943, __extension__ __PRETTY_FUNCTION__ )); |
3944 | |
3945 | std::string MangledName = |
3946 | getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); |
3947 | |
3948 | // Holds the name of the resolver, in ifunc mode this is the ifunc (which has |
3949 | // a separate resolver). |
3950 | std::string ResolverName = MangledName; |
3951 | if (getTarget().supportsIFunc()) |
3952 | ResolverName += ".ifunc"; |
3953 | else if (FD->isTargetMultiVersion()) |
3954 | ResolverName += ".resolver"; |
3955 | |
3956 | // If the resolver has already been created, just return it. |
3957 | if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) |
3958 | return ResolverGV; |
3959 | |
3960 | const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
3961 | llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); |
3962 | |
3963 | // The resolver needs to be created. For target and target_clones, defer |
3964 | // creation until the end of the TU. |
3965 | if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) |
3966 | MultiVersionFuncs.push_back(GD); |
3967 | |
3968 | // For cpu_specific, don't create an ifunc yet because we don't know if the |
3969 | // cpu_dispatch will be emitted in this translation unit. |
3970 | if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { |
3971 | llvm::Type *ResolverType = llvm::FunctionType::get( |
3972 | llvm::PointerType::get(DeclTy, |
3973 | getTypes().getTargetAddressSpace(FD->getType())), |
3974 | false); |
3975 | llvm::Constant *Resolver = GetOrCreateLLVMFunction( |
3976 | MangledName + ".resolver", ResolverType, GlobalDecl{}, |
3977 | /*ForVTable=*/false); |
3978 | llvm::GlobalIFunc *GIF = |
3979 | llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), |
3980 | "", Resolver, &getModule()); |
3981 | GIF->setName(ResolverName); |
3982 | SetCommonAttributes(FD, GIF); |
3983 | |
3984 | return GIF; |
3985 | } |
3986 | |
3987 | llvm::Constant *Resolver = GetOrCreateLLVMFunction( |
3988 | ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); |
3989 | assert(isa<llvm::GlobalValue>(Resolver) &&(static_cast <bool> (isa<llvm::GlobalValue>(Resolver ) && "Resolver should be created for the first time") ? void (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3990, __extension__ __PRETTY_FUNCTION__ )) |
3990 | "Resolver should be created for the first time")(static_cast <bool> (isa<llvm::GlobalValue>(Resolver ) && "Resolver should be created for the first time") ? void (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 3990, __extension__ __PRETTY_FUNCTION__ )); |
3991 | SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); |
3992 | return Resolver; |
3993 | } |
3994 | |
3995 | /// GetOrCreateLLVMFunction - If the specified mangled name is not in the |
3996 | /// module, create and return an llvm Function with the specified type. If there |
3997 | /// is something in the module with the specified name, return it potentially |
3998 | /// bitcasted to the right type. |
3999 | /// |
4000 | /// If D is non-null, it specifies a decl that correspond to this. This is used |
4001 | /// to set the attributes on the function when it is first created. |
4002 | llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( |
4003 | StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, |
4004 | bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, |
4005 | ForDefinition_t IsForDefinition) { |
4006 | const Decl *D = GD.getDecl(); |
4007 | |
4008 | // Any attempts to use a MultiVersion function should result in retrieving |
4009 | // the iFunc instead. Name Mangling will handle the rest of the changes. |
4010 | if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { |
4011 | // For the device mark the function as one that should be emitted. |
4012 | if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && |
4013 | !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && |
4014 | !DontDefer && !IsForDefinition) { |
4015 | if (const FunctionDecl *FDDef = FD->getDefinition()) { |
4016 | GlobalDecl GDDef; |
4017 | if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) |
4018 | GDDef = GlobalDecl(CD, GD.getCtorType()); |
4019 | else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) |
4020 | GDDef = GlobalDecl(DD, GD.getDtorType()); |
4021 | else |
4022 | GDDef = GlobalDecl(FDDef); |
4023 | EmitGlobal(GDDef); |
4024 | } |
4025 | } |
4026 | |
4027 | if (FD->isMultiVersion()) { |
4028 | UpdateMultiVersionNames(GD, FD, MangledName); |
4029 | if (!IsForDefinition) |
4030 | return GetOrCreateMultiVersionResolver(GD); |
4031 | } |
4032 | } |
4033 | |
4034 | // Lookup the entry, lazily creating it if necessary. |
4035 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
4036 | if (Entry) { |
4037 | if (WeakRefReferences.erase(Entry)) { |
4038 | const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); |
4039 | if (FD && !FD->hasAttr<WeakAttr>()) |
4040 | Entry->setLinkage(llvm::Function::ExternalLinkage); |
4041 | } |
4042 | |
4043 | // Handle dropped DLL attributes. |
4044 | if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && |
4045 | !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { |
4046 | Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
4047 | setDSOLocal(Entry); |
4048 | } |
4049 | |
4050 | // If there are two attempts to define the same mangled name, issue an |
4051 | // error. |
4052 | if (IsForDefinition && !Entry->isDeclaration()) { |
4053 | GlobalDecl OtherGD; |
4054 | // Check that GD is not yet in DiagnosedConflictingDefinitions is required |
4055 | // to make sure that we issue an error only once. |
4056 | if (lookupRepresentativeDecl(MangledName, OtherGD) && |
4057 | (GD.getCanonicalDecl().getDecl() != |
4058 | OtherGD.getCanonicalDecl().getDecl()) && |
4059 | DiagnosedConflictingDefinitions.insert(GD).second) { |
4060 | getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) |
4061 | << MangledName; |
4062 | getDiags().Report(OtherGD.getDecl()->getLocation(), |
4063 | diag::note_previous_definition); |
4064 | } |
4065 | } |
4066 | |
4067 | if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && |
4068 | (Entry->getValueType() == Ty)) { |
4069 | return Entry; |
4070 | } |
4071 | |
4072 | // Make sure the result is of the correct type. |
4073 | // (If function is requested for a definition, we always need to create a new |
4074 | // function, not just return a bitcast.) |
4075 | if (!IsForDefinition) |
4076 | return llvm::ConstantExpr::getBitCast( |
4077 | Entry, Ty->getPointerTo(Entry->getAddressSpace())); |
4078 | } |
4079 | |
4080 | // This function doesn't have a complete type (for example, the return |
4081 | // type is an incomplete struct). Use a fake type instead, and make |
4082 | // sure not to try to set attributes. |
4083 | bool IsIncompleteFunction = false; |
4084 | |
4085 | llvm::FunctionType *FTy; |
4086 | if (isa<llvm::FunctionType>(Ty)) { |
4087 | FTy = cast<llvm::FunctionType>(Ty); |
4088 | } else { |
4089 | FTy = llvm::FunctionType::get(VoidTy, false); |
4090 | IsIncompleteFunction = true; |
4091 | } |
4092 | |
4093 | llvm::Function *F = |
4094 | llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, |
4095 | Entry ? StringRef() : MangledName, &getModule()); |
4096 | |
4097 | // If we already created a function with the same mangled name (but different |
4098 | // type) before, take its name and add it to the list of functions to be |
4099 | // replaced with F at the end of CodeGen. |
4100 | // |
4101 | // This happens if there is a prototype for a function (e.g. "int f()") and |
4102 | // then a definition of a different type (e.g. "int f(int x)"). |
4103 | if (Entry) { |
4104 | F->takeName(Entry); |
4105 | |
4106 | // This might be an implementation of a function without a prototype, in |
4107 | // which case, try to do special replacement of calls which match the new |
4108 | // prototype. The really key thing here is that we also potentially drop |
4109 | // arguments from the call site so as to make a direct call, which makes the |
4110 | // inliner happier and suppresses a number of optimizer warnings (!) about |
4111 | // dropping arguments. |
4112 | if (!Entry->use_empty()) { |
4113 | ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); |
4114 | Entry->removeDeadConstantUsers(); |
4115 | } |
4116 | |
4117 | llvm::Constant *BC = llvm::ConstantExpr::getBitCast( |
4118 | F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); |
4119 | addGlobalValReplacement(Entry, BC); |
4120 | } |
4121 | |
4122 | assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName && "name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4122, __extension__ __PRETTY_FUNCTION__ )); |
4123 | if (D) |
4124 | SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); |
4125 | if (ExtraAttrs.hasFnAttrs()) { |
4126 | llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); |
4127 | F->addFnAttrs(B); |
4128 | } |
4129 | |
4130 | if (!DontDefer) { |
4131 | // All MSVC dtors other than the base dtor are linkonce_odr and delegate to |
4132 | // each other bottoming out with the base dtor. Therefore we emit non-base |
4133 | // dtors on usage, even if there is no dtor definition in the TU. |
4134 | if (isa_and_nonnull<CXXDestructorDecl>(D) && |
4135 | getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), |
4136 | GD.getDtorType())) |
4137 | addDeferredDeclToEmit(GD); |
4138 | |
4139 | // This is the first use or definition of a mangled name. If there is a |
4140 | // deferred decl with this name, remember that we need to emit it at the end |
4141 | // of the file. |
4142 | auto DDI = DeferredDecls.find(MangledName); |
4143 | if (DDI != DeferredDecls.end()) { |
4144 | // Move the potentially referenced deferred decl to the |
4145 | // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we |
4146 | // don't need it anymore). |
4147 | addDeferredDeclToEmit(DDI->second); |
4148 | EmittedDeferredDecls[DDI->first] = DDI->second; |
4149 | DeferredDecls.erase(DDI); |
4150 | |
4151 | // Otherwise, there are cases we have to worry about where we're |
4152 | // using a declaration for which we must emit a definition but where |
4153 | // we might not find a top-level definition: |
4154 | // - member functions defined inline in their classes |
4155 | // - friend functions defined inline in some class |
4156 | // - special member functions with implicit definitions |
4157 | // If we ever change our AST traversal to walk into class methods, |
4158 | // this will be unnecessary. |
4159 | // |
4160 | // We also don't emit a definition for a function if it's going to be an |
4161 | // entry in a vtable, unless it's already marked as used. |
