Bug Summary

File:clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 376, column 53
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeNVPTX.h"
23#include "CodeGenFunction.h"
24#include "CodeGenPGO.h"
25#include "ConstantEmitter.h"
26#include "CoverageMappingGen.h"
27#include "TargetInfo.h"
28#include "clang/AST/ASTContext.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/AST/DeclCXX.h"
31#include "clang/AST/DeclObjC.h"
32#include "clang/AST/DeclTemplate.h"
33#include "clang/AST/Mangle.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/RecursiveASTVisitor.h"
36#include "clang/AST/StmtVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/CodeGenOptions.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/Module.h"
42#include "clang/Basic/SourceManager.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/Version.h"
45#include "clang/CodeGen/ConstantInitBuilder.h"
46#include "clang/Frontend/FrontendDiagnostic.h"
47#include "llvm/ADT/StringSwitch.h"
48#include "llvm/ADT/Triple.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51#include "llvm/IR/CallingConv.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ProfileSummary.h"
57#include "llvm/ProfileData/InstrProfReader.h"
58#include "llvm/Support/CodeGen.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/ConvertUTF.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/MD5.h"
63#include "llvm/Support/TimeProfiler.h"
64
65using namespace clang;
66using namespace CodeGen;
67
68static llvm::cl::opt<bool> LimitedCoverage(
69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71 llvm::cl::init(false));
72
73static const char AnnotationSection[] = "llvm.metadata";
74
75static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76 switch (CGM.getTarget().getCXXABI().getKind()) {
77 case TargetCXXABI::Fuchsia:
78 case TargetCXXABI::GenericAArch64:
79 case TargetCXXABI::GenericARM:
80 case TargetCXXABI::iOS:
81 case TargetCXXABI::iOS64:
82 case TargetCXXABI::WatchOS:
83 case TargetCXXABI::GenericMIPS:
84 case TargetCXXABI::GenericItanium:
85 case TargetCXXABI::WebAssembly:
86 case TargetCXXABI::XL:
87 return CreateItaniumCXXABI(CGM);
88 case TargetCXXABI::Microsoft:
89 return CreateMicrosoftCXXABI(CGM);
90 }
91
92 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 92)
;
93}
94
95CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
96 const PreprocessorOptions &PPO,
97 const CodeGenOptions &CGO, llvm::Module &M,
98 DiagnosticsEngine &diags,
99 CoverageSourceInfo *CoverageInfo)
100 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
101 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
102 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
103 VMContext(M.getContext()), Types(*this), VTables(*this),
104 SanitizerMD(new SanitizerMetadata(*this)) {
105
106 // Initialize the type cache.
107 llvm::LLVMContext &LLVMContext = M.getContext();
108 VoidTy = llvm::Type::getVoidTy(LLVMContext);
109 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
110 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
111 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
112 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
113 HalfTy = llvm::Type::getHalfTy(LLVMContext);
114 FloatTy = llvm::Type::getFloatTy(LLVMContext);
115 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
116 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
117 PointerAlignInBytes =
118 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
119 SizeSizeInBytes =
120 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
121 IntAlignInBytes =
122 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
123 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
124 IntPtrTy = llvm::IntegerType::get(LLVMContext,
125 C.getTargetInfo().getMaxPointerWidth());
126 Int8PtrTy = Int8Ty->getPointerTo(0);
127 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
128 AllocaInt8PtrTy = Int8Ty->getPointerTo(
129 M.getDataLayout().getAllocaAddrSpace());
130 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
131
132 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
133
134 if (LangOpts.ObjC)
135 createObjCRuntime();
136 if (LangOpts.OpenCL)
137 createOpenCLRuntime();
138 if (LangOpts.OpenMP)
139 createOpenMPRuntime();
140 if (LangOpts.CUDA)
141 createCUDARuntime();
142
143 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
144 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
145 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
146 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
147 getCXXABI().getMangleContext()));
148
149 // If debug info or coverage generation is enabled, create the CGDebugInfo
150 // object.
151 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
152 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
153 DebugInfo.reset(new CGDebugInfo(*this));
154
155 Block.GlobalUniqueCount = 0;
156
157 if (C.getLangOpts().ObjC)
158 ObjCData.reset(new ObjCEntrypoints());
159
160 if (CodeGenOpts.hasProfileClangUse()) {
161 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
162 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
163 if (auto E = ReaderOrErr.takeError()) {
164 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
165 "Could not read profile %0: %1");
166 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
167 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
168 << EI.message();
169 });
170 } else
171 PGOReader = std::move(ReaderOrErr.get());
172 }
173
174 // If coverage mapping generation is enabled, create the
175 // CoverageMappingModuleGen object.
176 if (CodeGenOpts.CoverageMapping)
177 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
178}
179
180CodeGenModule::~CodeGenModule() {}
181
182void CodeGenModule::createObjCRuntime() {
183 // This is just isGNUFamily(), but we want to force implementors of
184 // new ABIs to decide how best to do this.
185 switch (LangOpts.ObjCRuntime.getKind()) {
186 case ObjCRuntime::GNUstep:
187 case ObjCRuntime::GCC:
188 case ObjCRuntime::ObjFW:
189 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
190 return;
191
192 case ObjCRuntime::FragileMacOSX:
193 case ObjCRuntime::MacOSX:
194 case ObjCRuntime::iOS:
195 case ObjCRuntime::WatchOS:
196 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
197 return;
198 }
199 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 199)
;
200}
201
202void CodeGenModule::createOpenCLRuntime() {
203 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
204}
205
206void CodeGenModule::createOpenMPRuntime() {
207 // Select a specialized code generation class based on the target, if any.
208 // If it does not exist use the default implementation.
209 switch (getTriple().getArch()) {
210 case llvm::Triple::nvptx:
211 case llvm::Triple::nvptx64:
212 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 213, __PRETTY_FUNCTION__))
213 "OpenMP NVPTX is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 213, __PRETTY_FUNCTION__))
;
214 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
215 break;
216 default:
217 if (LangOpts.OpenMPSimd)
218 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
219 else
220 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
221 break;
222 }
223
224 // The OpenMP-IR-Builder should eventually replace the above runtime codegens
225 // but we are not there yet so they both reside in CGModule for now and the
226 // OpenMP-IR-Builder is opt-in only.
227 if (LangOpts.OpenMPIRBuilder) {
228 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
229 OMPBuilder->initialize();
230 }
231}
232
233void CodeGenModule::createCUDARuntime() {
234 CUDARuntime.reset(CreateNVCUDARuntime(*this));
235}
236
237void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238 Replacements[Name] = C;
239}
240
241void CodeGenModule::applyReplacements() {
242 for (auto &I : Replacements) {
243 StringRef MangledName = I.first();
244 llvm::Constant *Replacement = I.second;
245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246 if (!Entry)
247 continue;
248 auto *OldF = cast<llvm::Function>(Entry);
249 auto *NewF = dyn_cast<llvm::Function>(Replacement);
250 if (!NewF) {
251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253 } else {
254 auto *CE = cast<llvm::ConstantExpr>(Replacement);
255 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 256, __PRETTY_FUNCTION__))
256 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 256, __PRETTY_FUNCTION__))
;
257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258 }
259 }
260
261 // Replace old with new, but keep the old order.
262 OldF->replaceAllUsesWith(Replacement);
263 if (NewF) {
264 NewF->removeFromParent();
265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266 NewF);
267 }
268 OldF->eraseFromParent();
269 }
270}
271
272void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273 GlobalValReplacements.push_back(std::make_pair(GV, C));
274}
275
276void CodeGenModule::applyGlobalValReplacements() {
277 for (auto &I : GlobalValReplacements) {
278 llvm::GlobalValue *GV = I.first;
279 llvm::Constant *C = I.second;
280
281 GV->replaceAllUsesWith(C);
282 GV->eraseFromParent();
283 }
284}
285
286// This is only used in aliases that we created and we know they have a
287// linear structure.
288static const llvm::GlobalObject *getAliasedGlobal(
289 const llvm::GlobalIndirectSymbol &GIS) {
290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291 const llvm::Constant *C = &GIS;
292 for (;;) {
7
Loop condition is true. Entering loop body
293 C = C->stripPointerCasts();
294 if (auto *GO
8.1
'GO' is null
= dyn_cast<llvm::GlobalObject>(C))
8
Assuming 'C' is not a 'GlobalObject'
9
Taking false branch
295 return GO;
296 // stripPointerCasts will not walk over weak aliases.
297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
10
Assuming 'C' is not a 'GlobalIndirectSymbol'
298 if (!GIS2
10.1
'GIS2' is null
)
11
Taking true branch
299 return nullptr;
12
Returning null pointer, which participates in a condition later
300 if (!Visited.insert(GIS2).second)
301 return nullptr;
302 C = GIS2->getIndirectSymbol();
303 }
304}
305
306void CodeGenModule::checkAliases() {
307 // Check if the constructed aliases are well formed. It is really unfortunate
308 // that we have to do this in CodeGen, but we only construct mangled names
309 // and aliases during codegen.
310 bool Error = false;
311 DiagnosticsEngine &Diags = getDiags();
312 for (const GlobalDecl &GD : Aliases) {
313 const auto *D = cast<ValueDecl>(GD.getDecl());
2
The object is a 'ValueDecl'
314 SourceLocation Location;
315 bool IsIFunc = D->hasAttr<IFuncAttr>();
316 if (const Attr *A = D->getDefiningAttr())
3
Assuming 'A' is non-null
4
Taking true branch
317 Location = A->getLocation();
318 else
319 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 319)
;
320 StringRef MangledName = getMangledName(GD);
321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
5
'Entry' is a 'GlobalIndirectSymbol'
323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
6
Calling 'getAliasedGlobal'
13
Returning from 'getAliasedGlobal'
324 if (!GV
13.1
'GV' is null
) {
14
Taking true branch
325 Error = true;
326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327 } else if (GV->isDeclaration()) {
328 Error = true;
329 Diags.Report(Location, diag::err_alias_to_undefined)
330 << IsIFunc << IsIFunc;
331 } else if (IsIFunc) {
332 // Check resolver function type.
333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334 GV->getType()->getPointerElementType());
335 assert(FTy)((FTy) ? static_cast<void> (0) : __assert_fail ("FTy", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 335, __PRETTY_FUNCTION__))
;
336 if (!FTy->getReturnType()->isPointerTy())
337 Diags.Report(Location, diag::err_ifunc_resolver_return);
338 }
339
340 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341 llvm::GlobalValue *AliaseeGV;
342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
15
Assuming 'CE' is null
16
Taking false branch
343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344 else
345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346
347 if (const SectionAttr *SA
16.1
'SA' is null
= D->getAttr<SectionAttr>()) {
17
Taking false branch
348 StringRef AliasSection = SA->getName();
349 if (AliasSection != AliaseeGV->getSection())
350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351 << AliasSection << IsIFunc << IsIFunc;
352 }
353
354 // We have to handle alias to weak aliases in here. LLVM itself disallows
355 // this since the object semantics would not match the IL one. For
356 // compatibility with gcc we implement it by just pointing the alias
357 // to its aliasee's aliasee. We also warn, since the user is probably
358 // expecting the link to be weak.
359 if (auto GA
18.1
'GA' is null
= dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
18
Assuming 'AliaseeGV' is not a 'GlobalIndirectSymbol'
19
Taking false branch
360 if (GA->isInterposable()) {
361 Diags.Report(Location, diag::warn_alias_to_weak_alias)
362 << GV->getName() << GA->getName() << IsIFunc;
363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364 GA->getIndirectSymbol(), Alias->getType());
365 Alias->setIndirectSymbol(Aliasee);
366 }
367 }
368 }
369 if (!Error
19.1
'Error' is true
)
20
Taking false branch
370 return;
371
372 for (const GlobalDecl &GD : Aliases) {
373 StringRef MangledName = getMangledName(GD);
374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
21
Assuming 'Entry' is not a 'GlobalIndirectSymbol'
22
'Alias' initialized to a null pointer value
376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
23
Called C++ object pointer is null
377 Alias->eraseFromParent();
378 }
379}
380
381void CodeGenModule::clear() {
382 DeferredDeclsToEmit.clear();
383 if (OpenMPRuntime)
384 OpenMPRuntime->clear();
385}
386
387void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388 StringRef MainFile) {
389 if (!hasDiagnostics())
390 return;
391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392 if (MainFile.empty())
393 MainFile = "<stdin>";
394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395 } else {
396 if (Mismatched > 0)
397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398
399 if (Missing > 0)
400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401 }
402}
403
404void CodeGenModule::Release() {
405 EmitDeferred();
406 EmitVTablesOpportunistically();
407 applyGlobalValReplacements();
408 applyReplacements();
409 checkAliases();
1
Calling 'CodeGenModule::checkAliases'
410 emitMultiVersionFunctions();
411 EmitCXXGlobalInitFunc();
412 EmitCXXGlobalDtorFunc();
413 registerGlobalDtorsWithAtExit();
414 EmitCXXThreadLocalInitFunc();
415 if (ObjCRuntime)
416 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417 AddGlobalCtor(ObjCInitFunction);
418 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419 CUDARuntime) {
420 if (llvm::Function *CudaCtorFunction =
421 CUDARuntime->makeModuleCtorFunction())
422 AddGlobalCtor(CudaCtorFunction);
423 }
424 if (OpenMPRuntime) {
425 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428 }
429 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430 OpenMPRuntime->clear();
431 }
432 if (PGOReader) {
433 getModule().setProfileSummary(
434 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435 llvm::ProfileSummary::PSK_Instr);
436 if (PGOStats.hasDiagnostics())
437 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438 }
439 EmitCtorList(GlobalCtors, "llvm.global_ctors");
440 EmitCtorList(GlobalDtors, "llvm.global_dtors");
441 EmitGlobalAnnotations();
442 EmitStaticExternCAliases();
443 EmitDeferredUnusedCoverageMappings();
444 if (CoverageMapping)
445 CoverageMapping->emit();
446 if (CodeGenOpts.SanitizeCfiCrossDso) {
447 CodeGenFunction(*this).EmitCfiCheckFail();
448 CodeGenFunction(*this).EmitCfiCheckStub();
449 }
450 emitAtAvailableLinkGuard();
451 if (Context.getTargetInfo().getTriple().isWasm() &&
452 !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453 EmitMainVoidAlias();
454 }
455 emitLLVMUsed();
456 if (SanStats)
457 SanStats->finish();
458
459 if (CodeGenOpts.Autolink &&
460 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461 EmitModuleLinkOptions();
462 }
463
464 // On ELF we pass the dependent library specifiers directly to the linker
465 // without manipulating them. This is in contrast to other platforms where
466 // they are mapped to a specific linker option by the compiler. This
467 // difference is a result of the greater variety of ELF linkers and the fact
468 // that ELF linkers tend to handle libraries in a more complicated fashion
469 // than on other platforms. This forces us to defer handling the dependent
470 // libs to the linker.
471 //
472 // CUDA/HIP device and host libraries are different. Currently there is no
473 // way to differentiate dependent libraries for host or device. Existing
474 // usage of #pragma comment(lib, *) is intended for host libraries on
475 // Windows. Therefore emit llvm.dependent-libraries only for host.
476 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478 for (auto *MD : ELFDependentLibraries)
479 NMD->addOperand(MD);
480 }
481
482 // Record mregparm value now so it is visible through rest of codegen.
483 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485 CodeGenOpts.NumRegisterParameters);
486
487 if (CodeGenOpts.DwarfVersion) {
488 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489 CodeGenOpts.DwarfVersion);
490 }
491
492 if (Context.getLangOpts().SemanticInterposition)
493 // Require various optimization to respect semantic interposition.
494 getModule().setSemanticInterposition(1);
495
496 if (CodeGenOpts.EmitCodeView) {
497 // Indicate that we want CodeView in the metadata.
498 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
499 }
500 if (CodeGenOpts.CodeViewGHash) {
501 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
502 }
503 if (CodeGenOpts.ControlFlowGuard) {
504 // Function ID tables and checks for Control Flow Guard (cfguard=2).
505 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
506 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
507 // Function ID tables for Control Flow Guard (cfguard=1).
508 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
509 }
510 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
511 // We don't support LTO with 2 with different StrictVTablePointers
512 // FIXME: we could support it by stripping all the information introduced
513 // by StrictVTablePointers.
514
515 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
516
517 llvm::Metadata *Ops[2] = {
518 llvm::MDString::get(VMContext, "StrictVTablePointers"),
519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
520 llvm::Type::getInt32Ty(VMContext), 1))};
521
522 getModule().addModuleFlag(llvm::Module::Require,
523 "StrictVTablePointersRequirement",
524 llvm::MDNode::get(VMContext, Ops));
525 }
526 if (DebugInfo)
527 // We support a single version in the linked module. The LLVM
528 // parser will drop debug info with a different version number
529 // (and warn about it, too).
530 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
531 llvm::DEBUG_METADATA_VERSION);
532
533 // We need to record the widths of enums and wchar_t, so that we can generate
534 // the correct build attributes in the ARM backend. wchar_size is also used by
535 // TargetLibraryInfo.
536 uint64_t WCharWidth =
537 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
538 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
539
540 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
541 if ( Arch == llvm::Triple::arm
542 || Arch == llvm::Triple::armeb
543 || Arch == llvm::Triple::thumb
544 || Arch == llvm::Triple::thumbeb) {
545 // The minimum width of an enum in bytes
546 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
547 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
548 }
549
550 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
551 StringRef ABIStr = Target.getABI();
552 llvm::LLVMContext &Ctx = TheModule.getContext();
553 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
554 llvm::MDString::get(Ctx, ABIStr));
555 }
556
557 if (CodeGenOpts.SanitizeCfiCrossDso) {
558 // Indicate that we want cross-DSO control flow integrity checks.
559 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
560 }
561
562 if (CodeGenOpts.WholeProgramVTables) {
563 // Indicate whether VFE was enabled for this module, so that the
564 // vcall_visibility metadata added under whole program vtables is handled
565 // appropriately in the optimizer.
566 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
567 CodeGenOpts.VirtualFunctionElimination);
568 }
569
570 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
571 getModule().addModuleFlag(llvm::Module::Override,
572 "CFI Canonical Jump Tables",
573 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
574 }
575
576 if (CodeGenOpts.CFProtectionReturn &&
577 Target.checkCFProtectionReturnSupported(getDiags())) {
578 // Indicate that we want to instrument return control flow protection.
579 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
580 1);
581 }
582
583 if (CodeGenOpts.CFProtectionBranch &&
584 Target.checkCFProtectionBranchSupported(getDiags())) {
585 // Indicate that we want to instrument branch control flow protection.
586 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
587 1);
588 }
589
590 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
591 // Indicate whether __nvvm_reflect should be configured to flush denormal
592 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
593 // property.)
594 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
595 CodeGenOpts.FP32DenormalMode.Output !=
596 llvm::DenormalMode::IEEE);
597 }
598
599 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
600 if (LangOpts.OpenCL) {
601 EmitOpenCLMetadata();
602 // Emit SPIR version.
603 if (getTriple().isSPIR()) {
604 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
605 // opencl.spir.version named metadata.
606 // C++ is backwards compatible with OpenCL v2.0.
607 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
608 llvm::Metadata *SPIRVerElts[] = {
609 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
610 Int32Ty, Version / 100)),
611 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
612 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
613 llvm::NamedMDNode *SPIRVerMD =
614 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
615 llvm::LLVMContext &Ctx = TheModule.getContext();
616 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
617 }
618 }
619
620 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
621 assert(PLevel < 3 && "Invalid PIC Level")((PLevel < 3 && "Invalid PIC Level") ? static_cast
<void> (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 621, __PRETTY_FUNCTION__))
;
622 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
623 if (Context.getLangOpts().PIE)
624 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
625 }
626
627 if (getCodeGenOpts().CodeModel.size() > 0) {
628 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
629 .Case("tiny", llvm::CodeModel::Tiny)
630 .Case("small", llvm::CodeModel::Small)
631 .Case("kernel", llvm::CodeModel::Kernel)
632 .Case("medium", llvm::CodeModel::Medium)
633 .Case("large", llvm::CodeModel::Large)
634 .Default(~0u);
635 if (CM != ~0u) {
636 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
637 getModule().setCodeModel(codeModel);
638 }
639 }
640
641 if (CodeGenOpts.NoPLT)
642 getModule().setRtLibUseGOT();
643
644 SimplifyPersonality();
645
646 if (getCodeGenOpts().EmitDeclMetadata)
647 EmitDeclMetadata();
648
649 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
650 EmitCoverageFile();
651
652 if (DebugInfo)
653 DebugInfo->finalize();
654
655 if (getCodeGenOpts().EmitVersionIdentMetadata)
656 EmitVersionIdentMetadata();
657
658 if (!getCodeGenOpts().RecordCommandLine.empty())
659 EmitCommandLineMetadata();
660
661 EmitTargetMetadata();
662}
663
664void CodeGenModule::EmitOpenCLMetadata() {
665 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
666 // opencl.ocl.version named metadata node.
667 // C++ is backwards compatible with OpenCL v2.0.
668 // FIXME: We might need to add CXX version at some point too?
669 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
670 llvm::Metadata *OCLVerElts[] = {
671 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
672 Int32Ty, Version / 100)),
673 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
674 Int32Ty, (Version % 100) / 10))};
675 llvm::NamedMDNode *OCLVerMD =
676 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
677 llvm::LLVMContext &Ctx = TheModule.getContext();
678 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
679}
680
681void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
682 // Make sure that this type is translated.
683 Types.UpdateCompletedType(TD);
684}
685
686void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
687 // Make sure that this type is translated.
688 Types.RefreshTypeCacheForClass(RD);
689}
690
691llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
692 if (!TBAA)
693 return nullptr;
694 return TBAA->getTypeInfo(QTy);
695}
696
697TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
698 if (!TBAA)
699 return TBAAAccessInfo();
700 return TBAA->getAccessInfo(AccessType);
701}
702
703TBAAAccessInfo
704CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
705 if (!TBAA)
706 return TBAAAccessInfo();
707 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
708}
709
710llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
711 if (!TBAA)
712 return nullptr;
713 return TBAA->getTBAAStructInfo(QTy);
714}
715
716llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
717 if (!TBAA)
718 return nullptr;
719 return TBAA->getBaseTypeInfo(QTy);
720}
721
722llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
723 if (!TBAA)
724 return nullptr;
725 return TBAA->getAccessTagInfo(Info);
726}
727
728TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
729 TBAAAccessInfo TargetInfo) {
730 if (!TBAA)
731 return TBAAAccessInfo();
732 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
733}
734
735TBAAAccessInfo
736CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
737 TBAAAccessInfo InfoB) {
738 if (!TBAA)
739 return TBAAAccessInfo();
740 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
741}
742
743TBAAAccessInfo
744CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
745 TBAAAccessInfo SrcInfo) {
746 if (!TBAA)
747 return TBAAAccessInfo();
748 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
749}
750
751void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
752 TBAAAccessInfo TBAAInfo) {
753 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
754 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
755}
756
757void CodeGenModule::DecorateInstructionWithInvariantGroup(
758 llvm::Instruction *I, const CXXRecordDecl *RD) {
759 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
760 llvm::MDNode::get(getLLVMContext(), {}));
761}
762
763void CodeGenModule::Error(SourceLocation loc, StringRef message) {
764 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
765 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
766}
767
768/// ErrorUnsupported - Print out an error that codegen doesn't support the
769/// specified stmt yet.
770void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
771 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
772 "cannot compile this %0 yet");
773 std::string Msg = Type;
774 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
775 << Msg << S->getSourceRange();
776}
777
778/// ErrorUnsupported - Print out an error that codegen doesn't support the
779/// specified decl yet.
