Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 2490, column 27
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn337490/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn337490/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn337490/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn337490/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn337490/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn337490/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-20-043646-20380-1 -x c++ /build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGObjCRuntime.h"
21#include "CGOpenCLRuntime.h"
22#include "CGOpenMPRuntime.h"
23#include "CGOpenMPRuntimeNVPTX.h"
24#include "CodeGenFunction.h"
25#include "CodeGenPGO.h"
26#include "ConstantEmitter.h"
27#include "CoverageMappingGen.h"
28#include "TargetInfo.h"
29#include "clang/AST/ASTContext.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/AST/DeclCXX.h"
32#include "clang/AST/DeclObjC.h"
33#include "clang/AST/DeclTemplate.h"
34#include "clang/AST/Mangle.h"
35#include "clang/AST/RecordLayout.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/Diagnostic.h"
40#include "clang/Basic/Module.h"
41#include "clang/Basic/SourceManager.h"
42#include "clang/Basic/TargetInfo.h"
43#include "clang/Basic/Version.h"
44#include "clang/CodeGen/ConstantInitBuilder.h"
45#include "clang/Frontend/CodeGenOptions.h"
46#include "clang/Sema/SemaDiagnostic.h"
47#include "llvm/ADT/Triple.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/IR/CallSite.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/ProfileData/InstrProfReader.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MD5.h"
59
60using namespace clang;
61using namespace CodeGen;
62
63static llvm::cl::opt<bool> LimitedCoverage(
64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66 llvm::cl::init(false));
67
68static const char AnnotationSection[] = "llvm.metadata";
69
70static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71 switch (CGM.getTarget().getCXXABI().getKind()) {
72 case TargetCXXABI::GenericAArch64:
73 case TargetCXXABI::GenericARM:
74 case TargetCXXABI::iOS:
75 case TargetCXXABI::iOS64:
76 case TargetCXXABI::WatchOS:
77 case TargetCXXABI::GenericMIPS:
78 case TargetCXXABI::GenericItanium:
79 case TargetCXXABI::WebAssembly:
80 return CreateItaniumCXXABI(CGM);
81 case TargetCXXABI::Microsoft:
82 return CreateMicrosoftCXXABI(CGM);
83 }
84
85 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 85)
;
86}
87
88CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89 const PreprocessorOptions &PPO,
90 const CodeGenOptions &CGO, llvm::Module &M,
91 DiagnosticsEngine &diags,
92 CoverageSourceInfo *CoverageInfo)
93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96 VMContext(M.getContext()), Types(*this), VTables(*this),
97 SanitizerMD(new SanitizerMetadata(*this)) {
98
99 // Initialize the type cache.
100 llvm::LLVMContext &LLVMContext = M.getContext();
101 VoidTy = llvm::Type::getVoidTy(LLVMContext);
102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106 HalfTy = llvm::Type::getHalfTy(LLVMContext);
107 FloatTy = llvm::Type::getFloatTy(LLVMContext);
108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110 PointerAlignInBytes =
111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112 SizeSizeInBytes =
113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114 IntAlignInBytes =
115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117 IntPtrTy = llvm::IntegerType::get(LLVMContext,
118 C.getTargetInfo().getMaxPointerWidth());
119 Int8PtrTy = Int8Ty->getPointerTo(0);
120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121 AllocaInt8PtrTy = Int8Ty->getPointerTo(
122 M.getDataLayout().getAllocaAddrSpace());
123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124
125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126
127 if (LangOpts.ObjC1)
128 createObjCRuntime();
129 if (LangOpts.OpenCL)
130 createOpenCLRuntime();
131 if (LangOpts.OpenMP)
132 createOpenMPRuntime();
133 if (LangOpts.CUDA)
134 createCUDARuntime();
135
136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140 getCXXABI().getMangleContext()));
141
142 // If debug info or coverage generation is enabled, create the CGDebugInfo
143 // object.
144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146 DebugInfo.reset(new CGDebugInfo(*this));
147
148 Block.GlobalUniqueCount = 0;
149
150 if (C.getLangOpts().ObjC1)
151 ObjCData.reset(new ObjCEntrypoints());
152
153 if (CodeGenOpts.hasProfileClangUse()) {
154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155 CodeGenOpts.ProfileInstrumentUsePath);
156 if (auto E = ReaderOrErr.takeError()) {
157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158 "Could not read profile %0: %1");
159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161 << EI.message();
162 });
163 } else
164 PGOReader = std::move(ReaderOrErr.get());
165 }
166
167 // If coverage mapping generation is enabled, create the
168 // CoverageMappingModuleGen object.
169 if (CodeGenOpts.CoverageMapping)
170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171}
172
173CodeGenModule::~CodeGenModule() {}
174
175void CodeGenModule::createObjCRuntime() {
176 // This is just isGNUFamily(), but we want to force implementors of
177 // new ABIs to decide how best to do this.
178 switch (LangOpts.ObjCRuntime.getKind()) {
179 case ObjCRuntime::GNUstep:
180 case ObjCRuntime::GCC:
181 case ObjCRuntime::ObjFW:
182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183 return;
184
185 case ObjCRuntime::FragileMacOSX:
186 case ObjCRuntime::MacOSX:
187 case ObjCRuntime::iOS:
188 case ObjCRuntime::WatchOS:
189 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190 return;
191 }
192 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 192)
;
193}
194
195void CodeGenModule::createOpenCLRuntime() {
196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197}
198
199void CodeGenModule::createOpenMPRuntime() {
200 // Select a specialized code generation class based on the target, if any.
201 // If it does not exist use the default implementation.
202 switch (getTriple().getArch()) {
203 case llvm::Triple::nvptx:
204 case llvm::Triple::nvptx64:
205 assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
206 "OpenMP NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
;
207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208 break;
209 default:
210 if (LangOpts.OpenMPSimd)
211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212 else
213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214 break;
215 }
216}
217
218void CodeGenModule::createCUDARuntime() {
219 CUDARuntime.reset(CreateNVCUDARuntime(*this));
220}
221
222void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223 Replacements[Name] = C;
224}
225
226void CodeGenModule::applyReplacements() {
227 for (auto &I : Replacements) {
228 StringRef MangledName = I.first();
229 llvm::Constant *Replacement = I.second;
230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231 if (!Entry)
232 continue;
233 auto *OldF = cast<llvm::Function>(Entry);
234 auto *NewF = dyn_cast<llvm::Function>(Replacement);
235 if (!NewF) {
236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238 } else {
239 auto *CE = cast<llvm::ConstantExpr>(Replacement);
240 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 241, __extension__ __PRETTY_FUNCTION__))
241 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243 }
244 }
245
246 // Replace old with new, but keep the old order.
247 OldF->replaceAllUsesWith(Replacement);
248 if (NewF) {
249 NewF->removeFromParent();
250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251 NewF);
252 }
253 OldF->eraseFromParent();
254 }
255}
256
257void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258 GlobalValReplacements.push_back(std::make_pair(GV, C));
259}
260
261void CodeGenModule::applyGlobalValReplacements() {
262 for (auto &I : GlobalValReplacements) {
263 llvm::GlobalValue *GV = I.first;
264 llvm::Constant *C = I.second;
265
266 GV->replaceAllUsesWith(C);
267 GV->eraseFromParent();
268 }
269}
270
271// This is only used in aliases that we created and we know they have a
272// linear structure.
273static const llvm::GlobalObject *getAliasedGlobal(
274 const llvm::GlobalIndirectSymbol &GIS) {
275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276 const llvm::Constant *C = &GIS;
277 for (;;) {
278 C = C->stripPointerCasts();
279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280 return GO;
281 // stripPointerCasts will not walk over weak aliases.
282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283 if (!GIS2)
284 return nullptr;
285 if (!Visited.insert(GIS2).second)
286 return nullptr;
287 C = GIS2->getIndirectSymbol();
288 }
289}
290
291void CodeGenModule::checkAliases() {
292 // Check if the constructed aliases are well formed. It is really unfortunate
293 // that we have to do this in CodeGen, but we only construct mangled names
294 // and aliases during codegen.
295 bool Error = false;
296 DiagnosticsEngine &Diags = getDiags();
297 for (const GlobalDecl &GD : Aliases) {
298 const auto *D = cast<ValueDecl>(GD.getDecl());
299 SourceLocation Location;
300 bool IsIFunc = D->hasAttr<IFuncAttr>();
301 if (const Attr *A = D->getDefiningAttr())
302 Location = A->getLocation();
303 else
304 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 304)
;
305 StringRef MangledName = getMangledName(GD);
306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309 if (!GV) {
310 Error = true;
311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312 } else if (GV->isDeclaration()) {
313 Error = true;
314 Diags.Report(Location, diag::err_alias_to_undefined)
315 << IsIFunc << IsIFunc;
316 } else if (IsIFunc) {
317 // Check resolver function type.
318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319 GV->getType()->getPointerElementType());
320 assert(FTy)(static_cast <bool> (FTy) ? void (0) : __assert_fail ("FTy"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 320, __extension__ __PRETTY_FUNCTION__))
;
321 if (!FTy->getReturnType()->isPointerTy())
322 Diags.Report(Location, diag::err_ifunc_resolver_return);
323 if (FTy->getNumParams())
324 Diags.Report(Location, diag::err_ifunc_resolver_params);
325 }
326
327 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328 llvm::GlobalValue *AliaseeGV;
329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331 else
332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333
334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335 StringRef AliasSection = SA->getName();
336 if (AliasSection != AliaseeGV->getSection())
337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338 << AliasSection << IsIFunc << IsIFunc;
339 }
340
341 // We have to handle alias to weak aliases in here. LLVM itself disallows
342 // this since the object semantics would not match the IL one. For
343 // compatibility with gcc we implement it by just pointing the alias
344 // to its aliasee's aliasee. We also warn, since the user is probably
345 // expecting the link to be weak.
346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347 if (GA->isInterposable()) {
348 Diags.Report(Location, diag::warn_alias_to_weak_alias)
349 << GV->getName() << GA->getName() << IsIFunc;
350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351 GA->getIndirectSymbol(), Alias->getType());
352 Alias->setIndirectSymbol(Aliasee);
353 }
354 }
355 }
356 if (!Error)
357 return;
358
359 for (const GlobalDecl &GD : Aliases) {
360 StringRef MangledName = getMangledName(GD);
361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364 Alias->eraseFromParent();
365 }
366}
367
368void CodeGenModule::clear() {
369 DeferredDeclsToEmit.clear();
370 if (OpenMPRuntime)
371 OpenMPRuntime->clear();
372}
373
374void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375 StringRef MainFile) {
376 if (!hasDiagnostics())
377 return;
378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379 if (MainFile.empty())
380 MainFile = "<stdin>";
381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382 } else {
383 if (Mismatched > 0)
384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385
386 if (Missing > 0)
387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388 }
389}
390
391void CodeGenModule::Release() {
392 EmitDeferred();
1
Calling 'CodeGenModule::EmitDeferred'
393 EmitVTablesOpportunistically();
394 applyGlobalValReplacements();
395 applyReplacements();
396 checkAliases();
397 emitMultiVersionFunctions();
398 EmitCXXGlobalInitFunc();
399 EmitCXXGlobalDtorFunc();
400 registerGlobalDtorsWithAtExit();
401 EmitCXXThreadLocalInitFunc();
402 if (ObjCRuntime)
403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404 AddGlobalCtor(ObjCInitFunction);
405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406 CUDARuntime) {
407 if (llvm::Function *CudaCtorFunction =
408 CUDARuntime->makeModuleCtorFunction())
409 AddGlobalCtor(CudaCtorFunction);
410 }
411 if (OpenMPRuntime) {
412 if (llvm::Function *OpenMPRegistrationFunction =
413 OpenMPRuntime->emitRegistrationFunction()) {
414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415 OpenMPRegistrationFunction : nullptr;
416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417 }
418 OpenMPRuntime->clear();
419 }
420 if (PGOReader) {
421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422 if (PGOStats.hasDiagnostics())
423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424 }
425 EmitCtorList(GlobalCtors, "llvm.global_ctors");
426 EmitCtorList(GlobalDtors, "llvm.global_dtors");
427 EmitGlobalAnnotations();
428 EmitStaticExternCAliases();
429 EmitDeferredUnusedCoverageMappings();
430 if (CoverageMapping)
431 CoverageMapping->emit();
432 if (CodeGenOpts.SanitizeCfiCrossDso) {
433 CodeGenFunction(*this).EmitCfiCheckFail();
434 CodeGenFunction(*this).EmitCfiCheckStub();
435 }
436 emitAtAvailableLinkGuard();
437 emitLLVMUsed();
438 if (SanStats)
439 SanStats->finish();
440
441 if (CodeGenOpts.Autolink &&
442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443 EmitModuleLinkOptions();
444 }
445
446 // Record mregparm value now so it is visible through rest of codegen.
447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449 CodeGenOpts.NumRegisterParameters);
450
451 if (CodeGenOpts.DwarfVersion) {
452 // We actually want the latest version when there are conflicts.
453 // We can change from Warning to Latest if such mode is supported.
454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455 CodeGenOpts.DwarfVersion);
456 }
457 if (CodeGenOpts.EmitCodeView) {
458 // Indicate that we want CodeView in the metadata.
459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460 }
461 if (CodeGenOpts.ControlFlowGuard) {
462 // We want function ID tables for Control Flow Guard.
463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464 }
465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466 // We don't support LTO with 2 with different StrictVTablePointers
467 // FIXME: we could support it by stripping all the information introduced
468 // by StrictVTablePointers.
469
470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471
472 llvm::Metadata *Ops[2] = {
473 llvm::MDString::get(VMContext, "StrictVTablePointers"),
474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475 llvm::Type::getInt32Ty(VMContext), 1))};
476
477 getModule().addModuleFlag(llvm::Module::Require,
478 "StrictVTablePointersRequirement",
479 llvm::MDNode::get(VMContext, Ops));
480 }
481 if (DebugInfo)
482 // We support a single version in the linked module. The LLVM
483 // parser will drop debug info with a different version number
484 // (and warn about it, too).
485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486 llvm::DEBUG_METADATA_VERSION);
487
488 // We need to record the widths of enums and wchar_t, so that we can generate
489 // the correct build attributes in the ARM backend. wchar_size is also used by
490 // TargetLibraryInfo.
491 uint64_t WCharWidth =
492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494
495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496 if ( Arch == llvm::Triple::arm
497 || Arch == llvm::Triple::armeb
498 || Arch == llvm::Triple::thumb
499 || Arch == llvm::Triple::thumbeb) {
500 // The minimum width of an enum in bytes
501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503 }
504
505 if (CodeGenOpts.SanitizeCfiCrossDso) {
506 // Indicate that we want cross-DSO control flow integrity checks.
507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508 }
509
510 if (CodeGenOpts.CFProtectionReturn &&
511 Target.checkCFProtectionReturnSupported(getDiags())) {
512 // Indicate that we want to instrument return control flow protection.
513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514 1);
515 }
516
517 if (CodeGenOpts.CFProtectionBranch &&
518 Target.checkCFProtectionBranchSupported(getDiags())) {
519 // Indicate that we want to instrument branch control flow protection.
520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521 1);
522 }
523
524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525 // Indicate whether __nvvm_reflect should be configured to flush denormal
526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
527 // property.)
528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
530 }
531
532 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533 if (LangOpts.OpenCL) {
534 EmitOpenCLMetadata();
535 // Emit SPIR version.
536 if (getTriple().getArch() == llvm::Triple::spir ||
537 getTriple().getArch() == llvm::Triple::spir64) {
538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539 // opencl.spir.version named metadata.
540 llvm::Metadata *SPIRVerElts[] = {
541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542 Int32Ty, LangOpts.OpenCLVersion / 100)),
543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545 llvm::NamedMDNode *SPIRVerMD =
546 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547 llvm::LLVMContext &Ctx = TheModule.getContext();
548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549 }
550 }
551
552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553 assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level"
) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 553, __extension__ __PRETTY_FUNCTION__))
;
554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555 if (Context.getLangOpts().PIE)
556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557 }
558
559 if (CodeGenOpts.NoPLT)
560 getModule().setRtLibUseGOT();
561
562 SimplifyPersonality();
563
564 if (getCodeGenOpts().EmitDeclMetadata)
565 EmitDeclMetadata();
566
567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568 EmitCoverageFile();
569
570 if (DebugInfo)
571 DebugInfo->finalize();
572
573 if (getCodeGenOpts().EmitVersionIdentMetadata)
574 EmitVersionIdentMetadata();
575
576 EmitTargetMetadata();
577}
578
579void CodeGenModule::EmitOpenCLMetadata() {
580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
581 // opencl.ocl.version named metadata node.
582 llvm::Metadata *OCLVerElts[] = {
583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584 Int32Ty, LangOpts.OpenCLVersion / 100)),
585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
587 llvm::NamedMDNode *OCLVerMD =
588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
589 llvm::LLVMContext &Ctx = TheModule.getContext();
590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
591}
592
593void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
594 // Make sure that this type is translated.
595 Types.UpdateCompletedType(TD);
596}
597
598void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
599 // Make sure that this type is translated.
600 Types.RefreshTypeCacheForClass(RD);
601}
602
603llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
604 if (!TBAA)
605 return nullptr;
606 return TBAA->getTypeInfo(QTy);
607}
608
609TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
610 if (!TBAA)
611 return TBAAAccessInfo();
612 return TBAA->getAccessInfo(AccessType);
613}
614
615TBAAAccessInfo
616CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
617 if (!TBAA)
618 return TBAAAccessInfo();
619 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
620}
621
622llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
623 if (!TBAA)
624 return nullptr;
625 return TBAA->getTBAAStructInfo(QTy);
626}
627
628llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
629 if (!TBAA)
630 return nullptr;
631 return TBAA->getBaseTypeInfo(QTy);
632}
633
634llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
635 if (!TBAA)
636 return nullptr;
637 return TBAA->getAccessTagInfo(Info);
638}
639
640TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
641 TBAAAccessInfo TargetInfo) {
642 if (!TBAA)
643 return TBAAAccessInfo();
644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
645}
646
647TBAAAccessInfo
648CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
649 TBAAAccessInfo InfoB) {
650 if (!TBAA)
651 return TBAAAccessInfo();
652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
653}
654
655TBAAAccessInfo
656CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
657 TBAAAccessInfo SrcInfo) {
658 if (!TBAA)
659 return TBAAAccessInfo();
660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
661}
662
663void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
664 TBAAAccessInfo TBAAInfo) {
665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
667}
668
669void CodeGenModule::DecorateInstructionWithInvariantGroup(
670 llvm::Instruction *I, const CXXRecordDecl *RD) {
671 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
672 llvm::MDNode::get(getLLVMContext(), {}));
673}
674
675void CodeGenModule::Error(SourceLocation loc, StringRef message) {
676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
677 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
678}
679
680/// ErrorUnsupported - Print out an error that codegen doesn't support the
681/// specified stmt yet.
682void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
684 "cannot compile this %0 yet");
685 std::string Msg = Type;
686 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
687 << Msg << S->getSourceRange();
688}
689
690/// ErrorUnsupported - Print out an error that codegen doesn't support the
691/// specified decl yet.
692void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
694 "cannot compile this %0 yet");
695 std::string Msg = Type;
696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
697}
698
699llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
700 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
701}
702
703void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
704 const NamedDecl *D) const {
705 if (GV->hasDLLImportStorageClass())
706 return;
707 // Internal definitions always have default visibility.
708 if (GV->hasLocalLinkage()) {
709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710 return;
711 }
712 if (!D)
713 return;
714 // Set visibility for definitions.
715 LinkageInfo LV = D->getLinkageAndVisibility();
716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718}
719
720static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721 llvm::GlobalValue *GV) {
722 if (GV->hasLocalLinkage())
723 return true;
724
725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
726 return true;
727
728 // DLLImport explicitly marks the GV as external.
729 if (GV->hasDLLImportStorageClass())
730 return false;
731
732 const llvm::Triple &TT = CGM.getTriple();
733 // Every other GV is local on COFF.
734 // Make an exception for windows OS in the triple: Some firmware builds use
735 // *-win32-macho triples. This (accidentally?) produced windows relocations
736 // without GOT tables in older clang versions; Keep this behaviour.
737 // FIXME: even thread local variables?
738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
739 return true;
740
741 // Only handle COFF and ELF for now.
742 if (!TT.isOSBinFormatELF())
743 return false;
744
745 // If this is not an executable, don't assume anything is local.
746 const auto &CGOpts = CGM.getCodeGenOpts();
747 llvm::Reloc::Model RM = CGOpts.RelocationModel;
748 const auto &LOpts = CGM.getLangOpts();
749 if (RM != llvm::Reloc::Static && !LOpts.PIE)
750 return false;
751
752 // A definition cannot be preempted from an executable.
753 if (!GV->isDeclarationForLinker())
754 return true;
755
756 // Most PIC code sequences that assume that a symbol is local cannot produce a
757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
758 // depended, it seems worth it to handle it here.
759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
760 return false;
761
762 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
763 llvm::Triple::ArchType Arch = TT.getArch();
764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
765 Arch == llvm::Triple::ppc64le)
766 return false;
767
768 // If we can use copy relocations we can assume it is local.
769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
770 if (!Var->isThreadLocal() &&
771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
772 return true;
773
774 // If we can use a plt entry as the symbol address we can assume it
775 // is local.
776 // FIXME: This should work for PIE, but the gold linker doesn't support it.
777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
778 return true;
779
780 // Otherwise don't assue it is local.
781 return false;
782}
783
784void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
786}
787
788void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
789 GlobalDecl GD) const {
790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
791 // C++ destructors have a few C++ ABI specific special cases.
792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
794 return;
795 }
796 setDLLImportDLLExport(GV, D);
797}
798
799void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800 const NamedDecl *D) const {
801 if (D && D->isExternallyVisible()) {
802 if (D->hasAttr<DLLImportAttr>())
803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806 }
807}
808
809void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810 GlobalDecl GD) const {
811 setDLLImportDLLExport(GV, GD);
812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813}
814
815void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816 const NamedDecl *D) const {
817 setDLLImportDLLExport(GV, D);
818 setGlobalVisibilityAndLocal(GV, D);
819}
820
821void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822 const NamedDecl *D) const {
823 setGlobalVisibility(GV, D);
824 setDSOLocal(GV);
825}
826
827static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833}
834
835static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836 CodeGenOptions::TLSModel M) {
837 switch (M) {
838 case CodeGenOptions::GeneralDynamicTLSModel:
839 return llvm::GlobalVariable::GeneralDynamicTLSModel;
840 case CodeGenOptions::LocalDynamicTLSModel:
841 return llvm::GlobalVariable::LocalDynamicTLSModel;
842 case CodeGenOptions::InitialExecTLSModel:
843 return llvm::GlobalVariable::InitialExecTLSModel;
844 case CodeGenOptions::LocalExecTLSModel:
845 return llvm::GlobalVariable::LocalExecTLSModel;
846 }
847 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 847)
;
848}
849
850void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 851, __extension__ __PRETTY_FUNCTION__))
;
852
853 llvm::GlobalValue::ThreadLocalMode TLM;
854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855
856 // Override the TLS model if it is explicitly specified.
