Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 3040, column 27
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeNVPTX.h"
23#include "CodeGenFunction.h"
24#include "CodeGenPGO.h"
25#include "ConstantEmitter.h"
26#include "CoverageMappingGen.h"
27#include "TargetInfo.h"
28#include "clang/AST/ASTContext.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/AST/DeclCXX.h"
31#include "clang/AST/DeclObjC.h"
32#include "clang/AST/DeclTemplate.h"
33#include "clang/AST/Mangle.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/RecursiveASTVisitor.h"
36#include "clang/AST/StmtVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/CodeGenOptions.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/Module.h"
42#include "clang/Basic/SourceManager.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/Version.h"
45#include "clang/CodeGen/ConstantInitBuilder.h"
46#include "clang/Frontend/FrontendDiagnostic.h"
47#include "llvm/ADT/StringSwitch.h"
48#include "llvm/ADT/Triple.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/ProfileSummary.h"
56#include "llvm/ProfileData/InstrProfReader.h"
57#include "llvm/Support/CodeGen.h"
58#include "llvm/Support/ConvertUTF.h"
59#include "llvm/Support/ErrorHandling.h"
60#include "llvm/Support/MD5.h"
61#include "llvm/Support/TimeProfiler.h"
62
63using namespace clang;
64using namespace CodeGen;
65
66static llvm::cl::opt<bool> LimitedCoverage(
67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69 llvm::cl::init(false));
70
71static const char AnnotationSection[] = "llvm.metadata";
72
73static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74 switch (CGM.getTarget().getCXXABI().getKind()) {
75 case TargetCXXABI::GenericAArch64:
76 case TargetCXXABI::GenericARM:
77 case TargetCXXABI::iOS:
78 case TargetCXXABI::iOS64:
79 case TargetCXXABI::WatchOS:
80 case TargetCXXABI::GenericMIPS:
81 case TargetCXXABI::GenericItanium:
82 case TargetCXXABI::WebAssembly:
83 return CreateItaniumCXXABI(CGM);
84 case TargetCXXABI::Microsoft:
85 return CreateMicrosoftCXXABI(CGM);
86 }
87
88 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 88)
;
89}
90
91CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92 const PreprocessorOptions &PPO,
93 const CodeGenOptions &CGO, llvm::Module &M,
94 DiagnosticsEngine &diags,
95 CoverageSourceInfo *CoverageInfo)
96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99 VMContext(M.getContext()), Types(*this), VTables(*this),
100 SanitizerMD(new SanitizerMetadata(*this)) {
101
102 // Initialize the type cache.
103 llvm::LLVMContext &LLVMContext = M.getContext();
104 VoidTy = llvm::Type::getVoidTy(LLVMContext);
105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109 HalfTy = llvm::Type::getHalfTy(LLVMContext);
110 FloatTy = llvm::Type::getFloatTy(LLVMContext);
111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113 PointerAlignInBytes =
114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115 SizeSizeInBytes =
116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117 IntAlignInBytes =
118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120 IntPtrTy = llvm::IntegerType::get(LLVMContext,
121 C.getTargetInfo().getMaxPointerWidth());
122 Int8PtrTy = Int8Ty->getPointerTo(0);
123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124 AllocaInt8PtrTy = Int8Ty->getPointerTo(
125 M.getDataLayout().getAllocaAddrSpace());
126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127
128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129
130 if (LangOpts.ObjC)
131 createObjCRuntime();
132 if (LangOpts.OpenCL)
133 createOpenCLRuntime();
134 if (LangOpts.OpenMP)
135 createOpenMPRuntime();
136 if (LangOpts.CUDA)
137 createCUDARuntime();
138
139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143 getCXXABI().getMangleContext()));
144
145 // If debug info or coverage generation is enabled, create the CGDebugInfo
146 // object.
147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149 DebugInfo.reset(new CGDebugInfo(*this));
150
151 Block.GlobalUniqueCount = 0;
152
153 if (C.getLangOpts().ObjC)
154 ObjCData.reset(new ObjCEntrypoints());
155
156 if (CodeGenOpts.hasProfileClangUse()) {
157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159 if (auto E = ReaderOrErr.takeError()) {
160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161 "Could not read profile %0: %1");
162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164 << EI.message();
165 });
166 } else
167 PGOReader = std::move(ReaderOrErr.get());
168 }
169
170 // If coverage mapping generation is enabled, create the
171 // CoverageMappingModuleGen object.
172 if (CodeGenOpts.CoverageMapping)
173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174}
175
176CodeGenModule::~CodeGenModule() {}
177
178void CodeGenModule::createObjCRuntime() {
179 // This is just isGNUFamily(), but we want to force implementors of
180 // new ABIs to decide how best to do this.
181 switch (LangOpts.ObjCRuntime.getKind()) {
182 case ObjCRuntime::GNUstep:
183 case ObjCRuntime::GCC:
184 case ObjCRuntime::ObjFW:
185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186 return;
187
188 case ObjCRuntime::FragileMacOSX:
189 case ObjCRuntime::MacOSX:
190 case ObjCRuntime::iOS:
191 case ObjCRuntime::WatchOS:
192 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193 return;
194 }
195 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 195)
;
196}
197
198void CodeGenModule::createOpenCLRuntime() {
199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200}
201
202void CodeGenModule::createOpenMPRuntime() {
203 // Select a specialized code generation class based on the target, if any.
204 // If it does not exist use the default implementation.
205 switch (getTriple().getArch()) {
206 case llvm::Triple::nvptx:
207 case llvm::Triple::nvptx64:
208 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 209, __PRETTY_FUNCTION__))
209 "OpenMP NVPTX is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211 break;
212 default:
213 if (LangOpts.OpenMPSimd)
214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215 else
216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217 break;
218 }
219}
220
221void CodeGenModule::createCUDARuntime() {
222 CUDARuntime.reset(CreateNVCUDARuntime(*this));
223}
224
225void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226 Replacements[Name] = C;
227}
228
229void CodeGenModule::applyReplacements() {
230 for (auto &I : Replacements) {
231 StringRef MangledName = I.first();
232 llvm::Constant *Replacement = I.second;
233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234 if (!Entry)
235 continue;
236 auto *OldF = cast<llvm::Function>(Entry);
237 auto *NewF = dyn_cast<llvm::Function>(Replacement);
238 if (!NewF) {
239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241 } else {
242 auto *CE = cast<llvm::ConstantExpr>(Replacement);
243 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 244, __PRETTY_FUNCTION__))
244 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 244, __PRETTY_FUNCTION__))
;
245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246 }
247 }
248
249 // Replace old with new, but keep the old order.
250 OldF->replaceAllUsesWith(Replacement);
251 if (NewF) {
252 NewF->removeFromParent();
253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254 NewF);
255 }
256 OldF->eraseFromParent();
257 }
258}
259
260void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261 GlobalValReplacements.push_back(std::make_pair(GV, C));
262}
263
264void CodeGenModule::applyGlobalValReplacements() {
265 for (auto &I : GlobalValReplacements) {
266 llvm::GlobalValue *GV = I.first;
267 llvm::Constant *C = I.second;
268
269 GV->replaceAllUsesWith(C);
270 GV->eraseFromParent();
271 }
272}
273
274// This is only used in aliases that we created and we know they have a
275// linear structure.
276static const llvm::GlobalObject *getAliasedGlobal(
277 const llvm::GlobalIndirectSymbol &GIS) {
278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279 const llvm::Constant *C = &GIS;
280 for (;;) {
281 C = C->stripPointerCasts();
282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283 return GO;
284 // stripPointerCasts will not walk over weak aliases.
285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286 if (!GIS2)
287 return nullptr;
288 if (!Visited.insert(GIS2).second)
289 return nullptr;
290 C = GIS2->getIndirectSymbol();
291 }
292}
293
294void CodeGenModule::checkAliases() {
295 // Check if the constructed aliases are well formed. It is really unfortunate
296 // that we have to do this in CodeGen, but we only construct mangled names
297 // and aliases during codegen.
298 bool Error = false;
299 DiagnosticsEngine &Diags = getDiags();
300 for (const GlobalDecl &GD : Aliases) {
301 const auto *D = cast<ValueDecl>(GD.getDecl());
302 SourceLocation Location;
303 bool IsIFunc = D->hasAttr<IFuncAttr>();
304 if (const Attr *A = D->getDefiningAttr())
305 Location = A->getLocation();
306 else
307 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 307)
;
308 StringRef MangledName = getMangledName(GD);
309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312 if (!GV) {
313 Error = true;
314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315 } else if (GV->isDeclaration()) {
316 Error = true;
317 Diags.Report(Location, diag::err_alias_to_undefined)
318 << IsIFunc << IsIFunc;
319 } else if (IsIFunc) {
320 // Check resolver function type.
321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322 GV->getType()->getPointerElementType());
323 assert(FTy)((FTy) ? static_cast<void> (0) : __assert_fail ("FTy", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 323, __PRETTY_FUNCTION__))
;
324 if (!FTy->getReturnType()->isPointerTy())
325 Diags.Report(Location, diag::err_ifunc_resolver_return);
326 }
327
328 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329 llvm::GlobalValue *AliaseeGV;
330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332 else
333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334
335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336 StringRef AliasSection = SA->getName();
337 if (AliasSection != AliaseeGV->getSection())
338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339 << AliasSection << IsIFunc << IsIFunc;
340 }
341
342 // We have to handle alias to weak aliases in here. LLVM itself disallows
343 // this since the object semantics would not match the IL one. For
344 // compatibility with gcc we implement it by just pointing the alias
345 // to its aliasee's aliasee. We also warn, since the user is probably
346 // expecting the link to be weak.
347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348 if (GA->isInterposable()) {
349 Diags.Report(Location, diag::warn_alias_to_weak_alias)
350 << GV->getName() << GA->getName() << IsIFunc;
351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352 GA->getIndirectSymbol(), Alias->getType());
353 Alias->setIndirectSymbol(Aliasee);
354 }
355 }
356 }
357 if (!Error)
358 return;
359
360 for (const GlobalDecl &GD : Aliases) {
361 StringRef MangledName = getMangledName(GD);
362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365 Alias->eraseFromParent();
366 }
367}
368
369void CodeGenModule::clear() {
370 DeferredDeclsToEmit.clear();
371 if (OpenMPRuntime)
372 OpenMPRuntime->clear();
373}
374
375void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376 StringRef MainFile) {
377 if (!hasDiagnostics())
378 return;
379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380 if (MainFile.empty())
381 MainFile = "<stdin>";
382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383 } else {
384 if (Mismatched > 0)
385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386
387 if (Missing > 0)
388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389 }
390}
391
392void CodeGenModule::Release() {
393 EmitDeferred();
394 EmitVTablesOpportunistically();
395 applyGlobalValReplacements();
396 applyReplacements();
397 checkAliases();
398 emitMultiVersionFunctions();
399 EmitCXXGlobalInitFunc();
400 EmitCXXGlobalDtorFunc();
401 registerGlobalDtorsWithAtExit();
402 EmitCXXThreadLocalInitFunc();
403 if (ObjCRuntime)
404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405 AddGlobalCtor(ObjCInitFunction);
406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407 CUDARuntime) {
408 if (llvm::Function *CudaCtorFunction =
409 CUDARuntime->makeModuleCtorFunction())
410 AddGlobalCtor(CudaCtorFunction);
411 }
412 if (OpenMPRuntime) {
413 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416 }
417 if (llvm::Function *OpenMPRegistrationFunction =
418 OpenMPRuntime->emitRegistrationFunction()) {
419 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420 OpenMPRegistrationFunction : nullptr;
421 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422 }
423 OpenMPRuntime->clear();
424 }
425 if (PGOReader) {
426 getModule().setProfileSummary(
427 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428 llvm::ProfileSummary::PSK_Instr);
429 if (PGOStats.hasDiagnostics())
430 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431 }
432 EmitCtorList(GlobalCtors, "llvm.global_ctors");
433 EmitCtorList(GlobalDtors, "llvm.global_dtors");
434 EmitGlobalAnnotations();
435 EmitStaticExternCAliases();
436 EmitDeferredUnusedCoverageMappings();
437 if (CoverageMapping)
438 CoverageMapping->emit();
439 if (CodeGenOpts.SanitizeCfiCrossDso) {
440 CodeGenFunction(*this).EmitCfiCheckFail();
441 CodeGenFunction(*this).EmitCfiCheckStub();
442 }
443 emitAtAvailableLinkGuard();
444 emitLLVMUsed();
445 if (SanStats)
446 SanStats->finish();
447
448 if (CodeGenOpts.Autolink &&
449 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450 EmitModuleLinkOptions();
451 }
452
453 // On ELF we pass the dependent library specifiers directly to the linker
454 // without manipulating them. This is in contrast to other platforms where
455 // they are mapped to a specific linker option by the compiler. This
456 // difference is a result of the greater variety of ELF linkers and the fact
457 // that ELF linkers tend to handle libraries in a more complicated fashion
458 // than on other platforms. This forces us to defer handling the dependent
459 // libs to the linker.
460 //
461 // CUDA/HIP device and host libraries are different. Currently there is no
462 // way to differentiate dependent libraries for host or device. Existing
463 // usage of #pragma comment(lib, *) is intended for host libraries on
464 // Windows. Therefore emit llvm.dependent-libraries only for host.
465 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467 for (auto *MD : ELFDependentLibraries)
468 NMD->addOperand(MD);
469 }
470
471 // Record mregparm value now so it is visible through rest of codegen.
472 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474 CodeGenOpts.NumRegisterParameters);
475
476 if (CodeGenOpts.DwarfVersion) {
477 // We actually want the latest version when there are conflicts.
478 // We can change from Warning to Latest if such mode is supported.
479 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480 CodeGenOpts.DwarfVersion);
481 }
482 if (CodeGenOpts.EmitCodeView) {
483 // Indicate that we want CodeView in the metadata.
484 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485 }
486 if (CodeGenOpts.CodeViewGHash) {
487 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488 }
489 if (CodeGenOpts.ControlFlowGuard) {
490 // We want function ID tables for Control Flow Guard.
491 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492 }
493 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494 // We don't support LTO with 2 with different StrictVTablePointers
495 // FIXME: we could support it by stripping all the information introduced
496 // by StrictVTablePointers.
497
498 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499
500 llvm::Metadata *Ops[2] = {
501 llvm::MDString::get(VMContext, "StrictVTablePointers"),
502 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503 llvm::Type::getInt32Ty(VMContext), 1))};
504
505 getModule().addModuleFlag(llvm::Module::Require,
506 "StrictVTablePointersRequirement",
507 llvm::MDNode::get(VMContext, Ops));
508 }
509 if (DebugInfo)
510 // We support a single version in the linked module. The LLVM
511 // parser will drop debug info with a different version number
512 // (and warn about it, too).
513 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514 llvm::DEBUG_METADATA_VERSION);
515
516 // We need to record the widths of enums and wchar_t, so that we can generate
517 // the correct build attributes in the ARM backend. wchar_size is also used by
518 // TargetLibraryInfo.
519 uint64_t WCharWidth =
520 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522
523 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524 if ( Arch == llvm::Triple::arm
525 || Arch == llvm::Triple::armeb
526 || Arch == llvm::Triple::thumb
527 || Arch == llvm::Triple::thumbeb) {
528 // The minimum width of an enum in bytes
529 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531 }
532
533 if (CodeGenOpts.SanitizeCfiCrossDso) {
534 // Indicate that we want cross-DSO control flow integrity checks.
535 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536 }
537
538 if (CodeGenOpts.CFProtectionReturn &&
539 Target.checkCFProtectionReturnSupported(getDiags())) {
540 // Indicate that we want to instrument return control flow protection.
541 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
542 1);
543 }
544
545 if (CodeGenOpts.CFProtectionBranch &&
546 Target.checkCFProtectionBranchSupported(getDiags())) {
547 // Indicate that we want to instrument branch control flow protection.
548 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
549 1);
550 }
551
552 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
553 // Indicate whether __nvvm_reflect should be configured to flush denormal
554 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
555 // property.)
556 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
557 CodeGenOpts.FlushDenorm ? 1 : 0);
558 }
559
560 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
561 if (LangOpts.OpenCL) {
562 EmitOpenCLMetadata();
563 // Emit SPIR version.
564 if (getTriple().isSPIR()) {
565 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
566 // opencl.spir.version named metadata.
567 // C++ is backwards compatible with OpenCL v2.0.
568 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
569 llvm::Metadata *SPIRVerElts[] = {
570 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
571 Int32Ty, Version / 100)),
572 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
573 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
574 llvm::NamedMDNode *SPIRVerMD =
575 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
576 llvm::LLVMContext &Ctx = TheModule.getContext();
577 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
578 }
579 }
580
581 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
582 assert(PLevel < 3 && "Invalid PIC Level")((PLevel < 3 && "Invalid PIC Level") ? static_cast
<void> (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 582, __PRETTY_FUNCTION__))
;
583 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
584 if (Context.getLangOpts().PIE)
585 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
586 }
587
588 if (getCodeGenOpts().CodeModel.size() > 0) {
589 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
590 .Case("tiny", llvm::CodeModel::Tiny)
591 .Case("small", llvm::CodeModel::Small)
592 .Case("kernel", llvm::CodeModel::Kernel)
593 .Case("medium", llvm::CodeModel::Medium)
594 .Case("large", llvm::CodeModel::Large)
595 .Default(~0u);
596 if (CM != ~0u) {
597 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
598 getModule().setCodeModel(codeModel);
599 }
600 }
601
602 if (CodeGenOpts.NoPLT)
603 getModule().setRtLibUseGOT();
604
605 SimplifyPersonality();
606
607 if (getCodeGenOpts().EmitDeclMetadata)
608 EmitDeclMetadata();
609
610 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
611 EmitCoverageFile();
612
613 if (DebugInfo)
614 DebugInfo->finalize();
615
616 if (getCodeGenOpts().EmitVersionIdentMetadata)
617 EmitVersionIdentMetadata();
618
619 if (!getCodeGenOpts().RecordCommandLine.empty())
620 EmitCommandLineMetadata();
621
622 EmitTargetMetadata();
623}
624
625void CodeGenModule::EmitOpenCLMetadata() {
626 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
627 // opencl.ocl.version named metadata node.
628 // C++ is backwards compatible with OpenCL v2.0.
629 // FIXME: We might need to add CXX version at some point too?
630 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
631 llvm::Metadata *OCLVerElts[] = {
632 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
633 Int32Ty, Version / 100)),
634 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
635 Int32Ty, (Version % 100) / 10))};
636 llvm::NamedMDNode *OCLVerMD =
637 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
638 llvm::LLVMContext &Ctx = TheModule.getContext();
639 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
640}
641
642void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
643 // Make sure that this type is translated.
644 Types.UpdateCompletedType(TD);
645}
646
647void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
648 // Make sure that this type is translated.
649 Types.RefreshTypeCacheForClass(RD);
650}
651
652llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
653 if (!TBAA)
654 return nullptr;
655 return TBAA->getTypeInfo(QTy);
656}
657
658TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
659 if (!TBAA)
660 return TBAAAccessInfo();
661 return TBAA->getAccessInfo(AccessType);
662}
663
664TBAAAccessInfo
665CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
666 if (!TBAA)
667 return TBAAAccessInfo();
668 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
669}
670
671llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
672 if (!TBAA)
673 return nullptr;
674 return TBAA->getTBAAStructInfo(QTy);
675}
676
677llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
678 if (!TBAA)
679 return nullptr;
680 return TBAA->getBaseTypeInfo(QTy);
681}
682
683llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
684 if (!TBAA)
685 return nullptr;
686 return TBAA->getAccessTagInfo(Info);
687}
688
689TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
690 TBAAAccessInfo TargetInfo) {
691 if (!TBAA)
692 return TBAAAccessInfo();
693 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
694}
695
696TBAAAccessInfo
697CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
698 TBAAAccessInfo InfoB) {
699 if (!TBAA)
700 return TBAAAccessInfo();
701 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
702}
703
704TBAAAccessInfo
705CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
706 TBAAAccessInfo SrcInfo) {
707 if (!TBAA)
708 return TBAAAccessInfo();
709 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
710}
711
712void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
713 TBAAAccessInfo TBAAInfo) {
714 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
715 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
716}
717
718void CodeGenModule::DecorateInstructionWithInvariantGroup(
719 llvm::Instruction *I, const CXXRecordDecl *RD) {
720 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
721 llvm::MDNode::get(getLLVMContext(), {}));
722}
723
724void CodeGenModule::Error(SourceLocation loc, StringRef message) {
725 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
726 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
727}
728
729/// ErrorUnsupported - Print out an error that codegen doesn't support the
730/// specified stmt yet.
731void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
732 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
733 "cannot compile this %0 yet");
734 std::string Msg = Type;
735 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
736 << Msg << S->getSourceRange();
737}
738
739/// ErrorUnsupported - Print out an error that codegen doesn't support the
740/// specified decl yet.
741void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
742 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
743 "cannot compile this %0 yet");
744 std::string Msg = Type;
745 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
746}
747
748llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
749 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
750}
751
752void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
753 const NamedDecl *D) const {
754 if (GV->hasDLLImportStorageClass())
755 return;
756 // Internal definitions always have default visibility.
757 if (GV->hasLocalLinkage()) {
758 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
759 return;
760 }
761 if (!D)
762 return;
763 // Set visibility for definitions, and for declarations if requested globally
764 // or set explicitly.
765 LinkageInfo LV = D->getLinkageAndVisibility();
766 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
767 !GV->isDeclarationForLinker())
768 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
769}
770
771static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
772 llvm::GlobalValue *GV) {
773 if (GV->hasLocalLinkage())
774 return true;
775
776 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
777 return true;
778
779 // DLLImport explicitly marks the GV as external.
780 if (GV->hasDLLImportStorageClass())
781 return false;
782
783 const llvm::Triple &TT = CGM.getTriple();
784 if (TT.isWindowsGNUEnvironment()) {
785 // In MinGW, variables without DLLImport can still be automatically
786 // imported from a DLL by the linker; don't mark variables that
787 // potentially could come from another DLL as DSO local.
788 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
789 !GV->isThreadLocal())
790 return false;
791 }
792
793 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
794 // remain unresolved in the link, they can be resolved to zero, which is
795 // outside the current DSO.
796 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
797 return false;
798
799 // Every other GV is local on COFF.
800 // Make an exception for windows OS in the triple: Some firmware builds use
801 // *-win32-macho triples. This (accidentally?) produced windows relocations
802 // without GOT tables in older clang versions; Keep this behaviour.
803 // FIXME: even thread local variables?
804 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
805 return true;
806
807 // Only handle COFF and ELF for now.
808 if (!TT.isOSBinFormatELF())
809 return false;
810
811 // If this is not an executable, don't assume anything is local.
812 const auto &CGOpts = CGM.getCodeGenOpts();
813 llvm::Reloc::Model RM = CGOpts.RelocationModel;
814 const auto &LOpts = CGM.getLangOpts();
815 if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
816 return false;
817
818 // A definition cannot be preempted from an executable.
819 if (!GV->isDeclarationForLinker())
820 return true;
821
822 // Most PIC code sequences that assume that a symbol is local cannot produce a
823 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
824 // depended, it seems worth it to handle it here.
825 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
826 return false;
827
828 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
829 llvm::Triple::ArchType Arch = TT.getArch();
830 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
831 Arch == llvm::Triple::ppc64le)
832 return false;
833
834 // If we can use copy relocations we can assume it is local.