780void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
781 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
782 "cannot compile this %0 yet");
783 std::string Msg = Type;
784 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
785}
786
787llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
788 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
789}
790
791void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
792 const NamedDecl *D) const {
793 if (GV->hasDLLImportStorageClass())
794 return;
795 // Internal definitions always have default visibility.
796 if (GV->hasLocalLinkage()) {
797 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
798 return;
799 }
800 if (!D)
801 return;
802 // Set visibility for definitions, and for declarations if requested globally
803 // or set explicitly.
804 LinkageInfo LV = D->getLinkageAndVisibility();
805 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
806 !GV->isDeclarationForLinker())
807 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
808}
809
810static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
811 llvm::GlobalValue *GV) {
812 if (GV->hasLocalLinkage())
813 return true;
814
815 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
816 return true;
817
818 // DLLImport explicitly marks the GV as external.
819 if (GV->hasDLLImportStorageClass())
820 return false;
821
822 const llvm::Triple &TT = CGM.getTriple();
823 if (TT.isWindowsGNUEnvironment()) {
824 // In MinGW, variables without DLLImport can still be automatically
825 // imported from a DLL by the linker; don't mark variables that
826 // potentially could come from another DLL as DSO local.
827 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
828 !GV->isThreadLocal())
829 return false;
830 }
831
832 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
833 // remain unresolved in the link, they can be resolved to zero, which is
834 // outside the current DSO.
835 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
836 return false;
837
838 // Every other GV is local on COFF.
839 // Make an exception for windows OS in the triple: Some firmware builds use
840 // *-win32-macho triples. This (accidentally?) produced windows relocations
841 // without GOT tables in older clang versions; Keep this behaviour.
842 // FIXME: even thread local variables?
843 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
844 return true;
845
846 // Only handle COFF and ELF for now.
847 if (!TT.isOSBinFormatELF())
848 return false;
849
850 // If this is not an executable, don't assume anything is local.
851 const auto &CGOpts = CGM.getCodeGenOpts();
852 llvm::Reloc::Model RM = CGOpts.RelocationModel;
853 const auto &LOpts = CGM.getLangOpts();
854 if (RM != llvm::Reloc::Static && !LOpts.PIE)
855 return false;
856
857 // A definition cannot be preempted from an executable.
858 if (!GV->isDeclarationForLinker())
859 return true;
860
861 // Most PIC code sequences that assume that a symbol is local cannot produce a
862 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
863 // depended, it seems worth it to handle it here.
864 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
865 return false;
866
867 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
868 llvm::Triple::ArchType Arch = TT.getArch();
869 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
870 Arch == llvm::Triple::ppc64le)
871 return false;
872
873 // If we can use copy relocations we can assume it is local.
874 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
875 if (!Var->isThreadLocal() &&
876 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
877 return true;
878
879 // If we can use a plt entry as the symbol address we can assume it
880 // is local.
881 // FIXME: This should work for PIE, but the gold linker doesn't support it.
882 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
883 return true;
884
885 // Otherwise don't assume it is local.
886 return false;
887}
888
889void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
890 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
891}
892
893void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
894 GlobalDecl GD) const {
895 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
896 // C++ destructors have a few C++ ABI specific special cases.
897 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
898 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
899 return;
900 }
901 setDLLImportDLLExport(GV, D);
902}
903
904void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
905 const NamedDecl *D) const {
906 if (D && D->isExternallyVisible()) {
907 if (D->hasAttr<DLLImportAttr>())
908 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
909 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
910 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
911 }
912}
913
914void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
915 GlobalDecl GD) const {
916 setDLLImportDLLExport(GV, GD);
917 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
918}
919
920void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
921 const NamedDecl *D) const {
922 setDLLImportDLLExport(GV, D);
923 setGVPropertiesAux(GV, D);
924}
925
926void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
927 const NamedDecl *D) const {
928 setGlobalVisibility(GV, D);
929 setDSOLocal(GV);
930 GV->setPartition(CodeGenOpts.SymbolPartition);
931}
932
933static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
934 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
935 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
936 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
937 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
938 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
939}
940
941static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
942 CodeGenOptions::TLSModel M) {
943 switch (M) {
944 case CodeGenOptions::GeneralDynamicTLSModel:
945 return llvm::GlobalVariable::GeneralDynamicTLSModel;
946 case CodeGenOptions::LocalDynamicTLSModel:
947 return llvm::GlobalVariable::LocalDynamicTLSModel;
948 case CodeGenOptions::InitialExecTLSModel:
949 return llvm::GlobalVariable::InitialExecTLSModel;
950 case CodeGenOptions::LocalExecTLSModel:
951 return llvm::GlobalVariable::LocalExecTLSModel;
952 }
953 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 953)
;
954}
955
956void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
957 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")((D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? static_cast<void> (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 957, __PRETTY_FUNCTION__))
;
958
959 llvm::GlobalValue::ThreadLocalMode TLM;
960 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
961
962 // Override the TLS model if it is explicitly specified.
963 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
964 TLM = GetLLVMTLSModel(Attr->getModel());
965 }
966
967 GV->setThreadLocalMode(TLM);
968}
969
970static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
971 StringRef Name) {
972 const TargetInfo &Target = CGM.getTarget();
973 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
974}
975
976static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
977 const CPUSpecificAttr *Attr,
978 unsigned CPUIndex,
979 raw_ostream &Out) {
980 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
981 // supported.
982 if (Attr)
983 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
984 else if (CGM.getTarget().supportsIFunc())
985 Out << ".resolver";
986}
987
988static void AppendTargetMangling(const CodeGenModule &CGM,
989 const TargetAttr *Attr, raw_ostream &Out) {
990 if (Attr->isDefaultVersion())
991 return;
992
993 Out << '.';
994 const TargetInfo &Target = CGM.getTarget();
995 ParsedTargetAttr Info =
996 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
997 // Multiversioning doesn't allow "no-${feature}", so we can
998 // only have "+" prefixes here.
999 assert(LHS.startswith("+") && RHS.startswith("+") &&((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1000, __PRETTY_FUNCTION__))
1000 "Features should always have a prefix.")((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1000, __PRETTY_FUNCTION__))
;
1001 return Target.multiVersionSortPriority(LHS.substr(1)) >
1002 Target.multiVersionSortPriority(RHS.substr(1));
1003 });
1004
1005 bool IsFirst = true;
1006
1007 if (!Info.Architecture.empty()) {
1008 IsFirst = false;
1009 Out << "arch_" << Info.Architecture;
1010 }
1011
1012 for (StringRef Feat : Info.Features) {
1013 if (!IsFirst)
1014 Out << '_';
1015 IsFirst = false;
1016 Out << Feat.substr(1);
1017 }
1018}
1019
1020static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1021 const NamedDecl *ND,
1022 bool OmitMultiVersionMangling = false) {
1023 SmallString<256> Buffer;
1024 llvm::raw_svector_ostream Out(Buffer);
1025 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1026 if (MC.shouldMangleDeclName(ND))
1027 MC.mangleName(GD.getWithDecl(ND), Out);
1028 else {
1029 IdentifierInfo *II = ND->getIdentifier();
1030 assert(II && "Attempt to mangle unnamed decl.")((II && "Attempt to mangle unnamed decl.") ? static_cast
<void> (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1030, __PRETTY_FUNCTION__))
;
1031 const auto *FD = dyn_cast<FunctionDecl>(ND);
1032
1033 if (FD &&
1034 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1035 Out << "__regcall3__" << II->getName();
1036 } else {
1037 Out << II->getName();
1038 }
1039 }
1040
1041 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1042 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1043 switch (FD->getMultiVersionKind()) {
1044 case MultiVersionKind::CPUDispatch:
1045 case MultiVersionKind::CPUSpecific:
1046 AppendCPUSpecificCPUDispatchMangling(CGM,
1047 FD->getAttr<CPUSpecificAttr>(),
1048 GD.getMultiVersionIndex(), Out);
1049 break;
1050 case MultiVersionKind::Target:
1051 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1052 break;
1053 case MultiVersionKind::None:
1054 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1054)
;
1055 }
1056 }
1057
1058 return std::string(Out.str());
1059}
1060
1061void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1062 const FunctionDecl *FD) {
1063 if (!FD->isMultiVersion())
1064 return;
1065
1066 // Get the name of what this would be without the 'target' attribute. This
1067 // allows us to lookup the version that was emitted when this wasn't a
1068 // multiversion function.
1069 std::string NonTargetName =
1070 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1071 GlobalDecl OtherGD;
1072 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1073 assert(OtherGD.getCanonicalDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1077, __PRETTY_FUNCTION__))
1074 .getDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1077, __PRETTY_FUNCTION__))
1075 ->getAsFunction()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1077, __PRETTY_FUNCTION__))
1076 ->isMultiVersion() &&((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1077, __PRETTY_FUNCTION__))
1077 "Other GD should now be a multiversioned function")((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1077, __PRETTY_FUNCTION__))
;
1078 // OtherFD is the version of this function that was mangled BEFORE
1079 // becoming a MultiVersion function. It potentially needs to be updated.
1080 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1081 .getDecl()
1082 ->getAsFunction()
1083 ->getMostRecentDecl();
1084 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1085 // This is so that if the initial version was already the 'default'
1086 // version, we don't try to update it.
1087 if (OtherName != NonTargetName) {
1088 // Remove instead of erase, since others may have stored the StringRef
1089 // to this.
1090 const auto ExistingRecord = Manglings.find(NonTargetName);
1091 if (ExistingRecord != std::end(Manglings))
1092 Manglings.remove(&(*ExistingRecord));
1093 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1094 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1095 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1096 Entry->setName(OtherName);
1097 }
1098 }
1099}
1100
1101StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1102 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1103
1104 // Some ABIs don't have constructor variants. Make sure that base and
1105 // complete constructors get mangled the same.
1106 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1107 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1108 CXXCtorType OrigCtorType = GD.getCtorType();
1109 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)((OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)
? static_cast<void> (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1109, __PRETTY_FUNCTION__))
;
1110 if (OrigCtorType == Ctor_Base)
1111 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1112 }
1113 }
1114
1115 auto FoundName = MangledDeclNames.find(CanonicalGD);
1116 if (FoundName != MangledDeclNames.end())
1117 return FoundName->second;
1118
1119 // Keep the first result in the case of a mangling collision.
1120 const auto *ND = cast<NamedDecl>(GD.getDecl());
1121 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1122
1123 // Adjust kernel stub mangling as we may need to be able to differentiate
1124 // them from the kernel itself (e.g., for HIP).
1125 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1126 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1127 MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1128
1129 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1130 return MangledDeclNames[CanonicalGD] = Result.first->first();
1131}
1132
1133StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1134 const BlockDecl *BD) {
1135 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1136 const Decl *D = GD.getDecl();
1137
1138 SmallString<256> Buffer;
1139 llvm::raw_svector_ostream Out(Buffer);
1140 if (!D)
1141 MangleCtx.mangleGlobalBlock(BD,
1142 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1143 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1144 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1145 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1146 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1147 else
1148 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1149
1150 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1151 return Result.first->first();
1152}
1153
1154llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1155 return getModule().getNamedValue(Name);
1156}
1157
1158/// AddGlobalCtor - Add a function to the list that will be called before
1159/// main() runs.
1160void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1161 llvm::Constant *AssociatedData) {
1162 // FIXME: Type coercion of void()* types.
1163 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1164}
1165
1166/// AddGlobalDtor - Add a function to the list that will be called
1167/// when the module is unloaded.
1168void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1169 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1170 DtorsUsingAtExit[Priority].push_back(Dtor);
1171 return;
1172 }
1173
1174 // FIXME: Type coercion of void()* types.
1175 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1176}
1177
1178void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1179 if (Fns.empty()) return;
1180
1181 // Ctor function type is void()*.
1182 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1183 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1184 TheModule.getDataLayout().getProgramAddressSpace());
1185
1186 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1187 llvm::StructType *CtorStructTy = llvm::StructType::get(
1188 Int32Ty, CtorPFTy, VoidPtrTy);
1189
1190 // Construct the constructor and destructor arrays.
1191 ConstantInitBuilder builder(*this);
1192 auto ctors = builder.beginArray(CtorStructTy);
1193 for (const auto &I : Fns) {
1194 auto ctor = ctors.beginStruct(CtorStructTy);
1195 ctor.addInt(Int32Ty, I.Priority);
1196 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1197 if (I.AssociatedData)
1198 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1199 else
1200 ctor.addNullPointer(VoidPtrTy);
1201 ctor.finishAndAddTo(ctors);
1202 }
1203
1204 auto list =
1205 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1206 /*constant*/ false,
1207 llvm::GlobalValue::AppendingLinkage);
1208
1209 // The LTO linker doesn't seem to like it when we set an alignment
1210 // on appending variables. Take it off as a workaround.
1211 list->setAlignment(llvm::None);
1212
1213 Fns.clear();
1214}
1215
1216llvm::GlobalValue::LinkageTypes
1217CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1218 const auto *D = cast<FunctionDecl>(GD.getDecl());
1219
1220 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1221
1222 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1223 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1224
1225 if (isa<CXXConstructorDecl>(D) &&
1226 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1227 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1228 // Our approach to inheriting constructors is fundamentally different from
1229 // that used by the MS ABI, so keep our inheriting constructor thunks
1230 // internal rather than trying to pick an unambiguous mangling for them.
1231 return llvm::GlobalValue::InternalLinkage;
1232 }
1233
1234 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1235}
1236
1237llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1238 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1239 if (!MDS) return nullptr;
1240
1241 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1242}
1243
1244void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1245 const CGFunctionInfo &Info,
1246 llvm::Function *F) {
1247 unsigned CallingConv;
1248 llvm::AttributeList PAL;
1249 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1250 F->setAttributes(PAL);
1251 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1252}
1253
1254static void removeImageAccessQualifier(std::string& TyName) {
1255 std::string ReadOnlyQual("__read_only");
1256 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1257 if (ReadOnlyPos != std::string::npos)
1258 // "+ 1" for the space after access qualifier.
1259 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1260 else {
1261 std::string WriteOnlyQual("__write_only");
1262 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1263 if (WriteOnlyPos != std::string::npos)
1264 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1265 else {
1266 std::string ReadWriteQual("__read_write");
1267 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1268 if (ReadWritePos != std::string::npos)
1269 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1270 }
1271 }
1272}
1273
1274// Returns the address space id that should be produced to the
1275// kernel_arg_addr_space metadata. This is always fixed to the ids
1276// as specified in the SPIR 2.0 specification in order to differentiate
1277// for example in clGetKernelArgInfo() implementation between the address
1278// spaces with targets without unique mapping to the OpenCL address spaces
1279// (basically all single AS CPUs).
1280static unsigned ArgInfoAddressSpace(LangAS AS) {
1281 switch (AS) {
1282 case LangAS::opencl_global: return 1;
1283 case LangAS::opencl_constant: return 2;
1284 case LangAS::opencl_local: return 3;
1285 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs.
1286 default:
1287 return 0; // Assume private.
1288 }
1289}
1290
1291void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1292 const FunctionDecl *FD,
1293 CodeGenFunction *CGF) {
1294 assert(((FD && CGF) || (!FD && !CGF)) &&((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1295, __PRETTY_FUNCTION__))
1295 "Incorrect use - FD and CGF should either be both null or not!")((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1295, __PRETTY_FUNCTION__))
;
1296 // Create MDNodes that represent the kernel arg metadata.
1297 // Each MDNode is a list in the form of "key", N number of values which is
1298 // the same number of values as their are kernel arguments.
1299
1300 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1301
1302 // MDNode for the kernel argument address space qualifiers.
1303 SmallVector<llvm::Metadata *, 8> addressQuals;
1304
1305 // MDNode for the kernel argument access qualifiers (images only).
1306 SmallVector<llvm::Metadata *, 8> accessQuals;
1307
1308 // MDNode for the kernel argument type names.
1309 SmallVector<llvm::Metadata *, 8> argTypeNames;
1310
1311 // MDNode for the kernel argument base type names.
1312 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1313
1314 // MDNode for the kernel argument type qualifiers.
1315 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1316
1317 // MDNode for the kernel argument names.
1318 SmallVector<llvm::Metadata *, 8> argNames;
1319
1320 if (FD && CGF)
1321 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1322 const ParmVarDecl *parm = FD->getParamDecl(i);
1323 QualType ty = parm->getType();
1324 std::string typeQuals;
1325
1326 if (ty->isPointerType()) {
1327 QualType pointeeTy = ty->getPointeeType();
1328
1329 // Get address qualifier.
1330 addressQuals.push_back(
1331 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1332 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1333
1334 // Get argument type name.
1335 std::string typeName =
1336 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1337
1338 // Turn "unsigned type" to "utype"
1339 std::string::size_type pos = typeName.find("unsigned");
1340 if (pointeeTy.isCanonical() && pos != std::string::npos)
1341 typeName.erase(pos + 1, 8);
1342
1343 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1344
1345 std::string baseTypeName =
1346 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1347 Policy) +
1348 "*";
1349
1350 // Turn "unsigned type" to "utype"
1351 pos = baseTypeName.find("unsigned");
1352 if (pos != std::string::npos)
1353 baseTypeName.erase(pos + 1, 8);
1354
1355 argBaseTypeNames.push_back(
1356 llvm::MDString::get(VMContext, baseTypeName));
1357
1358 // Get argument type qualifiers:
1359 if (ty.isRestrictQualified())
1360 typeQuals = "restrict";
1361 if (pointeeTy.isConstQualified() ||
1362 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1363 typeQuals += typeQuals.empty() ? "const" : " const";
1364 if (pointeeTy.isVolatileQualified())
1365 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1366 } else {
1367 uint32_t AddrSpc = 0;
1368 bool isPipe = ty->isPipeType();
1369 if (ty->isImageType() || isPipe)
1370 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1371
1372 addressQuals.push_back(
1373 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1374
1375 // Get argument type name.
1376 std::string typeName;
1377 if (isPipe)
1378 typeName = ty.getCanonicalType()
1379 ->castAs<PipeType>()
1380 ->getElementType()
1381 .getAsString(Policy);
1382 else
1383 typeName = ty.getUnqualifiedType().getAsString(Policy);
1384
1385 // Turn "unsigned type" to "utype"
1386 std::string::size_type pos = typeName.find("unsigned");
1387 if (ty.isCanonical() && pos != std::string::npos)
1388 typeName.erase(pos + 1, 8);
1389
1390 std::string baseTypeName;
1391 if (isPipe)
1392 baseTypeName = ty.getCanonicalType()
1393 ->castAs<PipeType>()
1394 ->getElementType()
1395 .getCanonicalType()
1396 .getAsString(Policy);
1397 else
1398 baseTypeName =
1399 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1400
1401 // Remove access qualifiers on images
1402 // (as they are inseparable from type in clang implementation,
1403 // but OpenCL spec provides a special query to get access qualifier
1404 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1405 if (ty->isImageType()) {
1406 removeImageAccessQualifier(typeName);
1407 removeImageAccessQualifier(baseTypeName);
1408 }
1409
1410 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1411
1412 // Turn "unsigned type" to "utype"
1413 pos = baseTypeName.find("unsigned");
1414 if (pos != std::string::npos)
1415 baseTypeName.erase(pos + 1, 8);
1416
1417 argBaseTypeNames.push_back(
1418 llvm::MDString::get(VMContext, baseTypeName));
1419
1420 if (isPipe)
1421 typeQuals = "pipe";
1422 }
1423
1424 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1425
1426 // Get image and pipe access qualifier:
1427 if (ty->isImageType() || ty->isPipeType()) {
1428 const Decl *PDecl = parm;
1429 if (auto *TD = dyn_cast<TypedefType>(ty))
1430 PDecl = TD->getDecl();
1431 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1432 if (A && A->isWriteOnly())
1433 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1434 else if (A && A->isReadWrite())
1435 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1436 else
1437 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1438 } else
1439 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1440
1441 // Get argument name.
1442 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1443 }
1444
1445 Fn->setMetadata("kernel_arg_addr_space",
1446 llvm::MDNode::get(VMContext, addressQuals));
1447 Fn->setMetadata("kernel_arg_access_qual",
1448 llvm::MDNode::get(VMContext, accessQuals));
1449 Fn->setMetadata("kernel_arg_type",
1450 llvm::MDNode::get(VMContext, argTypeNames));
1451 Fn->setMetadata("kernel_arg_base_type",
1452 llvm::MDNode::get(VMContext, argBaseTypeNames));
1453 Fn->setMetadata("kernel_arg_type_qual",
1454 llvm::MDNode::get(VMContext, argTypeQuals));
1455 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1456 Fn->setMetadata("kernel_arg_name",
1457 llvm::MDNode::get(VMContext, argNames));
1458}
1459
1460/// Determines whether the language options require us to model
1461/// unwind exceptions. We treat -fexceptions as mandating this
1462/// except under the fragile ObjC ABI with only ObjC exceptions
1463/// enabled. This means, for example, that C with -fexceptions
1464/// enables this.
1465static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1466 // If exceptions are completely disabled, obviously this is false.
1467 if (!LangOpts.Exceptions) return false;
1468
1469 // If C++ exceptions are enabled, this is true.
1470 if (LangOpts.CXXExceptions) return true;
1471
1472 // If ObjC exceptions are enabled, this depends on the ABI.
1473 if (LangOpts.ObjCExceptions) {
1474 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1475 }
1476
1477 return true;
1478}
1479
1480static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1481 const CXXMethodDecl *MD) {
1482 // Check that the type metadata can ever actually be used by a call.
1483 if (!CGM.getCodeGenOpts().LTOUnit ||
1484 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1485 return false;
1486
1487 // Only functions whose address can be taken with a member function pointer
1488 // need this sort of type metadata.
1489 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1490 !isa<CXXDestructorDecl>(MD);
1491}
1492
1493std::vector<const CXXRecordDecl *>
1494CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1495 llvm::SetVector<const CXXRecordDecl *> MostBases;
1496
1497 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1498 CollectMostBases = [&](const CXXRecordDecl *RD) {
1499 if (RD->getNumBases() == 0)
1500 MostBases.insert(RD);
1501 for (const CXXBaseSpecifier &B : RD->bases())
1502 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1503 };
1504 CollectMostBases(RD);
1505 return MostBases.takeVector();
1506}
1507
1508void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1509 llvm::Function *F) {
1510 llvm::AttrBuilder B;
1511
1512 if (CodeGenOpts.UnwindTables)
1513 B.addAttribute(llvm::Attribute::UWTable);
1514
1515 if (CodeGenOpts.StackClashProtector)
1516 B.addAttribute("probe-stack", "inline-asm");
1517
1518 if (!hasUnwindExceptions(LangOpts))
1519 B.addAttribute(llvm::Attribute::NoUnwind);
1520
1521 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1522 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1523 B.addAttribute(llvm::Attribute::StackProtect);
1524 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1525 B.addAttribute(llvm::Attribute::StackProtectStrong);
1526 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1527 B.addAttribute(llvm::Attribute::StackProtectReq);
1528 }
1529
1530 if (!D) {
1531 // If we don't have a declaration to control inlining, the function isn't
1532 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1533 // disabled, mark the function as noinline.
1534 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1535 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1536 B.addAttribute(llvm::Attribute::NoInline);
1537
1538 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1539 return;
1540 }
1541
1542 // Track whether we need to add the optnone LLVM attribute,
1543 // starting with the default for this optimization level.
1544 bool ShouldAddOptNone =
1545 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1546 // We can't add optnone in the following cases, it won't pass the verifier.
1547 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1548 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1549
1550 // Add optnone, but do so only if the function isn't always_inline.
1551 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1552 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1553 B.addAttribute(llvm::Attribute::OptimizeNone);
1554
1555 // OptimizeNone implies noinline; we should not be inlining such functions.