857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858 TLM = GetLLVMTLSModel(Attr->getModel());
859 }
860
861 GV->setThreadLocalMode(TLM);
862}
863
864static void AppendTargetMangling(const CodeGenModule &CGM,
865 const TargetAttr *Attr, raw_ostream &Out) {
866 if (Attr->isDefaultVersion())
867 return;
868
869 Out << '.';
870 const auto &Target = CGM.getTarget();
871 TargetAttr::ParsedTargetAttr Info =
872 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
873 // Multiversioning doesn't allow "no-${feature}", so we can
874 // only have "+" prefixes here.
875 assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 876, __extension__ __PRETTY_FUNCTION__))
876 "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 876, __extension__ __PRETTY_FUNCTION__))
;
877 return Target.multiVersionSortPriority(LHS.substr(1)) >
878 Target.multiVersionSortPriority(RHS.substr(1));
879 });
880
881 bool IsFirst = true;
882
883 if (!Info.Architecture.empty()) {
884 IsFirst = false;
885 Out << "arch_" << Info.Architecture;
886 }
887
888 for (StringRef Feat : Info.Features) {
889 if (!IsFirst)
890 Out << '_';
891 IsFirst = false;
892 Out << Feat.substr(1);
893 }
894}
895
896static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
897 const NamedDecl *ND,
898 bool OmitTargetMangling = false) {
899 SmallString<256> Buffer;
900 llvm::raw_svector_ostream Out(Buffer);
901 MangleContext &MC = CGM.getCXXABI().getMangleContext();
902 if (MC.shouldMangleDeclName(ND)) {
903 llvm::raw_svector_ostream Out(Buffer);
904 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
905 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
906 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
907 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
908 else
909 MC.mangleName(ND, Out);
910 } else {
911 IdentifierInfo *II = ND->getIdentifier();
912 assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl."
) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 912, __extension__ __PRETTY_FUNCTION__))
;
913 const auto *FD = dyn_cast<FunctionDecl>(ND);
914
915 if (FD &&
916 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
917 llvm::raw_svector_ostream Out(Buffer);
918 Out << "__regcall3__" << II->getName();
919 } else {
920 Out << II->getName();
921 }
922 }
923
924 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
925 if (FD->isMultiVersion() && !OmitTargetMangling)
926 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
927 return Out.str();
928}
929
930void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
931 const FunctionDecl *FD) {
932 if (!FD->isMultiVersion())
933 return;
934
935 // Get the name of what this would be without the 'target' attribute. This
936 // allows us to lookup the version that was emitted when this wasn't a
937 // multiversion function.
938 std::string NonTargetName =
939 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
940 GlobalDecl OtherGD;
941 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
942 assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 946, __extension__ __PRETTY_FUNCTION__))
943 .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 946, __extension__ __PRETTY_FUNCTION__))
944 ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 946, __extension__ __PRETTY_FUNCTION__))
945 ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 946, __extension__ __PRETTY_FUNCTION__))
946 "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 946, __extension__ __PRETTY_FUNCTION__))
;
947 // OtherFD is the version of this function that was mangled BEFORE
948 // becoming a MultiVersion function. It potentially needs to be updated.
949 const FunctionDecl *OtherFD =
950 OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
951 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
952 // This is so that if the initial version was already the 'default'
953 // version, we don't try to update it.
954 if (OtherName != NonTargetName) {
955 // Remove instead of erase, since others may have stored the StringRef
956 // to this.
957 const auto ExistingRecord = Manglings.find(NonTargetName);
958 if (ExistingRecord != std::end(Manglings))
959 Manglings.remove(&(*ExistingRecord));
960 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
961 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
962 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
963 Entry->setName(OtherName);
964 }
965 }
966}
967
968StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
969 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
970
971 // Some ABIs don't have constructor variants. Make sure that base and
972 // complete constructors get mangled the same.
973 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
974 if (!getTarget().getCXXABI().hasConstructorVariants()) {
975 CXXCtorType OrigCtorType = GD.getCtorType();
976 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType
== Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 976, __extension__ __PRETTY_FUNCTION__))
;
977 if (OrigCtorType == Ctor_Base)
978 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
979 }
980 }
981
982 auto FoundName = MangledDeclNames.find(CanonicalGD);
983 if (FoundName != MangledDeclNames.end())
984 return FoundName->second;
985
986
987 // Keep the first result in the case of a mangling collision.
988 const auto *ND = cast<NamedDecl>(GD.getDecl());
989 auto Result =
990 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
991 return MangledDeclNames[CanonicalGD] = Result.first->first();
992}
993
994StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
995 const BlockDecl *BD) {
996 MangleContext &MangleCtx = getCXXABI().getMangleContext();
997 const Decl *D = GD.getDecl();
998
999 SmallString<256> Buffer;
1000 llvm::raw_svector_ostream Out(Buffer);
1001 if (!D)
1002 MangleCtx.mangleGlobalBlock(BD,
1003 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1004 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1005 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1006 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1007 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1008 else
1009 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1010
1011 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1012 return Result.first->first();
1013}
1014
1015llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1016 return getModule().getNamedValue(Name);
1017}
1018
1019/// AddGlobalCtor - Add a function to the list that will be called before
1020/// main() runs.
1021void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1022 llvm::Constant *AssociatedData) {
1023 // FIXME: Type coercion of void()* types.
1024 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1025}
1026
1027/// AddGlobalDtor - Add a function to the list that will be called
1028/// when the module is unloaded.
1029void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1030 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1031 DtorsUsingAtExit[Priority].push_back(Dtor);
1032 return;
1033 }
1034
1035 // FIXME: Type coercion of void()* types.
1036 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1037}
1038
1039void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1040 if (Fns.empty()) return;
1041
1042 // Ctor function type is void()*.
1043 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1044 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1045
1046 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1047 llvm::StructType *CtorStructTy = llvm::StructType::get(
1048 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1049
1050 // Construct the constructor and destructor arrays.
1051 ConstantInitBuilder builder(*this);
1052 auto ctors = builder.beginArray(CtorStructTy);
1053 for (const auto &I : Fns) {
1054 auto ctor = ctors.beginStruct(CtorStructTy);
1055 ctor.addInt(Int32Ty, I.Priority);
1056 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1057 if (I.AssociatedData)
1058 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1059 else
1060 ctor.addNullPointer(VoidPtrTy);
1061 ctor.finishAndAddTo(ctors);
1062 }
1063
1064 auto list =
1065 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1066 /*constant*/ false,
1067 llvm::GlobalValue::AppendingLinkage);
1068
1069 // The LTO linker doesn't seem to like it when we set an alignment
1070 // on appending variables. Take it off as a workaround.
1071 list->setAlignment(0);
1072
1073 Fns.clear();
1074}
1075
1076llvm::GlobalValue::LinkageTypes
1077CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1078 const auto *D = cast<FunctionDecl>(GD.getDecl());
1079
1080 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1081
1082 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1083 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1084
1085 if (isa<CXXConstructorDecl>(D) &&
1086 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1087 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1088 // Our approach to inheriting constructors is fundamentally different from
1089 // that used by the MS ABI, so keep our inheriting constructor thunks
1090 // internal rather than trying to pick an unambiguous mangling for them.
1091 return llvm::GlobalValue::InternalLinkage;
1092 }
1093
1094 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1095}
1096
1097llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1098 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1099 if (!MDS) return nullptr;
1100
1101 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1102}
1103
1104void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1105 const CGFunctionInfo &Info,
1106 llvm::Function *F) {
1107 unsigned CallingConv;
1108 llvm::AttributeList PAL;
1109 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1110 F->setAttributes(PAL);
1111 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1112}
1113
1114/// Determines whether the language options require us to model
1115/// unwind exceptions. We treat -fexceptions as mandating this
1116/// except under the fragile ObjC ABI with only ObjC exceptions
1117/// enabled. This means, for example, that C with -fexceptions
1118/// enables this.
1119static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1120 // If exceptions are completely disabled, obviously this is false.
1121 if (!LangOpts.Exceptions) return false;
1122
1123 // If C++ exceptions are enabled, this is true.
1124 if (LangOpts.CXXExceptions) return true;
1125
1126 // If ObjC exceptions are enabled, this depends on the ABI.
1127 if (LangOpts.ObjCExceptions) {
1128 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1129 }
1130
1131 return true;
1132}
1133
1134static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1135 const CXXMethodDecl *MD) {
1136 // Check that the type metadata can ever actually be used by a call.
1137 if (!CGM.getCodeGenOpts().LTOUnit ||
1138 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1139 return false;
1140
1141 // Only functions whose address can be taken with a member function pointer
1142 // need this sort of type metadata.
1143 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1144 !isa<CXXDestructorDecl>(MD);
1145}
1146
1147std::vector<const CXXRecordDecl *>
1148CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1149 llvm::SetVector<const CXXRecordDecl *> MostBases;
1150
1151 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1152 CollectMostBases = [&](const CXXRecordDecl *RD) {
1153 if (RD->getNumBases() == 0)
1154 MostBases.insert(RD);
1155 for (const CXXBaseSpecifier &B : RD->bases())
1156 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1157 };
1158 CollectMostBases(RD);
1159 return MostBases.takeVector();
1160}
1161
1162void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1163 llvm::Function *F) {
1164 llvm::AttrBuilder B;
1165
1166 if (CodeGenOpts.UnwindTables)
1167 B.addAttribute(llvm::Attribute::UWTable);
1168
1169 if (!hasUnwindExceptions(LangOpts))
1170 B.addAttribute(llvm::Attribute::NoUnwind);
1171
1172 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1173 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1174 B.addAttribute(llvm::Attribute::StackProtect);
1175 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1176 B.addAttribute(llvm::Attribute::StackProtectStrong);
1177 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1178 B.addAttribute(llvm::Attribute::StackProtectReq);
1179 }
1180
1181 if (!D) {
1182 // If we don't have a declaration to control inlining, the function isn't
1183 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1184 // disabled, mark the function as noinline.
1185 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1186 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1187 B.addAttribute(llvm::Attribute::NoInline);
1188
1189 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1190 return;
1191 }
1192
1193 // Track whether we need to add the optnone LLVM attribute,
1194 // starting with the default for this optimization level.
1195 bool ShouldAddOptNone =
1196 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1197 // We can't add optnone in the following cases, it won't pass the verifier.
1198 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1199 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1200 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1201
1202 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1203 B.addAttribute(llvm::Attribute::OptimizeNone);
1204
1205 // OptimizeNone implies noinline; we should not be inlining such functions.
1206 B.addAttribute(llvm::Attribute::NoInline);
1207 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1208, __extension__ __PRETTY_FUNCTION__))
1208 "OptimizeNone and AlwaysInline on same function!")(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209
1210 // We still need to handle naked functions even though optnone subsumes
1211 // much of their semantics.
1212 if (D->hasAttr<NakedAttr>())
1213 B.addAttribute(llvm::Attribute::Naked);
1214
1215 // OptimizeNone wins over OptimizeForSize and MinSize.
1216 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1217 F->removeFnAttr(llvm::Attribute::MinSize);
1218 } else if (D->hasAttr<NakedAttr>()) {
1219 // Naked implies noinline: we should not be inlining such functions.
1220 B.addAttribute(llvm::Attribute::Naked);
1221 B.addAttribute(llvm::Attribute::NoInline);
1222 } else if (D->hasAttr<NoDuplicateAttr>()) {
1223 B.addAttribute(llvm::Attribute::NoDuplicate);
1224 } else if (D->hasAttr<NoInlineAttr>()) {
1225 B.addAttribute(llvm::Attribute::NoInline);
1226 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1227 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1228 // (noinline wins over always_inline, and we can't specify both in IR)
1229 B.addAttribute(llvm::Attribute::AlwaysInline);
1230 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1231 // If we're not inlining, then force everything that isn't always_inline to
1232 // carry an explicit noinline attribute.
1233 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1234 B.addAttribute(llvm::Attribute::NoInline);
1235 } else {
1236 // Otherwise, propagate the inline hint attribute and potentially use its
1237 // absence to mark things as noinline.
1238 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1239 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1240 return Redecl->isInlineSpecified();
1241 })) {
1242 B.addAttribute(llvm::Attribute::InlineHint);
1243 } else if (CodeGenOpts.getInlining() ==
1244 CodeGenOptions::OnlyHintInlining &&
1245 !FD->isInlined() &&
1246 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1247 B.addAttribute(llvm::Attribute::NoInline);
1248 }
1249 }
1250 }
1251
1252 // Add other optimization related attributes if we are optimizing this
1253 // function.
1254 if (!D->hasAttr<OptimizeNoneAttr>()) {
1255 if (D->hasAttr<ColdAttr>()) {
1256 if (!ShouldAddOptNone)
1257 B.addAttribute(llvm::Attribute::OptimizeForSize);
1258 B.addAttribute(llvm::Attribute::Cold);
1259 }
1260
1261 if (D->hasAttr<MinSizeAttr>())
1262 B.addAttribute(llvm::Attribute::MinSize);
1263 }
1264
1265 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1266
1267 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1268 if (alignment)
1269 F->setAlignment(alignment);
1270
1271 if (!D->hasAttr<AlignedAttr>())
1272 if (LangOpts.FunctionAlignment)
1273 F->setAlignment(1 << LangOpts.FunctionAlignment);
1274
1275 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1276 // reserve a bit for differentiating between virtual and non-virtual member
1277 // functions. If the current target's C++ ABI requires this and this is a
1278 // member function, set its alignment accordingly.
1279 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1280 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1281 F->setAlignment(2);
1282 }
1283
1284 // In the cross-dso CFI mode, we want !type attributes on definitions only.
1285 if (CodeGenOpts.SanitizeCfiCrossDso)
1286 if (auto *FD = dyn_cast<FunctionDecl>(D))
1287 CreateFunctionTypeMetadataForIcall(FD, F);
1288
1289 // Emit type metadata on member functions for member function pointer checks.
1290 // These are only ever necessary on definitions; we're guaranteed that the
1291 // definition will be present in the LTO unit as a result of LTO visibility.
1292 auto *MD = dyn_cast<CXXMethodDecl>(D);
1293 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1294 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1295 llvm::Metadata *Id =
1296 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1297 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1298 F->addTypeMetadata(0, Id);
1299 }
1300 }
1301}
1302
1303void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1304 const Decl *D = GD.getDecl();
1305 if (dyn_cast_or_null<NamedDecl>(D))
1306 setGVProperties(GV, GD);
1307 else
1308 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1309
1310 if (D && D->hasAttr<UsedAttr>())
1311 addUsedGlobal(GV);
1312}
1313
1314bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1315 llvm::AttrBuilder &Attrs) {
1316 // Add target-cpu and target-features attributes to functions. If
1317 // we have a decl for the function and it has a target attribute then
1318 // parse that and add it to the feature set.
1319 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1320 std::vector<std::string> Features;
1321 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1322 FD = FD ? FD->getMostRecentDecl() : FD;
1323 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1324 bool AddedAttr = false;
1325 if (TD) {
1326 llvm::StringMap<bool> FeatureMap;
1327 getFunctionFeatureMap(FeatureMap, FD);
1328
1329 // Produce the canonical string for this set of features.
1330 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1331 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1332
1333 // Now add the target-cpu and target-features to the function.
1334 // While we populated the feature map above, we still need to
1335 // get and parse the target attribute so we can get the cpu for
1336 // the function.
1337 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1338 if (ParsedAttr.Architecture != "" &&
1339 getTarget().isValidCPUName(ParsedAttr.Architecture))
1340 TargetCPU = ParsedAttr.Architecture;
1341 } else {
1342 // Otherwise just add the existing target cpu and target features to the
1343 // function.
1344 Features = getTarget().getTargetOpts().Features;
1345 }
1346
1347 if (TargetCPU != "") {
1348 Attrs.addAttribute("target-cpu", TargetCPU);
1349 AddedAttr = true;
1350 }
1351 if (!Features.empty()) {
1352 llvm::sort(Features.begin(), Features.end());
1353 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1354 AddedAttr = true;
1355 }
1356
1357 return AddedAttr;
1358}
1359
1360void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1361 llvm::GlobalObject *GO) {
1362 const Decl *D = GD.getDecl();
1363 SetCommonAttributes(GD, GO);
1364
1365 if (D) {
1366 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1367 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1368 GV->addAttribute("bss-section", SA->getName());
1369 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1370 GV->addAttribute("data-section", SA->getName());
1371 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1372 GV->addAttribute("rodata-section", SA->getName());
1373 }
1374
1375 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1376 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1377 if (!D->getAttr<SectionAttr>())
1378 F->addFnAttr("implicit-section-name", SA->getName());
1379
1380 llvm::AttrBuilder Attrs;
1381 if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1382 // We know that GetCPUAndFeaturesAttributes will always have the
1383 // newest set, since it has the newest possible FunctionDecl, so the
1384 // new ones should replace the old.
1385 F->removeFnAttr("target-cpu");
1386 F->removeFnAttr("target-features");
1387 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1388 }
1389 }
1390
1391 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1392 GO->setSection(CSA->getName());
1393 else if (const auto *SA = D->getAttr<SectionAttr>())
1394 GO->setSection(SA->getName());
1395 }
1396
1397 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1398}
1399
1400void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1401 llvm::Function *F,
1402 const CGFunctionInfo &FI) {
1403 const Decl *D = GD.getDecl();
1404 SetLLVMFunctionAttributes(D, FI, F);
1405 SetLLVMFunctionAttributesForDefinition(D, F);
1406
1407 F->setLinkage(llvm::Function::InternalLinkage);
1408
1409 setNonAliasAttributes(GD, F);
1410}
1411
1412static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1413 // Set linkage and visibility in case we never see a definition.
1414 LinkageInfo LV = ND->getLinkageAndVisibility();
1415 // Don't set internal linkage on declarations.
1416 // "extern_weak" is overloaded in LLVM; we probably should have
1417 // separate linkage types for this.
1418 if (isExternallyVisible(LV.getLinkage()) &&
1419 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1420 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1421}
1422
1423void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1424 llvm::Function *F) {
1425 // Only if we are checking indirect calls.
1426 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1427 return;
1428
1429 // Non-static class methods are handled via vtable or member function pointer
1430 // checks elsewhere.
1431 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1432 return;
1433
1434 // Additionally, if building with cross-DSO support...
1435 if (CodeGenOpts.SanitizeCfiCrossDso) {
1436 // Skip available_externally functions. They won't be codegen'ed in the
1437 // current module anyway.
1438 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1439 return;
1440 }
1441
1442 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1443 F->addTypeMetadata(0, MD);
1444 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1445
1446 // Emit a hash-based bit set entry for cross-DSO calls.
1447 if (CodeGenOpts.SanitizeCfiCrossDso)
1448 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1449 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1450}
1451
1452void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1453 bool IsIncompleteFunction,
1454 bool IsThunk) {
1455
1456 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1457 // If this is an intrinsic function, set the function's attributes
1458 // to the intrinsic's attributes.
1459 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1460 return;
1461 }
1462
1463 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1464
1465 if (!IsIncompleteFunction) {
1466 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1467 // Setup target-specific attributes.
1468 if (F->isDeclaration())
1469 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1470 }
1471
1472 // Add the Returned attribute for "this", except for iOS 5 and earlier
1473 // where substantial code, including the libstdc++ dylib, was compiled with
1474 // GCC and does not actually return "this".
1475 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1476 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1477 assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
1478 F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
1479 ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
1480 "unexpected this return")(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
;
1481 F->addAttribute(1, llvm::Attribute::Returned);
1482 }
1483
1484 // Only a few attributes are set on declarations; these may later be
1485 // overridden by a definition.
1486
1487 setLinkageForGV(F, FD);
1488 setGVProperties(F, FD);
1489
1490 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1491 F->setSection(CSA->getName());
1492 else if (const auto *SA = FD->getAttr<SectionAttr>())
1493 F->setSection(SA->getName());
1494
1495 if (FD->isReplaceableGlobalAllocationFunction()) {
1496 // A replaceable global allocation function does not act like a builtin by
1497 // default, only if it is invoked by a new-expression or delete-expression.
1498 F->addAttribute(llvm::AttributeList::FunctionIndex,
1499 llvm::Attribute::NoBuiltin);
1500
1501 // A sane operator new returns a non-aliasing pointer.
1502 // FIXME: Also add NonNull attribute to the return value
1503 // for the non-nothrow forms?
1504 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1505 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1506 (Kind == OO_New || Kind == OO_Array_New))
1507 F->addAttribute(llvm::AttributeList::ReturnIndex,
1508 llvm::Attribute::NoAlias);
1509 }
1510
1511 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1512 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1513 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1514 if (MD->isVirtual())
1515 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1516
1517 // Don't emit entries for function declarations in the cross-DSO mode. This
1518 // is handled with better precision by the receiving DSO.
1519 if (!CodeGenOpts.SanitizeCfiCrossDso)
1520 CreateFunctionTypeMetadataForIcall(FD, F);
1521
1522 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1523 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1524}
1525
1526void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1527 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1528, __extension__ __PRETTY_FUNCTION__))
1528 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1528, __extension__ __PRETTY_FUNCTION__))
;
1529 LLVMUsed.emplace_back(GV);
1530}
1531
1532void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1533 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1534, __extension__ __PRETTY_FUNCTION__))
1534 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1534, __extension__ __PRETTY_FUNCTION__))
;
1535 LLVMCompilerUsed.emplace_back(GV);
1536}
1537
1538static void emitUsed(CodeGenModule &CGM, StringRef Name,
1539 std::vector<llvm::WeakTrackingVH> &List) {
1540 // Don't create llvm.used if there is no need.
1541 if (List.empty())
1542 return;
1543
1544 // Convert List to what ConstantArray needs.
1545 SmallVector<llvm::Constant*, 8> UsedArray;
1546 UsedArray.resize(List.size());
1547 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1548 UsedArray[i] =
1549 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1550 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1551 }
1552
1553 if (UsedArray.empty())
1554 return;
1555 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1556
1557 auto *GV = new llvm::GlobalVariable(
1558 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1559 llvm::ConstantArray::get(ATy, UsedArray), Name);
1560
1561 GV->setSection("llvm.metadata");
1562}
1563
1564void CodeGenModule::emitLLVMUsed() {
1565 emitUsed(*this, "llvm.used", LLVMUsed);
1566 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1567}
1568
1569void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1570 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1571 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1572}
1573
1574void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1575 llvm::SmallString<32> Opt;
1576 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1577 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1578 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1579}
1580
1581void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1582 auto &C = getLLVMContext();
1583 LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1584 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1585}
1586
1587void CodeGenModule::AddDependentLib(StringRef Lib) {
1588 llvm::SmallString<24> Opt;
1589 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1590 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1591 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1592}
1593
1594/// Add link options implied by the given module, including modules
1595/// it depends on, using a postorder walk.