4162 | } else if (getLangOpts().CPlusPlus && D) { |
4163 | // Look for a declaration that's lexically in a record. |
4164 | for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; |
4165 | FD = FD->getPreviousDecl()) { |
4166 | if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
4167 | if (FD->doesThisDeclarationHaveABody()) { |
4168 | addDeferredDeclToEmit(GD.getWithDecl(FD)); |
4169 | break; |
4170 | } |
4171 | } |
4172 | } |
4173 | } |
4174 | } |
4175 | |
4176 | // Make sure the result is of the requested type. |
4177 | if (!IsIncompleteFunction) { |
4178 | assert(F->getFunctionType() == Ty)(static_cast <bool> (F->getFunctionType() == Ty) ? void (0) : __assert_fail ("F->getFunctionType() == Ty", "clang/lib/CodeGen/CodeGenModule.cpp" , 4178, __extension__ __PRETTY_FUNCTION__)); |
4179 | return F; |
4180 | } |
4181 | |
4182 | return llvm::ConstantExpr::getBitCast(F, |
4183 | Ty->getPointerTo(F->getAddressSpace())); |
4184 | } |
4185 | |
4186 | /// GetAddrOfFunction - Return the address of the given function. If Ty is |
4187 | /// non-null, then this function will use the specified type if it has to |
4188 | /// create it (this occurs when we see a definition of the function). |
4189 | llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, |
4190 | llvm::Type *Ty, |
4191 | bool ForVTable, |
4192 | bool DontDefer, |
4193 | ForDefinition_t IsForDefinition) { |
4194 | assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&(static_cast <bool> (!cast<FunctionDecl>(GD.getDecl ())->isConsteval() && "consteval function should never be emitted" ) ? void (0) : __assert_fail ("!cast<FunctionDecl>(GD.getDecl())->isConsteval() && \"consteval function should never be emitted\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4195, __extension__ __PRETTY_FUNCTION__ )) |
4195 | "consteval function should never be emitted")(static_cast <bool> (!cast<FunctionDecl>(GD.getDecl ())->isConsteval() && "consteval function should never be emitted" ) ? void (0) : __assert_fail ("!cast<FunctionDecl>(GD.getDecl())->isConsteval() && \"consteval function should never be emitted\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4195, __extension__ __PRETTY_FUNCTION__ )); |
4196 | // If there was no specific requested type, just convert it now. |
4197 | if (!Ty) { |
4198 | const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
4199 | Ty = getTypes().ConvertType(FD->getType()); |
4200 | } |
4201 | |
4202 | // Devirtualized destructor calls may come through here instead of via |
4203 | // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead |
4204 | // of the complete destructor when necessary. |
4205 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { |
4206 | if (getTarget().getCXXABI().isMicrosoft() && |
4207 | GD.getDtorType() == Dtor_Complete && |
4208 | DD->getParent()->getNumVBases() == 0) |
4209 | GD = GlobalDecl(DD, Dtor_Base); |
4210 | } |
4211 | |
4212 | StringRef MangledName = getMangledName(GD); |
4213 | auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, |
4214 | /*IsThunk=*/false, llvm::AttributeList(), |
4215 | IsForDefinition); |
4216 | // Returns kernel handle for HIP kernel stub function. |
4217 | if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && |
4218 | cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { |
4219 | auto *Handle = getCUDARuntime().getKernelHandle( |
4220 | cast<llvm::Function>(F->stripPointerCasts()), GD); |
4221 | if (IsForDefinition) |
4222 | return F; |
4223 | return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); |
4224 | } |
4225 | return F; |
4226 | } |
4227 | |
4228 | llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { |
4229 | llvm::GlobalValue *F = |
4230 | cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); |
4231 | |
4232 | return llvm::ConstantExpr::getBitCast( |
4233 | llvm::NoCFIValue::get(F), |
4234 | llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); |
4235 | } |
4236 | |
4237 | static const FunctionDecl * |
4238 | GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { |
4239 | TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); |
4240 | DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); |
4241 | |
4242 | IdentifierInfo &CII = C.Idents.get(Name); |
4243 | for (const auto *Result : DC->lookup(&CII)) |
4244 | if (const auto *FD = dyn_cast<FunctionDecl>(Result)) |
4245 | return FD; |
4246 | |
4247 | if (!C.getLangOpts().CPlusPlus) |
4248 | return nullptr; |
4249 | |
4250 | // Demangle the premangled name from getTerminateFn() |
4251 | IdentifierInfo &CXXII = |
4252 | (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") |
4253 | ? C.Idents.get("terminate") |
4254 | : C.Idents.get(Name); |
4255 | |
4256 | for (const auto &N : {"__cxxabiv1", "std"}) { |
4257 | IdentifierInfo &NS = C.Idents.get(N); |
4258 | for (const auto *Result : DC->lookup(&NS)) { |
4259 | const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); |
4260 | if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) |
4261 | for (const auto *Result : LSD->lookup(&NS)) |
4262 | if ((ND = dyn_cast<NamespaceDecl>(Result))) |
4263 | break; |
4264 | |
4265 | if (ND) |
4266 | for (const auto *Result : ND->lookup(&CXXII)) |
4267 | if (const auto *FD = dyn_cast<FunctionDecl>(Result)) |
4268 | return FD; |
4269 | } |
4270 | } |
4271 | |
4272 | return nullptr; |
4273 | } |
4274 | |
4275 | /// CreateRuntimeFunction - Create a new runtime function with the specified |
4276 | /// type and name. |
4277 | llvm::FunctionCallee |
4278 | CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, |
4279 | llvm::AttributeList ExtraAttrs, bool Local, |
4280 | bool AssumeConvergent) { |
4281 | if (AssumeConvergent) { |
4282 | ExtraAttrs = |
4283 | ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); |
4284 | } |
4285 | |
4286 | llvm::Constant *C = |
4287 | GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, |
4288 | /*DontDefer=*/false, /*IsThunk=*/false, |
4289 | ExtraAttrs); |
4290 | |
4291 | if (auto *F = dyn_cast<llvm::Function>(C)) { |
4292 | if (F->empty()) { |
4293 | F->setCallingConv(getRuntimeCC()); |
4294 | |
4295 | // In Windows Itanium environments, try to mark runtime functions |
4296 | // dllimport. For Mingw and MSVC, don't. We don't really know if the user |
4297 | // will link their standard library statically or dynamically. Marking |
4298 | // functions imported when they are not imported can cause linker errors |
4299 | // and warnings. |
4300 | if (!Local && getTriple().isWindowsItaniumEnvironment() && |
4301 | !getCodeGenOpts().LTOVisibilityPublicStd) { |
4302 | const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); |
4303 | if (!FD || FD->hasAttr<DLLImportAttr>()) { |
4304 | F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
4305 | F->setLinkage(llvm::GlobalValue::ExternalLinkage); |
4306 | } |
4307 | } |
4308 | setDSOLocal(F); |
4309 | } |
4310 | } |
4311 | |
4312 | return {FTy, C}; |
4313 | } |
4314 | |
4315 | /// isTypeConstant - Determine whether an object of this type can be emitted |
4316 | /// as a constant. |
4317 | /// |
4318 | /// If ExcludeCtor is true, the duration when the object's constructor runs |
4319 | /// will not be considered. The caller will need to verify that the object is |
4320 | /// not written to during its construction. |
4321 | bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { |
4322 | if (!Ty.isConstant(Context) && !Ty->isReferenceType()) |
4323 | return false; |
4324 | |
4325 | if (Context.getLangOpts().CPlusPlus) { |
4326 | if (const CXXRecordDecl *Record |
4327 | = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) |
4328 | return ExcludeCtor && !Record->hasMutableFields() && |
4329 | Record->hasTrivialDestructor(); |
4330 | } |
4331 | |
4332 | return true; |
4333 | } |
4334 | |
4335 | /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, |
4336 | /// create and return an llvm GlobalVariable with the specified type and address |
4337 | /// space. If there is something in the module with the specified name, return |
4338 | /// it potentially bitcasted to the right type. |
4339 | /// |
4340 | /// If D is non-null, it specifies a decl that correspond to this. This is used |
4341 | /// to set the attributes on the global when it is first created. |
4342 | /// |
4343 | /// If IsForDefinition is true, it is guaranteed that an actual global with |
4344 | /// type Ty will be returned, not conversion of a variable with the same |
4345 | /// mangled name but some other type. |
4346 | llvm::Constant * |
4347 | CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, |
4348 | LangAS AddrSpace, const VarDecl *D, |
4349 | ForDefinition_t IsForDefinition) { |
4350 | // Lookup the entry, lazily creating it if necessary. |
4351 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
4352 | unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); |
4353 | if (Entry) { |
4354 | if (WeakRefReferences.erase(Entry)) { |
4355 | if (D && !D->hasAttr<WeakAttr>()) |
4356 | Entry->setLinkage(llvm::Function::ExternalLinkage); |
4357 | } |
4358 | |
4359 | // Handle dropped DLL attributes. |
4360 | if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && |
4361 | !shouldMapVisibilityToDLLExport(D)) |
4362 | Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
4363 | |
4364 | if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) |
4365 | getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); |
4366 | |
4367 | if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) |
4368 | return Entry; |
4369 | |
4370 | // If there are two attempts to define the same mangled name, issue an |
4371 | // error. |
4372 | if (IsForDefinition && !Entry->isDeclaration()) { |
4373 | GlobalDecl OtherGD; |
4374 | const VarDecl *OtherD; |
4375 | |
4376 | // Check that D is not yet in DiagnosedConflictingDefinitions is required |
4377 | // to make sure that we issue an error only once. |
4378 | if (D && lookupRepresentativeDecl(MangledName, OtherGD) && |
4379 | (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && |
4380 | (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && |
4381 | OtherD->hasInit() && |
4382 | DiagnosedConflictingDefinitions.insert(D).second) { |
4383 | getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) |
4384 | << MangledName; |
4385 | getDiags().Report(OtherGD.getDecl()->getLocation(), |
4386 | diag::note_previous_definition); |
4387 | } |
4388 | } |
4389 | |
4390 | // Make sure the result is of the correct type. |
4391 | if (Entry->getType()->getAddressSpace() != TargetAS) { |
4392 | return llvm::ConstantExpr::getAddrSpaceCast(Entry, |
4393 | Ty->getPointerTo(TargetAS)); |