835 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
836 if (!Var->isThreadLocal() &&
837 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
838 return true;
839
840 // If we can use a plt entry as the symbol address we can assume it
841 // is local.
842 // FIXME: This should work for PIE, but the gold linker doesn't support it.
843 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
844 return true;
845
846 // Otherwise don't assue it is local.
847 return false;
848}
849
850void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
851 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
852}
853
854void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
855 GlobalDecl GD) const {
856 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
857 // C++ destructors have a few C++ ABI specific special cases.
858 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
859 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
860 return;
861 }
862 setDLLImportDLLExport(GV, D);
863}
864
865void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
866 const NamedDecl *D) const {
867 if (D && D->isExternallyVisible()) {
868 if (D->hasAttr<DLLImportAttr>())
869 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
870 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
871 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
872 }
873}
874
875void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
876 GlobalDecl GD) const {
877 setDLLImportDLLExport(GV, GD);
878 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
879}
880
881void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
882 const NamedDecl *D) const {
883 setDLLImportDLLExport(GV, D);
884 setGlobalVisibilityAndLocal(GV, D);
885}
886
887void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
888 const NamedDecl *D) const {
889 setGlobalVisibility(GV, D);
890 setDSOLocal(GV);
891}
892
893static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
894 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
895 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
896 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
897 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
898 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
899}
900
901static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
902 CodeGenOptions::TLSModel M) {
903 switch (M) {
904 case CodeGenOptions::GeneralDynamicTLSModel:
905 return llvm::GlobalVariable::GeneralDynamicTLSModel;
906 case CodeGenOptions::LocalDynamicTLSModel:
907 return llvm::GlobalVariable::LocalDynamicTLSModel;
908 case CodeGenOptions::InitialExecTLSModel:
909 return llvm::GlobalVariable::InitialExecTLSModel;
910 case CodeGenOptions::LocalExecTLSModel:
911 return llvm::GlobalVariable::LocalExecTLSModel;
912 }
913 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 913)
;
914}
915
916void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
917 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")((D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? static_cast<void> (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 917, __PRETTY_FUNCTION__))
;
918
919 llvm::GlobalValue::ThreadLocalMode TLM;
920 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
921
922 // Override the TLS model if it is explicitly specified.
923 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
924 TLM = GetLLVMTLSModel(Attr->getModel());
925 }
926
927 GV->setThreadLocalMode(TLM);
928}
929
930static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
931 StringRef Name) {
932 const TargetInfo &Target = CGM.getTarget();
933 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
934}
935
936static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
937 const CPUSpecificAttr *Attr,
938 unsigned CPUIndex,
939 raw_ostream &Out) {
940 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
941 // supported.
942 if (Attr)
943 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
944 else if (CGM.getTarget().supportsIFunc())
945 Out << ".resolver";
946}
947
948static void AppendTargetMangling(const CodeGenModule &CGM,
949 const TargetAttr *Attr, raw_ostream &Out) {
950 if (Attr->isDefaultVersion())
951 return;
952
953 Out << '.';
954 const TargetInfo &Target = CGM.getTarget();
955 TargetAttr::ParsedTargetAttr Info =
956 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
957 // Multiversioning doesn't allow "no-${feature}", so we can
958 // only have "+" prefixes here.
959 assert(LHS.startswith("+") && RHS.startswith("+") &&((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 960, __PRETTY_FUNCTION__))
960 "Features should always have a prefix.")((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 960, __PRETTY_FUNCTION__))
;
961 return Target.multiVersionSortPriority(LHS.substr(1)) >
962 Target.multiVersionSortPriority(RHS.substr(1));
963 });
964
965 bool IsFirst = true;
966
967 if (!Info.Architecture.empty()) {
968 IsFirst = false;
969 Out << "arch_" << Info.Architecture;
970 }
971
972 for (StringRef Feat : Info.Features) {
973 if (!IsFirst)
974 Out << '_';
975 IsFirst = false;
976 Out << Feat.substr(1);
977 }
978}
979
980static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
981 const NamedDecl *ND,
982 bool OmitMultiVersionMangling = false) {
983 SmallString<256> Buffer;
984 llvm::raw_svector_ostream Out(Buffer);
985 MangleContext &MC = CGM.getCXXABI().getMangleContext();
986 if (MC.shouldMangleDeclName(ND)) {
987 llvm::raw_svector_ostream Out(Buffer);
988 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
989 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
990 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
991 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
992 else
993 MC.mangleName(ND, Out);
994 } else {
995 IdentifierInfo *II = ND->getIdentifier();
996 assert(II && "Attempt to mangle unnamed decl.")((II && "Attempt to mangle unnamed decl.") ? static_cast
<void> (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 996, __PRETTY_FUNCTION__))
;
997 const auto *FD = dyn_cast<FunctionDecl>(ND);
998
999 if (FD &&
1000 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1001 llvm::raw_svector_ostream Out(Buffer);
1002 Out << "__regcall3__" << II->getName();
1003 } else {
1004 Out << II->getName();
1005 }
1006 }
1007
1008 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1009 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1010 switch (FD->getMultiVersionKind()) {
1011 case MultiVersionKind::CPUDispatch:
1012 case MultiVersionKind::CPUSpecific:
1013 AppendCPUSpecificCPUDispatchMangling(CGM,
1014 FD->getAttr<CPUSpecificAttr>(),
1015 GD.getMultiVersionIndex(), Out);
1016 break;
1017 case MultiVersionKind::Target:
1018 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1019 break;
1020 case MultiVersionKind::None:
1021 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1021)
;
1022 }
1023 }
1024
1025 return Out.str();
1026}
1027
1028void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1029 const FunctionDecl *FD) {
1030 if (!FD->isMultiVersion())
1031 return;
1032
1033 // Get the name of what this would be without the 'target' attribute. This
1034 // allows us to lookup the version that was emitted when this wasn't a
1035 // multiversion function.
1036 std::string NonTargetName =
1037 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1038 GlobalDecl OtherGD;
1039 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1040 assert(OtherGD.getCanonicalDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1044, __PRETTY_FUNCTION__))
1041 .getDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1044, __PRETTY_FUNCTION__))
1042 ->getAsFunction()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1044, __PRETTY_FUNCTION__))
1043 ->isMultiVersion() &&((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1044, __PRETTY_FUNCTION__))
1044 "Other GD should now be a multiversioned function")((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1044, __PRETTY_FUNCTION__))
;
1045 // OtherFD is the version of this function that was mangled BEFORE
1046 // becoming a MultiVersion function. It potentially needs to be updated.
1047 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1048 .getDecl()
1049 ->getAsFunction()
1050 ->getMostRecentDecl();
1051 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1052 // This is so that if the initial version was already the 'default'
1053 // version, we don't try to update it.
1054 if (OtherName != NonTargetName) {
1055 // Remove instead of erase, since others may have stored the StringRef
1056 // to this.
1057 const auto ExistingRecord = Manglings.find(NonTargetName);
1058 if (ExistingRecord != std::end(Manglings))
1059 Manglings.remove(&(*ExistingRecord));
1060 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1061 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1062 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1063 Entry->setName(OtherName);
1064 }
1065 }
1066}
1067
1068StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1069 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1070
1071 // Some ABIs don't have constructor variants. Make sure that base and
1072 // complete constructors get mangled the same.
1073 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1074 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1075 CXXCtorType OrigCtorType = GD.getCtorType();
1076 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)((OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)
? static_cast<void> (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1076, __PRETTY_FUNCTION__))
;
1077 if (OrigCtorType == Ctor_Base)
1078 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1079 }
1080 }
1081
1082 auto FoundName = MangledDeclNames.find(CanonicalGD);
1083 if (FoundName != MangledDeclNames.end())
1084 return FoundName->second;
1085
1086 // Keep the first result in the case of a mangling collision.
1087 const auto *ND = cast<NamedDecl>(GD.getDecl());
1088 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1089
1090 // Postfix kernel stub names with .stub to differentiate them from kernel
1091 // names in device binaries. This is to facilitate the debugger to find
1092 // the correct symbols for kernels in the device binary.
1093 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1094 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice &&
1095 FD->hasAttr<CUDAGlobalAttr>())
1096 MangledName = MangledName + ".stub";
1097
1098 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1099 return MangledDeclNames[CanonicalGD] = Result.first->first();
1100}
1101
1102StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1103 const BlockDecl *BD) {
1104 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1105 const Decl *D = GD.getDecl();
1106
1107 SmallString<256> Buffer;
1108 llvm::raw_svector_ostream Out(Buffer);
1109 if (!D)
1110 MangleCtx.mangleGlobalBlock(BD,
1111 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1112 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1113 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1114 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1115 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1116 else
1117 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1118
1119 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1120 return Result.first->first();
1121}
1122
1123llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1124 return getModule().getNamedValue(Name);
1125}
1126
1127/// AddGlobalCtor - Add a function to the list that will be called before
1128/// main() runs.
1129void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1130 llvm::Constant *AssociatedData) {
1131 // FIXME: Type coercion of void()* types.
1132 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1133}
1134
1135/// AddGlobalDtor - Add a function to the list that will be called
1136/// when the module is unloaded.
1137void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1138 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1139 DtorsUsingAtExit[Priority].push_back(Dtor);
1140 return;
1141 }
1142
1143 // FIXME: Type coercion of void()* types.
1144 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1145}
1146
1147void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1148 if (Fns.empty()) return;
1149
1150 // Ctor function type is void()*.
1151 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1152 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1153 TheModule.getDataLayout().getProgramAddressSpace());
1154
1155 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1156 llvm::StructType *CtorStructTy = llvm::StructType::get(
1157 Int32Ty, CtorPFTy, VoidPtrTy);
1158
1159 // Construct the constructor and destructor arrays.
1160 ConstantInitBuilder builder(*this);
1161 auto ctors = builder.beginArray(CtorStructTy);
1162 for (const auto &I : Fns) {
1163 auto ctor = ctors.beginStruct(CtorStructTy);
1164 ctor.addInt(Int32Ty, I.Priority);
1165 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1166 if (I.AssociatedData)
1167 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1168 else
1169 ctor.addNullPointer(VoidPtrTy);
1170 ctor.finishAndAddTo(ctors);
1171 }
1172
1173 auto list =
1174 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1175 /*constant*/ false,
1176 llvm::GlobalValue::AppendingLinkage);
1177
1178 // The LTO linker doesn't seem to like it when we set an alignment
1179 // on appending variables. Take it off as a workaround.
1180 list->setAlignment(0);
1181
1182 Fns.clear();
1183}
1184
1185llvm::GlobalValue::LinkageTypes
1186CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1187 const auto *D = cast<FunctionDecl>(GD.getDecl());
1188
1189 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1190
1191 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1192 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1193
1194 if (isa<CXXConstructorDecl>(D) &&
1195 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1196 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1197 // Our approach to inheriting constructors is fundamentally different from
1198 // that used by the MS ABI, so keep our inheriting constructor thunks
1199 // internal rather than trying to pick an unambiguous mangling for them.
1200 return llvm::GlobalValue::InternalLinkage;
1201 }
1202
1203 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1204}
1205
1206llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1207 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1208 if (!MDS) return nullptr;
1209
1210 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1211}
1212
1213void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1214 const CGFunctionInfo &Info,
1215 llvm::Function *F) {
1216 unsigned CallingConv;
1217 llvm::AttributeList PAL;
1218 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1219 F->setAttributes(PAL);
1220 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1221}
1222
1223static void removeImageAccessQualifier(std::string& TyName) {
1224 std::string ReadOnlyQual("__read_only");
1225 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1226 if (ReadOnlyPos != std::string::npos)
1227 // "+ 1" for the space after access qualifier.
1228 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1229 else {
1230 std::string WriteOnlyQual("__write_only");
1231 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1232 if (WriteOnlyPos != std::string::npos)
1233 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1234 else {
1235 std::string ReadWriteQual("__read_write");
1236 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1237 if (ReadWritePos != std::string::npos)
1238 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1239 }
1240 }
1241}
1242
1243// Returns the address space id that should be produced to the
1244// kernel_arg_addr_space metadata. This is always fixed to the ids
1245// as specified in the SPIR 2.0 specification in order to differentiate
1246// for example in clGetKernelArgInfo() implementation between the address
1247// spaces with targets without unique mapping to the OpenCL address spaces
1248// (basically all single AS CPUs).
1249static unsigned ArgInfoAddressSpace(LangAS AS) {
1250 switch (AS) {
1251 case LangAS::opencl_global: return 1;
1252 case LangAS::opencl_constant: return 2;
1253 case LangAS::opencl_local: return 3;
1254 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs.
1255 default:
1256 return 0; // Assume private.
1257 }
1258}
1259
1260void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1261 const FunctionDecl *FD,
1262 CodeGenFunction *CGF) {
1263 assert(((FD && CGF) || (!FD && !CGF)) &&((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1264, __PRETTY_FUNCTION__))
1264 "Incorrect use - FD and CGF should either be both null or not!")((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1264, __PRETTY_FUNCTION__))
;
1265 // Create MDNodes that represent the kernel arg metadata.
1266 // Each MDNode is a list in the form of "key", N number of values which is
1267 // the same number of values as their are kernel arguments.
1268
1269 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1270
1271 // MDNode for the kernel argument address space qualifiers.
1272 SmallVector<llvm::Metadata *, 8> addressQuals;
1273
1274 // MDNode for the kernel argument access qualifiers (images only).
1275 SmallVector<llvm::Metadata *, 8> accessQuals;
1276
1277 // MDNode for the kernel argument type names.
1278 SmallVector<llvm::Metadata *, 8> argTypeNames;
1279
1280 // MDNode for the kernel argument base type names.
1281 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1282
1283 // MDNode for the kernel argument type qualifiers.
1284 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1285
1286 // MDNode for the kernel argument names.
1287 SmallVector<llvm::Metadata *, 8> argNames;
1288
1289 if (FD && CGF)
1290 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1291 const ParmVarDecl *parm = FD->getParamDecl(i);
1292 QualType ty = parm->getType();
1293 std::string typeQuals;
1294
1295 if (ty->isPointerType()) {
1296 QualType pointeeTy = ty->getPointeeType();
1297
1298 // Get address qualifier.
1299 addressQuals.push_back(
1300 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1301 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1302
1303 // Get argument type name.
1304 std::string typeName =
1305 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1306
1307 // Turn "unsigned type" to "utype"
1308 std::string::size_type pos = typeName.find("unsigned");
1309 if (pointeeTy.isCanonical() && pos != std::string::npos)
1310 typeName.erase(pos + 1, 8);
1311
1312 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1313
1314 std::string baseTypeName =
1315 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1316 Policy) +
1317 "*";
1318
1319 // Turn "unsigned type" to "utype"
1320 pos = baseTypeName.find("unsigned");
1321 if (pos != std::string::npos)
1322 baseTypeName.erase(pos + 1, 8);
1323
1324 argBaseTypeNames.push_back(
1325 llvm::MDString::get(VMContext, baseTypeName));
1326
1327 // Get argument type qualifiers:
1328 if (ty.isRestrictQualified())
1329 typeQuals = "restrict";
1330 if (pointeeTy.isConstQualified() ||
1331 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1332 typeQuals += typeQuals.empty() ? "const" : " const";
1333 if (pointeeTy.isVolatileQualified())
1334 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1335 } else {
1336 uint32_t AddrSpc = 0;
1337 bool isPipe = ty->isPipeType();
1338 if (ty->isImageType() || isPipe)
1339 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1340
1341 addressQuals.push_back(
1342 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1343
1344 // Get argument type name.
1345 std::string typeName;
1346 if (isPipe)
1347 typeName = ty.getCanonicalType()
1348 ->getAs<PipeType>()
1349 ->getElementType()
1350 .getAsString(Policy);
1351 else
1352 typeName = ty.getUnqualifiedType().getAsString(Policy);
1353
1354 // Turn "unsigned type" to "utype"
1355 std::string::size_type pos = typeName.find("unsigned");
1356 if (ty.isCanonical() && pos != std::string::npos)
1357 typeName.erase(pos + 1, 8);
1358
1359 std::string baseTypeName;
1360 if (isPipe)
1361 baseTypeName = ty.getCanonicalType()
1362 ->getAs<PipeType>()
1363 ->getElementType()
1364 .getCanonicalType()
1365 .getAsString(Policy);
1366 else
1367 baseTypeName =
1368 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1369
1370 // Remove access qualifiers on images
1371 // (as they are inseparable from type in clang implementation,
1372 // but OpenCL spec provides a special query to get access qualifier
1373 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1374 if (ty->isImageType()) {
1375 removeImageAccessQualifier(typeName);
1376 removeImageAccessQualifier(baseTypeName);
1377 }
1378
1379 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1380
1381 // Turn "unsigned type" to "utype"
1382 pos = baseTypeName.find("unsigned");
1383 if (pos != std::string::npos)
1384 baseTypeName.erase(pos + 1, 8);
1385
1386 argBaseTypeNames.push_back(
1387 llvm::MDString::get(VMContext, baseTypeName));
1388
1389 if (isPipe)
1390 typeQuals = "pipe";
1391 }
1392
1393 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1394
1395 // Get image and pipe access qualifier:
1396 if (ty->isImageType() || ty->isPipeType()) {
1397 const Decl *PDecl = parm;
1398 if (auto *TD = dyn_cast<TypedefType>(ty))
1399 PDecl = TD->getDecl();
1400 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1401 if (A && A->isWriteOnly())
1402 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1403 else if (A && A->isReadWrite())
1404 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1405 else
1406 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1407 } else
1408 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1409
1410 // Get argument name.
1411 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1412 }
1413
1414 Fn->setMetadata("kernel_arg_addr_space",
1415 llvm::MDNode::get(VMContext, addressQuals));
1416 Fn->setMetadata("kernel_arg_access_qual",
1417 llvm::MDNode::get(VMContext, accessQuals));
1418 Fn->setMetadata("kernel_arg_type",
1419 llvm::MDNode::get(VMContext, argTypeNames));
1420 Fn->setMetadata("kernel_arg_base_type",
1421 llvm::MDNode::get(VMContext, argBaseTypeNames));
1422 Fn->setMetadata("kernel_arg_type_qual",
1423 llvm::MDNode::get(VMContext, argTypeQuals));
1424 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1425 Fn->setMetadata("kernel_arg_name",
1426 llvm::MDNode::get(VMContext, argNames));
1427}
1428
1429/// Determines whether the language options require us to model
1430/// unwind exceptions. We treat -fexceptions as mandating this
1431/// except under the fragile ObjC ABI with only ObjC exceptions
1432/// enabled. This means, for example, that C with -fexceptions
1433/// enables this.
1434static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1435 // If exceptions are completely disabled, obviously this is false.
1436 if (!LangOpts.Exceptions) return false;
1437
1438 // If C++ exceptions are enabled, this is true.
1439 if (LangOpts.CXXExceptions) return true;
1440
1441 // If ObjC exceptions are enabled, this depends on the ABI.
1442 if (LangOpts.ObjCExceptions) {
1443 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1444 }
1445
1446 return true;
1447}
1448
1449static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1450 const CXXMethodDecl *MD) {
1451 // Check that the type metadata can ever actually be used by a call.
1452 if (!CGM.getCodeGenOpts().LTOUnit ||
1453 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1454 return false;
1455
1456 // Only functions whose address can be taken with a member function pointer
1457 // need this sort of type metadata.
1458 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1459 !isa<CXXDestructorDecl>(MD);
1460}
1461
1462std::vector<const CXXRecordDecl *>
1463CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1464 llvm::SetVector<const CXXRecordDecl *> MostBases;
1465
1466 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1467 CollectMostBases = [&](const CXXRecordDecl *RD) {
1468 if (RD->getNumBases() == 0)
1469 MostBases.insert(RD);
1470 for (const CXXBaseSpecifier &B : RD->bases())
1471 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1472 };
1473 CollectMostBases(RD);
1474 return MostBases.takeVector();
1475}
1476
1477void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1478 llvm::Function *F) {
1479 llvm::AttrBuilder B;
1480
1481 if (CodeGenOpts.UnwindTables)
1482 B.addAttribute(llvm::Attribute::UWTable);
1483
1484 if (!hasUnwindExceptions(LangOpts))
1485 B.addAttribute(llvm::Attribute::NoUnwind);
1486
1487 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1488 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1489 B.addAttribute(llvm::Attribute::StackProtect);
1490 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1491 B.addAttribute(llvm::Attribute::StackProtectStrong);
1492 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1493 B.addAttribute(llvm::Attribute::StackProtectReq);
1494 }
1495
1496 if (!D) {
1497 // If we don't have a declaration to control inlining, the function isn't
1498 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1499 // disabled, mark the function as noinline.
1500 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1501 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1502 B.addAttribute(llvm::Attribute::NoInline);
1503
1504 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1505 return;
1506 }
1507
1508 // Track whether we need to add the optnone LLVM attribute,
1509 // starting with the default for this optimization level.
1510 bool ShouldAddOptNone =
1511 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1512 // We can't add optnone in the following cases, it won't pass the verifier.
1513 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1514 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1515 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1516
1517 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1518 B.addAttribute(llvm::Attribute::OptimizeNone);
1519
1520 // OptimizeNone implies noinline; we should not be inlining such functions.
1521 B.addAttribute(llvm::Attribute::NoInline);
1522 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&((!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
"OptimizeNone and AlwaysInline on same function!") ? static_cast
<void> (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1523, __PRETTY_FUNCTION__))
1523 "OptimizeNone and AlwaysInline on same function!")((!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
"OptimizeNone and AlwaysInline on same function!") ? static_cast
<void> (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1523, __PRETTY_FUNCTION__))
;
1524
1525 // We still need to handle naked functions even though optnone subsumes
1526 // much of their semantics.
1527 if (D->hasAttr<NakedAttr>())
1528 B.addAttribute(llvm::Attribute::Naked);
1529
1530 // OptimizeNone wins over OptimizeForSize and MinSize.
1531 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1532 F->removeFnAttr(llvm::Attribute::MinSize);
1533 } else if (D->hasAttr<NakedAttr>()) {
1534 // Naked implies noinline: we should not be inlining such functions.
1535 B.addAttribute(llvm::Attribute::Naked);
1536 B.addAttribute(llvm::Attribute::NoInline);
1537 } else if (D->hasAttr<NoDuplicateAttr>()) {
1538 B.addAttribute(llvm::Attribute::NoDuplicate);
1539 } else if (D->hasAttr<NoInlineAttr>()) {
1540 B.addAttribute(llvm::Attribute::NoInline);
1541 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1542 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1543 // (noinline wins over always_inline, and we can't specify both in IR)
1544 B.addAttribute(llvm::Attribute::AlwaysInline);
1545 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1546 // If we're not inlining, then force everything that isn't always_inline to
1547 // carry an explicit noinline attribute.
1548 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1549 B.addAttribute(llvm::Attribute::NoInline);
1550 } else {
1551 // Otherwise, propagate the inline hint attribute and potentially use its
1552 // absence to mark things as noinline.
1553 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1554 // Search function and template pattern redeclarations for inline.
1555 auto CheckForInline = [](const FunctionDecl *FD) {
1556 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1557 return Redecl->isInlineSpecified();
1558 };
1559 if (any_of(FD->redecls(), CheckRedeclForInline))
1560 return true;
1561 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1562 if (!Pattern)
1563 return false;
1564 return any_of(Pattern->redecls(), CheckRedeclForInline);
1565 };
1566 if (CheckForInline(FD)) {
1567 B.addAttribute(llvm::Attribute::InlineHint);
1568 } else if (CodeGenOpts.getInlining() ==
1569 CodeGenOptions::OnlyHintInlining &&
1570 !FD->isInlined() &&
1571 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1572 B.addAttribute(llvm::Attribute::NoInline);
1573 }
1574 }
1575 }
1576
1577 // Add other optimization related attributes if we are optimizing this
1578 // function.