1596static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1597 SmallVectorImpl<llvm::MDNode *> &Metadata,
1598 llvm::SmallPtrSet<Module *, 16> &Visited) {
1599 // Import this module's parent.
1600 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1601 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1602 }
1603
1604 // Import this module's dependencies.
1605 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1606 if (Visited.insert(Mod->Imports[I - 1]).second)
1607 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1608 }
1609
1610 // Add linker options to link against the libraries/frameworks
1611 // described by this module.
1612 llvm::LLVMContext &Context = CGM.getLLVMContext();
1613
1614 // For modules that use export_as for linking, use that module
1615 // name instead.
1616 if (Mod->UseExportAsModuleLinkName)
1617 return;
1618
1619 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1620 // Link against a framework. Frameworks are currently Darwin only, so we
1621 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1622 if (Mod->LinkLibraries[I-1].IsFramework) {
1623 llvm::Metadata *Args[2] = {
1624 llvm::MDString::get(Context, "-framework"),
1625 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1626
1627 Metadata.push_back(llvm::MDNode::get(Context, Args));
1628 continue;
1629 }
1630
1631 // Link against a library.
1632 llvm::SmallString<24> Opt;
1633 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1634 Mod->LinkLibraries[I-1].Library, Opt);
1635 auto *OptString = llvm::MDString::get(Context, Opt);
1636 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1637 }
1638}
1639
1640void CodeGenModule::EmitModuleLinkOptions() {
1641 // Collect the set of all of the modules we want to visit to emit link
1642 // options, which is essentially the imported modules and all of their
1643 // non-explicit child modules.
1644 llvm::SetVector<clang::Module *> LinkModules;
1645 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1646 SmallVector<clang::Module *, 16> Stack;
1647
1648 // Seed the stack with imported modules.
1649 for (Module *M : ImportedModules) {
1650 // Do not add any link flags when an implementation TU of a module imports
1651 // a header of that same module.
1652 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1653 !getLangOpts().isCompilingModule())
1654 continue;
1655 if (Visited.insert(M).second)
1656 Stack.push_back(M);
1657 }
1658
1659 // Find all of the modules to import, making a little effort to prune
1660 // non-leaf modules.
1661 while (!Stack.empty()) {
1662 clang::Module *Mod = Stack.pop_back_val();
1663
1664 bool AnyChildren = false;
1665
1666 // Visit the submodules of this module.
1667 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1668 SubEnd = Mod->submodule_end();
1669 Sub != SubEnd; ++Sub) {
1670 // Skip explicit children; they need to be explicitly imported to be
1671 // linked against.
1672 if ((*Sub)->IsExplicit)
1673 continue;
1674
1675 if (Visited.insert(*Sub).second) {
1676 Stack.push_back(*Sub);
1677 AnyChildren = true;
1678 }
1679 }
1680
1681 // We didn't find any children, so add this module to the list of
1682 // modules to link against.
1683 if (!AnyChildren) {
1684 LinkModules.insert(Mod);
1685 }
1686 }
1687
1688 // Add link options for all of the imported modules in reverse topological
1689 // order. We don't do anything to try to order import link flags with respect
1690 // to linker options inserted by things like #pragma comment().
1691 SmallVector<llvm::MDNode *, 16> MetadataArgs;
1692 Visited.clear();
1693 for (Module *M : LinkModules)
1694 if (Visited.insert(M).second)
1695 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1696 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1697 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1698
1699 // Add the linker options metadata flag.
1700 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1701 for (auto *MD : LinkerOptionsMetadata)
1702 NMD->addOperand(MD);
1703}
1704
1705void CodeGenModule::EmitDeferred() {
1706 // Emit code for any potentially referenced deferred decls. Since a
1707 // previously unused static decl may become used during the generation of code
1708 // for a static function, iterate until no changes are made.
1709
1710 if (!DeferredVTables.empty()) {
2
Assuming the condition is false
3
Taking false branch
1711 EmitDeferredVTables();
1712
1713 // Emitting a vtable doesn't directly cause more vtables to
1714 // become deferred, although it can cause functions to be
1715 // emitted that then need those vtables.
1716 assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0
) : __assert_fail ("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1716, __extension__ __PRETTY_FUNCTION__))
;
1717 }
1718
1719 // Stop if we're out of both deferred vtables and deferred declarations.
1720 if (DeferredDeclsToEmit.empty())
4
Assuming the condition is false
5
Taking false branch
1721 return;
1722
1723 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1724 // work, it will not interfere with this.
1725 std::vector<GlobalDecl> CurDeclsToEmit;
1726 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1727
1728 for (GlobalDecl &D : CurDeclsToEmit) {
1729 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1730 // to get GlobalValue with exactly the type we need, not something that
1731 // might had been created for another decl with the same mangled name but
1732 // different type.
1733 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1734 GetAddrOfGlobal(D, ForDefinition));
6
Calling 'CodeGenModule::GetAddrOfGlobal'
1735
1736 // In case of different address spaces, we may still get a cast, even with
1737 // IsForDefinition equal to true. Query mangled names table to get
1738 // GlobalValue.
1739 if (!GV)
1740 GV = GetGlobalValue(getMangledName(D));
1741
1742 // Make sure GetGlobalValue returned non-null.
1743 assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1743, __extension__ __PRETTY_FUNCTION__))
;
1744
1745 // Check to see if we've already emitted this. This is necessary
1746 // for a couple of reasons: first, decls can end up in the
1747 // deferred-decls queue multiple times, and second, decls can end
1748 // up with definitions in unusual ways (e.g. by an extern inline
1749 // function acquiring a strong function redefinition). Just
1750 // ignore these cases.
1751 if (!GV->isDeclaration())
1752 continue;
1753
1754 // Otherwise, emit the definition and move on to the next one.
1755 EmitGlobalDefinition(D, GV);
1756
1757 // If we found out that we need to emit more decls, do that recursively.
1758 // This has the advantage that the decls are emitted in a DFS and related
1759 // ones are close together, which is convenient for testing.
1760 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1761 EmitDeferred();
1762 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() &&
DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1762, __extension__ __PRETTY_FUNCTION__))
;
1763 }
1764 }
1765}
1766
1767void CodeGenModule::EmitVTablesOpportunistically() {
1768 // Try to emit external vtables as available_externally if they have emitted
1769 // all inlined virtual functions. It runs after EmitDeferred() and therefore
1770 // is not allowed to create new references to things that need to be emitted
1771 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1772
1773 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1774, __extension__ __PRETTY_FUNCTION__))
1774 && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1774, __extension__ __PRETTY_FUNCTION__))
;
1775
1776 for (const CXXRecordDecl *RD : OpportunisticVTables) {
1777 assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1778, __extension__ __PRETTY_FUNCTION__))
1778 "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1778, __extension__ __PRETTY_FUNCTION__))
;
1779 if (getCXXABI().canSpeculativelyEmitVTable(RD))
1780 VTables.GenerateClassData(RD);
1781 }
1782 OpportunisticVTables.clear();
1783}
1784
1785void CodeGenModule::EmitGlobalAnnotations() {
1786 if (Annotations.empty())
1787 return;
1788
1789 // Create a new global variable for the ConstantStruct in the Module.
1790 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1791 Annotations[0]->getType(), Annotations.size()), Annotations);
1792 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1793 llvm::GlobalValue::AppendingLinkage,
1794 Array, "llvm.global.annotations");
1795 gv->setSection(AnnotationSection);
1796}
1797
1798llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1799 llvm::Constant *&AStr = AnnotationStrings[Str];
1800 if (AStr)
1801 return AStr;
1802
1803 // Not found yet, create a new global.
1804 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1805 auto *gv =
1806 new llvm::GlobalVariable(getModule(), s->getType(), true,
1807 llvm::GlobalValue::PrivateLinkage, s, ".str");
1808 gv->setSection(AnnotationSection);
1809 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1810 AStr = gv;
1811 return gv;
1812}
1813
1814llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1815 SourceManager &SM = getContext().getSourceManager();
1816 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1817 if (PLoc.isValid())
1818 return EmitAnnotationString(PLoc.getFilename());
1819 return EmitAnnotationString(SM.getBufferName(Loc));
1820}
1821
1822llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1823 SourceManager &SM = getContext().getSourceManager();
1824 PresumedLoc PLoc = SM.getPresumedLoc(L);
1825 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1826 SM.getExpansionLineNumber(L);
1827 return llvm::ConstantInt::get(Int32Ty, LineNo);
1828}
1829
1830llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1831 const AnnotateAttr *AA,
1832 SourceLocation L) {
1833 // Get the globals for file name, annotation, and the line number.
1834 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1835 *UnitGV = EmitAnnotationUnit(L),
1836 *LineNoCst = EmitAnnotationLineNo(L);
1837
1838 // Create the ConstantStruct for the global annotation.
1839 llvm::Constant *Fields[4] = {
1840 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1841 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1842 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1843 LineNoCst
1844 };
1845 return llvm::ConstantStruct::getAnon(Fields);
1846}
1847
1848void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1849 llvm::GlobalValue *GV) {
1850 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>(
) && "no annotate attribute") ? void (0) : __assert_fail
("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1850, __extension__ __PRETTY_FUNCTION__))
;
1851 // Get the struct elements for these annotations.
1852 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1853 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1854}
1855
1856bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1857 llvm::Function *Fn,
1858 SourceLocation Loc) const {
1859 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1860 // Blacklist by function name.
1861 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1862 return true;
1863 // Blacklist by location.
1864 if (Loc.isValid())
1865 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1866 // If location is unknown, this may be a compiler-generated function. Assume
1867 // it's located in the main file.
1868 auto &SM = Context.getSourceManager();
1869 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1870 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1871 }
1872 return false;
1873}
1874
1875bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1876 SourceLocation Loc, QualType Ty,
1877 StringRef Category) const {
1878 // For now globals can be blacklisted only in ASan and KASan.
1879 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1880 (SanitizerKind::Address | SanitizerKind::KernelAddress |
1881 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1882 if (!EnabledAsanMask)
1883 return false;
1884 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1885 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1886 return true;
1887 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1888 return true;
1889 // Check global type.
1890 if (!Ty.isNull()) {
1891 // Drill down the array types: if global variable of a fixed type is
1892 // blacklisted, we also don't instrument arrays of them.
1893 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1894 Ty = AT->getElementType();
1895 Ty = Ty.getCanonicalType().getUnqualifiedType();
1896 // We allow to blacklist only record types (classes, structs etc.)
1897 if (Ty->isRecordType()) {
1898 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1899 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1900 return true;
1901 }
1902 }
1903 return false;
1904}
1905
1906bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1907 StringRef Category) const {
1908 if (!LangOpts.XRayInstrument)
1909 return false;
1910
1911 const auto &XRayFilter = getContext().getXRayFilter();
1912 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1913 auto Attr = ImbueAttr::NONE;
1914 if (Loc.isValid())
1915 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1916 if (Attr == ImbueAttr::NONE)
1917 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1918 switch (Attr) {
1919 case ImbueAttr::NONE:
1920 return false;
1921 case ImbueAttr::ALWAYS:
1922 Fn->addFnAttr("function-instrument", "xray-always");
1923 break;
1924 case ImbueAttr::ALWAYS_ARG1:
1925 Fn->addFnAttr("function-instrument", "xray-always");
1926 Fn->addFnAttr("xray-log-args", "1");
1927 break;
1928 case ImbueAttr::NEVER:
1929 Fn->addFnAttr("function-instrument", "xray-never");
1930 break;
1931 }
1932 return true;
1933}
1934
1935bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1936 // Never defer when EmitAllDecls is specified.
1937 if (LangOpts.EmitAllDecls)
1938 return true;
1939
1940 return getContext().DeclMustBeEmitted(Global);
1941}
1942
1943bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1944 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1945 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1946 // Implicit template instantiations may change linkage if they are later
1947 // explicitly instantiated, so they should not be emitted eagerly.
1948 return false;
1949 if (const auto *VD = dyn_cast<VarDecl>(Global))
1950 if (Context.getInlineVariableDefinitionKind(VD) ==
1951 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1952 // A definition of an inline constexpr static data member may change
1953 // linkage later if it's redeclared outside the class.
1954 return false;
1955 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1956 // codegen for global variables, because they may be marked as threadprivate.
1957 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1958 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
1959 !isTypeConstant(Global->getType(), false))
1960 return false;
1961
1962 return true;
1963}
1964
1965ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1966 const CXXUuidofExpr* E) {
1967 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1968 // well-formed.
1969 StringRef Uuid = E->getUuidStr();
1970 std::string Name = "_GUID_" + Uuid.lower();
1971 std::replace(Name.begin(), Name.end(), '-', '_');
1972
1973 // The UUID descriptor should be pointer aligned.
1974 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1975
1976 // Look for an existing global.
1977 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1978 return ConstantAddress(GV, Alignment);
1979
1980 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1981 assert(Init && "failed to initialize as constant")(static_cast <bool> (Init && "failed to initialize as constant"
) ? void (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1981, __extension__ __PRETTY_FUNCTION__))
;
1982
1983 auto *GV = new llvm::GlobalVariable(
1984 getModule(), Init->getType(),
1985 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1986 if (supportsCOMDAT())
1987 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1988 setDSOLocal(GV);
1989 return ConstantAddress(GV, Alignment);
1990}
1991
1992ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1993 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1994 assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void (
0) : __assert_fail ("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1994, __extension__ __PRETTY_FUNCTION__))
;
1995
1996 CharUnits Alignment = getContext().getDeclAlign(VD);
1997 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1998
1999 // See if there is already something with the target's name in the module.
2000 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2001 if (Entry) {
2002 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2003 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2004 return ConstantAddress(Ptr, Alignment);
2005 }
2006
2007 llvm::Constant *Aliasee;
2008 if (isa<llvm::FunctionType>(DeclTy))
2009 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2010 GlobalDecl(cast<FunctionDecl>(VD)),
2011 /*ForVTable=*/false);
2012 else
2013 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2014 llvm::PointerType::getUnqual(DeclTy),
2015 nullptr);
2016
2017 auto *F = cast<llvm::GlobalValue>(Aliasee);
2018 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2019 WeakRefReferences.insert(F);
2020
2021 return ConstantAddress(Aliasee, Alignment);
2022}
2023
2024void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2025 const auto *Global = cast<ValueDecl>(GD.getDecl());
2026
2027 // Weak references don't produce any output by themselves.
2028 if (Global->hasAttr<WeakRefAttr>())
2029 return;
2030
2031 // If this is an alias definition (which otherwise looks like a declaration)
2032 // emit it now.
2033 if (Global->hasAttr<AliasAttr>())
2034 return EmitAliasDefinition(GD);
2035
2036 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2037 if (Global->hasAttr<IFuncAttr>())
2038 return emitIFuncDefinition(GD);
2039
2040 // If this is CUDA, be selective about which declarations we emit.
2041 if (LangOpts.CUDA) {
2042 if (LangOpts.CUDAIsDevice) {
2043 if (!Global->hasAttr<CUDADeviceAttr>() &&
2044 !Global->hasAttr<CUDAGlobalAttr>() &&
2045 !Global->hasAttr<CUDAConstantAttr>() &&
2046 !Global->hasAttr<CUDASharedAttr>())
2047 return;
2048 } else {
2049 // We need to emit host-side 'shadows' for all global
2050 // device-side variables because the CUDA runtime needs their
2051 // size and host-side address in order to provide access to
2052 // their device-side incarnations.
2053
2054 // So device-only functions are the only things we skip.
2055 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2056 Global->hasAttr<CUDADeviceAttr>())
2057 return;
2058
2059 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2060, __extension__ __PRETTY_FUNCTION__))
2060 "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2060, __extension__ __PRETTY_FUNCTION__))
;
2061 }
2062 }
2063
2064 if (LangOpts.OpenMP) {
2065 // If this is OpenMP device, check if it is legal to emit this global
2066 // normally.
2067 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2068 return;
2069 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2070 if (MustBeEmitted(Global))
2071 EmitOMPDeclareReduction(DRD);
2072 return;
2073 }
2074 }
2075
2076 // Ignore declarations, they will be emitted on their first use.
2077 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2078 // Forward declarations are emitted lazily on first use.
2079 if (!FD->doesThisDeclarationHaveABody()) {
2080 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2081 return;
2082
2083 StringRef MangledName = getMangledName(GD);
2084
2085 // Compute the function info and LLVM type.
2086 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2087 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2088
2089 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2090 /*DontDefer=*/false);
2091 return;
2092 }
2093 } else {
2094 const auto *VD = cast<VarDecl>(Global);
2095 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2095, __extension__ __PRETTY_FUNCTION__))
;
2096 // We need to emit device-side global CUDA variables even if a
2097 // variable does not have a definition -- we still need to define
2098 // host-side shadow for it.
2099 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2100 !VD->hasDefinition() &&
2101 (VD->hasAttr<CUDAConstantAttr>() ||
2102 VD->hasAttr<CUDADeviceAttr>());
2103 if (!MustEmitForCuda &&
2104 VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2105 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2106 // If this declaration may have caused an inline variable definition to
2107 // change linkage, make sure that it's emitted.
2108 if (Context.getInlineVariableDefinitionKind(VD) ==
2109 ASTContext::InlineVariableDefinitionKind::Strong)
2110 GetAddrOfGlobalVar(VD);
2111 return;
2112 }
2113 }
2114
2115 // Defer code generation to first use when possible, e.g. if this is an inline
2116 // function. If the global must always be emitted, do it eagerly if possible
2117 // to benefit from cache locality.
2118 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2119 // Emit the definition if it can't be deferred.
2120 EmitGlobalDefinition(GD);
2121 return;
2122 }
2123
2124 // If we're deferring emission of a C++ variable with an
2125 // initializer, remember the order in which it appeared in the file.
2126 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2127 cast<VarDecl>(Global)->hasInit()) {
2128 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2129 CXXGlobalInits.push_back(nullptr);
2130 }
2131
2132 StringRef MangledName = getMangledName(GD);
2133 if (GetGlobalValue(MangledName) != nullptr) {
2134 // The value has already been used and should therefore be emitted.
2135 addDeferredDeclToEmit(GD);
2136 } else if (MustBeEmitted(Global)) {
2137 // The value must be emitted, but cannot be emitted eagerly.
2138 assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void
(0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2138, __extension__ __PRETTY_FUNCTION__))
;
2139 addDeferredDeclToEmit(GD);
2140 } else {
2141 // Otherwise, remember that we saw a deferred decl with this name. The
2142 // first use of the mangled name will cause it to move into
2143 // DeferredDeclsToEmit.
2144 DeferredDecls[MangledName] = GD;
2145 }
2146}
2147
2148// Check if T is a class type with a destructor that's not dllimport.
2149static bool HasNonDllImportDtor(QualType T) {
2150 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2151 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2152 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2153 return true;
2154
2155 return false;
2156}
2157
2158namespace {
2159 struct FunctionIsDirectlyRecursive :
2160 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2161 const StringRef Name;
2162 const Builtin::Context &BI;
2163 bool Result;
2164 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2165 Name(N), BI(C), Result(false) {
2166 }
2167 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2168
2169 bool TraverseCallExpr(CallExpr *E) {
2170 const FunctionDecl *FD = E->getDirectCallee();
2171 if (!FD)
2172 return true;
2173 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2174 if (Attr && Name == Attr->getLabel()) {
2175 Result = true;
2176 return false;
2177 }
2178 unsigned BuiltinID = FD->getBuiltinID();
2179 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2180 return true;
2181 StringRef BuiltinName = BI.getName(BuiltinID);
2182 if (BuiltinName.startswith("__builtin_") &&
2183 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2184 Result = true;
2185 return false;
2186 }
2187 return true;
2188 }
2189 };
2190
2191 // Make sure we're not referencing non-imported vars or functions.
2192 struct DLLImportFunctionVisitor
2193 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2194 bool SafeToInline = true;
2195
2196 bool shouldVisitImplicitCode() const { return true; }
2197
2198 bool VisitVarDecl(VarDecl *VD) {
2199 if (VD->getTLSKind()) {
2200 // A thread-local variable cannot be imported.
2201 SafeToInline = false;
2202 return SafeToInline;
2203 }
2204
2205 // A variable definition might imply a destructor call.
2206 if (VD->isThisDeclarationADefinition())
2207 SafeToInline = !HasNonDllImportDtor(VD->getType());
2208
2209 return SafeToInline;
2210 }
2211
2212 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2213 if (const auto *D = E->getTemporary()->getDestructor())
2214 SafeToInline = D->hasAttr<DLLImportAttr>();
2215 return SafeToInline;
2216 }
2217
2218 bool VisitDeclRefExpr(DeclRefExpr *E) {
2219 ValueDecl *VD = E->getDecl();
2220 if (isa<FunctionDecl>(VD))
2221 SafeToInline = VD->hasAttr<DLLImportAttr>();
2222 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2223 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2224 return SafeToInline;
2225 }
2226
2227 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2228 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2229 return SafeToInline;
2230 }
2231
2232 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2233 CXXMethodDecl *M = E->getMethodDecl();
2234 if (!M) {
2235 // Call through a pointer to member function. This is safe to inline.
2236 SafeToInline = true;
2237 } else {
2238 SafeToInline = M->hasAttr<DLLImportAttr>();
2239 }
2240 return SafeToInline;
2241 }
2242
2243 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2244 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2245 return SafeToInline;
2246 }
2247
2248 bool VisitCXXNewExpr(CXXNewExpr *E) {
2249 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2250 return SafeToInline;
2251 }
2252 };
2253}
2254
2255// isTriviallyRecursive - Check if this function calls another
2256// decl that, because of the asm attribute or the other decl being a builtin,
2257// ends up pointing to itself.
2258bool
2259CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2260 StringRef Name;
2261 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2262 // asm labels are a special kind of mangling we have to support.
2263 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2264 if (!Attr)
2265 return false;
2266 Name = Attr->getLabel();
2267 } else {
2268 Name = FD->getName();
2269 }
2270
2271 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2272 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2273 return Walker.Result;
2274}
2275
2276bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2277 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2278 return true;
2279 const auto *F = cast<FunctionDecl>(GD.getDecl());
2280 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2281 return false;
2282
2283 if (F->hasAttr<DLLImportAttr>()) {
2284 // Check whether it would be safe to inline this dllimport function.
2285 DLLImportFunctionVisitor Visitor;
2286 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2287 if (!Visitor.SafeToInline)
2288 return false;
2289
2290 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2291 // Implicit destructor invocations aren't captured in the AST, so the
2292 // check above can't see them. Check for them manually here.
2293 for (const Decl *Member : Dtor->getParent()->decls())
2294 if (isa<FieldDecl>(Member))
2295 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2296 return false;
2297 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2298 if (HasNonDllImportDtor(B.getType()))
2299 return false;
2300 }
2301 }
2302
2303 // PR9614. Avoid cases where the source code is lying to us. An available
2304 // externally function should have an equivalent function somewhere else,
2305 // but a function that calls itself is clearly not equivalent to the real
2306 // implementation.
2307 // This happens in glibc's btowc and in some configure checks.
2308 return !isTriviallyRecursive(F);
2309}
2310
2311bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2312 return CodeGenOpts.OptimizationLevel > 0;
2313}
2314
2315void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2316 const auto *D = cast<ValueDecl>(GD.getDecl());
2317
2318 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2319 Context.getSourceManager(),
2320 "Generating code for declaration");
2321
2322 if (isa<FunctionDecl>(D)) {
2323 // At -O0, don't generate IR for functions with available_externally
2324 // linkage.
2325 if (!shouldEmitFunction(GD))
2326 return;
2327
2328 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2329 // Make sure to emit the definition(s) before we emit the thunks.
2330 // This is necessary for the generation of certain thunks.
2331 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2332 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2333 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2334 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2335 else
2336 EmitGlobalFunctionDefinition(GD, GV);
2337
2338 if (Method->isVirtual())
2339 getVTables().EmitThunks(GD);
2340
2341 return;
2342 }
2343
2344 return EmitGlobalFunctionDefinition(GD, GV);
2345 }
2346
2347 if (const auto *VD = dyn_cast<VarDecl>(D))
2348 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2349
2350 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2350)
;
2351}
2352
2353static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2354 llvm::Function *NewFn);
2355
2356void CodeGenModule::emitMultiVersionFunctions() {
2357 for (GlobalDecl GD : MultiVersionFuncs) {
2358 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2359 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2360 getContext().forEachMultiversionedFunctionVersion(
2361 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2362 GlobalDecl CurGD{
2363 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2364 StringRef MangledName = getMangledName(CurGD);
2365 llvm::Constant *Func = GetGlobalValue(MangledName);
2366 if (!Func) {
2367 if (CurFD->isDefined()) {
2368 EmitGlobalFunctionDefinition(CurGD, nullptr);
2369 Func = GetGlobalValue(MangledName);
2370 } else {
2371 const CGFunctionInfo &FI =
2372 getTypes().arrangeGlobalDeclaration(GD);
2373 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2374 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2375 /*DontDefer=*/false, ForDefinition);
2376 }
2377 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2377, __extension__ __PRETTY_FUNCTION__))
;
2378 }
2379 Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2380 CurFD->getAttr<TargetAttr>()->parse());
2381 });
2382
2383 llvm::Function *ResolverFunc = cast<llvm::Function>(
2384 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2385 if (supportsCOMDAT())
2386 ResolverFunc->setComdat(
2387 getModule().getOrInsertComdat(ResolverFunc->getName()));
2388 std::stable_sort(
2389 Options.begin(), Options.end(),
2390 std::greater<CodeGenFunction::MultiVersionResolverOption>());
2391 CodeGenFunction CGF(*this);
2392 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2393 }
2394}
2395
2396/// If an ifunc for the specified mangled name is not in the module, create and
2397/// return an llvm IFunc Function with the specified type.
2398llvm::Constant *
2399CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2400 StringRef MangledName,
2401 const FunctionDecl *FD) {
2402 std::string IFuncName = (MangledName + ".ifunc").str();
2403 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2404 return IFuncGV;
2405
2406 // Since this is the first time we've created this IFunc, make sure
2407 // that we put this multiversioned function into the list to be
2408 // replaced later.
2409 MultiVersionFuncs.push_back(GD);
2410
2411 std::string ResolverName = (MangledName + ".resolver").str();
2412 llvm::Type *ResolverType = llvm::FunctionType::get(
2413 llvm::PointerType::get(DeclTy,
2414 Context.getTargetAddressSpace(FD->getType())),
2415 false);
2416 llvm::Constant *Resolver =
2417 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2418 /*ForVTable=*/false);
2419 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2420 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2421 GIF->setName(IFuncName);
2422 SetCommonAttributes(FD, GIF);
2423
2424 return GIF;
2425}
2426
2427/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2428/// module, create and return an llvm Function with the specified type. If there
2429/// is something in the module with the specified name, return it potentially
2430/// bitcasted to the right type.
2431///
2432/// If D is non-null, it specifies a decl that correspond to this. This is used
2433/// to set the attributes on the function when it is first created.
2434llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2435 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2436 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2437 ForDefinition_t IsForDefinition) {
2438 const Decl *D = GD.getDecl();
16
Calling 'GlobalDecl::getDecl'
25
Returning from 'GlobalDecl::getDecl'
26
'D' initialized here
2439
2440 // Any attempts to use a MultiVersion function should result in retrieving
2441 // the iFunc instead. Name Mangling will handle the rest of the changes.
2442 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
27
Assuming 'FD' is null
28
Taking false branch
2443 // For the device mark the function as one that should be emitted.
2444 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2445 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2446 !DontDefer && !IsForDefinition) {
2447 const FunctionDecl *FDDef = FD->getDefinition();
2448 GlobalDecl GDDef;
2449 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2450 GDDef = GlobalDecl(CD, GD.getCtorType());
2451 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2452 GDDef = GlobalDecl(DD, GD.getDtorType());
2453 else
2454 GDDef = GlobalDecl(FDDef);
2455 addDeferredDeclToEmit(GDDef);
2456 }
2457
2458 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2459 UpdateMultiVersionNames(GD, FD);
2460 if (!IsForDefinition)
2461 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2462 }
2463 }
2464
2465 // Lookup the entry, lazily creating it if necessary.
2466 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2467 if (Entry) {
29
Assuming 'Entry' is non-null
30
Taking true branch
2468 if (WeakRefReferences.erase(Entry)) {
31
Assuming the condition is false
32
Taking false branch
2469 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2470 if (FD && !FD->hasAttr<WeakAttr>())
2471 Entry->setLinkage(llvm::Function::ExternalLinkage);
2472 }
2473
2474 // Handle dropped DLL attributes.
2475 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
33
Assuming 'D' is null
34
Assuming pointer value is null
2476 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2477 setDSOLocal(Entry);
2478 }
2479
2480 // If there are two attempts to define the same mangled name, issue an
2481 // error.
2482 if (IsForDefinition && !Entry->isDeclaration()) {
35
Assuming the condition is true
36
Taking true branch
2483 GlobalDecl OtherGD;
2484 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2485 // to make sure that we issue an error only once.
2486 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
37
Assuming the condition is true
39
Assuming the condition is true
40
Taking true branch
2487 (GD.getCanonicalDecl().getDecl() !=
38
Assuming the condition is true
2488 OtherGD.getCanonicalDecl().getDecl()) &&
2489 DiagnosedConflictingDefinitions.insert(GD).second) {
2490 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
41
Called C++ object pointer is null
2491 << MangledName;
2492 getDiags().Report(OtherGD.getDecl()->getLocation(),
2493 diag::note_previous_definition);
2494 }
2495 }
2496
2497 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2498 (Entry->getType()->getElementType() == Ty)) {
2499 return Entry;
2500 }
2501
2502 // Make sure the result is of the correct type.
2503 // (If function is requested for a definition, we always need to create a new
2504 // function, not just return a bitcast.)
2505 if (!IsForDefinition)
2506 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2507 }
2508
2509 // This function doesn't have a complete type (for example, the return
2510 // type is an incomplete struct). Use a fake type instead, and make
2511 // sure not to try to set attributes.
2512 bool IsIncompleteFunction = false;
2513
2514 llvm::FunctionType *FTy;
2515 if (isa<llvm::FunctionType>(Ty)) {
2516 FTy = cast<llvm::FunctionType>(Ty);
2517 } else {
2518 FTy = llvm::FunctionType::get(VoidTy, false);
2519 IsIncompleteFunction = true;
2520 }
2521
2522 llvm::Function *F =
2523 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2524 Entry ? StringRef() : MangledName, &getModule());
2525
2526 // If we already created a function with the same mangled name (but different
2527 // type) before, take its name and add it to the list of functions to be
2528 // replaced with F at the end of CodeGen.
2529 //
2530 // This happens if there is a prototype for a function (e.g. "int f()") and
2531 // then a definition of a different type (e.g. "int f(int x)").
2532 if (Entry) {
2533 F->takeName(Entry);
2534
2535 // This might be an implementation of a function without a prototype, in
2536 // which case, try to do special replacement of calls which match the new
2537 // prototype. The really key thing here is that we also potentially drop
2538 // arguments from the call site so as to make a direct call, which makes the
2539 // inliner happier and suppresses a number of optimizer warnings (!) about
2540 // dropping arguments.
2541 if (!Entry->use_empty()) {
2542 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2543 Entry->removeDeadConstantUsers();
2544 }
2545
2546 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2547 F, Entry->getType()->getElementType()->getPointerTo());
2548 addGlobalValReplacement(Entry, BC);
2549 }
2550
2551 assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName &&
"name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2551, __extension__ __PRETTY_FUNCTION__))
;
2552 if (D)
2553 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2554 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2555 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2556 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2557 }
2558
2559 if (!DontDefer) {
2560 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2561 // each other bottoming out with the base dtor. Therefore we emit non-base
2562 // dtors on usage, even if there is no dtor definition in the TU.
2563 if (D && isa<CXXDestructorDecl>(D) &&
2564 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2565 GD.getDtorType()))
2566 addDeferredDeclToEmit(GD);
2567
2568 // This is the first use or definition of a mangled name. If there is a
2569 // deferred decl with this name, remember that we need to emit it at the end
2570 // of the file.
2571 auto DDI = DeferredDecls.find(MangledName);
2572 if (DDI != DeferredDecls.end()) {
2573 // Move the potentially referenced deferred decl to the
2574 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2575 // don't need it anymore).
2576 addDeferredDeclToEmit(DDI->second);
2577 DeferredDecls.erase(DDI);
2578
2579 // Otherwise, there are cases we have to worry about where we're
2580 // using a declaration for which we must emit a definition but where
2581 // we might not find a top-level definition:
2582 // - member functions defined inline in their classes
2583 // - friend functions defined inline in some class
2584 // - special member functions with implicit definitions
2585 // If we ever change our AST traversal to walk into class methods,
2586 // this will be unnecessary.
2587 //
2588 // We also don't emit a definition for a function if it's going to be an
2589 // entry in a vtable, unless it's already marked as used.
2590 } else if (getLangOpts().CPlusPlus && D) {
2591 // Look for a declaration that's lexically in a record.
2592 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2593 FD = FD->getPreviousDecl()) {
2594 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2595 if (FD->doesThisDeclarationHaveABody()) {
2596 addDeferredDeclToEmit(GD.getWithDecl(FD));
2597 break;
2598 }
2599 }
2600 }
2601 }
2602 }
2603
2604 // Make sure the result is of the requested type.
2605 if (!IsIncompleteFunction) {
2606 assert(F->getType()->getElementType() == Ty)(static_cast <bool> (F->getType()->getElementType
() == Ty) ? void (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2606, __extension__ __PRETTY_FUNCTION__))
;
2607 return F;
2608 }
2609
2610 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2611 return llvm::ConstantExpr::getBitCast(F, PTy);
2612}
2613
2614/// GetAddrOfFunction - Return the address of the given function. If Ty is
2615/// non-null, then this function will use the specified type if it has to
2616/// create it (this occurs when we see a definition of the function).
2617llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2618 llvm::Type *Ty,
2619 bool ForVTable,
2620 bool DontDefer,
2621 ForDefinition_t IsForDefinition) {
2622 // If there was no specific requested type, just convert it now.
2623 if (!Ty) {
12
Assuming 'Ty' is non-null
13
Taking false branch
2624 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2625 auto CanonTy = Context.getCanonicalType(FD->getType());
2626 Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2627 }
2628
2629 // Devirtualized destructor calls may come through here instead of via
2630 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2631 // of the complete destructor when necessary.
2632 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
14
Taking false branch
2633 if (getTarget().getCXXABI().isMicrosoft() &&
2634 GD.getDtorType() == Dtor_Complete &&
2635 DD->getParent()->getNumVBases() == 0)
2636 GD = GlobalDecl(DD, Dtor_Base);
2637 }
2638
2639 StringRef MangledName = getMangledName(GD);
2640 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
15
Calling 'CodeGenModule::GetOrCreateLLVMFunction'
2641 /*IsThunk=*/false, llvm::AttributeList(),
2642 IsForDefinition);
2643}
2644
2645static const FunctionDecl *
2646GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2647 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2648 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2649
2650 IdentifierInfo &CII = C.Idents.get(Name);
2651 for (const auto &Result : DC->lookup(&CII))
2652 if (const auto FD = dyn_cast<FunctionDecl>(Result))
2653 return FD;
2654
2655 if (!C.getLangOpts().CPlusPlus)
2656 return nullptr;
2657
2658 // Demangle the premangled name from getTerminateFn()
2659 IdentifierInfo &CXXII =
2660 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2661 ? C.Idents.get("terminate")
2662 : C.Idents.get(Name);
2663
2664 for (const auto &N : {"__cxxabiv1", "std"}) {
2665 IdentifierInfo &NS = C.Idents.get(N);
2666 for (const auto &Result : DC->lookup(&NS)) {
2667 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2668 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2669 for (const auto &Result : LSD->lookup(&NS))
2670 if ((ND = dyn_cast<NamespaceDecl>(Result)))
2671 break;
2672
2673 if (ND)
2674 for (const auto &Result : ND->lookup(&CXXII))
2675 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2676 return FD;
2677 }
2678 }
2679
2680 return nullptr;
2681}
2682
2683/// CreateRuntimeFunction - Create a new runtime function with the specified
2684/// type and name.
2685llvm::Constant *
2686CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2687 llvm::AttributeList ExtraAttrs,
2688 bool Local) {
2689 llvm::Constant *C =
2690 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2691 /*DontDefer=*/false, /*IsThunk=*/false,
2692 ExtraAttrs);
2693
2694 if (auto *F = dyn_cast<llvm::Function>(C)) {
2695 if (F->empty()) {
2696 F->setCallingConv(getRuntimeCC());
2697
2698 if (!Local && getTriple().isOSBinFormatCOFF() &&
2699 !getCodeGenOpts().LTOVisibilityPublicStd &&
2700 !getTriple().isWindowsGNUEnvironment()) {
2701 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2702 if (!FD || FD->hasAttr<DLLImportAttr>()) {
2703 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2704 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2705 }
2706 }
2707 setDSOLocal(F);
2708 }
2709 }
2710
2711 return C;
2712}
2713
2714/// CreateBuiltinFunction - Create a new builtin function with the specified
2715/// type and name.
2716llvm::Constant *
2717CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2718 llvm::AttributeList ExtraAttrs) {
2719 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2720}
2721
2722/// isTypeConstant - Determine whether an object of this type can be emitted
2723/// as a constant.
2724///
2725/// If ExcludeCtor is true, the duration when the object's constructor runs
2726/// will not be considered. The caller will need to verify that the object is
2727/// not written to during its construction.
2728bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2729 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2730 return false;
2731
2732 if (Context.getLangOpts().CPlusPlus) {
2733 if (const CXXRecordDecl *Record
2734 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2735 return ExcludeCtor && !Record->hasMutableFields() &&
2736 Record->hasTrivialDestructor();
2737 }
2738
2739 return true;
2740}
2741
2742/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2743/// create and return an llvm GlobalVariable with the specified type. If there
2744/// is something in the module with the specified name, return it potentially
2745/// bitcasted to the right type.
2746///
2747/// If D is non-null, it specifies a decl that correspond to this. This is used
2748/// to set the attributes on the global when it is first created.
2749///
2750/// If IsForDefinition is true, it is guaranteed that an actual global with
2751/// type Ty will be returned, not conversion of a variable with the same
2752/// mangled name but some other type.
2753llvm::Constant *
2754CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2755 llvm::PointerType *Ty,
2756 const VarDecl *D,
2757 ForDefinition_t IsForDefinition) {
2758 // Lookup the entry, lazily creating it if necessary.
2759 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2760 if (Entry) {
2761 if (WeakRefReferences.erase(Entry)) {
2762 if (D && !D->hasAttr<WeakAttr>())
2763 Entry->setLinkage(llvm::Function::ExternalLinkage);
2764 }
2765
2766 // Handle dropped DLL attributes.
2767 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2768 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2769
2770 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2771 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2772
2773 if (Entry->getType() == Ty)
2774 return Entry;
2775
2776 // If there are two attempts to define the same mangled name, issue an
2777 // error.
2778 if (IsForDefinition && !Entry->isDeclaration()) {
2779 GlobalDecl OtherGD;
2780 const VarDecl *OtherD;
2781
2782 // Check that D is not yet in DiagnosedConflictingDefinitions is required
2783 // to make sure that we issue an error only once.
2784 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2785 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2786 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2787 OtherD->hasInit() &&
2788 DiagnosedConflictingDefinitions.insert(D).second) {
2789 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2790 << MangledName;
2791 getDiags().Report(OtherGD.getDecl()->getLocation(),
2792 diag::note_previous_definition);
2793 }
2794 }
2795
2796 // Make sure the result is of the correct type.
2797 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2798 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2799
2800 // (If global is requested for a definition, we always need to create a new
2801 // global, not just return a bitcast.)
2802 if (!IsForDefinition)
2803 return llvm::ConstantExpr::getBitCast(Entry, Ty);
2804 }
2805
2806 auto AddrSpace = GetGlobalVarAddressSpace(D);
2807 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2808
2809 auto *GV = new llvm::GlobalVariable(
2810 getModule(), Ty->getElementType(), false,
2811 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2812 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2813
2814 // If we already created a global with the same mangled name (but different
2815 // type) before, take its name and remove it from its parent.
2816 if (Entry) {
2817 GV->takeName(Entry);
2818
2819 if (!Entry->use_empty()) {
2820 llvm::Constant *NewPtrForOldDecl =
2821 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2822 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2823 }
2824
2825 Entry->eraseFromParent();
2826 }
2827
2828 // This is the first use or definition of a mangled name. If there is a
2829 // deferred decl with this name, remember that we need to emit it at the end
2830 // of the file.
2831 auto DDI = DeferredDecls.find(MangledName);
2832 if (DDI != DeferredDecls.end()) {
2833 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2834 // list, and remove it from DeferredDecls (since we don't need it anymore).
2835 addDeferredDeclToEmit(DDI->second);
2836 DeferredDecls.erase(DDI);
2837 }
2838
2839 // Handle things which are present even on external declarations.
2840 if (D) {
2841 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2842 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2843
2844 // FIXME: This code is overly simple and should be merged with other global
2845 // handling.
2846 GV->setConstant(isTypeConstant(D->getType(), false));
2847
2848 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2849
2850 setLinkageForGV(GV, D);
2851
2852 if (D->getTLSKind()) {
2853 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2854 CXXThreadLocals.push_back(D);
2855 setTLSMode(GV, *D);
2856 }
2857
2858 setGVProperties(GV, D);
2859
2860 // If required by the ABI, treat declarations of static data members with
2861 // inline initializers as definitions.
2862 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2863 EmitGlobalVarDefinition(D);
2864 }
2865
2866 // Emit section information for extern variables.
2867 if (D->hasExternalStorage()) {
2868 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2869 GV->setSection(SA->getName());
2870 }
2871
2872 // Handle XCore specific ABI requirements.
2873 if (getTriple().getArch() == llvm::Triple::xcore &&
2874 D->getLanguageLinkage() == CLanguageLinkage &&
2875 D->getType().isConstant(Context) &&
2876 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2877 GV->setSection(".cp.rodata");
2878
2879 // Check if we a have a const declaration with an initializer, we may be
2880 // able to emit it as available_externally to expose it's value to the
2881 // optimizer.
2882 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2883 D->getType().isConstQualified() && !GV->hasInitializer() &&
2884 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2885 const auto *Record =
2886 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2887 bool HasMutableFields = Record && Record->hasMutableFields();
2888 if (!HasMutableFields) {
2889 const VarDecl *InitDecl;
2890 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2891 if (InitExpr) {
2892 ConstantEmitter emitter(*this);
2893 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2894 if (Init) {
2895 auto *InitType = Init->getType();
2896 if (GV->getType()->getElementType() != InitType) {
2897 // The type of the initializer does not match the definition.
2898 // This happens when an initializer has a different type from
2899 // the type of the global (because of padding at the end of a
2900 // structure for instance).
2901 GV->setName(StringRef());
2902 // Make a new global with the correct type, this is now guaranteed
2903 // to work.
2904 auto *NewGV = cast<llvm::GlobalVariable>(
2905 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2906
2907 // Erase the old global, since it is no longer used.
2908 GV->eraseFromParent();
2909 GV = NewGV;
2910 } else {
2911 GV->setInitializer(Init);
2912 GV->setConstant(true);
2913 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2914 }
2915 emitter.finalize(GV);
2916 }
2917 }
2918 }
2919 }
2920 }
2921
2922 LangAS ExpectedAS =
2923 D ? D->getType().getAddressSpace()
2924 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2925 assert(getContext().getTargetAddressSpace(ExpectedAS) ==(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2926, __extension__ __PRETTY_FUNCTION__))
2926 Ty->getPointerAddressSpace())(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2926, __extension__ __PRETTY_FUNCTION__))
;
2927 if (AddrSpace != ExpectedAS)
2928 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2929 ExpectedAS, Ty);
2930
2931 return GV;
2932}
2933
2934llvm::Constant *
2935CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2936 ForDefinition_t IsForDefinition) {
2937 const Decl *D = GD.getDecl();
2938 if (isa<CXXConstructorDecl>(D))
7
Taking false branch
2939 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2940 getFromCtorType(GD.getCtorType()),
2941 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2942 /*DontDefer=*/false, IsForDefinition);
2943 else if (isa<CXXDestructorDecl>(D))
8
Taking false branch
2944 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2945 getFromDtorType(GD.getDtorType()),
2946 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2947 /*DontDefer=*/false, IsForDefinition);
2948 else if (isa<CXXMethodDecl>(D)) {
9
Taking false branch
2949 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2950 cast<CXXMethodDecl>(D));
2951 auto Ty = getTypes().GetFunctionType(*FInfo);
2952 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2953 IsForDefinition);
2954 } else if (isa<FunctionDecl>(D)) {
10
Taking true branch
2955 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2956 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2957 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
11
Calling 'CodeGenModule::GetAddrOfFunction'
2958 IsForDefinition);
2959 } else
2960 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2961 IsForDefinition);
2962}
2963
2964llvm::GlobalVariable *
2965CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2966 llvm::Type *Ty,
2967 llvm::GlobalValue::LinkageTypes Linkage) {
2968 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2969 llvm::GlobalVariable *OldGV = nullptr;
2970
2971 if (GV) {
2972 // Check if the variable has the right type.
2973 if (GV->getType()->getElementType() == Ty)
2974 return GV;
2975
2976 // Because C++ name mangling, the only way we can end up with an already
2977 // existing global with the same name is if it has been declared extern "C".
2978 assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!"
) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2978, __extension__ __PRETTY_FUNCTION__))
;
2979 OldGV = GV;
2980 }
2981
2982 // Create a new variable.
2983 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2984 Linkage, nullptr, Name);
2985
2986 if (OldGV) {
2987 // Replace occurrences of the old variable if needed.
2988 GV->takeName(OldGV);
2989
2990 if (!OldGV->use_empty()) {
2991 llvm::Constant *NewPtrForOldDecl =
2992 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2993 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2994 }
2995
2996 OldGV->eraseFromParent();
2997 }
2998
2999 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3000 !GV->hasAvailableExternallyLinkage())
3001 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3002
3003 return GV;
3004}
3005
3006/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3007/// given global variable. If Ty is non-null and if the global doesn't exist,
3008/// then it will be created with the specified type instead of whatever the
3009/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3010/// that an actual global with type Ty will be returned, not conversion of a
3011/// variable with the same mangled name but some other type.
3012llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3013 llvm::Type *Ty,
3014 ForDefinition_t IsForDefinition) {
3015 assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() &&
"Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3015, __extension__ __PRETTY_FUNCTION__))
;
3016 QualType ASTTy = D->getType();
3017 if (!Ty)
3018 Ty = getTypes().ConvertTypeForMem(ASTTy);
3019
3020 llvm::PointerType *PTy =
3021 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3022
3023 StringRef MangledName = getMangledName(D);
3024 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3025}
3026
3027/// CreateRuntimeVariable - Create a new runtime global variable with the
3028/// specified type and name.
3029llvm::Constant *
3030CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3031 StringRef Name) {
3032 auto *Ret =
3033 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3034 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3035 return Ret;
3036}
3037
3038void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3039 assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!"
) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3039, __extension__ __PRETTY_FUNCTION__))
;
3040
3041 StringRef MangledName = getMangledName(D);
3042 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3043
3044 // We already have a definition, not declaration, with the same mangled name.
3045 // Emitting of declaration is not required (and actually overwrites emitted
3046 // definition).
3047 if (GV && !GV->isDeclaration())
3048 return;
3049
3050 // If we have not seen a reference to this variable yet, place it into the
3051 // deferred declarations table to be emitted if needed later.
3052 if (!MustBeEmitted(D) && !GV) {
3053 DeferredDecls[MangledName] = D;
3054 return;
3055 }
3056
3057 // The tentative definition is the only definition.
3058 EmitGlobalVarDefinition(D);
3059}
3060
3061CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3062 return Context.toCharUnitsFromBits(
3063 getDataLayout().getTypeStoreSizeInBits(Ty));
3064}
3065
3066LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3067 LangAS AddrSpace = LangAS::Default;
3068 if (LangOpts.OpenCL) {
3069 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3070 assert(AddrSpace == LangAS::opencl_global ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3073, __extension__ __PRETTY_FUNCTION__))
3071 AddrSpace == LangAS::opencl_constant ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3073, __extension__ __PRETTY_FUNCTION__))
3072 AddrSpace == LangAS::opencl_local ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3073, __extension__ __PRETTY_FUNCTION__))
3073 AddrSpace >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3073, __extension__ __PRETTY_FUNCTION__))
;
3074 return AddrSpace;
3075 }
3076
3077 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3078 if (D && D->hasAttr<CUDAConstantAttr>())
3079 return LangAS::cuda_constant;
3080 else if (D && D->hasAttr<CUDASharedAttr>())
3081 return LangAS::cuda_shared;
3082 else
3083 return LangAS::cuda_device;
3084 }
3085
3086 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3087}
3088
3089LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3090 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3091 if (LangOpts.OpenCL)
3092 return LangAS::opencl_constant;
3093 if (auto AS = getTarget().getConstantAddressSpace())
3094 return AS.getValue();
3095 return LangAS::Default;
3096}
3097
3098// In address space agnostic languages, string literals are in default address
3099// space in AST. However, certain targets (e.g. amdgcn) request them to be
3100// emitted in constant address space in LLVM IR. To be consistent with other
3101// parts of AST, string literal global variables in constant address space
3102// need to be casted to default address space before being put into address
3103// map and referenced by other part of CodeGen.
3104// In OpenCL, string literals are in constant address space in AST, therefore
3105// they should not be casted to default address space.
3106static llvm::Constant *
3107castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3108 llvm::GlobalVariable *GV) {
3109 llvm::Constant *Cast = GV;
3110 if (!CGM.getLangOpts().OpenCL) {
3111 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3112 if (AS != LangAS::Default)
3113 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3114 CGM, GV, AS.getValue(), LangAS::Default,
3115 GV->getValueType()->getPointerTo(
3116 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3117 }
3118 }
3119 return Cast;
3120}
3121
3122template<typename SomeDecl>
3123void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3124 llvm::GlobalValue *GV) {
3125 if (!getLangOpts().CPlusPlus)
3126 return;
3127
3128 // Must have 'used' attribute, or else inline assembly can't rely on
3129 // the name existing.
3130 if (!D->template hasAttr<UsedAttr>())
3131 return;
3132
3133 // Must have internal linkage and an ordinary name.
3134 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3135 return;
3136
3137 // Must be in an extern "C" context. Entities declared directly within
3138 // a record are not extern "C" even if the record is in such a context.
3139 const SomeDecl *First = D->getFirstDecl();
3140 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3141 return;
3142
3143 // OK, this is an internal linkage entity inside an extern "C" linkage
3144 // specification. Make a note of that so we can give it the "expected"
3145 // mangled name if nothing else is using that name.
3146 std::pair<StaticExternCMap::iterator, bool> R =
3147 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3148
3149 // If we have multiple internal linkage entities with the same name
3150 // in extern "C" regions, none of them gets that name.
3151 if (!R.second)
3152 R.first->second = nullptr;
3153}
3154
3155static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3156 if (!CGM.supportsCOMDAT())
3157 return false;
3158
3159 if (D.hasAttr<SelectAnyAttr>())
3160 return true;
3161
3162 GVALinkage Linkage;
3163 if (auto *VD = dyn_cast<VarDecl>(&D))
3164 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3165 else
3166 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3167
3168 switch (Linkage) {
3169 case GVA_Internal:
3170 case GVA_AvailableExternally:
3171 case GVA_StrongExternal:
3172 return false;
3173 case GVA_DiscardableODR:
3174 case GVA_StrongODR:
3175 return true;
3176 }
3177 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3177)
;
3178}
3179
3180void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3181 llvm::GlobalObject &GO) {
3182 if (!shouldBeInCOMDAT(*this, D))
3183 return;
3184 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3185}
3186
3187/// Pass IsTentative as true if you want to create a tentative definition.
3188void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3189 bool IsTentative) {
3190 // OpenCL global variables of sampler type are translated to function calls,
3191 // therefore no need to be translated.
3192 QualType ASTTy = D->getType();
3193 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3194 return;
3195
3196 // If this is OpenMP device, check if it is legal to emit this global
3197 // normally.
3198 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3199 OpenMPRuntime->emitTargetGlobalVariable(D))
3200 return;
3201
3202 llvm::Constant *Init = nullptr;
3203 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3204 bool NeedsGlobalCtor = false;
3205 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3206
3207 const VarDecl *InitDecl;
3208 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3209
3210 Optional<ConstantEmitter> emitter;
3211
3212 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3213 // as part of their declaration." Sema has already checked for
3214 // error cases, so we just need to set Init to UndefValue.
3215 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3216 D->hasAttr<CUDASharedAttr>())
3217 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3218 else if (!InitExpr) {
3219 // This is a tentative definition; tentative definitions are
3220 // implicitly initialized with { 0 }.
3221 //
3222 // Note that tentative definitions are only emitted at the end of
3223 // a translation unit, so they should never have incomplete
3224 // type. In addition, EmitTentativeDefinition makes sure that we
3225 // never attempt to emit a tentative definition if a real one
3226 // exists. A use may still exists, however, so we still may need
3227 // to do a RAUW.
3228 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() &&
"Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3228, __extension__ __PRETTY_FUNCTION__))
;
3229 Init = EmitNullConstant(D->getType());
3230 } else {
3231 initializedGlobalDecl = GlobalDecl(D);
3232 emitter.emplace(*this);
3233 Init = emitter->tryEmitForInitializer(*InitDecl);
3234
3235 if (!Init) {
3236 QualType T = InitExpr->getType();
3237 if (D->getType()->isReferenceType())
3238 T = D->getType();
3239
3240 if (getLangOpts().CPlusPlus) {
3241 Init = EmitNullConstant(T);
3242 NeedsGlobalCtor = true;
3243 } else {
3244 ErrorUnsupported(D, "static initializer");
3245 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3246 }
3247 } else {
3248 // We don't need an initializer, so remove the entry for the delayed
3249 // initializer position (just in case this entry was delayed) if we
3250 // also don't need to register a destructor.
3251 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3252 DelayedCXXInitPosition.erase(D);
3253 }
3254 }
3255
3256 llvm::Type* InitType = Init->getType();
3257 llvm::Constant *Entry =
3258 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3259
3260 // Strip off a bitcast if we got one back.
3261 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3262 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3265, __extension__ __PRETTY_FUNCTION__))
3263 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3265, __extension__ __PRETTY_FUNCTION__))
3264 // All zero index gep.(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3265, __extension__ __PRETTY_FUNCTION__))
3265 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3265, __extension__ __PRETTY_FUNCTION__))
;
3266 Entry = CE->getOperand(0);
3267 }
3268
3269 // Entry is now either a Function or GlobalVariable.
3270 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3271
3272 // We have a definition after a declaration with the wrong type.
3273 // We must make a new GlobalVariable* and update everything that used OldGV
3274 // (a declaration or tentative definition) with the new GlobalVariable*
3275 // (which will be a definition).
3276 //
3277 // This happens if there is a prototype for a global (e.g.
3278 // "extern int x[];") and then a definition of a different type (e.g.
3279 // "int x[10];"). This also happens when an initializer has a different type
3280 // from the type of the global (this happens with unions).
3281 if (!GV || GV->getType()->getElementType() != InitType ||
3282 GV->getType()->getAddressSpace() !=
3283 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3284
3285 // Move the old entry aside so that we'll create a new one.
3286 Entry->setName(StringRef());
3287
3288 // Make a new global with the correct type, this is now guaranteed to work.
3289 GV = cast<llvm::GlobalVariable>(
3290 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3291
3292 // Replace all uses of the old global with the new global
3293 llvm::Constant *NewPtrForOldDecl =
3294 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3295 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3296
3297 // Erase the old global, since it is no longer used.
3298 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3299 }
3300
3301 MaybeHandleStaticInExternC(D, GV);
3302
3303 if (D->hasAttr<AnnotateAttr>())
3304 AddGlobalAnnotations(D, GV);
3305
3306 // Set the llvm linkage type as appropriate.
3307 llvm::GlobalValue::LinkageTypes Linkage =
3308 getLLVMLinkageVarDefinition(D, GV->isConstant());
3309
3310 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3311 // the device. [...]"
3312 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3313 // __device__, declares a variable that: [...]
3314 // Is accessible from all the threads within the grid and from the host
3315 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3316 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3317 if (GV && LangOpts.CUDA) {
3318 if (LangOpts.CUDAIsDevice) {
3319 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3320 GV->setExternallyInitialized(true);
3321 } else {
3322 // Host-side shadows of external declarations of device-side
3323 // global variables become internal definitions. These have to
3324 // be internal in order to prevent name conflicts with global
3325 // host variables with the same name in a different TUs.
3326 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3327 Linkage = llvm::GlobalValue::InternalLinkage;
3328
3329 // Shadow variables and their properties must be registered
3330 // with CUDA runtime.
3331 unsigned Flags = 0;
3332 if (!D->hasDefinition())
3333 Flags |= CGCUDARuntime::ExternDeviceVar;
3334 if (D->hasAttr<CUDAConstantAttr>())
3335 Flags |= CGCUDARuntime::ConstantDeviceVar;
3336 getCUDARuntime().registerDeviceVar(*GV, Flags);
3337 } else if (D->hasAttr<CUDASharedAttr>())
3338 // __shared__ variables are odd. Shadows do get created, but
3339 // they are not registered with the CUDA runtime, so they
3340 // can't really be used to access their device-side
3341 // counterparts. It's not clear yet whether it's nvcc's bug or
3342 // a feature, but we've got to do the same for compatibility.
3343 Linkage = llvm::GlobalValue::InternalLinkage;
3344 }
3345 }
3346
3347 GV->setInitializer(Init);
3348 if (emitter) emitter->finalize(GV);
3349
3350 // If it is safe to mark the global 'constant', do so now.
3351 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3352 isTypeConstant(D->getType(), true));
3353
3354 // If it is in a read-only section, mark it 'constant'.
3355 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3356 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3357 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3358 GV->setConstant(true);
3359 }
3360
3361 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3362
3363
3364 // On Darwin, if the normal linkage of a C++ thread_local variable is
3365 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3366 // copies within a linkage unit; otherwise, the backing variable has
3367 // internal linkage and all accesses should just be calls to the
3368 // Itanium-specified entry point, which has the normal linkage of the
3369 // variable. This is to preserve the ability to change the implementation
3370 // behind the scenes.
3371 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3372 Context.getTargetInfo().getTriple().isOSDarwin() &&
3373 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3374 !llvm::GlobalVariable::isWeakLinkage(Linkage))
3375 Linkage = llvm::GlobalValue::InternalLinkage;
3376
3377 GV->setLinkage(Linkage);
3378 if (D->hasAttr<DLLImportAttr>())
3379 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3380 else if (D->hasAttr<DLLExportAttr>())
3381 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3382 else
3383 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3384
3385 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3386 // common vars aren't constant even if declared const.
3387 GV->setConstant(false);
3388 // Tentative definition of global variables may be initialized with
3389 // non-zero null pointers. In this case they should have weak linkage
3390 // since common linkage must have zero initializer and must not have
3391 // explicit section therefore cannot have non-zero initial value.
3392 if (!GV->getInitializer()->isNullValue())
3393 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3394 }
3395
3396 setNonAliasAttributes(D, GV);
3397
3398 if (D->getTLSKind() && !GV->isThreadLocal()) {
3399 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3400 CXXThreadLocals.push_back(D);
3401 setTLSMode(GV, *D);
3402 }
3403
3404 maybeSetTrivialComdat(*D, *GV);
3405
3406 // Emit the initializer function if necessary.
3407 if (NeedsGlobalCtor || NeedsGlobalDtor)
3408 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3409
3410 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3411
3412 // Emit global variable debug information.
3413 if (CGDebugInfo *DI = getModuleDebugInfo())
3414 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3415 DI->EmitGlobalVariable(GV, D);
3416}
3417
3418static bool isVarDeclStrongDefinition(const ASTContext &Context,
3419 CodeGenModule &CGM, const VarDecl *D,
3420 bool NoCommon) {
3421 // Don't give variables common linkage if -fno-common was specified unless it
3422 // was overridden by a NoCommon attribute.
3423 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3424 return true;
3425
3426 // C11 6.9.2/2:
3427 // A declaration of an identifier for an object that has file scope without
3428 // an initializer, and without a storage-class specifier or with the
3429 // storage-class specifier static, constitutes a tentative definition.
3430 if (D->getInit() || D->hasExternalStorage())
3431 return true;
3432
3433 // A variable cannot be both common and exist in a section.
3434 if (D->hasAttr<SectionAttr>())
3435 return true;
3436
3437 // A variable cannot be both common and exist in a section.
3438 // We don't try to determine which is the right section in the front-end.
3439 // If no specialized section name is applicable, it will resort to default.
3440 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3441 D->hasAttr<PragmaClangDataSectionAttr>() ||
3442 D->hasAttr<PragmaClangRodataSectionAttr>())
3443 return true;
3444
3445 // Thread local vars aren't considered common linkage.
3446 if (D->getTLSKind())
3447 return true;
3448
3449 // Tentative definitions marked with WeakImportAttr are true definitions.
3450 if (D->hasAttr<WeakImportAttr>())
3451 return true;
3452
3453 // A variable cannot be both common and exist in a comdat.
3454 if (shouldBeInCOMDAT(CGM, *D))
3455 return true;
3456
3457 // Declarations with a required alignment do not have common linkage in MSVC
3458 // mode.
3459 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3460 if (D->hasAttr<AlignedAttr>())
3461 return true;
3462 QualType VarType = D->getType();
3463 if (Context.isAlignmentRequired(VarType))
3464 return true;
3465
3466 if (const auto *RT = VarType->getAs<RecordType>()) {
3467 const RecordDecl *RD = RT->getDecl();
3468 for (const FieldDecl *FD : RD->fields()) {
3469 if (FD->isBitField())
3470 continue;
3471 if (FD->hasAttr<AlignedAttr>())
3472 return true;
3473 if (Context.isAlignmentRequired(FD->getType()))
3474 return true;
3475 }
3476 }
3477 }
3478
3479 return false;
3480}
3481
3482llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3483 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3484 if (Linkage == GVA_Internal)
3485 return llvm::Function::InternalLinkage;
3486
3487 if (D->hasAttr<WeakAttr>()) {
3488 if (IsConstantVariable)
3489 return llvm::GlobalVariable::WeakODRLinkage;
3490 else
3491 return llvm::GlobalVariable::WeakAnyLinkage;
3492 }
3493
3494 // We are guaranteed to have a strong definition somewhere else,
3495 // so we can use available_externally linkage.
3496 if (Linkage == GVA_AvailableExternally)
3497 return llvm::GlobalValue::AvailableExternallyLinkage;
3498
3499 // Note that Apple's kernel linker doesn't support symbol
3500 // coalescing, so we need to avoid linkonce and weak linkages there.
3501 // Normally, this means we just map to internal, but for explicit
3502 // instantiations we'll map to external.
3503
3504 // In C++, the compiler has to emit a definition in every translation unit
3505 // that references the function. We should use linkonce_odr because
3506 // a) if all references in this translation unit are optimized away, we
3507 // don't need to codegen it. b) if the function persists, it needs to be
3508 // merged with other definitions. c) C++ has the ODR, so we know the
3509 // definition is dependable.
3510 if (Linkage == GVA_DiscardableODR)
3511 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3512 : llvm::Function::InternalLinkage;
3513
3514 // An explicit instantiation of a template has weak linkage, since
3515 // explicit instantiations can occur in multiple translation units
3516 // and must all be equivalent. However, we are not allowed to
3517 // throw away these explicit instantiations.
3518 //
3519 // We don't currently support CUDA device code spread out across multiple TUs,
3520 // so say that CUDA templates are either external (for kernels) or internal.
3521 // This lets llvm perform aggressive inter-procedural optimizations.
3522 if (Linkage == GVA_StrongODR) {
3523 if (Context.getLangOpts().AppleKext)
3524 return llvm::Function::ExternalLinkage;
3525 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3526 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3527 : llvm::Function::InternalLinkage;
3528 return llvm::Function::WeakODRLinkage;
3529 }
3530
3531 // C++ doesn't have tentative definitions and thus cannot have common
3532 // linkage.
3533 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3534 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3535 CodeGenOpts.NoCommon))
3536 return llvm::GlobalVariable::CommonLinkage;
3537
3538 // selectany symbols are externally visible, so use weak instead of
3539 // linkonce. MSVC optimizes away references to const selectany globals, so
3540 // all definitions should be the same and ODR linkage should be used.
3541 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3542 if (D->hasAttr<SelectAnyAttr>())
3543 return llvm::GlobalVariable::WeakODRLinkage;
3544
3545 // Otherwise, we have strong external linkage.
3546 assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void
(0) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3546, __extension__ __PRETTY_FUNCTION__))
;
3547 return llvm::GlobalVariable::ExternalLinkage;
3548}
3549
3550llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3551 const VarDecl *VD, bool IsConstant) {
3552 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3553 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3554}
3555
3556/// Replace the uses of a function that was declared with a non-proto type.
3557/// We want to silently drop extra arguments from call sites
3558static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3559 llvm::Function *newFn) {
3560 // Fast path.
3561 if (old->use_empty()) return;
3562
3563 llvm::Type *newRetTy = newFn->getReturnType();
3564 SmallVector<llvm::Value*, 4> newArgs;
3565 SmallVector<llvm::OperandBundleDef, 1> newBundles;
3566
3567 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3568 ui != ue; ) {
3569 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3570 llvm::User *user = use->getUser();
3571
3572 // Recognize and replace uses of bitcasts. Most calls to
3573 // unprototyped functions will use bitcasts.
3574 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3575 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3576 replaceUsesOfNonProtoConstant(bitcast, newFn);
3577 continue;
3578 }
3579
3580 // Recognize calls to the function.
3581 llvm::CallSite callSite(user);
3582 if (!callSite) continue;
3583 if (!callSite.isCallee(&*use)) continue;
3584
3585 // If the return types don't match exactly, then we can't
3586 // transform this call unless it's dead.
3587 if (callSite->getType() != newRetTy && !callSite->use_empty())
3588 continue;
3589
3590 // Get the call site's attribute list.
3591 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3592 llvm::AttributeList oldAttrs = callSite.getAttributes();
3593
3594 // If the function was passed too few arguments, don't transform.
3595 unsigned newNumArgs = newFn->arg_size();
3596 if (callSite.arg_size() < newNumArgs) continue;
3597
3598 // If extra arguments were passed, we silently drop them.
3599 // If any of the types mismatch, we don't transform.
3600 unsigned argNo = 0;
3601 bool dontTransform = false;
3602 for (llvm::Argument &A : newFn->args()) {
3603 if (callSite.getArgument(argNo)->getType() != A.getType()) {
3604 dontTransform = true;
3605 break;
3606 }
3607
3608 // Add any parameter attributes.
3609 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3610 argNo++;
3611 }
3612 if (dontTransform)
3613 continue;
3614
3615 // Okay, we can transform this. Create the new call instruction and copy
3616 // over the required information.
3617 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3618
3619 // Copy over any operand bundles.
3620 callSite.getOperandBundlesAsDefs(newBundles);
3621
3622 llvm::CallSite newCall;
3623 if (callSite.isCall()) {
3624 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3625 callSite.getInstruction());
3626 } else {
3627 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3628 newCall = llvm::InvokeInst::Create(newFn,
3629 oldInvoke->getNormalDest(),
3630 oldInvoke->getUnwindDest(),
3631 newArgs, newBundles, "",
3632 callSite.getInstruction());
3633 }
3634 newArgs.clear(); // for the next iteration
3635
3636 if (!newCall->getType()->isVoidTy())
3637 newCall->takeName(callSite.getInstruction());
3638 newCall.setAttributes(llvm::AttributeList::get(
3639 newFn->getContext(), oldAttrs.getFnAttributes(),
3640 oldAttrs.getRetAttributes(), newArgAttrs));
3641 newCall.setCallingConv(callSite.getCallingConv());
3642
3643 // Finally, remove the old call, replacing any uses with the new one.
3644 if (!callSite->use_empty())
3645 callSite->replaceAllUsesWith(newCall.getInstruction());
3646
3647 // Copy debug location attached to CI.
3648 if (callSite->getDebugLoc())
3649 newCall->setDebugLoc(callSite->getDebugLoc());
3650
3651 callSite->eraseFromParent();
3652 }
3653}
3654
3655/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3656/// implement a function with no prototype, e.g. "int foo() {}". If there are
3657/// existing call uses of the old function in the module, this adjusts them to
3658/// call the new function directly.
3659///
3660/// This is not just a cleanup: the always_inline pass requires direct calls to
3661/// functions to be able to inline them. If there is a bitcast in the way, it
3662/// won't inline them. Instcombine normally deletes these calls, but it isn't
3663/// run at -O0.
3664static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3665 llvm::Function *NewFn) {
3666 // If we're redefining a global as a function, don't transform it.
3667 if (!isa<llvm::Function>(Old)) return;
3668
3669 replaceUsesOfNonProtoConstant(Old, NewFn);
3670}
3671
3672void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3673 auto DK = VD->isThisDeclarationADefinition();
3674 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3675 return;
3676
3677 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3678 // If we have a definition, this might be a deferred decl. If the
3679 // instantiation is explicit, make sure we emit it at the end.
3680 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3681 GetAddrOfGlobalVar(VD);
3682
3683 EmitTopLevelDecl(VD);
3684}
3685
3686void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3687 llvm::GlobalValue *GV) {
3688 const auto *D = cast<FunctionDecl>(GD.getDecl());
3689
3690 // Compute the function info and LLVM type.
3691 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3692 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3693
3694 // Get or create the prototype for the function.
3695 if (!GV || (GV->getType()->getElementType() != Ty))
3696 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3697 /*DontDefer=*/true,
3698 ForDefinition));
3699
3700 // Already emitted.
3701 if (!GV->isDeclaration())
3702 return;
3703
3704 // We need to set linkage and visibility on the function before
3705 // generating code for it because various parts of IR generation
3706 // want to propagate this information down (e.g. to local static
3707 // declarations).
3708 auto *Fn = cast<llvm::Function>(GV);
3709 setFunctionLinkage(GD, Fn);
3710
3711 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3712 setGVProperties(Fn, GD);
3713
3714 MaybeHandleStaticInExternC(D, Fn);
3715
3716
3717 maybeSetTrivialComdat(*D, *Fn);
3718
3719 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3720
3721 setNonAliasAttributes(GD, Fn);
3722 SetLLVMFunctionAttributesForDefinition(D, Fn);
3723
3724 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3725 AddGlobalCtor(Fn, CA->getPriority());
3726 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3727 AddGlobalDtor(Fn, DA->getPriority());
3728 if (D->hasAttr<AnnotateAttr>())
3729 AddGlobalAnnotations(D, Fn);
3730}
3731
3732void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3733 const auto *D = cast<ValueDecl>(GD.getDecl());
3734 const AliasAttr *AA = D->getAttr<AliasAttr>();
3735 assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void
(0) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3735, __extension__ __PRETTY_FUNCTION__))
;
3736
3737 StringRef MangledName = getMangledName(GD);
3738
3739 if (AA->getAliasee() == MangledName) {
3740 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3741 return;
3742 }
3743
3744 // If there is a definition in the module, then it wins over the alias.
3745 // This is dubious, but allow it to be safe. Just ignore the alias.
3746 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3747 if (Entry && !Entry->isDeclaration())
3748 return;
3749
3750 Aliases.push_back(GD);
3751
3752 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3753
3754 // Create a reference to the named value. This ensures that it is emitted
3755 // if a deferred decl.
3756 llvm::Constant *Aliasee;
3757 if (isa<llvm::FunctionType>(DeclTy))
3758 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3759 /*ForVTable=*/false);
3760 else
3761 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3762 llvm::PointerType::getUnqual(DeclTy),
3763 /*D=*/nullptr);
3764
3765 // Create the new alias itself, but don't set a name yet.
3766 auto *GA = llvm::GlobalAlias::create(
3767 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3768
3769 if (Entry) {
3770 if (GA->getAliasee() == Entry) {
3771 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3772 return;
3773 }
3774
3775 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3775, __extension__ __PRETTY_FUNCTION__))
;
3776
3777 // If there is a declaration in the module, then we had an extern followed
3778 // by the alias, as in:
3779 // extern int test6();
3780 // ...
3781 // int test6() __attribute__((alias("test7")));
3782 //
3783 // Remove it and replace uses of it with the alias.
3784 GA->takeName(Entry);
3785
3786 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3787 Entry->getType()));
3788 Entry->eraseFromParent();
3789 } else {
3790 GA->setName(MangledName);
3791 }
3792
3793 // Set attributes which are particular to an alias; this is a
3794 // specialization of the attributes which may be set on a global
3795 // variable/function.
3796 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3797 D->isWeakImported()) {
3798 GA->setLinkage(llvm::Function::WeakAnyLinkage);
3799 }
3800
3801 if (const auto *VD = dyn_cast<VarDecl>(D))
3802 if (VD->getTLSKind())
3803 setTLSMode(GA, *VD);
3804
3805 SetCommonAttributes(GD, GA);
3806}
3807
3808void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3809 const auto *D = cast<ValueDecl>(GD.getDecl());
3810 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3811 assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void
(0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3811, __extension__ __PRETTY_FUNCTION__))
;
3812
3813 StringRef MangledName = getMangledName(GD);
3814
3815 if (IFA->getResolver() == MangledName) {
3816 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3817 return;
3818 }
3819
3820 // Report an error if some definition overrides ifunc.
3821 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3822 if (Entry && !Entry->isDeclaration()) {
3823 GlobalDecl OtherGD;
3824 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3825 DiagnosedConflictingDefinitions.insert(GD).second) {
3826 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3827 << MangledName;
3828 Diags.Report(OtherGD.getDecl()->getLocation(),
3829 diag::note_previous_definition);
3830 }
3831 return;
3832 }
3833
3834 Aliases.push_back(GD);
3835
3836 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3837 llvm::Constant *Resolver =
3838 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3839 /*ForVTable=*/false);
3840 llvm::GlobalIFunc *GIF =
3841 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3842 "", Resolver, &getModule());
3843 if (Entry) {
3844 if (GIF->getResolver() == Entry) {
3845 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3846 return;
3847 }
3848 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3848, __extension__ __PRETTY_FUNCTION__))
;
3849
3850 // If there is a declaration in the module, then we had an extern followed
3851 // by the ifunc, as in:
3852 // extern int test();
3853 // ...
3854 // int test() __attribute__((ifunc("resolver")));
3855 //
3856 // Remove it and replace uses of it with the ifunc.
3857 GIF->takeName(Entry);
3858
3859 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3860 Entry->getType()));
3861 Entry->eraseFromParent();
3862 } else
3863 GIF->setName(MangledName);
3864
3865 SetCommonAttributes(GD, GIF);
3866}
3867
3868llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3869 ArrayRef<llvm::Type*> Tys) {
3870 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3871 Tys);
3872}
3873
3874static llvm::StringMapEntry<llvm::GlobalVariable *> &
3875GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3876 const StringLiteral *Literal, bool TargetIsLSB,
3877 bool &IsUTF16, unsigned &StringLength) {
3878 StringRef String = Literal->getString();
3879 unsigned NumBytes = String.size();
3880
3881 // Check for simple case.
3882 if (!Literal->containsNonAsciiOrNull()) {
3883 StringLength = NumBytes;
3884 return *Map.insert(std::make_pair(String, nullptr)).first;
3885 }
3886
3887 // Otherwise, convert the UTF8 literals into a string of shorts.
3888 IsUTF16 = true;
3889
3890 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3891 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3892 llvm::UTF16 *ToPtr = &ToBuf[0];
3893
3894 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3895 ToPtr + NumBytes, llvm::strictConversion);
3896
3897 // ConvertUTF8toUTF16 returns the length in ToPtr.
3898 StringLength = ToPtr - &ToBuf[0];
3899
3900 // Add an explicit null.
3901 *ToPtr = 0;
3902 return *Map.insert(std::make_pair(
3903 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3904 (StringLength + 1) * 2),
3905 nullptr)).first;
3906}
3907
3908ConstantAddress
3909CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3910 unsigned StringLength = 0;
3911 bool isUTF16 = false;
3912 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3913 GetConstantCFStringEntry(CFConstantStringMap, Literal,
3914 getDataLayout().isLittleEndian(), isUTF16,
3915 StringLength);
3916
3917 if (auto *C = Entry.second)
3918 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3919
3920 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3921 llvm::Constant *Zeros[] = { Zero, Zero };
3922
3923 // If we don't already have it, get __CFConstantStringClassReference.
3924 if (!CFConstantStringClassRef) {
3925 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3926 Ty = llvm::ArrayType::get(Ty, 0);
3927 llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3928 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3929
3930 if (getTriple().isOSBinFormatCOFF()) {
3931 IdentifierInfo &II = getContext().Idents.get(GV->getName());
3932 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3933 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3934
3935 const VarDecl *VD = nullptr;
3936 for (const auto &Result : DC->lookup(&II))
3937 if ((VD = dyn_cast<VarDecl>(Result)))
3938 break;
3939
3940 if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3941 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3942 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3943 } else {
3944 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3945 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3946 }
3947 }
3948 setDSOLocal(GV);
3949
3950 // Decay array -> ptr
3951 CFConstantStringClassRef =
3952 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3953 }
3954
3955 QualType CFTy = getContext().getCFConstantStringType();
3956
3957 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3958
3959 ConstantInitBuilder Builder(*this);
3960 auto Fields = Builder.beginStruct(STy);
3961
3962 // Class pointer.
3963 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3964
3965 // Flags.
3966 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3967
3968 // String pointer.
3969 llvm::Constant *C = nullptr;
3970 if (isUTF16) {
3971 auto Arr = llvm::makeArrayRef(
3972 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3973 Entry.first().size() / 2);
3974 C = llvm::ConstantDataArray::get(VMContext, Arr);
3975 } else {
3976 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3977 }
3978
3979 // Note: -fwritable-strings doesn't make the backing store strings of
3980 // CFStrings writable. (See <rdar://problem/10657500>)
3981 auto *GV =
3982 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3983 llvm::GlobalValue::PrivateLinkage, C, ".str");
3984 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3985 // Don't enforce the target's minimum global alignment, since the only use
3986 // of the string is via this class initializer.
3987 CharUnits Align = isUTF16
3988 ? getContext().getTypeAlignInChars(getContext().ShortTy)
3989 : getContext().getTypeAlignInChars(getContext().CharTy);
3990 GV->setAlignment(Align.getQuantity());
3991
3992 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3993 // Without it LLVM can merge the string with a non unnamed_addr one during
3994 // LTO. Doing that changes the section it ends in, which surprises ld64.
3995 if (getTriple().isOSBinFormatMachO())
3996 GV->setSection(isUTF16 ? "__TEXT,__ustring"
3997 : "__TEXT,__cstring,cstring_literals");
3998
3999 // String.
4000 llvm::Constant *Str =
4001 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4002
4003 if (isUTF16)
4004 // Cast the UTF16 string to the correct type.
4005 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4006 Fields.add(Str);
4007
4008 // String length.
4009 auto Ty = getTypes().ConvertType(getContext().LongTy);
4010 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4011
4012 CharUnits Alignment = getPointerAlign();
4013
4014 // The struct.
4015 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4016 /*isConstant=*/false,
4017 llvm::GlobalVariable::PrivateLinkage);
4018 switch (getTriple().getObjectFormat()) {
4019 case llvm::Triple::UnknownObjectFormat:
4020 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4020)
;
4021 case llvm::Triple::COFF:
4022 case llvm::Triple::ELF:
4023 case llvm::Triple::Wasm:
4024 GV->setSection("cfstring");
4025 break;
4026 case llvm::Triple::MachO:
4027 GV->setSection("__DATA,__cfstring");
4028 break;
4029 }
4030 Entry.second = GV;
4031
4032 return ConstantAddress(GV, Alignment);
4033}
4034
4035bool CodeGenModule::getExpressionLocationsEnabled() const {
4036 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4037}
4038
4039QualType CodeGenModule::getObjCFastEnumerationStateType() {
4040 if (ObjCFastEnumerationStateType.isNull()) {
4041 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4042 D->startDefinition();
4043
4044 QualType FieldTypes[] = {
4045 Context.UnsignedLongTy,
4046 Context.getPointerType(Context.getObjCIdType()),
4047 Context.getPointerType(Context.UnsignedLongTy),
4048 Context.getConstantArrayType(Context.UnsignedLongTy,
4049 llvm::APInt(32, 5), ArrayType::Normal, 0)
4050 };
4051
4052 for (size_t i = 0; i < 4; ++i) {
4053 FieldDecl *Field = FieldDecl::Create(Context,
4054 D,
4055 SourceLocation(),
4056 SourceLocation(), nullptr,
4057 FieldTypes[i], /*TInfo=*/nullptr,
4058 /*BitWidth=*/nullptr,
4059 /*Mutable=*/false,
4060 ICIS_NoInit);
4061 Field->setAccess(AS_public);
4062 D->addDecl(Field);
4063 }
4064
4065 D->completeDefinition();
4066 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4067 }
4068
4069 return ObjCFastEnumerationStateType;
4070}
4071
4072llvm::Constant *
4073CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4074 assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast <bool> (!E->getType()->isPointerType
() && "Strings are always arrays") ? void (0) : __assert_fail
("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4074, __extension__ __PRETTY_FUNCTION__))
;
4075
4076 // Don't emit it as the address of the string, emit the string data itself
4077 // as an inline array.
4078 if (E->getCharByteWidth() == 1) {
4079 SmallString<64> Str(E->getString());
4080
4081 // Resize the string to the right size, which is indicated by its type.
4082 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4083 Str.resize(CAT->getSize().getZExtValue());
4084 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4085 }
4086
4087 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4088 llvm::Type *ElemTy = AType->getElementType();
4089 unsigned NumElements = AType->getNumElements();
4090
4091 // Wide strings have either 2-byte or 4-byte elements.
4092 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4093 SmallVector<uint16_t, 32> Elements;
4094 Elements.reserve(NumElements);
4095
4096 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4097 Elements.push_back(E->getCodeUnit(i));
4098 Elements.resize(NumElements);
4099 return llvm::ConstantDataArray::get(VMContext, Elements);
4100 }
4101
4102 assert(ElemTy->getPrimitiveSizeInBits() == 32)(static_cast <bool> (ElemTy->getPrimitiveSizeInBits(
) == 32) ? void (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4102, __extension__ __PRETTY_FUNCTION__))
;
4103 SmallVector<uint32_t, 32> Elements;
4104 Elements.reserve(NumElements);
4105
4106 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4107 Elements.push_back(E->getCodeUnit(i));
4108 Elements.resize(NumElements);
4109 return llvm::ConstantDataArray::get(VMContext, Elements);
4110}
4111
4112static llvm::GlobalVariable *
4113GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4114 CodeGenModule &CGM, StringRef GlobalName,
4115 CharUnits Alignment) {
4116 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4117 CGM.getStringLiteralAddressSpace());
4118
4119 llvm::Module &M = CGM.getModule();
4120 // Create a global variable for this string
4121 auto *GV = new llvm::GlobalVariable(
4122 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4123 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4124 GV->setAlignment(Alignment.getQuantity());
4125 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4126 if (GV->isWeakForLinker()) {
4127 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")(static_cast <bool> (CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? void (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4127, __extension__ __PRETTY_FUNCTION__))
;
4128 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4129 }
4130 CGM.setDSOLocal(GV);
4131
4132 return GV;
4133}
4134
4135/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4136/// constant array for the given string literal.
4137ConstantAddress
4138CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4139 StringRef Name) {
4140 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4141
4142 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4143 llvm::GlobalVariable **Entry = nullptr;
4144 if (!LangOpts.WritableStrings) {
4145 Entry = &ConstantStringMap[C];
4146 if (auto GV = *Entry) {
4147 if (Alignment.getQuantity() > GV->getAlignment())
4148 GV->setAlignment(Alignment.getQuantity());
4149 return ConstantAddress(GV, Alignment);
4150 }
4151 }
4152
4153 SmallString<256> MangledNameBuffer;
4154 StringRef GlobalVariableName;
4155 llvm::GlobalValue::LinkageTypes LT;
4156
4157 // Mangle the string literal if the ABI allows for it. However, we cannot
4158 // do this if we are compiling with ASan or -fwritable-strings because they
4159 // rely on strings having normal linkage.
4160 if (!LangOpts.WritableStrings &&
4161 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4162 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4163 llvm::raw_svector_ostream Out(MangledNameBuffer);
4164 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4165
4166 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4167 GlobalVariableName = MangledNameBuffer;
4168 } else {
4169 LT = llvm::GlobalValue::PrivateLinkage;
4170 GlobalVariableName = Name;
4171 }
4172
4173 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4174 if (Entry)
4175 *Entry = GV;
4176
4177 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4178 QualType());
4179
4180 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4181 Alignment);
4182}
4183
4184/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4185/// array for the given ObjCEncodeExpr node.
4186ConstantAddress
4187CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4188 std::string Str;
4189 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4190
4191 return GetAddrOfConstantCString(Str);
4192}
4193
4194/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4195/// the literal and a terminating '\0' character.
4196/// The result has pointer to array type.
4197ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4198 const std::string &Str, const char *GlobalName) {
4199 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4200 CharUnits Alignment =
4201 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4202
4203 llvm::Constant *C =
4204 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4205
4206 // Don't share any string literals if strings aren't constant.
4207 llvm::GlobalVariable **Entry = nullptr;
4208 if (!LangOpts.WritableStrings) {
4209 Entry = &ConstantStringMap[C];
4210 if (auto GV = *Entry) {
4211 if (Alignment.getQuantity() > GV->getAlignment())
4212 GV->setAlignment(Alignment.getQuantity());
4213 return ConstantAddress(GV, Alignment);
4214 }
4215 }
4216
4217 // Get the default prefix if a name wasn't specified.
4218 if (!GlobalName)
4219 GlobalName = ".str";
4220 // Create a global variable for this.
4221 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4222 GlobalName, Alignment);
4223 if (Entry)
4224 *Entry = GV;
4225
4226 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4227 Alignment);
4228}
4229
4230ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4231 const MaterializeTemporaryExpr *E, const Expr *Init) {
4232 assert((E->getStorageDuration() == SD_Static ||(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4233, __extension__ __PRETTY_FUNCTION__))
4233 E->getStorageDuration() == SD_Thread) && "not a global temporary")(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4233, __extension__ __PRETTY_FUNCTION__))
;
4234 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4235
4236 // If we're not materializing a subobject of the temporary, keep the
4237 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4238 QualType MaterializedType = Init->getType();
4239 if (Init == E->GetTemporaryExpr())
4240 MaterializedType = E->getType();
4241
4242 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4243
4244 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4245 return ConstantAddress(Slot, Align);
4246
4247 // FIXME: If an externally-visible declaration extends multiple temporaries,
4248 // we need to give each temporary the same name in every translation unit (and
4249 // we also need to make the temporaries externally-visible).
4250 SmallString<256> Name;
4251 llvm::raw_svector_ostream Out(Name);
4252 getCXXABI().getMangleContext().mangleReferenceTemporary(
4253 VD, E->getManglingNumber(), Out);
4254
4255 APValue *Value = nullptr;
4256 if (E->getStorageDuration() == SD_Static) {
4257 // We might have a cached constant initializer for this temporary. Note
4258 // that this might have a different value from the value computed by
4259 // evaluating the initializer if the surrounding constant expression
4260 // modifies the temporary.
4261 Value = getContext().getMaterializedTemporaryValue(E, false);
4262 if (Value && Value->isUninit())
4263 Value = nullptr;
4264 }
4265
4266 // Try evaluating it now, it might have a constant initializer.
4267 Expr::EvalResult EvalResult;
4268 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4269 !EvalResult.hasSideEffects())
4270 Value = &EvalResult.Val;
4271
4272 LangAS AddrSpace =
4273 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4274
4275 Optional<ConstantEmitter> emitter;
4276 llvm::Constant *InitialValue = nullptr;
4277 bool Constant = false;
4278 llvm::Type *Type;
4279 if (Value) {
4280 // The temporary has a constant initializer, use it.
4281 emitter.emplace(*this);
4282 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4283 MaterializedType);
4284 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4285 Type = InitialValue->getType();
4286 } else {
4287 // No initializer, the initialization will be provided when we
4288 // initialize the declaration which performed lifetime extension.
4289 Type = getTypes().ConvertTypeForMem(MaterializedType);
4290 }
4291
4292 // Create a global variable for this lifetime-extended temporary.
4293 llvm::GlobalValue::LinkageTypes Linkage =
4294 getLLVMLinkageVarDefinition(VD, Constant);
4295 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4296 const VarDecl *InitVD;
4297 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4298 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4299 // Temporaries defined inside a class get linkonce_odr linkage because the
4300 // class can be defined in multiple translation units.
4301 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4302 } else {
4303 // There is no need for this temporary to have external linkage if the
4304 // VarDecl has external linkage.
4305 Linkage = llvm::GlobalVariable::InternalLinkage;
4306 }
4307 }
4308 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4309 auto *GV = new llvm::GlobalVariable(
4310 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4311 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4312 if (emitter) emitter->finalize(GV);
4313 setGVProperties(GV, VD);
4314 GV->setAlignment(Align.getQuantity());
4315 if (supportsCOMDAT() && GV->isWeakForLinker())
4316 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4317 if (VD->getTLSKind())
4318 setTLSMode(GV, *VD);
4319 llvm::Constant *CV = GV;
4320 if (AddrSpace != LangAS::Default)
4321 CV = getTargetCodeGenInfo().performAddrSpaceCast(
4322 *this, GV, AddrSpace, LangAS::Default,
4323 Type->getPointerTo(
4324 getContext().getTargetAddressSpace(LangAS::Default)));
4325 MaterializedGlobalTemporaryMap[E] = CV;
4326 return ConstantAddress(CV, Align);
4327}
4328
4329/// EmitObjCPropertyImplementations - Emit information for synthesized
4330/// properties for an implementation.
4331void CodeGenModule::EmitObjCPropertyImplementations(const
4332 ObjCImplementationDecl *D) {
4333 for (const auto *PID : D->property_impls()) {
4334 // Dynamic is just for type-checking.
4335 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4336 ObjCPropertyDecl *PD = PID->getPropertyDecl();
4337
4338 // Determine which methods need to be implemented, some may have
4339 // been overridden. Note that ::isPropertyAccessor is not the method
4340 // we want, that just indicates if the decl came from a
4341 // property. What we want to know is if the method is defined in
4342 // this implementation.
4343 if (!D->getInstanceMethod(PD->getGetterName()))
4344 CodeGenFunction(*this).GenerateObjCGetter(
4345 const_cast<ObjCImplementationDecl *>(D), PID);
4346 if (!PD->isReadOnly() &&
4347 !D->getInstanceMethod(PD->getSetterName()))
4348 CodeGenFunction(*this).GenerateObjCSetter(
4349 const_cast<ObjCImplementationDecl *>(D), PID);
4350 }
4351 }
4352}
4353
4354static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4355 const ObjCInterfaceDecl *iface = impl->getClassInterface();
4356 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4357 ivar; ivar = ivar->getNextIvar())
4358 if (ivar->getType().isDestructedType())
4359 return true;
4360
4361 return false;
4362}
4363
4364static bool AllTrivialInitializers(CodeGenModule &CGM,
4365 ObjCImplementationDecl *D) {
4366 CodeGenFunction CGF(CGM);
4367 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4368 E = D->init_end(); B != E; ++B) {
4369 CXXCtorInitializer *CtorInitExp = *B;
4370 Expr *Init = CtorInitExp->getInit();
4371 if (!CGF.isTrivialInitializer(Init))
4372 return false;
4373 }
4374 return true;
4375}
4376
4377/// EmitObjCIvarInitializations - Emit information for ivar initialization
4378/// for an implementation.
4379void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4380 // We might need a .cxx_destruct even if we don't have any ivar initializers.
4381 if (needsDestructMethod(D)) {
4382 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4383 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4384 ObjCMethodDecl *DTORMethod =
4385 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4386 cxxSelector, getContext().VoidTy, nullptr, D,
4387 /*isInstance=*/true, /*isVariadic=*/false,
4388 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4389 /*isDefined=*/false, ObjCMethodDecl::Required);
4390 D->addInstanceMethod(DTORMethod);
4391 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4392 D->setHasDestructors(true);
4393 }
4394
4395 // If the implementation doesn't have any ivar initializers, we don't need
4396 // a .cxx_construct.
4397 if (D->getNumIvarInitializers() == 0 ||
4398 AllTrivialInitializers(*this, D))
4399 return;
4400
4401 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4402 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4403 // The constructor returns 'self'.
4404 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4405 D->getLocation(),
4406 D->getLocation(),
4407 cxxSelector,
4408 getContext().getObjCIdType(),
4409 nullptr, D, /*isInstance=*/true,
4410 /*isVariadic=*/false,
4411 /*isPropertyAccessor=*/true,
4412 /*isImplicitlyDeclared=*/true,
4413 /*isDefined=*/false,
4414 ObjCMethodDecl::Required);
4415 D->addInstanceMethod(CTORMethod);
4416 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4417 D->setHasNonZeroConstructors(true);
4418}
4419
4420// EmitLinkageSpec - Emit all declarations in a linkage spec.
4421void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4422 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4423 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4424 ErrorUnsupported(LSD, "linkage spec");
4425 return;
4426 }
4427
4428 EmitDeclContext(LSD);
4429}
4430
4431void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4432 for (auto *I : DC->decls()) {
4433 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4434 // are themselves considered "top-level", so EmitTopLevelDecl on an
4435 // ObjCImplDecl does not recursively visit them. We need to do that in
4436 // case they're nested inside another construct (LinkageSpecDecl /
4437 // ExportDecl) that does stop them from being considered "top-level".
4438 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4439 for (auto *M : OID->methods())
4440 EmitTopLevelDecl(M);
4441 }
4442
4443 EmitTopLevelDecl(I);
4444 }
4445}
4446
4447/// EmitTopLevelDecl - Emit code for a single top level declaration.
4448void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4449 // Ignore dependent declarations.
4450 if (D->isTemplated())
4451 return;
4452
4453 switch (D->getKind()) {
4454 case Decl::CXXConversion:
4455 case Decl::CXXMethod:
4456 case Decl::Function:
4457 EmitGlobal(cast<FunctionDecl>(D));
4458 // Always provide some coverage mapping
4459 // even for the functions that aren't emitted.
4460 AddDeferredUnusedCoverageMapping(D);
4461 break;
4462
4463 case Decl::CXXDeductionGuide:
4464 // Function-like, but does not result in code emission.
4465 break;
4466
4467 case Decl::Var:
4468 case Decl::Decomposition:
4469 case Decl::VarTemplateSpecialization:
4470 EmitGlobal(cast<VarDecl>(D));
4471 if (auto *DD = dyn_cast<DecompositionDecl>(D))
4472 for (auto *B : DD->bindings())
4473 if (auto *HD = B->getHoldingVar())
4474 EmitGlobal(HD);
4475 break;
4476
4477 // Indirect fields from global anonymous structs and unions can be
4478 // ignored; only the actual variable requires IR gen support.
4479 case Decl::IndirectField:
4480 break;
4481
4482 // C++ Decls
4483 case Decl::Namespace:
4484 EmitDeclContext(cast<NamespaceDecl>(D));
4485 break;
4486 case Decl::ClassTemplateSpecialization: {
4487 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4488 if (DebugInfo &&
4489 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4490 Spec->hasDefinition())
4491 DebugInfo->completeTemplateDefinition(*Spec);
4492 } LLVM_FALLTHROUGH[[clang::fallthrough]];
4493 case Decl::CXXRecord:
4494 if (DebugInfo) {
4495 if (auto *ES = D->getASTContext().getExternalSource())
4496 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4497 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4498 }
4499 // Emit any static data members, they may be definitions.
4500 for (auto *I : cast<CXXRecordDecl>(D)->decls())
4501 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4502 EmitTopLevelDecl(I);
4503 break;
4504 // No code generation needed.
4505 case Decl::UsingShadow:
4506 case Decl::ClassTemplate:
4507 case Decl::VarTemplate:
4508 case Decl::VarTemplatePartialSpecialization:
4509 case Decl::FunctionTemplate:
4510 case Decl::TypeAliasTemplate:
4511 case Decl::Block:
4512 case Decl::Empty:
4513 break;
4514 case Decl::Using: // using X; [C++]
4515 if (CGDebugInfo *DI = getModuleDebugInfo())
4516 DI->EmitUsingDecl(cast<UsingDecl>(*D));
4517 return;
4518 case Decl::NamespaceAlias:
4519 if (CGDebugInfo *DI = getModuleDebugInfo())
4520 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4521 return;
4522 case Decl::UsingDirective: // using namespace X; [C++]
4523 if (CGDebugInfo *DI = getModuleDebugInfo())
4524 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4525 return;
4526 case Decl::CXXConstructor:
4527 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4528 break;
4529 case Decl::CXXDestructor:
4530 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4531 break;
4532
4533 case Decl::StaticAssert:
4534 // Nothing to do.
4535 break;
4536
4537 // Objective-C Decls
4538
4539 // Forward declarations, no (immediate) code generation.
4540 case Decl::ObjCInterface:
4541 case Decl::ObjCCategory:
4542 break;
4543
4544 case Decl::ObjCProtocol: {
4545 auto *Proto = cast<ObjCProtocolDecl>(D);
4546 if (Proto->isThisDeclarationADefinition())
4547 ObjCRuntime->GenerateProtocol(Proto);
4548 break;
4549 }
4550
4551 case Decl::ObjCCategoryImpl:
4552 // Categories have properties but don't support synthesize so we
4553 // can ignore them here.
4554 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4555 break;
4556
4557 case Decl::ObjCImplementation: {
4558 auto *OMD = cast<ObjCImplementationDecl>(D);
4559 EmitObjCPropertyImplementations(OMD);
4560 EmitObjCIvarInitializations(OMD);
4561 ObjCRuntime->GenerateClass(OMD);
4562 // Emit global variable debug information.
4563 if (CGDebugInfo *DI = getModuleDebugInfo())
4564 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4565 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4566 OMD->getClassInterface()), OMD->getLocation());
4567 break;
4568 }
4569 case Decl::ObjCMethod: {
4570 auto *OMD = cast<ObjCMethodDecl>(D);
4571 // If this is not a prototype, emit the body.
4572 if (OMD->getBody())
4573 CodeGenFunction(*this).GenerateObjCMethod(OMD);
4574 break;
4575 }
4576 case Decl::ObjCCompatibleAlias:
4577 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4578 break;
4579
4580 case Decl::PragmaComment: {
4581 const auto *PCD = cast<PragmaCommentDecl>(D);
4582 switch (PCD->getCommentKind()) {
4583 case PCK_Unknown:
4584 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4584)
;
4585 case PCK_Linker:
4586 AppendLinkerOptions(PCD->getArg());
4587 break;
4588 case PCK_Lib:
4589 if (getTarget().getTriple().isOSBinFormatELF() &&
4590 !getTarget().getTriple().isPS4())
4591 AddELFLibDirective(PCD->getArg());
4592 else
4593 AddDependentLib(PCD->getArg());
4594 break;
4595 case PCK_Compiler:
4596 case PCK_ExeStr:
4597 case PCK_User:
4598 break; // We ignore all of these.
4599 }
4600 break;
4601 }
4602
4603 case Decl::PragmaDetectMismatch: {
4604 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4605 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4606 break;
4607 }
4608
4609 case Decl::LinkageSpec:
4610 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4611 break;
4612
4613 case Decl::FileScopeAsm: {
4614 // File-scope asm is ignored during device-side CUDA compilation.
4615 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4616 break;
4617 // File-scope asm is ignored during device-side OpenMP compilation.
4618 if (LangOpts.OpenMPIsDevice)
4619 break;
4620 auto *AD = cast<FileScopeAsmDecl>(D);
4621 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4622 break;
4623 }
4624
4625 case Decl::Import: {
4626 auto *Import = cast<ImportDecl>(D);
4627
4628 // If we've already imported this module, we're done.
4629 if (!ImportedModules.insert(Import->getImportedModule()))
4630 break;
4631
4632 // Emit debug information for direct imports.
4633 if (!Import->getImportedOwningModule()) {
4634 if (CGDebugInfo *DI = getModuleDebugInfo())
4635 DI->EmitImportDecl(*Import);
4636 }
4637
4638 // Find all of the submodules and emit the module initializers.
4639 llvm::SmallPtrSet<clang::Module *, 16> Visited;
4640 SmallVector<clang::Module *, 16> Stack;
4641 Visited.insert(Import->getImportedModule());
4642 Stack.push_back(Import->getImportedModule());
4643
4644 while (!Stack.empty()) {
4645 clang::Module *Mod = Stack.pop_back_val();
4646 if (!EmittedModuleInitializers.insert(Mod).second)
4647 continue;
4648
4649 for (auto *D : Context.getModuleInitializers(Mod))
4650 EmitTopLevelDecl(D);
4651
4652 // Visit the submodules of this module.
4653 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4654 SubEnd = Mod->submodule_end();
4655 Sub != SubEnd; ++Sub) {
4656 // Skip explicit children; they need to be explicitly imported to emit
4657 // the initializers.
4658 if ((*Sub)->IsExplicit)
4659 continue;
4660
4661 if (Visited.insert(*Sub).second)
4662 Stack.push_back(*Sub);
4663 }
4664 }
4665 break;
4666 }
4667
4668 case Decl::Export:
4669 EmitDeclContext(cast<ExportDecl>(D));
4670 break;
4671
4672 case Decl::OMPThreadPrivate:
4673 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4674 break;
4675
4676 case Decl::OMPDeclareReduction:
4677 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4678 break;
4679
4680 default:
4681 // Make sure we handled everything we should, every other kind is a
4682 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
4683 // function. Need to recode Decl::Kind to do that easily.
4684 assert(isa<TypeDecl>(D) && "Unsupported decl kind")(static_cast <bool> (isa<TypeDecl>(D) && "Unsupported decl kind"
) ? void (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4684, __extension__ __PRETTY_FUNCTION__))
;
4685 break;
4686 }
4687}
4688
4689void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4690 // Do we need to generate coverage mapping?
4691 if (!CodeGenOpts.CoverageMapping)
4692 return;
4693 switch (D->getKind()) {
4694 case Decl::CXXConversion:
4695 case Decl::CXXMethod:
4696 case Decl::Function:
4697 case Decl::ObjCMethod:
4698 case Decl::CXXConstructor:
4699 case Decl::CXXDestructor: {
4700 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4701 return;
4702 SourceManager &SM = getContext().getSourceManager();
4703 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4704 return;
4705 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4706 if (I == DeferredEmptyCoverageMappingDecls.end())
4707 DeferredEmptyCoverageMappingDecls[D] = true;
4708 break;
4709 }
4710 default:
4711 break;
4712 };
4713}
4714
4715void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4716 // Do we need to generate coverage mapping?
4717 if (!CodeGenOpts.CoverageMapping)
4718 return;
4719 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4720 if (Fn->isTemplateInstantiation())
4721 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4722 }
4723 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4724 if (I == DeferredEmptyCoverageMappingDecls.end())
4725 DeferredEmptyCoverageMappingDecls[D] = false;
4726 else
4727 I->second = false;
4728}
4729
4730void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4731 // We call takeVector() here to avoid use-after-free.
4732 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4733 // we deserialize function bodies to emit coverage info for them, and that
4734 // deserializes more declarations. How should we handle that case?
4735 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4736 if (!Entry.second)
4737 continue;
4738 const Decl *D = Entry.first;
4739 switch (D->getKind()) {
4740 case Decl::CXXConversion:
4741 case Decl::CXXMethod:
4742 case Decl::Function:
4743 case Decl::ObjCMethod: {
4744 CodeGenPGO PGO(*this);
4745 GlobalDecl GD(cast<FunctionDecl>(D));
4746 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4747 getFunctionLinkage(GD));
4748 break;
4749 }
4750 case Decl::CXXConstructor: {
4751 CodeGenPGO PGO(*this);
4752 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4753 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4754 getFunctionLinkage(GD));
4755 break;
4756 }
4757 case Decl::CXXDestructor: {
4758 CodeGenPGO PGO(*this);
4759 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4760 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4761 getFunctionLinkage(GD));
4762 break;
4763 }
4764 default:
4765 break;
4766 };
4767 }
4768}
4769
4770/// Turns the given pointer into a constant.
4771static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4772 const void *Ptr) {
4773 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4774 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4775 return llvm::ConstantInt::get(i64, PtrInt);
4776}
4777
4778static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4779 llvm::NamedMDNode *&GlobalMetadata,
4780 GlobalDecl D,
4781 llvm::GlobalValue *Addr) {
4782 if (!GlobalMetadata)
4783 GlobalMetadata =
4784 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4785
4786 // TODO: should we report variant information for ctors/dtors?
4787 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4788 llvm::ConstantAsMetadata::get(GetPointerConstant(
4789 CGM.getLLVMContext(), D.getDecl()))};
4790 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4791}
4792
4793/// For each function which is declared within an extern "C" region and marked
4794/// as 'used', but has internal linkage, create an alias from the unmangled
4795/// name to the mangled name if possible. People expect to be able to refer
4796/// to such functions with an unmangled name from inline assembly within the
4797/// same translation unit.
4798void CodeGenModule::EmitStaticExternCAliases() {
4799 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4800 return;
4801 for (auto &I : StaticExternCValues) {
4802 IdentifierInfo *Name = I.first;
4803 llvm::GlobalValue *Val = I.second;
4804 if (Val && !getModule().getNamedValue(Name->getName()))
4805 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4806 }
4807}
4808
4809bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4810 GlobalDecl &Result) const {
4811 auto Res = Manglings.find(MangledName);
4812 if (Res == Manglings.end())
4813 return false;
4814 Result = Res->getValue();
4815 return true;
4816}
4817
4818/// Emits metadata nodes associating all the global values in the
4819/// current module with the Decls they came from. This is useful for
4820/// projects using IR gen as a subroutine.
4821///
4822/// Since there's currently no way to associate an MDNode directly
4823/// with an llvm::GlobalValue, we create a global named metadata
4824/// with the name 'clang.global.decl.ptrs'.
4825void CodeGenModule::EmitDeclMetadata() {
4826 llvm::NamedMDNode *GlobalMetadata = nullptr;
4827
4828 for (auto &I : MangledDeclNames) {
4829 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4830 // Some mangled names don't necessarily have an associated GlobalValue
4831 // in this module, e.g. if we mangled it for DebugInfo.
4832 if (Addr)
4833 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4834 }
4835}
4836
4837/// Emits metadata nodes for all the local variables in the current
4838/// function.
4839void CodeGenFunction::EmitDeclMetadata() {
4840 if (LocalDeclMap.empty()) return;
4841
4842 llvm::LLVMContext &Context = getLLVMContext();
4843
4844 // Find the unique metadata ID for this name.
4845 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4846
4847 llvm::NamedMDNode *GlobalMetadata = nullptr;
4848
4849 for (auto &I : LocalDeclMap) {
4850 const Decl *D = I.first;
4851 llvm::Value *Addr = I.second.getPointer();
4852 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4853 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4854 Alloca->setMetadata(
4855 DeclPtrKind, llvm::MDNode::get(
4856 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4857 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4858 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4859 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4860 }
4861 }
4862}
4863
4864void CodeGenModule::EmitVersionIdentMetadata() {
4865 llvm::NamedMDNode *IdentMetadata =
4866 TheModule.getOrInsertNamedMetadata("llvm.ident");
4867 std::string Version = getClangFullVersion();
4868 llvm::LLVMContext &Ctx = TheModule.getContext();
4869
4870 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4871 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4872}
4873
4874void CodeGenModule::EmitTargetMetadata() {
4875 // Warning, new MangledDeclNames may be appended within this loop.
4876 // We rely on MapVector insertions adding new elements to the end
4877 // of the container.
4878 // FIXME: Move this loop into the one target that needs it, and only
4879 // loop over those declarations for which we couldn't emit the target
4880 // metadata when we emitted the declaration.
4881 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4882 auto Val = *(MangledDeclNames.begin() + I);
4883 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4884 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4885 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4886 }
4887}
4888
4889void CodeGenModule::EmitCoverageFile() {
4890 if (getCodeGenOpts().CoverageDataFile.empty() &&
4891 getCodeGenOpts().CoverageNotesFile.empty())
4892 return;
4893
4894 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4895 if (!CUNode)
4896 return;
4897
4898 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4899 llvm::LLVMContext &Ctx = TheModule.getContext();
4900 auto *CoverageDataFile =
4901 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4902 auto *CoverageNotesFile =
4903 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4904 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4905 llvm::MDNode *CU = CUNode->getOperand(i);
4906 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4907 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4908 }
4909}
4910
4911llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4912 // Sema has checked that all uuid strings are of the form
4913 // "12345678-1234-1234-1234-1234567890ab".
4914 assert(Uuid.size() == 36)(static_cast <bool> (Uuid.size() == 36) ? void (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4914, __extension__ __PRETTY_FUNCTION__))
;
4915 for (unsigned i = 0; i < 36; ++i) {
4916 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')(static_cast <bool> (Uuid[i] == '-') ? void (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4916, __extension__ __PRETTY_FUNCTION__))
;
4917 else assert(isHexDigit(Uuid[i]))(static_cast <bool> (isHexDigit(Uuid[i])) ? void (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4917, __extension__ __PRETTY_FUNCTION__))
;
4918 }
4919
4920 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4921 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4922
4923 llvm::Constant *Field3[8];
4924 for (unsigned Idx = 0; Idx < 8; ++Idx)
4925 Field3[Idx] = llvm::ConstantInt::get(
4926 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4927
4928 llvm::Constant *Fields[4] = {
4929 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
4930 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
4931 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4932 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4933 };
4934
4935 return llvm::ConstantStruct::getAnon(Fields);
4936}
4937
4938llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4939 bool ForEH) {
4940 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4941 // FIXME: should we even be calling this method if RTTI is disabled
4942 // and it's not for EH?
4943 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
4944 return llvm::Constant::getNullValue(Int8PtrTy);
4945
4946 if (ForEH && Ty->isObjCObjectPointerType() &&
4947 LangOpts.ObjCRuntime.isGNUFamily())
4948 return ObjCRuntime->GetEHType(Ty);
4949
4950 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4951}
4952
4953void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4954 // Do not emit threadprivates in simd-only mode.
4955 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4956 return;
4957 for (auto RefExpr : D->varlists()) {
4958 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4959 bool PerformInit =
4960 VD->getAnyInitializer() &&
4961 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4962 /*ForRef=*/false);
4963
4964 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4965 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4966 VD, Addr, RefExpr->getLocStart(), PerformInit))
4967 CXXGlobalInits.push_back(InitFunction);
4968 }
4969}
4970
4971llvm::Metadata *
4972CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
4973 StringRef Suffix) {
4974 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
4975 if (InternalId)
4976 return InternalId;
4977
4978 if (isExternallyVisible(T->getLinkage())) {
4979 std::string OutName;
4980 llvm::raw_string_ostream Out(OutName);
4981 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4982 Out << Suffix;
4983
4984 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4985 } else {
4986 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4987 llvm::ArrayRef<llvm::Metadata *>());
4988 }
4989
4990 return InternalId;
4991}
4992
4993llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4994 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
4995}
4996
4997llvm::Metadata *
4998CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
4999 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5000}
5001
5002// Generalize pointer types to a void pointer with the qualifiers of the
5003// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5004// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5005// 'void *'.
5006static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5007 if (!Ty->isPointerType())
5008 return Ty;
5009
5010 return Ctx.getPointerType(
5011 QualType(Ctx.VoidTy).withCVRQualifiers(
5012 Ty->getPointeeType().getCVRQualifiers()));
5013}
5014
5015// Apply type generalization to a FunctionType's return and argument types
5016static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5017 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5018 SmallVector<QualType, 8> GeneralizedParams;
5019 for (auto &Param : FnType->param_types())
5020 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5021
5022 return Ctx.getFunctionType(
5023 GeneralizeType(Ctx, FnType->getReturnType()),
5024 GeneralizedParams, FnType->getExtProtoInfo());
5025 }
5026
5027 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5028 return Ctx.getFunctionNoProtoType(
5029 GeneralizeType(Ctx, FnType->getReturnType()));
5030
5031 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5031)
;
5032}
5033
5034llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5035 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5036 GeneralizedMetadataIdMap, ".generalized");
5037}
5038
5039/// Returns whether this module needs the "all-vtables" type identifier.
5040bool CodeGenModule::NeedAllVtablesTypeId() const {
5041 // Returns true if at least one of vtable-based CFI checkers is enabled and
5042 // is not in the trapping mode.
5043 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5044 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5045 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5046 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5047 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5048 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5049 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5050 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5051}
5052
5053void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5054 CharUnits Offset,
5055 const CXXRecordDecl *RD) {
5056 llvm::Metadata *MD =
5057 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5058 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5059
5060 if (CodeGenOpts.SanitizeCfiCrossDso)
5061 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5062 VTable->addTypeMetadata(Offset.getQuantity(),
5063 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5064
5065 if (NeedAllVtablesTypeId()) {
5066 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5067 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5068 }
5069}
5070
5071TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5072 assert(TD != nullptr)(static_cast <bool> (TD != nullptr) ? void (0) : __assert_fail
("TD != nullptr", "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5072, __extension__ __PRETTY_FUNCTION__))
;
5073 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5074
5075 ParsedAttr.Features.erase(
5076 llvm::remove_if(ParsedAttr.Features,
5077 [&](const std::string &Feat) {
5078 return !Target.isValidFeatureName(
5079 StringRef{Feat}.substr(1));
5080 }),
5081 ParsedAttr.Features.end());
5082 return ParsedAttr;
5083}
5084
5085
5086// Fills in the supplied string map with the set of target features for the
5087// passed in function.
5088void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5089 const FunctionDecl *FD) {
5090 StringRef TargetCPU = Target.getTargetOpts().CPU;
5091 if (const auto *TD = FD->getAttr<TargetAttr>()) {
5092 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5093
5094 // Make a copy of the features as passed on the command line into the
5095 // beginning of the additional features from the function to override.
5096 ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5097 Target.getTargetOpts().FeaturesAsWritten.begin(),
5098 Target.getTargetOpts().FeaturesAsWritten.end());
5099
5100 if (ParsedAttr.Architecture != "" &&
5101 Target.isValidCPUName(ParsedAttr.Architecture))
5102 TargetCPU = ParsedAttr.Architecture;
5103
5104 // Now populate the feature map, first with the TargetCPU which is either
5105 // the default or a new one from the target attribute string. Then we'll use
5106 // the passed in features (FeaturesAsWritten) along with the new ones from
5107 // the attribute.
5108 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5109 ParsedAttr.Features);
5110 } else {
5111 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5112 Target.getTargetOpts().Features);
5113 }
5114}
5115
5116llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5117 if (!SanStats)
5118 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5119
5120 return *SanStats;
5121}
5122llvm::Value *
5123CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5124 CodeGenFunction &CGF) {
5125 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5126 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5127 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5128 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5129 "__translate_sampler_initializer"),
5130 {C});
5131}

/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/include/clang/AST/GlobalDecl.h

1//===- GlobalDecl.h - Global declaration holder -----------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A GlobalDecl can hold either a regular variable/function or a C++ ctor/dtor
11// together with its type.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_GLOBALDECL_H
16#define LLVM_CLANG_AST_GLOBALDECL_H
17
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclOpenMP.h"
21#include "clang/Basic/ABI.h"
22#include "clang/Basic/LLVM.h"
23#include "llvm/ADT/DenseMapInfo.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/type_traits.h"
27#include <cassert>
28
29namespace clang {
30
31/// GlobalDecl - represents a global declaration. This can either be a
32/// CXXConstructorDecl and the constructor type (Base, Complete).
33/// a CXXDestructorDecl and the destructor type (Base, Complete) or
34/// a VarDecl, a FunctionDecl or a BlockDecl.
35class GlobalDecl {
36 llvm::PointerIntPair<const Decl *, 2> Value;
37
38 void Init(const Decl *D) {
39 assert(!isa<CXXConstructorDecl>(D) && "Use other ctor with ctor decls!")(static_cast <bool> (!isa<CXXConstructorDecl>(D) &&
"Use other ctor with ctor decls!") ? void (0) : __assert_fail
("!isa<CXXConstructorDecl>(D) && \"Use other ctor with ctor decls!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/include/clang/AST/GlobalDecl.h"
, 39, __extension__ __PRETTY_FUNCTION__))
;
40 assert(!isa<CXXDestructorDecl>(D) && "Use other ctor with dtor decls!")(static_cast <bool> (!isa<CXXDestructorDecl>(D) &&
"Use other ctor with dtor decls!") ? void (0) : __assert_fail
("!isa<CXXDestructorDecl>(D) && \"Use other ctor with dtor decls!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/include/clang/AST/GlobalDecl.h"
, 40, __extension__ __PRETTY_FUNCTION__))
;
41
42 Value.setPointer(D);
43 }
44
45public:
46 GlobalDecl() = default;
47 GlobalDecl(const VarDecl *D) { Init(D);}
48 GlobalDecl(const FunctionDecl *D) { Init(D); }
49 GlobalDecl(const BlockDecl *D) { Init(D); }
50 GlobalDecl(const CapturedDecl *D) { Init(D); }
51 GlobalDecl(const ObjCMethodDecl *D) { Init(D); }
52 GlobalDecl(const OMPDeclareReductionDecl *D) { Init(D); }
53 GlobalDecl(const CXXConstructorDecl *D, CXXCtorType Type) : Value(D, Type) {}
54 GlobalDecl(const CXXDestructorDecl *D, CXXDtorType Type) : Value(D, Type) {}
55
56 GlobalDecl getCanonicalDecl() const {
57 GlobalDecl CanonGD;
58 CanonGD.Value.setPointer(Value.getPointer()->getCanonicalDecl());
59 CanonGD.Value.setInt(Value.getInt());
60
61 return CanonGD;
62 }
63
64 const Decl *getDecl() const { return Value.getPointer(); }
17
Calling 'PointerIntPair::getPointer'
24
Returning from 'PointerIntPair::getPointer'
65
66 CXXCtorType getCtorType() const {
67 assert(isa<CXXConstructorDecl>(getDecl()) && "Decl is not a ctor!")(static_cast <bool> (isa<CXXConstructorDecl>(getDecl
()) && "Decl is not a ctor!") ? void (0) : __assert_fail
("isa<CXXConstructorDecl>(getDecl()) && \"Decl is not a ctor!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/include/clang/AST/GlobalDecl.h"
, 67, __extension__ __PRETTY_FUNCTION__))
;
68 return static_cast<CXXCtorType>(Value.getInt());
69 }
70
71 CXXDtorType getDtorType() const {
72 assert(isa<CXXDestructorDecl>(getDecl()) && "Decl is not a dtor!")(static_cast <bool> (isa<CXXDestructorDecl>(getDecl
()) && "Decl is not a dtor!") ? void (0) : __assert_fail
("isa<CXXDestructorDecl>(getDecl()) && \"Decl is not a dtor!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/tools/clang/include/clang/AST/GlobalDecl.h"
, 72, __extension__ __PRETTY_FUNCTION__))
;
73 return static_cast<CXXDtorType>(Value.getInt());
74 }
75
76 friend bool operator==(const GlobalDecl &LHS, const GlobalDecl &RHS) {
77 return LHS.Value == RHS.Value;
78 }
79
80 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
81
82 static GlobalDecl getFromOpaquePtr(void *P) {
83 GlobalDecl GD;
84 GD.Value.setFromOpaqueValue(P);
85 return GD;
86 }
87
88 GlobalDecl getWithDecl(const Decl *D) {
89 GlobalDecl Result(*this);
90 Result.Value.setPointer(D);
91 return Result;
92 }
93};
94
95} // namespace clang
96
97namespace llvm {
98
99 template<> struct DenseMapInfo<clang::GlobalDecl> {
100 static inline clang::GlobalDecl getEmptyKey() {
101 return clang::GlobalDecl();
102 }
103
104 static inline clang::GlobalDecl getTombstoneKey() {
105 return clang::GlobalDecl::
106 getFromOpaquePtr(reinterpret_cast<void*>(-1));
107 }
108
109 static unsigned getHashValue(clang::GlobalDecl GD) {
110 return DenseMapInfo<void*>::getHashValue(GD.getAsOpaquePtr());
111 }
112
113 static bool isEqual(clang::GlobalDecl LHS,
114 clang::GlobalDecl RHS) {
115 return LHS == RHS;
116 }
117 };
118
119 // GlobalDecl isn't *technically* a POD type. However, its copy constructor,
120 // copy assignment operator, and destructor are all trivial.
121 template <>
122 struct isPodLike<clang::GlobalDecl> {
123 static const bool value = true;
124 };
125
126} // namespace llvm
127
128#endif // LLVM_CLANG_AST_GLOBALDECL_H

/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h

1//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the PointerIntPair class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_POINTERINTPAIR_H
15#define LLVM_ADT_POINTERINTPAIR_H
16
17#include "llvm/Support/PointerLikeTypeTraits.h"
18#include <cassert>
19#include <cstdint>
20#include <limits>
21
22namespace llvm {
23
24template <typename T> struct DenseMapInfo;
25template <typename PointerT, unsigned IntBits, typename PtrTraits>
26struct PointerIntPairInfo;
27
28/// PointerIntPair - This class implements a pair of a pointer and small
29/// integer. It is designed to represent this in the space required by one
30/// pointer by bitmangling the integer into the low part of the pointer. This
31/// can only be done for small integers: typically up to 3 bits, but it depends
32/// on the number of bits available according to PointerLikeTypeTraits for the
33/// type.
34///
35/// Note that PointerIntPair always puts the IntVal part in the highest bits
36/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
37/// the bool into bit #2, not bit #0, which allows the low two bits to be used
38/// for something else. For example, this allows:
39/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
40/// ... and the two bools will land in different bits.
41template <typename PointerTy, unsigned IntBits, typename IntType = unsigned,
42 typename PtrTraits = PointerLikeTypeTraits<PointerTy>,
43 typename Info = PointerIntPairInfo<PointerTy, IntBits, PtrTraits>>
44class PointerIntPair {
45 intptr_t Value = 0;
46
47public:
48 constexpr PointerIntPair() = default;
49
50 PointerIntPair(PointerTy PtrVal, IntType IntVal) {
51 setPointerAndInt(PtrVal, IntVal);
52 }
53
54 explicit PointerIntPair(PointerTy PtrVal) { initWithPointer(PtrVal); }
55
56 PointerTy getPointer() const { return Info::getPointer(Value); }
18
Calling 'PointerIntPairInfo::getPointer'
23
Returning from 'PointerIntPairInfo::getPointer'
57
58 IntType getInt() const { return (IntType)Info::getInt(Value); }
59
60 void setPointer(PointerTy PtrVal) {
61 Value = Info::updatePointer(Value, PtrVal);
62 }
63
64 void setInt(IntType IntVal) {
65 Value = Info::updateInt(Value, static_cast<intptr_t>(IntVal));
66 }
67
68 void initWithPointer(PointerTy PtrVal) {
69 Value = Info::updatePointer(0, PtrVal);
70 }
71
72 void setPointerAndInt(PointerTy PtrVal, IntType IntVal) {
73 Value = Info::updateInt(Info::updatePointer(0, PtrVal),
74 static_cast<intptr_t>(IntVal));
75 }
76
77 PointerTy const *getAddrOfPointer() const {
78 return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
79 }
80
81 PointerTy *getAddrOfPointer() {
82 assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&(static_cast <bool> (Value == reinterpret_cast<intptr_t
>(getPointer()) && "Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer") ? void (0) : __assert_fail
("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h"
, 84, __extension__ __PRETTY_FUNCTION__))
83 "Can only return the address if IntBits is cleared and "(static_cast <bool> (Value == reinterpret_cast<intptr_t
>(getPointer()) && "Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer") ? void (0) : __assert_fail
("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h"
, 84, __extension__ __PRETTY_FUNCTION__))
84 "PtrTraits doesn't change the pointer")(static_cast <bool> (Value == reinterpret_cast<intptr_t
>(getPointer()) && "Can only return the address if IntBits is cleared and "
"PtrTraits doesn't change the pointer") ? void (0) : __assert_fail
("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h"
, 84, __extension__ __PRETTY_FUNCTION__))
;
85 return reinterpret_cast<PointerTy *>(&Value);
86 }
87
88 void *getOpaqueValue() const { return reinterpret_cast<void *>(Value); }
89
90 void setFromOpaqueValue(void *Val) {
91 Value = reinterpret_cast<intptr_t>(Val);
92 }
93
94 static PointerIntPair getFromOpaqueValue(void *V) {
95 PointerIntPair P;
96 P.setFromOpaqueValue(V);
97 return P;
98 }
99
100 // Allow PointerIntPairs to be created from const void * if and only if the
101 // pointer type could be created from a const void *.
102 static PointerIntPair getFromOpaqueValue(const void *V) {
103 (void)PtrTraits::getFromVoidPointer(V);
104 return getFromOpaqueValue(const_cast<void *>(V));
105 }
106
107 bool operator==(const PointerIntPair &RHS) const {
108 return Value == RHS.Value;
109 }
110
111 bool operator!=(const PointerIntPair &RHS) const {
112 return Value != RHS.Value;
113 }
114
115 bool operator<(const PointerIntPair &RHS) const { return Value < RHS.Value; }
116 bool operator>(const PointerIntPair &RHS) const { return Value > RHS.Value; }
117
118 bool operator<=(const PointerIntPair &RHS) const {
119 return Value <= RHS.Value;
120 }
121
122 bool operator>=(const PointerIntPair &RHS) const {
123 return Value >= RHS.Value;
124 }
125};
126
127template <typename PointerT, unsigned IntBits, typename PtrTraits>
128struct PointerIntPairInfo {
129 static_assert(PtrTraits::NumLowBitsAvailable <
130 std::numeric_limits<uintptr_t>::digits,
131 "cannot use a pointer type that has all bits free");
132 static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
133 "PointerIntPair with integer size too large for pointer");
134 enum : uintptr_t {
135 /// PointerBitMask - The bits that come from the pointer.
136 PointerBitMask =
137 ~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable) - 1),
138
139 /// IntShift - The number of low bits that we reserve for other uses, and
140 /// keep zero.
141 IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable - IntBits,
142
143 /// IntMask - This is the unshifted mask for valid bits of the int type.
144 IntMask = (uintptr_t)(((intptr_t)1 << IntBits) - 1),
145
146 // ShiftedIntMask - This is the bits for the integer shifted in place.
147 ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
148 };
149
150 static PointerT getPointer(intptr_t Value) {
151 return PtrTraits::getFromVoidPointer(
19
Calling 'PointerLikeTypeTraits::getFromVoidPointer'
22
Returning from 'PointerLikeTypeTraits::getFromVoidPointer'
152 reinterpret_cast<void *>(Value & PointerBitMask));
153 }
154
155 static intptr_t getInt(intptr_t Value) {
156 return (Value >> IntShift) & IntMask;
157 }
158
159 static intptr_t updatePointer(intptr_t OrigValue, PointerT Ptr) {
160 intptr_t PtrWord =
161 reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(Ptr));
162 assert((PtrWord & ~PointerBitMask) == 0 &&(static_cast <bool> ((PtrWord & ~PointerBitMask) ==
0 && "Pointer is not sufficiently aligned") ? void (
0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h"
, 163, __extension__ __PRETTY_FUNCTION__))
163 "Pointer is not sufficiently aligned")(static_cast <bool> ((PtrWord & ~PointerBitMask) ==
0 && "Pointer is not sufficiently aligned") ? void (
0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h"
, 163, __extension__ __PRETTY_FUNCTION__))
;
164 // Preserve all low bits, just update the pointer.
165 return PtrWord | (OrigValue & ~PointerBitMask);
166 }
167
168 static intptr_t updateInt(intptr_t OrigValue, intptr_t Int) {
169 intptr_t IntWord = static_cast<intptr_t>(Int);
170 assert((IntWord & ~IntMask) == 0 && "Integer too large for field")(static_cast <bool> ((IntWord & ~IntMask) == 0 &&
"Integer too large for field") ? void (0) : __assert_fail ("(IntWord & ~IntMask) == 0 && \"Integer too large for field\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/ADT/PointerIntPair.h"
, 170, __extension__ __PRETTY_FUNCTION__))
;
171
172 // Preserve all bits other than the ones we are updating.
173 return (OrigValue & ~ShiftedIntMask) | IntWord << IntShift;
174 }
175};
176
177template <typename T> struct isPodLike;
178template <typename PointerTy, unsigned IntBits, typename IntType>
179struct isPodLike<PointerIntPair<PointerTy, IntBits, IntType>> {
180 static const bool value = true;
181};
182
183// Provide specialization of DenseMapInfo for PointerIntPair.
184template <typename PointerTy, unsigned IntBits, typename IntType>
185struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType>> {
186 using Ty = PointerIntPair<PointerTy, IntBits, IntType>;
187
188 static Ty getEmptyKey() {
189 uintptr_t Val = static_cast<uintptr_t>(-1);
190 Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
191 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
192 }
193
194 static Ty getTombstoneKey() {
195 uintptr_t Val = static_cast<uintptr_t>(-2);
196 Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
197 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
198 }
199
200 static unsigned getHashValue(Ty V) {
201 uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
202 return unsigned(IV) ^ unsigned(IV >> 9);
203 }
204
205 static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
206};
207
208// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
209template <typename PointerTy, unsigned IntBits, typename IntType,
210 typename PtrTraits>
211struct PointerLikeTypeTraits<
212 PointerIntPair<PointerTy, IntBits, IntType, PtrTraits>> {
213 static inline void *
214 getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
215 return P.getOpaqueValue();
216 }
217
218 static inline PointerIntPair<PointerTy, IntBits, IntType>
219 getFromVoidPointer(void *P) {
220 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
221 }
222
223 static inline PointerIntPair<PointerTy, IntBits, IntType>
224 getFromVoidPointer(const void *P) {
225 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
226 }
227
228 enum { NumLowBitsAvailable = PtrTraits::NumLowBitsAvailable - IntBits };
229};
230
231} // end namespace llvm
232
233#endif // LLVM_ADT_POINTERINTPAIR_H

/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/Support/PointerLikeTypeTraits.h

1//===- llvm/Support/PointerLikeTypeTraits.h - Pointer Traits ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the PointerLikeTypeTraits class. This allows data
11// structures to reason about pointers and other things that are pointer sized.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
16#define LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
17
18#include "llvm/Support/DataTypes.h"
19#include <assert.h>
20#include <type_traits>
21
22namespace llvm {
23
24/// A traits type that is used to handle pointer types and things that are just
25/// wrappers for pointers as a uniform entity.
26template <typename T> struct PointerLikeTypeTraits;
27
28namespace detail {
29/// A tiny meta function to compute the log2 of a compile time constant.
30template <size_t N>
31struct ConstantLog2
32 : std::integral_constant<size_t, ConstantLog2<N / 2>::value + 1> {};
33template <> struct ConstantLog2<1> : std::integral_constant<size_t, 0> {};
34
35// Provide a trait to check if T is pointer-like.
36template <typename T, typename U = void> struct HasPointerLikeTypeTraits {
37 static const bool value = false;
38};
39
40// sizeof(T) is valid only for a complete T.
41template <typename T> struct HasPointerLikeTypeTraits<
42 T, decltype((sizeof(PointerLikeTypeTraits<T>) + sizeof(T)), void())> {
43 static const bool value = true;
44};
45
46template <typename T> struct IsPointerLike {
47 static const bool value = HasPointerLikeTypeTraits<T>::value;
48};
49
50template <typename T> struct IsPointerLike<T *> {
51 static const bool value = true;
52};
53} // namespace detail
54
55// Provide PointerLikeTypeTraits for non-cvr pointers.
56template <typename T> struct PointerLikeTypeTraits<T *> {
57 static inline void *getAsVoidPointer(T *P) { return P; }
58 static inline T *getFromVoidPointer(void *P) { return static_cast<T *>(P); }
59
60 enum { NumLowBitsAvailable = detail::ConstantLog2<alignof(T)>::value };
61};
62
63template <> struct PointerLikeTypeTraits<void *> {
64 static inline void *getAsVoidPointer(void *P) { return P; }
65 static inline void *getFromVoidPointer(void *P) { return P; }
66
67 /// Note, we assume here that void* is related to raw malloc'ed memory and
68 /// that malloc returns objects at least 4-byte aligned. However, this may be
69 /// wrong, or pointers may be from something other than malloc. In this case,
70 /// you should specify a real typed pointer or avoid this template.
71 ///
72 /// All clients should use assertions to do a run-time check to ensure that
73 /// this is actually true.
74 enum { NumLowBitsAvailable = 2 };
75};
76
77// Provide PointerLikeTypeTraits for const things.
78template <typename T> struct PointerLikeTypeTraits<const T> {
79 typedef PointerLikeTypeTraits<T> NonConst;
80
81 static inline const void *getAsVoidPointer(const T P) {
82 return NonConst::getAsVoidPointer(P);
83 }
84 static inline const T getFromVoidPointer(const void *P) {
85 return NonConst::getFromVoidPointer(const_cast<void *>(P));
86 }
87 enum { NumLowBitsAvailable = NonConst::NumLowBitsAvailable };
88};
89
90// Provide PointerLikeTypeTraits for const pointers.
91template <typename T> struct PointerLikeTypeTraits<const T *> {
92 typedef PointerLikeTypeTraits<T *> NonConst;
93
94 static inline const void *getAsVoidPointer(const T *P) {
95 return NonConst::getAsVoidPointer(const_cast<T *>(P));
96 }
97 static inline const T *getFromVoidPointer(const void *P) {
98 return NonConst::getFromVoidPointer(const_cast<void *>(P));
20
Calling 'PointerLikeTypeTraits::getFromVoidPointer'
21
Returning from 'PointerLikeTypeTraits::getFromVoidPointer'
99 }
100 enum { NumLowBitsAvailable = NonConst::NumLowBitsAvailable };
101};
102
103// Provide PointerLikeTypeTraits for uintptr_t.
104template <> struct PointerLikeTypeTraits<uintptr_t> {
105 static inline void *getAsVoidPointer(uintptr_t P) {
106 return reinterpret_cast<void *>(P);
107 }
108 static inline uintptr_t getFromVoidPointer(void *P) {
109 return reinterpret_cast<uintptr_t>(P);
110 }
111 // No bits are available!
112 enum { NumLowBitsAvailable = 0 };
113};
114
115/// Provide suitable custom traits struct for function pointers.
116///
117/// Function pointers can't be directly given these traits as functions can't
118/// have their alignment computed with `alignof` and we need different casting.
119///
120/// To rely on higher alignment for a specialized use, you can provide a
121/// customized form of this template explicitly with higher alignment, and
122/// potentially use alignment attributes on functions to satisfy that.
123template <int Alignment, typename FunctionPointerT>
124struct FunctionPointerLikeTypeTraits {
125 enum { NumLowBitsAvailable = detail::ConstantLog2<Alignment>::value };
126 static inline void *getAsVoidPointer(FunctionPointerT P) {
127 assert((reinterpret_cast<uintptr_t>(P) &(static_cast <bool> ((reinterpret_cast<uintptr_t>
(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0
&& "Alignment not satisfied for an actual function pointer!"
) ? void (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/Support/PointerLikeTypeTraits.h"
, 129, __extension__ __PRETTY_FUNCTION__))
128 ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 &&(static_cast <bool> ((reinterpret_cast<uintptr_t>
(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0
&& "Alignment not satisfied for an actual function pointer!"
) ? void (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/Support/PointerLikeTypeTraits.h"
, 129, __extension__ __PRETTY_FUNCTION__))
129 "Alignment not satisfied for an actual function pointer!")(static_cast <bool> ((reinterpret_cast<uintptr_t>
(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0
&& "Alignment not satisfied for an actual function pointer!"
) ? void (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-7~svn337490/include/llvm/Support/PointerLikeTypeTraits.h"
, 129, __extension__ __PRETTY_FUNCTION__))
;
130 return reinterpret_cast<void *>(P);
131 }
132 static inline FunctionPointerT getFromVoidPointer(void *P) {
133 return reinterpret_cast<FunctionPointerT>(P);
134 }
135};
136
137/// Provide a default specialization for function pointers that assumes 4-byte
138/// alignment.
139///
140/// We assume here that functions used with this are always at least 4-byte
141/// aligned. This means that, for example, thumb functions won't work or systems
142/// with weird unaligned function pointers won't work. But all practical systems
143/// we support satisfy this requirement.
144template <typename ReturnT, typename... ParamTs>
145struct PointerLikeTypeTraits<ReturnT (*)(ParamTs...)>
146 : FunctionPointerLikeTypeTraits<4, ReturnT (*)(ParamTs...)> {};
147
148} // end namespace llvm
149
150#endif