4394 | } |
4395 | |
4396 | // (If global is requested for a definition, we always need to create a new |
4397 | // global, not just return a bitcast.) |
4398 | if (!IsForDefinition) |
4399 | return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); |
4400 | } |
4401 | |
4402 | auto DAddrSpace = GetGlobalVarAddressSpace(D); |
4403 | |
4404 | auto *GV = new llvm::GlobalVariable( |
4405 | getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, |
4406 | MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, |
4407 | getContext().getTargetAddressSpace(DAddrSpace)); |
4408 | |
4409 | // If we already created a global with the same mangled name (but different |
4410 | // type) before, take its name and remove it from its parent. |
4411 | if (Entry) { |
4412 | GV->takeName(Entry); |
4413 | |
4414 | if (!Entry->use_empty()) { |
4415 | llvm::Constant *NewPtrForOldDecl = |
4416 | llvm::ConstantExpr::getBitCast(GV, Entry->getType()); |
4417 | Entry->replaceAllUsesWith(NewPtrForOldDecl); |
4418 | } |
4419 | |
4420 | Entry->eraseFromParent(); |
4421 | } |
4422 | |
4423 | // This is the first use or definition of a mangled name. If there is a |
4424 | // deferred decl with this name, remember that we need to emit it at the end |
4425 | // of the file. |
4426 | auto DDI = DeferredDecls.find(MangledName); |
4427 | if (DDI != DeferredDecls.end()) { |
4428 | // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
4429 | // list, and remove it from DeferredDecls (since we don't need it anymore). |
4430 | addDeferredDeclToEmit(DDI->second); |
4431 | EmittedDeferredDecls[DDI->first] = DDI->second; |
4432 | DeferredDecls.erase(DDI); |
4433 | } |
4434 | |
4435 | // Handle things which are present even on external declarations. |
4436 | if (D) { |
4437 | if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) |
4438 | getOpenMPRuntime().registerTargetGlobalVariable(D, GV); |
4439 | |
4440 | // FIXME: This code is overly simple and should be merged with other global |
4441 | // handling. |
4442 | GV->setConstant(isTypeConstant(D->getType(), false)); |
4443 | |
4444 | GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); |
4445 | |
4446 | setLinkageForGV(GV, D); |
4447 | |
4448 | if (D->getTLSKind()) { |
4449 | if (D->getTLSKind() == VarDecl::TLS_Dynamic) |
4450 | CXXThreadLocals.push_back(D); |
4451 | setTLSMode(GV, *D); |
4452 | } |
4453 | |
4454 | setGVProperties(GV, D); |
4455 | |
4456 | // If required by the ABI, treat declarations of static data members with |
4457 | // inline initializers as definitions. |
4458 | if (getContext().isMSStaticDataMemberInlineDefinition(D)) { |
4459 | EmitGlobalVarDefinition(D); |
4460 | } |
4461 | |
4462 | // Emit section information for extern variables. |
4463 | if (D->hasExternalStorage()) { |
4464 | if (const SectionAttr *SA = D->getAttr<SectionAttr>()) |
4465 | GV->setSection(SA->getName()); |
4466 | } |
4467 | |
4468 | // Handle XCore specific ABI requirements. |
4469 | if (getTriple().getArch() == llvm::Triple::xcore && |
4470 | D->getLanguageLinkage() == CLanguageLinkage && |
4471 | D->getType().isConstant(Context) && |
4472 | isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) |
4473 | GV->setSection(".cp.rodata"); |
4474 | |
4475 | // Check if we a have a const declaration with an initializer, we may be |
4476 | // able to emit it as available_externally to expose it's value to the |
4477 | // optimizer. |
4478 | if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && |
4479 | D->getType().isConstQualified() && !GV->hasInitializer() && |
4480 | !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { |
4481 | const auto *Record = |
4482 | Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); |
4483 | bool HasMutableFields = Record && Record->hasMutableFields(); |
4484 | if (!HasMutableFields) { |
4485 | const VarDecl *InitDecl; |
4486 | const Expr *InitExpr = D->getAnyInitializer(InitDecl); |
4487 | if (InitExpr) { |
4488 | ConstantEmitter emitter(*this); |
4489 | llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); |
4490 | if (Init) { |
4491 | auto *InitType = Init->getType(); |
4492 | if (GV->getValueType() != InitType) { |
4493 | // The type of the initializer does not match the definition. |
4494 | // This happens when an initializer has a different type from |
4495 | // the type of the global (because of padding at the end of a |
4496 | // structure for instance). |
4497 | GV->setName(StringRef()); |
4498 | // Make a new global with the correct type, this is now guaranteed |
4499 | // to work. |
4500 | auto *NewGV = cast<llvm::GlobalVariable>( |
4501 | GetAddrOfGlobalVar(D, InitType, IsForDefinition) |
4502 | ->stripPointerCasts()); |
4503 | |
4504 | // Erase the old global, since it is no longer used. |
4505 | GV->eraseFromParent(); |
4506 | GV = NewGV; |
4507 | } else { |
4508 | GV->setInitializer(Init); |
4509 | GV->setConstant(true); |
4510 | GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); |
4511 | } |
4512 | emitter.finalize(GV); |
4513 | } |
4514 | } |
4515 | } |
4516 | } |
4517 | } |
4518 | |
4519 | if (GV->isDeclaration()) { |
4520 | getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); |
4521 | // External HIP managed variables needed to be recorded for transformation |
4522 | // in both device and host compilations. |
4523 | if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && |
4524 | D->hasExternalStorage()) |
4525 | getCUDARuntime().handleVarRegistration(D, *GV); |
4526 | } |
4527 | |
4528 | if (D) |
4529 | SanitizerMD->reportGlobal(GV, *D); |
4530 | |
4531 | LangAS ExpectedAS = |
4532 | D ? D->getType().getAddressSpace() |
4533 | : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); |
4534 | assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS)(static_cast <bool> (getContext().getTargetAddressSpace (ExpectedAS) == TargetAS) ? void (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == TargetAS" , "clang/lib/CodeGen/CodeGenModule.cpp", 4534, __extension__ __PRETTY_FUNCTION__ )); |
4535 | if (DAddrSpace != ExpectedAS) { |
4536 | return getTargetCodeGenInfo().performAddrSpaceCast( |
4537 | *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); |
4538 | } |
4539 | |
4540 | return GV; |
4541 | } |
4542 | |
4543 | llvm::Constant * |
4544 | CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { |
4545 | const Decl *D = GD.getDecl(); |
4546 | |
4547 | if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) |
4548 | return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, |
4549 | /*DontDefer=*/false, IsForDefinition); |
4550 | |
4551 | if (isa<CXXMethodDecl>(D)) { |
4552 | auto FInfo = |
4553 | &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); |
4554 | auto Ty = getTypes().GetFunctionType(*FInfo); |
4555 | return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, |
4556 | IsForDefinition); |
4557 | } |
4558 | |
4559 | if (isa<FunctionDecl>(D)) { |
4560 | const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
4561 | llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); |
4562 | return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, |
4563 | IsForDefinition); |
4564 | } |
4565 | |
4566 | return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); |
4567 | } |
4568 | |
4569 | llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( |
4570 | StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, |
4571 | llvm::Align Alignment) { |
4572 | llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); |
4573 | llvm::GlobalVariable *OldGV = nullptr; |
4574 | |
4575 | if (GV) { |
4576 | // Check if the variable has the right type. |
4577 | if (GV->getValueType() == Ty) |
4578 | return GV; |
4579 | |
4580 | // Because C++ name mangling, the only way we can end up with an already |
4581 | // existing global with the same name is if it has been declared extern "C". |
4582 | assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!" ) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4582, __extension__ __PRETTY_FUNCTION__ )); |
4583 | OldGV = GV; |
4584 | } |
4585 | |
4586 | // Create a new variable. |
4587 | GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, |
4588 | Linkage, nullptr, Name); |
4589 | |
4590 | if (OldGV) { |
4591 | // Replace occurrences of the old variable if needed. |
4592 | GV->takeName(OldGV); |
4593 | |
4594 | if (!OldGV->use_empty()) { |
4595 | llvm::Constant *NewPtrForOldDecl = |
4596 | llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); |
4597 | OldGV->replaceAllUsesWith(NewPtrForOldDecl); |
4598 | } |
4599 | |
4600 | OldGV->eraseFromParent(); |
4601 | } |
4602 | |
4603 | if (supportsCOMDAT() && GV->isWeakForLinker() && |
4604 | !GV->hasAvailableExternallyLinkage()) |
4605 | GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); |
4606 | |
4607 | GV->setAlignment(Alignment); |
4608 | |
4609 | return GV; |
4610 | } |
4611 | |
4612 | /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the |
4613 | /// given global variable. If Ty is non-null and if the global doesn't exist, |
4614 | /// then it will be created with the specified type instead of whatever the |
4615 | /// normal requested type would be. If IsForDefinition is true, it is guaranteed |
4616 | /// that an actual global with type Ty will be returned, not conversion of a |
4617 | /// variable with the same mangled name but some other type. |
4618 | llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, |
4619 | llvm::Type *Ty, |
4620 | ForDefinition_t IsForDefinition) { |
4621 | assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() && "Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4621, __extension__ __PRETTY_FUNCTION__ )); |
4622 | QualType ASTTy = D->getType(); |
4623 | if (!Ty) |
4624 | Ty = getTypes().ConvertTypeForMem(ASTTy); |
4625 | |
4626 | StringRef MangledName = getMangledName(D); |
4627 | return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, |
4628 | IsForDefinition); |
4629 | } |
4630 | |
4631 | /// CreateRuntimeVariable - Create a new runtime global variable with the |
4632 | /// specified type and name. |
4633 | llvm::Constant * |
4634 | CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, |
4635 | StringRef Name) { |
4636 | LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global |
4637 | : LangAS::Default; |
4638 | auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); |
4639 | setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); |
4640 | return Ret; |
4641 | } |
4642 | |
4643 | void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { |
4644 | assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!" ) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4644, __extension__ __PRETTY_FUNCTION__ )); |
4645 | |
4646 | StringRef MangledName = getMangledName(D); |
4647 | llvm::GlobalValue *GV = GetGlobalValue(MangledName); |
4648 | |
4649 | // We already have a definition, not declaration, with the same mangled name. |
4650 | // Emitting of declaration is not required (and actually overwrites emitted |
4651 | // definition). |
4652 | if (GV && !GV->isDeclaration()) |
4653 | return; |
4654 | |
4655 | // If we have not seen a reference to this variable yet, place it into the |
4656 | // deferred declarations table to be emitted if needed later. |
4657 | if (!MustBeEmitted(D) && !GV) { |
4658 | DeferredDecls[MangledName] = D; |
4659 | return; |
4660 | } |
4661 | |
4662 | // The tentative definition is the only definition. |
4663 | EmitGlobalVarDefinition(D); |
4664 | } |
4665 | |
4666 | void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { |
4667 | EmitExternalVarDeclaration(D); |
4668 | } |
4669 | |
4670 | CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { |
4671 | return Context.toCharUnitsFromBits( |
4672 | getDataLayout().getTypeStoreSizeInBits(Ty)); |
4673 | } |
4674 | |
4675 | LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { |
4676 | if (LangOpts.OpenCL) { |
4677 | LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; |
4678 | assert(AS == LangAS::opencl_global ||(static_cast <bool> (AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail ("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace" , "clang/lib/CodeGen/CodeGenModule.cpp", 4683, __extension__ __PRETTY_FUNCTION__ )) |
4679 | AS == LangAS::opencl_global_device ||(static_cast <bool> (AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail ("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace" , "clang/lib/CodeGen/CodeGenModule.cpp", 4683, __extension__ __PRETTY_FUNCTION__ )) |
4680 | AS == LangAS::opencl_global_host ||(static_cast <bool> (AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail ("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace" , "clang/lib/CodeGen/CodeGenModule.cpp", 4683, __extension__ __PRETTY_FUNCTION__ )) |
4681 | AS == LangAS::opencl_constant ||(static_cast <bool> (AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail ("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace" , "clang/lib/CodeGen/CodeGenModule.cpp", 4683, __extension__ __PRETTY_FUNCTION__ )) |
4682 | AS == LangAS::opencl_local ||(static_cast <bool> (AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail ("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace" , "clang/lib/CodeGen/CodeGenModule.cpp", 4683, __extension__ __PRETTY_FUNCTION__ )) |
4683 | AS >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace) ? void (0) : __assert_fail ("AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace" , "clang/lib/CodeGen/CodeGenModule.cpp", 4683, __extension__ __PRETTY_FUNCTION__ )); |
4684 | return AS; |
4685 | } |
4686 | |
4687 | if (LangOpts.SYCLIsDevice && |
4688 | (!D || D->getType().getAddressSpace() == LangAS::Default)) |
4689 | return LangAS::sycl_global; |
4690 | |
4691 | if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { |
4692 | if (D) { |
4693 | if (D->hasAttr<CUDAConstantAttr>()) |
4694 | return LangAS::cuda_constant; |
4695 | if (D->hasAttr<CUDASharedAttr>()) |
4696 | return LangAS::cuda_shared; |
4697 | if (D->hasAttr<CUDADeviceAttr>()) |
4698 | return LangAS::cuda_device; |
4699 | if (D->getType().isConstQualified()) |
4700 | return LangAS::cuda_constant; |
4701 | } |
4702 | return LangAS::cuda_device; |
4703 | } |
4704 | |
4705 | if (LangOpts.OpenMP) { |
4706 | LangAS AS; |
4707 | if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) |
4708 | return AS; |
4709 | } |
4710 | return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); |
4711 | } |
4712 | |
4713 | LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { |
4714 | // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. |
4715 | if (LangOpts.OpenCL) |
4716 | return LangAS::opencl_constant; |
4717 | if (LangOpts.SYCLIsDevice) |
4718 | return LangAS::sycl_global; |
4719 | if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) |
4720 | // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) |
4721 | // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up |
4722 | // with OpVariable instructions with Generic storage class which is not |
4723 | // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V |
4724 | // UniformConstant storage class is not viable as pointers to it may not be |
4725 | // casted to Generic pointers which are used to model HIP's "flat" pointers. |
4726 | return LangAS::cuda_device; |
4727 | if (auto AS = getTarget().getConstantAddressSpace()) |
4728 | return *AS; |
4729 | return LangAS::Default; |
4730 | } |
4731 | |
4732 | // In address space agnostic languages, string literals are in default address |
4733 | // space in AST. However, certain targets (e.g. amdgcn) request them to be |
4734 | // emitted in constant address space in LLVM IR. To be consistent with other |
4735 | // parts of AST, string literal global variables in constant address space |
4736 | // need to be casted to default address space before being put into address |
4737 | // map and referenced by other part of CodeGen. |
4738 | // In OpenCL, string literals are in constant address space in AST, therefore |
4739 | // they should not be casted to default address space. |
4740 | static llvm::Constant * |
4741 | castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, |
4742 | llvm::GlobalVariable *GV) { |
4743 | llvm::Constant *Cast = GV; |
4744 | if (!CGM.getLangOpts().OpenCL) { |
4745 | auto AS = CGM.GetGlobalConstantAddressSpace(); |
4746 | if (AS != LangAS::Default) |
4747 | Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( |
4748 | CGM, GV, AS, LangAS::Default, |
4749 | GV->getValueType()->getPointerTo( |
4750 | CGM.getContext().getTargetAddressSpace(LangAS::Default))); |
4751 | } |
4752 | return Cast; |
4753 | } |
4754 | |
4755 | template<typename SomeDecl> |
4756 | void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, |
4757 | llvm::GlobalValue *GV) { |
4758 | if (!getLangOpts().CPlusPlus) |
4759 | return; |
4760 | |
4761 | // Must have 'used' attribute, or else inline assembly can't rely on |
4762 | // the name existing. |
4763 | if (!D->template hasAttr<UsedAttr>()) |
4764 | return; |
4765 | |
4766 | // Must have internal linkage and an ordinary name. |
4767 | if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) |
4768 | return; |
4769 | |
4770 | // Must be in an extern "C" context. Entities declared directly within |
4771 | // a record are not extern "C" even if the record is in such a context. |
4772 | const SomeDecl *First = D->getFirstDecl(); |
4773 | if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) |
4774 | return; |
4775 | |
4776 | // OK, this is an internal linkage entity inside an extern "C" linkage |
4777 | // specification. Make a note of that so we can give it the "expected" |
4778 | // mangled name if nothing else is using that name. |
4779 | std::pair<StaticExternCMap::iterator, bool> R = |
4780 | StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); |
4781 | |
4782 | // If we have multiple internal linkage entities with the same name |
4783 | // in extern "C" regions, none of them gets that name. |
4784 | if (!R.second) |
4785 | R.first->second = nullptr; |
4786 | } |
4787 | |
4788 | static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { |
4789 | if (!CGM.supportsCOMDAT()) |
4790 | return false; |
4791 | |
4792 | if (D.hasAttr<SelectAnyAttr>()) |
4793 | return true; |
4794 | |
4795 | GVALinkage Linkage; |
4796 | if (auto *VD = dyn_cast<VarDecl>(&D)) |
4797 | Linkage = CGM.getContext().GetGVALinkageForVariable(VD); |
4798 | else |
4799 | Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); |
4800 | |
4801 | switch (Linkage) { |
4802 | case GVA_Internal: |
4803 | case GVA_AvailableExternally: |
4804 | case GVA_StrongExternal: |
4805 | return false; |
4806 | case GVA_DiscardableODR: |
4807 | case GVA_StrongODR: |
4808 | return true; |
4809 | } |
4810 | llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "clang/lib/CodeGen/CodeGenModule.cpp" , 4810); |
4811 | } |
4812 | |
4813 | void CodeGenModule::maybeSetTrivialComdat(const Decl &D, |
4814 | llvm::GlobalObject &GO) { |
4815 | if (!shouldBeInCOMDAT(*this, D)) |
4816 | return; |
4817 | GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); |
4818 | } |
4819 | |
4820 | /// Pass IsTentative as true if you want to create a tentative definition. |
4821 | void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, |
4822 | bool IsTentative) { |
4823 | // OpenCL global variables of sampler type are translated to function calls, |
4824 | // therefore no need to be translated. |
4825 | QualType ASTTy = D->getType(); |
4826 | if (getLangOpts().OpenCL && ASTTy->isSamplerT()) |
4827 | return; |
4828 | |
4829 | // If this is OpenMP device, check if it is legal to emit this global |
4830 | // normally. |
4831 | if (LangOpts.OpenMPIsDevice && OpenMPRuntime && |
4832 | OpenMPRuntime->emitTargetGlobalVariable(D)) |
4833 | return; |
4834 | |
4835 | llvm::TrackingVH<llvm::Constant> Init; |
4836 | bool NeedsGlobalCtor = false; |
4837 | // Whether the definition of the variable is available externally. |
4838 | // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable |
4839 | // since this is the job for its original source. |
4840 | bool IsDefinitionAvailableExternally = |
4841 | getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; |
4842 | bool NeedsGlobalDtor = |
4843 | !IsDefinitionAvailableExternally && |
4844 | D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; |
4845 | |
4846 | const VarDecl *InitDecl; |
4847 | const Expr *InitExpr = D->getAnyInitializer(InitDecl); |
4848 | |
4849 | std::optional<ConstantEmitter> emitter; |
4850 | |
4851 | // CUDA E.2.4.1 "__shared__ variables cannot have an initialization |
4852 | // as part of their declaration." Sema has already checked for |
4853 | // error cases, so we just need to set Init to UndefValue. |
4854 | bool IsCUDASharedVar = |
4855 | getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); |
4856 | // Shadows of initialized device-side global variables are also left |
4857 | // undefined. |
4858 | // Managed Variables should be initialized on both host side and device side. |
4859 | bool IsCUDAShadowVar = |
4860 | !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && |
4861 | (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || |
4862 | D->hasAttr<CUDASharedAttr>()); |
4863 | bool IsCUDADeviceShadowVar = |
4864 | getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && |
4865 | (D->getType()->isCUDADeviceBuiltinSurfaceType() || |
4866 | D->getType()->isCUDADeviceBuiltinTextureType()); |
4867 | if (getLangOpts().CUDA && |
4868 | (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) |
4869 | Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); |
4870 | else if (D->hasAttr<LoaderUninitializedAttr>()) |
4871 | Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); |
4872 | else if (!InitExpr) { |
4873 | // This is a tentative definition; tentative definitions are |
4874 | // implicitly initialized with { 0 }. |
4875 | // |
4876 | // Note that tentative definitions are only emitted at the end of |
4877 | // a translation unit, so they should never have incomplete |
4878 | // type. In addition, EmitTentativeDefinition makes sure that we |
4879 | // never attempt to emit a tentative definition if a real one |
4880 | // exists. A use may still exists, however, so we still may need |
4881 | // to do a RAUW. |
4882 | assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() && "Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4882, __extension__ __PRETTY_FUNCTION__ )); |
4883 | Init = EmitNullConstant(D->getType()); |
4884 | } else { |
4885 | initializedGlobalDecl = GlobalDecl(D); |
4886 | emitter.emplace(*this); |
4887 | llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); |
4888 | if (!Initializer) { |
4889 | QualType T = InitExpr->getType(); |
4890 | if (D->getType()->isReferenceType()) |
4891 | T = D->getType(); |
4892 | |
4893 | if (getLangOpts().CPlusPlus) { |
4894 | if (InitDecl->hasFlexibleArrayInit(getContext())) |
4895 | ErrorUnsupported(D, "flexible array initializer"); |
4896 | Init = EmitNullConstant(T); |
4897 | |
4898 | if (!IsDefinitionAvailableExternally) |
4899 | NeedsGlobalCtor = true; |
4900 | } else { |
4901 | ErrorUnsupported(D, "static initializer"); |
4902 | Init = llvm::UndefValue::get(getTypes().ConvertType(T)); |
4903 | } |
4904 | } else { |
4905 | Init = Initializer; |
4906 | // We don't need an initializer, so remove the entry for the delayed |
4907 | // initializer position (just in case this entry was delayed) if we |
4908 | // also don't need to register a destructor. |
4909 | if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) |
4910 | DelayedCXXInitPosition.erase(D); |
4911 | |
4912 | #ifndef NDEBUG |
4913 | CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + |
4914 | InitDecl->getFlexibleArrayInitChars(getContext()); |
4915 | CharUnits CstSize = CharUnits::fromQuantity( |
4916 | getDataLayout().getTypeAllocSize(Init->getType())); |
4917 | assert(VarSize == CstSize && "Emitted constant has unexpected size")(static_cast <bool> (VarSize == CstSize && "Emitted constant has unexpected size" ) ? void (0) : __assert_fail ("VarSize == CstSize && \"Emitted constant has unexpected size\"" , "clang/lib/CodeGen/CodeGenModule.cpp", 4917, __extension__ __PRETTY_FUNCTION__ )); |
4918 | #endif |
4919 | } |
4920 | } |
4921 | |
4922 | llvm::Type* InitType = Init->getType(); |
4923 | llvm::Constant *Entry = |
4924 | GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); |
4925 | |
4926 | // Strip off pointer casts if we got them. |
4927 | Entry = Entry->stripPointerCasts(); |
4928 | |
4929 | // Entry is now either a Function or GlobalVariable. |
4930 | auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); |
4931 | |
4932 | // We have a definition after a declaration with the wrong type. |
4933 | // We must make a new GlobalVariable* and update everything that used OldGV |
4934 | // (a declaration or tentative definition) with the new GlobalVariable* |
4935 | // (which will be a definition). |
4936 | // |
4937 | // This happens if there is a prototype for a global (e.g. |
4938 | // "extern int x[];") and then a definition of a different type (e.g. |
4939 | // "int x[10];"). This also happens when an initializer has a different type |
4940 | // from the type of the global (this happens with unions). |
4941 | if (!GV || GV->getValueType() != InitType || |
4942 | GV->getType()->getAddressSpace() != |
4943 | getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { |
4944 | |
4945 | // Move the old entry aside so that we'll create a new one. |
4946 | Entry->setName(StringRef()); |
4947 | |
4948 | // Make a new global with the correct type, this is now guaranteed to work. |
4949 | GV = cast<llvm::GlobalVariable>( |
4950 | GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) |
4951 | ->stripPointerCasts()); |
4952 | |
4953 | // Replace all uses of the old global with the new global |
4954 | llvm::Constant *NewPtrForOldDecl = |
4955 | llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, |
4956 | Entry->getType()); |
4957 | Entry->replaceAllUsesWith(NewPtrForOldDecl); |
4958 | |
4959 | // Erase the old global, since it is no longer used. |
4960 | cast<llvm::GlobalValue>(Entry)->eraseFromParent(); |
4961 | } |
4962 | |
4963 | MaybeHandleStaticInExternC(D, GV); |
4964 | |
4965 | if (D->hasAttr<AnnotateAttr>()) |
4966 | AddGlobalAnnotations(D, GV); |
4967 | |
4968 | // Set the llvm linkage type as appropriate. |
4969 | llvm::GlobalValue::LinkageTypes Linkage = |
4970 | getLLVMLinkageVarDefinition(D, GV->isConstant()); |
4971 | |
4972 | // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on |
4973 | // the device. [...]" |
4974 | // CUDA B.2.2 "The __constant__ qualifier, optionally used together with |
4975 | // __device__, declares a variable that: [...] |
4976 | // Is accessible from all the threads within the grid and from the host |
4977 | // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() |
4978 | // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." |
4979 | if (GV && LangOpts.CUDA) { |
4980 | if (LangOpts.CUDAIsDevice) { |
4981 | if (Linkage != llvm::GlobalValue::InternalLinkage && |
4982 | (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || |
4983 | D->getType()->isCUDADeviceBuiltinSurfaceType() || |
4984 | D->getType()->isCUDADeviceBuiltinTextureType())) |
4985 | GV->setExternallyInitialized(true); |
4986 | } else { |
4987 | getCUDARuntime().internalizeDeviceSideVar(D, Linkage); |
4988 | } |
4989 | getCUDARuntime().handleVarRegistration(D, *GV); |
4990 | } |
4991 | |
4992 | GV->setInitializer(Init); |
4993 | if (emitter) |
4994 | emitter->finalize(GV); |
4995 | |
4996 | // If it is safe to mark the global 'constant', do so now. |
4997 | GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && |
4998 | isTypeConstant(D->getType(), true)); |
4999 | |
5000 | // If it is in a read-only section, mark it 'constant'. |
5001 | if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { |
5002 | const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; |
5003 | if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) |
5004 | GV->setConstant(true); |
5005 | } |
5006 | |
5007 | CharUnits AlignVal = getContext().getDeclAlign(D); |
5008 | // Check for alignment specifed in an 'omp allocate' directive. |
5009 | if (std::optional<CharUnits> AlignValFromAllocate = |
5010 | getOMPAllocateAlignment(D)) |
5011 | AlignVal = *AlignValFromAllocate; |
5012 | GV->setAlignment(AlignVal.getAsAlign()); |
5013 | |
5014 | // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper |
5015 | // function is only defined alongside the variable, not also alongside |
5016 | // callers. Normally, all accesses to a thread_local go through the |
5017 | // thread-wrapper in order to ensure initialization has occurred, underlying |
5018 | // variable will never be used other than the thread-wrapper, so it can be |
5019 | // converted to internal linkage. |
5020 | // |
5021 | // However, if the variable has the 'constinit' attribute, it _can_ be |
5022 | // referenced directly, without calling the thread-wrapper, so the linkage |
5023 | // must not be changed. |
5024 | // |
5025 | // Additionally, if the variable isn't plain external linkage, e.g. if it's |
5026 | // weak or linkonce, the de-duplication semantics are important to preserve, |
5027 | // so we don't change the linkage. |
5028 | if (D->getTLSKind() == VarDecl::TLS_Dynamic && |
5029 | Linkage == llvm::GlobalValue::ExternalLinkage && |
5030 | Context.getTargetInfo().getTriple().isOSDarwin() && |
5031 | !D->hasAttr<ConstInitAttr>()) |
5032 | Linkage = llvm::GlobalValue::InternalLinkage; |
5033 | |
5034 | GV->setLinkage(Linkage); |
5035 | if (D->hasAttr<DLLImportAttr>()) |
5036 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
5037 | else if (D->hasAttr<DLLExportAttr>()) |
5038 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); |
5039 | else |
5040 | GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); |
5041 | |
5042 | if (Linkage == llvm::GlobalVariable::CommonLinkage) { |
5043 | // common vars aren't constant even if declared const. |
5044 | GV->setConstant(false); |
5045 | // Tentative definition of global variables may be initialized with |
5046 | // non-zero null pointers. In this case they should have weak linkage |
5047 | // since common linkage must have zero initializer and must not have |
5048 | // explicit section therefore cannot have non-zero initial value. |
5049 | if (!GV->getInitializer()->isNullValue()) |
5050 | GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); |
5051 | } |
5052 | |
5053 | setNonAliasAttributes(D, GV); |
5054 | |
5055 | if (D->getTLSKind() && !GV->isThreadLocal()) { |
5056 | if (D->getTLSKind() == VarDecl::TLS_Dynamic) |
5057 | CXXThreadLocals.push_back(D); |
5058 | setTLSMode(GV, *D); |
5059 | } |
5060 | |
5061 | maybeSetTrivialComdat(*D, *GV); |
5062 | |
5063 | // Emit the initializer function if necessary. |
5064 | if (NeedsGlobalCtor || NeedsGlobalDtor) |
5065 | EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); |
5066 | |
5067 | SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); |
5068 | |
5069 | // Emit global variable debug information. |
5070 | if (CGDebugInfo *DI = getModuleDebugInfo()) |
5071 | if (getCodeGenOpts().hasReducedDebugInfo()) |
5072 | DI->EmitGlobalVariable(GV, D); |
5073 | } |
5074 | |
5075 | void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { |
5076 | if (CGDebugInfo *DI = getModuleDebugInfo()) |
5077 | if (getCodeGenOpts().hasReducedDebugInfo()) { |
5078 | QualType ASTTy = D->getType(); |
5079 | llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); |
5080 | llvm::Constant *GV = |
5081 | GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); |
5082 | DI->EmitExternalVariable( |
5083 | cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); |