1579 if (!D->hasAttr<OptimizeNoneAttr>()) {
1580 if (D->hasAttr<ColdAttr>()) {
1581 if (!ShouldAddOptNone)
1582 B.addAttribute(llvm::Attribute::OptimizeForSize);
1583 B.addAttribute(llvm::Attribute::Cold);
1584 }
1585
1586 if (D->hasAttr<MinSizeAttr>())
1587 B.addAttribute(llvm::Attribute::MinSize);
1588 }
1589
1590 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1591
1592 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1593 if (alignment)
1594 F->setAlignment(alignment);
1595
1596 if (!D->hasAttr<AlignedAttr>())
1597 if (LangOpts.FunctionAlignment)
1598 F->setAlignment(1 << LangOpts.FunctionAlignment);
1599
1600 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1601 // reserve a bit for differentiating between virtual and non-virtual member
1602 // functions. If the current target's C++ ABI requires this and this is a
1603 // member function, set its alignment accordingly.
1604 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1605 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1606 F->setAlignment(2);
1607 }
1608
1609 // In the cross-dso CFI mode, we want !type attributes on definitions only.
1610 if (CodeGenOpts.SanitizeCfiCrossDso)
1611 if (auto *FD = dyn_cast<FunctionDecl>(D))
1612 CreateFunctionTypeMetadataForIcall(FD, F);
1613
1614 // Emit type metadata on member functions for member function pointer checks.
1615 // These are only ever necessary on definitions; we're guaranteed that the
1616 // definition will be present in the LTO unit as a result of LTO visibility.
1617 auto *MD = dyn_cast<CXXMethodDecl>(D);
1618 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1619 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1620 llvm::Metadata *Id =
1621 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1622 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1623 F->addTypeMetadata(0, Id);
1624 }
1625 }
1626}
1627
1628void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1629 const Decl *D = GD.getDecl();
1630 if (dyn_cast_or_null<NamedDecl>(D))
1631 setGVProperties(GV, GD);
1632 else
1633 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1634
1635 if (D && D->hasAttr<UsedAttr>())
1636 addUsedGlobal(GV);
1637
1638 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1639 const auto *VD = cast<VarDecl>(D);
1640 if (VD->getType().isConstQualified() &&
1641 VD->getStorageDuration() == SD_Static)
1642 addUsedGlobal(GV);
1643 }
1644}
1645
1646bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1647 llvm::AttrBuilder &Attrs) {
1648 // Add target-cpu and target-features attributes to functions. If
1649 // we have a decl for the function and it has a target attribute then
1650 // parse that and add it to the feature set.
1651 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1652 std::vector<std::string> Features;
1653 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1654 FD = FD ? FD->getMostRecentDecl() : FD;
1655 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1656 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1657 bool AddedAttr = false;
1658 if (TD || SD) {
1659 llvm::StringMap<bool> FeatureMap;
1660 getFunctionFeatureMap(FeatureMap, GD);
1661
1662 // Produce the canonical string for this set of features.
1663 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1664 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1665
1666 // Now add the target-cpu and target-features to the function.
1667 // While we populated the feature map above, we still need to
1668 // get and parse the target attribute so we can get the cpu for
1669 // the function.
1670 if (TD) {
1671 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1672 if (ParsedAttr.Architecture != "" &&
1673 getTarget().isValidCPUName(ParsedAttr.Architecture))
1674 TargetCPU = ParsedAttr.Architecture;
1675 }
1676 } else {
1677 // Otherwise just add the existing target cpu and target features to the
1678 // function.
1679 Features = getTarget().getTargetOpts().Features;
1680 }
1681
1682 if (TargetCPU != "") {
1683 Attrs.addAttribute("target-cpu", TargetCPU);
1684 AddedAttr = true;
1685 }
1686 if (!Features.empty()) {
1687 llvm::sort(Features);
1688 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1689 AddedAttr = true;
1690 }
1691
1692 return AddedAttr;
1693}
1694
1695void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1696 llvm::GlobalObject *GO) {
1697 const Decl *D = GD.getDecl();
1698 SetCommonAttributes(GD, GO);
1699
1700 if (D) {
1701 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1702 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1703 GV->addAttribute("bss-section", SA->getName());
1704 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1705 GV->addAttribute("data-section", SA->getName());
1706 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1707 GV->addAttribute("rodata-section", SA->getName());
1708 }
1709
1710 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1711 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1712 if (!D->getAttr<SectionAttr>())
1713 F->addFnAttr("implicit-section-name", SA->getName());
1714
1715 llvm::AttrBuilder Attrs;
1716 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1717 // We know that GetCPUAndFeaturesAttributes will always have the
1718 // newest set, since it has the newest possible FunctionDecl, so the
1719 // new ones should replace the old.
1720 F->removeFnAttr("target-cpu");
1721 F->removeFnAttr("target-features");
1722 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1723 }
1724 }
1725
1726 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1727 GO->setSection(CSA->getName());
1728 else if (const auto *SA = D->getAttr<SectionAttr>())
1729 GO->setSection(SA->getName());
1730 }
1731
1732 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1733}
1734
1735void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1736 llvm::Function *F,
1737 const CGFunctionInfo &FI) {
1738 const Decl *D = GD.getDecl();
1739 SetLLVMFunctionAttributes(GD, FI, F);
1740 SetLLVMFunctionAttributesForDefinition(D, F);
1741
1742 F->setLinkage(llvm::Function::InternalLinkage);
1743
1744 setNonAliasAttributes(GD, F);
1745}
1746
1747static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1748 // Set linkage and visibility in case we never see a definition.
1749 LinkageInfo LV = ND->getLinkageAndVisibility();
1750 // Don't set internal linkage on declarations.
1751 // "extern_weak" is overloaded in LLVM; we probably should have
1752 // separate linkage types for this.
1753 if (isExternallyVisible(LV.getLinkage()) &&
1754 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1755 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1756}
1757
1758void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1759 llvm::Function *F) {
1760 // Only if we are checking indirect calls.
1761 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1762 return;
1763
1764 // Non-static class methods are handled via vtable or member function pointer
1765 // checks elsewhere.
1766 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1767 return;
1768
1769 // Additionally, if building with cross-DSO support...
1770 if (CodeGenOpts.SanitizeCfiCrossDso) {
1771 // Skip available_externally functions. They won't be codegen'ed in the
1772 // current module anyway.
1773 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1774 return;
1775 }
1776
1777 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1778 F->addTypeMetadata(0, MD);
1779 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1780
1781 // Emit a hash-based bit set entry for cross-DSO calls.
1782 if (CodeGenOpts.SanitizeCfiCrossDso)
1783 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1784 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1785}
1786
1787void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1788 bool IsIncompleteFunction,
1789 bool IsThunk) {
1790
1791 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1792 // If this is an intrinsic function, set the function's attributes
1793 // to the intrinsic's attributes.
1794 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1795 return;
1796 }
1797
1798 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1799
1800 if (!IsIncompleteFunction)
1801 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1802
1803 // Add the Returned attribute for "this", except for iOS 5 and earlier
1804 // where substantial code, including the libstdc++ dylib, was compiled with
1805 // GCC and does not actually return "this".
1806 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1807 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1808 assert(!F->arg_empty() &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1811, __PRETTY_FUNCTION__))
1809 F->arg_begin()->getType()((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1811, __PRETTY_FUNCTION__))
1810 ->canLosslesslyBitCastTo(F->getReturnType()) &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1811, __PRETTY_FUNCTION__))
1811 "unexpected this return")((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1811, __PRETTY_FUNCTION__))
;
1812 F->addAttribute(1, llvm::Attribute::Returned);
1813 }
1814
1815 // Only a few attributes are set on declarations; these may later be
1816 // overridden by a definition.
1817
1818 setLinkageForGV(F, FD);
1819 setGVProperties(F, FD);
1820
1821 // Setup target-specific attributes.
1822 if (!IsIncompleteFunction && F->isDeclaration())
1823 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1824
1825 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1826 F->setSection(CSA->getName());
1827 else if (const auto *SA = FD->getAttr<SectionAttr>())
1828 F->setSection(SA->getName());
1829
1830 if (FD->isReplaceableGlobalAllocationFunction()) {
1831 // A replaceable global allocation function does not act like a builtin by
1832 // default, only if it is invoked by a new-expression or delete-expression.
1833 F->addAttribute(llvm::AttributeList::FunctionIndex,
1834 llvm::Attribute::NoBuiltin);
1835
1836 // A sane operator new returns a non-aliasing pointer.
1837 // FIXME: Also add NonNull attribute to the return value
1838 // for the non-nothrow forms?
1839 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1840 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1841 (Kind == OO_New || Kind == OO_Array_New))
1842 F->addAttribute(llvm::AttributeList::ReturnIndex,
1843 llvm::Attribute::NoAlias);
1844 }
1845
1846 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1847 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1848 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1849 if (MD->isVirtual())
1850 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1851
1852 // Don't emit entries for function declarations in the cross-DSO mode. This
1853 // is handled with better precision by the receiving DSO.
1854 if (!CodeGenOpts.SanitizeCfiCrossDso)
1855 CreateFunctionTypeMetadataForIcall(FD, F);
1856
1857 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1858 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1859
1860 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1861 // Annotate the callback behavior as metadata:
1862 // - The callback callee (as argument number).
1863 // - The callback payloads (as argument numbers).
1864 llvm::LLVMContext &Ctx = F->getContext();
1865 llvm::MDBuilder MDB(Ctx);
1866
1867 // The payload indices are all but the first one in the encoding. The first
1868 // identifies the callback callee.
1869 int CalleeIdx = *CB->encoding_begin();
1870 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1871 F->addMetadata(llvm::LLVMContext::MD_callback,
1872 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1873 CalleeIdx, PayloadIndices,
1874 /* VarArgsArePassed */ false)}));
1875 }
1876}
1877
1878void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1879 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1880, __PRETTY_FUNCTION__))
1880 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1880, __PRETTY_FUNCTION__))
;
1881 LLVMUsed.emplace_back(GV);
1882}
1883
1884void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1885 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1886, __PRETTY_FUNCTION__))
1886 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1886, __PRETTY_FUNCTION__))
;
1887 LLVMCompilerUsed.emplace_back(GV);
1888}
1889
1890static void emitUsed(CodeGenModule &CGM, StringRef Name,
1891 std::vector<llvm::WeakTrackingVH> &List) {
1892 // Don't create llvm.used if there is no need.
1893 if (List.empty())
1894 return;
1895
1896 // Convert List to what ConstantArray needs.
1897 SmallVector<llvm::Constant*, 8> UsedArray;
1898 UsedArray.resize(List.size());
1899 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1900 UsedArray[i] =
1901 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1902 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1903 }
1904
1905 if (UsedArray.empty())
1906 return;
1907 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1908
1909 auto *GV = new llvm::GlobalVariable(
1910 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1911 llvm::ConstantArray::get(ATy, UsedArray), Name);
1912
1913 GV->setSection("llvm.metadata");
1914}
1915
1916void CodeGenModule::emitLLVMUsed() {
1917 emitUsed(*this, "llvm.used", LLVMUsed);
1918 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1919}
1920
1921void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1922 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1923 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1924}
1925
1926void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1927 llvm::SmallString<32> Opt;
1928 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1929 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1930 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931}
1932
1933void CodeGenModule::AddDependentLib(StringRef Lib) {
1934 auto &C = getLLVMContext();
1935 if (getTarget().getTriple().isOSBinFormatELF()) {
1936 ELFDependentLibraries.push_back(
1937 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1938 return;
1939 }
1940
1941 llvm::SmallString<24> Opt;
1942 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1943 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1944 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1945}
1946
1947/// Add link options implied by the given module, including modules
1948/// it depends on, using a postorder walk.
1949static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1950 SmallVectorImpl<llvm::MDNode *> &Metadata,
1951 llvm::SmallPtrSet<Module *, 16> &Visited) {
1952 // Import this module's parent.
1953 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1954 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1955 }
1956
1957 // Import this module's dependencies.
1958 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1959 if (Visited.insert(Mod->Imports[I - 1]).second)
1960 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1961 }
1962
1963 // Add linker options to link against the libraries/frameworks
1964 // described by this module.
1965 llvm::LLVMContext &Context = CGM.getLLVMContext();
1966 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1967
1968 // For modules that use export_as for linking, use that module
1969 // name instead.
1970 if (Mod->UseExportAsModuleLinkName)
1971 return;
1972
1973 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1974 // Link against a framework. Frameworks are currently Darwin only, so we
1975 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1976 if (Mod->LinkLibraries[I-1].IsFramework) {
1977 llvm::Metadata *Args[2] = {
1978 llvm::MDString::get(Context, "-framework"),
1979 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1980
1981 Metadata.push_back(llvm::MDNode::get(Context, Args));
1982 continue;
1983 }
1984
1985 // Link against a library.
1986 if (IsELF) {
1987 llvm::Metadata *Args[2] = {
1988 llvm::MDString::get(Context, "lib"),
1989 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1990 };
1991 Metadata.push_back(llvm::MDNode::get(Context, Args));
1992 } else {
1993 llvm::SmallString<24> Opt;
1994 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1995 Mod->LinkLibraries[I - 1].Library, Opt);
1996 auto *OptString = llvm::MDString::get(Context, Opt);
1997 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1998 }
1999 }
2000}
2001
2002void CodeGenModule::EmitModuleLinkOptions() {
2003 // Collect the set of all of the modules we want to visit to emit link
2004 // options, which is essentially the imported modules and all of their
2005 // non-explicit child modules.
2006 llvm::SetVector<clang::Module *> LinkModules;
2007 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2008 SmallVector<clang::Module *, 16> Stack;
2009
2010 // Seed the stack with imported modules.
2011 for (Module *M : ImportedModules) {
2012 // Do not add any link flags when an implementation TU of a module imports
2013 // a header of that same module.
2014 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2015 !getLangOpts().isCompilingModule())
2016 continue;
2017 if (Visited.insert(M).second)
2018 Stack.push_back(M);
2019 }
2020
2021 // Find all of the modules to import, making a little effort to prune
2022 // non-leaf modules.
2023 while (!Stack.empty()) {
2024 clang::Module *Mod = Stack.pop_back_val();
2025
2026 bool AnyChildren = false;
2027
2028 // Visit the submodules of this module.
2029 for (const auto &SM : Mod->submodules()) {
2030 // Skip explicit children; they need to be explicitly imported to be
2031 // linked against.
2032 if (SM->IsExplicit)
2033 continue;
2034
2035 if (Visited.insert(SM).second) {
2036 Stack.push_back(SM);
2037 AnyChildren = true;
2038 }
2039 }
2040
2041 // We didn't find any children, so add this module to the list of
2042 // modules to link against.
2043 if (!AnyChildren) {
2044 LinkModules.insert(Mod);
2045 }
2046 }
2047
2048 // Add link options for all of the imported modules in reverse topological
2049 // order. We don't do anything to try to order import link flags with respect
2050 // to linker options inserted by things like #pragma comment().
2051 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2052 Visited.clear();
2053 for (Module *M : LinkModules)
2054 if (Visited.insert(M).second)
2055 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2056 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2057 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2058
2059 // Add the linker options metadata flag.
2060 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2061 for (auto *MD : LinkerOptionsMetadata)
2062 NMD->addOperand(MD);
2063}
2064
2065void CodeGenModule::EmitDeferred() {
2066 // Emit deferred declare target declarations.
2067 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2068 getOpenMPRuntime().emitDeferredTargetDecls();
2069
2070 // Emit code for any potentially referenced deferred decls. Since a
2071 // previously unused static decl may become used during the generation of code
2072 // for a static function, iterate until no changes are made.
2073
2074 if (!DeferredVTables.empty()) {
2075 EmitDeferredVTables();
2076
2077 // Emitting a vtable doesn't directly cause more vtables to
2078 // become deferred, although it can cause functions to be
2079 // emitted that then need those vtables.
2080 assert(DeferredVTables.empty())((DeferredVTables.empty()) ? static_cast<void> (0) : __assert_fail
("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2080, __PRETTY_FUNCTION__))
;
2081 }
2082
2083 // Stop if we're out of both deferred vtables and deferred declarations.
2084 if (DeferredDeclsToEmit.empty())
2085 return;
2086
2087 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2088 // work, it will not interfere with this.
2089 std::vector<GlobalDecl> CurDeclsToEmit;
2090 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2091
2092 for (GlobalDecl &D : CurDeclsToEmit) {
2093 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2094 // to get GlobalValue with exactly the type we need, not something that
2095 // might had been created for another decl with the same mangled name but
2096 // different type.
2097 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2098 GetAddrOfGlobal(D, ForDefinition));
2099
2100 // In case of different address spaces, we may still get a cast, even with
2101 // IsForDefinition equal to true. Query mangled names table to get
2102 // GlobalValue.
2103 if (!GV)
2104 GV = GetGlobalValue(getMangledName(D));
2105
2106 // Make sure GetGlobalValue returned non-null.
2107 assert(GV)((GV) ? static_cast<void> (0) : __assert_fail ("GV", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2107, __PRETTY_FUNCTION__))
;
2108
2109 // Check to see if we've already emitted this. This is necessary
2110 // for a couple of reasons: first, decls can end up in the
2111 // deferred-decls queue multiple times, and second, decls can end
2112 // up with definitions in unusual ways (e.g. by an extern inline
2113 // function acquiring a strong function redefinition). Just
2114 // ignore these cases.
2115 if (!GV->isDeclaration())
2116 continue;
2117
2118 // Otherwise, emit the definition and move on to the next one.
2119 EmitGlobalDefinition(D, GV);
2120
2121 // If we found out that we need to emit more decls, do that recursively.
2122 // This has the advantage that the decls are emitted in a DFS and related
2123 // ones are close together, which is convenient for testing.
2124 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2125 EmitDeferred();
2126 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())((DeferredVTables.empty() && DeferredDeclsToEmit.empty
()) ? static_cast<void> (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2126, __PRETTY_FUNCTION__))
;
2127 }
2128 }
2129}
2130
2131void CodeGenModule::EmitVTablesOpportunistically() {
2132 // Try to emit external vtables as available_externally if they have emitted
2133 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2134 // is not allowed to create new references to things that need to be emitted
2135 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2136
2137 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2138, __PRETTY_FUNCTION__))
2138 && "Only emit opportunistic vtables with optimizations")(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2138, __PRETTY_FUNCTION__))
;
2139
2140 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2141 assert(getVTables().isVTableExternal(RD) &&((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2142, __PRETTY_FUNCTION__))
2142 "This queue should only contain external vtables")((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2142, __PRETTY_FUNCTION__))
;
2143 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2144 VTables.GenerateClassData(RD);
2145 }
2146 OpportunisticVTables.clear();
2147}
2148
2149void CodeGenModule::EmitGlobalAnnotations() {
2150 if (Annotations.empty())
2151 return;
2152
2153 // Create a new global variable for the ConstantStruct in the Module.
2154 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2155 Annotations[0]->getType(), Annotations.size()), Annotations);
2156 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2157 llvm::GlobalValue::AppendingLinkage,
2158 Array, "llvm.global.annotations");
2159 gv->setSection(AnnotationSection);
2160}
2161
2162llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2163 llvm::Constant *&AStr = AnnotationStrings[Str];
2164 if (AStr)
2165 return AStr;
2166
2167 // Not found yet, create a new global.
2168 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2169 auto *gv =
2170 new llvm::GlobalVariable(getModule(), s->getType(), true,
2171 llvm::GlobalValue::PrivateLinkage, s, ".str");
2172 gv->setSection(AnnotationSection);
2173 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2174 AStr = gv;
2175 return gv;
2176}
2177
2178llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2179 SourceManager &SM = getContext().getSourceManager();
2180 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2181 if (PLoc.isValid())
2182 return EmitAnnotationString(PLoc.getFilename());
2183 return EmitAnnotationString(SM.getBufferName(Loc));
2184}
2185
2186llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2187 SourceManager &SM = getContext().getSourceManager();
2188 PresumedLoc PLoc = SM.getPresumedLoc(L);
2189 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2190 SM.getExpansionLineNumber(L);
2191 return llvm::ConstantInt::get(Int32Ty, LineNo);
2192}
2193
2194llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2195 const AnnotateAttr *AA,
2196 SourceLocation L) {
2197 // Get the globals for file name, annotation, and the line number.
2198 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2199 *UnitGV = EmitAnnotationUnit(L),
2200 *LineNoCst = EmitAnnotationLineNo(L);
2201
2202 // Create the ConstantStruct for the global annotation.
2203 llvm::Constant *Fields[4] = {
2204 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2205 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2206 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2207 LineNoCst
2208 };
2209 return llvm::ConstantStruct::getAnon(Fields);
2210}
2211
2212void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2213 llvm::GlobalValue *GV) {
2214 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")((D->hasAttr<AnnotateAttr>() && "no annotate attribute"
) ? static_cast<void> (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2214, __PRETTY_FUNCTION__))
;
2215 // Get the struct elements for these annotations.
2216 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2217 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2218}
2219
2220bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2221 llvm::Function *Fn,
2222 SourceLocation Loc) const {
2223 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2224 // Blacklist by function name.
2225 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2226 return true;
2227 // Blacklist by location.
2228 if (Loc.isValid())
2229 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2230 // If location is unknown, this may be a compiler-generated function. Assume
2231 // it's located in the main file.
2232 auto &SM = Context.getSourceManager();
2233 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2234 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2235 }
2236 return false;
2237}
2238
2239bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2240 SourceLocation Loc, QualType Ty,
2241 StringRef Category) const {
2242 // For now globals can be blacklisted only in ASan and KASan.
2243 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2244 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2245 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2246 if (!EnabledAsanMask)
2247 return false;
2248 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2249 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2250 return true;
2251 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2252 return true;
2253 // Check global type.
2254 if (!Ty.isNull()) {
2255 // Drill down the array types: if global variable of a fixed type is
2256 // blacklisted, we also don't instrument arrays of them.
2257 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2258 Ty = AT->getElementType();
2259 Ty = Ty.getCanonicalType().getUnqualifiedType();
2260 // We allow to blacklist only record types (classes, structs etc.)
2261 if (Ty->isRecordType()) {
2262 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2263 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2264 return true;
2265 }
2266 }
2267 return false;
2268}
2269
2270bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2271 StringRef Category) const {
2272 const auto &XRayFilter = getContext().getXRayFilter();
2273 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2274 auto Attr = ImbueAttr::NONE;
2275 if (Loc.isValid())
2276 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2277 if (Attr == ImbueAttr::NONE)
2278 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2279 switch (Attr) {
2280 case ImbueAttr::NONE:
2281 return false;
2282 case ImbueAttr::ALWAYS:
2283 Fn->addFnAttr("function-instrument", "xray-always");
2284 break;
2285 case ImbueAttr::ALWAYS_ARG1:
2286 Fn->addFnAttr("function-instrument", "xray-always");
2287 Fn->addFnAttr("xray-log-args", "1");
2288 break;
2289 case ImbueAttr::NEVER:
2290 Fn->addFnAttr("function-instrument", "xray-never");
2291 break;
2292 }
2293 return true;
2294}
2295
2296bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2297 // Never defer when EmitAllDecls is specified.
2298 if (LangOpts.EmitAllDecls)
2299 return true;
2300
2301 if (CodeGenOpts.KeepStaticConsts) {
2302 const auto *VD = dyn_cast<VarDecl>(Global);
2303 if (VD && VD->getType().isConstQualified() &&
2304 VD->getStorageDuration() == SD_Static)
2305 return true;
2306 }
2307
2308 return getContext().DeclMustBeEmitted(Global);
2309}
2310
2311bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2312 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2313 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2314 // Implicit template instantiations may change linkage if they are later
2315 // explicitly instantiated, so they should not be emitted eagerly.
2316 return false;
2317 if (const auto *VD = dyn_cast<VarDecl>(Global))
2318 if (Context.getInlineVariableDefinitionKind(VD) ==
2319 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2320 // A definition of an inline constexpr static data member may change
2321 // linkage later if it's redeclared outside the class.
2322 return false;
2323 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2324 // codegen for global variables, because they may be marked as threadprivate.
2325 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2326 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2327 !isTypeConstant(Global->getType(), false) &&
2328 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2329 return false;
2330
2331 return true;
2332}
2333
2334ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2335 const CXXUuidofExpr* E) {
2336 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2337 // well-formed.
2338 StringRef Uuid = E->getUuidStr();
2339 std::string Name = "_GUID_" + Uuid.lower();
2340 std::replace(Name.begin(), Name.end(), '-', '_');
2341
2342 // The UUID descriptor should be pointer aligned.
2343 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2344
2345 // Look for an existing global.
2346 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2347 return ConstantAddress(GV, Alignment);
2348
2349 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2350 assert(Init && "failed to initialize as constant")((Init && "failed to initialize as constant") ? static_cast
<void> (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2350, __PRETTY_FUNCTION__))
;
2351
2352 auto *GV = new llvm::GlobalVariable(
2353 getModule(), Init->getType(),
2354 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2355 if (supportsCOMDAT())
2356 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2357 setDSOLocal(GV);
2358 return ConstantAddress(GV, Alignment);
2359}
2360
2361ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2362 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2363 assert(AA && "No alias?")((AA && "No alias?") ? static_cast<void> (0) : __assert_fail
("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2363, __PRETTY_FUNCTION__))
;
1
Assuming 'AA' is non-null
2
'?' condition is true
2364
2365 CharUnits Alignment = getContext().getDeclAlign(VD);
2366 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2367
2368 // See if there is already something with the target's name in the module.
2369 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2370 if (Entry) {
3
Assuming 'Entry' is null
4
Taking false branch
2371 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2372 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2373 return ConstantAddress(Ptr, Alignment);
2374 }
2375
2376 llvm::Constant *Aliasee;
2377 if (isa<llvm::FunctionType>(DeclTy))
5
Taking true branch
2378 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
6
Calling 'CodeGenModule::GetOrCreateLLVMFunction'
2379 GlobalDecl(cast<FunctionDecl>(VD)),
2380 /*ForVTable=*/false);
2381 else
2382 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2383 llvm::PointerType::getUnqual(DeclTy),
2384 nullptr);
2385
2386 auto *F = cast<llvm::GlobalValue>(Aliasee);
2387 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2388 WeakRefReferences.insert(F);
2389
2390 return ConstantAddress(Aliasee, Alignment);
2391}
2392
2393void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2394 const auto *Global = cast<ValueDecl>(GD.getDecl());
2395
2396 // Weak references don't produce any output by themselves.
2397 if (Global->hasAttr<WeakRefAttr>())
17
Taking false branch
2398 return;
2399
2400 // If this is an alias definition (which otherwise looks like a declaration)
2401 // emit it now.
2402 if (Global->hasAttr<AliasAttr>())
18
Taking false branch
2403 return EmitAliasDefinition(GD);
2404
2405 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2406 if (Global->hasAttr<IFuncAttr>())
19
Taking false branch
2407 return emitIFuncDefinition(GD);
2408
2409 // If this is a cpu_dispatch multiversion function, emit the resolver.
2410 if (Global->hasAttr<CPUDispatchAttr>())
20
Taking true branch
2411 return emitCPUDispatchDefinition(GD);
21
Calling 'CodeGenModule::emitCPUDispatchDefinition'
2412
2413 // If this is CUDA, be selective about which declarations we emit.
2414 if (LangOpts.CUDA) {
2415 if (LangOpts.CUDAIsDevice) {
2416 if (!Global->hasAttr<CUDADeviceAttr>() &&
2417 !Global->hasAttr<CUDAGlobalAttr>() &&
2418 !Global->hasAttr<CUDAConstantAttr>() &&
2419 !Global->hasAttr<CUDASharedAttr>())
2420 return;
2421 } else {
2422 // We need to emit host-side 'shadows' for all global
2423 // device-side variables because the CUDA runtime needs their
2424 // size and host-side address in order to provide access to
2425 // their device-side incarnations.
2426
2427 // So device-only functions are the only things we skip.
2428 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2429 Global->hasAttr<CUDADeviceAttr>())
2430 return;
2431
2432 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2433, __PRETTY_FUNCTION__))
2433 "Expected Variable or Function")(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2433, __PRETTY_FUNCTION__))
;
2434 }
2435 }
2436
2437 if (LangOpts.OpenMP) {
2438 // If this is OpenMP device, check if it is legal to emit this global
2439 // normally.
2440 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2441 return;
2442 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2443 if (MustBeEmitted(Global))
2444 EmitOMPDeclareReduction(DRD);
2445 return;
2446 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2447 if (MustBeEmitted(Global))
2448 EmitOMPDeclareMapper(DMD);
2449 return;
2450 }
2451 }
2452
2453 // Ignore declarations, they will be emitted on their first use.
2454 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2455 // Forward declarations are emitted lazily on first use.
2456 if (!FD->doesThisDeclarationHaveABody()) {
2457 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2458 return;
2459
2460 StringRef MangledName = getMangledName(GD);
2461
2462 // Compute the function info and LLVM type.
2463 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2464 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2465
2466 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2467 /*DontDefer=*/false);
2468 return;
2469 }
2470 } else {
2471 const auto *VD = cast<VarDecl>(Global);
2472 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")((VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2472, __PRETTY_FUNCTION__))
;
2473 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2474 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2475 if (LangOpts.OpenMP) {
2476 // Emit declaration of the must-be-emitted declare target variable.
2477 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2478 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2479 if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2480 (void)GetAddrOfGlobalVar(VD);
2481 } else {
2482 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&((*Res == OMPDeclareTargetDeclAttr::MT_Link && "link claue expected."
) ? static_cast<void> (0) : __assert_fail ("*Res == OMPDeclareTargetDeclAttr::MT_Link && \"link claue expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2483, __PRETTY_FUNCTION__))
2483 "link claue expected.")((*Res == OMPDeclareTargetDeclAttr::MT_Link && "link claue expected."
) ? static_cast<void> (0) : __assert_fail ("*Res == OMPDeclareTargetDeclAttr::MT_Link && \"link claue expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2483, __PRETTY_FUNCTION__))
;
2484 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2485 }
2486 return;
2487 }
2488 }
2489 // If this declaration may have caused an inline variable definition to
2490 // change linkage, make sure that it's emitted.
2491 if (Context.getInlineVariableDefinitionKind(VD) ==
2492 ASTContext::InlineVariableDefinitionKind::Strong)
2493 GetAddrOfGlobalVar(VD);
2494 return;
2495 }
2496 }
2497
2498 // Defer code generation to first use when possible, e.g. if this is an inline
2499 // function. If the global must always be emitted, do it eagerly if possible
2500 // to benefit from cache locality.
2501 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2502 // Emit the definition if it can't be deferred.
2503 EmitGlobalDefinition(GD);
2504 return;
2505 }
2506
2507 // If we're deferring emission of a C++ variable with an
2508 // initializer, remember the order in which it appeared in the file.
2509 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2510 cast<VarDecl>(Global)->hasInit()) {
2511 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2512 CXXGlobalInits.push_back(nullptr);
2513 }
2514
2515 StringRef MangledName = getMangledName(GD);
2516 if (GetGlobalValue(MangledName) != nullptr) {
2517 // The value has already been used and should therefore be emitted.
2518 addDeferredDeclToEmit(GD);
2519 } else if (MustBeEmitted(Global)) {
2520 // The value must be emitted, but cannot be emitted eagerly.
2521 assert(!MayBeEmittedEagerly(Global))((!MayBeEmittedEagerly(Global)) ? static_cast<void> (0)
: __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2521, __PRETTY_FUNCTION__))
;
2522 addDeferredDeclToEmit(GD);
2523 } else {
2524 // Otherwise, remember that we saw a deferred decl with this name. The
2525 // first use of the mangled name will cause it to move into
2526 // DeferredDeclsToEmit.
2527 DeferredDecls[MangledName] = GD;
2528 }
2529}
2530
2531// Check if T is a class type with a destructor that's not dllimport.
2532static bool HasNonDllImportDtor(QualType T) {
2533 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2534 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2535 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2536 return true;
2537
2538 return false;
2539}
2540
2541namespace {
2542 struct FunctionIsDirectlyRecursive
2543 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2544 const StringRef Name;
2545 const Builtin::Context &BI;
2546 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2547 : Name(N), BI(C) {}
2548
2549 bool VisitCallExpr(const CallExpr *E) {
2550 const FunctionDecl *FD = E->getDirectCallee();
2551 if (!FD)
2552 return false;
2553 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2554 if (Attr && Name == Attr->getLabel())
2555 return true;
2556 unsigned BuiltinID = FD->getBuiltinID();
2557 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2558 return false;
2559 StringRef BuiltinName = BI.getName(BuiltinID);
2560 if (BuiltinName.startswith("__builtin_") &&
2561 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2562 return true;
2563 }
2564 return false;
2565 }
2566
2567 bool VisitStmt(const Stmt *S) {
2568 for (const Stmt *Child : S->children())
2569 if (Child && this->Visit(Child))
2570 return true;
2571 return false;
2572 }
2573 };
2574
2575 // Make sure we're not referencing non-imported vars or functions.
2576 struct DLLImportFunctionVisitor
2577 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2578 bool SafeToInline = true;
2579
2580 bool shouldVisitImplicitCode() const { return true; }
2581
2582 bool VisitVarDecl(VarDecl *VD) {
2583 if (VD->getTLSKind()) {
2584 // A thread-local variable cannot be imported.
2585 SafeToInline = false;
2586 return SafeToInline;
2587 }
2588
2589 // A variable definition might imply a destructor call.
2590 if (VD->isThisDeclarationADefinition())
2591 SafeToInline = !HasNonDllImportDtor(VD->getType());
2592
2593 return SafeToInline;
2594 }
2595
2596 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2597 if (const auto *D = E->getTemporary()->getDestructor())
2598 SafeToInline = D->hasAttr<DLLImportAttr>();
2599 return SafeToInline;
2600 }
2601
2602 bool VisitDeclRefExpr(DeclRefExpr *E) {
2603 ValueDecl *VD = E->getDecl();
2604 if (isa<FunctionDecl>(VD))
2605 SafeToInline = VD->hasAttr<DLLImportAttr>();
2606 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2607 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2608 return SafeToInline;
2609 }
2610
2611 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2612 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2613 return SafeToInline;
2614 }
2615
2616 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2617 CXXMethodDecl *M = E->getMethodDecl();
2618 if (!M) {
2619 // Call through a pointer to member function. This is safe to inline.
2620 SafeToInline = true;
2621 } else {
2622 SafeToInline = M->hasAttr<DLLImportAttr>();
2623 }
2624 return SafeToInline;
2625 }
2626
2627 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2628 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2629 return SafeToInline;
2630 }
2631
2632 bool VisitCXXNewExpr(CXXNewExpr *E) {
2633 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2634 return SafeToInline;
2635 }
2636 };
2637}
2638
2639// isTriviallyRecursive - Check if this function calls another
2640// decl that, because of the asm attribute or the other decl being a builtin,
2641// ends up pointing to itself.
2642bool
2643CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2644 StringRef Name;
2645 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2646 // asm labels are a special kind of mangling we have to support.
2647 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2648 if (!Attr)
2649 return false;
2650 Name = Attr->getLabel();
2651 } else {
2652 Name = FD->getName();
2653 }
2654
2655 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2656 const Stmt *Body = FD->getBody();
2657 return Body ? Walker.Visit(Body) : false;
2658}
2659
2660bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2661 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2662 return true;
2663 const auto *F = cast<FunctionDecl>(GD.getDecl());
2664 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2665 return false;
2666
2667 if (F->hasAttr<DLLImportAttr>()) {
2668 // Check whether it would be safe to inline this dllimport function.
2669 DLLImportFunctionVisitor Visitor;
2670 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2671 if (!Visitor.SafeToInline)
2672 return false;
2673
2674 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2675 // Implicit destructor invocations aren't captured in the AST, so the
2676 // check above can't see them. Check for them manually here.
2677 for (const Decl *Member : Dtor->getParent()->decls())
2678 if (isa<FieldDecl>(Member))
2679 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2680 return false;
2681 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2682 if (HasNonDllImportDtor(B.getType()))
2683 return false;
2684 }
2685 }
2686
2687 // PR9614. Avoid cases where the source code is lying to us. An available
2688 // externally function should have an equivalent function somewhere else,
2689 // but a function that calls itself is clearly not equivalent to the real
2690 // implementation.
2691 // This happens in glibc's btowc and in some configure checks.
2692 return !isTriviallyRecursive(F);
2693}
2694
2695bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2696 return CodeGenOpts.OptimizationLevel > 0;
2697}
2698
2699void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2700 llvm::GlobalValue *GV) {
2701 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2702
2703 if (FD->isCPUSpecificMultiVersion()) {
2704 auto *Spec = FD->getAttr<CPUSpecificAttr>();
2705 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2706 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2707 // Requires multiple emits.
2708 } else
2709 EmitGlobalFunctionDefinition(GD, GV);
2710}
2711
2712void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2713 const auto *D = cast<ValueDecl>(GD.getDecl());
2714
2715 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2716 Context.getSourceManager(),
2717 "Generating code for declaration");
2718
2719 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2720 // At -O0, don't generate IR for functions with available_externally
2721 // linkage.
2722 if (!shouldEmitFunction(GD))
2723 return;
2724
2725 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2726 std::string Name;
2727 llvm::raw_string_ostream OS(Name);
2728 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2729 /*Qualified=*/true);
2730 return Name;
2731 });
2732
2733 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2734 // Make sure to emit the definition(s) before we emit the thunks.
2735 // This is necessary for the generation of certain thunks.
2736 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2737 ABI->emitCXXStructor(GD);
2738 else if (FD->isMultiVersion())
2739 EmitMultiVersionFunctionDefinition(GD, GV);
2740 else
2741 EmitGlobalFunctionDefinition(GD, GV);
2742
2743 if (Method->isVirtual())
2744 getVTables().EmitThunks(GD);
2745
2746 return;
2747 }
2748
2749 if (FD->isMultiVersion())
2750 return EmitMultiVersionFunctionDefinition(GD, GV);
2751 return EmitGlobalFunctionDefinition(GD, GV);
2752 }
2753
2754 if (const auto *VD = dyn_cast<VarDecl>(D))
2755 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2756
2757 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2757)
;
2758}
2759
2760static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2761 llvm::Function *NewFn);
2762
2763static unsigned
2764TargetMVPriority(const TargetInfo &TI,
2765 const CodeGenFunction::MultiVersionResolverOption &RO) {
2766 unsigned Priority = 0;
2767 for (StringRef Feat : RO.Conditions.Features)
2768 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2769
2770 if (!RO.Conditions.Architecture.empty())
2771 Priority = std::max(
2772 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2773 return Priority;
2774}
2775
2776void CodeGenModule::emitMultiVersionFunctions() {
2777 for (GlobalDecl GD : MultiVersionFuncs) {
2778 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2779 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2780 getContext().forEachMultiversionedFunctionVersion(
2781 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2782 GlobalDecl CurGD{
2783 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2784 StringRef MangledName = getMangledName(CurGD);
2785 llvm::Constant *Func = GetGlobalValue(MangledName);
2786 if (!Func) {
2787 if (CurFD->isDefined()) {
2788 EmitGlobalFunctionDefinition(CurGD, nullptr);
2789 Func = GetGlobalValue(MangledName);
2790 } else {
2791 const CGFunctionInfo &FI =
2792 getTypes().arrangeGlobalDeclaration(GD);
2793 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2794 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2795 /*DontDefer=*/false, ForDefinition);
2796 }
2797 assert(Func && "This should have just been created")((Func && "This should have just been created") ? static_cast
<void> (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2797, __PRETTY_FUNCTION__))
;
2798 }
2799
2800 const auto *TA = CurFD->getAttr<TargetAttr>();
2801 llvm::SmallVector<StringRef, 8> Feats;
2802 TA->getAddedFeatures(Feats);
2803
2804 Options.emplace_back(cast<llvm::Function>(Func),
2805 TA->getArchitecture(), Feats);
2806 });
2807
2808 llvm::Function *ResolverFunc;
2809 const TargetInfo &TI = getTarget();
2810
2811 if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2812 ResolverFunc = cast<llvm::Function>(
2813 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2814 else
2815 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2816
2817 if (supportsCOMDAT())
2818 ResolverFunc->setComdat(
2819 getModule().getOrInsertComdat(ResolverFunc->getName()));
2820
2821 llvm::stable_sort(
2822 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2823 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2824 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2825 });
2826 CodeGenFunction CGF(*this);
2827 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2828 }
2829}
2830
2831void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2832 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2833 assert(FD && "Not a FunctionDecl?")((FD && "Not a FunctionDecl?") ? static_cast<void>
(0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2833, __PRETTY_FUNCTION__))
;
22
Assuming 'FD' is non-null
23
'?' condition is true
2834 const auto *DD = FD->getAttr<CPUDispatchAttr>();
2835 assert(DD && "Not a cpu_dispatch Function?")((DD && "Not a cpu_dispatch Function?") ? static_cast
<void> (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2835, __PRETTY_FUNCTION__))
;
24
Assuming 'DD' is non-null
25
'?' condition is true
2836 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2837
2838 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
26
Taking false branch
2839 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2840 DeclTy = getTypes().GetFunctionType(FInfo);
2841 }
2842
2843 StringRef ResolverName = getMangledName(GD);
2844
2845 llvm::Type *ResolverType;
2846 GlobalDecl ResolverGD;
2847 if (getTarget().supportsIFunc())
27
Taking false branch
2848 ResolverType = llvm::FunctionType::get(
2849 llvm::PointerType::get(DeclTy,
2850 Context.getTargetAddressSpace(FD->getType())),
2851 false);
2852 else {
2853 ResolverType = DeclTy;
2854 ResolverGD = GD;
2855 }
2856
2857 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2858 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2859
2860 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2861 const TargetInfo &Target = getTarget();
2862 unsigned Index = 0;
2863 for (const IdentifierInfo *II : DD->cpus()) {
28
Assuming '__begin1' is not equal to '__end1'
2864 // Get the name of the target function so we can look it up/create it.
2865 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2866 getCPUSpecificMangling(*this, II->getName());
2867
2868 llvm::Constant *Func = GetGlobalValue(MangledName);
2869
2870 if (!Func) {
29
Assuming 'Func' is null
30
Taking true branch
2871 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2872 if (ExistingDecl.getDecl() &&
31
Assuming the condition is false
2873 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2874 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2875 Func = GetGlobalValue(MangledName);
2876 } else {
2877 if (!ExistingDecl.getDecl())
32
Assuming the condition is false
33
Taking false branch
2878 ExistingDecl = GD.getWithMultiVersionIndex(Index);
2879
2880 Func = GetOrCreateLLVMFunction(
34
Calling 'CodeGenModule::GetOrCreateLLVMFunction'
2881 MangledName, DeclTy, ExistingDecl,
2882 /*ForVTable=*/false, /*DontDefer=*/true,
2883 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2884 }
2885 }
2886
2887 llvm::SmallVector<StringRef, 32> Features;
2888 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2889 llvm::transform(Features, Features.begin(),
2890 [](StringRef Str) { return Str.substr(1); });
2891 Features.erase(std::remove_if(
2892 Features.begin(), Features.end(), [&Target](StringRef Feat) {
2893 return !Target.validateCpuSupports(Feat);
2894 }), Features.end());
2895 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2896 ++Index;
2897 }
2898
2899 llvm::sort(
2900 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2901 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2902 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2903 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2904 });
2905
2906 // If the list contains multiple 'default' versions, such as when it contains
2907 // 'pentium' and 'generic', don't emit the call to the generic one (since we
2908 // always run on at least a 'pentium'). We do this by deleting the 'least
2909 // advanced' (read, lowest mangling letter).
2910 while (Options.size() > 1 &&
2911 CodeGenFunction::GetX86CpuSupportsMask(
2912 (Options.end() - 2)->Conditions.Features) == 0) {
2913 StringRef LHSName = (Options.end() - 2)->Function->getName();
2914 StringRef RHSName = (Options.end() - 1)->Function->getName();
2915 if (LHSName.compare(RHSName) < 0)
2916 Options.erase(Options.end() - 2);
2917 else
2918 Options.erase(Options.end() - 1);
2919 }
2920
2921 CodeGenFunction CGF(*this);
2922 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2923}
2924
2925/// If a dispatcher for the specified mangled name is not in the module, create
2926/// and return an llvm Function with the specified type.
2927llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2928 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2929 std::string MangledName =
2930 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2931
2932 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2933 // a separate resolver).
2934 std::string ResolverName = MangledName;
2935 if (getTarget().supportsIFunc())
2936 ResolverName += ".ifunc";
2937 else if (FD->isTargetMultiVersion())
2938 ResolverName += ".resolver";
2939
2940 // If this already exists, just return that one.
2941 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2942 return ResolverGV;
2943
2944 // Since this is the first time we've created this IFunc, make sure
2945 // that we put this multiversioned function into the list to be
2946 // replaced later if necessary (target multiversioning only).
2947 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2948 MultiVersionFuncs.push_back(GD);
2949
2950 if (getTarget().supportsIFunc()) {
2951 llvm::Type *ResolverType = llvm::FunctionType::get(
2952 llvm::PointerType::get(
2953 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2954 false);
2955 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2956 MangledName + ".resolver", ResolverType, GlobalDecl{},
2957 /*ForVTable=*/false);
2958 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2959 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2960 GIF->setName(ResolverName);
2961 SetCommonAttributes(FD, GIF);
2962
2963 return GIF;
2964 }
2965
2966 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2967 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2968 assert(isa<llvm::GlobalValue>(Resolver) &&((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2969, __PRETTY_FUNCTION__))
2969 "Resolver should be created for the first time")((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2969, __PRETTY_FUNCTION__))
;
2970 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2971 return Resolver;
2972}
2973
2974/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2975/// module, create and return an llvm Function with the specified type. If there
2976/// is something in the module with the specified name, return it potentially
2977/// bitcasted to the right type.
2978///
2979/// If D is non-null, it specifies a decl that correspond to this. This is used
2980/// to set the attributes on the function when it is first created.
2981llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2982 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2983 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2984 ForDefinition_t IsForDefinition) {
2985 const Decl *D = GD.getDecl();
35
Calling 'GlobalDecl::getDecl'
50
Returning from 'GlobalDecl::getDecl'
51
'D' initialized here
2986
2987 // Any attempts to use a MultiVersion function should result in retrieving
2988 // the iFunc instead. Name Mangling will handle the rest of the changes.
2989 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
7
Taking true branch
52
Assuming 'FD' is null
53
Taking false branch
2990 // For the device mark the function as one that should be emitted.
2991 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
8
Assuming the condition is true
11
Taking true branch
2992 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
9
Assuming the condition is true
10
Assuming the condition is true
2993 !DontDefer && !IsForDefinition) {
2994 if (const FunctionDecl *FDDef = FD->getDefinition()) {
12
Assuming 'FDDef' is non-null
13
Taking true branch
2995 GlobalDecl GDDef;
2996 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
14
Taking false branch
2997 GDDef = GlobalDecl(CD, GD.getCtorType());
2998 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
15
Taking false branch
2999 GDDef = GlobalDecl(DD, GD.getDtorType());
3000 else
3001 GDDef = GlobalDecl(FDDef);
3002 EmitGlobal(GDDef);
16
Calling 'CodeGenModule::EmitGlobal'
3003 }
3004 }
3005
3006 if (FD->isMultiVersion()) {
3007 const auto *TA = FD->getAttr<TargetAttr>();
3008 if (TA && TA->isDefaultVersion())
3009 UpdateMultiVersionNames(GD, FD);
3010 if (!IsForDefinition)
3011 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3012 }
3013 }
3014
3015 // Lookup the entry, lazily creating it if necessary.
3016 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3017 if (Entry) {
54
Assuming 'Entry' is non-null
55
Taking true branch
3018 if (WeakRefReferences.erase(Entry)) {
56
Assuming the condition is false
57
Taking false branch
3019 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3020 if (FD && !FD->hasAttr<WeakAttr>())
3021 Entry->setLinkage(llvm::Function::ExternalLinkage);
3022 }
3023
3024 // Handle dropped DLL attributes.
3025 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
58
Assuming 'D' is null
3026 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3027 setDSOLocal(Entry);
3028 }
3029
3030 // If there are two attempts to define the same mangled name, issue an
3031 // error.
3032 if (IsForDefinition && !Entry->isDeclaration()) {
59
Assuming the condition is true
60
Taking true branch
3033 GlobalDecl OtherGD;
3034 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3035 // to make sure that we issue an error only once.
3036 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
61
Assuming the condition is true
63
Assuming the condition is true
64
Taking true branch
3037 (GD.getCanonicalDecl().getDecl() !=
62
Assuming the condition is true
3038 OtherGD.getCanonicalDecl().getDecl()) &&
3039 DiagnosedConflictingDefinitions.insert(GD).second) {
3040 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
65
Called C++ object pointer is null
3041 << MangledName;
3042 getDiags().Report(OtherGD.getDecl()->getLocation(),
3043 diag::note_previous_definition);
3044 }
3045 }
3046
3047 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3048 (Entry->getType()->getElementType() == Ty)) {
3049 return Entry;
3050 }
3051
3052 // Make sure the result is of the correct type.
3053 // (If function is requested for a definition, we always need to create a new
3054 // function, not just return a bitcast.)
3055 if (!IsForDefinition)
3056 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3057 }
3058
3059 // This function doesn't have a complete type (for example, the return
3060 // type is an incomplete struct). Use a fake type instead, and make
3061 // sure not to try to set attributes.
3062 bool IsIncompleteFunction = false;
3063
3064 llvm::FunctionType *FTy;
3065 if (isa<llvm::FunctionType>(Ty)) {
3066 FTy = cast<llvm::FunctionType>(Ty);
3067 } else {
3068 FTy = llvm::FunctionType::get(VoidTy, false);
3069 IsIncompleteFunction = true;
3070 }
3071
3072 llvm::Function *F =
3073 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3074 Entry ? StringRef() : MangledName, &getModule());
3075
3076 // If we already created a function with the same mangled name (but different
3077 // type) before, take its name and add it to the list of functions to be
3078 // replaced with F at the end of CodeGen.
3079 //
3080 // This happens if there is a prototype for a function (e.g. "int f()") and
3081 // then a definition of a different type (e.g. "int f(int x)").
3082 if (Entry) {
3083 F->takeName(Entry);
3084
3085 // This might be an implementation of a function without a prototype, in
3086 // which case, try to do special replacement of calls which match the new
3087 // prototype. The really key thing here is that we also potentially drop
3088 // arguments from the call site so as to make a direct call, which makes the
3089 // inliner happier and suppresses a number of optimizer warnings (!) about
3090 // dropping arguments.
3091 if (!Entry->use_empty()) {
3092 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3093 Entry->removeDeadConstantUsers();
3094 }
3095
3096 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3097 F, Entry->getType()->getElementType()->getPointerTo());
3098 addGlobalValReplacement(Entry, BC);
3099 }
3100
3101 assert(F->getName() == MangledName && "name was uniqued!")((F->getName() == MangledName && "name was uniqued!"
) ? static_cast<void> (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3101, __PRETTY_FUNCTION__))
;
3102 if (D)
3103 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3104 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3105 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3106 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3107 }
3108
3109 if (!DontDefer) {
3110 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3111 // each other bottoming out with the base dtor. Therefore we emit non-base
3112 // dtors on usage, even if there is no dtor definition in the TU.
3113 if (D && isa<CXXDestructorDecl>(D) &&
3114 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3115 GD.getDtorType()))
3116 addDeferredDeclToEmit(GD);
3117
3118 // This is the first use or definition of a mangled name. If there is a
3119 // deferred decl with this name, remember that we need to emit it at the end
3120 // of the file.
3121 auto DDI = DeferredDecls.find(MangledName);
3122 if (DDI != DeferredDecls.end()) {
3123 // Move the potentially referenced deferred decl to the
3124 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3125 // don't need it anymore).
3126 addDeferredDeclToEmit(DDI->second);
3127 DeferredDecls.erase(DDI);
3128
3129 // Otherwise, there are cases we have to worry about where we're
3130 // using a declaration for which we must emit a definition but where
3131 // we might not find a top-level definition:
3132 // - member functions defined inline in their classes
3133 // - friend functions defined inline in some class
3134 // - special member functions with implicit definitions
3135 // If we ever change our AST traversal to walk into class methods,
3136 // this will be unnecessary.
3137 //
3138 // We also don't emit a definition for a function if it's going to be an
3139 // entry in a vtable, unless it's already marked as used.
3140 } else if (getLangOpts().CPlusPlus && D) {
3141 // Look for a declaration that's lexically in a record.
3142 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3143 FD = FD->getPreviousDecl()) {
3144 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3145 if (FD->doesThisDeclarationHaveABody()) {
3146 addDeferredDeclToEmit(GD.getWithDecl(FD));
3147 break;
3148 }
3149 }
3150 }
3151 }
3152 }
3153
3154 // Make sure the result is of the requested type.
3155 if (!IsIncompleteFunction) {
3156 assert(F->getType()->getElementType() == Ty)((F->getType()->getElementType() == Ty) ? static_cast<
void> (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3156, __PRETTY_FUNCTION__))
;
3157 return F;
3158 }
3159
3160 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3161 return llvm::ConstantExpr::getBitCast(F, PTy);
3162}
3163
3164/// GetAddrOfFunction - Return the address of the given function. If Ty is
3165/// non-null, then this function will use the specified type if it has to
3166/// create it (this occurs when we see a definition of the function).
3167llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3168 llvm::Type *Ty,
3169 bool ForVTable,
3170 bool DontDefer,
3171 ForDefinition_t IsForDefinition) {
3172 // If there was no specific requested type, just convert it now.
3173 if (!Ty) {
3174 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3175 Ty = getTypes().ConvertType(FD->getType());
3176 }
3177
3178 // Devirtualized destructor calls may come through here instead of via
3179 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3180 // of the complete destructor when necessary.
3181 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3182 if (getTarget().getCXXABI().isMicrosoft() &&
3183 GD.getDtorType() == Dtor_Complete &&
3184 DD->getParent()->getNumVBases() == 0)
3185 GD = GlobalDecl(DD, Dtor_Base);
3186 }
3187
3188 StringRef MangledName = getMangledName(GD);
3189 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3190 /*IsThunk=*/false, llvm::AttributeList(),
3191 IsForDefinition);
3192}
3193
3194static const FunctionDecl *
3195GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3196 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3197 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3198
3199 IdentifierInfo &CII = C.Idents.get(Name);
3200 for (const auto &Result : DC->lookup(&CII))
3201 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3202 return FD;
3203
3204 if (!C.getLangOpts().CPlusPlus)
3205 return nullptr;
3206
3207 // Demangle the premangled name from getTerminateFn()
3208 IdentifierInfo &CXXII =
3209 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3210 ? C.Idents.get("terminate")
3211 : C.Idents.get(Name);
3212
3213 for (const auto &N : {"__cxxabiv1", "std"}) {
3214 IdentifierInfo &NS = C.Idents.get(N);
3215 for (const auto &Result : DC->lookup(&NS)) {
3216 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3217 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3218 for (const auto &Result : LSD->lookup(&NS))
3219 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3220 break;
3221
3222 if (ND)
3223 for (const auto &Result : ND->lookup(&CXXII))
3224 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3225 return FD;
3226 }
3227 }
3228
3229 return nullptr;
3230}
3231
3232/// CreateRuntimeFunction - Create a new runtime function with the specified
3233/// type and name.
3234llvm::FunctionCallee
3235CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3236 llvm::AttributeList ExtraAttrs,
3237 bool Local) {
3238 llvm::Constant *C =
3239 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3240 /*DontDefer=*/false, /*IsThunk=*/false,
3241 ExtraAttrs);
3242
3243 if (auto *F = dyn_cast<llvm::Function>(C)) {
3244 if (F->empty()) {
3245 F->setCallingConv(getRuntimeCC());
3246
3247 // In Windows Itanium environments, try to mark runtime functions
3248 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3249 // will link their standard library statically or dynamically. Marking
3250 // functions imported when they are not imported can cause linker errors
3251 // and warnings.
3252 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3253 !getCodeGenOpts().LTOVisibilityPublicStd) {
3254 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3255 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3256 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3257 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3258 }
3259 }
3260 setDSOLocal(F);
3261 }
3262 }
3263
3264 return {FTy, C};
3265}
3266
3267/// isTypeConstant - Determine whether an object of this type can be emitted
3268/// as a constant.
3269///
3270/// If ExcludeCtor is true, the duration when the object's constructor runs
3271/// will not be considered. The caller will need to verify that the object is
3272/// not written to during its construction.
3273bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3274 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3275 return false;
3276
3277 if (Context.getLangOpts().CPlusPlus) {
3278 if (const CXXRecordDecl *Record
3279 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3280 return ExcludeCtor && !Record->hasMutableFields() &&
3281 Record->hasTrivialDestructor();
3282 }
3283
3284 return true;
3285}
3286
3287/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3288/// create and return an llvm GlobalVariable with the specified type. If there
3289/// is something in the module with the specified name, return it potentially
3290/// bitcasted to the right type.
3291///
3292/// If D is non-null, it specifies a decl that correspond to this. This is used
3293/// to set the attributes on the global when it is first created.
3294///
3295/// If IsForDefinition is true, it is guaranteed that an actual global with
3296/// type Ty will be returned, not conversion of a variable with the same
3297/// mangled name but some other type.
3298llvm::Constant *
3299CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3300 llvm::PointerType *Ty,
3301 const VarDecl *D,
3302 ForDefinition_t IsForDefinition) {
3303 // Lookup the entry, lazily creating it if necessary.
3304 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3305 if (Entry) {
3306 if (WeakRefReferences.erase(Entry)) {
3307 if (D && !D->hasAttr<WeakAttr>())
3308 Entry->setLinkage(llvm::Function::ExternalLinkage);
3309 }
3310
3311 // Handle dropped DLL attributes.
3312 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3313 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3314
3315 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3316 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3317
3318 if (Entry->getType() == Ty)
3319 return Entry;
3320
3321 // If there are two attempts to define the same mangled name, issue an
3322 // error.
3323 if (IsForDefinition && !Entry->isDeclaration()) {
3324 GlobalDecl OtherGD;
3325 const VarDecl *OtherD;
3326
3327 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3328 // to make sure that we issue an error only once.
3329 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3330 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3331 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3332 OtherD->hasInit() &&
3333 DiagnosedConflictingDefinitions.insert(D).second) {
3334 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3335 << MangledName;
3336 getDiags().Report(OtherGD.getDecl()->getLocation(),
3337 diag::note_previous_definition);
3338 }
3339 }
3340
3341 // Make sure the result is of the correct type.
3342 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3343 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3344
3345 // (If global is requested for a definition, we always need to create a new
3346 // global, not just return a bitcast.)
3347 if (!IsForDefinition)
3348 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3349 }
3350
3351 auto AddrSpace = GetGlobalVarAddressSpace(D);
3352 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3353
3354 auto *GV = new llvm::GlobalVariable(
3355 getModule(), Ty->getElementType(), false,
3356 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3357 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3358
3359 // If we already created a global with the same mangled name (but different
3360 // type) before, take its name and remove it from its parent.
3361 if (Entry) {
3362 GV->takeName(Entry);
3363
3364 if (!Entry->use_empty()) {
3365 llvm::Constant *NewPtrForOldDecl =
3366 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3367 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3368 }
3369
3370 Entry->eraseFromParent();
3371 }
3372
3373 // This is the first use or definition of a mangled name. If there is a
3374 // deferred decl with this name, remember that we need to emit it at the end
3375 // of the file.
3376 auto DDI = DeferredDecls.find(MangledName);
3377 if (DDI != DeferredDecls.end()) {
3378 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3379 // list, and remove it from DeferredDecls (since we don't need it anymore).
3380 addDeferredDeclToEmit(DDI->second);
3381 DeferredDecls.erase(DDI);
3382 }
3383
3384 // Handle things which are present even on external declarations.
3385 if (D) {
3386 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3387 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3388
3389 // FIXME: This code is overly simple and should be merged with other global
3390 // handling.
3391 GV->setConstant(isTypeConstant(D->getType(), false));
3392
3393 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3394
3395 setLinkageForGV(GV, D);
3396
3397 if (D->getTLSKind()) {
3398 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3399 CXXThreadLocals.push_back(D);
3400 setTLSMode(GV, *D);
3401 }
3402
3403 setGVProperties(GV, D);
3404
3405 // If required by the ABI, treat declarations of static data members with
3406 // inline initializers as definitions.
3407 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3408 EmitGlobalVarDefinition(D);
3409 }
3410
3411 // Emit section information for extern variables.
3412 if (D->hasExternalStorage()) {
3413 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3414 GV->setSection(SA->getName());
3415 }
3416
3417 // Handle XCore specific ABI requirements.
3418 if (getTriple().getArch() == llvm::Triple::xcore &&
3419 D->getLanguageLinkage() == CLanguageLinkage &&
3420 D->getType().isConstant(Context) &&
3421 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3422 GV->setSection(".cp.rodata");
3423
3424 // Check if we a have a const declaration with an initializer, we may be
3425 // able to emit it as available_externally to expose it's value to the
3426 // optimizer.
3427 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3428 D->getType().isConstQualified() && !GV->hasInitializer() &&
3429 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3430 const auto *Record =
3431 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3432 bool HasMutableFields = Record && Record->hasMutableFields();
3433 if (!HasMutableFields) {
3434 const VarDecl *InitDecl;
3435 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3436 if (InitExpr) {
3437 ConstantEmitter emitter(*this);
3438 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3439 if (Init) {
3440 auto *InitType = Init->getType();
3441 if (GV->getType()->getElementType() != InitType) {
3442 // The type of the initializer does not match the definition.
3443 // This happens when an initializer has a different type from
3444 // the type of the global (because of padding at the end of a
3445 // structure for instance).
3446 GV->setName(StringRef());
3447 // Make a new global with the correct type, this is now guaranteed
3448 // to work.
3449 auto *NewGV = cast<llvm::GlobalVariable>(
3450 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3451
3452 // Erase the old global, since it is no longer used.
3453 GV->eraseFromParent();
3454 GV = NewGV;
3455 } else {
3456 GV->setInitializer(Init);
3457 GV->setConstant(true);
3458 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3459 }
3460 emitter.finalize(GV);
3461 }
3462 }
3463 }
3464 }
3465 }
3466
3467 LangAS ExpectedAS =
3468 D ? D->getType().getAddressSpace()
3469 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3470 assert(getContext().getTargetAddressSpace(ExpectedAS) ==((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3471, __PRETTY_FUNCTION__))
3471 Ty->getPointerAddressSpace())((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3471, __PRETTY_FUNCTION__))
;
3472 if (AddrSpace != ExpectedAS)
3473 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3474 ExpectedAS, Ty);
3475
3476 if (GV->isDeclaration())
3477 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3478
3479 return GV;
3480}
3481
3482llvm::Constant *
3483CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3484 ForDefinition_t IsForDefinition) {
3485 const Decl *D = GD.getDecl();
3486 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3487 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3488 /*DontDefer=*/false, IsForDefinition);
3489 else if (isa<CXXMethodDecl>(D)) {
3490 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3491 cast<CXXMethodDecl>(D));
3492 auto Ty = getTypes().GetFunctionType(*FInfo);
3493 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3494 IsForDefinition);
3495 } else if (isa<FunctionDecl>(D)) {
3496 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3497 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3498 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3499 IsForDefinition);
3500 } else
3501 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3502 IsForDefinition);
3503}
3504
3505llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3506 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3507 unsigned Alignment) {
3508 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3509 llvm::GlobalVariable *OldGV = nullptr;
3510
3511 if (GV) {
3512 // Check if the variable has the right type.
3513 if (GV->getType()->getElementType() == Ty)
3514 return GV;
3515
3516 // Because C++ name mangling, the only way we can end up with an already
3517 // existing global with the same name is if it has been declared extern "C".
3518 assert(GV->isDeclaration() && "Declaration has wrong type!")((GV->isDeclaration() && "Declaration has wrong type!"
) ? static_cast<void> (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3518, __PRETTY_FUNCTION__))
;
3519 OldGV = GV;
3520 }
3521
3522 // Create a new variable.
3523 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3524 Linkage, nullptr, Name);
3525
3526 if (OldGV) {
3527 // Replace occurrences of the old variable if needed.
3528 GV->takeName(OldGV);
3529
3530 if (!OldGV->use_empty()) {
3531 llvm::Constant *NewPtrForOldDecl =
3532 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3533 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3534 }
3535
3536 OldGV->eraseFromParent();
3537 }
3538
3539 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3540 !GV->hasAvailableExternallyLinkage())
3541 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3542
3543 GV->setAlignment(Alignment);
3544
3545 return GV;
3546}
3547
3548/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3549/// given global variable. If Ty is non-null and if the global doesn't exist,
3550/// then it will be created with the specified type instead of whatever the
3551/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3552/// that an actual global with type Ty will be returned, not conversion of a
3553/// variable with the same mangled name but some other type.
3554llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3555 llvm::Type *Ty,
3556 ForDefinition_t IsForDefinition) {
3557 assert(D->hasGlobalStorage() && "Not a global variable")((D->hasGlobalStorage() && "Not a global variable"
) ? static_cast<void> (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3557, __PRETTY_FUNCTION__))
;
3558 QualType ASTTy = D->getType();
3559 if (!Ty)
3560 Ty = getTypes().ConvertTypeForMem(ASTTy);
3561
3562 llvm::PointerType *PTy =
3563 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3564
3565 StringRef MangledName = getMangledName(D);
3566 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3567}
3568
3569/// CreateRuntimeVariable - Create a new runtime global variable with the
3570/// specified type and name.
3571llvm::Constant *
3572CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3573 StringRef Name) {
3574 auto *Ret =
3575 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3576 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3577 return Ret;
3578}
3579
3580void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3581 assert(!D->getInit() && "Cannot emit definite definitions here!")((!D->getInit() && "Cannot emit definite definitions here!"
) ? static_cast<void> (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3581, __PRETTY_FUNCTION__))
;
3582
3583 StringRef MangledName = getMangledName(D);
3584 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3585
3586 // We already have a definition, not declaration, with the same mangled name.
3587 // Emitting of declaration is not required (and actually overwrites emitted
3588 // definition).
3589 if (GV && !GV->isDeclaration())
3590 return;
3591
3592 // If we have not seen a reference to this variable yet, place it into the
3593 // deferred declarations table to be emitted if needed later.
3594 if (!MustBeEmitted(D) && !GV) {
3595 DeferredDecls[MangledName] = D;
3596 return;
3597 }
3598
3599 // The tentative definition is the only definition.
3600 EmitGlobalVarDefinition(D);
3601}
3602
3603CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3604 return Context.toCharUnitsFromBits(
3605 getDataLayout().getTypeStoreSizeInBits(Ty));
3606}
3607
3608LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3609 LangAS AddrSpace = LangAS::Default;
3610 if (LangOpts.OpenCL) {
3611 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3612 assert(AddrSpace == LangAS::opencl_global ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3615, __PRETTY_FUNCTION__))
3613 AddrSpace == LangAS::opencl_constant ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3615, __PRETTY_FUNCTION__))
3614 AddrSpace == LangAS::opencl_local ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3615, __PRETTY_FUNCTION__))
3615 AddrSpace >= LangAS::FirstTargetAddressSpace)((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3615, __PRETTY_FUNCTION__))
;
3616 return AddrSpace;
3617 }
3618
3619 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3620 if (D && D->hasAttr<CUDAConstantAttr>())
3621 return LangAS::cuda_constant;
3622 else if (D && D->hasAttr<CUDASharedAttr>())
3623 return LangAS::cuda_shared;
3624 else if (D && D->hasAttr<CUDADeviceAttr>())
3625 return LangAS::cuda_device;
3626 else if (D && D->getType().isConstQualified())
3627 return LangAS::cuda_constant;
3628 else
3629 return LangAS::cuda_device;
3630 }
3631
3632 if (LangOpts.OpenMP) {
3633 LangAS AS;
3634 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3635 return AS;
3636 }
3637 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3638}
3639
3640LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3641 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3642 if (LangOpts.OpenCL)
3643 return LangAS::opencl_constant;
3644 if (auto AS = getTarget().getConstantAddressSpace())
3645 return AS.getValue();
3646 return LangAS::Default;
3647}
3648
3649// In address space agnostic languages, string literals are in default address
3650// space in AST. However, certain targets (e.g. amdgcn) request them to be
3651// emitted in constant address space in LLVM IR. To be consistent with other
3652// parts of AST, string literal global variables in constant address space
3653// need to be casted to default address space before being put into address
3654// map and referenced by other part of CodeGen.
3655// In OpenCL, string literals are in constant address space in AST, therefore
3656// they should not be casted to default address space.
3657static llvm::Constant *
3658castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3659 llvm::GlobalVariable *GV) {
3660 llvm::Constant *Cast = GV;
3661 if (!CGM.getLangOpts().OpenCL) {
3662 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3663 if (AS != LangAS::Default)
3664 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3665 CGM, GV, AS.getValue(), LangAS::Default,
3666 GV->getValueType()->getPointerTo(
3667 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3668 }
3669 }
3670 return Cast;
3671}
3672
3673template<typename SomeDecl>
3674void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3675 llvm::GlobalValue *GV) {
3676 if (!getLangOpts().CPlusPlus)
3677 return;
3678
3679 // Must have 'used' attribute, or else inline assembly can't rely on
3680 // the name existing.
3681 if (!D->template hasAttr<UsedAttr>())
3682 return;
3683
3684 // Must have internal linkage and an ordinary name.
3685 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3686 return;
3687
3688 // Must be in an extern "C" context. Entities declared directly within
3689 // a record are not extern "C" even if the record is in such a context.
3690 const SomeDecl *First = D->getFirstDecl();
3691 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3692 return;
3693
3694 // OK, this is an internal linkage entity inside an extern "C" linkage
3695 // specification. Make a note of that so we can give it the "expected"
3696 // mangled name if nothing else is using that name.
3697 std::pair<StaticExternCMap::iterator, bool> R =
3698 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3699
3700 // If we have multiple internal linkage entities with the same name
3701 // in extern "C" regions, none of them gets that name.
3702 if (!R.second)
3703 R.first->second = nullptr;
3704}
3705
3706static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3707 if (!CGM.supportsCOMDAT())
3708 return false;
3709
3710 if (D.hasAttr<SelectAnyAttr>())
3711 return true;
3712
3713 GVALinkage Linkage;
3714 if (auto *VD = dyn_cast<VarDecl>(&D))
3715 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3716 else
3717 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3718
3719 switch (Linkage) {
3720 case GVA_Internal:
3721 case GVA_AvailableExternally:
3722 case GVA_StrongExternal:
3723 return false;
3724 case GVA_DiscardableODR:
3725 case GVA_StrongODR:
3726 return true;
3727 }
3728 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3728)
;
3729}
3730
3731void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3732 llvm::GlobalObject &GO) {
3733 if (!shouldBeInCOMDAT(*this, D))
3734 return;
3735 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3736}
3737
3738/// Pass IsTentative as true if you want to create a tentative definition.
3739void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3740 bool IsTentative) {
3741 // OpenCL global variables of sampler type are translated to function calls,
3742 // therefore no need to be translated.
3743 QualType ASTTy = D->getType();
3744 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3745 return;
3746
3747 // If this is OpenMP device, check if it is legal to emit this global
3748 // normally.
3749 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3750 OpenMPRuntime->emitTargetGlobalVariable(D))
3751 return;
3752
3753 llvm::Constant *Init = nullptr;
3754 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3755 bool NeedsGlobalCtor = false;
3756 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3757
3758 const VarDecl *InitDecl;
3759 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3760
3761 Optional<ConstantEmitter> emitter;
3762
3763 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3764 // as part of their declaration." Sema has already checked for
3765 // error cases, so we just need to set Init to UndefValue.
3766 bool IsCUDASharedVar =
3767 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3768 // Shadows of initialized device-side global variables are also left
3769 // undefined.
3770 bool IsCUDAShadowVar =
3771 !getLangOpts().CUDAIsDevice &&
3772 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3773 D->hasAttr<CUDASharedAttr>());
3774 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3775 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3776 else if (!InitExpr) {
3777 // This is a tentative definition; tentative definitions are
3778 // implicitly initialized with { 0 }.
3779 //
3780 // Note that tentative definitions are only emitted at the end of
3781 // a translation unit, so they should never have incomplete
3782 // type. In addition, EmitTentativeDefinition makes sure that we
3783 // never attempt to emit a tentative definition if a real one
3784 // exists. A use may still exists, however, so we still may need
3785 // to do a RAUW.
3786 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")((!ASTTy->isIncompleteType() && "Unexpected incomplete type"
) ? static_cast<void> (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3786, __PRETTY_FUNCTION__))
;
3787 Init = EmitNullConstant(D->getType());
3788 } else {
3789 initializedGlobalDecl = GlobalDecl(D);
3790 emitter.emplace(*this);
3791 Init = emitter->tryEmitForInitializer(*InitDecl);
3792
3793 if (!Init) {
3794 QualType T = InitExpr->getType();
3795 if (D->getType()->isReferenceType())
3796 T = D->getType();
3797
3798 if (getLangOpts().CPlusPlus) {
3799 Init = EmitNullConstant(T);
3800 NeedsGlobalCtor = true;
3801 } else {
3802 ErrorUnsupported(D, "static initializer");
3803 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3804 }
3805 } else {
3806 // We don't need an initializer, so remove the entry for the delayed
3807 // initializer position (just in case this entry was delayed) if we
3808 // also don't need to register a destructor.
3809 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3810 DelayedCXXInitPosition.erase(D);
3811 }
3812 }
3813
3814 llvm::Type* InitType = Init->getType();
3815 llvm::Constant *Entry =
3816 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3817
3818 // Strip off a bitcast if we got one back.
3819 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3820 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3823, __PRETTY_FUNCTION__))
3821 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3823, __PRETTY_FUNCTION__))
3822 // All zero index gep.((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3823, __PRETTY_FUNCTION__))
3823 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3823, __PRETTY_FUNCTION__))
;
3824 Entry = CE->getOperand(0);
3825 }
3826
3827 // Entry is now either a Function or GlobalVariable.
3828 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3829
3830 // We have a definition after a declaration with the wrong type.
3831 // We must make a new GlobalVariable* and update everything that used OldGV
3832 // (a declaration or tentative definition) with the new GlobalVariable*
3833 // (which will be a definition).
3834 //
3835 // This happens if there is a prototype for a global (e.g.
3836 // "extern int x[];") and then a definition of a different type (e.g.
3837 // "int x[10];"). This also happens when an initializer has a different type
3838 // from the type of the global (this happens with unions).
3839 if (!GV || GV->getType()->getElementType() != InitType ||
3840 GV->getType()->getAddressSpace() !=
3841 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3842
3843 // Move the old entry aside so that we'll create a new one.
3844 Entry->setName(StringRef());
3845
3846 // Make a new global with the correct type, this is now guaranteed to work.
3847 GV = cast<llvm::GlobalVariable>(
3848 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3849
3850 // Replace all uses of the old global with the new global
3851 llvm::Constant *NewPtrForOldDecl =
3852 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3853 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3854
3855 // Erase the old global, since it is no longer used.
3856 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3857 }
3858
3859 MaybeHandleStaticInExternC(D, GV);
3860
3861 if (D->hasAttr<AnnotateAttr>())
3862 AddGlobalAnnotations(D, GV);
3863
3864 // Set the llvm linkage type as appropriate.
3865 llvm::GlobalValue::LinkageTypes Linkage =
3866 getLLVMLinkageVarDefinition(D, GV->isConstant());
3867
3868 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3869 // the device. [...]"
3870 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3871 // __device__, declares a variable that: [...]
3872 // Is accessible from all the threads within the grid and from the host
3873 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3874 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3875 if (GV && LangOpts.CUDA) {
3876 if (LangOpts.CUDAIsDevice) {
3877 if (Linkage != llvm::GlobalValue::InternalLinkage &&
3878 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3879 GV->setExternallyInitialized(true);
3880 } else {
3881 // Host-side shadows of external declarations of device-side
3882 // global variables become internal definitions. These have to
3883 // be internal in order to prevent name conflicts with global
3884 // host variables with the same name in a different TUs.
3885 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3886 Linkage = llvm::GlobalValue::InternalLinkage;
3887
3888 // Shadow variables and their properties must be registered
3889 // with CUDA runtime.
3890 unsigned Flags = 0;
3891 if (!D->hasDefinition())
3892 Flags |= CGCUDARuntime::ExternDeviceVar;
3893 if (D->hasAttr<CUDAConstantAttr>())
3894 Flags |= CGCUDARuntime::ConstantDeviceVar;
3895 // Extern global variables will be registered in the TU where they are
3896 // defined.
3897 if (!D->hasExternalStorage())
3898 getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3899 } else if (D->hasAttr<CUDASharedAttr>())
3900 // __shared__ variables are odd. Shadows do get created, but
3901 // they are not registered with the CUDA runtime, so they
3902 // can't really be used to access their device-side
3903 // counterparts. It's not clear yet whether it's nvcc's bug or
3904 // a feature, but we've got to do the same for compatibility.
3905 Linkage = llvm::GlobalValue::InternalLinkage;
3906 }
3907 }
3908
3909 GV->setInitializer(Init);
3910 if (emitter) emitter->finalize(GV);
3911
3912 // If it is safe to mark the global 'constant', do so now.
3913 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3914 isTypeConstant(D->getType(), true));
3915
3916 // If it is in a read-only section, mark it 'constant'.
3917 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3918 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3919 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3920 GV->setConstant(true);
3921 }
3922
3923 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3924
3925
3926 // On Darwin, if the normal linkage of a C++ thread_local variable is
3927 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3928 // copies within a linkage unit; otherwise, the backing variable has
3929 // internal linkage and all accesses should just be calls to the
3930 // Itanium-specified entry point, which has the normal linkage of the
3931 // variable. This is to preserve the ability to change the implementation
3932 // behind the scenes.
3933 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3934 Context.getTargetInfo().getTriple().isOSDarwin() &&
3935 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3936 !llvm::GlobalVariable::isWeakLinkage(Linkage))
3937 Linkage = llvm::GlobalValue::InternalLinkage;
3938
3939 GV->setLinkage(Linkage);
3940 if (D->hasAttr<DLLImportAttr>())
3941 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3942 else if (D->hasAttr<DLLExportAttr>())
3943 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3944 else
3945 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3946
3947 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3948 // common vars aren't constant even if declared const.
3949 GV->setConstant(false);
3950 // Tentative definition of global variables may be initialized with
3951 // non-zero null pointers. In this case they should have weak linkage
3952 // since common linkage must have zero initializer and must not have
3953 // explicit section therefore cannot have non-zero initial value.
3954 if (!GV->getInitializer()->isNullValue())
3955 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3956 }
3957
3958 setNonAliasAttributes(D, GV);
3959
3960 if (D->getTLSKind() && !GV->isThreadLocal()) {
3961 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3962 CXXThreadLocals.push_back(D);
3963 setTLSMode(GV, *D);
3964 }
3965
3966 maybeSetTrivialComdat(*D, *GV);
3967
3968 // Emit the initializer function if necessary.
3969 if (NeedsGlobalCtor || NeedsGlobalDtor)
3970 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3971
3972 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3973
3974 // Emit global variable debug information.
3975 if (CGDebugInfo *DI = getModuleDebugInfo())
3976 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3977 DI->EmitGlobalVariable(GV, D);
3978}
3979
3980static bool isVarDeclStrongDefinition(const ASTContext &Context,
3981 CodeGenModule &CGM, const VarDecl *D,
3982 bool NoCommon) {
3983 // Don't give variables common linkage if -fno-common was specified unless it
3984 // was overridden by a NoCommon attribute.
3985 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3986 return true;
3987
3988 // C11 6.9.2/2:
3989 // A declaration of an identifier for an object that has file scope without
3990 // an initializer, and without a storage-class specifier or with the
3991 // storage-class specifier static, constitutes a tentative definition.
3992 if (D->getInit() || D->hasExternalStorage())
3993 return true;
3994
3995 // A variable cannot be both common and exist in a section.
3996 if (D->hasAttr<SectionAttr>())
3997 return true;
3998
3999 // A variable cannot be both common and exist in a section.
4000 // We don't try to determine which is the right section in the front-end.
4001 // If no specialized section name is applicable, it will resort to default.
4002 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4003 D->hasAttr<PragmaClangDataSectionAttr>() ||
4004 D->hasAttr<PragmaClangRodataSectionAttr>())
4005 return true;
4006
4007 // Thread local vars aren't considered common linkage.
4008 if (D->getTLSKind())
4009 return true;
4010
4011 // Tentative definitions marked with WeakImportAttr are true definitions.
4012 if (D->hasAttr<WeakImportAttr>())
4013 return true;
4014
4015 // A variable cannot be both common and exist in a comdat.
4016 if (shouldBeInCOMDAT(CGM, *D))
4017 return true;
4018
4019 // Declarations with a required alignment do not have common linkage in MSVC
4020 // mode.
4021 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4022 if (D->hasAttr<AlignedAttr>())
4023 return true;
4024 QualType VarType = D->getType();
4025 if (Context.isAlignmentRequired(VarType))
4026 return true;
4027
4028 if (const auto *RT = VarType->getAs<RecordType>()) {
4029 const RecordDecl *RD = RT->getDecl();
4030 for (const FieldDecl *FD : RD->fields()) {
4031 if (FD->isBitField())
4032 continue;
4033 if (FD->hasAttr<AlignedAttr>())
4034 return true;
4035 if (Context.isAlignmentRequired(FD->getType()))
4036 return true;
4037 }
4038 }
4039 }
4040
4041 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4042 // common symbols, so symbols with greater alignment requirements cannot be
4043 // common.
4044 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4045 // alignments for common symbols via the aligncomm directive, so this
4046 // restriction only applies to MSVC environments.
4047 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4048 Context.getTypeAlignIfKnown(D->getType()) >
4049 Context.toBits(CharUnits::fromQuantity(32)))
4050 return true;
4051
4052 return false;
4053}
4054
4055llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4056 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4057 if (Linkage == GVA_Internal)
4058 return llvm::Function::InternalLinkage;
4059
4060 if (D->hasAttr<WeakAttr>()) {
4061 if (IsConstantVariable)
4062 return llvm::GlobalVariable::WeakODRLinkage;
4063 else
4064 return llvm::GlobalVariable::WeakAnyLinkage;
4065 }
4066
4067 if (const auto *FD = D->getAsFunction())
4068 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4069 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4070
4071 // We are guaranteed to have a strong definition somewhere else,
4072 // so we can use available_externally linkage.
4073 if (Linkage == GVA_AvailableExternally)
4074 return llvm::GlobalValue::AvailableExternallyLinkage;
4075
4076 // Note that Apple's kernel linker doesn't support symbol
4077 // coalescing, so we need to avoid linkonce and weak linkages there.
4078 // Normally, this means we just map to internal, but for explicit
4079 // instantiations we'll map to external.
4080
4081 // In C++, the compiler has to emit a definition in every translation unit
4082 // that references the function. We should use linkonce_odr because
4083 // a) if all references in this translation unit are optimized away, we
4084 // don't need to codegen it. b) if the function persists, it needs to be
4085 // merged with other definitions. c) C++ has the ODR, so we know the
4086 // definition is dependable.
4087 if (Linkage == GVA_DiscardableODR)
4088 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4089 : llvm::Function::InternalLinkage;
4090
4091 // An explicit instantiation of a template has weak linkage, since
4092 // explicit instantiations can occur in multiple translation units
4093 // and must all be equivalent. However, we are not allowed to
4094 // throw away these explicit instantiations.
4095 //
4096 // We don't currently support CUDA device code spread out across multiple TUs,
4097 // so say that CUDA templates are either external (for kernels) or internal.
4098 // This lets llvm perform aggressive inter-procedural optimizations.
4099 if (Linkage == GVA_StrongODR) {
4100 if (Context.getLangOpts().AppleKext)
4101 return llvm::Function::ExternalLinkage;
4102 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4103 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4104 : llvm::Function::InternalLinkage;
4105 return llvm::Function::WeakODRLinkage;
4106 }
4107
4108 // C++ doesn't have tentative definitions and thus cannot have common
4109 // linkage.
4110 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4111 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4112 CodeGenOpts.NoCommon))
4113 return llvm::GlobalVariable::CommonLinkage;
4114
4115 // selectany symbols are externally visible, so use weak instead of
4116 // linkonce. MSVC optimizes away references to const selectany globals, so
4117 // all definitions should be the same and ODR linkage should be used.
4118 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4119 if (D->hasAttr<SelectAnyAttr>())
4120 return llvm::GlobalVariable::WeakODRLinkage;
4121
4122 // Otherwise, we have strong external linkage.
4123 assert(Linkage == GVA_StrongExternal)((Linkage == GVA_StrongExternal) ? static_cast<void> (0
) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4123, __PRETTY_FUNCTION__))
;
4124 return llvm::GlobalVariable::ExternalLinkage;
4125}
4126
4127llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4128 const VarDecl *VD, bool IsConstant) {
4129 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4130 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4131}
4132
4133/// Replace the uses of a function that was declared with a non-proto type.
4134/// We want to silently drop extra arguments from call sites
4135static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4136 llvm::Function *newFn) {
4137 // Fast path.
4138 if (old->use_empty()) return;
4139
4140 llvm::Type *newRetTy = newFn->getReturnType();
4141 SmallVector<llvm::Value*, 4> newArgs;
4142 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4143
4144 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4145 ui != ue; ) {
4146 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4147 llvm::User *user = use->getUser();
4148
4149 // Recognize and replace uses of bitcasts. Most calls to
4150 // unprototyped functions will use bitcasts.
4151 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4152 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4153 replaceUsesOfNonProtoConstant(bitcast, newFn);
4154 continue;
4155 }
4156
4157 // Recognize calls to the function.
4158 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4159 if (!callSite) continue;
4160 if (!callSite->isCallee(&*use))
4161 continue;
4162
4163 // If the return types don't match exactly, then we can't
4164 // transform this call unless it's dead.
4165 if (callSite->getType() != newRetTy && !callSite->use_empty())
4166 continue;
4167
4168 // Get the call site's attribute list.
4169 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4170 llvm::AttributeList oldAttrs = callSite->getAttributes();
4171
4172 // If the function was passed too few arguments, don't transform.
4173 unsigned newNumArgs = newFn->arg_size();
4174 if (callSite->arg_size() < newNumArgs)
4175 continue;
4176
4177 // If extra arguments were passed, we silently drop them.
4178 // If any of the types mismatch, we don't transform.
4179 unsigned argNo = 0;
4180 bool dontTransform = false;
4181 for (llvm::Argument &A : newFn->args()) {
4182 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4183 dontTransform = true;
4184 break;
4185 }
4186
4187 // Add any parameter attributes.
4188 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4189 argNo++;
4190 }
4191 if (dontTransform)
4192 continue;
4193
4194 // Okay, we can transform this. Create the new call instruction and copy
4195 // over the required information.
4196 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4197
4198 // Copy over any operand bundles.
4199 callSite->getOperandBundlesAsDefs(newBundles);
4200
4201 llvm::CallBase *newCall;
4202 if (dyn_cast<llvm::CallInst>(callSite)) {
4203 newCall =
4204 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4205 } else {
4206 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4207 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4208 oldInvoke->getUnwindDest(), newArgs,
4209 newBundles, "", callSite);
4210 }
4211 newArgs.clear(); // for the next iteration
4212
4213 if (!newCall->getType()->isVoidTy())
4214 newCall->takeName(callSite);
4215 newCall->setAttributes(llvm::AttributeList::get(
4216 newFn->getContext(), oldAttrs.getFnAttributes(),
4217 oldAttrs.getRetAttributes(), newArgAttrs));
4218 newCall->setCallingConv(callSite->getCallingConv());
4219
4220 // Finally, remove the old call, replacing any uses with the new one.
4221 if (!callSite->use_empty())
4222 callSite->replaceAllUsesWith(newCall);
4223
4224 // Copy debug location attached to CI.
4225 if (callSite->getDebugLoc())
4226 newCall->setDebugLoc(callSite->getDebugLoc());
4227
4228 callSite->eraseFromParent();
4229 }
4230}
4231
4232/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4233/// implement a function with no prototype, e.g. "int foo() {}". If there are
4234/// existing call uses of the old function in the module, this adjusts them to
4235/// call the new function directly.
4236///
4237/// This is not just a cleanup: the always_inline pass requires direct calls to
4238/// functions to be able to inline them. If there is a bitcast in the way, it
4239/// won't inline them. Instcombine normally deletes these calls, but it isn't
4240/// run at -O0.
4241static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4242 llvm::Function *NewFn) {
4243 // If we're redefining a global as a function, don't transform it.
4244 if (!isa<llvm::Function>(Old)) return;
4245
4246 replaceUsesOfNonProtoConstant(Old, NewFn);
4247}
4248
4249void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4250 auto DK = VD->isThisDeclarationADefinition();
4251 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4252 return;
4253
4254 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4255 // If we have a definition, this might be a deferred decl. If the
4256 // instantiation is explicit, make sure we emit it at the end.
4257 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4258 GetAddrOfGlobalVar(VD);
4259
4260 EmitTopLevelDecl(VD);
4261}
4262
4263void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4264 llvm::GlobalValue *GV) {
4265 const auto *D = cast<FunctionDecl>(GD.getDecl());
4266
4267 // Compute the function info and LLVM type.
4268 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4269 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4270
4271 // Get or create the prototype for the function.
4272 if (!GV || (GV->getType()->getElementType() != Ty))
4273 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4274 /*DontDefer=*/true,
4275 ForDefinition));
4276
4277 // Already emitted.
4278 if (!GV->isDeclaration())
4279 return;
4280
4281 // We need to set linkage and visibility on the function before
4282 // generating code for it because various parts of IR generation
4283 // want to propagate this information down (e.g. to local static
4284 // declarations).
4285 auto *Fn = cast<llvm::Function>(GV);
4286 setFunctionLinkage(GD, Fn);
4287
4288 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4289 setGVProperties(Fn, GD);
4290
4291 MaybeHandleStaticInExternC(D, Fn);
4292
4293
4294 maybeSetTrivialComdat(*D, *Fn);
4295
4296 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4297
4298 setNonAliasAttributes(GD, Fn);
4299 SetLLVMFunctionAttributesForDefinition(D, Fn);
4300
4301 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4302 AddGlobalCtor(Fn, CA->getPriority());
4303 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4304 AddGlobalDtor(Fn, DA->getPriority());
4305 if (D->hasAttr<AnnotateAttr>())
4306 AddGlobalAnnotations(D, Fn);
4307}
4308
4309void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4310 const auto *D = cast<ValueDecl>(GD.getDecl());
4311 const AliasAttr *AA = D->getAttr<AliasAttr>();
4312 assert(AA && "Not an alias?")((AA && "Not an alias?") ? static_cast<void> (0
) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4312, __PRETTY_FUNCTION__))
;
4313
4314 StringRef MangledName = getMangledName(GD);
4315
4316 if (AA->getAliasee() == MangledName) {
4317 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4318 return;
4319 }
4320
4321 // If there is a definition in the module, then it wins over the alias.
4322 // This is dubious, but allow it to be safe. Just ignore the alias.
4323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4324 if (Entry && !Entry->isDeclaration())
4325 return;
4326
4327 Aliases.push_back(GD);
4328
4329 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4330
4331 // Create a reference to the named value. This ensures that it is emitted
4332 // if a deferred decl.
4333 llvm::Constant *Aliasee;
4334 if (isa<llvm::FunctionType>(DeclTy))
4335 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4336 /*ForVTable=*/false);
4337 else
4338 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4339 llvm::PointerType::getUnqual(DeclTy),
4340 /*D=*/nullptr);
4341
4342 // Create the new alias itself, but don't set a name yet.
4343 auto *GA = llvm::GlobalAlias::create(
4344 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4345
4346 if (Entry) {
4347 if (GA->getAliasee() == Entry) {
4348 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4349 return;
4350 }
4351
4352 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4352, __PRETTY_FUNCTION__))
;
4353
4354 // If there is a declaration in the module, then we had an extern followed
4355 // by the alias, as in:
4356 // extern int test6();
4357 // ...
4358 // int test6() __attribute__((alias("test7")));
4359 //
4360 // Remove it and replace uses of it with the alias.
4361 GA->takeName(Entry);
4362
4363 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4364 Entry->getType()));
4365 Entry->eraseFromParent();
4366 } else {
4367 GA->setName(MangledName);
4368 }
4369
4370 // Set attributes which are particular to an alias; this is a
4371 // specialization of the attributes which may be set on a global
4372 // variable/function.
4373 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4374 D->isWeakImported()) {
4375 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4376 }
4377
4378 if (const auto *VD = dyn_cast<VarDecl>(D))
4379 if (VD->getTLSKind())
4380 setTLSMode(GA, *VD);
4381
4382 SetCommonAttributes(GD, GA);
4383}
4384
4385void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4386 const auto *D = cast<ValueDecl>(GD.getDecl());
4387 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4388 assert(IFA && "Not an ifunc?")((IFA && "Not an ifunc?") ? static_cast<void> (
0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4388, __PRETTY_FUNCTION__))
;
4389
4390 StringRef MangledName = getMangledName(GD);
4391
4392 if (IFA->getResolver() == MangledName) {
4393 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4394 return;
4395 }
4396
4397 // Report an error if some definition overrides ifunc.
4398 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4399 if (Entry && !Entry->isDeclaration()) {
4400 GlobalDecl OtherGD;
4401 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4402 DiagnosedConflictingDefinitions.insert(GD).second) {
4403 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4404 << MangledName;
4405 Diags.Report(OtherGD.getDecl()->getLocation(),
4406 diag::note_previous_definition);
4407 }
4408 return;
4409 }
4410
4411 Aliases.push_back(GD);
4412
4413 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4414 llvm::Constant *Resolver =
4415 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4416 /*ForVTable=*/false);
4417 llvm::GlobalIFunc *GIF =
4418 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4419 "", Resolver, &getModule());
4420 if (Entry) {
4421 if (GIF->getResolver() == Entry) {
4422 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4423 return;
4424 }
4425 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4425, __PRETTY_FUNCTION__))
;
4426
4427 // If there is a declaration in the module, then we had an extern followed
4428 // by the ifunc, as in:
4429 // extern int test();
4430 // ...
4431 // int test() __attribute__((ifunc("resolver")));
4432 //
4433 // Remove it and replace uses of it with the ifunc.
4434 GIF->takeName(Entry);
4435
4436 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4437 Entry->getType()));
4438 Entry->eraseFromParent();
4439 } else
4440 GIF->setName(MangledName);
4441
4442 SetCommonAttributes(GD, GIF);
4443}
4444
4445llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4446 ArrayRef<llvm::Type*> Tys) {
4447 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4448 Tys);
4449}
4450
4451static llvm::StringMapEntry<llvm::GlobalVariable *> &
4452GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4453 const StringLiteral *Literal, bool TargetIsLSB,
4454 bool &IsUTF16, unsigned &StringLength) {
4455 StringRef String = Literal->getString();
4456 unsigned NumBytes = String.size();
4457
4458 // Check for simple case.
4459 if (!Literal->containsNonAsciiOrNull()) {
4460 StringLength = NumBytes;
4461 return *Map.insert(std::make_pair(String, nullptr)).first;
4462 }
4463
4464 // Otherwise, convert the UTF8 literals into a string of shorts.
4465 IsUTF16 = true;
4466
4467 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4468 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4469 llvm::UTF16 *ToPtr = &ToBuf[0];
4470
4471 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4472 ToPtr + NumBytes, llvm::strictConversion);
4473
4474 // ConvertUTF8toUTF16 returns the length in ToPtr.
4475 StringLength = ToPtr - &ToBuf[0];
4476
4477 // Add an explicit null.
4478 *ToPtr = 0;
4479 return *Map.insert(std::make_pair(
4480 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4481 (StringLength + 1) * 2),
4482 nullptr)).first;
4483}
4484
4485ConstantAddress
4486CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4487 unsigned StringLength = 0;
4488 bool isUTF16 = false;
4489 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4490 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4491 getDataLayout().isLittleEndian(), isUTF16,
4492 StringLength);
4493
4494 if (auto *C = Entry.second)
4495 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4496
4497 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4498 llvm::Constant *Zeros[] = { Zero, Zero };
4499
4500 const ASTContext &Context = getContext();
4501 const llvm::Triple &Triple = getTriple();
4502
4503 const auto CFRuntime = getLangOpts().CFRuntime;
4504 const bool IsSwiftABI =
4505 static_cast<unsigned>(CFRuntime) >=
4506 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4507 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4508
4509 // If we don't already have it, get __CFConstantStringClassReference.
4510 if (!CFConstantStringClassRef) {
4511 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4512 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4513 Ty = llvm::ArrayType::get(Ty, 0);
4514
4515 switch (CFRuntime) {
4516 default: break;
4517 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH[[clang::fallthrough]];
4518 case LangOptions::CoreFoundationABI::Swift5_0:
4519 CFConstantStringClassName =
4520 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4521 : "$s10Foundation19_NSCFConstantStringCN";
4522 Ty = IntPtrTy;
4523 break;
4524 case LangOptions::CoreFoundationABI::Swift4_2:
4525 CFConstantStringClassName =
4526 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4527 : "$S10Foundation19_NSCFConstantStringCN";
4528 Ty = IntPtrTy;
4529 break;
4530 case LangOptions::CoreFoundationABI::Swift4_1:
4531 CFConstantStringClassName =
4532 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4533 : "__T010Foundation19_NSCFConstantStringCN";
4534 Ty = IntPtrTy;
4535 break;
4536 }
4537
4538 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4539
4540 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4541 llvm::GlobalValue *GV = nullptr;
4542
4543 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4544 IdentifierInfo &II = Context.Idents.get(GV->getName());
4545 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4546 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4547
4548 const VarDecl *VD = nullptr;
4549 for (const auto &Result : DC->lookup(&II))
4550 if ((VD = dyn_cast<VarDecl>(Result)))
4551 break;
4552
4553 if (Triple.isOSBinFormatELF()) {
4554 if (!VD)
4555 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4556 } else {
4557 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4558 if (!VD || !VD->hasAttr<DLLExportAttr>())
4559 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4560 else
4561 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4562 }
4563
4564 setDSOLocal(GV);
4565 }
4566 }
4567
4568 // Decay array -> ptr
4569 CFConstantStringClassRef =
4570 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4571 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4572 }
4573
4574 QualType CFTy = Context.getCFConstantStringType();
4575
4576 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4577
4578 ConstantInitBuilder Builder(*this);
4579 auto Fields = Builder.beginStruct(STy);
4580
4581 // Class pointer.
4582 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4583
4584 // Flags.
4585 if (IsSwiftABI) {
4586 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4587 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4588 } else {
4589 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4590 }
4591
4592 // String pointer.
4593 llvm::Constant *C = nullptr;
4594 if (isUTF16) {
4595 auto Arr = llvm::makeArrayRef(
4596 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4597 Entry.first().size() / 2);
4598 C = llvm::ConstantDataArray::get(VMContext, Arr);
4599 } else {
4600 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4601 }
4602
4603 // Note: -fwritable-strings doesn't make the backing store strings of
4604 // CFStrings writable. (See <rdar://problem/10657500>)
4605 auto *GV =
4606 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4607 llvm::GlobalValue::PrivateLinkage, C, ".str");
4608 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4609 // Don't enforce the target's minimum global alignment, since the only use
4610 // of the string is via this class initializer.
4611 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4612 : Context.getTypeAlignInChars(Context.CharTy);
4613 GV->setAlignment(Align.getQuantity());
4614
4615 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4616 // Without it LLVM can merge the string with a non unnamed_addr one during
4617 // LTO. Doing that changes the section it ends in, which surprises ld64.
4618 if (Triple.isOSBinFormatMachO())
4619 GV->setSection(isUTF16 ? "__TEXT,__ustring"
4620 : "__TEXT,__cstring,cstring_literals");
4621 // Make sure the literal ends up in .rodata to allow for safe ICF and for
4622 // the static linker to adjust permissions to read-only later on.
4623 else if (Triple.isOSBinFormatELF())
4624 GV->setSection(".rodata");
4625
4626 // String.
4627 llvm::Constant *Str =
4628 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4629
4630 if (isUTF16)
4631 // Cast the UTF16 string to the correct type.
4632 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4633 Fields.add(Str);
4634
4635 // String length.
4636 llvm::IntegerType *LengthTy =
4637 llvm::IntegerType::get(getModule().getContext(),
4638 Context.getTargetInfo().getLongWidth());
4639 if (IsSwiftABI) {
4640 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4641 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4642 LengthTy = Int32Ty;
4643 else
4644 LengthTy = IntPtrTy;
4645 }
4646 Fields.addInt(LengthTy, StringLength);
4647
4648 CharUnits Alignment = getPointerAlign();
4649
4650 // The struct.
4651 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4652 /*isConstant=*/false,
4653 llvm::GlobalVariable::PrivateLinkage);
4654 switch (Triple.getObjectFormat()) {
4655 case llvm::Triple::UnknownObjectFormat:
4656 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4656)
;
4657 case llvm::Triple::XCOFF:
4658 llvm_unreachable("XCOFF is not yet implemented")::llvm::llvm_unreachable_internal("XCOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4658)
;
4659 case llvm::Triple::COFF:
4660 case llvm::Triple::ELF:
4661 case llvm::Triple::Wasm:
4662 GV->setSection("cfstring");
4663 break;
4664 case llvm::Triple::MachO:
4665 GV->setSection("__DATA,__cfstring");
4666 break;
4667 }
4668 Entry.second = GV;
4669
4670 return ConstantAddress(GV, Alignment);
4671}
4672
4673bool CodeGenModule::getExpressionLocationsEnabled() const {
4674 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4675}
4676
4677QualType CodeGenModule::getObjCFastEnumerationStateType() {
4678 if (ObjCFastEnumerationStateType.isNull()) {
4679 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4680 D->startDefinition();
4681
4682 QualType FieldTypes[] = {
4683 Context.UnsignedLongTy,
4684 Context.getPointerType(Context.getObjCIdType()),
4685 Context.getPointerType(Context.UnsignedLongTy),
4686 Context.getConstantArrayType(Context.UnsignedLongTy,
4687 llvm::APInt(32, 5), ArrayType::Normal, 0)
4688 };
4689
4690 for (size_t i = 0; i < 4; ++i) {
4691 FieldDecl *Field = FieldDecl::Create(Context,
4692 D,
4693 SourceLocation(),
4694 SourceLocation(), nullptr,
4695 FieldTypes[i], /*TInfo=*/nullptr,
4696 /*BitWidth=*/nullptr,
4697 /*Mutable=*/false,
4698 ICIS_NoInit);
4699 Field->setAccess(AS_public);
4700 D->addDecl(Field);
4701 }
4702
4703 D->completeDefinition();
4704 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4705 }
4706
4707 return ObjCFastEnumerationStateType;
4708}
4709
4710llvm::Constant *
4711CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4712 assert(!E->getType()->isPointerType() && "Strings are always arrays")((!E->getType()->isPointerType() && "Strings are always arrays"
) ? static_cast<void> (0) : __assert_fail ("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4712, __PRETTY_FUNCTION__))
;
4713
4714 // Don't emit it as the address of the string, emit the string data itself
4715 // as an inline array.
4716 if (E->getCharByteWidth() == 1) {
4717 SmallString<64> Str(E->getString());
4718
4719 // Resize the string to the right size, which is indicated by its type.
4720 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4721 Str.resize(CAT->getSize().getZExtValue());
4722 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4723 }
4724
4725 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4726 llvm::Type *ElemTy = AType->getElementType();
4727 unsigned NumElements = AType->getNumElements();
4728
4729 // Wide strings have either 2-byte or 4-byte elements.
4730 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4731 SmallVector<uint16_t, 32> Elements;
4732 Elements.reserve(NumElements);
4733
4734 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4735 Elements.push_back(E->getCodeUnit(i));
4736 Elements.resize(NumElements);
4737 return llvm::ConstantDataArray::get(VMContext, Elements);
4738 }
4739
4740 assert(ElemTy->getPrimitiveSizeInBits() == 32)((ElemTy->getPrimitiveSizeInBits() == 32) ? static_cast<
void> (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4740, __PRETTY_FUNCTION__))
;
4741 SmallVector<uint32_t, 32> Elements;
4742 Elements.reserve(NumElements);
4743
4744 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4745 Elements.push_back(E->getCodeUnit(i));
4746 Elements.resize(NumElements);
4747 return llvm::ConstantDataArray::get(VMContext, Elements);
4748}
4749
4750static llvm::GlobalVariable *
4751GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4752 CodeGenModule &CGM, StringRef GlobalName,
4753 CharUnits Alignment) {
4754 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4755 CGM.getStringLiteralAddressSpace());
4756
4757 llvm::Module &M = CGM.getModule();
4758 // Create a global variable for this string
4759 auto *GV = new llvm::GlobalVariable(
4760 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4761 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4762 GV->setAlignment(Alignment.getQuantity());
4763 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4764 if (GV->isWeakForLinker()) {
4765 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")((CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? static_cast<void> (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4765, __PRETTY_FUNCTION__))
;
4766 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4767 }
4768 CGM.setDSOLocal(GV);
4769
4770 return GV;
4771}
4772
4773/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4774/// constant array for the given string literal.
4775ConstantAddress
4776CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4777 StringRef Name) {
4778 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4779
4780 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4781 llvm::GlobalVariable **Entry = nullptr;
4782 if (!LangOpts.WritableStrings) {
4783 Entry = &ConstantStringMap[C];
4784 if (auto GV = *Entry) {
4785 if (Alignment.getQuantity() > GV->getAlignment())
4786 GV->setAlignment(Alignment.getQuantity());
4787 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4788 Alignment);
4789 }
4790 }
4791
4792 SmallString<256> MangledNameBuffer;
4793 StringRef GlobalVariableName;
4794 llvm::GlobalValue::LinkageTypes LT;
4795
4796 // Mangle the string literal if that's how the ABI merges duplicate strings.
4797 // Don't do it if they are writable, since we don't want writes in one TU to
4798 // affect strings in another.
4799 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4800 !LangOpts.WritableStrings) {
4801 llvm::raw_svector_ostream Out(MangledNameBuffer);
4802 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4803 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4804 GlobalVariableName = MangledNameBuffer;
4805 } else {
4806 LT = llvm::GlobalValue::PrivateLinkage;
4807 GlobalVariableName = Name;
4808 }
4809
4810 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4811 if (Entry)
4812 *Entry = GV;
4813
4814 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4815 QualType());
4816
4817 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4818 Alignment);
4819}
4820
4821/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4822/// array for the given ObjCEncodeExpr node.
4823ConstantAddress
4824CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4825 std::string Str;
4826 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4827
4828 return GetAddrOfConstantCString(Str);
4829}
4830
4831/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4832/// the literal and a terminating '\0' character.
4833/// The result has pointer to array type.
4834ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4835 const std::string &Str, const char *GlobalName) {
4836 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4837 CharUnits Alignment =
4838 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4839
4840 llvm::Constant *C =
4841 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4842
4843 // Don't share any string literals if strings aren't constant.
4844 llvm::GlobalVariable **Entry = nullptr;
4845 if (!LangOpts.WritableStrings) {
4846 Entry = &ConstantStringMap[C];
4847 if (auto GV = *Entry) {
4848 if (Alignment.getQuantity() > GV->getAlignment())
4849 GV->setAlignment(Alignment.getQuantity());
4850 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4851 Alignment);
4852 }
4853 }
4854
4855 // Get the default prefix if a name wasn't specified.
4856 if (!GlobalName)
4857 GlobalName = ".str";
4858 // Create a global variable for this.
4859 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4860 GlobalName, Alignment);
4861 if (Entry)
4862 *Entry = GV;
4863
4864 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4865 Alignment);
4866}
4867
4868ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4869 const MaterializeTemporaryExpr *E, const Expr *Init) {
4870 assert((E->getStorageDuration() == SD_Static ||(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4871, __PRETTY_FUNCTION__))
4871 E->getStorageDuration() == SD_Thread) && "not a global temporary")(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4871, __PRETTY_FUNCTION__))
;
4872 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4873
4874 // If we're not materializing a subobject of the temporary, keep the
4875 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4876 QualType MaterializedType = Init->getType();
4877 if (Init == E->GetTemporaryExpr())
4878 MaterializedType = E->getType();
4879
4880 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4881
4882 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4883 return ConstantAddress(Slot, Align);
4884
4885 // FIXME: If an externally-visible declaration extends multiple temporaries,
4886 // we need to give each temporary the same name in every translation unit (and
4887 // we also need to make the temporaries externally-visible).
4888 SmallString<256> Name;
4889 llvm::raw_svector_ostream Out(Name);
4890 getCXXABI().getMangleContext().mangleReferenceTemporary(
4891 VD, E->getManglingNumber(), Out);
4892
4893 APValue *Value = nullptr;
4894 if (E->getStorageDuration() == SD_Static) {
4895 // We might have a cached constant initializer for this temporary. Note
4896 // that this might have a different value from the value computed by
4897 // evaluating the initializer if the surrounding constant expression
4898 // modifies the temporary.
4899 Value = getContext().getMaterializedTemporaryValue(E, false);
4900 if (Value && Value->isAbsent())
4901 Value = nullptr;
4902 }
4903
4904 // Try evaluating it now, it might have a constant initializer.
4905 Expr::EvalResult EvalResult;
4906 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4907 !EvalResult.hasSideEffects())
4908 Value = &EvalResult.Val;
4909
4910 LangAS AddrSpace =
4911 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4912
4913 Optional<ConstantEmitter> emitter;
4914 llvm::Constant *InitialValue = nullptr;
4915 bool Constant = false;
4916 llvm::Type *Type;
4917 if (Value) {
4918 // The temporary has a constant initializer, use it.
4919 emitter.emplace(*this);
4920 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4921 MaterializedType);
4922 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4923 Type = InitialValue->getType();
4924 } else {
4925 // No initializer, the initialization will be provided when we
4926 // initialize the declaration which performed lifetime extension.
4927 Type = getTypes().ConvertTypeForMem(MaterializedType);
4928 }
4929
4930 // Create a global variable for this lifetime-extended temporary.
4931 llvm::GlobalValue::LinkageTypes Linkage =
4932 getLLVMLinkageVarDefinition(VD, Constant);
4933 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4934 const VarDecl *InitVD;
4935 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4936 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4937 // Temporaries defined inside a class get linkonce_odr linkage because the
4938 // class can be defined in multiple translation units.
4939 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4940 } else {
4941 // There is no need for this temporary to have external linkage if the
4942 // VarDecl has external linkage.
4943 Linkage = llvm::GlobalVariable::InternalLinkage;
4944 }
4945 }
4946 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4947 auto *GV = new llvm::GlobalVariable(
4948 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4949 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4950 if (emitter) emitter->finalize(GV);
4951 setGVProperties(GV, VD);
4952 GV->setAlignment(Align.getQuantity());
4953 if (supportsCOMDAT() && GV->isWeakForLinker())
4954 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4955 if (VD->getTLSKind())
4956 setTLSMode(GV, *VD);
4957 llvm::Constant *CV = GV;
4958 if (AddrSpace != LangAS::Default)
4959 CV = getTargetCodeGenInfo().performAddrSpaceCast(
4960 *this, GV, AddrSpace, LangAS::Default,
4961 Type->getPointerTo(
4962 getContext().getTargetAddressSpace(LangAS::Default)));
4963 MaterializedGlobalTemporaryMap[E] = CV;
4964 return ConstantAddress(CV, Align);
4965}
4966
4967/// EmitObjCPropertyImplementations - Emit information for synthesized
4968/// properties for an implementation.
4969void CodeGenModule::EmitObjCPropertyImplementations(const
4970 ObjCImplementationDecl *D) {
4971 for (const auto *PID : D->property_impls()) {
4972 // Dynamic is just for type-checking.
4973 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4974 ObjCPropertyDecl *PD = PID->getPropertyDecl();
4975
4976 // Determine which methods need to be implemented, some may have
4977 // been overridden. Note that ::isPropertyAccessor is not the method
4978 // we want, that just indicates if the decl came from a
4979 // property. What we want to know is if the method is defined in
4980 // this implementation.
4981 if (!D->getInstanceMethod(PD->getGetterName()))
4982 CodeGenFunction(*this).GenerateObjCGetter(
4983 const_cast<ObjCImplementationDecl *>(D), PID);
4984 if (!PD->isReadOnly() &&
4985 !D->getInstanceMethod(PD->getSetterName()))
4986 CodeGenFunction(*this).GenerateObjCSetter(
4987 const_cast<ObjCImplementationDecl *>(D), PID);
4988 }
4989 }
4990}
4991
4992static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4993 const ObjCInterfaceDecl *iface = impl->getClassInterface();
4994 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4995 ivar; ivar = ivar->getNextIvar())
4996 if (ivar->getType().isDestructedType())
4997 return true;
4998
4999 return false;
5000}
5001
5002static bool AllTrivialInitializers(CodeGenModule &CGM,
5003 ObjCImplementationDecl *D) {
5004 CodeGenFunction CGF(CGM);
5005 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5006 E = D->init_end(); B != E; ++B) {
5007 CXXCtorInitializer *CtorInitExp = *B;
5008 Expr *Init = CtorInitExp->getInit();
5009 if (!CGF.isTrivialInitializer(Init))
5010 return false;
5011 }
5012 return true;
5013}
5014
5015/// EmitObjCIvarInitializations - Emit information for ivar initialization
5016/// for an implementation.
5017void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5018 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5019 if (needsDestructMethod(D)) {
5020 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5021 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5022 ObjCMethodDecl *DTORMethod =
5023 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5024 cxxSelector, getContext().VoidTy, nullptr, D,
5025 /*isInstance=*/true, /*isVariadic=*/false,
5026 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5027 /*isDefined=*/false, ObjCMethodDecl::Required);
5028 D->addInstanceMethod(DTORMethod);
5029 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5030 D->setHasDestructors(true);
5031 }
5032
5033 // If the implementation doesn't have any ivar initializers, we don't need
5034 // a .cxx_construct.
5035 if (D->getNumIvarInitializers() == 0 ||
5036 AllTrivialInitializers(*this, D))
5037 return;
5038
5039 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5040 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5041 // The constructor returns 'self'.
5042 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5043 D->getLocation(),
5044 D->getLocation(),
5045 cxxSelector,
5046 getContext().getObjCIdType(),
5047 nullptr, D, /*isInstance=*/true,
5048 /*isVariadic=*/false,
5049 /*isPropertyAccessor=*/true,
5050 /*isImplicitlyDeclared=*/true,
5051 /*isDefined=*/false,
5052 ObjCMethodDecl::Required);
5053 D->addInstanceMethod(CTORMethod);
5054 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5055 D->setHasNonZeroConstructors(true);
5056}
5057
5058// EmitLinkageSpec - Emit all declarations in a linkage spec.
5059void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5060 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5061 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5062 ErrorUnsupported(LSD, "linkage spec");
5063 return;
5064 }
5065
5066 EmitDeclContext(LSD);
5067}
5068
5069void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5070 for (auto *I : DC->decls()) {
5071 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5072 // are themselves considered "top-level", so EmitTopLevelDecl on an
5073 // ObjCImplDecl does not recursively visit them. We need to do that in
5074 // case they're nested inside another construct (LinkageSpecDecl /
5075 // ExportDecl) that does stop them from being considered "top-level".
5076 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5077 for (auto *M : OID->methods())
5078 EmitTopLevelDecl(M);
5079 }
5080
5081 EmitTopLevelDecl(I);
5082 }
5083}
5084
5085/// EmitTopLevelDecl - Emit code for a single top level declaration.
5086void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5087 // Ignore dependent declarations.
5088 if (D->isTemplated())
5089 return;
5090
5091 switch (D->getKind()) {
5092 case Decl::CXXConversion:
5093 case Decl::CXXMethod:
5094 case Decl::Function:
5095 EmitGlobal(cast<FunctionDecl>(D));
5096 // Always provide some coverage mapping
5097 // even for the functions that aren't emitted.
5098 AddDeferredUnusedCoverageMapping(D);
5099 break;
5100
5101 case Decl::CXXDeductionGuide:
5102 // Function-like, but does not result in code emission.