1556 B.addAttribute(llvm::Attribute::NoInline);
1557
1558 // We still need to handle naked functions even though optnone subsumes
1559 // much of their semantics.
1560 if (D->hasAttr<NakedAttr>())
1561 B.addAttribute(llvm::Attribute::Naked);
1562
1563 // OptimizeNone wins over OptimizeForSize and MinSize.
1564 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1565 F->removeFnAttr(llvm::Attribute::MinSize);
1566 } else if (D->hasAttr<NakedAttr>()) {
1567 // Naked implies noinline: we should not be inlining such functions.
1568 B.addAttribute(llvm::Attribute::Naked);
1569 B.addAttribute(llvm::Attribute::NoInline);
1570 } else if (D->hasAttr<NoDuplicateAttr>()) {
1571 B.addAttribute(llvm::Attribute::NoDuplicate);
1572 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1573 // Add noinline if the function isn't always_inline.
1574 B.addAttribute(llvm::Attribute::NoInline);
1575 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1576 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1577 // (noinline wins over always_inline, and we can't specify both in IR)
1578 B.addAttribute(llvm::Attribute::AlwaysInline);
1579 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1580 // If we're not inlining, then force everything that isn't always_inline to
1581 // carry an explicit noinline attribute.
1582 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1583 B.addAttribute(llvm::Attribute::NoInline);
1584 } else {
1585 // Otherwise, propagate the inline hint attribute and potentially use its
1586 // absence to mark things as noinline.
1587 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1588 // Search function and template pattern redeclarations for inline.
1589 auto CheckForInline = [](const FunctionDecl *FD) {
1590 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1591 return Redecl->isInlineSpecified();
1592 };
1593 if (any_of(FD->redecls(), CheckRedeclForInline))
1594 return true;
1595 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1596 if (!Pattern)
1597 return false;
1598 return any_of(Pattern->redecls(), CheckRedeclForInline);
1599 };
1600 if (CheckForInline(FD)) {
1601 B.addAttribute(llvm::Attribute::InlineHint);
1602 } else if (CodeGenOpts.getInlining() ==
1603 CodeGenOptions::OnlyHintInlining &&
1604 !FD->isInlined() &&
1605 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1606 B.addAttribute(llvm::Attribute::NoInline);
1607 }
1608 }
1609 }
1610
1611 // Add other optimization related attributes if we are optimizing this
1612 // function.
1613 if (!D->hasAttr<OptimizeNoneAttr>()) {
1614 if (D->hasAttr<ColdAttr>()) {
1615 if (!ShouldAddOptNone)
1616 B.addAttribute(llvm::Attribute::OptimizeForSize);
1617 B.addAttribute(llvm::Attribute::Cold);
1618 }
1619
1620 if (D->hasAttr<MinSizeAttr>())
1621 B.addAttribute(llvm::Attribute::MinSize);
1622 }
1623
1624 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1625
1626 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1627 if (alignment)
1628 F->setAlignment(llvm::Align(alignment));
1629
1630 if (!D->hasAttr<AlignedAttr>())
1631 if (LangOpts.FunctionAlignment)
1632 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1633
1634 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1635 // reserve a bit for differentiating between virtual and non-virtual member
1636 // functions. If the current target's C++ ABI requires this and this is a
1637 // member function, set its alignment accordingly.
1638 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1639 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1640 F->setAlignment(llvm::Align(2));
1641 }
1642
1643 // In the cross-dso CFI mode with canonical jump tables, we want !type
1644 // attributes on definitions only.
1645 if (CodeGenOpts.SanitizeCfiCrossDso &&
1646 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1647 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1648 // Skip available_externally functions. They won't be codegen'ed in the
1649 // current module anyway.
1650 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1651 CreateFunctionTypeMetadataForIcall(FD, F);
1652 }
1653 }
1654
1655 // Emit type metadata on member functions for member function pointer checks.
1656 // These are only ever necessary on definitions; we're guaranteed that the
1657 // definition will be present in the LTO unit as a result of LTO visibility.
1658 auto *MD = dyn_cast<CXXMethodDecl>(D);
1659 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1660 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1661 llvm::Metadata *Id =
1662 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1663 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1664 F->addTypeMetadata(0, Id);
1665 }
1666 }
1667}
1668
1669void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1670 const Decl *D = GD.getDecl();
1671 if (dyn_cast_or_null<NamedDecl>(D))
1672 setGVProperties(GV, GD);
1673 else
1674 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1675
1676 if (D && D->hasAttr<UsedAttr>())
1677 addUsedGlobal(GV);
1678
1679 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1680 const auto *VD = cast<VarDecl>(D);
1681 if (VD->getType().isConstQualified() &&
1682 VD->getStorageDuration() == SD_Static)
1683 addUsedGlobal(GV);
1684 }
1685}
1686
1687bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1688 llvm::AttrBuilder &Attrs) {
1689 // Add target-cpu and target-features attributes to functions. If
1690 // we have a decl for the function and it has a target attribute then
1691 // parse that and add it to the feature set.
1692 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1693 std::vector<std::string> Features;
1694 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1695 FD = FD ? FD->getMostRecentDecl() : FD;
1696 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1697 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1698 bool AddedAttr = false;
1699 if (TD || SD) {
1700 llvm::StringMap<bool> FeatureMap;
1701 getContext().getFunctionFeatureMap(FeatureMap, GD);
1702
1703 // Produce the canonical string for this set of features.
1704 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1705 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1706
1707 // Now add the target-cpu and target-features to the function.
1708 // While we populated the feature map above, we still need to
1709 // get and parse the target attribute so we can get the cpu for
1710 // the function.
1711 if (TD) {
1712 ParsedTargetAttr ParsedAttr = TD->parse();
1713 if (ParsedAttr.Architecture != "" &&
1714 getTarget().isValidCPUName(ParsedAttr.Architecture))
1715 TargetCPU = ParsedAttr.Architecture;
1716 }
1717 } else {
1718 // Otherwise just add the existing target cpu and target features to the
1719 // function.
1720 Features = getTarget().getTargetOpts().Features;
1721 }
1722
1723 if (TargetCPU != "") {
1724 Attrs.addAttribute("target-cpu", TargetCPU);
1725 AddedAttr = true;
1726 }
1727 if (!Features.empty()) {
1728 llvm::sort(Features);
1729 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1730 AddedAttr = true;
1731 }
1732
1733 return AddedAttr;
1734}
1735
1736void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1737 llvm::GlobalObject *GO) {
1738 const Decl *D = GD.getDecl();
1739 SetCommonAttributes(GD, GO);
1740
1741 if (D) {
1742 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1743 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1744 GV->addAttribute("bss-section", SA->getName());
1745 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1746 GV->addAttribute("data-section", SA->getName());
1747 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1748 GV->addAttribute("rodata-section", SA->getName());
1749 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1750 GV->addAttribute("relro-section", SA->getName());
1751 }
1752
1753 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1754 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1755 if (!D->getAttr<SectionAttr>())
1756 F->addFnAttr("implicit-section-name", SA->getName());
1757
1758 llvm::AttrBuilder Attrs;
1759 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1760 // We know that GetCPUAndFeaturesAttributes will always have the
1761 // newest set, since it has the newest possible FunctionDecl, so the
1762 // new ones should replace the old.
1763 F->removeFnAttr("target-cpu");
1764 F->removeFnAttr("target-features");
1765 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1766 }
1767 }
1768
1769 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1770 GO->setSection(CSA->getName());
1771 else if (const auto *SA = D->getAttr<SectionAttr>())
1772 GO->setSection(SA->getName());
1773 }
1774
1775 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1776}
1777
1778void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1779 llvm::Function *F,
1780 const CGFunctionInfo &FI) {
1781 const Decl *D = GD.getDecl();
1782 SetLLVMFunctionAttributes(GD, FI, F);
1783 SetLLVMFunctionAttributesForDefinition(D, F);
1784
1785 F->setLinkage(llvm::Function::InternalLinkage);
1786
1787 setNonAliasAttributes(GD, F);
1788}
1789
1790static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1791 // Set linkage and visibility in case we never see a definition.
1792 LinkageInfo LV = ND->getLinkageAndVisibility();
1793 // Don't set internal linkage on declarations.
1794 // "extern_weak" is overloaded in LLVM; we probably should have
1795 // separate linkage types for this.
1796 if (isExternallyVisible(LV.getLinkage()) &&
1797 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1798 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1799}
1800
1801void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1802 llvm::Function *F) {
1803 // Only if we are checking indirect calls.
1804 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1805 return;
1806
1807 // Non-static class methods are handled via vtable or member function pointer
1808 // checks elsewhere.
1809 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1810 return;
1811
1812 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1813 F->addTypeMetadata(0, MD);
1814 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1815
1816 // Emit a hash-based bit set entry for cross-DSO calls.
1817 if (CodeGenOpts.SanitizeCfiCrossDso)
1818 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1819 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1820}
1821
1822void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1823 bool IsIncompleteFunction,
1824 bool IsThunk) {
1825
1826 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1827 // If this is an intrinsic function, set the function's attributes
1828 // to the intrinsic's attributes.
1829 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1830 return;
1831 }
1832
1833 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1834
1835 if (!IsIncompleteFunction)
1836 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1837
1838 // Add the Returned attribute for "this", except for iOS 5 and earlier
1839 // where substantial code, including the libstdc++ dylib, was compiled with
1840 // GCC and does not actually return "this".
1841 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1842 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1843 assert(!F->arg_empty() &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1846, __PRETTY_FUNCTION__))
1844 F->arg_begin()->getType()((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1846, __PRETTY_FUNCTION__))
1845 ->canLosslesslyBitCastTo(F->getReturnType()) &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1846, __PRETTY_FUNCTION__))
1846 "unexpected this return")((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1846, __PRETTY_FUNCTION__))
;
1847 F->addAttribute(1, llvm::Attribute::Returned);
1848 }
1849
1850 // Only a few attributes are set on declarations; these may later be
1851 // overridden by a definition.
1852
1853 setLinkageForGV(F, FD);
1854 setGVProperties(F, FD);
1855
1856 // Setup target-specific attributes.
1857 if (!IsIncompleteFunction && F->isDeclaration())
1858 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1859
1860 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1861 F->setSection(CSA->getName());
1862 else if (const auto *SA = FD->getAttr<SectionAttr>())
1863 F->setSection(SA->getName());
1864
1865 if (FD->isInlineBuiltinDeclaration()) {
1866 F->addAttribute(llvm::AttributeList::FunctionIndex,
1867 llvm::Attribute::NoBuiltin);
1868 }
1869
1870 if (FD->isReplaceableGlobalAllocationFunction()) {
1871 // A replaceable global allocation function does not act like a builtin by
1872 // default, only if it is invoked by a new-expression or delete-expression.
1873 F->addAttribute(llvm::AttributeList::FunctionIndex,
1874 llvm::Attribute::NoBuiltin);
1875 }
1876
1877 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1878 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1879 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1880 if (MD->isVirtual())
1881 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1882
1883 // Don't emit entries for function declarations in the cross-DSO mode. This
1884 // is handled with better precision by the receiving DSO. But if jump tables
1885 // are non-canonical then we need type metadata in order to produce the local
1886 // jump table.
1887 if (!CodeGenOpts.SanitizeCfiCrossDso ||
1888 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1889 CreateFunctionTypeMetadataForIcall(FD, F);
1890
1891 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1892 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1893
1894 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1895 // Annotate the callback behavior as metadata:
1896 // - The callback callee (as argument number).
1897 // - The callback payloads (as argument numbers).
1898 llvm::LLVMContext &Ctx = F->getContext();
1899 llvm::MDBuilder MDB(Ctx);
1900
1901 // The payload indices are all but the first one in the encoding. The first
1902 // identifies the callback callee.
1903 int CalleeIdx = *CB->encoding_begin();
1904 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1905 F->addMetadata(llvm::LLVMContext::MD_callback,
1906 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1907 CalleeIdx, PayloadIndices,
1908 /* VarArgsArePassed */ false)}));
1909 }
1910}
1911
1912void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV, bool SkipCheck) {
1913 assert(SkipCheck || (!GV->isDeclaration() &&((SkipCheck || (!GV->isDeclaration() && "Only globals with definition can force usage."
)) ? static_cast<void> (0) : __assert_fail ("SkipCheck || (!GV->isDeclaration() && \"Only globals with definition can force usage.\")"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1914, __PRETTY_FUNCTION__))
1914 "Only globals with definition can force usage."))((SkipCheck || (!GV->isDeclaration() && "Only globals with definition can force usage."
)) ? static_cast<void> (0) : __assert_fail ("SkipCheck || (!GV->isDeclaration() && \"Only globals with definition can force usage.\")"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1914, __PRETTY_FUNCTION__))
;
1915 LLVMUsed.emplace_back(GV);
1916}
1917
1918void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1919 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1920, __PRETTY_FUNCTION__))
1920 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 1920, __PRETTY_FUNCTION__))
;
1921 LLVMCompilerUsed.emplace_back(GV);
1922}
1923
1924static void emitUsed(CodeGenModule &CGM, StringRef Name,
1925 std::vector<llvm::WeakTrackingVH> &List) {
1926 // Don't create llvm.used if there is no need.
1927 if (List.empty())
1928 return;
1929
1930 // Convert List to what ConstantArray needs.
1931 SmallVector<llvm::Constant*, 8> UsedArray;
1932 UsedArray.resize(List.size());
1933 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1934 UsedArray[i] =
1935 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1936 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1937 }
1938
1939 if (UsedArray.empty())
1940 return;
1941 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1942
1943 auto *GV = new llvm::GlobalVariable(
1944 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1945 llvm::ConstantArray::get(ATy, UsedArray), Name);
1946
1947 GV->setSection("llvm.metadata");
1948}
1949
1950void CodeGenModule::emitLLVMUsed() {
1951 emitUsed(*this, "llvm.used", LLVMUsed);
1952 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1953}
1954
1955void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1956 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1957 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1958}
1959
1960void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1961 llvm::SmallString<32> Opt;
1962 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1963 if (Opt.empty())
1964 return;
1965 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1966 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1967}
1968
1969void CodeGenModule::AddDependentLib(StringRef Lib) {
1970 auto &C = getLLVMContext();
1971 if (getTarget().getTriple().isOSBinFormatELF()) {
1972 ELFDependentLibraries.push_back(
1973 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1974 return;
1975 }
1976
1977 llvm::SmallString<24> Opt;
1978 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1979 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1980 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1981}
1982
1983/// Add link options implied by the given module, including modules
1984/// it depends on, using a postorder walk.
1985static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1986 SmallVectorImpl<llvm::MDNode *> &Metadata,
1987 llvm::SmallPtrSet<Module *, 16> &Visited) {
1988 // Import this module's parent.
1989 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1990 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1991 }
1992
1993 // Import this module's dependencies.
1994 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1995 if (Visited.insert(Mod->Imports[I - 1]).second)
1996 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1997 }
1998
1999 // Add linker options to link against the libraries/frameworks
2000 // described by this module.
2001 llvm::LLVMContext &Context = CGM.getLLVMContext();
2002 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2003
2004 // For modules that use export_as for linking, use that module
2005 // name instead.
2006 if (Mod->UseExportAsModuleLinkName)
2007 return;
2008
2009 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2010 // Link against a framework. Frameworks are currently Darwin only, so we
2011 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2012 if (Mod->LinkLibraries[I-1].IsFramework) {
2013 llvm::Metadata *Args[2] = {
2014 llvm::MDString::get(Context, "-framework"),
2015 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2016
2017 Metadata.push_back(llvm::MDNode::get(Context, Args));
2018 continue;
2019 }
2020
2021 // Link against a library.
2022 if (IsELF) {
2023 llvm::Metadata *Args[2] = {
2024 llvm::MDString::get(Context, "lib"),
2025 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2026 };
2027 Metadata.push_back(llvm::MDNode::get(Context, Args));
2028 } else {
2029 llvm::SmallString<24> Opt;
2030 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2031 Mod->LinkLibraries[I - 1].Library, Opt);
2032 auto *OptString = llvm::MDString::get(Context, Opt);
2033 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2034 }
2035 }
2036}
2037
2038void CodeGenModule::EmitModuleLinkOptions() {
2039 // Collect the set of all of the modules we want to visit to emit link
2040 // options, which is essentially the imported modules and all of their
2041 // non-explicit child modules.
2042 llvm::SetVector<clang::Module *> LinkModules;
2043 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2044 SmallVector<clang::Module *, 16> Stack;
2045
2046 // Seed the stack with imported modules.
2047 for (Module *M : ImportedModules) {
2048 // Do not add any link flags when an implementation TU of a module imports
2049 // a header of that same module.
2050 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2051 !getLangOpts().isCompilingModule())
2052 continue;
2053 if (Visited.insert(M).second)
2054 Stack.push_back(M);
2055 }
2056
2057 // Find all of the modules to import, making a little effort to prune
2058 // non-leaf modules.
2059 while (!Stack.empty()) {
2060 clang::Module *Mod = Stack.pop_back_val();
2061
2062 bool AnyChildren = false;
2063
2064 // Visit the submodules of this module.
2065 for (const auto &SM : Mod->submodules()) {
2066 // Skip explicit children; they need to be explicitly imported to be
2067 // linked against.
2068 if (SM->IsExplicit)
2069 continue;
2070
2071 if (Visited.insert(SM).second) {
2072 Stack.push_back(SM);
2073 AnyChildren = true;
2074 }
2075 }
2076
2077 // We didn't find any children, so add this module to the list of
2078 // modules to link against.
2079 if (!AnyChildren) {
2080 LinkModules.insert(Mod);
2081 }
2082 }
2083
2084 // Add link options for all of the imported modules in reverse topological
2085 // order. We don't do anything to try to order import link flags with respect
2086 // to linker options inserted by things like #pragma comment().
2087 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2088 Visited.clear();
2089 for (Module *M : LinkModules)
2090 if (Visited.insert(M).second)
2091 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2092 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2093 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2094
2095 // Add the linker options metadata flag.
2096 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2097 for (auto *MD : LinkerOptionsMetadata)
2098 NMD->addOperand(MD);
2099}
2100
2101void CodeGenModule::EmitDeferred() {
2102 // Emit deferred declare target declarations.
2103 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2104 getOpenMPRuntime().emitDeferredTargetDecls();
2105
2106 // Emit code for any potentially referenced deferred decls. Since a
2107 // previously unused static decl may become used during the generation of code
2108 // for a static function, iterate until no changes are made.
2109
2110 if (!DeferredVTables.empty()) {
2111 EmitDeferredVTables();
2112
2113 // Emitting a vtable doesn't directly cause more vtables to
2114 // become deferred, although it can cause functions to be
2115 // emitted that then need those vtables.
2116 assert(DeferredVTables.empty())((DeferredVTables.empty()) ? static_cast<void> (0) : __assert_fail
("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2116, __PRETTY_FUNCTION__))
;
2117 }
2118
2119 // Stop if we're out of both deferred vtables and deferred declarations.
2120 if (DeferredDeclsToEmit.empty())
2121 return;
2122
2123 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2124 // work, it will not interfere with this.
2125 std::vector<GlobalDecl> CurDeclsToEmit;
2126 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2127
2128 for (GlobalDecl &D : CurDeclsToEmit) {
2129 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2130 // to get GlobalValue with exactly the type we need, not something that
2131 // might had been created for another decl with the same mangled name but
2132 // different type.
2133 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2134 GetAddrOfGlobal(D, ForDefinition));
2135
2136 // In case of different address spaces, we may still get a cast, even with
2137 // IsForDefinition equal to true. Query mangled names table to get
2138 // GlobalValue.
2139 if (!GV)
2140 GV = GetGlobalValue(getMangledName(D));
2141
2142 // Make sure GetGlobalValue returned non-null.
2143 assert(GV)((GV) ? static_cast<void> (0) : __assert_fail ("GV", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2143, __PRETTY_FUNCTION__))
;
2144
2145 // Check to see if we've already emitted this. This is necessary
2146 // for a couple of reasons: first, decls can end up in the
2147 // deferred-decls queue multiple times, and second, decls can end
2148 // up with definitions in unusual ways (e.g. by an extern inline
2149 // function acquiring a strong function redefinition). Just
2150 // ignore these cases.
2151 if (!GV->isDeclaration())
2152 continue;
2153
2154 // If this is OpenMP, check if it is legal to emit this global normally.
2155 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2156 continue;
2157
2158 // Otherwise, emit the definition and move on to the next one.
2159 EmitGlobalDefinition(D, GV);
2160
2161 // If we found out that we need to emit more decls, do that recursively.
2162 // This has the advantage that the decls are emitted in a DFS and related
2163 // ones are close together, which is convenient for testing.
2164 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2165 EmitDeferred();
2166 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())((DeferredVTables.empty() && DeferredDeclsToEmit.empty
()) ? static_cast<void> (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2166, __PRETTY_FUNCTION__))
;
2167 }
2168 }
2169}
2170
2171void CodeGenModule::EmitVTablesOpportunistically() {
2172 // Try to emit external vtables as available_externally if they have emitted
2173 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2174 // is not allowed to create new references to things that need to be emitted
2175 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2176
2177 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2178, __PRETTY_FUNCTION__))
2178 && "Only emit opportunistic vtables with optimizations")(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2178, __PRETTY_FUNCTION__))
;
2179
2180 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2181 assert(getVTables().isVTableExternal(RD) &&((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2182, __PRETTY_FUNCTION__))
2182 "This queue should only contain external vtables")((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2182, __PRETTY_FUNCTION__))
;
2183 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2184 VTables.GenerateClassData(RD);
2185 }
2186 OpportunisticVTables.clear();
2187}
2188
2189void CodeGenModule::EmitGlobalAnnotations() {
2190 if (Annotations.empty())
2191 return;
2192
2193 // Create a new global variable for the ConstantStruct in the Module.
2194 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2195 Annotations[0]->getType(), Annotations.size()), Annotations);
2196 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2197 llvm::GlobalValue::AppendingLinkage,
2198 Array, "llvm.global.annotations");
2199 gv->setSection(AnnotationSection);
2200}
2201
2202llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2203 llvm::Constant *&AStr = AnnotationStrings[Str];
2204 if (AStr)
2205 return AStr;
2206
2207 // Not found yet, create a new global.
2208 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2209 auto *gv =
2210 new llvm::GlobalVariable(getModule(), s->getType(), true,
2211 llvm::GlobalValue::PrivateLinkage, s, ".str");
2212 gv->setSection(AnnotationSection);
2213 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2214 AStr = gv;
2215 return gv;
2216}
2217
2218llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2219 SourceManager &SM = getContext().getSourceManager();
2220 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2221 if (PLoc.isValid())
2222 return EmitAnnotationString(PLoc.getFilename());
2223 return EmitAnnotationString(SM.getBufferName(Loc));
2224}
2225
2226llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2227 SourceManager &SM = getContext().getSourceManager();
2228 PresumedLoc PLoc = SM.getPresumedLoc(L);
2229 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2230 SM.getExpansionLineNumber(L);
2231 return llvm::ConstantInt::get(Int32Ty, LineNo);
2232}
2233
2234llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2235 const AnnotateAttr *AA,
2236 SourceLocation L) {
2237 // Get the globals for file name, annotation, and the line number.
2238 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2239 *UnitGV = EmitAnnotationUnit(L),
2240 *LineNoCst = EmitAnnotationLineNo(L);
2241
2242 llvm::Constant *ASZeroGV = GV;
2243 if (GV->getAddressSpace() != 0) {
2244 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2245 GV, GV->getValueType()->getPointerTo(0));
2246 }
2247
2248 // Create the ConstantStruct for the global annotation.