5084 | } |
5085 | } |
5086 | |
5087 | static bool isVarDeclStrongDefinition(const ASTContext &Context, |
5088 | CodeGenModule &CGM, const VarDecl *D, |
5089 | bool NoCommon) { |
5090 | // Don't give variables common linkage if -fno-common was specified unless it |
5091 | // was overridden by a NoCommon attribute. |
5092 | if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) |
5093 | return true; |
5094 | |
5095 | // C11 6.9.2/2: |
5096 | // A declaration of an identifier for an object that has file scope without |
5097 | // an initializer, and without a storage-class specifier or with the |
5098 | // storage-class specifier static, constitutes a tentative definition. |
5099 | if (D->getInit() || D->hasExternalStorage()) |
5100 | return true; |
5101 | |
5102 | // A variable cannot be both common and exist in a section. |
5103 | if (D->hasAttr<SectionAttr>()) |
5104 | return true; |
5105 | |
5106 | // A variable cannot be both common and exist in a section. |
5107 | // We don't try to determine which is the right section in the front-end. |
5108 | // If no specialized section name is applicable, it will resort to default. |
5109 | if (D->hasAttr<PragmaClangBSSSectionAttr>() || |
5110 | D->hasAttr<PragmaClangDataSectionAttr>() || |
5111 | D->hasAttr<PragmaClangRelroSectionAttr>() || |
5112 | D->hasAttr<PragmaClangRodataSectionAttr>()) |
5113 | return true; |
5114 | |
5115 | // Thread local vars aren't considered common linkage. |
5116 | if (D->getTLSKind()) |
5117 | return true; |
5118 | |
5119 | // Tentative definitions marked with WeakImportAttr are true definitions. |
5120 | if (D->hasAttr<WeakImportAttr>()) |
5121 | return true; |
5122 | |
5123 | // A variable cannot be both common and exist in a comdat. |
5124 | if (shouldBeInCOMDAT(CGM, *D)) |
5125 | return true; |
5126 | |
5127 | // Declarations with a required alignment do not have common linkage in MSVC |
5128 | // mode. |
5129 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
5130 | if (D->hasAttr<AlignedAttr>()) |
5131 | return true; |
5132 | QualType VarType = D->getType(); |
5133 | if (Context.isAlignmentRequired(VarType)) |
5134 | return true; |
5135 | |
5136 | if (const auto *RT = VarType->getAs<RecordType>()) { |
5137 | const RecordDecl *RD = RT->getDecl(); |
5138 | for (const FieldDecl *FD : RD->fields()) { |
5139 | if (FD->isBitField()) |
5140 | continue; |
5141 | if (FD->hasAttr<AlignedAttr>()) |
5142 | return true; |
5143 | if (Context.isAlignmentRequired(FD->getType())) |
5144 | return true; |
5145 | } |
5146 | } |
5147 | } |
5148 | |
5149 | // Microsoft's link.exe doesn't support alignments greater than 32 bytes for |
5150 | // common symbols, so symbols with greater alignment requirements cannot be |
5151 | // common. |
5152 | // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two |
5153 | // alignments for common symbols via the aligncomm directive, so this |
5154 | // restriction only applies to MSVC environments. |
5155 | if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && |
5156 | Context.getTypeAlignIfKnown(D->getType()) > |
5157 | Context.toBits(CharUnits::fromQuantity(32))) |
5158 | return true; |
5159 | |
5160 | return false; |
5161 | } |
5162 | |
5163 | llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( |
5164 | const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { |
5165 | if (Linkage == GVA_Internal) |
5166 | return llvm::Function::InternalLinkage; |
5167 | |
5168 | if (D->hasAttr<WeakAttr>()) |
5169 | return llvm::GlobalVariable::WeakAnyLinkage; |
5170 | |
5171 | if (const auto *FD = D->getAsFunction()) |
5172 | if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) |
5173 | return llvm::GlobalVariable::LinkOnceAnyLinkage; |
5174 | |
5175 | // We are guaranteed to have a strong definition somewhere else, |
5176 | // so we can use available_externally linkage. |
5177 | if (Linkage == GVA_AvailableExternally) |
5178 | return llvm::GlobalValue::AvailableExternallyLinkage; |
5179 | |
5180 | // Note that Apple's kernel linker doesn't support symbol |
5181 | // coalescing, so we need to avoid linkonce and weak linkages there. |
5182 | // Normally, this means we just map to internal, but for explicit |
5183 | // instantiations we'll map to external. |
5184 | |
5185 | // In C++, the compiler has to emit a definition in every translation unit |
5186 | // that references the function. We should use linkonce_odr because |
5187 | // a) if all references in this translation unit are optimized away, we |
5188 | // don't need to codegen it. b) if the function persists, it needs to be |
5189 | // merged with other definitions. c) C++ has the ODR, so we know the |
5190 | // definition is dependable. |
5191 | if (Linkage == GVA_DiscardableODR) |
5192 | return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage |
5193 | : llvm::Function::InternalLinkage; |
5194 | |
5195 | // An explicit instantiation of a template has weak linkage, since |
5196 | // explicit instantiations can occur in multiple translation units |
5197 | // and must all be equivalent. However, we are not allowed to |
5198 | // throw away these explicit instantiations. |
5199 | // |
5200 | // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, |
5201 | // so say that CUDA templates are either external (for kernels) or internal. |
5202 | // This lets llvm perform aggressive inter-procedural optimizations. For |
5203 | // -fgpu-rdc case, device function calls across multiple TU's are allowed, |
5204 | // therefore we need to follow the normal linkage paradigm. |
5205 | if (Linkage == GVA_StrongODR) { |
5206 | if (getLangOpts().AppleKext) |
5207 | return llvm::Function::ExternalLinkage; |
5208 | if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && |
5209 | !getLangOpts().GPURelocatableDeviceCode) |
5210 | return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage |
5211 | : llvm::Function::InternalLinkage; |
5212 | return llvm::Function::WeakODRLinkage; |
5213 | } |
5214 | |
5215 | // C++ doesn't have tentative definitions and thus cannot have common |
5216 | // linkage. |
5217 | if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && |
5218 | !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), |
5219 | CodeGenOpts.NoCommon)) |
5220 | return llvm::GlobalVariable::CommonLinkage; |
5221 | |
5222 | // selectany symbols are externally visible, so use weak instead of |
5223 | // linkonce. MSVC optimizes away references to const selectany globals, so |
5224 | // all definitions should be the same and ODR linkage should be used. |
5225 | // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx |
5226 | if (D->hasAttr<SelectAnyAttr>()) |
5227 | return llvm::GlobalVariable::WeakODRLinkage; |
5228 | |
5229 | // Otherwise, we have strong external linkage. |
5230 | assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void (0) : __assert_fail ("Linkage == GVA_StrongExternal", "clang/lib/CodeGen/CodeGenModule.cpp" , 5230, __extension__ __PRETTY_FUNCTION__)); |
5231 | return llvm::GlobalVariable::ExternalLinkage; |
5232 | } |
5233 | |
5234 | llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( |
5235 | const VarDecl *VD, bool IsConstant) { |
5236 | GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); |
5237 | return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); |
5238 | } |
5239 | |
5240 | /// Replace the uses of a function that was declared with a non-proto type. |
5241 | /// We want to silently drop extra arguments from call sites |
5242 | static void replaceUsesOfNonProtoConstant(llvm::Constant *old, |
5243 | llvm::Function *newFn) { |
5244 | // Fast path. |
5245 | if (old->use_empty()) return; |
5246 | |
5247 | llvm::Type *newRetTy = newFn->getReturnType(); |
5248 | SmallVector<llvm::Value*, 4> newArgs; |
5249 | |
5250 | for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); |
5251 | ui != ue; ) { |
5252 | llvm::Value::use_iterator use = ui++; // Increment before the use is erased. |
5253 | llvm::User *user = use->getUser(); |
5254 | |
5255 | // Recognize and replace uses of bitcasts. Most calls to |
5256 | // unprototyped functions will use bitcasts. |
5257 | if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { |
5258 | if (bitcast->getOpcode() == llvm::Instruction::BitCast) |
5259 | replaceUsesOfNonProtoConstant(bitcast, newFn); |
5260 | continue; |
5261 | } |
5262 | |
5263 | // Recognize calls to the function. |
5264 | llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); |
5265 | if (!callSite) continue; |
5266 | if (!callSite->isCallee(&*use)) |
5267 | continue; |
5268 | |
5269 | // If the return types don't match exactly, then we can't |
5270 | // transform this call unless it's dead. |
5271 | if (callSite->getType() != newRetTy && !callSite->use_empty()) |
5272 | continue; |
5273 | |
5274 | // Get the call site's attribute list. |
5275 | SmallVector<llvm::AttributeSet, 8> newArgAttrs; |
5276 | llvm::AttributeList oldAttrs = callSite->getAttributes(); |
5277 | |
5278 | // If the function was passed too few arguments, don't transform. |
5279 | unsigned newNumArgs = newFn->arg_size(); |
5280 | if (callSite->arg_size() < newNumArgs) |
5281 | continue; |
5282 | |
5283 | // If extra arguments were passed, we silently drop them. |
5284 | // If any of the types mismatch, we don't transform. |
5285 | unsigned argNo = 0; |
5286 | bool dontTransform = false; |
5287 | for (llvm::Argument &A : newFn->args()) { |
5288 | if (callSite->getArgOperand(argNo)->getType() != A.getType()) { |
5289 | dontTransform = true; |
5290 | break; |
5291 | } |
5292 | |
5293 | // Add any parameter attributes. |
5294 | newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); |
5295 | argNo++; |
5296 | } |
5297 | if (dontTransform) |
5298 | continue; |
5299 | |
5300 | // Okay, we can transform this. Create the new call instruction and copy |
5301 | // over the required information. |
5302 | newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); |
5303 | |
5304 | // Copy over any operand bundles. |
5305 | SmallVector<llvm::OperandBundleDef, 1> newBundles; |
5306 | callSite->getOperandBundlesAsDefs(newBundles); |
5307 | |
5308 | llvm::CallBase *newCall; |
5309 | if (isa<llvm::CallInst>(callSite)) { |
5310 | newCall = |
5311 | llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); |
5312 | } else { |
5313 | auto *oldInvoke = cast<llvm::InvokeInst>(callSite); |
5314 | newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), |
5315 | oldInvoke->getUnwindDest(), newArgs, |
5316 | newBundles, "", callSite); |
5317 | } |
5318 | newArgs.clear(); // for the next iteration |