5103 break;
5104
5105 case Decl::Var:
5106 case Decl::Decomposition:
5107 case Decl::VarTemplateSpecialization:
5108 EmitGlobal(cast<VarDecl>(D));
5109 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5110 for (auto *B : DD->bindings())
5111 if (auto *HD = B->getHoldingVar())
5112 EmitGlobal(HD);
5113 break;
5114
5115 // Indirect fields from global anonymous structs and unions can be
5116 // ignored; only the actual variable requires IR gen support.
5117 case Decl::IndirectField:
5118 break;
5119
5120 // C++ Decls
5121 case Decl::Namespace:
5122 EmitDeclContext(cast<NamespaceDecl>(D));
5123 break;
5124 case Decl::ClassTemplateSpecialization: {
5125 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5126 if (DebugInfo &&
5127 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5128 Spec->hasDefinition())
5129 DebugInfo->completeTemplateDefinition(*Spec);
5130 } LLVM_FALLTHROUGH[[clang::fallthrough]];
5131 case Decl::CXXRecord:
5132 if (DebugInfo) {
5133 if (auto *ES = D->getASTContext().getExternalSource())
5134 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5135 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5136 }
5137 // Emit any static data members, they may be definitions.
5138 for (auto *I : cast<CXXRecordDecl>(D)->decls())
5139 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5140 EmitTopLevelDecl(I);
5141 break;
5142 // No code generation needed.
5143 case Decl::UsingShadow:
5144 case Decl::ClassTemplate:
5145 case Decl::VarTemplate:
5146 case Decl::VarTemplatePartialSpecialization:
5147 case Decl::FunctionTemplate:
5148 case Decl::TypeAliasTemplate:
5149 case Decl::Block:
5150 case Decl::Empty:
5151 case Decl::Binding:
5152 break;
5153 case Decl::Using: // using X; [C++]
5154 if (CGDebugInfo *DI = getModuleDebugInfo())
5155 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5156 return;
5157 case Decl::NamespaceAlias:
5158 if (CGDebugInfo *DI = getModuleDebugInfo())
5159 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5160 return;
5161 case Decl::UsingDirective: // using namespace X; [C++]
5162 if (CGDebugInfo *DI = getModuleDebugInfo())
5163 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5164 return;
5165 case Decl::CXXConstructor:
5166 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5167 break;
5168 case Decl::CXXDestructor:
5169 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5170 break;
5171
5172 case Decl::StaticAssert:
5173 // Nothing to do.
5174 break;
5175
5176 // Objective-C Decls
5177
5178 // Forward declarations, no (immediate) code generation.
5179 case Decl::ObjCInterface:
5180 case Decl::ObjCCategory:
5181 break;
5182
5183 case Decl::ObjCProtocol: {
5184 auto *Proto = cast<ObjCProtocolDecl>(D);
5185 if (Proto->isThisDeclarationADefinition())
5186 ObjCRuntime->GenerateProtocol(Proto);
5187 break;
5188 }
5189
5190 case Decl::ObjCCategoryImpl:
5191 // Categories have properties but don't support synthesize so we
5192 // can ignore them here.
5193 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5194 break;
5195
5196 case Decl::ObjCImplementation: {
5197 auto *OMD = cast<ObjCImplementationDecl>(D);
5198 EmitObjCPropertyImplementations(OMD);
5199 EmitObjCIvarInitializations(OMD);
5200 ObjCRuntime->GenerateClass(OMD);
5201 // Emit global variable debug information.
5202 if (CGDebugInfo *DI = getModuleDebugInfo())
5203 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5204 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5205 OMD->getClassInterface()), OMD->getLocation());
5206 break;
5207 }
5208 case Decl::ObjCMethod: {
5209 auto *OMD = cast<ObjCMethodDecl>(D);
5210 // If this is not a prototype, emit the body.
5211 if (OMD->getBody())
5212 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5213 break;
5214 }
5215 case Decl::ObjCCompatibleAlias:
5216 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5217 break;
5218
5219 case Decl::PragmaComment: {
5220 const auto *PCD = cast<PragmaCommentDecl>(D);
5221 switch (PCD->getCommentKind()) {
5222 case PCK_Unknown:
5223 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5223)
;
5224 case PCK_Linker:
5225 AppendLinkerOptions(PCD->getArg());
5226 break;
5227 case PCK_Lib:
5228 AddDependentLib(PCD->getArg());
5229 break;
5230 case PCK_Compiler:
5231 case PCK_ExeStr:
5232 case PCK_User:
5233 break; // We ignore all of these.
5234 }
5235 break;
5236 }
5237
5238 case Decl::PragmaDetectMismatch: {
5239 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5240 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5241 break;
5242 }
5243
5244 case Decl::LinkageSpec:
5245 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5246 break;
5247
5248 case Decl::FileScopeAsm: {
5249 // File-scope asm is ignored during device-side CUDA compilation.
5250 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5251 break;
5252 // File-scope asm is ignored during device-side OpenMP compilation.
5253 if (LangOpts.OpenMPIsDevice)
5254 break;
5255 auto *AD = cast<FileScopeAsmDecl>(D);
5256 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5257 break;
5258 }
5259
5260 case Decl::Import: {
5261 auto *Import = cast<ImportDecl>(D);
5262
5263 // If we've already imported this module, we're done.
5264 if (!ImportedModules.insert(Import->getImportedModule()))
5265 break;
5266
5267 // Emit debug information for direct imports.
5268 if (!Import->getImportedOwningModule()) {
5269 if (CGDebugInfo *DI = getModuleDebugInfo())
5270 DI->EmitImportDecl(*Import);
5271 }
5272
5273 // Find all of the submodules and emit the module initializers.
5274 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5275 SmallVector<clang::Module *, 16> Stack;
5276 Visited.insert(Import->getImportedModule());
5277 Stack.push_back(Import->getImportedModule());
5278
5279 while (!Stack.empty()) {
5280 clang::Module *Mod = Stack.pop_back_val();
5281 if (!EmittedModuleInitializers.insert(Mod).second)
5282 continue;
5283
5284 for (auto *D : Context.getModuleInitializers(Mod))
5285 EmitTopLevelDecl(D);
5286
5287 // Visit the submodules of this module.
5288 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5289 SubEnd = Mod->submodule_end();
5290 Sub != SubEnd; ++Sub) {
5291 // Skip explicit children; they need to be explicitly imported to emit
5292 // the initializers.
5293 if ((*Sub)->IsExplicit)
5294 continue;
5295
5296 if (Visited.insert(*Sub).second)
5297 Stack.push_back(*Sub);
5298 }
5299 }
5300 break;
5301 }
5302
5303 case Decl::Export:
5304 EmitDeclContext(cast<ExportDecl>(D));
5305 break;
5306
5307 case Decl::OMPThreadPrivate:
5308 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5309 break;
5310
5311 case Decl::OMPAllocate:
5312 break;
5313
5314 case Decl::OMPDeclareReduction:
5315 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5316 break;
5317
5318 case Decl::OMPDeclareMapper:
5319 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5320 break;
5321
5322 case Decl::OMPRequires:
5323 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5324 break;
5325
5326 default:
5327 // Make sure we handled everything we should, every other kind is a
5328 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5329 // function. Need to recode Decl::Kind to do that easily.
5330 assert(isa<TypeDecl>(D) && "Unsupported decl kind")((isa<TypeDecl>(D) && "Unsupported decl kind") ?
static_cast<void> (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5330, __PRETTY_FUNCTION__))
;
5331 break;
5332 }
5333}
5334
5335void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5336 // Do we need to generate coverage mapping?
5337 if (!CodeGenOpts.CoverageMapping)
5338 return;
5339 switch (D->getKind()) {
5340 case Decl::CXXConversion:
5341 case Decl::CXXMethod:
5342 case Decl::Function:
5343 case Decl::ObjCMethod:
5344 case Decl::CXXConstructor:
5345 case Decl::CXXDestructor: {
5346 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5347 return;
5348 SourceManager &SM = getContext().getSourceManager();
5349 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5350 return;
5351 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5352 if (I == DeferredEmptyCoverageMappingDecls.end())
5353 DeferredEmptyCoverageMappingDecls[D] = true;
5354 break;
5355 }
5356 default:
5357 break;
5358 };
5359}
5360
5361void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5362 // Do we need to generate coverage mapping?
5363 if (!CodeGenOpts.CoverageMapping)
5364 return;
5365 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5366 if (Fn->isTemplateInstantiation())
5367 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5368 }
5369 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5370 if (I == DeferredEmptyCoverageMappingDecls.end())
5371 DeferredEmptyCoverageMappingDecls[D] = false;
5372 else
5373 I->second = false;
5374}
5375
5376void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5377 // We call takeVector() here to avoid use-after-free.
5378 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5379 // we deserialize function bodies to emit coverage info for them, and that
5380 // deserializes more declarations. How should we handle that case?
5381 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5382 if (!Entry.second)
5383 continue;
5384 const Decl *D = Entry.first;
5385 switch (D->getKind()) {
5386 case Decl::CXXConversion:
5387 case Decl::CXXMethod:
5388 case Decl::Function:
5389 case Decl::ObjCMethod: {
5390 CodeGenPGO PGO(*this);
5391 GlobalDecl GD(cast<FunctionDecl>(D));
5392 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5393 getFunctionLinkage(GD));
5394 break;
5395 }
5396 case Decl::CXXConstructor: {
5397 CodeGenPGO PGO(*this);
5398 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5399 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5400 getFunctionLinkage(GD));
5401 break;
5402 }
5403 case Decl::CXXDestructor: {
5404 CodeGenPGO PGO(*this);
5405 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5406 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5407 getFunctionLinkage(GD));
5408 break;
5409 }
5410 default:
5411 break;
5412 };
5413 }
5414}
5415
5416/// Turns the given pointer into a constant.
5417static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5418 const void *Ptr) {
5419 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5420 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5421 return llvm::ConstantInt::get(i64, PtrInt);
5422}
5423
5424static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5425 llvm::NamedMDNode *&GlobalMetadata,
5426 GlobalDecl D,
5427 llvm::GlobalValue *Addr) {
5428 if (!GlobalMetadata)
5429 GlobalMetadata =
5430 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5431
5432 // TODO: should we report variant information for ctors/dtors?
5433 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5434 llvm::ConstantAsMetadata::get(GetPointerConstant(
5435 CGM.getLLVMContext(), D.getDecl()))};
5436 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5437}
5438
5439/// For each function which is declared within an extern "C" region and marked
5440/// as 'used', but has internal linkage, create an alias from the unmangled
5441/// name to the mangled name if possible. People expect to be able to refer
5442/// to such functions with an unmangled name from inline assembly within the
5443/// same translation unit.
5444void CodeGenModule::EmitStaticExternCAliases() {
5445 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5446 return;
5447 for (auto &I : StaticExternCValues) {
5448 IdentifierInfo *Name = I.first;
5449 llvm::GlobalValue *Val = I.second;
5450 if (Val && !getModule().getNamedValue(Name->getName()))
5451 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5452 }
5453}
5454
5455bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5456 GlobalDecl &Result) const {
5457 auto Res = Manglings.find(MangledName);
5458 if (Res == Manglings.end())
5459 return false;
5460 Result = Res->getValue();
5461 return true;
5462}
5463
5464/// Emits metadata nodes associating all the global values in the
5465/// current module with the Decls they came from. This is useful for
5466/// projects using IR gen as a subroutine.
5467///
5468/// Since there's currently no way to associate an MDNode directly
5469/// with an llvm::GlobalValue, we create a global named metadata
5470/// with the name 'clang.global.decl.ptrs'.
5471void CodeGenModule::EmitDeclMetadata() {
5472 llvm::NamedMDNode *GlobalMetadata = nullptr;
5473
5474 for (auto &I : MangledDeclNames) {
5475 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5476 // Some mangled names don't necessarily have an associated GlobalValue
5477 // in this module, e.g. if we mangled it for DebugInfo.
5478 if (Addr)
5479 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5480 }
5481}
5482
5483/// Emits metadata nodes for all the local variables in the current
5484/// function.
5485void CodeGenFunction::EmitDeclMetadata() {
5486 if (LocalDeclMap.empty()) return;
5487
5488 llvm::LLVMContext &Context = getLLVMContext();
5489
5490 // Find the unique metadata ID for this name.
5491 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5492
5493 llvm::NamedMDNode *GlobalMetadata = nullptr;
5494
5495 for (auto &I : LocalDeclMap) {
5496 const Decl *D = I.first;
5497 llvm::Value *Addr = I.second.getPointer();
5498 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5499 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5500 Alloca->setMetadata(
5501 DeclPtrKind, llvm::MDNode::get(
5502 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5503 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5504 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5505 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5506 }
5507 }
5508}
5509
5510void CodeGenModule::EmitVersionIdentMetadata() {
5511 llvm::NamedMDNode *IdentMetadata =
5512 TheModule.getOrInsertNamedMetadata("llvm.ident");
5513 std::string Version = getClangFullVersion();
5514 llvm::LLVMContext &Ctx = TheModule.getContext();
5515
5516 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5517 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5518}
5519
5520void CodeGenModule::EmitCommandLineMetadata() {
5521 llvm::NamedMDNode *CommandLineMetadata =
5522 TheModule.getOrInsertNamedMetadata("llvm.commandline");
5523 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5524 llvm::LLVMContext &Ctx = TheModule.getContext();
5525
5526 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5527 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5528}
5529
5530void CodeGenModule::EmitTargetMetadata() {
5531 // Warning, new MangledDeclNames may be appended within this loop.
5532 // We rely on MapVector insertions adding new elements to the end
5533 // of the container.
5534 // FIXME: Move this loop into the one target that needs it, and only
5535 // loop over those declarations for which we couldn't emit the target
5536 // metadata when we emitted the declaration.
5537 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5538 auto Val = *(MangledDeclNames.begin() + I);
5539 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5540 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5541 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5542 }
5543}
5544
5545void CodeGenModule::EmitCoverageFile() {
5546 if (getCodeGenOpts().CoverageDataFile.empty() &&
5547 getCodeGenOpts().CoverageNotesFile.empty())
5548 return;
5549
5550 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5551 if (!CUNode)
5552 return;
5553
5554 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5555 llvm::LLVMContext &Ctx = TheModule.getContext();
5556 auto *CoverageDataFile =
5557 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5558 auto *CoverageNotesFile =
5559 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5560 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5561 llvm::MDNode *CU = CUNode->getOperand(i);
5562 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5563 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5564 }
5565}
5566
5567llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5568 // Sema has checked that all uuid strings are of the form
5569 // "12345678-1234-1234-1234-1234567890ab".
5570 assert(Uuid.size() == 36)((Uuid.size() == 36) ? static_cast<void> (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5570, __PRETTY_FUNCTION__))
;
5571 for (unsigned i = 0; i < 36; ++i) {
5572 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')((Uuid[i] == '-') ? static_cast<void> (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5572, __PRETTY_FUNCTION__))
;
5573 else assert(isHexDigit(Uuid[i]))((isHexDigit(Uuid[i])) ? static_cast<void> (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5573, __PRETTY_FUNCTION__))
;
5574 }
5575
5576 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5577 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5578
5579 llvm::Constant *Field3[8];
5580 for (unsigned Idx = 0; Idx < 8; ++Idx)
5581 Field3[Idx] = llvm::ConstantInt::get(
5582 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5583
5584 llvm::Constant *Fields[4] = {
5585 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
5586 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
5587 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5588 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5589 };
5590
5591 return llvm::ConstantStruct::getAnon(Fields);
5592}
5593
5594llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5595 bool ForEH) {
5596 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5597 // FIXME: should we even be calling this method if RTTI is disabled
5598 // and it's not for EH?
5599 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5600 return llvm::Constant::getNullValue(Int8PtrTy);
5601
5602 if (ForEH && Ty->isObjCObjectPointerType() &&
5603 LangOpts.ObjCRuntime.isGNUFamily())
5604 return ObjCRuntime->GetEHType(Ty);
5605
5606 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5607}
5608
5609void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5610 // Do not emit threadprivates in simd-only mode.
5611 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5612 return;
5613 for (auto RefExpr : D->varlists()) {
5614 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5615 bool PerformInit =
5616 VD->getAnyInitializer() &&
5617 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5618 /*ForRef=*/false);
5619
5620 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5621 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5622 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5623 CXXGlobalInits.push_back(InitFunction);
5624 }
5625}
5626
5627llvm::Metadata *
5628CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5629 StringRef Suffix) {
5630 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5631 if (InternalId)
5632 return InternalId;
5633
5634 if (isExternallyVisible(T->getLinkage())) {
5635 std::string OutName;
5636 llvm::raw_string_ostream Out(OutName);
5637 getCXXABI().getMangleContext().mangleTypeName(T, Out);
5638 Out << Suffix;
5639
5640 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5641 } else {
5642 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5643 llvm::ArrayRef<llvm::Metadata *>());
5644 }
5645
5646 return InternalId;
5647}
5648
5649llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5650 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5651}
5652
5653llvm::Metadata *
5654CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5655 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5656}
5657
5658// Generalize pointer types to a void pointer with the qualifiers of the
5659// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5660// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5661// 'void *'.
5662static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5663 if (!Ty->isPointerType())
5664 return Ty;
5665
5666 return Ctx.getPointerType(
5667 QualType(Ctx.VoidTy).withCVRQualifiers(
5668 Ty->getPointeeType().getCVRQualifiers()));
5669}
5670
5671// Apply type generalization to a FunctionType's return and argument types
5672static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5673 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5674 SmallVector<QualType, 8> GeneralizedParams;
5675 for (auto &Param : FnType->param_types())
5676 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5677
5678 return Ctx.getFunctionType(
5679 GeneralizeType(Ctx, FnType->getReturnType()),
5680 GeneralizedParams, FnType->getExtProtoInfo());
5681 }
5682
5683 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5684 return Ctx.getFunctionNoProtoType(
5685 GeneralizeType(Ctx, FnType->getReturnType()));
5686
5687 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5687)
;
5688}
5689
5690llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5691 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5692 GeneralizedMetadataIdMap, ".generalized");
5693}
5694
5695/// Returns whether this module needs the "all-vtables" type identifier.
5696bool CodeGenModule::NeedAllVtablesTypeId() const {
5697 // Returns true if at least one of vtable-based CFI checkers is enabled and
5698 // is not in the trapping mode.
5699 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5700 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5701 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5702 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5703 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5704 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5705 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5706 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5707}
5708
5709void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5710 CharUnits Offset,
5711 const CXXRecordDecl *RD) {
5712 llvm::Metadata *MD =
5713 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5714 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5715
5716 if (CodeGenOpts.SanitizeCfiCrossDso)
5717 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5718 VTable->addTypeMetadata(Offset.getQuantity(),
5719 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5720
5721 if (NeedAllVtablesTypeId()) {
5722 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5723 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5724 }
5725}
5726
5727TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5728 assert(TD != nullptr)((TD != nullptr) ? static_cast<void> (0) : __assert_fail
("TD != nullptr", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5728, __PRETTY_FUNCTION__))
;
5729 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5730
5731 ParsedAttr.Features.erase(
5732 llvm::remove_if(ParsedAttr.Features,
5733 [&](const std::string &Feat) {
5734 return !Target.isValidFeatureName(
5735 StringRef{Feat}.substr(1));
5736 }),
5737 ParsedAttr.Features.end());
5738 return ParsedAttr;
5739}
5740
5741
5742// Fills in the supplied string map with the set of target features for the
5743// passed in function.
5744void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5745 GlobalDecl GD) {
5746 StringRef TargetCPU = Target.getTargetOpts().CPU;
5747 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5748 if (const auto *TD = FD->getAttr<TargetAttr>()) {
5749 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5750
5751 // Make a copy of the features as passed on the command line into the
5752 // beginning of the additional features from the function to override.
5753 ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5754 Target.getTargetOpts().FeaturesAsWritten.begin(),
5755 Target.getTargetOpts().FeaturesAsWritten.end());
5756
5757 if (ParsedAttr.Architecture != "" &&
5758 Target.isValidCPUName(ParsedAttr.Architecture))
5759 TargetCPU = ParsedAttr.Architecture;
5760
5761 // Now populate the feature map, first with the TargetCPU which is either
5762 // the default or a new one from the target attribute string. Then we'll use
5763 // the passed in features (FeaturesAsWritten) along with the new ones from
5764 // the attribute.
5765 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5766 ParsedAttr.Features);
5767 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5768 llvm::SmallVector<StringRef, 32> FeaturesTmp;
5769 Target.getCPUSpecificCPUDispatchFeatures(
5770 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5771 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5772 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5773 } else {
5774 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5775 Target.getTargetOpts().Features);
5776 }
5777}
5778
5779llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5780 if (!SanStats)
5781 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5782
5783 return *SanStats;
5784}
5785llvm::Value *
5786CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5787 CodeGenFunction &CGF) {
5788 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5789 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5790 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5791 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5792 "__translate_sampler_initializer"),
5793 {C});
5794}

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/GlobalDecl.h

1//===- GlobalDecl.h - Global declaration holder -----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A GlobalDecl can hold either a regular variable/function or a C++ ctor/dtor
10// together with its type.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_GLOBALDECL_H
15#define LLVM_CLANG_AST_GLOBALDECL_H
16
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclOpenMP.h"
20#include "clang/Basic/ABI.h"
21#include "clang/Basic/LLVM.h"
22#include "llvm/ADT/DenseMapInfo.h"
23#include "llvm/ADT/PointerIntPair.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/type_traits.h"
26#include <cassert>
27
28namespace clang {
29
30enum class DynamicInitKind : unsigned {
31 NoStub = 0,
32 Initializer,
33 AtExit,
34};
35
36/// GlobalDecl - represents a global declaration. This can either be a
37/// CXXConstructorDecl and the constructor type (Base, Complete).
38/// a CXXDestructorDecl and the destructor type (Base, Complete) or
39/// a VarDecl, a FunctionDecl or a BlockDecl.
40class GlobalDecl {
41 llvm::PointerIntPair<const Decl *, 2> Value;
42 unsigned MultiVersionIndex = 0;
43
44 void Init(const Decl *D) {
45 assert(!isa<CXXConstructorDecl>(D) && "Use other ctor with ctor decls!")((!isa<CXXConstructorDecl>(D) && "Use other ctor with ctor decls!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(D) && \"Use other ctor with ctor decls!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/GlobalDecl.h"
, 45, __PRETTY_FUNCTION__))
;
46 assert(!isa<CXXDestructorDecl>(D) && "Use other ctor with dtor decls!")((!isa<CXXDestructorDecl>(D) && "Use other ctor with dtor decls!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXDestructorDecl>(D) && \"Use other ctor with dtor decls!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/GlobalDecl.h"
, 46, __PRETTY_FUNCTION__))
;
47
48 Value.setPointer(D);
49 }
50
51public:
52 GlobalDecl() = default;
53 GlobalDecl(const VarDecl *D) { Init(D);}
54 GlobalDecl(const FunctionDecl *D, unsigned MVIndex = 0)
55 : MultiVersionIndex(MVIndex) {
56 Init(D);
57 }
58 GlobalDecl(const BlockDecl *D) { Init(D); }
59 GlobalDecl(const CapturedDecl *D) { Init(D); }
60 GlobalDecl(const ObjCMethodDecl *D) { Init(D); }
61 GlobalDecl(const OMPDeclareReductionDecl *D) { Init(D); }
62 GlobalDecl(const CXXConstructorDecl *D, CXXCtorType Type) : Value(D, Type) {}