2249 llvm::Constant *Fields[4] = {
2250 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2251 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2252 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2253 LineNoCst
2254 };
2255 return llvm::ConstantStruct::getAnon(Fields);
2256}
2257
2258void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2259 llvm::GlobalValue *GV) {
2260 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")((D->hasAttr<AnnotateAttr>() && "no annotate attribute"
) ? static_cast<void> (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2260, __PRETTY_FUNCTION__))
;
2261 // Get the struct elements for these annotations.
2262 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2263 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2264}
2265
2266bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2267 llvm::Function *Fn,
2268 SourceLocation Loc) const {
2269 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2270 // Blacklist by function name.
2271 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2272 return true;
2273 // Blacklist by location.
2274 if (Loc.isValid())
2275 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2276 // If location is unknown, this may be a compiler-generated function. Assume
2277 // it's located in the main file.
2278 auto &SM = Context.getSourceManager();
2279 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2280 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2281 }
2282 return false;
2283}
2284
2285bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2286 SourceLocation Loc, QualType Ty,
2287 StringRef Category) const {
2288 // For now globals can be blacklisted only in ASan and KASan.
2289 const SanitizerMask EnabledAsanMask =
2290 LangOpts.Sanitize.Mask &
2291 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2292 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2293 SanitizerKind::MemTag);
2294 if (!EnabledAsanMask)
2295 return false;
2296 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2297 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2298 return true;
2299 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2300 return true;
2301 // Check global type.
2302 if (!Ty.isNull()) {
2303 // Drill down the array types: if global variable of a fixed type is
2304 // blacklisted, we also don't instrument arrays of them.
2305 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2306 Ty = AT->getElementType();
2307 Ty = Ty.getCanonicalType().getUnqualifiedType();
2308 // We allow to blacklist only record types (classes, structs etc.)
2309 if (Ty->isRecordType()) {
2310 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2311 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2312 return true;
2313 }
2314 }
2315 return false;
2316}
2317
2318bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2319 StringRef Category) const {
2320 const auto &XRayFilter = getContext().getXRayFilter();
2321 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2322 auto Attr = ImbueAttr::NONE;
2323 if (Loc.isValid())
2324 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2325 if (Attr == ImbueAttr::NONE)
2326 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2327 switch (Attr) {
2328 case ImbueAttr::NONE:
2329 return false;
2330 case ImbueAttr::ALWAYS:
2331 Fn->addFnAttr("function-instrument", "xray-always");
2332 break;
2333 case ImbueAttr::ALWAYS_ARG1:
2334 Fn->addFnAttr("function-instrument", "xray-always");
2335 Fn->addFnAttr("xray-log-args", "1");
2336 break;
2337 case ImbueAttr::NEVER:
2338 Fn->addFnAttr("function-instrument", "xray-never");
2339 break;
2340 }
2341 return true;
2342}
2343
2344bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2345 // Never defer when EmitAllDecls is specified.
2346 if (LangOpts.EmitAllDecls)
2347 return true;
2348
2349 if (CodeGenOpts.KeepStaticConsts) {
2350 const auto *VD = dyn_cast<VarDecl>(Global);
2351 if (VD && VD->getType().isConstQualified() &&
2352 VD->getStorageDuration() == SD_Static)
2353 return true;
2354 }
2355
2356 return getContext().DeclMustBeEmitted(Global);
2357}
2358
2359bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2360 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2361 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2362 // Implicit template instantiations may change linkage if they are later
2363 // explicitly instantiated, so they should not be emitted eagerly.
2364 return false;
2365 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2366 // not emit them eagerly unless we sure that the function must be emitted on
2367 // the host.
2368 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2369 !LangOpts.OpenMPIsDevice &&
2370 !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2371 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2372 return false;
2373 }
2374 if (const auto *VD = dyn_cast<VarDecl>(Global))
2375 if (Context.getInlineVariableDefinitionKind(VD) ==
2376 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2377 // A definition of an inline constexpr static data member may change
2378 // linkage later if it's redeclared outside the class.
2379 return false;
2380 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2381 // codegen for global variables, because they may be marked as threadprivate.
2382 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2383 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2384 !isTypeConstant(Global->getType(), false) &&
2385 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2386 return false;
2387
2388 return true;
2389}
2390
2391ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2392 const CXXUuidofExpr* E) {
2393 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2394 // well-formed.
2395 StringRef Uuid = E->getUuidStr();
2396 std::string Name = "_GUID_" + Uuid.lower();
2397 std::replace(Name.begin(), Name.end(), '-', '_');
2398
2399 // The UUID descriptor should be pointer aligned.
2400 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2401
2402 // Look for an existing global.
2403 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2404 return ConstantAddress(GV, Alignment);
2405
2406 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2407 assert(Init && "failed to initialize as constant")((Init && "failed to initialize as constant") ? static_cast
<void> (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2407, __PRETTY_FUNCTION__))
;
2408
2409 auto *GV = new llvm::GlobalVariable(
2410 getModule(), Init->getType(),
2411 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2412 if (supportsCOMDAT())
2413 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2414 setDSOLocal(GV);
2415 return ConstantAddress(GV, Alignment);
2416}
2417
2418ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2419 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2420 assert(AA && "No alias?")((AA && "No alias?") ? static_cast<void> (0) : __assert_fail
("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2420, __PRETTY_FUNCTION__))
;
2421
2422 CharUnits Alignment = getContext().getDeclAlign(VD);
2423 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2424
2425 // See if there is already something with the target's name in the module.
2426 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2427 if (Entry) {
2428 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2429 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2430 return ConstantAddress(Ptr, Alignment);
2431 }
2432
2433 llvm::Constant *Aliasee;
2434 if (isa<llvm::FunctionType>(DeclTy))
2435 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2436 GlobalDecl(cast<FunctionDecl>(VD)),
2437 /*ForVTable=*/false);
2438 else
2439 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2440 llvm::PointerType::getUnqual(DeclTy),
2441 nullptr);
2442
2443 auto *F = cast<llvm::GlobalValue>(Aliasee);
2444 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2445 WeakRefReferences.insert(F);
2446
2447 return ConstantAddress(Aliasee, Alignment);
2448}
2449
2450void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2451 const auto *Global = cast<ValueDecl>(GD.getDecl());
2452
2453 // Weak references don't produce any output by themselves.
2454 if (Global->hasAttr<WeakRefAttr>())
2455 return;
2456
2457 // If this is an alias definition (which otherwise looks like a declaration)
2458 // emit it now.
2459 if (Global->hasAttr<AliasAttr>())
2460 return EmitAliasDefinition(GD);
2461
2462 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2463 if (Global->hasAttr<IFuncAttr>())
2464 return emitIFuncDefinition(GD);
2465
2466 // If this is a cpu_dispatch multiversion function, emit the resolver.
2467 if (Global->hasAttr<CPUDispatchAttr>())
2468 return emitCPUDispatchDefinition(GD);
2469
2470 // If this is CUDA, be selective about which declarations we emit.
2471 if (LangOpts.CUDA) {
2472 if (LangOpts.CUDAIsDevice) {
2473 if (!Global->hasAttr<CUDADeviceAttr>() &&
2474 !Global->hasAttr<CUDAGlobalAttr>() &&
2475 !Global->hasAttr<CUDAConstantAttr>() &&
2476 !Global->hasAttr<CUDASharedAttr>() &&
2477 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2478 return;
2479 } else {
2480 // We need to emit host-side 'shadows' for all global
2481 // device-side variables because the CUDA runtime needs their
2482 // size and host-side address in order to provide access to
2483 // their device-side incarnations.
2484
2485 // So device-only functions are the only things we skip.
2486 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2487 Global->hasAttr<CUDADeviceAttr>())
2488 return;
2489
2490 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2491, __PRETTY_FUNCTION__))
2491 "Expected Variable or Function")(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2491, __PRETTY_FUNCTION__))
;
2492 }
2493 }
2494
2495 if (LangOpts.OpenMP) {
2496 // If this is OpenMP, check if it is legal to emit this global normally.
2497 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2498 return;
2499 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2500 if (MustBeEmitted(Global))
2501 EmitOMPDeclareReduction(DRD);
2502 return;
2503 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2504 if (MustBeEmitted(Global))
2505 EmitOMPDeclareMapper(DMD);
2506 return;
2507 }
2508 }
2509
2510 // Ignore declarations, they will be emitted on their first use.
2511 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2512 // Forward declarations are emitted lazily on first use.
2513 if (!FD->doesThisDeclarationHaveABody()) {
2514 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2515 return;
2516
2517 StringRef MangledName = getMangledName(GD);
2518
2519 // Compute the function info and LLVM type.
2520 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2521 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2522
2523 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2524 /*DontDefer=*/false);
2525 return;
2526 }
2527 } else {
2528 const auto *VD = cast<VarDecl>(Global);
2529 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")((VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2529, __PRETTY_FUNCTION__))
;
2530 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2531 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2532 if (LangOpts.OpenMP) {
2533 // Emit declaration of the must-be-emitted declare target variable.
2534 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2535 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2536 bool UnifiedMemoryEnabled =
2537 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2538 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2539 !UnifiedMemoryEnabled) {
2540 (void)GetAddrOfGlobalVar(VD);
2541 } else {
2542 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2545, __PRETTY_FUNCTION__))
2543 (*Res == OMPDeclareTargetDeclAttr::MT_To &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2545, __PRETTY_FUNCTION__))
2544 UnifiedMemoryEnabled)) &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2545, __PRETTY_FUNCTION__))
2545 "Link clause or to clause with unified memory expected.")((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2545, __PRETTY_FUNCTION__))
;
2546 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2547 }
2548
2549 return;
2550 }
2551 }
2552 // If this declaration may have caused an inline variable definition to
2553 // change linkage, make sure that it's emitted.
2554 if (Context.getInlineVariableDefinitionKind(VD) ==
2555 ASTContext::InlineVariableDefinitionKind::Strong)
2556 GetAddrOfGlobalVar(VD);
2557 return;
2558 }
2559 }
2560
2561 // Defer code generation to first use when possible, e.g. if this is an inline
2562 // function. If the global must always be emitted, do it eagerly if possible
2563 // to benefit from cache locality.
2564 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2565 // Emit the definition if it can't be deferred.
2566 EmitGlobalDefinition(GD);
2567 return;
2568 }
2569
2570 // Check if this must be emitted as declare variant.
2571 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2572 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2573 return;
2574
2575 // If we're deferring emission of a C++ variable with an
2576 // initializer, remember the order in which it appeared in the file.
2577 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2578 cast<VarDecl>(Global)->hasInit()) {
2579 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2580 CXXGlobalInits.push_back(nullptr);
2581 }
2582
2583 StringRef MangledName = getMangledName(GD);
2584 if (GetGlobalValue(MangledName) != nullptr) {
2585 // The value has already been used and should therefore be emitted.
2586 addDeferredDeclToEmit(GD);
2587 } else if (MustBeEmitted(Global)) {
2588 // The value must be emitted, but cannot be emitted eagerly.
2589 assert(!MayBeEmittedEagerly(Global))((!MayBeEmittedEagerly(Global)) ? static_cast<void> (0)
: __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2589, __PRETTY_FUNCTION__))
;
2590 addDeferredDeclToEmit(GD);
2591 } else {
2592 // Otherwise, remember that we saw a deferred decl with this name. The
2593 // first use of the mangled name will cause it to move into
2594 // DeferredDeclsToEmit.
2595 DeferredDecls[MangledName] = GD;
2596 }
2597}
2598
2599// Check if T is a class type with a destructor that's not dllimport.
2600static bool HasNonDllImportDtor(QualType T) {
2601 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2602 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2603 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2604 return true;
2605
2606 return false;
2607}
2608
2609namespace {
2610 struct FunctionIsDirectlyRecursive
2611 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2612 const StringRef Name;
2613 const Builtin::Context &BI;
2614 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2615 : Name(N), BI(C) {}
2616
2617 bool VisitCallExpr(const CallExpr *E) {
2618 const FunctionDecl *FD = E->getDirectCallee();
2619 if (!FD)
2620 return false;
2621 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2622 if (Attr && Name == Attr->getLabel())
2623 return true;
2624 unsigned BuiltinID = FD->getBuiltinID();
2625 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2626 return false;
2627 StringRef BuiltinName = BI.getName(BuiltinID);
2628 if (BuiltinName.startswith("__builtin_") &&
2629 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2630 return true;
2631 }
2632 return false;
2633 }
2634
2635 bool VisitStmt(const Stmt *S) {
2636 for (const Stmt *Child : S->children())
2637 if (Child && this->Visit(Child))
2638 return true;
2639 return false;
2640 }
2641 };
2642
2643 // Make sure we're not referencing non-imported vars or functions.
2644 struct DLLImportFunctionVisitor
2645 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2646 bool SafeToInline = true;
2647
2648 bool shouldVisitImplicitCode() const { return true; }
2649
2650 bool VisitVarDecl(VarDecl *VD) {
2651 if (VD->getTLSKind()) {
2652 // A thread-local variable cannot be imported.
2653 SafeToInline = false;
2654 return SafeToInline;
2655 }
2656
2657 // A variable definition might imply a destructor call.
2658 if (VD->isThisDeclarationADefinition())
2659 SafeToInline = !HasNonDllImportDtor(VD->getType());
2660
2661 return SafeToInline;
2662 }
2663
2664 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2665 if (const auto *D = E->getTemporary()->getDestructor())
2666 SafeToInline = D->hasAttr<DLLImportAttr>();
2667 return SafeToInline;
2668 }
2669
2670 bool VisitDeclRefExpr(DeclRefExpr *E) {
2671 ValueDecl *VD = E->getDecl();
2672 if (isa<FunctionDecl>(VD))
2673 SafeToInline = VD->hasAttr<DLLImportAttr>();
2674 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2675 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2676 return SafeToInline;
2677 }
2678
2679 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2680 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2681 return SafeToInline;
2682 }
2683
2684 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2685 CXXMethodDecl *M = E->getMethodDecl();
2686 if (!M) {
2687 // Call through a pointer to member function. This is safe to inline.
2688 SafeToInline = true;
2689 } else {
2690 SafeToInline = M->hasAttr<DLLImportAttr>();
2691 }
2692 return SafeToInline;
2693 }
2694
2695 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2696 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2697 return SafeToInline;
2698 }
2699
2700 bool VisitCXXNewExpr(CXXNewExpr *E) {
2701 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2702 return SafeToInline;
2703 }
2704 };
2705}
2706
2707// isTriviallyRecursive - Check if this function calls another
2708// decl that, because of the asm attribute or the other decl being a builtin,
2709// ends up pointing to itself.
2710bool
2711CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2712 StringRef Name;
2713 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2714 // asm labels are a special kind of mangling we have to support.
2715 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2716 if (!Attr)
2717 return false;
2718 Name = Attr->getLabel();
2719 } else {
2720 Name = FD->getName();
2721 }
2722
2723 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2724 const Stmt *Body = FD->getBody();
2725 return Body ? Walker.Visit(Body) : false;
2726}
2727
2728bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2729 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2730 return true;
2731 const auto *F = cast<FunctionDecl>(GD.getDecl());
2732 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2733 return false;
2734
2735 if (F->hasAttr<DLLImportAttr>()) {
2736 // Check whether it would be safe to inline this dllimport function.
2737 DLLImportFunctionVisitor Visitor;
2738 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2739 if (!Visitor.SafeToInline)
2740 return false;
2741
2742 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2743 // Implicit destructor invocations aren't captured in the AST, so the
2744 // check above can't see them. Check for them manually here.
2745 for (const Decl *Member : Dtor->getParent()->decls())
2746 if (isa<FieldDecl>(Member))
2747 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2748 return false;
2749 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2750 if (HasNonDllImportDtor(B.getType()))
2751 return false;
2752 }
2753 }
2754
2755 // PR9614. Avoid cases where the source code is lying to us. An available
2756 // externally function should have an equivalent function somewhere else,
2757 // but a function that calls itself is clearly not equivalent to the real
2758 // implementation.
2759 // This happens in glibc's btowc and in some configure checks.
2760 return !isTriviallyRecursive(F);
2761}
2762
2763bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2764 return CodeGenOpts.OptimizationLevel > 0;
2765}
2766
2767void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2768 llvm::GlobalValue *GV) {
2769 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2770
2771 if (FD->isCPUSpecificMultiVersion()) {
2772 auto *Spec = FD->getAttr<CPUSpecificAttr>();
2773 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2774 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2775 // Requires multiple emits.
2776 } else
2777 EmitGlobalFunctionDefinition(GD, GV);
2778}
2779
2780void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2781 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2782 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice
&& OpenMPRuntime && "Expected OpenMP device mode."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && OpenMPRuntime && \"Expected OpenMP device mode.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2783, __PRETTY_FUNCTION__))
2783 OpenMPRuntime && "Expected OpenMP device mode.")((getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice
&& OpenMPRuntime && "Expected OpenMP device mode."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && OpenMPRuntime && \"Expected OpenMP device mode.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2783, __PRETTY_FUNCTION__))
;
2784 const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2785
2786 // Compute the function info and LLVM type.
2787 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2788 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2789
2790 // Get or create the prototype for the function.
2791 if (!GV || (GV->getType()->getElementType() != Ty)) {
2792 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2793 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2794 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2795 ForDefinition));
2796 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2797 /*IsIncompleteFunction=*/false,
2798 /*IsThunk=*/false);
2799 }
2800 // We need to set linkage and visibility on the function before
2801 // generating code for it because various parts of IR generation
2802 // want to propagate this information down (e.g. to local static
2803 // declarations).
2804 auto *Fn = cast<llvm::Function>(GV);
2805 setFunctionLinkage(OldGD, Fn);
2806
2807 // FIXME: this is redundant with part of
2808 // setFunctionDefinitionAttributes
2809 setGVProperties(Fn, OldGD);
2810
2811 MaybeHandleStaticInExternC(D, Fn);
2812
2813 maybeSetTrivialComdat(*D, *Fn);
2814
2815 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2816
2817 setNonAliasAttributes(OldGD, Fn);
2818 SetLLVMFunctionAttributesForDefinition(D, Fn);
2819
2820 if (D->hasAttr<AnnotateAttr>())
2821 AddGlobalAnnotations(D, Fn);
2822}
2823
2824void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2825 const auto *D = cast<ValueDecl>(GD.getDecl());
2826
2827 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2828 Context.getSourceManager(),
2829 "Generating code for declaration");
2830
2831 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2832 // At -O0, don't generate IR for functions with available_externally
2833 // linkage.
2834 if (!shouldEmitFunction(GD))
2835 return;
2836
2837 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2838 std::string Name;
2839 llvm::raw_string_ostream OS(Name);
2840 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2841 /*Qualified=*/true);
2842 return Name;
2843 });
2844
2845 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2846 // Make sure to emit the definition(s) before we emit the thunks.
2847 // This is necessary for the generation of certain thunks.
2848 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2849 ABI->emitCXXStructor(GD);
2850 else if (FD->isMultiVersion())
2851 EmitMultiVersionFunctionDefinition(GD, GV);
2852 else
2853 EmitGlobalFunctionDefinition(GD, GV);
2854
2855 if (Method->isVirtual())
2856 getVTables().EmitThunks(GD);
2857
2858 return;
2859 }
2860
2861 if (FD->isMultiVersion())
2862 return EmitMultiVersionFunctionDefinition(GD, GV);
2863 return EmitGlobalFunctionDefinition(GD, GV);
2864 }
2865
2866 if (const auto *VD = dyn_cast<VarDecl>(D))
2867 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2868
2869 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2869)
;
2870}
2871
2872static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2873 llvm::Function *NewFn);
2874
2875static unsigned
2876TargetMVPriority(const TargetInfo &TI,
2877 const CodeGenFunction::MultiVersionResolverOption &RO) {
2878 unsigned Priority = 0;
2879 for (StringRef Feat : RO.Conditions.Features)
2880 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2881
2882 if (!RO.Conditions.Architecture.empty())
2883 Priority = std::max(
2884 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2885 return Priority;
2886}
2887
2888void CodeGenModule::emitMultiVersionFunctions() {
2889 for (GlobalDecl GD : MultiVersionFuncs) {
2890 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2891 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2892 getContext().forEachMultiversionedFunctionVersion(
2893 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2894 GlobalDecl CurGD{
2895 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2896 StringRef MangledName = getMangledName(CurGD);
2897 llvm::Constant *Func = GetGlobalValue(MangledName);
2898 if (!Func) {
2899 if (CurFD->isDefined()) {
2900 EmitGlobalFunctionDefinition(CurGD, nullptr);
2901 Func = GetGlobalValue(MangledName);
2902 } else {
2903 const CGFunctionInfo &FI =
2904 getTypes().arrangeGlobalDeclaration(GD);
2905 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2906 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2907 /*DontDefer=*/false, ForDefinition);
2908 }
2909 assert(Func && "This should have just been created")((Func && "This should have just been created") ? static_cast
<void> (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2909, __PRETTY_FUNCTION__))
;
2910 }
2911
2912 const auto *TA = CurFD->getAttr<TargetAttr>();
2913 llvm::SmallVector<StringRef, 8> Feats;
2914 TA->getAddedFeatures(Feats);
2915
2916 Options.emplace_back(cast<llvm::Function>(Func),
2917 TA->getArchitecture(), Feats);
2918 });
2919
2920 llvm::Function *ResolverFunc;
2921 const TargetInfo &TI = getTarget();
2922
2923 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2924 ResolverFunc = cast<llvm::Function>(
2925 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2926 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2927 } else {
2928 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2929 }
2930
2931 if (supportsCOMDAT())
2932 ResolverFunc->setComdat(
2933 getModule().getOrInsertComdat(ResolverFunc->getName()));
2934
2935 llvm::stable_sort(
2936 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2937 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2938 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2939 });
2940 CodeGenFunction CGF(*this);
2941 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2942 }
2943}
2944
2945void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2946 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2947 assert(FD && "Not a FunctionDecl?")((FD && "Not a FunctionDecl?") ? static_cast<void>
(0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2947, __PRETTY_FUNCTION__))
;
2948 const auto *DD = FD->getAttr<CPUDispatchAttr>();
2949 assert(DD && "Not a cpu_dispatch Function?")((DD && "Not a cpu_dispatch Function?") ? static_cast
<void> (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 2949, __PRETTY_FUNCTION__))
;
2950 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2951
2952 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2953 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2954 DeclTy = getTypes().GetFunctionType(FInfo);
2955 }
2956
2957 StringRef ResolverName = getMangledName(GD);
2958
2959 llvm::Type *ResolverType;
2960 GlobalDecl ResolverGD;
2961 if (getTarget().supportsIFunc())
2962 ResolverType = llvm::FunctionType::get(
2963 llvm::PointerType::get(DeclTy,
2964 Context.getTargetAddressSpace(FD->getType())),
2965 false);
2966 else {
2967 ResolverType = DeclTy;
2968 ResolverGD = GD;
2969 }
2970
2971 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2972 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2973 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2974 if (supportsCOMDAT())
2975 ResolverFunc->setComdat(
2976 getModule().getOrInsertComdat(ResolverFunc->getName()));
2977
2978 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2979 const TargetInfo &Target = getTarget();
2980 unsigned Index = 0;
2981 for (const IdentifierInfo *II : DD->cpus()) {
2982 // Get the name of the target function so we can look it up/create it.
2983 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2984 getCPUSpecificMangling(*this, II->getName());
2985
2986 llvm::Constant *Func = GetGlobalValue(MangledName);
2987
2988 if (!Func) {
2989 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2990 if (ExistingDecl.getDecl() &&
2991 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2992 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2993 Func = GetGlobalValue(MangledName);
2994 } else {
2995 if (!ExistingDecl.getDecl())
2996 ExistingDecl = GD.getWithMultiVersionIndex(Index);
2997
2998 Func = GetOrCreateLLVMFunction(
2999 MangledName, DeclTy, ExistingDecl,
3000 /*ForVTable=*/false, /*DontDefer=*/true,
3001 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3002 }
3003 }
3004
3005 llvm::SmallVector<StringRef, 32> Features;
3006 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3007 llvm::transform(Features, Features.begin(),
3008 [](StringRef Str) { return Str.substr(1); });
3009 Features.erase(std::remove_if(
3010 Features.begin(), Features.end(), [&Target](StringRef Feat) {
3011 return !Target.validateCpuSupports(Feat);
3012 }), Features.end());
3013 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3014 ++Index;
3015 }
3016
3017 llvm::sort(
3018 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3019 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3020 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3021 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3022 });
3023
3024 // If the list contains multiple 'default' versions, such as when it contains
3025 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3026 // always run on at least a 'pentium'). We do this by deleting the 'least
3027 // advanced' (read, lowest mangling letter).
3028 while (Options.size() > 1 &&
3029 CodeGenFunction::GetX86CpuSupportsMask(
3030 (Options.end() - 2)->Conditions.Features) == 0) {
3031 StringRef LHSName = (Options.end() - 2)->Function->getName();
3032 StringRef RHSName = (Options.end() - 1)->Function->getName();
3033 if (LHSName.compare(RHSName) < 0)
3034 Options.erase(Options.end() - 2);
3035 else
3036 Options.erase(Options.end() - 1);
3037 }
3038
3039 CodeGenFunction CGF(*this);
3040 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3041
3042 if (getTarget().supportsIFunc()) {
3043 std::string AliasName = getMangledNameImpl(
3044 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3045 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3046 if (!AliasFunc) {
3047 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3048 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3049 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3050 auto *GA = llvm::GlobalAlias::create(
3051 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3052 GA->setLinkage(llvm::Function::WeakODRLinkage);
3053 SetCommonAttributes(GD, GA);
3054 }
3055 }
3056}
3057
3058/// If a dispatcher for the specified mangled name is not in the module, create
3059/// and return an llvm Function with the specified type.
3060llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3061 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3062 std::string MangledName =
3063 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3064
3065 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3066 // a separate resolver).
3067 std::string ResolverName = MangledName;
3068 if (getTarget().supportsIFunc())
3069 ResolverName += ".ifunc";
3070 else if (FD->isTargetMultiVersion())
3071 ResolverName += ".resolver";
3072
3073 // If this already exists, just return that one.
3074 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3075 return ResolverGV;
3076
3077 // Since this is the first time we've created this IFunc, make sure
3078 // that we put this multiversioned function into the list to be
3079 // replaced later if necessary (target multiversioning only).
3080 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3081 MultiVersionFuncs.push_back(GD);
3082
3083 if (getTarget().supportsIFunc()) {
3084 llvm::Type *ResolverType = llvm::FunctionType::get(
3085 llvm::PointerType::get(
3086 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3087 false);
3088 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3089 MangledName + ".resolver", ResolverType, GlobalDecl{},
3090 /*ForVTable=*/false);
3091 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3092 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3093 GIF->setName(ResolverName);
3094 SetCommonAttributes(FD, GIF);
3095
3096 return GIF;
3097 }
3098
3099 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3100 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3101 assert(isa<llvm::GlobalValue>(Resolver) &&((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3102, __PRETTY_FUNCTION__))
3102 "Resolver should be created for the first time")((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3102, __PRETTY_FUNCTION__))
;
3103 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3104 return Resolver;
3105}
3106
3107/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3108/// module, create and return an llvm Function with the specified type. If there
3109/// is something in the module with the specified name, return it potentially
3110/// bitcasted to the right type.
3111///
3112/// If D is non-null, it specifies a decl that correspond to this. This is used
3113/// to set the attributes on the function when it is first created.
3114llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3115 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3116 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3117 ForDefinition_t IsForDefinition) {
3118 const Decl *D = GD.getDecl();
3119
3120 // Any attempts to use a MultiVersion function should result in retrieving
3121 // the iFunc instead. Name Mangling will handle the rest of the changes.
3122 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3123 // For the device mark the function as one that should be emitted.
3124 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3125 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3126 !DontDefer && !IsForDefinition) {
3127 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3128 GlobalDecl GDDef;
3129 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3130 GDDef = GlobalDecl(CD, GD.getCtorType());
3131 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3132 GDDef = GlobalDecl(DD, GD.getDtorType());
3133 else
3134 GDDef = GlobalDecl(FDDef);
3135 EmitGlobal(GDDef);
3136 }
3137 }
3138 // Check if this must be emitted as declare variant and emit reference to
3139 // the the declare variant function.
3140 if (LangOpts.OpenMP && OpenMPRuntime)
3141 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3142
3143 if (FD->isMultiVersion()) {
3144 const auto *TA = FD->getAttr<TargetAttr>();
3145 if (TA && TA->isDefaultVersion())
3146 UpdateMultiVersionNames(GD, FD);
3147 if (!IsForDefinition)
3148 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3149 }
3150 }
3151
3152 // Lookup the entry, lazily creating it if necessary.
3153 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3154 if (Entry) {
3155 if (WeakRefReferences.erase(Entry)) {
3156 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3157 if (FD && !FD->hasAttr<WeakAttr>())
3158 Entry->setLinkage(llvm::Function::ExternalLinkage);
3159 }
3160
3161 // Handle dropped DLL attributes.
3162 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3163 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3164 setDSOLocal(Entry);
3165 }
3166
3167 // If there are two attempts to define the same mangled name, issue an
3168 // error.
3169 if (IsForDefinition && !Entry->isDeclaration()) {
3170 GlobalDecl OtherGD;
3171 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3172 // to make sure that we issue an error only once.
3173 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3174 (GD.getCanonicalDecl().getDecl() !=
3175 OtherGD.getCanonicalDecl().getDecl()) &&
3176 DiagnosedConflictingDefinitions.insert(GD).second) {
3177 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3178 << MangledName;
3179 getDiags().Report(OtherGD.getDecl()->getLocation(),
3180 diag::note_previous_definition);
3181 }
3182 }
3183
3184 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3185 (Entry->getType()->getElementType() == Ty)) {
3186 return Entry;
3187 }
3188
3189 // Make sure the result is of the correct type.
3190 // (If function is requested for a definition, we always need to create a new
3191 // function, not just return a bitcast.)
3192 if (!IsForDefinition)
3193 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3194 }
3195
3196 // This function doesn't have a complete type (for example, the return
3197 // type is an incomplete struct). Use a fake type instead, and make
3198 // sure not to try to set attributes.
3199 bool IsIncompleteFunction = false;
3200
3201 llvm::FunctionType *FTy;
3202 if (isa<llvm::FunctionType>(Ty)) {
3203 FTy = cast<llvm::FunctionType>(Ty);
3204 } else {
3205 FTy = llvm::FunctionType::get(VoidTy, false);
3206 IsIncompleteFunction = true;
3207 }
3208
3209 llvm::Function *F =
3210 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3211 Entry ? StringRef() : MangledName, &getModule());
3212
3213 // If we already created a function with the same mangled name (but different
3214 // type) before, take its name and add it to the list of functions to be
3215 // replaced with F at the end of CodeGen.
3216 //
3217 // This happens if there is a prototype for a function (e.g. "int f()") and
3218 // then a definition of a different type (e.g. "int f(int x)").
3219 if (Entry) {
3220 F->takeName(Entry);
3221
3222 // This might be an implementation of a function without a prototype, in
3223 // which case, try to do special replacement of calls which match the new
3224 // prototype. The really key thing here is that we also potentially drop
3225 // arguments from the call site so as to make a direct call, which makes the
3226 // inliner happier and suppresses a number of optimizer warnings (!) about
3227 // dropping arguments.
3228 if (!Entry->use_empty()) {
3229 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3230 Entry->removeDeadConstantUsers();
3231 }
3232
3233 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3234 F, Entry->getType()->getElementType()->getPointerTo());
3235 addGlobalValReplacement(Entry, BC);
3236 }
3237
3238 assert(F->getName() == MangledName && "name was uniqued!")((F->getName() == MangledName && "name was uniqued!"
) ? static_cast<void> (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3238, __PRETTY_FUNCTION__))
;
3239 if (D)
3240 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3241 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3242 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3243 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3244 }
3245
3246 if (!DontDefer) {
3247 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3248 // each other bottoming out with the base dtor. Therefore we emit non-base
3249 // dtors on usage, even if there is no dtor definition in the TU.
3250 if (D && isa<CXXDestructorDecl>(D) &&
3251 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3252 GD.getDtorType()))
3253 addDeferredDeclToEmit(GD);
3254
3255 // This is the first use or definition of a mangled name. If there is a
3256 // deferred decl with this name, remember that we need to emit it at the end
3257 // of the file.
3258 auto DDI = DeferredDecls.find(MangledName);
3259 if (DDI != DeferredDecls.end()) {
3260 // Move the potentially referenced deferred decl to the
3261 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3262 // don't need it anymore).
3263 addDeferredDeclToEmit(DDI->second);
3264 DeferredDecls.erase(DDI);
3265
3266 // Otherwise, there are cases we have to worry about where we're
3267 // using a declaration for which we must emit a definition but where
3268 // we might not find a top-level definition:
3269 // - member functions defined inline in their classes
3270 // - friend functions defined inline in some class
3271 // - special member functions with implicit definitions
3272 // If we ever change our AST traversal to walk into class methods,
3273 // this will be unnecessary.
3274 //
3275 // We also don't emit a definition for a function if it's going to be an
3276 // entry in a vtable, unless it's already marked as used.
3277 } else if (getLangOpts().CPlusPlus && D) {
3278 // Look for a declaration that's lexically in a record.
3279 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3280 FD = FD->getPreviousDecl()) {
3281 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3282 if (FD->doesThisDeclarationHaveABody()) {
3283 addDeferredDeclToEmit(GD.getWithDecl(FD));
3284 break;
3285 }
3286 }
3287 }
3288 }
3289 }
3290
3291 // Make sure the result is of the requested type.
3292 if (!IsIncompleteFunction) {
3293 assert(F->getType()->getElementType() == Ty)((F->getType()->getElementType() == Ty) ? static_cast<
void> (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3293, __PRETTY_FUNCTION__))
;
3294 return F;
3295 }
3296
3297 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3298 return llvm::ConstantExpr::getBitCast(F, PTy);
3299}
3300
3301/// GetAddrOfFunction - Return the address of the given function. If Ty is
3302/// non-null, then this function will use the specified type if it has to
3303/// create it (this occurs when we see a definition of the function).
3304llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3305 llvm::Type *Ty,
3306 bool ForVTable,
3307 bool DontDefer,
3308 ForDefinition_t IsForDefinition) {
3309 // If there was no specific requested type, just convert it now.
3310 if (!Ty) {
3311 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3312 Ty = getTypes().ConvertType(FD->getType());
3313 }
3314
3315 // Devirtualized destructor calls may come through here instead of via
3316 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3317 // of the complete destructor when necessary.
3318 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3319 if (getTarget().getCXXABI().isMicrosoft() &&
3320 GD.getDtorType() == Dtor_Complete &&
3321 DD->getParent()->getNumVBases() == 0)
3322 GD = GlobalDecl(DD, Dtor_Base);
3323 }
3324
3325 StringRef MangledName = getMangledName(GD);
3326 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3327 /*IsThunk=*/false, llvm::AttributeList(),
3328 IsForDefinition);
3329}
3330
3331static const FunctionDecl *
3332GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3333 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3334 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3335
3336 IdentifierInfo &CII = C.Idents.get(Name);
3337 for (const auto &Result : DC->lookup(&CII))
3338 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3339 return FD;
3340
3341 if (!C.getLangOpts().CPlusPlus)
3342 return nullptr;
3343
3344 // Demangle the premangled name from getTerminateFn()
3345 IdentifierInfo &CXXII =
3346 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3347 ? C.Idents.get("terminate")
3348 : C.Idents.get(Name);
3349
3350 for (const auto &N : {"__cxxabiv1", "std"}) {
3351 IdentifierInfo &NS = C.Idents.get(N);
3352 for (const auto &Result : DC->lookup(&NS)) {
3353 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3354 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3355 for (const auto &Result : LSD->lookup(&NS))
3356 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3357 break;
3358
3359 if (ND)
3360 for (const auto &Result : ND->lookup(&CXXII))
3361 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3362 return FD;
3363 }
3364 }
3365
3366 return nullptr;
3367}
3368
3369/// CreateRuntimeFunction - Create a new runtime function with the specified
3370/// type and name.
3371llvm::FunctionCallee
3372CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3373 llvm::AttributeList ExtraAttrs, bool Local,
3374 bool AssumeConvergent) {
3375 if (AssumeConvergent) {
3376 ExtraAttrs =
3377 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3378 llvm::Attribute::Convergent);
3379 }
3380
3381 llvm::Constant *C =
3382 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3383 /*DontDefer=*/false, /*IsThunk=*/false,
3384 ExtraAttrs);
3385
3386 if (auto *F = dyn_cast<llvm::Function>(C)) {
3387 if (F->empty()) {
3388 F->setCallingConv(getRuntimeCC());
3389
3390 // In Windows Itanium environments, try to mark runtime functions
3391 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3392 // will link their standard library statically or dynamically. Marking
3393 // functions imported when they are not imported can cause linker errors
3394 // and warnings.
3395 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3396 !getCodeGenOpts().LTOVisibilityPublicStd) {
3397 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3398 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3399 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3400 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3401 }
3402 }
3403 setDSOLocal(F);
3404 }
3405 }
3406
3407 return {FTy, C};
3408}
3409
3410/// isTypeConstant - Determine whether an object of this type can be emitted
3411/// as a constant.
3412///
3413/// If ExcludeCtor is true, the duration when the object's constructor runs
3414/// will not be considered. The caller will need to verify that the object is
3415/// not written to during its construction.
3416bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3417 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3418 return false;
3419
3420 if (Context.getLangOpts().CPlusPlus) {
3421 if (const CXXRecordDecl *Record
3422 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3423 return ExcludeCtor && !Record->hasMutableFields() &&
3424 Record->hasTrivialDestructor();
3425 }
3426
3427 return true;
3428}
3429
3430/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3431/// create and return an llvm GlobalVariable with the specified type. If there
3432/// is something in the module with the specified name, return it potentially
3433/// bitcasted to the right type.
3434///
3435/// If D is non-null, it specifies a decl that correspond to this. This is used
3436/// to set the attributes on the global when it is first created.
3437///
3438/// If IsForDefinition is true, it is guaranteed that an actual global with
3439/// type Ty will be returned, not conversion of a variable with the same
3440/// mangled name but some other type.
3441llvm::Constant *
3442CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3443 llvm::PointerType *Ty,
3444 const VarDecl *D,
3445 ForDefinition_t IsForDefinition) {
3446 // Lookup the entry, lazily creating it if necessary.
3447 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3448 if (Entry) {
3449 if (WeakRefReferences.erase(Entry)) {
3450 if (D && !D->hasAttr<WeakAttr>())
3451 Entry->setLinkage(llvm::Function::ExternalLinkage);
3452 }
3453
3454 // Handle dropped DLL attributes.
3455 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3456 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3457
3458 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3459 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3460
3461 if (Entry->getType() == Ty)
3462 return Entry;
3463
3464 // If there are two attempts to define the same mangled name, issue an
3465 // error.
3466 if (IsForDefinition && !Entry->isDeclaration()) {
3467 GlobalDecl OtherGD;
3468 const VarDecl *OtherD;
3469
3470 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3471 // to make sure that we issue an error only once.
3472 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3473 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3474 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3475 OtherD->hasInit() &&
3476 DiagnosedConflictingDefinitions.insert(D).second) {
3477 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3478 << MangledName;
3479 getDiags().Report(OtherGD.getDecl()->getLocation(),
3480 diag::note_previous_definition);
3481 }
3482 }
3483
3484 // Make sure the result is of the correct type.
3485 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3486 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3487
3488 // (If global is requested for a definition, we always need to create a new
3489 // global, not just return a bitcast.)
3490 if (!IsForDefinition)
3491 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3492 }
3493
3494 auto AddrSpace = GetGlobalVarAddressSpace(D);
3495 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3496
3497 auto *GV = new llvm::GlobalVariable(
3498 getModule(), Ty->getElementType(), false,
3499 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3500 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3501
3502 // If we already created a global with the same mangled name (but different
3503 // type) before, take its name and remove it from its parent.
3504 if (Entry) {
3505 GV->takeName(Entry);
3506
3507 if (!Entry->use_empty()) {
3508 llvm::Constant *NewPtrForOldDecl =
3509 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3510 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3511 }
3512
3513 Entry->eraseFromParent();
3514 }
3515
3516 // This is the first use or definition of a mangled name. If there is a
3517 // deferred decl with this name, remember that we need to emit it at the end
3518 // of the file.
3519 auto DDI = DeferredDecls.find(MangledName);
3520 if (DDI != DeferredDecls.end()) {
3521 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3522 // list, and remove it from DeferredDecls (since we don't need it anymore).
3523 addDeferredDeclToEmit(DDI->second);
3524 DeferredDecls.erase(DDI);
3525 }
3526
3527 // Handle things which are present even on external declarations.
3528 if (D) {
3529 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3530 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3531
3532 // FIXME: This code is overly simple and should be merged with other global
3533 // handling.
3534 GV->setConstant(isTypeConstant(D->getType(), false));
3535
3536 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3537
3538 setLinkageForGV(GV, D);
3539
3540 if (D->getTLSKind()) {
3541 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3542 CXXThreadLocals.push_back(D);
3543 setTLSMode(GV, *D);
3544 }
3545
3546 setGVProperties(GV, D);
3547
3548 // If required by the ABI, treat declarations of static data members with
3549 // inline initializers as definitions.
3550 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3551 EmitGlobalVarDefinition(D);
3552 }
3553
3554 // Emit section information for extern variables.
3555 if (D->hasExternalStorage()) {
3556 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3557 GV->setSection(SA->getName());
3558 }
3559
3560 // Handle XCore specific ABI requirements.
3561 if (getTriple().getArch() == llvm::Triple::xcore &&
3562 D->getLanguageLinkage() == CLanguageLinkage &&
3563 D->getType().isConstant(Context) &&
3564 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3565 GV->setSection(".cp.rodata");
3566
3567 // Check if we a have a const declaration with an initializer, we may be
3568 // able to emit it as available_externally to expose it's value to the
3569 // optimizer.
3570 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3571 D->getType().isConstQualified() && !GV->hasInitializer() &&
3572 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3573 const auto *Record =
3574 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3575 bool HasMutableFields = Record && Record->hasMutableFields();
3576 if (!HasMutableFields) {
3577 const VarDecl *InitDecl;
3578 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3579 if (InitExpr) {
3580 ConstantEmitter emitter(*this);
3581 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3582 if (Init) {
3583 auto *InitType = Init->getType();
3584 if (GV->getType()->getElementType() != InitType) {
3585 // The type of the initializer does not match the definition.
3586 // This happens when an initializer has a different type from
3587 // the type of the global (because of padding at the end of a
3588 // structure for instance).
3589 GV->setName(StringRef());
3590 // Make a new global with the correct type, this is now guaranteed
3591 // to work.
3592 auto *NewGV = cast<llvm::GlobalVariable>(
3593 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3594 ->stripPointerCasts());
3595
3596 // Erase the old global, since it is no longer used.
3597 GV->eraseFromParent();
3598 GV = NewGV;
3599 } else {
3600 GV->setInitializer(Init);
3601 GV->setConstant(true);
3602 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3603 }
3604 emitter.finalize(GV);
3605 }
3606 }
3607 }
3608 }
3609 }
3610
3611 if (GV->isDeclaration())
3612 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3613
3614 LangAS ExpectedAS =
3615 D ? D->getType().getAddressSpace()
3616 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3617 assert(getContext().getTargetAddressSpace(ExpectedAS) ==((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3618, __PRETTY_FUNCTION__))
3618 Ty->getPointerAddressSpace())((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3618, __PRETTY_FUNCTION__))
;
3619 if (AddrSpace != ExpectedAS)
3620 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3621 ExpectedAS, Ty);
3622
3623 return GV;
3624}
3625
3626llvm::Constant *
3627CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3628 ForDefinition_t IsForDefinition) {
3629 const Decl *D = GD.getDecl();
3630 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3631 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3632 /*DontDefer=*/false, IsForDefinition);
3633 else if (isa<CXXMethodDecl>(D)) {
3634 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3635 cast<CXXMethodDecl>(D));
3636 auto Ty = getTypes().GetFunctionType(*FInfo);
3637 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3638 IsForDefinition);
3639 } else if (isa<FunctionDecl>(D)) {
3640 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3641 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3642 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3643 IsForDefinition);
3644 } else
3645 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3646 IsForDefinition);
3647}
3648
3649llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3650 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3651 unsigned Alignment) {
3652 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3653 llvm::GlobalVariable *OldGV = nullptr;
3654
3655 if (GV) {
3656 // Check if the variable has the right type.
3657 if (GV->getType()->getElementType() == Ty)
3658 return GV;
3659
3660 // Because C++ name mangling, the only way we can end up with an already
3661 // existing global with the same name is if it has been declared extern "C".
3662 assert(GV->isDeclaration() && "Declaration has wrong type!")((GV->isDeclaration() && "Declaration has wrong type!"
) ? static_cast<void> (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3662, __PRETTY_FUNCTION__))
;
3663 OldGV = GV;
3664 }
3665
3666 // Create a new variable.
3667 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3668 Linkage, nullptr, Name);
3669
3670 if (OldGV) {
3671 // Replace occurrences of the old variable if needed.
3672 GV->takeName(OldGV);
3673
3674 if (!OldGV->use_empty()) {
3675 llvm::Constant *NewPtrForOldDecl =
3676 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3677 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3678 }
3679
3680 OldGV->eraseFromParent();
3681 }
3682
3683 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3684 !GV->hasAvailableExternallyLinkage())
3685 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3686
3687 GV->setAlignment(llvm::MaybeAlign(Alignment));
3688
3689 return GV;
3690}
3691
3692/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3693/// given global variable. If Ty is non-null and if the global doesn't exist,
3694/// then it will be created with the specified type instead of whatever the
3695/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3696/// that an actual global with type Ty will be returned, not conversion of a
3697/// variable with the same mangled name but some other type.
3698llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3699 llvm::Type *Ty,
3700 ForDefinition_t IsForDefinition) {
3701 assert(D->hasGlobalStorage() && "Not a global variable")((D->hasGlobalStorage() && "Not a global variable"
) ? static_cast<void> (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3701, __PRETTY_FUNCTION__))
;
3702 QualType ASTTy = D->getType();
3703 if (!Ty)
3704 Ty = getTypes().ConvertTypeForMem(ASTTy);
3705
3706 llvm::PointerType *PTy =
3707 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3708
3709 StringRef MangledName = getMangledName(D);
3710 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3711}
3712
3713/// CreateRuntimeVariable - Create a new runtime global variable with the
3714/// specified type and name.
3715llvm::Constant *
3716CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3717 StringRef Name) {
3718 auto PtrTy =
3719 getContext().getLangOpts().OpenCL
3720 ? llvm::PointerType::get(
3721 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3722 : llvm::PointerType::getUnqual(Ty);
3723 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3724 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3725 return Ret;
3726}
3727
3728void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3729 assert(!D->getInit() && "Cannot emit definite definitions here!")((!D->getInit() && "Cannot emit definite definitions here!"
) ? static_cast<void> (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3729, __PRETTY_FUNCTION__))
;
3730
3731 StringRef MangledName = getMangledName(D);
3732 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3733
3734 // We already have a definition, not declaration, with the same mangled name.
3735 // Emitting of declaration is not required (and actually overwrites emitted
3736 // definition).
3737 if (GV && !GV->isDeclaration())
3738 return;
3739
3740 // If we have not seen a reference to this variable yet, place it into the
3741 // deferred declarations table to be emitted if needed later.
3742 if (!MustBeEmitted(D) && !GV) {
3743 DeferredDecls[MangledName] = D;
3744 return;
3745 }
3746
3747 // The tentative definition is the only definition.
3748 EmitGlobalVarDefinition(D);
3749}
3750
3751void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3752 EmitExternalVarDeclaration(D);
3753}
3754
3755CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3756 return Context.toCharUnitsFromBits(
3757 getDataLayout().getTypeStoreSizeInBits(Ty));
3758}
3759
3760LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3761 LangAS AddrSpace = LangAS::Default;
3762 if (LangOpts.OpenCL) {
3763 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3764 assert(AddrSpace == LangAS::opencl_global ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3767, __PRETTY_FUNCTION__))
3765 AddrSpace == LangAS::opencl_constant ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3767, __PRETTY_FUNCTION__))
3766 AddrSpace == LangAS::opencl_local ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3767, __PRETTY_FUNCTION__))
3767 AddrSpace >= LangAS::FirstTargetAddressSpace)((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3767, __PRETTY_FUNCTION__))
;
3768 return AddrSpace;
3769 }
3770
3771 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3772 if (D && D->hasAttr<CUDAConstantAttr>())
3773 return LangAS::cuda_constant;
3774 else if (D && D->hasAttr<CUDASharedAttr>())
3775 return LangAS::cuda_shared;
3776 else if (D && D->hasAttr<CUDADeviceAttr>())
3777 return LangAS::cuda_device;
3778 else if (D && D->getType().isConstQualified())
3779 return LangAS::cuda_constant;
3780 else
3781 return LangAS::cuda_device;
3782 }
3783
3784 if (LangOpts.OpenMP) {
3785 LangAS AS;
3786 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3787 return AS;
3788 }
3789 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3790}
3791
3792LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3793 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3794 if (LangOpts.OpenCL)
3795 return LangAS::opencl_constant;
3796 if (auto AS = getTarget().getConstantAddressSpace())
3797 return AS.getValue();
3798 return LangAS::Default;
3799}
3800
3801// In address space agnostic languages, string literals are in default address
3802// space in AST. However, certain targets (e.g. amdgcn) request them to be
3803// emitted in constant address space in LLVM IR. To be consistent with other
3804// parts of AST, string literal global variables in constant address space
3805// need to be casted to default address space before being put into address
3806// map and referenced by other part of CodeGen.
3807// In OpenCL, string literals are in constant address space in AST, therefore
3808// they should not be casted to default address space.
3809static llvm::Constant *
3810castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3811 llvm::GlobalVariable *GV) {
3812 llvm::Constant *Cast = GV;
3813 if (!CGM.getLangOpts().OpenCL) {
3814 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3815 if (AS != LangAS::Default)
3816 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3817 CGM, GV, AS.getValue(), LangAS::Default,
3818 GV->getValueType()->getPointerTo(
3819 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3820 }
3821 }
3822 return Cast;
3823}
3824
3825template<typename SomeDecl>
3826void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3827 llvm::GlobalValue *GV) {
3828 if (!getLangOpts().CPlusPlus)
3829 return;
3830
3831 // Must have 'used' attribute, or else inline assembly can't rely on
3832 // the name existing.
3833 if (!D->template hasAttr<UsedAttr>())
3834 return;
3835
3836 // Must have internal linkage and an ordinary name.
3837 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3838 return;
3839
3840 // Must be in an extern "C" context. Entities declared directly within
3841 // a record are not extern "C" even if the record is in such a context.
3842 const SomeDecl *First = D->getFirstDecl();
3843 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3844 return;
3845
3846 // OK, this is an internal linkage entity inside an extern "C" linkage
3847 // specification. Make a note of that so we can give it the "expected"
3848 // mangled name if nothing else is using that name.
3849 std::pair<StaticExternCMap::iterator, bool> R =
3850 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3851
3852 // If we have multiple internal linkage entities with the same name
3853 // in extern "C" regions, none of them gets that name.
3854 if (!R.second)
3855 R.first->second = nullptr;
3856}
3857
3858static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3859 if (!CGM.supportsCOMDAT())
3860 return false;
3861
3862 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3863 // them being "merged" by the COMDAT Folding linker optimization.
3864 if (D.hasAttr<CUDAGlobalAttr>())
3865 return false;
3866
3867 if (D.hasAttr<SelectAnyAttr>())
3868 return true;
3869
3870 GVALinkage Linkage;
3871 if (auto *VD = dyn_cast<VarDecl>(&D))
3872 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3873 else
3874 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3875
3876 switch (Linkage) {
3877 case GVA_Internal:
3878 case GVA_AvailableExternally:
3879 case GVA_StrongExternal:
3880 return false;
3881 case GVA_DiscardableODR:
3882 case GVA_StrongODR:
3883 return true;
3884 }
3885 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3885)
;
3886}
3887
3888void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3889 llvm::GlobalObject &GO) {
3890 if (!shouldBeInCOMDAT(*this, D))
3891 return;
3892 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3893}
3894
3895/// Pass IsTentative as true if you want to create a tentative definition.
3896void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3897 bool IsTentative) {
3898 // OpenCL global variables of sampler type are translated to function calls,
3899 // therefore no need to be translated.
3900 QualType ASTTy = D->getType();
3901 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3902 return;
3903
3904 // If this is OpenMP device, check if it is legal to emit this global
3905 // normally.
3906 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3907 OpenMPRuntime->emitTargetGlobalVariable(D))
3908 return;
3909
3910 llvm::Constant *Init = nullptr;
3911 bool NeedsGlobalCtor = false;
3912 bool NeedsGlobalDtor =
3913 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3914
3915 const VarDecl *InitDecl;
3916 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3917
3918 Optional<ConstantEmitter> emitter;
3919
3920 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3921 // as part of their declaration." Sema has already checked for
3922 // error cases, so we just need to set Init to UndefValue.
3923 bool IsCUDASharedVar =
3924 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3925 // Shadows of initialized device-side global variables are also left
3926 // undefined.
3927 bool IsCUDAShadowVar =
3928 !getLangOpts().CUDAIsDevice &&
3929 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3930 D->hasAttr<CUDASharedAttr>());
3931 // HIP pinned shadow of initialized host-side global variables are also
3932 // left undefined.
3933 bool IsHIPPinnedShadowVar =
3934 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3935 if (getLangOpts().CUDA &&
3936 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3937 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3938 else if (!InitExpr) {
3939 // This is a tentative definition; tentative definitions are
3940 // implicitly initialized with { 0 }.
3941 //
3942 // Note that tentative definitions are only emitted at the end of
3943 // a translation unit, so they should never have incomplete
3944 // type. In addition, EmitTentativeDefinition makes sure that we
3945 // never attempt to emit a tentative definition if a real one
3946 // exists. A use may still exists, however, so we still may need
3947 // to do a RAUW.
3948 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")((!ASTTy->isIncompleteType() && "Unexpected incomplete type"
) ? static_cast<void> (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 3948, __PRETTY_FUNCTION__))
;
3949 Init = EmitNullConstant(D->getType());
3950 } else {
3951 initializedGlobalDecl = GlobalDecl(D);
3952 emitter.emplace(*this);
3953 Init = emitter->tryEmitForInitializer(*InitDecl);
3954
3955 if (!Init) {
3956 QualType T = InitExpr->getType();
3957 if (D->getType()->isReferenceType())
3958 T = D->getType();
3959
3960 if (getLangOpts().CPlusPlus) {
3961 Init = EmitNullConstant(T);
3962 NeedsGlobalCtor = true;
3963 } else {
3964 ErrorUnsupported(D, "static initializer");
3965 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3966 }
3967 } else {
3968 // We don't need an initializer, so remove the entry for the delayed
3969 // initializer position (just in case this entry was delayed) if we
3970 // also don't need to register a destructor.
3971 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3972 DelayedCXXInitPosition.erase(D);
3973 }
3974 }
3975
3976 llvm::Type* InitType = Init->getType();
3977 llvm::Constant *Entry =
3978 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3979
3980 // Strip off pointer casts if we got them.
3981 Entry = Entry->stripPointerCasts();
3982
3983 // Entry is now either a Function or GlobalVariable.
3984 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3985
3986 // We have a definition after a declaration with the wrong type.
3987 // We must make a new GlobalVariable* and update everything that used OldGV
3988 // (a declaration or tentative definition) with the new GlobalVariable*
3989 // (which will be a definition).
3990 //
3991 // This happens if there is a prototype for a global (e.g.
3992 // "extern int x[];") and then a definition of a different type (e.g.
3993 // "int x[10];"). This also happens when an initializer has a different type
3994 // from the type of the global (this happens with unions).
3995 if (!GV || GV->getType()->getElementType() != InitType ||
3996 GV->getType()->getAddressSpace() !=
3997 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3998
3999 // Move the old entry aside so that we'll create a new one.
4000 Entry->setName(StringRef());
4001
4002 // Make a new global with the correct type, this is now guaranteed to work.
4003 GV = cast<llvm::GlobalVariable>(
4004 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4005 ->stripPointerCasts());
4006
4007 // Replace all uses of the old global with the new global
4008 llvm::Constant *NewPtrForOldDecl =
4009 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4010 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4011
4012 // Erase the old global, since it is no longer used.
4013 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4014 }
4015
4016 MaybeHandleStaticInExternC(D, GV);
4017
4018 if (D->hasAttr<AnnotateAttr>())
4019 AddGlobalAnnotations(D, GV);
4020
4021 // Set the llvm linkage type as appropriate.
4022 llvm::GlobalValue::LinkageTypes Linkage =
4023 getLLVMLinkageVarDefinition(D, GV->isConstant());
4024
4025 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4026 // the device. [...]"
4027 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4028 // __device__, declares a variable that: [...]
4029 // Is accessible from all the threads within the grid and from the host
4030 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4031 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4032 if (GV && LangOpts.CUDA) {
4033 if (LangOpts.CUDAIsDevice) {
4034 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4035 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4036 GV->setExternallyInitialized(true);
4037 } else {
4038 // Host-side shadows of external declarations of device-side
4039 // global variables become internal definitions. These have to
4040 // be internal in order to prevent name conflicts with global
4041 // host variables with the same name in a different TUs.
4042 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4043 D->hasAttr<HIPPinnedShadowAttr>()) {
4044 Linkage = llvm::GlobalValue::InternalLinkage;
4045
4046 // Shadow variables and their properties must be registered
4047 // with CUDA runtime.
4048 unsigned Flags = 0;
4049 if (!D->hasDefinition())
4050 Flags |= CGCUDARuntime::ExternDeviceVar;
4051 if (D->hasAttr<CUDAConstantAttr>())
4052 Flags |= CGCUDARuntime::ConstantDeviceVar;
4053 // Extern global variables will be registered in the TU where they are
4054 // defined.
4055 if (!D->hasExternalStorage())
4056 getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4057 } else if (D->hasAttr<CUDASharedAttr>())
4058 // __shared__ variables are odd. Shadows do get created, but
4059 // they are not registered with the CUDA runtime, so they
4060 // can't really be used to access their device-side
4061 // counterparts. It's not clear yet whether it's nvcc's bug or
4062 // a feature, but we've got to do the same for compatibility.
4063 Linkage = llvm::GlobalValue::InternalLinkage;
4064 }
4065 }
4066
4067 // HIPPinnedShadowVar should remain in the final code object irrespective of
4068 // whether it is used or not within the code. Add it to used list, so that
4069 // it will not get eliminated when it is unused. Also, it is an extern var
4070 // within device code, and it should *not* get initialized within device code.
4071 if (IsHIPPinnedShadowVar)
4072 addUsedGlobal(GV, /*SkipCheck=*/true);
4073 else
4074 GV->setInitializer(Init);
4075
4076 if (emitter)
4077 emitter->finalize(GV);
4078
4079 // If it is safe to mark the global 'constant', do so now.
4080 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4081 isTypeConstant(D->getType(), true));
4082
4083 // If it is in a read-only section, mark it 'constant'.
4084 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4085 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4086 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4087 GV->setConstant(true);
4088 }
4089
4090 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4091
4092 // On Darwin, if the normal linkage of a C++ thread_local variable is
4093 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4094 // copies within a linkage unit; otherwise, the backing variable has
4095 // internal linkage and all accesses should just be calls to the
4096 // Itanium-specified entry point, which has the normal linkage of the
4097 // variable. This is to preserve the ability to change the implementation
4098 // behind the scenes.
4099 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4100 Context.getTargetInfo().getTriple().isOSDarwin() &&
4101 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4102 !llvm::GlobalVariable::isWeakLinkage(Linkage))
4103 Linkage = llvm::GlobalValue::InternalLinkage;
4104
4105 GV->setLinkage(Linkage);
4106 if (D->hasAttr<DLLImportAttr>())
4107 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4108 else if (D->hasAttr<DLLExportAttr>())
4109 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4110 else
4111 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4112
4113 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4114 // common vars aren't constant even if declared const.
4115 GV->setConstant(false);
4116 // Tentative definition of global variables may be initialized with
4117 // non-zero null pointers. In this case they should have weak linkage
4118 // since common linkage must have zero initializer and must not have
4119 // explicit section therefore cannot have non-zero initial value.
4120 if (!GV->getInitializer()->isNullValue())
4121 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4122 }
4123
4124 setNonAliasAttributes(D, GV);
4125
4126 if (D->getTLSKind() && !GV->isThreadLocal()) {
4127 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4128 CXXThreadLocals.push_back(D);
4129 setTLSMode(GV, *D);
4130 }
4131
4132 maybeSetTrivialComdat(*D, *GV);
4133
4134 // Emit the initializer function if necessary.
4135 if (NeedsGlobalCtor || NeedsGlobalDtor)
4136 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4137
4138 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4139
4140 // Emit global variable debug information.
4141 if (CGDebugInfo *DI = getModuleDebugInfo())
4142 if (getCodeGenOpts().hasReducedDebugInfo())
4143 DI->EmitGlobalVariable(GV, D);
4144}
4145
4146void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4147 if (CGDebugInfo *DI = getModuleDebugInfo())
4148 if (getCodeGenOpts().hasReducedDebugInfo()) {
4149 QualType ASTTy = D->getType();
4150 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4151 llvm::PointerType *PTy =
4152 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4153 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4154 DI->EmitExternalVariable(
4155 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4156 }
4157}
4158
4159static bool isVarDeclStrongDefinition(const ASTContext &Context,
4160 CodeGenModule &CGM, const VarDecl *D,
4161 bool NoCommon) {
4162 // Don't give variables common linkage if -fno-common was specified unless it
4163 // was overridden by a NoCommon attribute.
4164 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4165 return true;
4166
4167 // C11 6.9.2/2:
4168 // A declaration of an identifier for an object that has file scope without
4169 // an initializer, and without a storage-class specifier or with the
4170 // storage-class specifier static, constitutes a tentative definition.
4171 if (D->getInit() || D->hasExternalStorage())
4172 return true;
4173
4174 // A variable cannot be both common and exist in a section.
4175 if (D->hasAttr<SectionAttr>())
4176 return true;
4177
4178 // A variable cannot be both common and exist in a section.
4179 // We don't try to determine which is the right section in the front-end.
4180 // If no specialized section name is applicable, it will resort to default.
4181 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4182 D->hasAttr<PragmaClangDataSectionAttr>() ||
4183 D->hasAttr<PragmaClangRelroSectionAttr>() ||
4184 D->hasAttr<PragmaClangRodataSectionAttr>())
4185 return true;
4186
4187 // Thread local vars aren't considered common linkage.
4188 if (D->getTLSKind())
4189 return true;
4190
4191 // Tentative definitions marked with WeakImportAttr are true definitions.
4192 if (D->hasAttr<WeakImportAttr>())
4193 return true;
4194
4195 // A variable cannot be both common and exist in a comdat.
4196 if (shouldBeInCOMDAT(CGM, *D))
4197 return true;
4198
4199 // Declarations with a required alignment do not have common linkage in MSVC
4200 // mode.
4201 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4202 if (D->hasAttr<AlignedAttr>())
4203 return true;
4204 QualType VarType = D->getType();
4205 if (Context.isAlignmentRequired(VarType))
4206 return true;
4207
4208 if (const auto *RT = VarType->getAs<RecordType>()) {
4209 const RecordDecl *RD = RT->getDecl();
4210 for (const FieldDecl *FD : RD->fields()) {
4211 if (FD->isBitField())
4212 continue;
4213 if (FD->hasAttr<AlignedAttr>())
4214 return true;
4215 if (Context.isAlignmentRequired(FD->getType()))
4216 return true;
4217 }
4218 }
4219 }
4220
4221 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4222 // common symbols, so symbols with greater alignment requirements cannot be
4223 // common.
4224 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4225 // alignments for common symbols via the aligncomm directive, so this
4226 // restriction only applies to MSVC environments.
4227 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4228 Context.getTypeAlignIfKnown(D->getType()) >
4229 Context.toBits(CharUnits::fromQuantity(32)))
4230 return true;
4231
4232 return false;
4233}
4234
4235llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4236 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4237 if (Linkage == GVA_Internal)
4238 return llvm::Function::InternalLinkage;
4239
4240 if (D->hasAttr<WeakAttr>()) {
4241 if (IsConstantVariable)
4242 return llvm::GlobalVariable::WeakODRLinkage;
4243 else
4244 return llvm::GlobalVariable::WeakAnyLinkage;
4245 }
4246
4247 if (const auto *FD = D->getAsFunction())
4248 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4249 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4250
4251 // We are guaranteed to have a strong definition somewhere else,
4252 // so we can use available_externally linkage.
4253 if (Linkage == GVA_AvailableExternally)
4254 return llvm::GlobalValue::AvailableExternallyLinkage;
4255
4256 // Note that Apple's kernel linker doesn't support symbol
4257 // coalescing, so we need to avoid linkonce and weak linkages there.
4258 // Normally, this means we just map to internal, but for explicit
4259 // instantiations we'll map to external.
4260
4261 // In C++, the compiler has to emit a definition in every translation unit
4262 // that references the function. We should use linkonce_odr because
4263 // a) if all references in this translation unit are optimized away, we
4264 // don't need to codegen it. b) if the function persists, it needs to be
4265 // merged with other definitions. c) C++ has the ODR, so we know the
4266 // definition is dependable.
4267 if (Linkage == GVA_DiscardableODR)
4268 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4269 : llvm::Function::InternalLinkage;
4270
4271 // An explicit instantiation of a template has weak linkage, since
4272 // explicit instantiations can occur in multiple translation units
4273 // and must all be equivalent. However, we are not allowed to
4274 // throw away these explicit instantiations.
4275 //
4276 // We don't currently support CUDA device code spread out across multiple TUs,
4277 // so say that CUDA templates are either external (for kernels) or internal.
4278 // This lets llvm perform aggressive inter-procedural optimizations.
4279 if (Linkage == GVA_StrongODR) {
4280 if (Context.getLangOpts().AppleKext)
4281 return llvm::Function::ExternalLinkage;
4282 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4283 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4284 : llvm::Function::InternalLinkage;
4285 return llvm::Function::WeakODRLinkage;
4286 }
4287
4288 // C++ doesn't have tentative definitions and thus cannot have common
4289 // linkage.
4290 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4291 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4292 CodeGenOpts.NoCommon))
4293 return llvm::GlobalVariable::CommonLinkage;
4294
4295 // selectany symbols are externally visible, so use weak instead of
4296 // linkonce. MSVC optimizes away references to const selectany globals, so
4297 // all definitions should be the same and ODR linkage should be used.
4298 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4299 if (D->hasAttr<SelectAnyAttr>())
4300 return llvm::GlobalVariable::WeakODRLinkage;
4301
4302 // Otherwise, we have strong external linkage.
4303 assert(Linkage == GVA_StrongExternal)((Linkage == GVA_StrongExternal) ? static_cast<void> (0
) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4303, __PRETTY_FUNCTION__))
;
4304 return llvm::GlobalVariable::ExternalLinkage;
4305}
4306
4307llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4308 const VarDecl *VD, bool IsConstant) {
4309 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4310 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4311}
4312
4313/// Replace the uses of a function that was declared with a non-proto type.
4314/// We want to silently drop extra arguments from call sites
4315static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4316 llvm::Function *newFn) {
4317 // Fast path.
4318 if (old->use_empty()) return;
4319
4320 llvm::Type *newRetTy = newFn->getReturnType();
4321 SmallVector<llvm::Value*, 4> newArgs;
4322 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4323
4324 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4325 ui != ue; ) {
4326 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4327 llvm::User *user = use->getUser();
4328
4329 // Recognize and replace uses of bitcasts. Most calls to
4330 // unprototyped functions will use bitcasts.
4331 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4332 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4333 replaceUsesOfNonProtoConstant(bitcast, newFn);
4334 continue;
4335 }
4336
4337 // Recognize calls to the function.
4338 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4339 if (!callSite) continue;
4340 if (!callSite->isCallee(&*use))
4341 continue;
4342
4343 // If the return types don't match exactly, then we can't
4344 // transform this call unless it's dead.
4345 if (callSite->getType() != newRetTy && !callSite->use_empty())
4346 continue;
4347
4348 // Get the call site's attribute list.
4349 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4350 llvm::AttributeList oldAttrs = callSite->getAttributes();
4351
4352 // If the function was passed too few arguments, don't transform.
4353 unsigned newNumArgs = newFn->arg_size();
4354 if (callSite->arg_size() < newNumArgs)
4355 continue;
4356
4357 // If extra arguments were passed, we silently drop them.
4358 // If any of the types mismatch, we don't transform.
4359 unsigned argNo = 0;
4360 bool dontTransform = false;
4361 for (llvm::Argument &A : newFn->args()) {
4362 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4363 dontTransform = true;
4364 break;
4365 }
4366
4367 // Add any parameter attributes.
4368 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4369 argNo++;
4370 }
4371 if (dontTransform)
4372 continue;
4373
4374 // Okay, we can transform this. Create the new call instruction and copy
4375 // over the required information.
4376 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4377
4378 // Copy over any operand bundles.
4379 callSite->getOperandBundlesAsDefs(newBundles);
4380
4381 llvm::CallBase *newCall;
4382 if (dyn_cast<llvm::CallInst>(callSite)) {
4383 newCall =
4384 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4385 } else {
4386 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4387 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4388 oldInvoke->getUnwindDest(), newArgs,
4389 newBundles, "", callSite);
4390 }
4391 newArgs.clear(); // for the next iteration
4392
4393 if (!newCall->getType()->isVoidTy())
4394 newCall->takeName(callSite);
4395 newCall->setAttributes(llvm::AttributeList::get(
4396 newFn->getContext(), oldAttrs.getFnAttributes(),
4397 oldAttrs.getRetAttributes(), newArgAttrs));
4398 newCall->setCallingConv(callSite->getCallingConv());
4399
4400 // Finally, remove the old call, replacing any uses with the new one.
4401 if (!callSite->use_empty())
4402 callSite->replaceAllUsesWith(newCall);
4403
4404 // Copy debug location attached to CI.
4405 if (callSite->getDebugLoc())
4406 newCall->setDebugLoc(callSite->getDebugLoc());
4407
4408 callSite->eraseFromParent();
4409 }
4410}
4411
4412/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4413/// implement a function with no prototype, e.g. "int foo() {}". If there are
4414/// existing call uses of the old function in the module, this adjusts them to
4415/// call the new function directly.
4416///
4417/// This is not just a cleanup: the always_inline pass requires direct calls to
4418/// functions to be able to inline them. If there is a bitcast in the way, it
4419/// won't inline them. Instcombine normally deletes these calls, but it isn't
4420/// run at -O0.
4421static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4422 llvm::Function *NewFn) {
4423 // If we're redefining a global as a function, don't transform it.
4424 if (!isa<llvm::Function>(Old)) return;
4425
4426 replaceUsesOfNonProtoConstant(Old, NewFn);
4427}
4428
4429void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4430 auto DK = VD->isThisDeclarationADefinition();
4431 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4432 return;
4433
4434 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4435 // If we have a definition, this might be a deferred decl. If the
4436 // instantiation is explicit, make sure we emit it at the end.
4437 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4438 GetAddrOfGlobalVar(VD);
4439
4440 EmitTopLevelDecl(VD);
4441}
4442
4443void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4444 llvm::GlobalValue *GV) {
4445 // Check if this must be emitted as declare variant.
4446 if (LangOpts.OpenMP && OpenMPRuntime &&
4447 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4448 return;
4449
4450 const auto *D = cast<FunctionDecl>(GD.getDecl());
4451
4452 // Compute the function info and LLVM type.
4453 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4454 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4455
4456 // Get or create the prototype for the function.
4457 if (!GV || (GV->getType()->getElementType() != Ty))
4458 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4459 /*DontDefer=*/true,
4460 ForDefinition));
4461
4462 // Already emitted.
4463 if (!GV->isDeclaration())
4464 return;
4465
4466 // We need to set linkage and visibility on the function before
4467 // generating code for it because various parts of IR generation
4468 // want to propagate this information down (e.g. to local static
4469 // declarations).
4470 auto *Fn = cast<llvm::Function>(GV);
4471 setFunctionLinkage(GD, Fn);
4472
4473 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4474 setGVProperties(Fn, GD);
4475
4476 MaybeHandleStaticInExternC(D, Fn);
4477
4478
4479 maybeSetTrivialComdat(*D, *Fn);
4480
4481 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4482
4483 setNonAliasAttributes(GD, Fn);
4484 SetLLVMFunctionAttributesForDefinition(D, Fn);
4485
4486 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4487 AddGlobalCtor(Fn, CA->getPriority());
4488 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4489 AddGlobalDtor(Fn, DA->getPriority());
4490 if (D->hasAttr<AnnotateAttr>())
4491 AddGlobalAnnotations(D, Fn);
4492}
4493
4494void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4495 const auto *D = cast<ValueDecl>(GD.getDecl());
4496 const AliasAttr *AA = D->getAttr<AliasAttr>();
4497 assert(AA && "Not an alias?")((AA && "Not an alias?") ? static_cast<void> (0
) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4497, __PRETTY_FUNCTION__))
;
4498
4499 StringRef MangledName = getMangledName(GD);
4500
4501 if (AA->getAliasee() == MangledName) {
4502 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4503 return;
4504 }
4505
4506 // If there is a definition in the module, then it wins over the alias.
4507 // This is dubious, but allow it to be safe. Just ignore the alias.
4508 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4509 if (Entry && !Entry->isDeclaration())
4510 return;
4511
4512 Aliases.push_back(GD);
4513
4514 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4515
4516 // Create a reference to the named value. This ensures that it is emitted
4517 // if a deferred decl.
4518 llvm::Constant *Aliasee;
4519 llvm::GlobalValue::LinkageTypes LT;
4520 if (isa<llvm::FunctionType>(DeclTy)) {
4521 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4522 /*ForVTable=*/false);
4523 LT = getFunctionLinkage(GD);
4524 } else {
4525 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4526 llvm::PointerType::getUnqual(DeclTy),
4527 /*D=*/nullptr);
4528 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4529 D->getType().isConstQualified());
4530 }
4531
4532 // Create the new alias itself, but don't set a name yet.
4533 auto *GA =
4534 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4535
4536 if (Entry) {
4537 if (GA->getAliasee() == Entry) {
4538 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4539 return;
4540 }
4541
4542 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4542, __PRETTY_FUNCTION__))
;
4543
4544 // If there is a declaration in the module, then we had an extern followed
4545 // by the alias, as in:
4546 // extern int test6();
4547 // ...
4548 // int test6() __attribute__((alias("test7")));
4549 //
4550 // Remove it and replace uses of it with the alias.
4551 GA->takeName(Entry);
4552
4553 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4554 Entry->getType()));
4555 Entry->eraseFromParent();
4556 } else {
4557 GA->setName(MangledName);
4558 }
4559
4560 // Set attributes which are particular to an alias; this is a
4561 // specialization of the attributes which may be set on a global
4562 // variable/function.
4563 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4564 D->isWeakImported()) {
4565 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4566 }
4567
4568 if (const auto *VD = dyn_cast<VarDecl>(D))
4569 if (VD->getTLSKind())
4570 setTLSMode(GA, *VD);
4571
4572 SetCommonAttributes(GD, GA);
4573}
4574
4575void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4576 const auto *D = cast<ValueDecl>(GD.getDecl());
4577 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4578 assert(IFA && "Not an ifunc?")((IFA && "Not an ifunc?") ? static_cast<void> (
0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4578, __PRETTY_FUNCTION__))
;
4579
4580 StringRef MangledName = getMangledName(GD);
4581
4582 if (IFA->getResolver() == MangledName) {
4583 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4584 return;
4585 }
4586
4587 // Report an error if some definition overrides ifunc.
4588 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4589 if (Entry && !Entry->isDeclaration()) {
4590 GlobalDecl OtherGD;
4591 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4592 DiagnosedConflictingDefinitions.insert(GD).second) {
4593 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4594 << MangledName;
4595 Diags.Report(OtherGD.getDecl()->getLocation(),
4596 diag::note_previous_definition);
4597 }
4598 return;
4599 }
4600
4601 Aliases.push_back(GD);
4602
4603 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4604 llvm::Constant *Resolver =
4605 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4606 /*ForVTable=*/false);
4607 llvm::GlobalIFunc *GIF =
4608 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4609 "", Resolver, &getModule());
4610 if (Entry) {
4611 if (GIF->getResolver() == Entry) {
4612 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4613 return;
4614 }
4615 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4615, __PRETTY_FUNCTION__))
;
4616
4617 // If there is a declaration in the module, then we had an extern followed
4618 // by the ifunc, as in:
4619 // extern int test();
4620 // ...
4621 // int test() __attribute__((ifunc("resolver")));
4622 //
4623 // Remove it and replace uses of it with the ifunc.
4624 GIF->takeName(Entry);
4625
4626 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4627 Entry->getType()));
4628 Entry->eraseFromParent();
4629 } else
4630 GIF->setName(MangledName);
4631
4632 SetCommonAttributes(GD, GIF);
4633}
4634
4635llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4636 ArrayRef<llvm::Type*> Tys) {
4637 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4638 Tys);
4639}
4640
4641static llvm::StringMapEntry<llvm::GlobalVariable *> &
4642GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4643 const StringLiteral *Literal, bool TargetIsLSB,
4644 bool &IsUTF16, unsigned &StringLength) {
4645 StringRef String = Literal->getString();
4646 unsigned NumBytes = String.size();
4647
4648 // Check for simple case.
4649 if (!Literal->containsNonAsciiOrNull()) {
4650 StringLength = NumBytes;
4651 return *Map.insert(std::make_pair(String, nullptr)).first;
4652 }
4653
4654 // Otherwise, convert the UTF8 literals into a string of shorts.
4655 IsUTF16 = true;
4656
4657 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4658 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4659 llvm::UTF16 *ToPtr = &ToBuf[0];
4660
4661 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4662 ToPtr + NumBytes, llvm::strictConversion);
4663
4664 // ConvertUTF8toUTF16 returns the length in ToPtr.
4665 StringLength = ToPtr - &ToBuf[0];
4666
4667 // Add an explicit null.
4668 *ToPtr = 0;
4669 return *Map.insert(std::make_pair(
4670 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4671 (StringLength + 1) * 2),
4672 nullptr)).first;
4673}
4674
4675ConstantAddress
4676CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4677 unsigned StringLength = 0;
4678 bool isUTF16 = false;
4679 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4680 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4681 getDataLayout().isLittleEndian(), isUTF16,
4682 StringLength);
4683
4684 if (auto *C = Entry.second)
4685 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4686
4687 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4688 llvm::Constant *Zeros[] = { Zero, Zero };
4689
4690 const ASTContext &Context = getContext();
4691 const llvm::Triple &Triple = getTriple();
4692
4693 const auto CFRuntime = getLangOpts().CFRuntime;
4694 const bool IsSwiftABI =
4695 static_cast<unsigned>(CFRuntime) >=
4696 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4697 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4698
4699 // If we don't already have it, get __CFConstantStringClassReference.
4700 if (!CFConstantStringClassRef) {
4701 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4702 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4703 Ty = llvm::ArrayType::get(Ty, 0);
4704
4705 switch (CFRuntime) {
4706 default: break;
4707 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH[[gnu::fallthrough]];
4708 case LangOptions::CoreFoundationABI::Swift5_0:
4709 CFConstantStringClassName =
4710 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4711 : "$s10Foundation19_NSCFConstantStringCN";
4712 Ty = IntPtrTy;
4713 break;
4714 case LangOptions::CoreFoundationABI::Swift4_2:
4715 CFConstantStringClassName =
4716 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4717 : "$S10Foundation19_NSCFConstantStringCN";
4718 Ty = IntPtrTy;
4719 break;
4720 case LangOptions::CoreFoundationABI::Swift4_1:
4721 CFConstantStringClassName =
4722 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4723 : "__T010Foundation19_NSCFConstantStringCN";
4724 Ty = IntPtrTy;
4725 break;
4726 }
4727
4728 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4729
4730 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4731 llvm::GlobalValue *GV = nullptr;
4732
4733 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4734 IdentifierInfo &II = Context.Idents.get(GV->getName());
4735 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4736 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4737
4738 const VarDecl *VD = nullptr;
4739 for (const auto &Result : DC->lookup(&II))
4740 if ((VD = dyn_cast<VarDecl>(Result)))
4741 break;
4742
4743 if (Triple.isOSBinFormatELF()) {
4744 if (!VD)
4745 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4746 } else {
4747 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4748 if (!VD || !VD->hasAttr<DLLExportAttr>())
4749 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4750 else
4751 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4752 }
4753
4754 setDSOLocal(GV);
4755 }
4756 }
4757
4758 // Decay array -> ptr
4759 CFConstantStringClassRef =
4760 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4761 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4762 }
4763
4764 QualType CFTy = Context.getCFConstantStringType();
4765
4766 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4767
4768 ConstantInitBuilder Builder(*this);
4769 auto Fields = Builder.beginStruct(STy);
4770
4771 // Class pointer.
4772 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4773
4774 // Flags.
4775 if (IsSwiftABI) {
4776 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4777 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4778 } else {
4779 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4780 }
4781
4782 // String pointer.
4783 llvm::Constant *C = nullptr;
4784 if (isUTF16) {
4785 auto Arr = llvm::makeArrayRef(
4786 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4787 Entry.first().size() / 2);
4788 C = llvm::ConstantDataArray::get(VMContext, Arr);
4789 } else {
4790 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4791 }
4792
4793 // Note: -fwritable-strings doesn't make the backing store strings of
4794 // CFStrings writable. (See <rdar://problem/10657500>)
4795 auto *GV =
4796 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4797 llvm::GlobalValue::PrivateLinkage, C, ".str");
4798 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4799 // Don't enforce the target's minimum global alignment, since the only use
4800 // of the string is via this class initializer.
4801 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4802 : Context.getTypeAlignInChars(Context.CharTy);
4803 GV->setAlignment(Align.getAsAlign());
4804
4805 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4806 // Without it LLVM can merge the string with a non unnamed_addr one during
4807 // LTO. Doing that changes the section it ends in, which surprises ld64.
4808 if (Triple.isOSBinFormatMachO())
4809 GV->setSection(isUTF16 ? "__TEXT,__ustring"
4810 : "__TEXT,__cstring,cstring_literals");
4811 // Make sure the literal ends up in .rodata to allow for safe ICF and for
4812 // the static linker to adjust permissions to read-only later on.
4813 else if (Triple.isOSBinFormatELF())
4814 GV->setSection(".rodata");
4815
4816 // String.
4817 llvm::Constant *Str =
4818 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4819
4820 if (isUTF16)
4821 // Cast the UTF16 string to the correct type.
4822 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4823 Fields.add(Str);
4824
4825 // String length.
4826 llvm::IntegerType *LengthTy =
4827 llvm::IntegerType::get(getModule().getContext(),
4828 Context.getTargetInfo().getLongWidth());
4829 if (IsSwiftABI) {
4830 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4831 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4832 LengthTy = Int32Ty;
4833 else
4834 LengthTy = IntPtrTy;
4835 }
4836 Fields.addInt(LengthTy, StringLength);
4837
4838 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4839 // properly aligned on 32-bit platforms.
4840 CharUnits Alignment =
4841 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4842
4843 // The struct.
4844 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4845 /*isConstant=*/false,
4846 llvm::GlobalVariable::PrivateLinkage);
4847 GV->addAttribute("objc_arc_inert");
4848 switch (Triple.getObjectFormat()) {
4849 case llvm::Triple::UnknownObjectFormat:
4850 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4850)
;
4851 case llvm::Triple::XCOFF:
4852 llvm_unreachable("XCOFF is not yet implemented")::llvm::llvm_unreachable_internal("XCOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4852)
;
4853 case llvm::Triple::COFF:
4854 case llvm::Triple::ELF:
4855 case llvm::Triple::Wasm:
4856 GV->setSection("cfstring");
4857 break;
4858 case llvm::Triple::MachO:
4859 GV->setSection("__DATA,__cfstring");
4860 break;
4861 }
4862 Entry.second = GV;
4863
4864 return ConstantAddress(GV, Alignment);
4865}
4866
4867bool CodeGenModule::getExpressionLocationsEnabled() const {
4868 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4869}
4870
4871QualType CodeGenModule::getObjCFastEnumerationStateType() {
4872 if (ObjCFastEnumerationStateType.isNull()) {
4873 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4874 D->startDefinition();
4875
4876 QualType FieldTypes[] = {
4877 Context.UnsignedLongTy,
4878 Context.getPointerType(Context.getObjCIdType()),
4879 Context.getPointerType(Context.UnsignedLongTy),
4880 Context.getConstantArrayType(Context.UnsignedLongTy,
4881 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4882 };
4883
4884 for (size_t i = 0; i < 4; ++i) {
4885 FieldDecl *Field = FieldDecl::Create(Context,
4886 D,
4887 SourceLocation(),
4888 SourceLocation(), nullptr,
4889 FieldTypes[i], /*TInfo=*/nullptr,
4890 /*BitWidth=*/nullptr,
4891 /*Mutable=*/false,
4892 ICIS_NoInit);
4893 Field->setAccess(AS_public);
4894 D->addDecl(Field);
4895 }
4896
4897 D->completeDefinition();
4898 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4899 }
4900
4901 return ObjCFastEnumerationStateType;
4902}
4903
4904llvm::Constant *
4905CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4906 assert(!E->getType()->isPointerType() && "Strings are always arrays")((!E->getType()->isPointerType() && "Strings are always arrays"
) ? static_cast<void> (0) : __assert_fail ("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4906, __PRETTY_FUNCTION__))
;
4907
4908 // Don't emit it as the address of the string, emit the string data itself
4909 // as an inline array.
4910 if (E->getCharByteWidth() == 1) {
4911 SmallString<64> Str(E->getString());
4912
4913 // Resize the string to the right size, which is indicated by its type.
4914 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4915 Str.resize(CAT->getSize().getZExtValue());
4916 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4917 }
4918
4919 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4920 llvm::Type *ElemTy = AType->getElementType();
4921 unsigned NumElements = AType->getNumElements();
4922
4923 // Wide strings have either 2-byte or 4-byte elements.
4924 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4925 SmallVector<uint16_t, 32> Elements;
4926 Elements.reserve(NumElements);
4927
4928 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4929 Elements.push_back(E->getCodeUnit(i));
4930 Elements.resize(NumElements);
4931 return llvm::ConstantDataArray::get(VMContext, Elements);
4932 }
4933
4934 assert(ElemTy->getPrimitiveSizeInBits() == 32)((ElemTy->getPrimitiveSizeInBits() == 32) ? static_cast<
void> (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4934, __PRETTY_FUNCTION__))
;
4935 SmallVector<uint32_t, 32> Elements;
4936 Elements.reserve(NumElements);
4937
4938 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4939 Elements.push_back(E->getCodeUnit(i));
4940 Elements.resize(NumElements);
4941 return llvm::ConstantDataArray::get(VMContext, Elements);
4942}
4943
4944static llvm::GlobalVariable *
4945GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4946 CodeGenModule &CGM, StringRef GlobalName,
4947 CharUnits Alignment) {
4948 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4949 CGM.getStringLiteralAddressSpace());
4950
4951 llvm::Module &M = CGM.getModule();
4952 // Create a global variable for this string
4953 auto *GV = new llvm::GlobalVariable(
4954 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4955 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4956 GV->setAlignment(Alignment.getAsAlign());
4957 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4958 if (GV->isWeakForLinker()) {
4959 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")((CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? static_cast<void> (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 4959, __PRETTY_FUNCTION__))
;
4960 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4961 }
4962 CGM.setDSOLocal(GV);
4963
4964 return GV;
4965}
4966
4967/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4968/// constant array for the given string literal.
4969ConstantAddress
4970CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4971 StringRef Name) {
4972 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4973
4974 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4975 llvm::GlobalVariable **Entry = nullptr;
4976 if (!LangOpts.WritableStrings) {
4977 Entry = &ConstantStringMap[C];
4978 if (auto GV = *Entry) {
4979 if (Alignment.getQuantity() > GV->getAlignment())
4980 GV->setAlignment(Alignment.getAsAlign());
4981 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4982 Alignment);
4983 }
4984 }
4985
4986 SmallString<256> MangledNameBuffer;
4987 StringRef GlobalVariableName;
4988 llvm::GlobalValue::LinkageTypes LT;
4989
4990 // Mangle the string literal if that's how the ABI merges duplicate strings.
4991 // Don't do it if they are writable, since we don't want writes in one TU to
4992 // affect strings in another.
4993 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4994 !LangOpts.WritableStrings) {
4995 llvm::raw_svector_ostream Out(MangledNameBuffer);
4996 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4997 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4998 GlobalVariableName = MangledNameBuffer;
4999 } else {
5000 LT = llvm::GlobalValue::PrivateLinkage;
5001 GlobalVariableName = Name;
5002 }
5003
5004 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5005 if (Entry)
5006 *Entry = GV;
5007
5008 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5009 QualType());
5010
5011 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5012 Alignment);
5013}
5014
5015/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5016/// array for the given ObjCEncodeExpr node.
5017ConstantAddress
5018CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5019 std::string Str;
5020 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5021
5022 return GetAddrOfConstantCString(Str);
5023}
5024
5025/// GetAddrOfConstantCString - Returns a pointer to a character array containing
5026/// the literal and a terminating '\0' character.
5027/// The result has pointer to array type.
5028ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5029 const std::string &Str, const char *GlobalName) {
5030 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5031 CharUnits Alignment =
5032 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5033
5034 llvm::Constant *C =
5035 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5036
5037 // Don't share any string literals if strings aren't constant.
5038 llvm::GlobalVariable **Entry = nullptr;
5039 if (!LangOpts.WritableStrings) {
5040 Entry = &ConstantStringMap[C];
5041 if (auto GV = *Entry) {
5042 if (Alignment.getQuantity() > GV->getAlignment())
5043 GV->setAlignment(Alignment.getAsAlign());
5044 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5045 Alignment);
5046 }
5047 }
5048
5049 // Get the default prefix if a name wasn't specified.
5050 if (!GlobalName)
5051 GlobalName = ".str";
5052 // Create a global variable for this.
5053 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5054 GlobalName, Alignment);
5055 if (Entry)
5056 *Entry = GV;
5057
5058 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5059 Alignment);
5060}
5061
5062ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5063 const MaterializeTemporaryExpr *E, const Expr *Init) {
5064 assert((E->getStorageDuration() == SD_Static ||(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5065, __PRETTY_FUNCTION__))
5065 E->getStorageDuration() == SD_Thread) && "not a global temporary")(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5065, __PRETTY_FUNCTION__))
;
5066 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5067
5068 // If we're not materializing a subobject of the temporary, keep the
5069 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5070 QualType MaterializedType = Init->getType();
5071 if (Init == E->getSubExpr())
5072 MaterializedType = E->getType();
5073
5074 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5075
5076 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5077 return ConstantAddress(Slot, Align);
5078
5079 // FIXME: If an externally-visible declaration extends multiple temporaries,
5080 // we need to give each temporary the same name in every translation unit (and
5081 // we also need to make the temporaries externally-visible).
5082 SmallString<256> Name;
5083 llvm::raw_svector_ostream Out(Name);
5084 getCXXABI().getMangleContext().mangleReferenceTemporary(
5085 VD, E->getManglingNumber(), Out);
5086
5087 APValue *Value = nullptr;
5088 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5089 // If the initializer of the extending declaration is a constant
5090 // initializer, we should have a cached constant initializer for this
5091 // temporary. Note that this might have a different value from the value
5092 // computed by evaluating the initializer if the surrounding constant
5093 // expression modifies the temporary.
5094 Value = E->getOrCreateValue(false);
5095 }
5096
5097 // Try evaluating it now, it might have a constant initializer.
5098 Expr::EvalResult EvalResult;
5099 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5100 !EvalResult.hasSideEffects())
5101 Value = &EvalResult.Val;
5102
5103 LangAS AddrSpace =
5104 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5105
5106 Optional<ConstantEmitter> emitter;
5107 llvm::Constant *InitialValue = nullptr;
5108 bool Constant = false;
5109 llvm::Type *Type;
5110 if (Value) {
5111 // The temporary has a constant initializer, use it.
5112 emitter.emplace(*this);
5113 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5114 MaterializedType);
5115 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5116 Type = InitialValue->getType();
5117 } else {
5118 // No initializer, the initialization will be provided when we
5119 // initialize the declaration which performed lifetime extension.
5120 Type = getTypes().ConvertTypeForMem(MaterializedType);
5121 }
5122
5123 // Create a global variable for this lifetime-extended temporary.
5124 llvm::GlobalValue::LinkageTypes Linkage =
5125 getLLVMLinkageVarDefinition(VD, Constant);
5126 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5127 const VarDecl *InitVD;
5128 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5129 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5130 // Temporaries defined inside a class get linkonce_odr linkage because the
5131 // class can be defined in multiple translation units.
5132 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5133 } else {
5134 // There is no need for this temporary to have external linkage if the
5135 // VarDecl has external linkage.
5136 Linkage = llvm::GlobalVariable::InternalLinkage;
5137 }
5138 }
5139 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5140 auto *GV = new llvm::GlobalVariable(
5141 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5142 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5143 if (emitter) emitter->finalize(GV);
5144 setGVProperties(GV, VD);
5145 GV->setAlignment(Align.getAsAlign());
5146 if (supportsCOMDAT() && GV->isWeakForLinker())
5147 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5148 if (VD->getTLSKind())
5149 setTLSMode(GV, *VD);
5150 llvm::Constant *CV = GV;
5151 if (AddrSpace != LangAS::Default)
5152 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5153 *this, GV, AddrSpace, LangAS::Default,
5154 Type->getPointerTo(
5155 getContext().getTargetAddressSpace(LangAS::Default)));
5156 MaterializedGlobalTemporaryMap[E] = CV;
5157 return ConstantAddress(CV, Align);
5158}
5159
5160/// EmitObjCPropertyImplementations - Emit information for synthesized
5161/// properties for an implementation.
5162void CodeGenModule::EmitObjCPropertyImplementations(const
5163 ObjCImplementationDecl *D) {
5164 for (const auto *PID : D->property_impls()) {
5165 // Dynamic is just for type-checking.
5166 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5167 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5168
5169 // Determine which methods need to be implemented, some may have
5170 // been overridden. Note that ::isPropertyAccessor is not the method
5171 // we want, that just indicates if the decl came from a
5172 // property. What we want to know is if the method is defined in
5173 // this implementation.
5174 auto *Getter = PID->getGetterMethodDecl();
5175 if (!Getter || Getter->isSynthesizedAccessorStub())
5176 CodeGenFunction(*this).GenerateObjCGetter(
5177 const_cast<ObjCImplementationDecl *>(D), PID);
5178 auto *Setter = PID->getSetterMethodDecl();
5179 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5180 CodeGenFunction(*this).GenerateObjCSetter(
5181 const_cast<ObjCImplementationDecl *>(D), PID);
5182 }
5183 }
5184}
5185
5186static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5187 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5188 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5189 ivar; ivar = ivar->getNextIvar())
5190 if (ivar->getType().isDestructedType())
5191 return true;
5192
5193 return false;
5194}
5195
5196static bool AllTrivialInitializers(CodeGenModule &CGM,
5197 ObjCImplementationDecl *D) {
5198 CodeGenFunction CGF(CGM);
5199 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5200 E = D->init_end(); B != E; ++B) {
5201 CXXCtorInitializer *CtorInitExp = *B;
5202 Expr *Init = CtorInitExp->getInit();
5203 if (!CGF.isTrivialInitializer(Init))
5204 return false;
5205 }
5206 return true;
5207}
5208
5209/// EmitObjCIvarInitializations - Emit information for ivar initialization
5210/// for an implementation.
5211void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5212 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5213 if (needsDestructMethod(D)) {
5214 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5215 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5216 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5217 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5218 getContext().VoidTy, nullptr, D,
5219 /*isInstance=*/true, /*isVariadic=*/false,
5220 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5221 /*isImplicitlyDeclared=*/true,
5222 /*isDefined=*/false, ObjCMethodDecl::Required);
5223 D->addInstanceMethod(DTORMethod);
5224 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5225 D->setHasDestructors(true);
5226 }
5227
5228 // If the implementation doesn't have any ivar initializers, we don't need
5229 // a .cxx_construct.
5230 if (D->getNumIvarInitializers() == 0 ||
5231 AllTrivialInitializers(*this, D))
5232 return;
5233
5234 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5235 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5236 // The constructor returns 'self'.
5237 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5238 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5239 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5240 /*isVariadic=*/false,
5241 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5242 /*isImplicitlyDeclared=*/true,
5243 /*isDefined=*/false, ObjCMethodDecl::Required);
5244 D->addInstanceMethod(CTORMethod);
5245 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5246 D->setHasNonZeroConstructors(true);
5247}
5248
5249// EmitLinkageSpec - Emit all declarations in a linkage spec.
5250void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5251 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5252 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5253 ErrorUnsupported(LSD, "linkage spec");
5254 return;
5255 }
5256
5257 EmitDeclContext(LSD);
5258}
5259
5260void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5261 for (auto *I : DC->decls()) {
5262 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5263 // are themselves considered "top-level", so EmitTopLevelDecl on an
5264 // ObjCImplDecl does not recursively visit them. We need to do that in
5265 // case they're nested inside another construct (LinkageSpecDecl /
5266 // ExportDecl) that does stop them from being considered "top-level".
5267 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5268 for (auto *M : OID->methods())
5269 EmitTopLevelDecl(M);
5270 }
5271
5272 EmitTopLevelDecl(I);
5273 }
5274}
5275
5276/// EmitTopLevelDecl - Emit code for a single top level declaration.
5277void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5278 // Ignore dependent declarations.
5279 if (D->isTemplated())
5280 return;
5281
5282 switch (D->getKind()) {
5283 case Decl::CXXConversion:
5284 case Decl::CXXMethod:
5285 case Decl::Function:
5286 EmitGlobal(cast<FunctionDecl>(D));
5287 // Always provide some coverage mapping
5288 // even for the functions that aren't emitted.
5289 AddDeferredUnusedCoverageMapping(D);
5290 break;
5291
5292 case Decl::CXXDeductionGuide:
5293 // Function-like, but does not result in code emission.
5294 break;
5295
5296 case Decl::Var:
5297 case Decl::Decomposition:
5298 case Decl::VarTemplateSpecialization:
5299 EmitGlobal(cast<VarDecl>(D));
5300 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5301 for (auto *B : DD->bindings())
5302 if (auto *HD = B->getHoldingVar())
5303 EmitGlobal(HD);
5304 break;
5305
5306 // Indirect fields from global anonymous structs and unions can be
5307 // ignored; only the actual variable requires IR gen support.
5308 case Decl::IndirectField:
5309 break;
5310
5311 // C++ Decls
5312 case Decl::Namespace:
5313 EmitDeclContext(cast<NamespaceDecl>(D));
5314 break;
5315 case Decl::ClassTemplateSpecialization: {
5316 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5317 if (DebugInfo &&
5318 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5319 Spec->hasDefinition())
5320 DebugInfo->completeTemplateDefinition(*Spec);
5321 } LLVM_FALLTHROUGH[[gnu::fallthrough]];
5322 case Decl::CXXRecord:
5323 if (DebugInfo) {
5324 if (auto *ES = D->getASTContext().getExternalSource())
5325 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5326 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5327 }
5328 // Emit any static data members, they may be definitions.
5329 for (auto *I : cast<CXXRecordDecl>(D)->decls())
5330 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5331 EmitTopLevelDecl(I);
5332 break;
5333 // No code generation needed.
5334 case Decl::UsingShadow:
5335 case Decl::ClassTemplate:
5336 case Decl::VarTemplate:
5337 case Decl::Concept:
5338 case Decl::VarTemplatePartialSpecialization:
5339 case Decl::FunctionTemplate:
5340 case Decl::TypeAliasTemplate:
5341 case Decl::Block:
5342 case Decl::Empty:
5343 case Decl::Binding:
5344 break;
5345 case Decl::Using: // using X; [C++]
5346 if (CGDebugInfo *DI = getModuleDebugInfo())
5347 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5348 return;
5349 case Decl::NamespaceAlias:
5350 if (CGDebugInfo *DI = getModuleDebugInfo())
5351 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5352 return;
5353 case Decl::UsingDirective: // using namespace X; [C++]
5354 if (CGDebugInfo *DI = getModuleDebugInfo())
5355 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5356 return;
5357 case Decl::CXXConstructor:
5358 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5359 break;
5360 case Decl::CXXDestructor:
5361 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5362 break;
5363
5364 case Decl::StaticAssert:
5365 // Nothing to do.
5366 break;
5367
5368 // Objective-C Decls
5369
5370 // Forward declarations, no (immediate) code generation.
5371 case Decl::ObjCInterface:
5372 case Decl::ObjCCategory:
5373 break;
5374
5375 case Decl::ObjCProtocol: {
5376 auto *Proto = cast<ObjCProtocolDecl>(D);
5377 if (Proto->isThisDeclarationADefinition())
5378 ObjCRuntime->GenerateProtocol(Proto);
5379 break;
5380 }
5381
5382 case Decl::ObjCCategoryImpl:
5383 // Categories have properties but don't support synthesize so we
5384 // can ignore them here.
5385 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5386 break;
5387
5388 case Decl::ObjCImplementation: {
5389 auto *OMD = cast<ObjCImplementationDecl>(D);
5390 EmitObjCPropertyImplementations(OMD);
5391 EmitObjCIvarInitializations(OMD);
5392 ObjCRuntime->GenerateClass(OMD);
5393 // Emit global variable debug information.
5394 if (CGDebugInfo *DI = getModuleDebugInfo())
5395 if (getCodeGenOpts().hasReducedDebugInfo())
5396 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5397 OMD->getClassInterface()), OMD->getLocation());
5398 break;
5399 }
5400 case Decl::ObjCMethod: {
5401 auto *OMD = cast<ObjCMethodDecl>(D);
5402 // If this is not a prototype, emit the body.
5403 if (OMD->getBody())
5404 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5405 break;
5406 }
5407 case Decl::ObjCCompatibleAlias:
5408 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5409 break;
5410
5411 case Decl::PragmaComment: {
5412 const auto *PCD = cast<PragmaCommentDecl>(D);
5413 switch (PCD->getCommentKind()) {
5414 case PCK_Unknown:
5415 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5415)
;
5416 case PCK_Linker:
5417 AppendLinkerOptions(PCD->getArg());
5418 break;
5419 case PCK_Lib:
5420 AddDependentLib(PCD->getArg());
5421 break;
5422 case PCK_Compiler:
5423 case PCK_ExeStr:
5424 case PCK_User:
5425 break; // We ignore all of these.
5426 }
5427 break;
5428 }
5429
5430 case Decl::PragmaDetectMismatch: {
5431 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5432 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5433 break;
5434 }
5435
5436 case Decl::LinkageSpec:
5437 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5438 break;
5439
5440 case Decl::FileScopeAsm: {
5441 // File-scope asm is ignored during device-side CUDA compilation.
5442 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5443 break;
5444 // File-scope asm is ignored during device-side OpenMP compilation.
5445 if (LangOpts.OpenMPIsDevice)
5446 break;
5447 auto *AD = cast<FileScopeAsmDecl>(D);
5448 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5449 break;
5450 }
5451
5452 case Decl::Import: {
5453 auto *Import = cast<ImportDecl>(D);
5454
5455 // If we've already imported this module, we're done.
5456 if (!ImportedModules.insert(Import->getImportedModule()))
5457 break;
5458
5459 // Emit debug information for direct imports.
5460 if (!Import->getImportedOwningModule()) {
5461 if (CGDebugInfo *DI = getModuleDebugInfo())
5462 DI->EmitImportDecl(*Import);
5463 }
5464
5465 // Find all of the submodules and emit the module initializers.
5466 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5467 SmallVector<clang::Module *, 16> Stack;
5468 Visited.insert(Import->getImportedModule());
5469 Stack.push_back(Import->getImportedModule());
5470
5471 while (!Stack.empty()) {
5472 clang::Module *Mod = Stack.pop_back_val();
5473 if (!EmittedModuleInitializers.insert(Mod).second)
5474 continue;
5475
5476 for (auto *D : Context.getModuleInitializers(Mod))
5477 EmitTopLevelDecl(D);
5478
5479 // Visit the submodules of this module.
5480 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5481 SubEnd = Mod->submodule_end();
5482 Sub != SubEnd; ++Sub) {
5483 // Skip explicit children; they need to be explicitly imported to emit
5484 // the initializers.
5485 if ((*Sub)->IsExplicit)
5486 continue;
5487
5488 if (Visited.insert(*Sub).second)
5489 Stack.push_back(*Sub);
5490 }
5491 }
5492 break;
5493 }
5494
5495 case Decl::Export:
5496 EmitDeclContext(cast<ExportDecl>(D));
5497 break;
5498
5499 case Decl::OMPThreadPrivate:
5500 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5501 break;
5502
5503 case Decl::OMPAllocate:
5504 break;
5505
5506 case Decl::OMPDeclareReduction:
5507 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5508 break;
5509
5510 case Decl::OMPDeclareMapper:
5511 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5512 break;
5513
5514 case Decl::OMPRequires:
5515 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5516 break;
5517
5518 default:
5519 // Make sure we handled everything we should, every other kind is a
5520 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5521 // function. Need to recode Decl::Kind to do that easily.
5522 assert(isa<TypeDecl>(D) && "Unsupported decl kind")((isa<TypeDecl>(D) && "Unsupported decl kind") ?
static_cast<void> (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5522, __PRETTY_FUNCTION__))
;
5523 break;
5524 }
5525}
5526
5527void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5528 // Do we need to generate coverage mapping?
5529 if (!CodeGenOpts.CoverageMapping)
5530 return;
5531 switch (D->getKind()) {
5532 case Decl::CXXConversion:
5533 case Decl::CXXMethod:
5534 case Decl::Function:
5535 case Decl::ObjCMethod:
5536 case Decl::CXXConstructor:
5537 case Decl::CXXDestructor: {
5538 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5539 return;
5540 SourceManager &SM = getContext().getSourceManager();
5541 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5542 return;
5543 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5544 if (I == DeferredEmptyCoverageMappingDecls.end())
5545 DeferredEmptyCoverageMappingDecls[D] = true;
5546 break;
5547 }
5548 default:
5549 break;
5550 };
5551}
5552
5553void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5554 // Do we need to generate coverage mapping?
5555 if (!CodeGenOpts.CoverageMapping)
5556 return;
5557 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5558 if (Fn->isTemplateInstantiation())
5559 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5560 }
5561 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5562 if (I == DeferredEmptyCoverageMappingDecls.end())
5563 DeferredEmptyCoverageMappingDecls[D] = false;
5564 else
5565 I->second = false;
5566}
5567
5568void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5569 // We call takeVector() here to avoid use-after-free.
5570 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5571 // we deserialize function bodies to emit coverage info for them, and that
5572 // deserializes more declarations. How should we handle that case?
5573 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5574 if (!Entry.second)
5575 continue;
5576 const Decl *D = Entry.first;
5577 switch (D->getKind()) {
5578 case Decl::CXXConversion:
5579 case Decl::CXXMethod:
5580 case Decl::Function:
5581 case Decl::ObjCMethod: {
5582 CodeGenPGO PGO(*this);
5583 GlobalDecl GD(cast<FunctionDecl>(D));
5584 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5585 getFunctionLinkage(GD));
5586 break;
5587 }
5588 case Decl::CXXConstructor: {
5589 CodeGenPGO PGO(*this);
5590 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5591 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5592 getFunctionLinkage(GD));
5593 break;
5594 }
5595 case Decl::CXXDestructor: {
5596 CodeGenPGO PGO(*this);
5597 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5598 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5599 getFunctionLinkage(GD));
5600 break;
5601 }
5602 default:
5603 break;
5604 };
5605 }
5606}
5607
5608void CodeGenModule::EmitMainVoidAlias() {
5609 // In order to transition away from "__original_main" gracefully, emit an
5610 // alias for "main" in the no-argument case so that libc can detect when
5611 // new-style no-argument main is in used.
5612 if (llvm::Function *F = getModule().getFunction("main")) {
5613 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5614 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5615 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5616 }
5617}
5618
5619/// Turns the given pointer into a constant.
5620static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5621 const void *Ptr) {
5622 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5623 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5624 return llvm::ConstantInt::get(i64, PtrInt);
5625}
5626
5627static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5628 llvm::NamedMDNode *&GlobalMetadata,
5629 GlobalDecl D,
5630 llvm::GlobalValue *Addr) {
5631 if (!GlobalMetadata)
5632 GlobalMetadata =
5633 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5634
5635 // TODO: should we report variant information for ctors/dtors?
5636 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5637 llvm::ConstantAsMetadata::get(GetPointerConstant(
5638 CGM.getLLVMContext(), D.getDecl()))};
5639 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5640}
5641
5642/// For each function which is declared within an extern "C" region and marked
5643/// as 'used', but has internal linkage, create an alias from the unmangled
5644/// name to the mangled name if possible. People expect to be able to refer
5645/// to such functions with an unmangled name from inline assembly within the
5646/// same translation unit.
5647void CodeGenModule::EmitStaticExternCAliases() {
5648 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5649 return;
5650 for (auto &I : StaticExternCValues) {
5651 IdentifierInfo *Name = I.first;
5652 llvm::GlobalValue *Val = I.second;
5653 if (Val && !getModule().getNamedValue(Name->getName()))
5654 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5655 }
5656}
5657
5658bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5659 GlobalDecl &Result) const {
5660 auto Res = Manglings.find(MangledName);
5661 if (Res == Manglings.end())
5662 return false;
5663 Result = Res->getValue();
5664 return true;
5665}
5666
5667/// Emits metadata nodes associating all the global values in the
5668/// current module with the Decls they came from. This is useful for
5669/// projects using IR gen as a subroutine.
5670///
5671/// Since there's currently no way to associate an MDNode directly
5672/// with an llvm::GlobalValue, we create a global named metadata
5673/// with the name 'clang.global.decl.ptrs'.
5674void CodeGenModule::EmitDeclMetadata() {
5675 llvm::NamedMDNode *GlobalMetadata = nullptr;
5676
5677 for (auto &I : MangledDeclNames) {
5678 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5679 // Some mangled names don't necessarily have an associated GlobalValue
5680 // in this module, e.g. if we mangled it for DebugInfo.
5681 if (Addr)
5682 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5683 }
5684}
5685
5686/// Emits metadata nodes for all the local variables in the current
5687/// function.
5688void CodeGenFunction::EmitDeclMetadata() {
5689 if (LocalDeclMap.empty()) return;
5690
5691 llvm::LLVMContext &Context = getLLVMContext();
5692
5693 // Find the unique metadata ID for this name.
5694 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5695
5696 llvm::NamedMDNode *GlobalMetadata = nullptr;
5697
5698 for (auto &I : LocalDeclMap) {
5699 const Decl *D = I.first;
5700 llvm::Value *Addr = I.second.getPointer();
5701 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5702 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5703 Alloca->setMetadata(
5704 DeclPtrKind, llvm::MDNode::get(
5705 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5706 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5707 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5708 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5709 }
5710 }
5711}
5712
5713void CodeGenModule::EmitVersionIdentMetadata() {
5714 llvm::NamedMDNode *IdentMetadata =
5715 TheModule.getOrInsertNamedMetadata("llvm.ident");
5716 std::string Version = getClangFullVersion();
5717 llvm::LLVMContext &Ctx = TheModule.getContext();
5718
5719 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5720 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5721}
5722
5723void CodeGenModule::EmitCommandLineMetadata() {
5724 llvm::NamedMDNode *CommandLineMetadata =
5725 TheModule.getOrInsertNamedMetadata("llvm.commandline");
5726 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5727 llvm::LLVMContext &Ctx = TheModule.getContext();
5728
5729 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5730 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5731}
5732
5733void CodeGenModule::EmitTargetMetadata() {
5734 // Warning, new MangledDeclNames may be appended within this loop.
5735 // We rely on MapVector insertions adding new elements to the end
5736 // of the container.
5737 // FIXME: Move this loop into the one target that needs it, and only
5738 // loop over those declarations for which we couldn't emit the target
5739 // metadata when we emitted the declaration.
5740 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5741 auto Val = *(MangledDeclNames.begin() + I);
5742 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5743 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5744 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5745 }
5746}
5747
5748void CodeGenModule::EmitCoverageFile() {
5749 if (getCodeGenOpts().CoverageDataFile.empty() &&
5750 getCodeGenOpts().CoverageNotesFile.empty())
5751 return;
5752
5753 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5754 if (!CUNode)
5755 return;
5756
5757 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5758 llvm::LLVMContext &Ctx = TheModule.getContext();
5759 auto *CoverageDataFile =
5760 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5761 auto *CoverageNotesFile =
5762 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5763 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5764 llvm::MDNode *CU = CUNode->getOperand(i);
5765 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5766 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5767 }
5768}
5769
5770llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5771 // Sema has checked that all uuid strings are of the form
5772 // "12345678-1234-1234-1234-1234567890ab".
5773 assert(Uuid.size() == 36)((Uuid.size() == 36) ? static_cast<void> (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5773, __PRETTY_FUNCTION__))
;
5774 for (unsigned i = 0; i < 36; ++i) {
5775 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')((Uuid[i] == '-') ? static_cast<void> (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5775, __PRETTY_FUNCTION__))
;
5776 else assert(isHexDigit(Uuid[i]))((isHexDigit(Uuid[i])) ? static_cast<void> (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5776, __PRETTY_FUNCTION__))
;
5777 }
5778
5779 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5780 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5781
5782 llvm::Constant *Field3[8];
5783 for (unsigned Idx = 0; Idx < 8; ++Idx)
5784 Field3[Idx] = llvm::ConstantInt::get(
5785 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5786
5787 llvm::Constant *Fields[4] = {
5788 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
5789 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
5790 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5791 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5792 };
5793
5794 return llvm::ConstantStruct::getAnon(Fields);
5795}
5796
5797llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5798 bool ForEH) {
5799 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5800 // FIXME: should we even be calling this method if RTTI is disabled
5801 // and it's not for EH?
5802 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5803 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5804 getTriple().isNVPTX()))
5805 return llvm::Constant::getNullValue(Int8PtrTy);
5806
5807 if (ForEH && Ty->isObjCObjectPointerType() &&
5808 LangOpts.ObjCRuntime.isGNUFamily())
5809 return ObjCRuntime->GetEHType(Ty);
5810
5811 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5812}
5813
5814void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5815 // Do not emit threadprivates in simd-only mode.
5816 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5817 return;
5818 for (auto RefExpr : D->varlists()) {
5819 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5820 bool PerformInit =
5821 VD->getAnyInitializer() &&
5822 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5823 /*ForRef=*/false);
5824
5825 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5826 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5827 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5828 CXXGlobalInits.push_back(InitFunction);
5829 }
5830}
5831
5832llvm::Metadata *
5833CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5834 StringRef Suffix) {
5835 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5836 if (InternalId)
5837 return InternalId;
5838
5839 if (isExternallyVisible(T->getLinkage())) {
5840 std::string OutName;
5841 llvm::raw_string_ostream Out(OutName);
5842 getCXXABI().getMangleContext().mangleTypeName(T, Out);
5843 Out << Suffix;
5844
5845 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5846 } else {
5847 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5848 llvm::ArrayRef<llvm::Metadata *>());
5849 }
5850
5851 return InternalId;
5852}
5853
5854llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5855 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5856}
5857
5858llvm::Metadata *
5859CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5860 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5861}
5862
5863// Generalize pointer types to a void pointer with the qualifiers of the
5864// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5865// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5866// 'void *'.
5867static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5868 if (!Ty->isPointerType())
5869 return Ty;
5870
5871 return Ctx.getPointerType(
5872 QualType(Ctx.VoidTy).withCVRQualifiers(
5873 Ty->getPointeeType().getCVRQualifiers()));
5874}
5875
5876// Apply type generalization to a FunctionType's return and argument types
5877static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5878 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5879 SmallVector<QualType, 8> GeneralizedParams;
5880 for (auto &Param : FnType->param_types())
5881 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5882
5883 return Ctx.getFunctionType(
5884 GeneralizeType(Ctx, FnType->getReturnType()),
5885 GeneralizedParams, FnType->getExtProtoInfo());
5886 }
5887
5888 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5889 return Ctx.getFunctionNoProtoType(
5890 GeneralizeType(Ctx, FnType->getReturnType()));
5891
5892 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/CodeGen/CodeGenModule.cpp"
, 5892)
;
5893}
5894
5895llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5896 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5897 GeneralizedMetadataIdMap, ".generalized");
5898}
5899
5900/// Returns whether this module needs the "all-vtables" type identifier.
5901bool CodeGenModule::NeedAllVtablesTypeId() const {
5902 // Returns true if at least one of vtable-based CFI checkers is enabled and
5903 // is not in the trapping mode.
5904 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5905 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5906 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5907 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5908 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5909 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5910 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5911 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5912}
5913
5914void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5915 CharUnits Offset,
5916 const CXXRecordDecl *RD) {
5917 llvm::Metadata *MD =
5918 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5919 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5920
5921 if (CodeGenOpts.SanitizeCfiCrossDso)
5922 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5923 VTable->addTypeMetadata(Offset.getQuantity(),
5924 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5925
5926 if (NeedAllVtablesTypeId()) {
5927 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5928 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5929 }
5930}
5931
5932llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5933 if (!SanStats)
5934 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5935
5936 return *SanStats;