5319 | |
5320 | if (!newCall->getType()->isVoidTy()) |
5321 | newCall->takeName(callSite); |
5322 | newCall->setAttributes( |
5323 | llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), |
5324 | oldAttrs.getRetAttrs(), newArgAttrs)); |
5325 | newCall->setCallingConv(callSite->getCallingConv()); |
5326 | |
5327 | // Finally, remove the old call, replacing any uses with the new one. |
5328 | if (!callSite->use_empty()) |
5329 | callSite->replaceAllUsesWith(newCall); |
5330 | |
5331 | // Copy debug location attached to CI. |
5332 | if (callSite->getDebugLoc()) |
5333 | newCall->setDebugLoc(callSite->getDebugLoc()); |
5334 | |
5335 | callSite->eraseFromParent(); |
5336 | } |
5337 | } |
5338 | |
5339 | /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we |
5340 | /// implement a function with no prototype, e.g. "int foo() {}". If there are |
5341 | /// existing call uses of the old function in the module, this adjusts them to |
5342 | /// call the new function directly. |
5343 | /// |
5344 | /// This is not just a cleanup: the always_inline pass requires direct calls to |
5345 | /// functions to be able to inline them. If there is a bitcast in the way, it |
5346 | /// won't inline them. Instcombine normally deletes these calls, but it isn't |
5347 | /// run at -O0. |
5348 | static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, |
5349 | llvm::Function *NewFn) { |
5350 | // If we're redefining a global as a function, don't transform it. |
5351 | if (!isa<llvm::Function>(Old)) return; |
5352 | |
5353 | replaceUsesOfNonProtoConstant(Old, NewFn); |
5354 | } |
5355 | |
5356 | void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { |
5357 | auto DK = VD->isThisDeclarationADefinition(); |
5358 | if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) |
5359 | return; |
5360 | |
5361 | TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); |
5362 | // If we have a definition, this might be a deferred decl. If the |
5363 | // instantiation is explicit, make sure we emit it at the end. |
5364 | if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) |
5365 | GetAddrOfGlobalVar(VD); |
5366 | |
5367 | EmitTopLevelDecl(VD); |
5368 | } |
5369 | |
5370 | void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, |
5371 | llvm::GlobalValue *GV) { |
5372 | const auto *D = cast<FunctionDecl>(GD.getDecl()); |
5373 | |
5374 | // Compute the function info and LLVM type. |
5375 | const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
5376 | llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); |
5377 | |
5378 | // Get or create the prototype for the function. |
5379 | if (!GV || (GV->getValueType() != Ty)) |
5380 | GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, |
5381 | /*DontDefer=*/true, |
5382 | ForDefinition)); |
5383 | |
5384 | // Already emitted. |
5385 | if (!GV->isDeclaration()) |
5386 | return; |
5387 | |
5388 | // We need to set linkage and visibility on the function before |
5389 | // generating code for it because various parts of IR generation |
5390 | // want to propagate this information down (e.g. to local static |
5391 | // declarations). |
5392 | auto *Fn = cast<llvm::Function>(GV); |
5393 | setFunctionLinkage(GD, Fn); |
5394 | |
5395 | // FIXME: this is redundant with part of setFunctionDefinitionAttributes |
5396 | setGVProperties(Fn, GD); |
5397 | |
5398 | MaybeHandleStaticInExternC(D, Fn); |
5399 | |
5400 | maybeSetTrivialComdat(*D, *Fn); |
5401 | |
5402 | // Set CodeGen attributes that represent floating point environment. |
5403 | setLLVMFunctionFEnvAttributes(D, Fn); |
5404 | |
5405 | CodeGenFunction(*this).GenerateCode(GD, Fn, FI); |
5406 | |
5407 | setNonAliasAttributes(GD, Fn); |
5408 | SetLLVMFunctionAttributesForDefinition(D, Fn); |
5409 | |
5410 | if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) |
5411 | AddGlobalCtor(Fn, CA->getPriority()); |
5412 | if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) |
5413 | AddGlobalDtor(Fn, DA->getPriority(), true); |
5414 | if (D->hasAttr<AnnotateAttr>()) |
5415 | AddGlobalAnnotations(D, Fn); |
5416 | } |
5417 | |
5418 | void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { |
5419 | const auto *D = cast<ValueDecl>(GD.getDecl()); |
5420 | const AliasAttr *AA = D->getAttr<AliasAttr>(); |
5421 | assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void (0) : __assert_fail ("AA && \"Not an alias?\"", "clang/lib/CodeGen/CodeGenModule.cpp" , 5421, __extension__ __PRETTY_FUNCTION__)); |
5422 | |
5423 | StringRef MangledName = getMangledName(GD); |
5424 | |
5425 | if (AA->getAliasee() == MangledName) { |
5426 | Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; |
5427 | return; |
5428 | } |
5429 | |
5430 | // If there is a definition in the module, then it wins over the alias. |
5431 | // This is dubious, but allow it to be safe. Just ignore the alias. |
5432 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
5433 | if (Entry && !Entry->isDeclaration()) |
5434 | return; |
5435 | |
5436 | Aliases.push_back(GD); |
5437 | |
5438 | llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); |
5439 | |
5440 | // Create a reference to the named value. This ensures that it is emitted |
5441 | // if a deferred decl. |
5442 | llvm::Constant *Aliasee; |
5443 | llvm::GlobalValue::LinkageTypes LT; |
5444 | if (isa<llvm::FunctionType>(DeclTy)) { |
5445 | Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, |
5446 | /*ForVTable=*/false); |
5447 | LT = getFunctionLinkage(GD); |
5448 | } else { |
5449 | Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, |
5450 | /*D=*/nullptr); |
5451 | if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) |
5452 | LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); |
5453 | else |
5454 | LT = getFunctionLinkage(GD); |
5455 | } |
5456 | |
5457 | // Create the new alias itself, but don't set a name yet. |
5458 | unsigned AS = Aliasee->getType()->getPointerAddressSpace(); |
5459 | auto *GA = |
5460 | llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); |
5461 | |
5462 | if (Entry) { |
5463 | if (GA->getAliasee() == Entry) { |
5464 | Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; |
5465 | return; |
5466 | } |
5467 | |
5468 | assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void ( 0) : __assert_fail ("Entry->isDeclaration()", "clang/lib/CodeGen/CodeGenModule.cpp" , 5468, __extension__ __PRETTY_FUNCTION__)); |
5469 | |
5470 | // If there is a declaration in the module, then we had an extern followed |
5471 | // by the alias, as in: |
5472 | // extern int test6(); |
5473 | // ... |
5474 | // int test6() __attribute__((alias("test7"))); |
5475 | // |
5476 | // Remove it and replace uses of it with the alias. |
5477 | GA->takeName(Entry); |
5478 | |
5479 | Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, |
5480 | Entry->getType())); |
5481 | Entry->eraseFromParent(); |
5482 | } else { |
5483 | GA->setName(MangledName); |
5484 | } |
5485 | |
5486 | // Set attributes which are particular to an alias; this is a |
5487 | // specialization of the attributes which may be set on a global |
5488 | // variable/function. |
5489 | if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || |
5490 | D->isWeakImported()) { |
5491 | GA->setLinkage(llvm::Function::WeakAnyLinkage); |
5492 | } |
5493 | |
5494 | if (const auto *VD = dyn_cast<VarDecl>(D)) |
5495 | if (VD->getTLSKind()) |
5496 | setTLSMode(GA, *VD); |
5497 | |
5498 | SetCommonAttributes(GD, GA); |
5499 | |
5500 | // Emit global alias debug information. |
5501 | if (isa<VarDecl>(D)) |
5502 | if (CGDebugInfo *DI = getModuleDebugInfo()) |
5503 | DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); |
5504 | } |
5505 | |
5506 | void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { |
5507 | const auto *D = cast<ValueDecl>(GD.getDecl()); |
5508 | const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); |
5509 | assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void (0) : __assert_fail ("IFA && \"Not an ifunc?\"", "clang/lib/CodeGen/CodeGenModule.cpp" , 5509, __extension__ __PRETTY_FUNCTION__)); |
5510 | |
5511 | StringRef MangledName = getMangledName(GD); |
5512 | |
5513 | if (IFA->getResolver() == MangledName) { |
5514 | Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; |
5515 | return; |
5516 | } |
5517 | |
5518 | // Report an error if some definition overrides ifunc. |
5519 | llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
5520 | if (Entry && !Entry->isDeclaration()) { |
5521 | GlobalDecl OtherGD; |
5522 | if (lookupRepresentativeDecl(MangledName, OtherGD) && |
5523 | DiagnosedConflictingDefinitions.insert(GD).second) { |
5524 | Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) |
5525 | << MangledName; |
5526 | Diags.Report(OtherGD.getDecl()->getLocation(), |
5527 | diag::note_previous_definition); |
5528 | } |
5529 | return; |
5530 | } |
5531 | |
5532 | Aliases.push_back(GD); |
5533 | |
5534 | llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); |
5535 | llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); |
5536 | llvm::Constant *Resolver = |
5537 | GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, |
5538 | /*ForVTable=*/false); |
5539 | llvm::GlobalIFunc *GIF = |
5540 | llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, |
5541 | "", Resolver, &getModule()); |
5542 | if (Entry) { |
5543 | if (GIF->getResolver() == Entry) { |
5544 | Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; |
5545 | return; |
5546 | } |
5547 | assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void ( 0) : __assert_fail ("Entry->isDeclaration()", "clang/lib/CodeGen/CodeGenModule.cpp" , 5547, __extension__ __PRETTY_FUNCTION__)); |
5548 | |
5549 | // If there is a declaration in the module, then we had an extern followed |
5550 | // by the ifunc, as in: |
5551 | // extern int test(); |
5552 | // ... |
5553 | // int test() __attribute__((ifunc("resolver"))); |
5554 | // |
5555 | // Remove it and replace uses of it with the ifunc. |
5556 | GIF->takeName(Entry); |
5557 | |
5558 | Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, |
5559 | Entry->getType())); |
5560 | Entry->eraseFromParent(); |
5561 | } else |
5562 | GIF->setName(MangledName); |
5563 | |
5564 | SetCommonAttributes(GD, GIF); |
5565 | } |
5566 | |
5567 | llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, |
5568 | ArrayRef<llvm::Type*> Tys) { |
5569 | return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, |
5570 | Tys); |
5571 | } |
5572 | |
5573 | static llvm::StringMapEntry<llvm::GlobalVariable *> & |
5574 | GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, |
5575 | const StringLiteral *Literal, bool TargetIsLSB, |
5576 | bool &IsUTF16, unsigned &StringLength) { |
5577 | StringRef String = Literal->getString(); |
5578 | unsigned NumBytes = String.size(); |
5579 | |
5580 | // Check for simple case. |
5581 | if (!Literal->containsNonAsciiOrNull()) { |
5582 | StringLength = NumBytes; |
5583 | return *Map.insert(std::make_pair(String, nullptr)).first; |
5584 | } |
5585 | |
5586 | // Otherwise, convert the UTF8 literals into a string of shorts. |
5587 | IsUTF16 = true; |
5588 | |
5589 | SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. |
5590 | const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); |
5591 | llvm::UTF16 *ToPtr = &ToBuf[0]; |
5592 | |
5593 | (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, |
5594 | ToPtr + NumBytes, llvm::strictConversion); |
5595 | |
5596 | // ConvertUTF8toUTF16 returns the length in ToPtr. |
5597 | StringLength = ToPtr - &ToBuf[0]; |
5598 | |
5599 | // Add an explicit null. |
5600 | *ToPtr = 0; |
5601 | return *Map.insert(std::make_pair( |
5602 | StringRef(reinterpret_cast<const char *>(ToBuf.data()), |
5603 | (StringLength + 1) * 2), |
5604 | nullptr)).first; |
5605 | } |
5606 | |
5607 | ConstantAddress |
5608 | CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { |
5609 | unsigned StringLength = 0; |
5610 | bool isUTF16 = false; |
5611 | llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = |
5612 | GetConstantCFStringEntry(CFConstantStringMap, Literal, |
5613 | getDataLayout().isLittleEndian(), isUTF16, |
5614 | StringLength); |
5615 | |
5616 | if (auto *C = Entry.second) |
5617 | return ConstantAddress( |
5618 | C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); |
5619 | |
5620 | llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); |
5621 | llvm::Constant *Zeros[] = { Zero, Zero }; |
5622 | |
5623 | const ASTContext &Context = getContext(); |
5624 | const llvm::Triple &Triple = getTriple(); |
5625 | |
5626 | const auto CFRuntime = getLangOpts().CFRuntime; |
5627 | const bool IsSwiftABI = |
5628 | static_cast<unsigned>(CFRuntime) >= |
5629 | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); |
5630 | const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; |
5631 | |
5632 | // If we don't already have it, get __CFConstantStringClassReference. |
5633 | if (!CFConstantStringClassRef) { |
5634 | const char *CFConstantStringClassName = "__CFConstantStringClassReference"; |
5635 | llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
5636 | Ty = llvm::ArrayType::get(Ty, 0); |
5637 | |
5638 | switch (CFRuntime) { |
5639 | default: break; |
5640 | case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; |
5641 | case LangOptions::CoreFoundationABI::Swift5_0: |
5642 | CFConstantStringClassName = |
5643 | Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" |
5644 | : "$s10Foundation19_NSCFConstantStringCN"; |
5645 | Ty = IntPtrTy; |
5646 | break; |
5647 | case LangOptions::CoreFoundationABI::Swift4_2: |
5648 | CFConstantStringClassName = |
5649 | Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" |
5650 | : "$S10Foundation19_NSCFConstantStringCN"; |
5651 | Ty = IntPtrTy; |
5652 | break; |
5653 | case LangOptions::CoreFoundationABI::Swift4_1: |
5654 | CFConstantStringClassName = |
5655 | Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" |
5656 | : "__T010Foundation19_NSCFConstantStringCN"; |
5657 | Ty = IntPtrTy; |
5658 | break; |
5659 | } |
5660 | |
5661 | llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); |
5662 | |
5663 | if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { |
5664 | llvm::GlobalValue *GV = nullptr; |
5665 | |
5666 | if ((GV = dyn_cast<llvm::GlobalValue>(C))) { |
5667 | IdentifierInfo &II = Context.Idents.get(GV->getName()); |
5668 | TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); |
5669 | DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); |
5670 | |
5671 | const VarDecl *VD = nullptr; |
5672 | for (const auto *Result : DC->lookup(&II)) |
5673 | if ((VD = dyn_cast<VarDecl>(Result))) |
5674 | break; |
5675 | |
5676 | if (Triple.isOSBinFormatELF()) { |
5677 | if (!VD) |
5678 | GV->setLinkage(llvm::GlobalValue::ExternalLinkage); |
5679 | } else { |
5680 | GV->setLinkage(llvm::GlobalValue::ExternalLinkage); |
5681 | if (!VD || !VD->hasAttr<DLLExportAttr>()) |
5682 | GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
5683 | else |
5684 | GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
5685 | } |
5686 | |
5687 | setDSOLocal(GV); |
5688 | } |
5689 | } |
5690 | |
5691 | // Decay array -> ptr |
5692 | CFConstantStringClassRef = |
5693 | IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) |
5694 | : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); |
5695 | } |
5696 | |
5697 | QualType CFTy = Context.getCFConstantStringType(); |
5698 | |
5699 | auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); |
5700 | |
5701 | ConstantInitBuilder Builder(*this); |
5702 | auto Fields = Builder.beginStruct(STy); |
5703 | |
5704 | // Class pointer. |
5705 | Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); |
5706 | |
5707 | // Flags. |
5708 | if (IsSwiftABI) { |
5709 | Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); |
5710 | Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); |
5711 | } else { |
5712 | Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); |
5713 | } |
5714 | |
5715 | // String pointer. |
5716 | llvm::Constant *C = nullptr; |
5717 | if (isUTF16) { |
5718 | auto Arr = llvm::ArrayRef( |
5719 | reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), |
5720 | Entry.first().size() / 2); |
5721 | C = llvm::ConstantDataArray::get(VMContext, Arr); |
5722 | } else { |
5723 | C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); |
5724 | } |
5725 | |
5726 | // Note: -fwritable-strings doesn't make the backing store strings of |
5727 | // CFStrings writable. (See <rdar://problem/10657500>) |
5728 | auto *GV = |
5729 | new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, |
5730 | llvm::GlobalValue::PrivateLinkage, C, ".str"); |
5731 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
5732 | // Don't enforce the target's minimum global alignment, since the only use |
5733 | // of the string is via this class initializer. |
5734 | CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) |
5735 | : Context.getTypeAlignInChars(Context.CharTy); |
5736 | GV->setAlignment(Align.getAsAlign()); |
5737 | |
5738 | // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. |
5739 | // Without it LLVM can merge the string with a non unnamed_addr one during |
5740 | // LTO. Doing that changes the section it ends in, which surprises ld64. |
5741 | if (Triple.isOSBinFormatMachO()) |
5742 | GV->setSection(isUTF16 ? "__TEXT,__ustring" |
5743 | : "__TEXT,__cstring,cstring_literals"); |
5744 | // Make sure the literal ends up in .rodata to allow for safe ICF and for |
5745 | // the static linker to adjust permissions to read-only later on. |
5746 | else if (Triple.isOSBinFormatELF()) |
5747 | GV->setSection(".rodata"); |
5748 | |
5749 | // String. |
5750 | llvm::Constant *Str = |
5751 | llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); |
5752 | |
5753 | if (isUTF16) |
5754 | // Cast the UTF16 string to the correct type. |
5755 | Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); |
5756 | Fields.add(Str); |
5757 | |
5758 | // String length. |
5759 | llvm::IntegerType *LengthTy = |
5760 | llvm::IntegerType::get(getModule().getContext(), |
5761 | Context.getTargetInfo().getLongWidth()); |
5762 | if (IsSwiftABI) { |
5763 | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || |
5764 | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) |
5765 | LengthTy = Int32Ty; |
5766 | else |
5767 | LengthTy = IntPtrTy; |
5768 | } |
5769 | Fields.addInt(LengthTy, StringLength); |
5770 | |
5771 | // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is |
5772 | // properly aligned on 32-bit platforms. |
5773 | CharUnits Alignment = |
5774 | IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); |
5775 | |
5776 | // The struct. |
5777 | GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, |
5778 | /*isConstant=*/false, |
5779 | llvm::GlobalVariable::PrivateLinkage); |
5780 | GV->addAttribute("objc_arc_inert"); |
5781 | switch (Triple.getObjectFormat()) { |
5782 | case llvm::Triple::UnknownObjectFormat: |
5783 | llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "clang/lib/CodeGen/CodeGenModule.cpp" , 5783); |
5784 | case llvm::Triple::DXContainer: |
5785 | case llvm::Triple::GOFF: |
5786 | case llvm::Triple::SPIRV: |
5787 | case llvm::Triple::XCOFF: |
5788 | llvm_unreachable("unimplemented")::llvm::llvm_unreachable_internal("unimplemented", "clang/lib/CodeGen/CodeGenModule.cpp" , 5788); |
5789 | case llvm::Triple::COFF: |
5790 | case llvm::Triple::ELF: |
5791 | case llvm::Triple::Wasm: |
5792 | GV->setSection("cfstring"); |
5793 | break; |
5794 | case llvm::Triple::MachO: |
5795 | GV->setSection("__DATA,__cfstring"); |
5796 | break; |
5797 | } |
5798 | Entry.second = GV; |
5799 | |
5800 | return ConstantAddress(GV, GV->getValueType(), Alignment); |
5801 | } |
5802 | |
5803 | bool CodeGenModule::getExpressionLocationsEnabled() const { |
5804 | return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; |
5805 | } |
5806 | |
5807 | QualType CodeGenModule::getObjCFastEnumerationStateType() { |
5808 | if (ObjCFastEnumerationStateType.isNull()) { |
5809 | RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); |
5810 | D->startDefinition(); |
5811 | |
5812 | QualType FieldTypes[] = { |
5813 | Context.UnsignedLongTy, |
5814 | Context.getPointerType(Context.getObjCIdType()), |
5815 | Context.getPointerType(Context.UnsignedLongTy), |
5816 | Context.getConstantArrayType(Context.UnsignedLongTy, |
5817 | llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) |
5818 | }; |
5819 | |
5820 | for (size_t i = 0; i < 4; ++i) { |
5821 | FieldDecl *Field = FieldDecl::Create(Context, |
5822 | D, |
5823 | SourceLocation(), |
5824 | SourceLocation(), nullptr, |
5825 | FieldTypes[i], /*TInfo=*/nullptr, |
5826 | /*BitWidth=*/nullptr, |
5827 | /*Mutable=*/false, |
5828 | ICIS_NoInit); |
5829 | Field->setAccess(AS_public); |
5830 | D->addDecl(Field); |
5831 | } |
5832 | |
5833 | D->completeDefinition(); |
5834 | ObjCFastEnumerationStateType = Context.getTagDeclType(D); |
5835 | } |
5836 | |
5837 | return ObjCFastEnumerationStateType; |
5838 | } |
5839 | |
5840 | llvm::Constant * |
5841 | CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { |
5842 | assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast < |